
A Flexible and Integrated Interface between Speech Recognition,
Speech Interpretation and Dialog Management

Robert Lieb, Matthias Thomae, Günther Ruske, Daniel Bobbert∗ and Frank Althoff∗∗

Institute for Human-Machine Communication, Technische Universität München, Germany
∗CLT Sprachtechnologie GmbH, Saarbrücken, Germany

∗∗BMW Forschung und Technik GmbH, M̈unchen, Germany
{lie,tho,rus }@mmk.ei.tum.de, bobbert@clt-st.de, Frank.Althoff@bmw.de

Abstract

This paper presents an integrated interface between speech
recognition, speech interpretation and dialog control intended
for spoken dialog systems coping with natural speech input.
During the system design phase the interface co-ordinates cor-
pus acquisition and annotation, grammar development and the
construction of stochastic hierarchical language models. Dur-
ing system runtime, it links together speech recognition and in-
terpretation by efficient one-stage decoding of semantic trees,
from which semantic content can easily be extracted. To gain
robustness, the interface provides a way to interpret semantic
confidences estimated during the decoding process. Further-
more, the dialog control can manage dynamic vocabulary and
language model parts depending on the dialog context. The
suggested interface helps the developer to build up and main-
tain the speech understanding part of a spoken dialog system in
a consistent and flexible way. In addition, the reported exper-
imental results show that information extraction performance
can be increased by the presented methods.

1. Introduction
The task of automatic speech understanding in a spoken dialog
system is to extract the semantic content from a user utterance,
which is passed to the dialog control to generate a suitable sys-
tem response. In the limited domain of a specific use case, se-
mantic content can be represented by a selection of instances
from a finite set of predefined slot-value pairs, also called se-
mantic frame variables (see [1] for a summary of frame-based
systems for the ATIS task). Traditionally, the speech under-
standing problem is tackled in several processing stages. First,
a speech recognizer translates the speech signal from acous-
tic feature vectors into hypothesized words. Then, a semantic
parser determines the tree of semantic units that best matches
these words. Its grammatical model is designed in a way that the
root-leaf paths of a parsed semantic tree correspond to the slot-
value pairs which are to be extracted. However, due to the lim-
ited power of the grammatical model, it’s generally not possible
to establish a simple relation between tree paths and slot-value
pairs. Therefore the parser needs additional rules that handle
slot creation and filling while building up the semantic tree.

A drawback of the multi-stage approach is the fact, that
there are separate knowledge sources for speech recognition and
interpretation, namely the speech recognizer’s language model
and the semantic parser’s grammatical model. Performance and

This work was partly funded by the NADIA research project from
the Bayerische Motorenwerke (BMW).

efficiency of the understanding process suffer from the fact that
these knowledge sources cannot be exploited simultaneously.
Because the grammatical model cannot be applied during the
recognition process, an interface relying only on the best match-
ing word sequence may cause performance losses. A common
method to prevent these performance losses is to pass a bunch
of possible word hypothesises in form of n-best lists or word
graphs which are rescored by the semantic parser (e.g. in [1, 2]).

The presented interface concept, however, solves this prob-
lem by the application of our one-stage decoder ODINS [3],
that determines the best matching tree of semantic units directly
from the speech signal (see [4, 5] for similar approaches). The
one-stage decoder uses a so-called hierarchical language model
consisting of a hierarchy of weighted transition networks, which
is equivalent with the semantic interpretation grammar used for
slot filling. In consequence, the search is constrained to the
space of interpretable solutions, which guarantees a consistent
interface. Using the Viterbi decoding principle, ODINS deter-
mines the best possible solution within the limits of the inte-
grated search network hierarchy formed by grammatical, lexical
and acoustical model. Efficiency is increased as well, because
there’s no need for an additional parsing step. Slot-value pairs
are extracted in an amortized amount of time from the decoded
semantic tree.

In [3], the hierarchical language model was constructed
from a corpus of semantic tree annotations. Now, we take the
semantic interpretation grammar as primary knowledge source
and build up the hierarchical language model by the conversion
of grammar rules into corresponding transition networks. Due
to the small size of our domain specific data collection, we work
with handcrafted semantic interpretation grammars (for sophis-
ticated grammar inference methods based on the EM algorithm,
see [1, 4]). To consider corpus statistics, we use a robust parser
that automatically annotates semantic trees on the orthographic
corpus transcription. This allows the estimation of transition
weights by simple counting and smoothing methods, including
n-gram statistics (see [6] for a similar approach).

Furthermore, ODINS allows the estimation of semantic tree
node confidences [7]. This feature is used to increase robust-
ness against unavoidable recognition and interpretation errors
caused by natural speech input. Another important feature is
the dynamic management of the hierarchical language model’s
transition network hierarchy which allows the dialog control to
exchange specific model parts, depending on the current dialog
context.

The paper is organized as follows: Section 2 describes the
system design phase, regarding corpus acquisition, grammar de-
velopment, automatic annotation and the generation of hierar-

gue
Textfeld
From: Interspeech 2005 - Eurospeech, Lisboa, ISCA

sem. Interpr.
Grammar

Parser

HLM

sem. tree
annot.

orth. corpus
transcript.

Counting
& Smooth.

n-gram
Estim.

HLM
Generation

ODINS
Slot

Extraction

Dictionary

Dialog
Control

Acoustic
Models

speech sem. tree slots

System design phase

Application
Data Base

Dialog
Context

Runtime Interface

Figure 1:Diagram depicting system design phase and runtime
interface of the suggested automatic speech understanding ap-
proach.

chical language models. Section 3 presents the runtime inter-
face including one-stage decoder, slot filling and dialog control.
Section 4 explains how semantic tree node confidences are as-
signed to slot-value confidences and how the analysis of these
values is translated into suitable dialog behavior. Experimen-
tal results concerning the information extraction performance
of different system setups are given in Section 5.

2. System Design Phase
In order to test the dialog application design as soon as pos-
sible, system engineers usually make the effort to conduct us-
ability tests using systems with speech understanding capabil-
ities that are simulated by the aid of human ”wizards”. Even
if only a small amount of data can be collected and, in con-
sequence, interpretation grammars have to be crafted by hand,
these data collections greatly facilitate their design: The devel-
oper is released from being the ”oracle” of possible user utter-
ances and can examine the orthographic corpus transcription to
devise suitable grammar rules. To specify interpretation gram-
mars, we use the ABNF format, that allows the compact repre-
sentation of context-free grammar and slot filling rules by regu-
lar expressions containing semantic interpretation tags [8, 9].

In the limited domain of our dialog application, user utter-
ances usually have a low degree of ambiguity. Therefore, we
avoid1 ambiguous grammar rules and resolve the few cases of
slot-value pairs with ambiguous interpretations inside the dia-
log control by initiating a dialog step to ask the user for clar-
ification. Furthermore, semantic interpretation grammars have
to be specified without using recursive rule dependencies which
are not supported by our one-stage decoder. However, for the
description of natural language, this didn’t turned out to be a
serious restriction.

1Remaining accidental rule ambiguities are resolved by the statisti-
cal weighting.

We iteratively improve grammar coverage by the analysis of
the semantic trees automatically annotated on the corpus sub-
set used for training. In addition to grammar rules designed for
information extraction, we specify filler rules for verbal expres-
sions that occur frequently, but don’t carry any valuable infor-
mation. To cope with partially ungrammatical utterances, we
use a robust parser. It determines the partial parse that includes
the minimal number of unmatched words. Although we use un-
ambiguous grammars, ambiguity is still a problem in the pres-
ence of ungrammatical utterance sections. Here, it may happen
that the robust parser finds more than one semantic tree with
the minimal number of unmatched words. Thus, the grammar
should be improved until all slot-value pairs in the training cor-
pus subset can unambiguously be extracted. Furthermore, the
slot-value pairs extracted on the test corpus subset, serving as
reference for the experiments in Section 5, have to be corrected
by hand in all cases of wrong solutions, caused by ambiguity or
insufficient grammar coverage.

The generation of the hierarchical language model (HLM)
for our one-stage decoder ODINS is represented in the upper
part of Figure 1. The semantic interpretation grammar is trans-
lated to a hierarchy of transition networks by converting the
regular expression of each grammar rule into an equivalent fi-
nite state automaton, using Lextools [10]. To consider corpus
statistics, we use two different methods: Counting and smooth-
ing, as well asn-gram statistics. The first method is used to
estimate the transition weights of each subnet in the network
hierarchy, independently of the contexts in which the corre-
sponding grammar rule can be applied. The transition weights
are estimated from the number of traversals of each transition
in each subnet, counted while walking through the semantic
trees that have been automatically annotated on the training
corpus subset. To take into account unused parts of the se-
mantic interpretation grammar and to correct unreliable counts
caused by data sparsity, we smooth the transition weights by
Good-Turing discounting. Grammar rules describing alterna-
tives, that are apriori equally probable, have to be excluded from
the counting and smoothing process and are represented by sub-
nets with uniformly distributed transition weights. The second
method employsn-gram models for grammar rules that consist
of a ”Kleene closure” expressed by the ”star” or ”plus” opera-
tor in regular expression syntax. Being equivalent with an un-
weighted zero-gram, this construction can be replaced by ann-
gram model which is estimated over the collection of sequences
produced by the corresponding grammar rule, while parsing the
training corpus subset. Up to now, we use this method to es-
timate a bigram for the grammar’s head rule which defines a
Kleene closure over all main rules. To computen-gram models
with back-off smoothing, and to convert them into finite state
automata we use the SRILM toolkit [11].

3. Runtime Interface
The runtime interface is depicted in the lower part of Figure 1.
While the user is talking to the dialog system, ODINS deter-
mines the best matching semantic tree by time synchronous
Viterbi search. As stated in the last section, its hierarchical lan-
guage model ensures that the decoded semantic tree follows the
semantic interpretation grammar. Therefore a constrained parse
along the decoded semantic tree is sufficient to retrieve the slot-
value pairs. This is done by evaluating the semantic interpre-
tation tags which are encountered while matching the grammar
rule definitions with the decoded semantic tree. Semantic in-
terpretation tags contain scripting commands that handle slot

creation and filling [9]. Each encountered semantic tag cor-
responds to a specific scope of consecutive tree siblings. The
contained slot filling commands may refer to subordinate slots
that already have been created in these sibling nodes. This al-
lows the concatenation of slot names to form nested data struc-
tures, as well as the arbitrary combination of values using script-
ing facilities, like arithmetical operators or string processing.
While walking upwards the semantic tree, this mechanism pro-
vides a flexible way to extract information and to translate it
into the desired format. Figure 2 shows an example from our
German flight information application domain. It illustrates the
extraction of two slot-value pairs from a decoded semantic tree
that contains a flight code consisting of airline code and flight
number. To the right hand side of every non-terminal semantic
tree node one can see the matching part of the corresponding
grammar rule that contains the evaluated semantic interpreta-
tion tags2 (in curly braces). The resulting slot-value pairs are
taken from the root of the semantic tree. If multiple instances
are extracted for the same slot (e.g. when the user makes a self-
correction), the corresponding value is simply overwritten in the
order of occurrence. The resulting collection of slot-value pairs
is passed to the dialog control that determines the next dialog
step.

While the user is prompted for the next response, the dialog
control can modify the hierarchical language model depending
on the current dialog context. The dialog control uses this in-
terface to update subnets representing specific content from the
dialog application data base. This allows the dynamic selec-
tion of data base content into the search space, depending on
information extracted in earlier dialog steps, as well as the con-
sideration of data base content that is not known during design
time. For this purpose ODINS provides an interface for the dy-
namic management of transition network hierarchies. Subnets
are managed in resource collections, which can be selected in
a specific order to build up the network hierarchy for the next
recognition run. Vocabulary can be loaded dynamically from
pronunciation dictionaries, which are automatically generated
by grapheme to phoneme translation3.

4. Interpretation of Confidences
Interpretation errors are caused either by imperfect modeling,
concerning grammar coverage and acoustic-phonetic models, or
by the user itself in the case of out-of-domain utterances. Dialog
quality can benefit a great deal from the robust detection of these
errors, because misguided as well as unnecessary dialog steps
can be avoided. For this purpose we use the method presented
in [7] to estimate confidences for semantic tree nodes. During
slot-value pair extraction, semantic tree node confidences are
translated into corresponding slot and value confidences, using
a rule-based policy described in the next paragraph. The dia-
log control exploits slot and value confidences in the follow-
ing way: If the slot confidence is below a certain threshold, the
whole slot is discarded. If the slot confidence holds, but the
value confidence is below the threshold, the dialog control may
initiate a step to clarify the slot content. If slot and value confi-
dences are both accepted, the dialog control can safely rely on
the slot-value pair when making decisions that determine the
subsequent dialog steps.

2”$” denotes a temporary slot that can be accessed from higher-
ranked semantic interpretation tags

3for our German vocabulary we use the freely available tool
txt2pho [12]

FlightCode

-0.02
→ ... | $AirlineCode { fcode.airline = $AirlineCode }

$FlightNumber { fcode.number = $FlightNumber } | ...

AirlineCode

-0.28

FlightNumber

-0.04

Digit

-0.04

Digit

-0.01

Digit

-0.06
→ ... | l_h
{ $ = LH } | ...

→ ... | neun
{ $ = 9 } | ...

l_h

-0.35

zwei

-0.09

acht

-0.02

neun

-0.13

... | $Digit { $ = str($Digit) }
$Digit { $ = $ + str($Digit) }
$Digit { $ = $ + str($Digit) } | ...

... ...

→

� ... fcode.airline [-0.28] = LH [-0.35]
fcode.number [-0.06] = 289 [-0.13] ...

Figure 2:Example illustrating the extraction of slot-value pairs
and corresponding confidences from a decoded semantic tree
that contains a flight code.

The confidence of a semantic tree node, that corresponds ei-
ther to a non-terminal grammar rule or to a terminal word, is an
estimation of the posterior probability of it’s occurrence in the
decoded semantic tree. Currently, we use the following rule-
based policy to translate semantic tree node confidences into
slot and value confidences: For the case that a slot is created
and filled without referring to subordinate slots, the slot confi-
dence is set to the confidence of the current tree node, in which
the slot is created. The value confidence is calculated by tak-
ing the minimum over the confidences belonging to the sibling
nodes in the scope of the semantic tag, that contains the slot cre-
ation command. If, however, subordinate slots are involved, the
confidence of the newly created slot is set to the minimum over
the confidence of the current tree node and the slot confidences
of the subordinate slots. The value confidence of the new slot is
set to the minimum of the value confidences of the subordinate
slots. We chose the minimum operator to combine the negative
confidence values, since they are estimations of logarithmized
posterior probabilities. Figure 2 shows the extracted slot and
value confidences (indicated in square brackets) that result from
the depicted semantic tree node confidences when applying the
rule-based policy as specified above. In the case that the value
of an already existing slot instance should be overwritten, this
is only done if the slot confidence of the new instance is above
the confidence threshold used for discarding slots.

5. Experimental Results
To measure the performance of information extraction we use
the slot error rateSER [13]

SER =
NS + NI + ND

NC + NS + ND

which takes into account the number of correct (NC), substi-
tuted (NS), inserted (NI) and deleted (ND) slots. A slot is
counted as correct, if it can be found in the hypothesis and the
reference and if the values are equal. If the values are not the
same, the slot is counted as substituted. An insertion is counted
if the slot occurs only in the hypothesis, a deletion if it oc-
curs only in the reference. Sequence aligning is not necessary,
because the slots extracted from a specific user utterance are
unique and can be processed independently of the order of their

% WER SER CER CERBL

two-stage 18.6 12.0 - -
one-stage 19.5 10.2 4.5 6.0

Table 1:Word (WER) and slot error rate (SER) of two-stage
and one-stage system setup, as well as slot confidence error
ratesCER andCERBL.

extraction. To incorporate the confidence estimation, we discard
slots having a slot confidence below a specific threshold which
is empirically adjusted by cross-validation experiments. If the
confidence estimation performs well, this decreases the slot er-
ror rate by the rejection of incorrectly inserted slots. Further-
more, we evaluate the slot confidence estimation by counting
the number of false accepted (NFA) and false rejected (NFR)
slots and comparing the confidence error rateCER with its
base lineCERBL:

CER =
NFA + NFR

NC + NS + NI

CERBL =
NI

NC + NS + NI

Experiments were carried out within our application domain,
which is a German airport information system. This system
allows the user to query information like arrival or departure
times, flight codes, gates and parking sites. The training corpus
subset includes about 3500 utterances of 55 speakers, the test
corpus subset about 450 utterances of 12 speakers. Currently,
the semantic interpretation grammar covers about 80 rules and
20 different slot types. The task’s vocabulary includes about
500 different words. The percentage of words in the test set
that are not covered by the semantic interpretation grammar is
about 11% (which is a lower bound for the word error rate). The
acoustic modeling is done by speaker-independent tied intra-
word triphone HMMs with about 25k Gaussian mixture com-
ponents, as described in [3]. Table 1 shows preliminary results
regarding two different system setups: The first one is a two-
stage interpretation system, running ODINS with a bigram class
language model to determine the best matching word sequence.
The word sequence is passed to the robust parser, which applies
the interpretation grammar to extract the slot-value pairs. The
second system setup uses ODINS with a hierarchical language
model, that is constructed as explained in Section 2. Slot-value
pairs and corresponding confidences are extracted from the de-
coded semantic tree following the method presented in Section
3 and 4. The results show that information extraction perfor-
mance can be improved by one-stage decoding and confidence
estimation, although the word error rate is not improved in com-
parison to the two-stage setup. Further, the slot confidence error
falls below its base line indicating that slot confidences can be
used to find out incorrectly inserted slots.

6. Conclusions
In this paper we proposed an interface that tightly couples
speech recognition, speech interpretation and dialog control.
This is achieved by the construction of a hierarchical language
model that includes the semantic interpretation grammar and
corpus statistics. Our one-stage decoder ODINS uses the hier-
archical language model to determine the best matching seman-
tic tree directly from the speech signal. By matching the se-
mantic interpretation grammar with the decoded semantic tree,

slot-value pairs can easily be extracted, including separate con-
fidences for slot and value. The reported results show that in-
formation extraction performance and robustness against inter-
pretation errors can be improved using this approach. From the
system engineer’s point of view, the tight integration of the in-
volved knowledge sources prevents errors and inconsistencies
and thus greatly facilitates the development and the administra-
tion of the speech understanding part of a spoken dialog system.

7. References
[1] Y. He and S. Young, “A Data-Driven Languag Under-

standing System,” inProc. ASRU, St. Thomas, U.S. Virgin
Islands, November 2003.

[2] K. Hacioglu and W. Ward, “A Word Graph Interface for
a Flexible Concept Based Speech Understanding Frame-
work,” in Proc. Eurospeech, Aalborg, Denmark, Septem-
ber 2001.

[3] M. Thomae, T. Fabian, R. Lieb, and G. Ruske,
“A One-Stage Decoder for Interpretation of Natural
Speech,” inProc. NLP-KE’03. Beijing, China: IEEE,
October 2003. [Online]. Available: http://www.thomae-
privat.de/publications/nlpke2003.pdf

[4] A. Acero and Y. Wang, “A Semantically Structured Lan-
guage Model,” inSpecial Workshop in Maui (SWIM),
Hawaii, January 2004.

[5] C. Fügen, H. Holzapfel, and A. Waibel, “Tight Cou-
pling of Speech Recognition and Dialog Management
- Dialog-Context Dependent Grammar Weighting for
Speech Recognition,” inProc. ICSLP, Jeju Island, Korea,
October 2004.

[6] K. Hacioglu and W. Ward, “Dialog-Context Dependent
Language Modelling Combining N-Grams And Stochas-
tic Context-Free Grammars,” inProc. ICASSP, Salt Lake
City, Utah, May 2001.

[7] R. Lieb, T. Fabian, G. Ruske, and M. Thomae, “Estima-
tion of Semantic Confidences on Lattice Hierarchies,” in
Proc. ICSLP, Jeju Island, Korea, October 2004.

[8] W3C Voice Browser Working Group, “Speech Recogni-
tion Grammar Specification,” 2004. [Online]. Available:
http://www.w3.org/TR/speech-grammar/

[9] ——, “Semantic Interpretation for Speech
Recognition,” 2004. [Online]. Available:
http://www.w3.org/TR/semantic-interpretation/

[10] R. Sproat, “Lextools: a toolkit for finite-
state linguistic analysis.” [Online]. Available:
http://www.research.att.com/sw/tools/lextools/synth.pdf

[11] A. Stolcke, “SRILM - An Extensible Language Model-
ing Toolkit,” in Proc. ICSLP, Denver, Colorado, USA,
September 2002.

[12] T. Portele, J. Kr̈amer, and D. Stock, “Symbolverarbeitung
im Sprachsynthesesystem HADIFIX,” in6. Konferenz
Elektronische Sprachsignalverarbeitung, Wolfenb̈uttel,
Germany, 1995.

[13] J. Makhoul, F. Kubala, R. Schartz, and R. Weischedel,
“Performance Measures for Information Extraction,” in
DARPA Broadcast News Workshop, 1999.

