
A ONE-STAGE DECODER FOR INTERPRETATION OF NATURAL SPEECH

Matthias Thomae, Tibor Fabian, Robert Lieb, Günther Ruske

Institute for Human-Machine Communication
Technische Universität München, Germany

{tho,fab,lie,rus}@mmk.ei.tum.de

ABSTRACT

Current speech understanding systems are typically designed
as multi-stage systems, although this theoretically gives rise to er-
rors due to early decisions. We present a framework that offers
the chance of reducing these errors by an integrated system which
directly computes a semantic tree representation from the input
speech signal through a token passing based one-stage decoder,
called ODINS. In order to limit the complexity of ODINS, we rep-
resent all a-priori knowledge consistently by a generalized uniform
knowledge model based on a hierarchy of probabilistic transition
networks, which also can be n-grams. Our framework includes a
method to evaluate the system output using an edit distance based
tree matching algorithm. First experiments quantify and confirm
the theoretical advantage of the one-stage strategy over a corre-
sponding two-stage approach.

1. INTRODUCTION

The incorporation of higher-level linguistic knowledge into speech
recognition systems is receiving increasing attention. Popular ap-
plication fields like information access tasks require some repre-
sentation of the meaning of the user’s utterances rather than the
pure orthographic transcription. Moreover, it has become clear
that new information sources must be utilized to further enhance
speech recognition performance, especially when the speech sig-
nal is disturbed. Typically, the higher linguistic knowledge is ap-
plied sequentially, after a speech recognition module has computed
a word lattice representation of a spoken utterance. This strategy
is often preferred over a one-stage approach for computational or
practical reasons, or because of difficulties to integrate the linguis-
tic models into the first stage. Some examples of such multi-stage
systems are EVAR, LIMSI ARISE, MIT JUPITER/VOYAGER,
SRI ATIS, SUNDIAL and TRAINS/TRIPS.

However, recent publications in the field of speech recognition
report that one-stage decoders can be as efficient as or even more
efficient than multi-stage systems, even for large vocabulary tasks
[1, 2]. They also indicate that the theoretical advantage of a one-
stage decoding strategy, based on applying all available knowledge
sources as early as possible and simultaneously, is of practical rel-
evance regarding its performance, both in the sense of runtime and
recognition accuracy.

In this paper we are presenting our work on a one-stage decod-
ing framework for speech interpretation, aiming at limited-domain

This work was funded partly by the German Research Council (DFG)
project Ru 301/6-1 and also by the NADIA research project from the Bay-
erische Motorenwerke (BMW) group.

applications with medium-sized vocabularies. It is based on repre-
senting all available knowledge sources, from the phoneme models
to the semantic units, by a generalized, unified hierarchical net-
work. The concept of generalization offers flexibility and exten-
sibility regarding the integration of various sources of knowledge
into the speech interpreter, without having to change the decoder
itself. The concept of a unified knowledge representation also aims
at rendering decoder modifications unnecessary, but moreover at
limiting decoder complexity. The concept of a hierarchical rep-
resentation aims at modularization, i.e. the possibility to develop
individual knowledge sources independently of each other. The
idea of a generalized, unified, hierarchical approach is comparable
and partly based on previous work [3, 4]. However we introduce
several novel aspects that enhance the already published ideas.

In Section 2 we discuss the underlying assumptions and the-
ory that lead to the generalized uniform modeling approach. With
the aid of an example, we then demonstrate the structure of the
generalized transition network hierarchy and discuss its construc-
tion for a speech interpretation task. Based on a data collection
for a spoken dialogue scenario in the domain of airport informa-
tion services, we built a uniform, hierarchical network consisting
of local models for phonemes, words, word classes and semantic
concepts, and a global sentence model in the form of an n-gram
network. Section 3 presents our current one-stage decoder imple-
mentation for such models. It follows the well-known token pass-
ing paradigm [3] to perform a time-synchronous Viterbi search.
Our implementation aims at a compact memory representation by
a shared representation of the network topology.

Sophisticated linguistic knowledge representations utilize the
expressive power of context free grammars (CFGs) or even aug-
mented context free grammars such as unification grammars [5].
Although a hierarchical network can generally represent arbitrary
CFGs, our current decoder implementation doesn’t permit the use
of recursive CFGs, because this restriction simplifies the decod-
ing algorithm and because the linguistic knowledge we used so far
is rather simple. However, there are efficient decoder designs for
CFGs without left recursion [6, 7]. As left recursion can be re-
moved from CFGs by conversion to Greibach normal form [5, 8],
Viterbi decoding of arbitrary CFGs is generally possible.

The token passing algorithm can readily be extended for the
generation of multiple alternative hypotheses [3]. For speech
recognition tasks, these are required to generate word lattices, that
can be used for a number of purposes, e.g. as interface between
speech recognizer and linguistic parser or for the computation of
confidence measures. We also extended our decoder to output mul-
tiple alternatives, but generalized the word lattice scheme so that
hierarchical lattices, composed of a root lattice and several sub-
lattices, can be generated (see Section 3.3). In comparison to other

gue
Textfeld
From: NLP-KE 03, IEEE Press



concept-based lattices [9] a hierarchical lattice can have more than
one level of sub-lattices, and, following our hierarchical network
representation, sub-lattices may be shared directly or indirectly.

We applied hierarchical lattices in a novel experiment quan-
tifying the accuracy gain of a one-stage speech interpreter over a
corresponding two-stage approach. In order to measure only the
effects resulting from the simultaneous application of all knowl-
edge sources, we modified the token passing algorithm so that it
can be used for the decoding of hierarchical lattices. The two-stage
system was then composed of a speech recognizer that generates
hierarchical lattices consisting of word and word class labels, and
a linguistic model stage that conducts the search through the hi-
erarchical language model constrained by the hierarchical lattice.
The constrained token passing algorithm will be discussed briefly
in Section 3.4. We also apply this algorithm to automatically gen-
erate hierarchical annotations of spoken utterances that were pre-
viously transcribed orthographically.

The output of the one-stage interpreter is an ordered, labeled
tree of words and semantic units, called semantic tree. In Section 4
we define an evaluation metric that especially takes the structure
of the semantic trees into consideration, and discuss why it might
be more adequate than usually used metrics.

In Section 5 we present some evaluation results, especially for
a comparison of one-stage and two-stage systems.

2. GENERALIZED NETWORK HIERARCHY

The basic assumption that leads to a generalized hierarchical tran-
sition network model is that of a sequential correspondence be-
tween the input signal I and the output signal O [10]. Given
that the input and output signals consist of sequences of basic
units I = i1, i2, . . . , iNi

and O = o1, o2, . . . , oNo
, a sequen-

tial correspondence between I and O means that I can be seg-
mented into consecutive sub-sequences i1, i2, . . . , iNo

, so that
each sub-sequence ik directly corresponds to an output unit ok

(k = 1 . . . No, No ≤ Ni). In a speech interpretation system
I are the acoustic observations and O is a sequence of semantic
concepts. However, the concept likelihoods are not directly esti-
mated from the acoustic observations, but intermediate levels of
representations are introduced, such as phonemes or words.

2.1. Generalization

In order to generalize the (intermediate) levels of representation to
an arbitrary number N , we assume that the levels pairwise corre-
spond sequentially. A level with index m consists of a sequence
of Nm basic units L

m = lm1 , lm2 , . . . , lmNm which can be seg-
mented into consecutive sub-sequences l

m
1 , lm2 , . . . , lm

Nm+1 so that
each sub-sequence l

m
n directly corresponds to a unit lm+1

n on the
next higher level. The level index m (m = 1...N, N ≥ 2) in-
creases from the lowest level (m = 1) towards the highest level
(m = N ). The units and their correspondences form a general hi-
erarchical (tree) structure. Given this structure and assuming that
each level only depends on the next higher one, the goal of finding
the optimum output sequences L

2, L3, . . . ,LN can be expressed
in a probabilistic way by the maximum a-posteriori formulation:

arg max
L2,L3,...,LN

(

N−1
Y

m=1

P (Lm|Lm+1))P (LN ) (1)

With the sequential correspondence assumption we can further
decompose the likelihood of the correspondence between a pair

of unit sequences P (Lm|Lm+1) into the likelihoods of the sub-
sequence correspondences P (lmn |lm+1

n ):

arg max
L2,L3,...,LN

(

N−1
Y

m=1

Nm+1
Y

n=1

P (lmn |lm+1
n ))P (LN ) (2)

As mentioned in the introduction, the generalization to an ar-
bitrary number of hierarchy levels offers flexibility and extensibil-
ity without the need for decoder modifications. This is especially
helpful if the incorporation of novel knowledge sources into a one-
stage decoder is to be examined.

We further extended the flexibility by allowing each hierarchy
level to be composed of an arbitrary number of sub-levels. Thus,
for example a semantic concept may be composed of a sequence
of sub-concepts, which in turn may be composed of further sub-
concepts, and so on. While hierarchy levels and their sub-levels do
not differ with respect to Expression (2), they do regarding their
properties. By definition, all sub-levels of a hierarchy level share
the same properties, whereas different hierarchy levels may have
different properties. These properties can be search parameters or
structural restrictions. For example, we restrict word classes to
contain exactly one word, or language model factors to be only
applied to syntactic and semantic levels.

Another measure to raise the flexibility of the hierarchy is to
allow the skipping of sub-levels or even entire levels. Skipping of
sub-levels can be useful at the semantic level, for example, so that
a concept may appear both at the surface and as part of a higher
conceptual category, such as AFlightNumber in Figure 1. Exam-
ples for skipping an entire level can be seen in Figure 1, where
only some of the words such as digits or airline codes belong to
word classes, whereas others such as wann are referred to directly
from concepts. Note that entire level skips can prevent the separate
application of level properties, especially search parameters. Gen-
erally however, level skips add to the flexibility of the approach
and result in a more compact hierarchy representation because
otherwise trivial models containing only one unit would have to
be added. Regarding the maximum a-posteriori formulation both
representations are equivalent, as the likelihood of a skipped trivial
model is one.

2.2. Uniform network representation

We represent all knowledge models (e.g. phonemes, words, word
classes and concepts) uniformly as a hierarchy of weighted transi-
tion networks. As in [3] networks consist of three types of nodes:
Non-terminal or sub-network nodes, epsilon or null nodes and ter-
minal nodes. A sub-network node refers to another network, called
the sub-network of the node. Regarding Expression (2), the sub-
network of a node lm+1

n is the model for P (lmn |lm+1
n ), the likeli-

hood for a sequence of corresponding basic units l
m
n . It is com-

puted by the product of the transition probabilities along the path
corresponding to l

m
n . We assume that each network has exactly

one entry and one exit node, an arbitrary number of null nodes and
at least one sub-network or terminal node. For a speech process-
ing task, terminal nodes are the points where time-frames of the
speech signal are consumed. When representing Hidden-Markov
Models (HMMs) within this framework, a terminal node corre-
sponds to an HMM state. Viewing the networks themselves as
nodes and the references from the sub-network nodes to their sub-
networks as edges yields the super-network. The super-network
describes the dependencies between the networks and thus repre-
sents the structure of the network hierarchy. Each network has a



Root

Flight

AFlightCode

ADestination
QDepartureTime

AFlightNumber

QDepartureTime

QTime Departure

Flight

der flug

ein

AFlightCode

AAirlineCode AFlightNumber

ADestination

nach APlace

QTime

um wieviel uhr
wann

Departure

startet
geht

AFlightNumber

ADigit ADigit ADigit

ADigit

AAirlineCode

l_h

d_i

b_a

ADigit

null

eins
. . .

neun

APlace

hamburg

münchen

frankfurt

wann

v a n

neun

n OY n

n

s1 s2 s3

OY

s1 s2 s3 s4

root

concept

word class

word

phoneme

Legend

hierarchy
level level name

network,
super-network

node

network label

. . .

entry or
exit node

sub-network
node sub-network label

null
node

terminal
node sn

network
edge

super-network
edge

Fig. 1. Simple example for a hierarchical transition network that for example accepts the utterance ‘wann startet der flug l_h drei sieben
neun eins nach hamburg’ (Literally: when starts flight l_h three seven nine one to hamburg).

label and belongs to a certain hierarchy level, for example to a
phoneme, to a word, or to a conceptual category. Figure 1 shows
a simple example of such a hierarchical transition network for a
speech interpretation task. For clarity of illustration, no transition
weights are shown and only a small part of the sample network is
displayed so that not all paths through the super-network end at a
terminal node. All complete paths through the hierarchy start at
the entry node of the global root network and end at its exit node.
If a path arrives at a sub-network node, it continues at the start
node of its sub-network. Similarly, paths arriving at an exit node
continue at the sub-network node they once descended from.

2.3. Network construction

The network hierarchy can be constructed in a number of ways.
The different approaches can be characterized as being rule-based
or data-driven, or both. A manually built rule or grammar can
be probabilized by estimating occurrence frequencies on a cor-
pus. Moreover, rule-based and data-driven approaches can be
combined in different parts of the grammar or network hierarchy,
so that the optimum (best performing, least time consuming) solu-
tion for the task at hand can be chosen. The only requirement for
a model is that it is representable as a probabilistic (possibly hier-
archical) transition network. Among the commonly used ones are
backing-off n-grams, (discrete) HMMs, regular rules and gram-
mars and context-free grammars (with the limitations discussed in
Section 1). As the acoustic-phonetic models and the pronuncia-
tion lexicon follow standard approaches from speech recognition,
we here focus on the speech interpretation part, i.e. the semantic
modeling (e.g. the word class, concept and root levels in Figure 1).
We also refer to this part as the hierarchical language model. A
data-driven approach to build such a language model requires a hi-
erarchically annotated speech data collection (except for the case
that the hierarchy is generated automatically). The annotation is
based on the word level and extended by hierarchically grouping
sequences of basic units into equivalent semantic categories. The

sequential correspondence assumption implies that the semantic
annotation forms a strict tree structure. Therefore, no overlapping
annotations are allowed, so that the annotation tree has no cross-
ing edges. The node labels of the annotation tree correspond to the
network labels. An example for an annotation tree can be seen in
Figure 2 (top).

We used a semi-automatic, iterative procedure to hierarchi-
cally annotate a speech corpus for an airport information system
dialogue scenario. Based on a small manually annotated part of the
corpus an initial hierarchical language model was built. With the
aid of the constrained token passing algorithm that will be briefly
introduced in Section 3.4, the hierarchical annotation of new utter-
ances was generated from the word sequence automatically. Errors
were then corrected by hand, and a new intermediate hierarchi-
cal language model was built on the extended annotations. This
process was repeated iteratively for chunks of the corpus, as the
tagging accuracy tends to improve with the incorporation of new
phenomena into the intermediate language models. From the hier-
archically annotated speech corpus a collection of sub-sequences
can be extracted for each semantic category. They form the basis
for the creation of the individual networks.

For the global network at the root of the hierarchy we em-
ployed a backing-off n-gram model. For the local networks data-
driven and rule-based approaches were combined. The concept
sub-networks are either created from manually formulated regular
expressions, or by directly compiling the union of the concept’s
sub-sequences from the hierarchically annotated training set into
a network. For both methods, the AT&T Finite-State Machine
(FSM) toolkit [11] is utilized to compact the networks for an ef-
ficient decoding process. The transitions within the local concept
networks are weighted according to their frequency of occurrence
in the training set. In order to smooth these frequencies, we cur-
rently use a simple additive smoothing scheme. Word classes were
selected manually for categories relevant to the task, like place
names, airline and area codes, plane types and digits. Word classes



are also an essential requirement to scale the system’s knowledge
about target information, e.g. to be able to add place names that
did not occur in the training data. Consequently, and also because
target information is unevenly distributed in the data collection,
words were uniformly weighted within their classes.

3. ONE-STAGE DECODING

Our One-stage Decoder for Interpretation of Natural Speech
(ODINS) is based on the token passing paradigm [3] to perform
a time-synchronous Viterbi search by token passing within a tran-
sition network structure. The token passing approach especially
considers the part of the search process where no ‘time’ is con-
sumed, i.e. outside the HMM states.

3.1. Basic token passing algorithm

The set of tokens that are active at a certain point during the search
can be seen as the heads of search paths. The tails of the search
paths are represented by back-tracking information which is typ-
ically realized as a linked list of so-called back-tracking records.
The process of passing the tokens along network nodes is called to-
ken propagation. Tokens essentially consist of two pieces of infor-
mation, namely a reference to their current back-tracking record,
as well as an accumulated score. The accumulated score consists
of the sum of terminal node (emission) and edge (transition) scores
collected along the search path. In a single propagation step, a
token is copied from it’s current node to all successor nodes, up-
dating the accumulated score with the respective edge’s transition
score. At the terminal nodes, the (log) acoustic emission score is
added as well. At the end of the utterance, the best path through
the search space is represented by that token collected from the
exit node of the root network.

The search progresses with the propagation of tokens through
the network hierarchy. This process can be divided into two main
phases: A time-frame consuming phase, where all tokens at termi-
nal nodes are propagated once, and a phase between frames, where
tokens are generally propagated several times. The latter can be
subdivided into downward propagation, where networks are pro-
cessed in the topological order of the super-network, and upward
propagation, where networks are processed in reverse topological
order.

3.2. Implementation

Our version of the token passing algorithm differs from other for-
mulations [3, 4] in several aspects. A fundamental difference is
that we share the topology of the sub-network models among all
referring sub-network nodes, such as for the words wann and neun
in Figure 1 which share the phoneme n. Hence, multiple tokens si-
multaneously reside at a network node in general and can therefore
be propagated together. Another basic difference is that our algo-
rithm is formulated not in a recursive manner but iteratively, so that
each network is only processed once during a propagation phase.
To achieve this, a topological sort of the super-network is carried
out; this implies that the network hierarchy is non-recursive. As
mentioned in the introduction, we opted for this solution because
decoding efficiency was more important for the task at hand than
the use of recursive rules. A further reduction of the processing
effort is achieved by topologically sorting networks themselves if
possible, i.e. if the network is acyclic. In this case each node of

a network needs only one processing step during a propagation
phase.

Generally, tokens that traverse different paths through the
search network may meet at the same node. An important prop-
erty of the Viterbi search is that these paths may be recombined,
i.e. only the best path survives, all others are discarded. Due to
the sharing of the sub-network models paths may stem from dif-
ferent parent networks, thus the corresponding tokens must not
be recombined. The criterion for recombination is what we call
the super-network history of a token. Simultaneously it is uti-
lized to decide which parent sub-network node a token must return
to when it reaches the exit node of a sub-network. The super-
network history is defined as that part of a token’s path through
the super-network which only considers the last downward prop-
agation step from each network, starting with the last visit of the
root network. More precisely, the last downward traversed sub-
network nodes have to be considered in order to discriminate mul-
tiple (direct or indirect) references between two networks, such
as between AFlightNumber and ADigit in Figure 1. We realize
the super-network history as an unordered tree whose nodes corre-
spond to the sub-network nodes of the hierarchy. Hence our tokens
have an additional piece of information in the shape of a reference
to a node of the super-network history tree. Only those tokens at
a network node that refer to the same super-network history tree
node can be recombined.

3.3. Hierarchical lattice generation

The basic token passing algorithm can be extended in order to pro-
duce multiple alternative hypotheses by storing not only the best,
but the n-best tokens at each word boundary [3]. Hence the back-
tracking information is no longer a linked list but an (acyclic) net-
work. We extended our decoder in a similar way, but general-
ized the approach by storing n-best tokens at different levels in
the network hierarchy, so that generalized hierarchical lattices can
be produced. Similar to the network hierarchy they consist of a
global lattice and several sub-lattices. Lattices that contain seman-
tic information in addition to words have been proposed before
(e.g. [9]), but our hierarchical lattices have two special properties:
Firstly, they may consists of an arbitrary number of levels, and
secondly, we can straightforwardly produce hierarchical lattices
whose sub-lattices are directly or indirectly shared, thus yielding a
more compact representation.

3.4. Constrained token passing

We also modified the token passing search so that it can be con-
strained to the paths of a (hierarchical) lattice. In contrast to the
unconstrained token passing search only those paths are allowed
which contain valid paths through the constraining lattice. This
can be achieved by augmenting the tokens with a reference to the
previously traversed terminal node of the lattice (terminal nodes
are e.g. words). When a token reaches a terminal node, the token
is only kept if the node is a possible successor of the previously
traversed node. Moreover, due to the possibly hierarchical na-
ture of the lattice, a token is discarded if its super-network history
doesn’t contain the possible super-lattice histories of the terminal
lattice node. This measure ensures that all levels of the hierarchi-
cal lattice, not only the terminal symbols, constrain the possible
paths. We used the constrained token passing search for two tasks:
Firstly, to simulate a two-stage decoder that corresponds as much



as possible to its one-stage counterpart (see Section 5.1). Secondly,
to automatically generate hierarchical annotations of spoken utter-
ances that were previously transcribed (see Section 2.3).

4. EVALUATION METRICS

The performance of a speech recognition system is typically eval-
uated by automatically comparing reference transcriptions of ut-
terances of a test corpus against the system output. This is usually
carried out by computing the best match between the reference
and hypothesis word sequences through the minimization of the
edit distance. The edit distance is given by the sum of the costs for
the three basic edit operations (insertion, deletion and substitution)
which are required to transform the hypothesis into the reference
sequence. We set these costs according to the widely used NIST
scoring software [12] to 4 for substitutions and 3 for insertions and
deletions. The minimization of the edit distance is usually carried
out by dynamic programming. The word accuracy Accw is then
computed from the counts of correct Cw, substituted Sw , inserted
Iw and deleted Dw words, where Nw = Cw + Sw + Dw is the
number of words in the reference [13]:

Accw =
Nw − Sw − Iw − Dw

Nw

=
Cw − Iw

Cw + Sw + Dw

(3)

Speech interpreters can be evaluated by a similar evaluation
metric called concept accuracy Accc, where semantic concepts in
the shape of slot–value pairs [14] are the basic units instead of
words:

Accc =
Cc − Ic

Cc + Sc + Dc

(4)

Both the slots and the values of concepts must match to be
counted as correct Cc, a substitution Sc is given if only the slot
matches, if it doesn’t a deletion Dc or insertion Ic is counted. The
output trees of ODINS can be converted accordingly, so that the
concept accuracy can be computed. Each leaf node is taken as a
value for the slot given by the concatenation of its ancestor nodes.

However, since trees can be seen as a generalization of se-
quences we propose an evaluation metric more adequate for tree
structures which directly computes the best match between trees.
This task is addressed by a class of algorithms that minimize the
edit distance between labeled, ordered trees, and include sequence
matching as a special case [15]. The edit distance between two
trees is now determined by the edit operations necessary to trans-
form one tree into another. The substitution operation changes a
tree node label; a deletion removes a node and makes its children
the children of its parent; inserting a node makes it the child of a
certain node, and a subsequence of this node’s children become the
children of the inserted node. We set the costs for insertions and
deletions to 3 as for the sequence matching case above. However,
as we wish to avoid substitutions between tree nodes of different
hierarchy levels, we only use a substitution cost of 4 if the corre-
sponding nodes have the same level type. Otherwise, the substitu-
tion cost is set to ∞.

From the tree matching results the number of correct Cn, sub-
stituted Sn, inserted In and deleted Dn tree nodes can be com-
puted. Consequently we define the tree node accuracy Accn anal-
ogously to Equation (3) as:

Accn =
Cn − In

Cn + Sn + Dn

(5)

concept

concept

word class

word

�

AFlightCode

AAirlineCode

d_i

AFlightNumber

ADigit

neun

ADigit

sieben

ADigit

zwei

ADigit

sechs

AOrigin

von

APlace

münchen

concept

word class

word

�

die

AFlightNumber

ADigit

neun

ADigit

sieben

ADigit

zwei

ADigit

sechs

ADestination

nach

APlace

münchen

Fig. 2. Tree matching example of reference (top) and hypothesis
(bottom) trees.

Figure 2 depicts an example for the alignment of reference and
hypothesis trees by a tree matching algorithm. The minimum cost
edit operations required to convert the reference into the hypoth-
esis tree consist of deleting nodes AFlightCode and AAirlineCode
and substituting d_i with die, von with nach and AOrigin with
ADestination. All the other tree nodes are rated as correct, so that
the tree node accuracy is Accn = 11−0

11+3+2
= 68.75%.

In order to compute the concept accuracy, both trees are con-
verted to sequences of 7 slot–value pairs as described above (con-
catenation denoted by a dot), e.g. (AFlightCode.AAirlineCode,
d_i). As none of the concept’s slots match, 7 deletions and 7 in-
sertions are counted so that Accc = 0−7

0+0+7
= −100.0%. Thus

the concept accuracy doesn’t rate the correctly recognized subtrees
rooted at AFlightNumber and APlace as correct, in contrast to the
tree node accuracy.

We argue that the tree node accuracy can be a more adequate
evaluation metric than the concept accuracy, because it takes the
structural correspondence into account. In conjunction with a con-
fidence measure that would ideally rate die and nach as incorrectly
recognized, a spoken dialogue system might ask the user for the
missing airline code and whether münchen is the origin or the des-
tination. Thus, partial information at lower hierarchy levels can
also be made use of and should therefore be rated accordingly. Yet
it can be argued if errors should be weighted in a non-uniform way,
e.g. depending on the hierarchy level.

5. FIRST EVALUATION RESULTS

The one-stage decoding framework was first applied to a sample
scenario of an airport information system. For this domain, sponta-
neous speech utterances were collected by simulating the dialogue
system through a wizard-of-oz setup. A subset of the collected
speech data of 1446 user utterances from 23 different speakers was
annotated with semantic trees. From this material, the utterances
of 17 speakers were used for training and 3 speakers were used
for evaluation and cross-validation, respectively. The lexicon con-
sists of 574 words, 138 of them are assigned to 11 different word
classes. The tree annotation contains 47 different semantic con-
cepts.

The acoustic model part consists of speaker-independent tied
intra-word triphone HMMs with about 25k Gaussian mixture com-
ponents in total. It was initially trained on a larger spontaneous
speech corpus from the German Verbmobil project [16] and then
adapted to 9 of the training speakers of the sample scenario. The



two-stage
ODINS

82.281.8
80.6

77.1
74.6

69.9
68.9

lattice density (LD)

tr
ee

no
de

ac
cu

ra
cy

[%
]

120100806040201

85
82.6

80

75

70

65

Fig. 3. Tree node accuracy of ODINS vs. two-stage system.

preprocessing stage computes 12 MFCC components, which to-
gether with energy, delta and acceleration coefficients yield 39-
dimensional feature vectors. The hierarchical language model uti-
lizes a backing-off bigram root network and was constructed as
described in Section 2.3. The concept hierarchy level consists of
3 sub-levels. For this setup, the tree node accuracy as defined in
Section 4 is 82.6% on the evaluation data.

5.1. One-stage vs. two-stage system

Additionally, we performed an experiment to estimate the superi-
ority of ODINS over a classical two-stage approach. To make this
experiment as fair as possible, the two systems should not only
rely on the same training data, but also use the same modeling
approach and the same type of decoding algorithm.

In order to achieve this, the network hierarchy was split into
two parts: For the first stage we estimated a word class based bi-
gram language model from the same training data as used for the
hierarchical language model of ODINS, but now ignoring the con-
ceptual annotations. For the second stage we used the same con-
cept based hierarchical language model as for the one-stage setup.
The interface between the two stages is a hierarchical lattice con-
sisting of words and word classes. On this lattice, the second stage
is performed with the constrained token passing search.

For both systems, the tree node accuracy is measured on the
evaluation data. Figure 3 shows the results for the two-stage sys-
tem, depending on the lattice density (LD), compared to the tree
node accuracy of the one-stage system of 82.6%. The LD is de-
fined as the total number of hypothesized units (words and word
classes) divided by the number of units of the best path.

6. CONCLUSION

The experimental results show a clear advantage of our One-stage
Decoder for Interpretation of Natural Speech (ODINS) at low
LDs. For the case that the lattice consists of the best path only
(LD=1), the one-stage system performs about 14% (absolute) bet-
ter than the two-stage system. The two-stage system only approx-
imately reaches the performance of ODINS when the lattice con-
tains many alternatives.

The results quantify the theoretical advantage of the one-stage
approach which applies all available knowledge as early as pos-
sible and thus avoids errors that occur due to missing semantic
knowledge in the first stage of a two-stage system. In order to
conduct the experiment the decoder was extended to produce gen-
eralized hierarchical lattices that may consist of an arbitrary num-
ber of levels and have shared sub-lattices, similar to the hierarchi-

cal search network. We also modified the token passing search to
operate on a search network constrained by the paths of a hierar-
chical lattice, and reused this algorithm to support the hierarchical
annotation procedure. Furthermore, we proposed and used a novel
evaluation metric that is especially tailored for tree structured rep-
resentations.

7. REFERENCES

[1] X. Aubert, “One Pass Cross Word Decoding for Large Vo-
cabularies based on a Lexical Tree Search Organization,” in
Proc. Eurospeech, Budapest, Hungary, 1999, pp. 1559–1562.

[2] H. Soltau, F. Metze, C. Fügen, and A. Waibel, “A one-
pass decoder based on polymorphic linguistic context assign-
ment,” in Proc. ASRU, Trento, Italy, 2001.

[3] S.J. Young, N.H. Russell, and J.H.S. Thornton, “Token
Passing: A Simple Conceptual Model for Connected Speech
Recognition Systems,” Tech. Rep., CUED, July 1989.

[4] B. Jelinek, F. Zheng, N. Parihar, J. Hamaker, and J. Picone,
“Generalized Hierarchical Search in the ISIP ASR System,”
in Asilomar 2001, 2001, vol. 2, pp. 1553–1556.

[5] R. C. Moore, “Using Natural Language Knowledge Sources
in Speech Recognition,” in Proceedings of the NATO Ad-
vanced Study Institute (ASI). NATO, 1998.

[6] Nuance Communications, Menlo Park, California, Nuance
Speech Recognition System, Version 7.0, Grammar Devel-
oper’s Guide, 2001.

[7] X. Huang, A. Acero, F. Alleva, M.-Y. Hwang, L. Jiang, and
M. Mahajan, “Microsoft Windows Highly Intelligent Speech
Recognizer: Whisper,” in Proc. ICASSP, Detroit, Michigan,
1995, pp. 93–96.

[8] J. E. Hopcroft and J. D. Ullman, Eds., Introduction to Au-
tomata Theory, Languages and Computation, Addison Wes-
ley, 1979.

[9] K. Hacioglu and W. Ward, “A Concept Graph Based Con-
fidence Measure,” in Proc. ICASSP, Orlando, Florida, May
2002, pp. 225–228.

[10] R. Pieraccini, E. Levin, and E. Vidal, “Learning how to Un-
derstand Language,” in Proc. Eurospeech, Berlin, Germany,
1993, pp. 1407–1412.

[11] M. Mohri, F. C. N. Pereira, and M. Riley, “A Rational Design
for a Weighted Finite-State Transducer Library,” in Work-
shop on Implementing Automata, 1997, pp. 144–158.

[12] William M. Fisher and Jonathan G. Fiscus, “Better Align-
ment Procedures for Speech Recognition Evaluation,” in
Proc. ICASSP, Minneapolis, Minnesota, 1993, pp. 59–62.

[13] S. Young, G. Evermann, D. Kershaw, G. Moore, J. Odell,
D. Ollason, D. Povey, V. Valtchev, and P. Woodland, The
HTK Book (for HTK Version 3.2), CUED, 2002.

[14] M. Boros, W. Eckert, F. Gallwitz, G. Görz, G. Hanrieder, and
H. Niemann, “Towards Understanding Spontaneous Speech:
Word Accuracy vs. Concept Accuracy,” in Proc. ICSLP,
Philadelphia, PA, 1996, vol. 2, pp. 1009–1012.

[15] D. Shasha and K. Zhang, “Approximate Tree Pattern Match-
ing,” in Pattern Matching Algorithms, A. Apostolico and
Z. Galil, Eds., chapter 14. Oxford University Press, 1997.

[16] W. Wahlster, Ed., Verbmobil: Foundations of speech-to-
speech translations, Springer, Berlin, Germany, 2000.




