
Development of a Generic Multimodal Framework for
Handling Error Patterns during Human-Machine Interaction

Gregor McGlaun, Manfred Lang, and Gerhard Rigoll

Institute for Human-Machine Communication

Technical University of Munich
Arcisstr. 16, 80290 Munich, Germany

phone: +49 89 289-28541

{mcglaun | lang | rigoll}@ei.tum.de

ABSTRACT

In this contribution, we present a generic and therefore
easily scalable multimodal framework for error robust
processing of user interactions in various domains. The
system provides a generic kernel for evaluating user in-
puts and additional pieces of information from situ-
ational, personal, and functional context. After an initial
domain-specific configuration, the system is capable of
detecting a set of error situations and patterns. In case an
error is likely to occur or detected, a context-adequate
dialog output is generated. For classification of the error
patterns and the selection of the according dialog strat-
egy, we have implemented a fuzzy-logic algorithm, using
Mamdani controllers. The multimodal framework has
been applied and evaluated in two application domains:
an in-car infotainment and communication system and a
3D virtual shopping mall in a desktop PC environment.
From a large user test, we have transcribed eleven error
scenario contexts each consisting of 15 individual test
sets, and analyzed them in an offline evaluation. In the
VR domain, the rates for a correctly detected error pattern
have been between 90.7% and 95.0% (86.7% up to 94.3%
in the car domain). The rates for the appropriately se-
lected error resolution strategy have been between 93.9%
and 96.3% (91.0% up to 96.1% in the car domain).

Keywords: Generic, multimodal, system, error, handling,
fuzzy logic, human-machine interaction, automotive, VR;

1. INTRODUCTION

In modern applications, an enormous increment of vari-
ous technologies can be realized. Due to the price decline
of many electronic devices, their compact size, and their
great capability, today’s technical systems offer a large
spectrum of functionality. Yet, as a direct consequence of
the functional complexity, the interaction with such inter-
faces is getting more and more difficult for the user

which often leads to different kinds of operation errors.
The error patterns are highly domain-specific as well as
the factors leading to them. This paper exemplarily fo-
cuses on two types of application systems in completely
different domains: infotainment and communication sys-
tems established within a car and a 3D virtual shopping
mall in a desktop PC environment.
Especially in the car domain, often error-prone situations
occur regarding the human-machine interaction with dif-
ferent in-car applications, as the driver often has a certain
mental workload. This basic stress level is due to the exe-
cution of so-called primary (navigation, stabilization of
the car, etc.) and secondary tasks (windshield wiping,
honking, etc.), and may be increased by environmental
impacts, like the conversation with a co-driver. If the
driver interacts, e.g., with a communication and infotain-
ment system in such a stress phase (tertiary task), inatten-
tion, distraction, and irritation occur as a consequence of
the high workload resulting from a superposition of the
tasks mentioned above, which will become manifest in an
increased error potential and in erroneous operations of
these tertiary systems.
Compared to the automobile domain, in front of a desk-
top PC, the user can predominantly execute her or his
operations in a concentrated way, as there is no dual task
competition. Error patterns are assumed to be less influ-
enced by the situational context induced by the environ-
ment. Hence, typical errors caused by the user mainly
occur in three action categories: navigation, picking, and
manipulation.
In both domains, also errors are likely to occur which are
caused by a certain malfunction of the technical system.
For example, many speech interfaces are still noise-
prone, interfaces for gestural input have the disadvantage
of being sensitive to changes in lighting, and, if worn out,
even a button can have a malfunction. If the system has a
monomodal interface, the error aggravates, as the system
can no longer be properly used until the cause is found
and removed. Therefore, in the many domains, increas-
ingly multimodal interfaces (MIs) are applied. Besides

gue
Textfeld
From: SCI 2004, Ed.: N. Callaos et al., IIIS, Orlando

classical tactile sensors (buttons, turning knobs, etc.), MIs
also allow for speech, gestures, or both as interaction
paradigms[1]. Compared to monomodal systems, MIs
provide significantly shortened learning periods as well
as a highly individual and intuitive form of interaction,
since they meet natural human communication habits[2].
If, for any reason, the chosen modality channel is dis-
rupted, the user can be suggested an alternative input
form as a fallback in dependence of the given functional-
ity and the situational context. The following exemplary
scenario might appear in the car domain: caused by heavy
environmental noise, the recognition performance of a
speech recognizer drops drastically. The system could
now alternatively suggest the driver tactile input, if the
car is just waiting at a traffic lights. Oviatt et al. mention
that in dedicated scenarios, it is possible to omit up to
86% of all task-critical errors, if only an alternative input
modality is present[2]. When the user provides input in a
synergistic and redundant way, mutual ambiguities can
be eliminated[2]. To distract the user as less as possible,
and, on the other hand, to increase operation comfort, a
context sensitive error management is imperative. The
goal is to duly identify potential error sources concerning
the operation of the applications mentioned above, and to
trigger according measures, e.g., warning outputs (a pri-
ori-error management). If errors have occurred, they
should be solved rapidly, effectively, and transparently
for the user to prevent further distraction and error propa-
gation (a posteriori- error management).

2. PRELIMINARY WORK

The problem of error robustness during interaction with
interfaces in the automobile has been discussed in nu-
merous preliminary works. In an essay, D. Norman criti-
cizes that the automobile industry often ignores the ad-
vances in user-interface design. In his opinion, many ex-
isting interfaces have poor ergonomics, tiny readouts, or
way too many buttons so that a purely tactile operation of
such systems is very unsafe while driving[3]. A research
team at the Institute for Technical Computer Science
(RWTH Aachen, Germany)[4] deals, amongst other
things, with the intuitive design of multimodal on-board
car systems. A special focus is placed on the individual
adaptation to the user in different operation situations.
In the VR domain, C. Wewerka et al. show a concept of a
component-based virtual mall implemented in Java
3D[5]. The architecture allows for easy integration of
arbitrary input modalities. For an error-robust and intui-
tive way of interaction, the selection paradigm contains
an adaptive picking ray that can be given the form of a
cone. In his work, M. Turunen studies different error
types that occur during human-machine interaction with a
speech-based interface in the context of virtual worlds,
and introduces some improved error-handling meth-
ods[6].

3. THEORETICAL BACKGROUND

Generally, we define an error in human-machine interac-
tion, if the user does not reach her or his desired goal, and
no coincidence can be made responsible for it. For a sys-
tematic classification of error types, we basically assume
that either the user or the system can cause an error in the
human-machine communication process. Consequently,
two main error categories, which are characterized below,
can be distinguished: user-specific errors and system-
specific errors. This section closes with a formal discus-
sion of methods and strategies for error resolution.

User-Specific Errors
The basic taxonomy underlying our modeling of user-
specific error classes is related to the work of J. Rasmus-
sen and J. Reason[7]. Reason identifies three different
levels for classifying errors. Analyzing the reason of the
error, he differentiates between formal attributes of the
error (“what“?), the circumstances under which the error
occurred (“where“?), and the cognitive mechanisms in-
volved („how“?). According to the level model of Ras-
mussen, three basic error levels can be identified.
The skill-based level (SBL) comprises smooth, auto-
mated, and highly integrated routine actions that take
place without conscious attention or control. Human per-
formance is governed by stored patterns of prepro-
grammed instructions represented as analog structures in
a time-space domain. Errors at this level are related to the
intrinsic variability of force, space, or time coordination.
Sporadically, the user checks, if the action initiated by her
or him runs as planned, and if the plan for reaching the
focused goal is still adequate. Error patterns on SBL are
execution or memory errors that result from inattention or
overattention of the user.
Concerning errors on the rule-based level (RBL), the user
violates stored prioritized rules (so-called productions).
Errors are typically associated with the misclassification
of situations leading to the application of the wrong rule
or with the incorrect recall of procedures.
At the knowledge-based level (KBL), the user applies
stored knowledge and analytical processes in novel situa-
tions, in which actions must be planned on-line. Errors at
this level arise from resource limitations (bounded ration-
ality) and incomplete or incorrect knowledge.

System-Specific Errors
In our error taxonomy, we also address errors caused by
the system. Well-known examples are recognition error,
like misinterpretation, false recognition of a correct user
input, or an incorrect system-intrinsic activation of a
speech recognizer (e.g., the user coincidentally applies
the keyword which activates the speech recognizer in a
conversation with the co-driver). Moreover, processing
errors (timing problems or contradictory recognition re-
sults of different monomodal recognizers, etc.) as well as
technical errors (e.g., system overflow or breakdown of

system components) can occur. The superposition of er-
rors represents a more complex error pattern. E.g., a
speech command of the user, which is not allowed in a
certain mode, is mapped onto a valid command because
of an erroneous interpretation of the system, but on the
other hand, this command does not correspond to the in-
tention of the user. Other error classes, which, however,
are not considered in the final implementation, are output
errors (e.g., insufficient or incomprehensible information)
and global design errors, like bad ergonomics.

Taxonomy of error resolution strategies
If potential or definitive system- or user-specific errors
have been identified, the system tries to solve them via a
dedicated system dialog. Feasible strategies (warning,
request for reentry, request for changing the input modal-
ity, selection from command alternatives, tutorial, forcing
functions, gagging, self-correction, etc.) can be distin-
guished by some criteria, as follows: initiation of the er-
ror notification, context-dependency, consideration of
individual characteristics of the user (e.g., her or his state
of knowledge and awareness), impact and demands of the
strategy (i.e., level of detail of the knowledge transfer and
the extent of the intervention), as well as the inclusion of
the user (i.e., the degree of interactivity during the error
resolution process and the form of the system feedback).
The selection of the dialog strategy substantially depends
on contextual parameters that, amongst others, are the
personal state of the user (e.g., emotional behavior), envi-
ronmental data (e.g., background noise, lighting condi-
tions), as well as the system context (e.g., currently cho-
sen input modality, state and mode of the application).

4. SYSTEM SPECIFICATION

In this section, we describe the system architecture and
characterize the functionality of the single components of
the multimodal error-robust framework.

Framework Topology
The system architecture basically consists of three main
processing levels: the input level, the integration level,
and the output level (see figure 1).

Figure 1: Multimodal framework based on a late seman-
tic fusion of input; the error management module is part
of the generic core at the integration level

The input level contains any kind of interface that is ca-
pable of recognizing user inputs (e.g., mouse, buttons,
speech recognizer, etc.). Dedicated command mappers
(CMs) encode the information bits of the single inde-
pendent modality recognizers and context sensors into a
meta language based on a context-free grammar (CFG).
In the integration level, the recognizer outputs and addi-
tional information of context sensors (e.g., information
about application environment, user state, etc.) are com-
bined in a late semantic fusion process that is extensively
illustrated in[8]. The error management component, that
will be subsequently described, is also located in the inte-
gration level. Unless the system realizes any potential or
type of error, another set of CMs translates back the re-
sulting command modeling the user intention into an ap-
plication-specific command. By this principle, all core
components of the framework, that are located at the in-
tegration level, can be kept generic and independent from
the specifications of the individual recognizers and the
application components to the greatest possible extent. A
configuration script must only once domain-specifically
adapt the modules for signal fusion, context evaluation,
and error management.
In the following paragraphs, we will describe the struc-
ture of the error management module and the functional-
ity of its single components. The error management proc-
ess consists of four steps: error feature extraction, error
analysis, error classification, and error resolution.

Error Feature Extraction
This component of the error management module con-
tinuously extracts certain features from the stream of
incoming messages. The relevance and structure of these
features has been determined in a preliminary test se-
ries[9]. Generally, we distinguish between command fea-
tures (competing actions, correcting actions, redundant
interactions, command repetitions, modality changes,
time relations between commands), and contextual fea-
tures, such as user characteristics (system experience,
domain-specific knowledge, emotional features, etc.),
environmental influences (e.g., background noise, light-
ing conditions), and system-intrinsic parameters (e.g.,
output volume, confidence measures of the individual
recognizers).

Error Analysis
The verification of an error potential and the detection of
an error pattern are managed via Error Analysis Sentinels
(EAS). EAS are highly specialized dynamic agents with
each EAS designed for the verification of an individual
error pattern. A single sentinel can be regarded as an in-
stance of a class of generic sentinels. Thus, the architec-
ture is easily portable to other domains and freely scal-
able in its extent. For the validation of an individual error
pattern, we use a fuzzy-system approach. The method was
chosen, as it needs very small training, and represents a
fast realization base in terms of a proof of concept. Due

to the fuzziness of the formulated productions, the ap-
proach is clearly more flexible compared to a classical
expert system with hard decisions. The EAS were imple-
mented as Mamdani controllers. Depending on the EAS,
the rule corpora comprise 15 to 103 rules with one rule
containing between three and eight input variables (com-
ponents of the feature vector). For each input variable,
there are two to seven fuzzy-rule blocks with the mem-
bership functions for the single fuzzy sets implemented as
triangular functions. The defuzzification is done using the
center of gravity (COG) method, as in general, it has a
smooth control behavior. Each EAS evaluates the respec-
tive features on the basis of its individual criteria catalog,
and calculates a probability as well as a time stamp for
the represented error type.

Figure 2: Example for computation of the probability of
a speech recognition error in an automotive scenario

In figure 2, a simplified example is visualized to show the
principle of the algorithm. Hence, let the output variable
vout be the system-specific error for an automatic speech
recognizer (ASR) that is applied in the car domain. The
fuzzy rule corpus totally comprises 17 individual rules ri,
i∈{1,2,…,17}, each of them featuring three input vari-
ables (all values normalized): the confidence measure of
the automatic speech recognizer (v1), the volume of envi-
ronmental noise (v2), and the flag ‘co-driver aboard’ (v3)).
v1 has four fuzzy rule blocks, v2 a total of three, and v3
two rule blocks. Assumed the EAS takes values v1= 0.22,
v2= 0.81, and v3= 0, the rules r1, r3, and r5 will apply. By
superposition of the respective membership functions of
the output variable, we get vout = 0.76 which can be inter-
preted as the ASR-specific error probability.

Error Classification
As a result of the error analysis, each EAS delivers a
probability for its individual error type. In this phase of
the error management process, the resulting error type(s)
are determined. For this decision process, dynamic
threshold logic is applied. All error types with a probabil-
ity over the threshold are fed into the error resolution
module as input variables. Thus, the system is even capa-

ble to recognize superposed errors and error propagation
patterns (as regards content and point of time). However,
in the current state of development, the management of
overlapping errors is not yet implemented and will be part
of further work.

Error Resolution
For the selection of a dedicated dialog strategy, the cur-
rent context parameters as well as the error types are
fuzzified as singletons in rule sets. There is a total of
twelve different correction strategies (see section 3). Each
strategy type is instantiated in terms of an error strategy
sentinel (ESS). In direct analogy to an EAS, on the basis
of the input variables, each ESS determines a plausibility
measure for its represented strategy, using a Mamdani
controller. From the results, the strategy with the highest
plausibility is chosen. The strategy template is varied by
additional parameters with regard to form (e.g., choice of
words, intonation, dialog length) and content (e.g., pro-
viding a suitable fallback modality). For an individual
assignment of each parameter, a Sugeno controller is
used. The symbol collector gathers the parameter values,
customizes the selected template, and generates the re-
spective action and the dialog output. A detailed descrip-
tion of this adaptation algorithm will be presented else-
where.

5. SYSTEM EVALUATION

Both in the automotive and the VR domain, we have col-
lected test data from 40 subjects in 25 potential error sce-
narios. A part of the data has been used for the domain-
specific configuration, the deduction of the rules, and the
training of the rule base. The other part has served as an
input data set for the evaluation of the system.

Test description
The automotive trial platform was a test car in a labora-
tory environment. Test persons had to follow a predefined
street course in a laboratory driving simulation. Addition-
ally, they had to perform diverse tasks regarding the op-
eration of the multimodal in-car system. The target appli-
cation was an infotainment and communication system,
consisting of an MP3-player, radio, telephone, and a
WAP simulation. As tactile modalities, the user was pro-
vided a 10” touch screen located at the center console, as
well as an eight-button array integrated in the armrest.
Input could also be delivered via natural speech (30 dif-
ferent commands with keyword-initializing). Moreover,
the subjects could use a set of 15 dynamic hand gestures.
For interaction, subjects had to move their right hand into
the focus of the camera. To initialize the gesture recog-
nizer, the subjects had to shortly splay their fingers before
putting in the desired gesture.
The other test platform was a desktop PC environment.
As a target application, we have used a virtual shopping

mall implemented in VRML. Test subjects could interact
with the scene by navigating in different department
stores. They were given manipulation and picking tasks
(e.g., selecting items, and putting them into their shop-
ping cart. As tactile input modalities, the subjects could
interact via a keyboard, a conventional mouse, a 6-DOF
mouse, and a joystick. The scene was displayed on a 19”
touch screen. The complexity of the vocabulary was
comparable to that in the automotive test environment.
In the first part of the test, we focused on user-specific
errors. Thus for a targeted provocation of these scenarios,
the test supervisor has interpreted all inputs except for
tactile modalities (partial wizard-of-oz trial). In the sec-
ond part of the test, real recognizers were used. The aim
was to collect data of system-specific errors. All interac-
tions of the user and all measured context parameters
(e.g., data from the driving simulation in the car domain)
have been logged. When the test series had been finished,
the constellation within the error scenarios has been tran-
scribed and filed in terms of test data sets.

Results
We have trained the developed error management system
in eleven error scenario contexts (5 SBL, 3 RBL, and 3
KBL) with 20 sets of training data. In an off-line evalua-
tion, the system has been analyzed in these scenarios with
15 test data sets each. Training and test data sets have
been strictly disjoined. First we evaluated the power of
discrimination between user-specific and system-specific
errors (see table 1).

 car domain VR domain

actual
classified USE SSE USE SSE
USE 95.3% 4.7% 97.8% 2.2%
SSE 3.3% 96.7% 1.5% 98.5%

Table 1: Domain-specific confusion matrix (USE = user-
specific errors, SSE = system-specific errors)

In the car domain, a significantly higher set of misinter-
pretations occurred which might be due to the dual task
problem (see section 1). This explains why the confusion
values are slightly higher than in the VR domain. Gener-
ally, the system had the tendency to rather interpret a sys-
tem-specific error as user-specific than vice versa.

 car domain VR domain

rate
error type ECR SSR ECR SSR
SBL 94.3% 96.1% 95.0% 93.9%
RBL 90.3% 92.7% 94.3% 96.3%
KBL 86.7% 91.0% 90.7% 96.1%

Table 2: Domain-specific rates for correctly classified
error types (ECR) and correctly selected resolution
strategies (SSR) in dependence of the skill-based (SBL),
the rule-based (RBL), and the knowledge-based level.

The overall rates for a correctly detected error pattern and
the appropriately chosen strategy are displayed in table 2.
In comparison to SBL, error patterns at KBL are often
very complex, which results in worse recognition rates.
This holds for both the car and the VR domain.

5. CONCLUSIONS AND OUTLOOK

In this contribution, we presented a generic multimodal
framework that was implemented in two different appli-
cation domains. The evaluation results show the applica-
bility of the fuzzy algorithm as a proof of concept.
Further work in this research field will comprise a field
test with a user-centered acceptance evaluation of the
system in which also real recognizers for speech and ges-
ture recognition will be applied. In an ongoing project,
we are implementing an algorithm for coping with tem-
poral error superposition and error resonance scenarios.
Moreover, we plan to evaluate the qualification of statis-
tical and hybrid classifiers (Hidden-Markov Models and
Neuro-Fuzzy Systems) for discriminating error patterns.

6. REFERENCES

[1] Project FERMUS (Error-Robust Multimodal Speech

Dialogs), in: www.fermus.de, 2003
[2] S. Oviatt, et al: “Error Resolution during Multimodal

Human-Computer Interaction,” ICSLP 1996, Phila-
delphia, USA, in: Proc. Vol. I, pp. 204-207, 1996

[3] D. A. Norman: “Interaction Design for Automobile
Interiors,” in: Popular, Recent Essays, www.jnd.org/
dn.mss/InteractDsgnAutos.html, 2003

[4] S. Akyol, et al.: “Multimodal Usage of Adaptive Car
Board Systems,” in: Kraftfahrzeugfuehrung, Sprin-
ger, Berlin, 2001

[5] C. Wewerka, et al.: “A Virtual Mall in Java 3D”,
NetObject Days 2000, in: Electronic Proceedings
CD-ROM, Erfurt, 2000

[6] M. Turunen: “Error Handling in Speech User Inter-
faces in the Context of Virtual Worlds,” in: Proceed-
ings of ACHCI'98, Report B-1998-4, pp. 68-75, 1998

[7] J. Reason: “Generic Error-Modeling System: A Cog-
nitive Framework for Locating Common Human
Error Forms,” in: New Technology and Human Er-
ror, chapter 7, pp. 63-83, 1987

[8] G. McGlaun, et al.: “A New Approach for Integrat-
ing Multimodal Input via Late Semantic Fusion,”
USEWARE 2002, Darmstadt, Germany; in: VDI-
Bericht 1678; pp. 181-185, 2002

[9] F. Althoff, et al.: “Evaluating Multimodal Interac-
tion Patterns in Various Application Scenarios,” GW
2003, Genoa, Italy, in: Post-Proceedings: Lecture
Notes in Artificial Intelligence, Springer, Berlin,
2004

