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Abstract

Inspired by the well-known method for confidence measure cal-
culation via estimation of word posterior probabilities on the
word graph, we devised a technique to estimate confidences on
all levels of the hierarchically structured output of our one-stage
decoder for interpretation of natural speech (ODINS). By con-
structing a nested lattice hierarchy, the generalized counterpart
of the word graph, we estimate posterior probabilities for all
nodes in the decoded semantic tree, namely for all contained
semantic units and words. The obtained experimental results
show that the tree node confidence measure performs signifi-
cantly better than the confidence error base line, no matter if
the evaluation is carried out on tree nodes representing seman-
tic concepts, word classes, or words. Furthermore, the paper
proposes possible applications of the tree node confidences to
improve the grounding strategy of spoken dialog systems.

1. Introduction
Regarding a robust recognition of application-specific informa-
tion, a spoken dialogue system can benefit a great deal from
confidence measures delivered by the underlying speech recog-
nition engine. On word level, there are efficient methods for
computing confidence measures [1]. However, the speech in-
terpreting component of the dialogue system usually derives a
hierarchically structured semantic representation of the user’s
utterance, that comprises more complex units than words, e.g.
semantic concepts or word classes. Thus, in addition to word
confidences, higher-level confidences related to these semantic
units are needed by the dialogue system to safeguard the rec-
ognized structured content and to generate feedback in an ade-
quate way.

Recent publications [2, 3] suggested to incorporate word
confidences together with various other features extracted dur-
ing the speech recognition and interpretation process into a clas-
sifier to assign confidences to each recognized semantic unit.
The used classifiers (multi-layer perceptrons in [2] and decision
trees in [3]) need explicit training before their application. A
different approach is proposed by [4] which exclusively uses
the primary knowledge sources of speech recognition and inter-
pretation for confidence estimation. Here, the common method
for word posterior probability calculation on the word graph [1]
was extended to estimate concept posterior probabilities on a
so-called concept graph, which is generated from an intermedi-
ate word graph by semantic parsing using stochastic context free
grammars. However, the determined concept posteriors have
been applied to enhance word confidences and haven’t been
evaluated as semantic confidences.

This work was funded partly by the NADIA research project from
the Bayerische Motorenwerke (BMW) group and also by the German
Research Council (DFG) project Ru 301/6-2.

In this paper we present a general method to estimate confi-
dences consistently for all semantic units and words that are part
of the hierarchically structured output of our automatic speech
interpretation system, called ODINS [5]. Applying a hierar-
chical language model consisting of arbitrarily deeply nested
probabilistic transition networks together with standard speech
recognition knowledge sources like a pronunciation lexicon and
acoustic-phonetic models, ODINS determines the best fitting
semantic tree directly from the speech signal in a single stage.
In addition to the best solution the decoder optionally generates
probable alternative semantic trees, compactly represented by a
hierarchy of nested lattices. Following the basic idea of [4] to
estimate confidences on a more complex graph than the word
graph, we apply a generalized version of the underlying tech-
nique of [1] to estimate posterior probabilities for all sub-lattice
instances in the generated lattice hierarchy. By intersection with
the best fitting semantic tree, confidences for every tree node
are computed from corresponding sub-lattice posterior proba-
bilities. Thus, we clearly distinguish between the confidence
for a semantic unit itself and confidences for its specific con-
tent, namely the confidences of its corresponding child nodes,
carrying lower-level semantic units and/or words. To evaluate
all computed confidences for a test set of recognized semantic
trees we use the tree matching based evaluation scheme pre-
sented in [6] to retrieve the tree node mappings with the cor-
responding reference tree annotations. By adjusting a general
threshold, every calculated confidence value can be evaluated
whether it correctly detects the corresponding right or wrong
tree node mapping, respectively.

The paper is organized as follows: Section 2 describes the
lattice hierarchy representation which is constructed on a flat
lattice created from the decoder’s backtracking information. Sec-
tion 3 explains the estimation of posterior probabilities for sub-
lattice instances and gives two possible definitions for the se-
mantic tree node confidence. The examined confidence evalua-
tion metrics are presented in Section 4. The experimental setup
and the obtained results are discussed in Section 5. Finally, Sec-
tion 6 summarizes the paper and points out possible applications
of the presented work in spoken dialogue systems.

2. Lattice hierarchy representation

Hierarchical language modeling along with one-stage decod-
ing permits an immediate retrieval of the semantic structure
of probable recognition outputs from the backtracking records
collected during token passing search [7]. The backtracking
records chain together visited nodes in the search network hier-
archy marking the beginnings and endings of encountered se-
mantic units and words. By recording the n-best tokens that
recombine at each search network node in every time frame, it
is possible to disclose alternative probable search paths in form
of a flat lattice containing entry and exit nodes of semantic units
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Figure 1: Snippet of exemplary flat lattice with nodes marking
beginnings (... {) and endings (} ...) of semantic units.
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Figure 2: Snippet of lattice hierarchy corresponding to flat lat-
tice of Figure 1.

and words. Figure 1 shows a snippet of an exemplary flat lat-
tice from our application domain, a German airport information
system. It could be part of the flat lattice backtracked for an ut-
terance like “Der Flug nach Hamburg, zehn Uhr dreissig; wie
ist die Flugnummer?” (The flight to Hamburg, ten thirty; What
is the flight code?). In the used representation, lattice nodes
carry labels representing the beginnings and endings of non-
terminal semantic units, or terminal labels representing simple
word ends. Edges carry the acoustic and language model scores,
that have been accumulated during the integrated search from
one recorded node to the next one.

Figure 1 demonstrates two important features of the im-
plicit representation of hierarchical relations of semantic units
and words inside the flat lattice:

• An exit node marking the occurrence of a specific se-
mantic unit may correspond to several entry nodes and
vice versa (e.g. in the ATime concept).

• Hence, paths between different pairs of entry and exit
nodes corresponding to the same occurrence of a specific
semantic unit may intersect (e.g. in the word uhr).

These properties lead to the definition of the explicit lattice hi-
erarchy representation that is constructed on the flat lattice:

• Every pair of connected entry and exit nodes defines a
sub-lattice instance of the corresponding semantic unit.

• Sub-lattice instances are referenced on corresponding
edges inside their parent lattice instances.

All lattice instances consist of nodes each marking the end of a
specific semantic unit or word, and edges each carrying an in-
stance index that identifies the corresponding sub-lattice. Word
instances represent terminal elements and don’t have any fur-
ther references. All lattice instances have a unique null entry
and exit node. Figure 2 shows the snippet of the lattice hierar-
chy equivalent to the flat lattice of Figure 1. According to the
structure of the flat lattice example, the lattice hierarchy con-
tains two sub-lattice instances of the concept ATime sharing a
single instance of the word uhr.

Briefly explained, the lattice hierarchy is generated from the
flat lattice representation by the recursive construction of nested
temporary lattices that contain all possible entry nodes for each
exit node encountered during a backward depth-first search on
the flat lattice. For every entry node of a finalized temporary
lattice a corresponding sub-lattice instance is generated. Re-
cursion stops with the construction of terminal word instances.
By means of bookkeeping, already constructed word and sub-
lattice instances are reused with the corresponding instance in-
dex, that was assigned beforehand.

3. Semantic tree node confidences
The lattice hierarchy constitutes a structural indexing of the flat
lattice, because every included sub-lattice instance and word in-
stance corresponds to a specific pair of entry and exit node in-
side the flat lattice. Posterior probabilities are estimated by ap-
plying the forward-backward algorithm on the flat lattice. Let
[IL; ti, tj ] designate a sub-lattice or word instance with label
L and starting and ending times ti and tj corresponding to
the entry and exit nodes i and j inside the flat lattice. On
logarithmic scale the posterior probability for [IL; ti, tj ] given
the observed feature vectors xT

1 is estimated by the confidence
C ([IL; ti, tj ]) which is calculated by forward and backward
scores in the following way:

− log p
(

[IL; ti, tj ] |x
T
1

)

≈ (1)

C ([IL; ti, tj ]) = fi + fij + bj − fN

fi denotes the forward score at the entry node, bj the backward
score at the exit node. The term fij represents the forward score
calculated between the entry and exit node and fN the total for-
ward score at the exit node of the flat lattice that is used for
normalization, and thus has negative sign. The calculation of
fij

1 is done by the recursive procedure

∀q ∈ [1 . . . N ] : f ′

q =

{

0 if q = i
∞ if q 6= i

(2)

∀q ∈ [(i + 1) . . . j] : f ′

q = − log
∑

∀p∈P (q)

e−(f ′

p+αapq+βlpq)

that assumes flat lattice nodes sorted in topological order. P (q)
denotes the set of predecessors of node q. After recursion the
result simply is fij = f ′

j . Just like in [1], acoustic and language
model scores on flat lattice edges are scaled by factors α and β
empirically optimized by cross validation experiments.

The best fitting semantic tree is equivalent with the best
path through the decoded lattice hierarchy. Thus, semantic tree
nodes correspond to sub-lattice instances visited by this best
path, and the confidence for a semantic tree node [TL; ti, tj ]
can simply be defined equivalent to the confidence of the corre-
sponding sub-lattice instance:

C ([TL; ti, tj ]) = C ([IL; ti, tj ]) (3)

Similar to [1] we investigated a more sophisticated definition
of the semantic tree node confidence that takes into account all
sub-lattice instances with the same label L intersecting the tree
node’s time interval {ti . . . tj}:

Csec ([TL; ti, tj ]) = − log
∑

∀ [IL; tk, tl] :
{tk . . . tl} ∩ {ti . . . tj} 6= ∅

asec (ti, tj , tk, tl) e−C([IL;tk,tl])

(4)

1fi = f1i, fN = f1N and bj is equivalent to fj calculated on the
reversed flat lattice.



To approximate the logarithmic probability constraint Csec≥0,
we introduced the intersection ratio asec, that scales posterior
probabilities according to the degree of intersection of the time
intervals of the semantic tree node [TL; ti, tj ] and the corre-
sponding sub-lattice instances [IL; tk, tl]. Assuming intersect-
ing time intervals, asec is calculated by

asec (ti, tj , tk, tl) =
min (tj , tl) − max (ti, tk)

max (tj − ti, tl − tk)
(5)

4. Evaluation metrics
For evaluation we use the tree matching scheme presented in
[6]. A minimum tree edit distance algorithm determines the
best tree match between a recognized semantic tree and its cor-
responding reference tree annotation by minimizing the costs
caused by substituted, inserted and deleted tree nodes. For this
best match the algorithm returns the specific mappings of cor-
rect, substituted, inserted and deleted tree nodes. The recogni-
tion performance is measured by the tree node accuracy

Acc =
NC − NI

NC + NS + ND

(6)

which takes into account the total number of tree node map-
pings that have been counted as correct (NC ), substituted (NS),
inserted (NI ), or deleted (ND) over the whole set of tested ut-
terances.

To quantify the performance of the semantic tree node con-
fidences we define a threshold ε to decide whether a specific
tree node mapping is classified as accepted or rejected. If it
is accepted we count an error if the mapping indicates a sub-
stitution or an insertion. Respectively we count an error for a
rejected correct mapping. In this way we get the total number
of classification errors over all test utterances, namely the num-
ber of false accepted (NFA) and false rejected (NFR) tree node
mappings. Confidence evaluation is only possible for mappings
of correct, substituted and inserted tree nodes, because for a
deleted reference tree node there exists no confidence value that
could be classified.

A common confidence evaluation metric is the confidence
error rate (CER, see [1]) which is the ratio of classification
errors and total number of evaluated mappings:

CER =
NFA + NFR

NC + NS + NI

(7)

It is compared with the decoder classification baseline which is
obtained as the confidence error rate that results from the strat-
egy that all mappings are tagged as accepted, without taking
into account any confidence values at all. Thus the decoder
baseline CERBL only includes errors from false accepted sub-
stitutions and insertions:

CERBL =
NS + NI

NC + NS + NI

(8)

If the confidence measure performs well, the confidence error
rate drops below the decoder base line because the confidence
classification identifies more substitutions and insertions than it
produces errors on correct mappings by false rejection.

Another common confidence evaluation metric is the re-
ceiver-operator characteristic which is depicted by ROC-curves
(also called DET-curves, see [1]). This diagram plots the false
acceptance rate (FAR) and false rejection rate (FRR) at vari-
ous settings for the classification threshold ε. The false accep-
tance rate is the ratio of the number of false accepted mappings
and the number of wrong (substituted and inserted) mappings.

% Acc CERBL CER[C] CER[Csec]

CO 76.9 14.4 13.7 9.6
WC 94.0 5.3 2.7 1.9
W 83.2 13.4 11.6 10.7

TOT 82.8 12.6 11.0 9.2

Table 1: Recognition performance and confidence error rate
evaluation for confidence definitions C and Csec on seman-
tic concept (CO), word class (WC) and word (W ) evaluation
level, as well as over all tree nodes (TOT ).

Respectively the false rejection rate is the ratio of the number
of false rejected mappings and correct mappings:

FAR =
NFA

NS + NI

, FRR =
NFR

NC

(9)

The ROC-curve shows the tradeoff between false accep-
tance and false rejection rate. For a well performing confidence
measure the ROC-curve runs close to abscissa and ordinate of
the diagram.

5. Experimental results
The results presented in this paper were produced with the same
experimental setup that had been used in [6]: Both training and
evaluation are based on a hierarchically annotated spontaneous
speech corpus, that was collected in a wizard-of-oz simulation
of a spoken dialogue system for an airport information system
(the training subset covers 1446 utterances of 17 speakers, the
cross validation subset 320 utterances of 3 speakers, and the
test subset 233 utterances of 3 speakers). The used hierarchi-
cal language model consists of 47 semantic concepts, 11 word
classes and 574 words. The acoustic modeling is performed
by speaker-independent tied intra-word triphone HMMs with
about 25k Gaussian mixture components, as described in [5].

Because we are particularly interested in semantic confi-
dences, that is to say in confidences concerning semantic con-
cepts, the evaluation is performed separately on different sub-
sets of tree nodes that belong to the following hierarchy level
categories: semantic concepts (CO), word classes (WC) and
words (W ). In addition we carried out an overall evaluation
(TOT ) that covers all semantic tree nodes independently of
their hierarchy level category. The evaluation of the tree node
accuracy, confidence error rate and ROC-curve for each eval-
uation level was performed on the test set containing new ut-
terances of speakers who are not part of the training set. The
scaling factors α and β (see Eq. 2) were adjusted on the cross
validation set. As expected, these experiments showed good
performance for the setting α = 1/s and β = 1, where s is
the language model factor used during the decoding process to
scale all weights of the hierarchical language model. The con-
fidence classification threshold ε has been adjusted on the cross
validation set as well. We found the minimum confidence error
rates on all evaluation levels with only one specific setting of ε,
as expected. The obtained settings for α, β, and ε have been
left unchanged during the evaluation of the test set.

Table 1 shows the results of the final test set evaluation for
the tree node accuracy, confidence error rate base line, and the
confidence error rates for the semantic tree node confidence def-
initions C (Eq. 3) and Csec (Eq. 4). On all evaluation levels
there is a significant reduction of the confidence error rates as
compared to the base line values, resulting in a total relative
improvement of 27% for CERTOT [Csec]. Furthermore the se-
mantic tree node confidence definition Csec performs signifi-
cantly better than the simple definition C. The setting of the
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Figure 3: ROC-curves for confidence definitions C and Csec

on semantic concept (CO), word class (WC) and word (W )
evaluation level, as well as over all tree nodes (TOT ).

confidence classification threshold ε, that was adjusted on the
cross validation set, turned out to be nearly optimum on the test
set as well.

The ROC-curves in Figure 3 verify the performance gain
of the tree node confidence definition Csec in comparison with
C: In three of the four diagrams the ROC-curve of Csec signif-
icantly falls below the ROC-curve of C. The slight deviation
for the word class evaluation level (WC) is caused by the high
recognition rate for word classes and the resulting data sparsity.

Another interesting experimental result was the fact that the
introduction of the intersection ratio asec (see Eq. 5) to com-
pensate the missing normalization of Csec apparently improved
the shape of the ROC-Curves: Without the factor asec in the
definition of Csec (see Eq. 4), the ROC-curves lost their de-
sired asymptotic course along the FRR-axis. On the other
hand we observed no significant influence of the introduction
of asec on the confidence error rate CER[Csec]. This behavior
is caused by the fact that the operating points adjusted with the
confidence classification threshold ε to minimize the values of
CER[Csec] are located in the unaffected part of the ROC-curve
near the FAR-axis: For example, the operating point for the to-
tal confidence error rate CERTOT [Csec] = 9.2% (see Tab. 1)
is {FAR,FRR} = {49.8%, 3.4%}.

As reported in [8], the results of the confidence error eval-
uation depend on the size of the generated lattices on which the
confidence values are calculated. The presented results have
been produced with a parameter setting of pruning and n-best
token search that leaded to an average flat lattice density of
about 250 (the flat lattice density is defined as the ratio of the
number of lattice edges and the number of lattice nodes in the
best path). With higher densities we didn’t obtain significantly
better results. On the other hand, the confidence error rates of
Csec remained relatively stable when reducing search precision:
For example, the relative improvement of the total confidence
error rate CERTOT [Csec] compared to the base line CERBL

only dropped from 27% to 24% when evaluating with an aver-
age lattice density of about 50, allowing real time processing on
a state-of-the-art PC system.

6. Conclusions and future work
Based on our speech interpretation framework ODINS, which
combines hierarchical language modeling and one-stage decod-
ing, we presented a method to estimate confidences for every
node of a recognized semantic tree, which represents the appli-
cation-specific semantic structure of a user utterance. No mat-
ter whether a tree node refers to a semantic concept or a sim-
ple word, the corresponding tree node confidence is estimated
uniformly as a posterior probability on the implicit flat lattice
representation of probable alternative semantic trees, with the
aid of the explicit lattice hierarchy representation that provides
the necessary structural information.

Because the presented offline evaluation shows promising
results, we are planning to apply the tree node confidences in-
side the dialogue management module of the spoken dialogue
system prototype, which has been developed in the NADIA re-
search project. This system prototype realizes a cooperative,
mixed-initiative spoken dialogue in the airport information do-
main and copes with spontaneous speech input. Tree node con-
fidences provide the basis for grounding unsafe information in
a differentiated way. By evaluating the confidence of a seman-
tic concept and the confidences of it’s child nodes, the dialogue
management has the ability to decide, whether to ask the user to
clarify whole parts of his last utterance on a more abstract level,
or to ask the user to confirm a specific data slot value. An exam-
ple could be the decision, whether it’s better to ask the user, if
he was talking about a time or about a flight code, or to prompt
him to confirm the exact digits of a flight number. By exploiting
the confidence information in addition with probable alternative
paths in the lattice hierarchy, we expect to improve the dialogue
grounding strategy by avoiding system queries which prompt
the user to repeat the whole last utterance, as well as inappro-
priate system clarification queries, which confuse the user.
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