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ABSTRACT 

 
In this contribution, we present a generic and therefore 
easily scalable multimodal framework for error robust 
processing of user interactions in various domains. The 
system provides a generic kernel for evaluating user in-
puts and additional pieces of information from situ-
ational, personal, and functional context. After an initial 
domain-specific configuration, the system is capable of 
detecting a set of error situations and patterns. In case an 
error is likely to occur or detected, a context-adequate 
dialog output is generated. For classification of the error 
patterns and the selection of the according dialog strat-
egy, we have implemented a fuzzy-logic algorithm, using 
Mamdani controllers. The multimodal framework has 
been applied and evaluated in two application domains: 
an in-car infotainment and communication system and a 
3D virtual shopping mall in a desktop PC environment. 
From a large user test, we have transcribed eleven error 
scenario contexts each consisting of 15 individual test 
sets, and analyzed them in an offline evaluation. In the 
VR domain, the rates for a correctly detected error pattern 
have been between 90.7% and 95.0% (86.7% up to 94.3% 
in the car domain). The rates for the appropriately se-
lected error resolution strategy have been between 93.9% 
and 96.3% (91.0% up to 96.1% in the car domain). 
 
Keywords: Generic, multimodal, system, error, handling, 
fuzzy logic, human-machine interaction, automotive, VR; 
 
 

1. INTRODUCTION 
 
In modern applications, an enormous increment of vari-
ous technologies can be realized. Due to the price decline 
of many electronic devices, their compact size, and their 
great capability, today’s technical systems offer a large 
spectrum of functionality. Yet, as a direct consequence of 
the functional complexity, the interaction with such inter-
faces is getting more and more difficult for the user 

which often leads to different kinds of operation errors. 
The error patterns are highly domain-specific as well as 
the factors leading to them. This paper exemplarily fo-
cuses on two types of application systems in completely 
different domains: infotainment and communication sys-
tems established within a car and a 3D virtual shopping 
mall in a desktop PC environment. 
Especially in the car domain, often error-prone situations 
occur regarding the human-machine interaction with dif-
ferent in-car applications, as the driver often has a certain 
mental workload. This basic stress level is due to the exe-
cution of so-called primary (navigation, stabilization of 
the car, etc.) and secondary tasks (windshield wiping, 
honking, etc.), and may be increased by environmental 
impacts, like the conversation with a co-driver. If the 
driver interacts, e.g., with a communication and infotain-
ment system in such a stress phase (tertiary task), inatten-
tion, distraction, and irritation occur as a consequence of 
the high workload resulting from a superposition of the 
tasks mentioned above, which will become manifest in an 
increased error potential and in erroneous operations of 
these tertiary systems.  
Compared to the automobile domain, in front of a desk-
top PC, the user can predominantly execute her or his 
operations in a concentrated way, as there is no dual task 
competition. Error patterns are assumed to be less influ-
enced by the situational context induced by the environ-
ment. Hence, typical errors caused by the user mainly 
occur in three action categories: navigation, picking, and 
manipulation. 
In both domains, also errors are likely to occur which are 
caused by a certain malfunction of the technical system. 
For example, many speech interfaces are still noise-
prone, interfaces for gestural input have the disadvantage 
of being sensitive to changes in lighting, and, if worn out, 
even a button can have a malfunction. If the system has a 
monomodal interface, the error aggravates, as the system 
can no longer be properly used until the cause is found 
and removed. Therefore, in the many domains, increas-
ingly multimodal interfaces (MIs) are applied. Besides 
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classical tactile sensors (buttons, turning knobs, etc.), MIs 
also allow for speech, gestures, or both as interaction 
paradigms[1]. Compared to monomodal systems, MIs 
provide significantly shortened learning periods as well 
as a highly individual and intuitive form of interaction, 
since they meet natural human communication habits[2]. 
If, for any reason, the chosen modality channel is dis-
rupted, the user can be suggested an alternative input 
form as a fallback in dependence of the given functional-
ity and the situational context. The following exemplary 
scenario might appear in the car domain: caused by heavy 
environmental noise, the recognition performance of a 
speech recognizer drops drastically. The system could 
now alternatively suggest the driver tactile input, if the 
car is just waiting at a traffic lights. Oviatt et al. mention 
that in dedicated scenarios, it is possible to omit up to 
86% of all task-critical errors, if only an alternative input 
modality is present[2]. When the user provides input in a 
synergistic and redundant way, mutual ambiguities can 
be eliminated[2]. To distract the user as less as possible, 
and, on the other hand, to increase operation comfort, a 
context sensitive error management is imperative. The 
goal is to duly identify potential error sources concerning 
the operation of the applications mentioned above, and to 
trigger according measures, e.g., warning outputs (a pri-
ori-error management). If errors have occurred, they 
should be solved rapidly, effectively, and transparently 
for the user to prevent further distraction and error propa-
gation (a posteriori- error management). 
 
 

2. PRELIMINARY WORK 
 
The problem of error robustness during interaction with 
interfaces in the automobile has been discussed in nu-
merous preliminary works. In an essay, D. Norman criti-
cizes that the automobile industry often ignores the ad-
vances in user-interface design. In his opinion, many ex-
isting interfaces have poor ergonomics, tiny readouts, or 
way too many buttons so that a purely tactile operation of 
such systems is very unsafe while driving[3]. A research 
team at the Institute for Technical Computer Science 
(RWTH Aachen, Germany)[4] deals, amongst other 
things, with the intuitive design of multimodal on-board 
car systems. A special focus is placed on the individual 
adaptation to the user in different operation situations. 
In the VR domain, C. Wewerka et al. show a concept of a 
component-based virtual mall implemented in Java 
3D[5]. The architecture allows for easy integration of 
arbitrary input modalities. For an error-robust and intui-
tive way of interaction, the selection paradigm contains 
an adaptive picking ray that can be given the form of a 
cone. In his work, M. Turunen studies different error 
types that occur during human-machine interaction with a 
speech-based interface in the context of virtual worlds, 
and introduces some improved error-handling meth-
ods[6]. 

3. THEORETICAL BACKGROUND 
 
Generally, we define an error in human-machine interac-
tion, if the user does not reach her or his desired goal, and 
no coincidence can be made responsible for it. For a sys-
tematic classification of error types, we basically assume 
that either the user or the system can cause an error in the 
human-machine communication process. Consequently, 
two main error categories, which are characterized below, 
can be distinguished: user-specific errors and system-
specific errors. This section closes with a formal discus-
sion of methods and strategies for error resolution. 
 
User-Specific Errors 
The basic taxonomy underlying our modeling of user-
specific error classes is related to the work of J. Rasmus-
sen and J. Reason[7]. Reason identifies three different 
levels for classifying errors. Analyzing the reason of the 
error, he differentiates between formal attributes of the 
error (“what“?), the circumstances under which the error 
occurred (“where“?), and the cognitive mechanisms in-
volved („how“?). According to the level model of Ras-
mussen, three basic error levels can be identified.  
The skill-based level (SBL) comprises smooth, auto-
mated, and highly integrated routine actions that take 
place without conscious attention or control. Human per-
formance is governed by stored patterns of prepro-
grammed instructions represented as analog structures in 
a time-space domain. Errors at this level are related to the 
intrinsic variability of force, space, or time coordination. 
Sporadically, the user checks, if the action initiated by her 
or him runs as planned, and if the plan for reaching the 
focused goal is still adequate. Error patterns on SBL are 
execution or memory errors that result from inattention or 
overattention of the user.  
Concerning errors on the rule-based level (RBL), the user 
violates stored prioritized rules (so-called productions). 
Errors are typically associated with the misclassification 
of situations leading to the application of the wrong rule 
or with the incorrect recall of procedures.  
At the knowledge-based level (KBL), the user applies 
stored knowledge and analytical processes in novel situa-
tions, in which actions must be planned on-line. Errors at 
this level arise from resource limitations (bounded ration-
ality) and incomplete or incorrect knowledge. 
 
System-Specific Errors 
In our error taxonomy, we also address errors caused by 
the system. Well-known examples are recognition error, 
like misinterpretation, false recognition of a correct user 
input, or an incorrect system-intrinsic activation of a 
speech recognizer (e.g., the user coincidentally applies 
the keyword which activates the speech recognizer in a 
conversation with the co-driver). Moreover, processing 
errors (timing problems or contradictory recognition re-
sults of different monomodal recognizers, etc.) as well as 
technical errors (e.g., system overflow or breakdown of 



system components) can occur. The superposition of er-
rors represents a more complex error pattern. E.g., a 
speech command of the user, which is not allowed in a 
certain mode, is mapped onto a valid command because 
of an erroneous interpretation of the system, but on the 
other hand, this command does not correspond to the in-
tention of the user. Other error classes, which, however, 
are not considered in the final implementation, are output 
errors (e.g., insufficient or incomprehensible information) 
and global design errors, like bad ergonomics. 
 
Taxonomy of error resolution strategies 
If potential or definitive system- or user-specific errors 
have been identified, the system tries to solve them via a 
dedicated system dialog. Feasible strategies (warning, 
request for reentry, request for changing the input modal-
ity, selection from command alternatives, tutorial, forcing 
functions, gagging, self-correction, etc.) can be distin-
guished by some criteria, as follows: initiation of the er-
ror notification, context-dependency, consideration of 
individual characteristics of the user (e.g., her or his state 
of knowledge and awareness), impact and demands of the 
strategy (i.e., level of detail of the knowledge transfer and 
the extent of the intervention), as well as the inclusion of 
the user (i.e., the degree of interactivity during the error 
resolution process and the form of the system feedback). 
The selection of the dialog strategy substantially depends 
on contextual parameters that, amongst others, are the 
personal state of the user (e.g., emotional behavior), envi-
ronmental data (e.g., background noise, lighting condi-
tions), as well as the system context (e.g., currently cho-
sen input modality, state and mode of the application). 
  
 

4. SYSTEM SPECIFICATION 
 

In this section, we describe the system architecture and 
characterize the functionality of the single components of 
the multimodal error-robust framework.  
 
Framework Topology 
The system architecture basically consists of three main 
processing levels: the input level, the integration level, 
and the output level (see figure 1).  
 

 
 
Figure 1: Multimodal framework based on a late seman-
tic fusion of input; the error management module is part 
of the generic core at the integration level 
 

The input level contains any kind of interface that is ca-
pable of recognizing user inputs (e.g., mouse, buttons, 
speech recognizer, etc.). Dedicated command mappers 
(CMs) encode the information bits of the single inde-
pendent modality recognizers and context sensors into a 
meta language based on a context-free grammar (CFG). 
In the integration level, the recognizer outputs and addi-
tional information of context sensors (e.g., information 
about application environment, user state, etc.) are com-
bined in a late semantic fusion process that is extensively 
illustrated in[8]. The error management component, that 
will be subsequently described, is also located in the inte-
gration level. Unless the system realizes any potential or 
type of error, another set of CMs translates back the re-
sulting command modeling the user intention into an ap-
plication-specific command. By this principle, all core 
components of the framework, that are located at the in-
tegration level, can be kept generic and independent from 
the specifications of the individual recognizers and the 
application components to the greatest possible extent. A 
configuration script must only once domain-specifically 
adapt the modules for signal fusion, context evaluation, 
and error management. 
In the following paragraphs, we will describe the struc-
ture of the error management module and the functional-
ity of its single components. The error management proc-
ess consists of four steps: error feature extraction, error 
analysis, error classification, and error resolution. 
 
Error Feature Extraction 
This component of the error management module con-
tinuously extracts certain features from the stream of 
incoming messages. The relevance and structure of these 
features has been determined in a preliminary test se-
ries[9]. Generally, we distinguish between command fea-
tures (competing actions, correcting actions, redundant 
interactions, command repetitions, modality changes, 
time relations between commands), and contextual fea-
tures, such as user characteristics (system experience, 
domain-specific knowledge, emotional features, etc.), 
environmental influences (e.g., background noise, light-
ing conditions), and system-intrinsic parameters (e.g., 
output volume, confidence measures of the individual 
recognizers).  
 
Error Analysis 
The verification of an error potential and the detection of 
an error pattern are managed via Error Analysis Sentinels 
(EAS). EAS are highly specialized dynamic agents with 
each EAS designed for the verification of an individual 
error pattern. A single sentinel can be regarded as an in-
stance of a class of generic sentinels. Thus, the architec-
ture is easily portable to other domains and freely scal-
able in its extent. For the validation of an individual error 
pattern, we use a fuzzy-system approach. The method was 
chosen, as it needs very small training, and represents a 
fast realization base in terms of a proof of concept. Due 



to the fuzziness of the formulated productions, the ap-
proach is clearly more flexible compared to a classical 
expert system with hard decisions. The EAS were imple-
mented as Mamdani controllers. Depending on the EAS, 
the rule corpora comprise 15 to 103 rules with one rule 
containing between three and eight input variables (com-
ponents of the feature vector). For each input variable, 
there are two to seven fuzzy-rule blocks with the mem-
bership functions for the single fuzzy sets implemented as 
triangular functions. The defuzzification is done using the 
center of gravity (COG) method, as in general, it has a 
smooth control behavior. Each EAS evaluates the respec-
tive features on the basis of its individual criteria catalog, 
and calculates a probability as well as a time stamp for 
the represented error type. 
 

 
 
Figure 2: Example for computation of the probability of 
a speech recognition error in an automotive scenario 
 
In figure 2, a simplified example is visualized to show the 
principle of the algorithm. Hence, let the output variable 
vout be the system-specific error for an automatic speech 
recognizer (ASR) that is applied in the car domain. The 
fuzzy rule corpus totally comprises 17 individual rules ri, 
i∈{1,2,…,17}, each of them featuring three input vari-
ables (all values normalized): the confidence measure of 
the automatic speech recognizer (v1), the volume of envi-
ronmental noise (v2), and the flag ‘co-driver aboard’ (v3)). 
v1 has four fuzzy rule blocks, v2 a total of three, and v3 
two rule blocks. Assumed the EAS takes values v1= 0.22, 
v2= 0.81, and v3= 0, the rules r1, r3, and r5 will apply. By 
superposition of the respective membership functions of 
the output variable, we get vout = 0.76 which can be inter-
preted as the ASR-specific error probability. 
 
Error Classification 
As a result of the error analysis, each EAS delivers a 
probability for its individual error type. In this phase of 
the error management process, the resulting error type(s) 
are determined. For this decision process, dynamic 
threshold logic is applied. All error types with a probabil-
ity over the threshold are fed into the error resolution 
module as input variables. Thus, the system is even capa-

ble to recognize superposed errors and error propagation 
patterns (as regards content and point of time). However, 
in the current state of development, the management of 
overlapping errors is not yet implemented and will be part 
of further work. 
 
Error Resolution 
For the selection of a dedicated dialog strategy, the cur-
rent context parameters as well as the error types are 
fuzzified as singletons in rule sets. There is a total of 
twelve different correction strategies (see section 3). Each 
strategy type is instantiated in terms of an error strategy 
sentinel (ESS). In direct analogy to an EAS, on the basis 
of the input variables, each ESS determines a plausibility 
measure for its represented strategy, using a Mamdani 
controller. From the results, the strategy with the highest 
plausibility is chosen. The strategy template is varied by 
additional parameters with regard to form (e.g., choice of 
words, intonation, dialog length) and content (e.g., pro-
viding a suitable fallback modality). For an individual 
assignment of each parameter, a Sugeno controller is 
used. The symbol collector gathers the parameter values, 
customizes the selected template, and generates the re-
spective action and the dialog output. A detailed descrip-
tion of this adaptation algorithm will be presented else-
where. 
 
 

5. SYSTEM EVALUATION 
 
Both in the automotive and the VR domain, we have col-
lected test data from 40 subjects in 25 potential error sce-
narios. A part of the data has been used for the domain-
specific configuration, the deduction of the rules, and the 
training of the rule base. The other part has served as an 
input data set for the evaluation of the system. 
  
Test description 
The automotive trial platform was a test car in a labora-
tory environment. Test persons had to follow a predefined 
street course in a laboratory driving simulation. Addition-
ally, they had to perform diverse tasks regarding the op-
eration of the multimodal in-car system. The target appli-
cation was an infotainment and communication system, 
consisting of an MP3-player, radio, telephone, and a 
WAP simulation. As tactile modalities, the user was pro-
vided a 10” touch screen located at the center console, as 
well as an eight-button array integrated in the armrest. 
Input could also be delivered via natural speech (30 dif-
ferent commands with keyword-initializing). Moreover, 
the subjects could use a set of 15 dynamic hand gestures. 
For interaction, subjects had to move their right hand into 
the focus of the camera. To initialize the gesture recog-
nizer, the subjects had to shortly splay their fingers before 
putting in the desired gesture.  
The other test platform was a desktop PC environment. 
As a target application, we have used a virtual shopping 



mall implemented in VRML. Test subjects could interact 
with the scene by navigating in different department 
stores. They were given manipulation and picking tasks 
(e.g., selecting items, and putting them into their shop-
ping cart. As tactile input modalities, the subjects could 
interact via a keyboard, a conventional mouse, a 6-DOF 
mouse, and a joystick. The scene was displayed on a 19” 
touch screen. The complexity of the vocabulary was 
comparable to that in the automotive test environment. 
In the first part of the test, we focused on user-specific 
errors. Thus for a targeted provocation of these scenarios, 
the test supervisor has interpreted all inputs except for 
tactile modalities (partial wizard-of-oz trial). In the sec-
ond part of the test, real recognizers were used. The aim 
was to collect data of system-specific errors. All interac-
tions of the user and all measured context parameters 
(e.g., data from the driving simulation in the car domain) 
have been logged. When the test series had been finished, 
the constellation within the error scenarios has been tran-
scribed and filed in terms of test data sets. 
 
Results 
We have trained the developed error management system 
in eleven error scenario contexts (5 SBL, 3 RBL, and 3 
KBL) with 20 sets of training data. In an off-line evalua-
tion, the system has been analyzed in these scenarios with 
15 test data sets each. Training and test data sets have 
been strictly disjoined. First we evaluated the power of 
discrimination between user-specific and system-specific 
errors (see table 1).  
 
 car domain VR domain  

actual 
classified USE SSE USE SSE 
USE 95.3% 4.7% 97.8% 2.2% 
SSE 3.3% 96.7% 1.5% 98.5% 

 
Table 1: Domain-specific confusion matrix (USE = user-
specific errors, SSE = system-specific errors) 
 
In the car domain, a significantly higher set of misinter-
pretations occurred which might be due to the dual task 
problem (see section 1). This explains why the confusion 
values are slightly higher than in the VR domain. Gener-
ally, the system had the tendency to rather interpret a sys-
tem-specific error as user-specific than vice versa. 
 
 car domain VR domain  

rate 
error type ECR SSR ECR SSR 
SBL 94.3% 96.1% 95.0% 93.9% 
RBL 90.3% 92.7% 94.3% 96.3% 
KBL 86.7% 91.0% 90.7% 96.1% 

 
Table 2: Domain-specific rates for correctly classified 
error types (ECR) and correctly selected resolution 
strategies (SSR) in dependence of the skill-based (SBL), 
the rule-based (RBL), and the knowledge-based level. 

The overall rates for a correctly detected error pattern and 
the appropriately chosen strategy are displayed in table 2. 
In comparison to SBL, error patterns at KBL are often 
very complex, which results in worse recognition rates. 
This holds for both the car and the VR domain. 
 
 

5. CONCLUSIONS AND OUTLOOK 
 

In this contribution, we presented a generic multimodal 
framework that was implemented in two different appli-
cation domains. The evaluation results show the applica-
bility of the fuzzy algorithm as a proof of concept.  
Further work in this research field will comprise a field 
test with a user-centered acceptance evaluation of the 
system in which also real recognizers for speech and ges-
ture recognition will be applied. In an ongoing project, 
we are implementing an algorithm for coping with tem-
poral error superposition and error resonance scenarios. 
Moreover, we plan to evaluate the qualification of statis-
tical and hybrid classifiers (Hidden-Markov Models and 
Neuro-Fuzzy Systems) for discriminating error patterns.  
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