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ABSTRACT

Phenomena like filled pauses, laughter, breathing, hesitation, etc. play
significant role in everyday human-to-human conversation and have
a significant influence on speech recognition accuracy [1]. Because
of their nature (e. g. long duration), they should be modeled with
different number of emitting states and Gaussian mixtures. In this
paper we address this question and try to determine the most suitable
method for finding these parameters: we provide an examination
of two methods for optimization of hidden Markov model (HMM)
configurations for better classification and recognition of nonverbal
vocalizations within speech. Experiments were conducted on three
conversational databases: TUM AVIC, Verbmobil, and SmartKom.
These experiments show that with HMMs configurations tailored to
a particular database we can achieve 1–3 % improvement in speech
recognition accuracy with comparison to a baseline topology. An
in-depth analysis of discussed methods is provided.

Index Terms— Spontaneous speech, nonverbals, laughter recog-
nition, multiple corpora.

1. INTRODUCTION

Currently, state-of-the-art speech recognition technology provides
acceptable level of performance for read speech, while there is still
a large room for improvement in spontaneous speech recognition.
Filled pauses, repairs, hesitations, partial words, repetitions and dis-
fluences, included in conversational speech, complicate the recog-
nition task. This may be crucial, as in natural and conversational
speech their percentage may be surprisingly high [2]. At the same
time, they enrich the spoken words content with paralinguistic infor-
mation, which is vital for determining speaker’s state and intention
underlying the utterance [3]. An explicit modeling of nonverbal and
nonspeech vocalizations can improve the recognition accuracy and
provide additional information contained in these phenomena.

The first attempts to address this question have been made in
1990’s. Schultz and Rogina in [4] performed a set of experiments
with inclusion of acoustic models of human and nonhuman noises into
a spontaneous speech recognizer. That work, however, was focused
on speech recognition accuracy, while noise events were eliminated
from recognition hypotheses. Also, no configuration optimization
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has been done, acoustic models for those kinds of events have been
chosen the same way just as for phonemes.

Such an optimization has been executed in [5], where various
dynamic and static classification methods for discriminating between
different classes of isolated nonverbals were investigated. That work
is focused on finding the best feature set and best hidden Markov
model (HMM) configurations for nonverbal models from the point of
view of a classification task. However, individual model optimization
and incorporation into speech recognition is not dealt with in that
paper.

Individual optimization of HMM configurations and feature sub-
set for the best classification between speech and non-speech events
has been also performed in [6], but the authors regard only a lim-
ited number of non-speech noises (namely filled pauses, laughter
and applause) and also do not investigate the influence of such an
optimization on the speech recognition accuracy.

In this work, we thus present an extensive approach towards
examining of methods of HMM configurations optimization together
with their evaluation within a spontaneous speech recognition system
on multiple corpora in order to provide a broader understanding on
their dependency of single databases.

2. CORPORA

We conducted our experiments on three spontaneous speech
databases: the TUM Audio-Visual Interest Corpus (AVIC) [7]
as was recently featured in the INTERSPEECH 2010 Paralinguistic
Challenge [8], the SmartKom Home [9] corpus, and the Verbmobil I
[10] corpus.

TUM AVIC is an English database containing human conversa-
tional speech between a product presenter and 21 diverse subjects.
The total recording time for males resembles 5:14:30 h with 1 907
turns, for females total recording time resembles 5:08:00 h with 1 994
turns, respectively. The total duration of clean speech data (without
presenter’s phrases) is 2:17:37 h.

Verbmobil represents the data collected within the Verbmobil
project1. For this work we used the German part of the corpus.
The Verbmobil domain is negotiation, and the task to be solved by
speakers is to arrange meetings and plan a trip. It consists of 1 658
spontaneous dialogs with 13 890 turns produced by 655 speakers.
The total duration of the recorded speech is 33:51:42 h.

1http://verbmobil.dfki.de/
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Table 1. Distribution and type of the nonverbals in the selected
corpora for analysis.

# Instances TUM AVIC Verbmobil SmartKom
Filled pause (äh) – 3 944 74
Filled pause (ähm) – 3 140 182
Filled pause (hm) – 579 155
Breath 517 19 786 495
Human noise 973 1 510 852
Hesitation 1 258 467 94
Laugh 306 221 43
Throat clean – 92 –
Swallow – 214 –
Lip smack – 5 156 –
Consent 360 – –
Total 3 414 35 109 1 895

SmartKom is another German speech database collected during
the SmartKom project2. The SmartKom Home scenario represents
human conversation with an intelligent communication assistant at
home. It contains data from 65 speakers and 130 recordings. The
total time of recordings used in this work is 3:05:12 h.

For the experiments several categories of nonverbals were ex-
tracted with forced alignment (cf. details shown in Table 1). From
all extracted nonverbals only those longer than 0.1 s were kept, since
vocalizations shorter than 0.1 s are in most cases aligned in wrong
way and thus are very error prone.

3. HMM CONFIGURATION OPTIMIZATION FOR
IMPROVED CLASSIFICATION

In this section we consider the actual classification task. As indicated,
classification is performed with a dynamic classifier, namely hidden
Markov models. Except good discrimination ability, HMMs are the
easiest choice for further inclusion into a speech recognizer. The
feature set of ours consists of the typical 13 Mel-Frequency Cepstral
Coefficients (MFCC) including the 0th coefficient and delta and
acceleration regression coefficients. Features are extracted from
frames of 25 ms length sampled at a rate of 10 ms. This type of
features is convenient for common automatic speech recognition
engines and are efficient for the nonverbals classification task [5].

Our interest in the ongoing is to determine the topologies for
each HMM, which together provide the best classification accuracy
with other conditions kept constant. The chosen topology parameters
to vary and ‘fine-tune’ are the number of emitting states (N) and
the number of Gaussian mixture components (M) for each state.
We do not regard various state transition configuration (e. g., Bakis
topology) since this was proven to be ineffective [5]. Note that we
further assume that each state of a single HMM has the same number
of mixture components.

While the best configurations can be found in several ways, only
exhaustive search through all possible combination of all possible
configurations of different models ensures finding the best solution.
In this work we test models’ topologies in a range of 3,· · · ,15 states
and 1,· · · ,99 mixtures. Thus, the total number of different combi-
nations is (13 × 99)n, where n is a number of different nonverbal
models. Even with smaller range of possible configurations it makes
a genuine exhaustive search computationlly infeasible, i. e., NP-hard.

2http://smartkom.dfki.de/

Table 2. Discrimination accuracy of two strategies for optimization
w/o exhaustive search as compared to the baseline.

Configuration TUM AVIC Verbmobil SmartKom
Baseline 71.94 86.14 70.4
Grid search 74.58 90.28 72.19
LBO 74.08 88.78 68.28

This problem can be eased by discrete optimization techniques like ge-
netic algorithms (GA), but application of it in non-reported previous
experiments to this task was not successful.

As an alternative, the search space can be reduced with fixation
of the same configuration for all the models. This method was used
in [5]. In such a case the number of combination equals 13× 99 =
1 287. However, it will not expose differences in the nature of single
vocalizations. In the further we will reference this method as grid
search.

Another approach consists in individual optimization of each
single model with no respect to the individual classification task. In
such a case only one single model is trained on the corresponding part
of training data. The criterion function is an average likelihood of the
observed test data obtained during the forced alignment – P [O|λ].
Due to very small values and dynamic range of the likelihood, the
logarithm is usually preferred instead. Thus, the score for the model
λn is defined as:

L(λn) =
( T∑

t=1

log
(
P [Ot|λn]

))/
T, (1)

where O1, · · · , OT are test utterances for the corresponding nonver-
bal. Those models which provide the highest scores for the corre-
sponding type of a nonverbal are then chosen to construct the overall
configuration for the classification. This method is denoted in the
ongoing as likelihood-based optimization (LBO).

Both methods have been evaluated on the three conversational
databases described in section 2. Each single evaluation was per-
formed in a speaker-independent 3-fold cross-validation. For each
database, the set of speakers was randomly split into three disjunctive
parts. Note that each part includes a slightly different number of
speakers in order to keep the balance of data between folds.

Classification performance of the configurations found with de-
scribed approaches were compared to a baseline configuration (8
states and 8 mixtures for each model) found to be the best for MFCC
features in previous work [5]. Obtained results are listed in Table 2.

As one can see from these results, best classification ability is
provided with configurations found by grid search. This result is
expected, since this method aims to obtain the best classification
performance, while likelihood-based optimization gives us models
with the highest likelihood of the test data, which does not mean the
best classification performance between small number of classes due
to inter-class similarities. The detailed description of configurations
is provided in Tables 3 and 4.

4. EXPERIMENTS INCORPORATING LARGE
VOCABULARY SPEECH RECOGNITION

However, the question about the best approach for speech recogni-
tion is still left open by the so far presented results. Obviously, the
difference between classification of nonverbals and large vocabulary
continuous speech recognition (LVCSR) lies in the significantly larger

4626



Table 3. Best configurations obtained with grid search. Models share
the same number of emitting states (N) and Gaussian mixtures (M).

TUM AVIC Verbmobil SmartKom
# N M N M N M
Baseline 8 8 8 8 8 8
Grid search 13 18 9 82 8 6

Table 4. Best configurations obtained with likelihood-based opti-
mization, where emitting states (N) and Gaussian mixtures (M).

TUM AVIC Verbmobil SmartKom
# N M N M N M
Filled pause (äh) – – 9 45 8 2
Filled pause (ähm) – – 9 42 9 3
Filled pause (hm) – – 9 10 6 7
Breath 6 24 9 99 4 27
Human noise 5 41 3 72 3 41
Hesitation 13 22 5 14 4 4
Laugh 8 10 6 11 4 3
Throat clean – – 6 5 – –
Swallow – – 4 19 – –
Lip smack – – 7 99 – –
Consent 12 5 – – – –

number of classes in the case of LVCSR. In such a case, likelihood-
based optimization is thus more likely to perform better. Let us thus
now investigate this in more detail.

4.1. Experimental setup

The given configurations have been tested on the corresponding
LVCSR tasks per corpus. Each recognizer was built with the same
scheme. Acoustic modeling of regular phonemes was done with
three-state context-independent left-to-right Gaussian mixture HMM
models. Each HMM had three states (except short pause) and 32
mixtures. For the German databases (Verbmobil and SmartKom) we
used an extended list of 47 phonemes. Also, some non-speech noises
were included (technical and non-human noises, knocks, squeals and
rustle). These sounds were modeled as regular phonemes (three states,
32 mixtures) since this work is focused on non-verbal events which
belong to speech.

Following our previous protocol, evaluation of speech recognition
performance has been performed in speaker-independent 3-fold cross-
validation manner. However, on TUM AVIC we applied leave-one-
speaker-out (LOSO) evaluation in order to increase the amount of
training data taking into account the increased complexity given by
this task.

We tested just the initial configurations of models – this means
that no parameters from the previous stage were utilized for the
speech recognizers. All parameters were estimated with the com-
monly employed Baum-Welch training procedure.

Language modeling was performed with bigrams. All kinds of
non-speech and non-verbal events were modeled like usual words by
applying their language model probabilities. An alternative approach
would be to treat these vocalizations as silences, but this approach was
previously shown to perform worse [4]. More sophisticated language
modeling goes beyond the scope of this article.

Table 5. Word accuracy (and correctness) obtained with different
configurations.

% TUM AVIC Verbmobil SmartKom
including non-verbal vocalizations

Baseline 23.50 (38.31) 72.21 (77.23) 51.42 (61.99)
Grid search 24.28 (39.80) 72.70 (78.13) 52.54 (62.58)
LBO 24.01 (40.28) 72.56 (78.21) 50.79 (62.73)

excluding non-verbals vocalizations
Baseline 15.46 (41.12) 76.88 (80.22) 57.50 (65.82)
Grid search 17.54 (40.94) 77.42 (80.47) 58.51 (66.31)
LBO 18.17 (40.91) 77.53 (80.41) 58.19 (65.70)

4.2. Results

The results provided in Table 5 including non-verbal vocalizations
show that, both methods give similar word accuracy (note that we
prefer to stay with reporting on accuracies as opposed to the habit
of reporting word error rates common in the field of LVCSR. This
choice was made in order to be consistent with the previously reported
accuracies which are the usual way to report on nonverbals.). As
one can see, grid search still gives the best result from the point of
view of word accuracies. It is interesting that LBO however provides
better correctness, which means that it causes a larger number of word
insertions. In this table, we also show results excluding non-verbal
vocalizations for the final recognition result , i. e., these are modeled,
but we calculate the results only for verbal events. This is interesting,
as it shows benefit for individual likelihood optimization (except for
the SmartKom corpus) when looking at the linguistic information.

5. DISCUSSION OF FINDINGS

The experimental results we observed on the three corpora speak for
application of grid search for both: isolated nonverbal classification
and conversational speech recognition. On the other hand, likelihood-
based optimizationl gives us useful information about tendencies
in acoustic modeling of individual nonverbals and could lead to
better results exclusively for the linguistic content on two corpora.
Although we did not discover any strong correlation in configurations
between the various corpora, we can draw several conclusions as
follow: First, one can see strong correlation between the optimal
number of mixtures and the amount of the training data. This is
especially observable on the SmartKom database, where breath and
human noise occur much more often and have a proportional number
of mixtures. Breath and lip smack on the Verbmobil corpus have
more than 5 000 occurrences and their optimal mixture numbers are
rather extreme – 99. Thus, there is no observed universal solution
concerning optimal number of mixtures – this has to be determined
taking into account the particular training material at hand.

However, human noise models expose some kind of similarity (a
small number of states, more mixtures). Also, the optimal number of
states for filled pauses is about 8–9. Yet, we cannot generalize on the
optimal number of mixtures due to the reasons mentioned above.

In general, we can state that optimization of nonverbal models’
topology can improve overall accuracy up to 3 % relatively. This can
be obtained at reduced computational effort: Methods applied in this
paper are exhaustive searches within given ranges by nature and can
thus be made more efficient.

From Figure 1 we can see that the search spaces for both methods
have noticeable trends towards a global maximum. Yet, the search
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Fig. 1. Left: Search space of grid search for the TUM AVIC database: Accuracy (Acc) over emitting states (N) and Gaussian mixtures (M).
Right: Search space of likelihood-based optimization for the example of breath on the TUM AVIC database: Average log likelihood over
emitting states (N) and Gaussian mixtures (M).

space of the individual optimization is smoother at a smaller number
of local maxima. This is typical for any model. This behaviour makes
an application of simple gradient-based optimization algorithms rea-
sonable, which reduces the search time dramatically.

6. CONCLUSION

We have tested two approaches for HMMs topology optimization with
respect to nonverbal models. The first method performs an exhaustive
search through a subset of possible models’ configurations on the
classification task (grid search). Within this approach all models share
the same configuration. Another approach maximizes the observation
likelihood of the test data for each model independently. Both meth-
ods have been first evaluated on an isolated nonverbal classification
task and then on spontaneous speech recognition.

Our experimental results show that the first method provides the
best configuration for both tasks. The second approach is still useful
since it gives comparable results and can be easily optimized with use
of more sophisticated optimization algorithms such as hill-climbing.

Fine-tuning for this class of models can increase word accuracy
of speech recognizers in the range of 1–3 % respectively.

In future work we intend to investigate the method of individ-
ual HMM optimization, which maximizes not only a likelihood of
observable data, but also improve the discrimination ability of the
models with maximization of the margin between classes.
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