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Abstract
We present and evaluate a novel approach towards automati-
cally detecting a speaker’s level of dominance in a meeting
scenario. Since previous studies reveal that audio appears to
be the most important modality for dominance recognition, we
focus on the analysis of the speech signals recorded in multi-
party meetings. Unlike recently published techniques which
concentrate on frame-level hidden Markov modeling, we pro-
pose a recognition framework operating on segmental data and
investigate context modeling on three different levels to explore
possible performance gains. First, we apply a set of statistical
functionals to capture large-scale feature-level context within a
speech segment. Second, we consider bidirectional Long Short-
Term Memory recurrent neural networks for long-range tempo-
ral context modeling between segments. Finally, we evaluate
the benefit of situational context incorporation by simultane-
ously modeling speech of all meeting participants. Overall, our
approach leads to a remarkable increase of recognition accuracy
when compared to hidden Markov modeling.
Index Terms: dominance recognition, meeting analysis, Long
Short-Term Memory, audio feature extraction

1. Introduction
Face-to-face meeting scenarios have attracted a lot of attention
within the research fields of speech recognition, affective com-
puting, and social signal processing [1]. The common goal of
pattern recognition systems tailored for meeting data is to make
meetings more efficient, e. g., by automatically summarizing
them via generation of transcriptions or extraction of important
events (decision making), or by applying machine learning for
creating virtual conference directors and meeting browsers [2].
An essential indicator for characterizing the course of a meeting
is the level of dominance of the individual participants. Usually
a certain order of dominance is established after a short period
of time, even if the participants do not know each other [3]. Typ-
ically, the dominance expressed by the individuals varies over
time and carries important information about related social sig-
nals and attributes such as activity or hierarchical ranking and
about the trait of the meeting as a whole.

Automatically recognizing a speaker’s level of dominance
has been attempted in various studies, exploiting different
modalities. One possibility is to use high-level features such as
speech transcriptions [4] which, however, implies high latency
and a high real-time factor. Other systems focus on evaluating
the speaking length of each speaker in a segment via speaker di-
arization [5] and on applying high-level audio-visual cues [6].
In [3], the authors evaluate both, low-level audio and video
features as well as high level semantic features for dominance
recognition in meeting rooms. Experiments on the AMI corpus

[7] show that the best accuracy can be obtained with (low-level)
audio features only.

Based on these findings, this paper focuses on speech-based
dominance detection and demonstrates how accuracy can be en-
hanced by appropriate context modeling. Unlike the system
introduced in [3] which – as it is common practice in speech
recognition – models framewise Mel-Frequency Cepstral Coef-
ficients (MFCC) and their derivatives via Hidden Markov Mod-
els (HMM), our technique builds on recent advances in emo-
tion recognition and employs a large set of spectral, prosodic,
and voice quality low-level descriptors (LLD). All features are
extracted in real-time using our open-source toolkit for large-
scale speech feature extraction openSMILE [8]. To capture
feature-level context and dynamics we apply a set of statistical
functionals on the LLDs which results in one high-dimensional
feature vector per speech segment. Contextual information be-
tween successive speech segments is accounted for by employ-
ing Long Short-Term Memory (LSTM) networks which are
known to be well suited for affective computing [9] as their
model architecture allows for temporal long-range context ex-
ploitation. Motivated by studies as in [10] where it was shown
that emotion recognition profits from taking into account speech
cues from a speaker’s interlocutor, we also consider situational
context in the sense of other participants’ speech by simultane-
ously modeling multiple speakers. As in [3], we evaluate our
techniques on a subset of the AMI corpus and achieve a consid-
erable accuracy gain compared to previous methods based on
HMMs.

2. Database
Experimental results are based on the same subset of the AMI
corpus [7] as used in [3]. It consists of 36 meeting recordings,
each having a length of five minutes, which results in a total
length of 180 minutes. In each meeting four participants are
located in the IDIAP smart meeting room, equipped with 22
microphones and seven cameras. As in [3], we exclusively con-
sider the four close talking microphones for speech-based dom-
inance recognition. Thus, the audio material used for this study
has a total length of 12 hours. Since the speech signals cap-
tured by the close talking microphones contain some cross-talk
in case multiple speakers speak at the same time, an additional
cross-talk free version of the corpus was created by manually
removing of cross-talk. The aim was to investigate both, a real-
istic scenario including distortions and a scenario with perfect
cross-talk cancellation.

For dominance annotation and recognition, segments of ten
seconds each have been created, i. e., each ten second fragment
of each close talking microphone recording had been given a
dominance label by two annotators. The original annotated lev-
els of dominance range from 1 to 5, meaning from ‘absent’ to



Table 1: 31 low-level descriptors (LLD).

Energy & Spectral (25)
loudness (auditory model based), zero crossing rate,
energy in bands from 250 – 650 Hz, 1 kHz – 4 kHz,
25 %, 50 %, 75 %, and 90 % spectral roll-off points,
spectral flux, entropy,
spectral variance, skewness, kurtosis,
psychoacousitc sharpness, harmonicity,
MFCC 1-10
Voicing related (6)
F0 (Sub-harmonic summation (SHS) followed by
Viterbi smoothing),
probability of voicing, jitter, shimmer (local),
jitter (delta: “jitter of jitter”),
logarithmic Harmonics-to-Noise Ratio (logHNR)

‘extremely dominant’, however, as only 12 of the 4 320 seg-
ments in the database are labeled with dominance level 5, we
clustered together levels 4 and 5. For details on the annotation
and the inter-labeler agreement the reader is referred to [3].

In conformance with [3] we apply a nine-fold cross vali-
dation with speaker disjoint training, validation, and test sets.
For each fold we divide the database into 28 meetings for train-
ing, four meetings for validation, and four meetings for testing.
This corresponds to 3 360, 480, and 480 segments, respectively.
Note that the validation set is exclusively used for determining
the optimum number of epochs for neural network training.

3. Feature Extraction
In contrast to the system proposed in [3], which directly pro-
cesses low-level MFCC features via HMMs, our approach is
based on a large set of LLDs and derivatives of LLD combined
with suited statistical functionals to capture speech dynamics
within a segment. All features and functionals are computed
using our online audio analysis toolkit openSMILE [8]. The
audio feature set consists of 1 941 features, composed of 25 en-
ergy and spectral related low-level descriptors x 42 function-
als, 6 voicing related LLD x 32 functionals, 25 delta coeffi-
cients of the energy/spectral LLD x 23 functionals, 6 delta co-
efficients of the voicing related LLD x 19 functionals, and 10
voiced/unvoiced durational features. Details on the LLD and
functionals are given in Tables 1 and 2, respectively. The set
of LLD covers a standard range of commonly used features in
audio signal analysis and emotion recognition. The functional
set has been based on similar sets, such as the one used for the
Interspeech 2011 Speaker State Challenge [11], but has been
carefully reduced to avoid LLD/functional combinations that
produce values which are constant, contain very little informa-
tion and/or a high amount of noise. Since the speakers’ levels of
dominance are annotated every ten seconds (see Section 2), our
speech feature extractor uses 10 s fragments of speech for the
calculation of statistical functionals which then are processed
by the dominance classification back-end.

In order to reduce the size of the resulting feature space, we
considered a cyclic Correlation based Feature Subset Selection
(CFS) using the training set of each fold. This results in an
automatic selection of between 47 and 86 features, depending
on the cross-talk scenario and on the fold.

Table 2: Set of all 42 functionals. 1not applied to delta coef-
ficient contours. 2for delta coefficients the mean of only posi-
tive values is applied, otherwise the arithmetic mean is applied.
3not applied to voicing related LLD.

Statistical functionals (23)
(positive2) arithmetic mean, root quadratic mean
standard deviation, flatness
skewness, kurtosis
quartiles, and inter-quartile ranges
1 %, 99 % percentile
percentile range 1 %–99 %
percentage of frames contour is above: min + 25%, 50%,
and 90 % of the range
percentage of frames contour is rising
max, mean, min segment length3

standard deviation of segment length3

Regression functionals1 (4)
linear regression slope, and approximation error (linear),
quadratic regression coefficient a, and approx. error (linear)
Local minima/maxima related functionals1 (9)
mean and standard deviation of rising and falling slopes
(minimum to maximum),
mean and standard deviation of inter maxima distances
amplitude mean of maxima
amplitude mean of minima
amplitude range of maxima
Other1,3 (6)
LP gain, LPC 1-5

4. Classification
Most systems which directly process framewise low-level fea-
tures such as MFCCs employ some form of dynamic Bayesian
network for decoding. The predominant methodology used in
LLD-based speech and emotion recognition is to apply Hidden
Markov Models capturing short-term context via state transi-
tion likelihoods. However, recent studies show that for affec-
tive computing turnwise or segmental modeling tends to pre-
vail over processing frame by frame observations with HMMs
[12]. Widely used classifiers operating on static feature vectors
are, e. g., Support Vector Machines (SVM) or Multilayer Per-
ceptrons (MLP). To exploit context between successive speech
segments for improved dominance recognition, this study con-
siders recurrent neural network (RNN) architectures which take
into account past observations by cyclic connections in the net-
work’s hidden layer. For off-line sequence labeling problems,
also future context can be modeled via bidirectional RNNs
(BRNN). Bidirectional networks have access to both, past and
future observations by applying two hidden layers, one for for-
ward processing and one for backward processing. These two
hidden layers are connected to the same output layer (see [13]
for details). For dominance recognition BRNNs can be em-
ployed whenever the real-time constraint can be relaxed, i. e.,
when focusing on off-line processing or when a short latency is
tolerable, so that the system can be operated with a look-ahead
buffer.

In our experiments we also investigate a more advanced
technique for neural network based context modeling. It is
based on the Long Short-Term Memory principle originally in-
troduced in [14]. LSTM networks use so-called memory blocks



instead of conventional hidden cells which allows them to ac-
cess and model a self-learned amount of long-range temporal
context. Each memory block consists of one or more mem-
ory cells and multiplicative input, output, and forget gates. The
cell input is scaled by the activation of the input gate, the out-
put by the activation of the output gate, and the previous cell
value by the activation of the forget gate. Thus, the network can
perform read, write, and reset operations, and – unlike tradi-
tional RNNs which are affected by the vanishing gradient prob-
lem – has access to an arbitrary amount of context information.
LSTM networks have shown remarkable performance in a vari-
ety of pattern recognition tasks, including handwriting recogni-
tion [13], speech recognition, and affective computing [9, 12].
Details on the LSTM technique and on its bidirectional exten-
sion (BLSTM) can be found in [13].

5. Experiments

5.1. Experimental Settings

All dominance recognition experiments were conducted using a
cyclic nine-fold cross validation on the AMI meeting database
(see Section 2). We investigated recognition performance on
data with and without cross-talk cancellation considering either
the full set of 1 941 features per segment or the reduced set ob-
tained via feature selection as detailed in Section 3. Five differ-
ent classification approaches were tested; each of them operat-
ing on segmental data: Support Vector Machines, RNNs, bidi-
rectional RNNs, LSTM networks, and bidirectional LSTMs.
The RNNs and LSTM networks consist of 128 hidden cells and
memory blocks, respectively. Each memory block contains one
memory cell. The number of input nodes corresponds to the
number of different features per speech segment whereas the
number of output nodes corresponds to the number of target
classes, i. e., we used four output nodes representing the four
levels of dominance. All networks were trained using a learning
rate of 10−5. The bidirectional networks consist of two hidden
layers (one for forward and one for backward processing) with
128 cells / memory blocks per input direction. As abort cri-
terion for training we evaluated the classification performance
on the validation set of the respective fold. The applied SVMs
have a polynomial kernel (degree 1) and are trained using the
sequential minimal optimization (SMO) algorithm.

5.2. Multiple Speaker Modeling

Aiming to improve the recognition of a single speaker’s level of
dominance by situational context modeling, i. e., by modeling
multiple speakers at the same time, we investigated the effect
of extending the feature vectors so that they contain speech fea-
tures from the speaker whose level of dominance we want to
classify, as well as the speech features from the remaining three
meeting participants. The motivation for this is to exploit po-
tential negative correlations between the dominance level of the
considered speaker and his or her interlocutors, assuming that
not all participants will have a high level of dominance at the
same time. A classifier processing the speech features of all
four participants at the same time will thus have to learn cor-
relations between the first fourth of the extended feature vector
and the ground truth dominance label (corresponding to speech
from the speaker under consideration) as well as corresponding
inverse correlations between the remaining three-fourths of the
feature vector and the dominance label.

5.3. Results and Discussion

Table 3 shows the dominance recognition performance for the
different classification approaches and the effect of cross-talk
cancellation, feature selection and multiple speaker modeling.
Since classes are heavily unbalanced, we decided for the F1-
measure (harmonic mean between unweighted recall and un-
weighted precision) as evaluation criterion. When considering
the best result reported in [3] for an HMM-based system pro-
cessing low-level MFCC features (recognition rate of 54.90 %),
we see that the most remarkable performance gain results from
modeling segmental statistical functionals of a large set of LLDs
(see Section 3) instead of framewise MFCCs: The best systems
proposed in this study achieve an F1-measure of 62.93 % for
data including cross talk and 65.25 % for cross-talk free data,
corresponding to a recognition rate (or weighted accuracy) of
68.17 % and 70.26 %, respectively. Thus, modeling feature-
level context within a speech segment via statistical function-
als of large-scale LLDs as used in modern emotion recognition
systems [9, 11] leads to a gain in dominance recognition rate
of up to 13.3 % absolute, considering data without cross-talk
cancellation.

Depending on the size of the feature space, context mod-
eling between successive speech segments can also lead to
enhanced recognition performance. When considering sin-
gle speaker modeling without feature selection, we see that
there is no clear trend as far as the F1-measures of the dif-
ferent classifiers is concerned – apart from SVMs operating
on cross-talk free data (62.53 %), which perform worse than
RNN-based approaches exploiting context. However, when us-
ing CFS feature selection, which generally increases perfor-
mance for most scenarios, we observe that context exploitation
can increase performance: For the realistic cross-talk setting
SVMs achieve a comparably low F1-measure of 55.64 % which
can be enhanced via long-range context modeling by bidirec-
tional LSTMs (62.93 %). Similar trends can be observed for
the cross-talk free scenario, where F1-measure increases from
63.67 % to 65.25 % when replacing SVMs with unidirectional
LSTM networks. For most experimental settings, there is no
significant difference between results obtained with unidirec-
tional and bidirectional processing which means that the real-
time version of the proposed dominance recognition system
does not imply lower performance. Applying multiple speaker
modeling in combination with the full feature set does not im-
prove performance, as the resulting feature vector dimension
of four times 1 941 seems to be too large for the given amount
of training data. Yet, when applying feature selection and fo-
cusing on the cross-talk scenario, situational context increases
the performance of most classifiers, with the most remarkable
enhancement from 55.64 % to 61.30 % for SVM-based recog-
nition. Multi-speaker context especially helps when having to
process data that includes cross-talk – probably because classi-
fiers seem to learn to distinguish cross-talk from speech when
features from all speakers are clustered together in one feature
vector. Performance gains by temporal and situational context
modeling seem to be not fully complementary since classifiers
ignoring temporal segment-level context profit more from mul-
tiple speaker modeling than, e. g., RNN-based or LSTM-based
recognizers.

To further study the potential of multiple speaker modeling
for dominance recognition we trained multi-task BLSTM net-
works for predicting the level of dominance of all four speak-
ers at the same time, using features from all speakers, as in
our previous multi speaker modeling experiments. Combined



Table 3: Dominance recognition results in terms of F1-measure on the test set, averaged over nine folds: results for different classifiers,
with and without cross-talk cancellation, with and without feature selection via CFS, and with and without multiple speaker modeling.

classifier cross-talk without feature selection with feature selection
cancellation single speaker multiple speaker single speaker multiple speaker

modeling modeling modeling modeling
BLSTM 3 64.29 63.05 64.69 62.42
LSTM 3 64.82 64.45 65.25 63.89
BRNN 3 63.63 63.37 63.24 62.88
RNN 3 65.24 63.49 64.82 64.52
SVM 3 62.53 59.00 63.67 64.40
BLSTM 7 60.44 59.01 62.93 61.31
LSTM 7 61.42 58.95 61.64 62.65
BRNN 7 60.62 60.77 60.53 61.52
RNN 7 61.57 61.17 60.51 61.92
SVM 7 61.27 58.72 55.64 61.30

with feature selection, this led to a decreased F1-measure of
59.08 % compared to 62.93 % for single speaker modeling and
data with cross-talk. Also the inclusion of an oracle feature en-
coding the ground truth level of dominance of the three other
speakers did not improve the F1-measure for this experimen-
tal setting (62.54 %). Correlating the ground truth dominance
labels of one speaker with the labels of the speaker’s interlocu-
tors leads to a very small negative cross-correlation of -0.16 on
average, which is a further indicator for the rather limited gain
of multiple speaker modeling, compared to other forms of con-
text usage such as temporal context exploitation and modeling
of feature-level dynamics.

6. Conclusion

We introduced a novel technique for recognizing a speaker’s
level of dominance in a meeting scenario. The system processes
segmental speech features obtained by our toolkit for large-
scale feature extraction (openSMILE [8]). Compared to pre-
viously introduced HMM-based systems using standard MFCC
features [3] our approach enables more accurate dominance es-
timation which can be attributed to the combination of seg-
mental processing and context modeling within and between
speech segments. We found that temporal context exploitation
via RNNs or Long Short-Term Memory networks tends to pre-
vail over SVM-based recognition. As the levels of dominance
of the individual speakers at a given time are almost fully un-
correlated, the gain of modeling situational context in the form
of observing multiple speaker’s features at the same time, is
comparably small and rather partly compensates performance
degradations by cross-talk.

In the future, we intend to combine the proposed segmental
feature extraction scheme with useful speech-based high-level
features (e. g., as applied in [4]). Further, it seems promising
to integrate our dominance detector into systems which are tai-
lored for processing room microphone recordings and thus in-
clude modules for source separation and dereverberation.
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