
Technische Universität München
Fakultät für Informatik

Lehrstuhl III – Datenbanksysteme

Efficient Management of RFID Traceability Data

Diplom-Informatikerin Univ.
Veneta M. Dobreva

Vollständiger Abdruck der von der Fakultät für Informatik der Technischen
Universität München zur Erlangung des akademischen Grades eines

Doktors der Naturwissenschaften (Dr. rer. nat.)

genehmigten Dissertation.

Vorsitzender: Univ.-Prof. Dr. Helmut Seidl

Prüfer der Dissertation:
1. Univ.-Prof. Alfons Kemper, Ph. D.
2. Univ.-Prof. Dr. Torsten Grust

Eberhard Karls Universität Tübingen

Die Dissertation wurde am 26.03.2013 bei der Technischen Universität München
eingereicht und durch die Fakultät für Informatik am 03.08.2013 angenommen.

I

Abstract

Several application fields such as automotive industry, pharma industry, and logis-
tics are increasingly employing Radio Frequency Identification (RFID) technolo-
gies to track their goods in business processes. The frequently produced large
amounts of events constitute new challenges to modern databases. An efficient
data staging process as well as efficient query mechanisms for both – processing
of the latest information (OLTP) and processing of analytical queries (OLAP) are
required.

In this thesis, different mechanisms for the efficient management of traceability
data using the example of RFID are presented. First, we summarize the challenges
that RFID data poses to a storage system and examine whether existing relational
DBMS approaches fulfill these requirements. The approaches are compared us-
ing a mixed benchmark, consisting of concurrent inserts and queries. Further, a
novel approach, where the OLTP and the OLAP components reside in the same
relational database, is introduced and compared to the existing solutions.

Second, inspired by prior work on RDF triple stores, we present a scalable ded-
icated system for efficient storage and fast querying of RFID data: the RFID Triple
Store. The challenges posed by RFID data are addressed as follows: (1) elaborate
indexing techniques leveraging the specifics of the data are incorporated, in order
to enable efficient data staging; (2) the query engine takes advantage of the charac-
teristics of the data to speed up query processing. Our experimental studies show
that the RFID Triple Store can achieve both a significantly higher insert through-
put and a better query performance compared to the state-of-the-art of RFID data
management.

Finally, mechanisms for distributed RFID data management are explored. We
apply the MapReduce paradigm to conduct distributed query processing and ana-
lyze how suitable MapReduce is in an RFID context. Further, a distributed solution
using our RFID Triple Store is introduced. We compare both approaches and de-
termine that the distributed Triple Store significantly outperforms the MapReduce
implementation.

III

Contents

1 Introduction 1
1.1 Problem Statement . 2

1.2 Contributions . 3

1.3 Outline . 4

2 Characteristics of RFID Traceability Data 7
2.1 RFID Event Data . 7

2.1.1 RFID Technology . 7

2.1.2 Electronic Product Code (EPC) 8

2.1.3 RFID Events . 8

2.2 RFID Application Scenarios . 9

2.3 Challenges Posed by RFID Traceability Data 10

2.3.1 Data Volume . 10

2.3.2 Data Quality . 10

2.3.3 Arbitrary Object Movement . 11

2.3.4 Data Staging . 11

2.3.5 Query Processing . 11

3 Relational DBMS Approaches for the Efficient Management of RFID
Data 13
3.1 Existing RFID Approaches on Relational DBMSs 13

3.1.1 Naïve Approach . 14

3.1.2 Data Warehouse Approach (Gonzalez et al.) 16

3.1.3 Read and Bulk Approach (Krompass et al.) 21

3.1.4 Prime Number Approach (Lee and Chung) 26

3.2 A Combined OLTP and OLAP Approach for Traceability Data . . . 31

3.2.1 Path Encoding Using a Bloom Filter 31

3.2.2 Data Model . 32

3.2.3 Data Staging . 33

3.3 Performance Evaluation and Comparison 37

3.3.1 Qualitative Evaluation . 37

IV Contents

3.3.2 Framework Architecture . 40

3.3.3 Evaluating the Existing RFID Database Approaches 41

3.3.4 Evaluating the Bloom Filter Approach 49

3.4 Related Work . 52

3.5 Summary and Conclusions . 53

4 A Dedicated Triple Store for RFID Data Management 55
4.1 Motivation . 55

4.1.1 From a Traditional DBMS Approach to a Dedicated Solution 55

4.1.2 A Short Introduction to RDF 56

4.1.3 Similarities and Differences between RFID and RDF Data . . 58

4.1.4 Contributions . 59

4.2 Triple Store Architecture . 60

4.2.1 Triple Store Indexes . 60

4.2.2 Index Compression . 62

4.3 Event Processing . 67

4.3.1 Index Design . 67

4.3.2 Analysis of Index Updates . 69

4.3.3 Index Implementation . 71

4.3.4 Pre-allocation of Spare Pages 72

4.3.5 Index Update . 75

4.4 Query Processing . 79

4.4.1 Index Range Scans and Merge Joins 80

4.4.2 SIP . 80

4.4.3 Order-preserving Dictionary 81

4.5 Performance Evaluation and Comparison 84

4.5.1 Experimental Setup . 84

4.5.2 Data Generation . 85

4.5.3 Query Working Set . 85

4.5.4 Mixed Workload . 87

4.6 Related Work . 94

4.7 Summary and Conclusions . 95

5 Distributed RFID Data Management 97
5.1 Using MapReduce for the Management of RFID Data 97

5.1.1 A Short Introduction to Hadoop – An Implementation of
MapReduce . 99

5.1.2 Implementing RFID Queries Using Hadoop 101

5.1.3 Performance Evaluation and Comparison 114

5.2 Distributed RFID Processing Using the RFID Triple Store 121

5.2.1 Distributed Architecture . 121

5.2.2 Performance Evaluation . 124

5.3 Summary and Conclusions . 126

Contents V

6 Conclusions and Outlook 129

Bibliography 133

VII

List of Figures

1.1 Overview of the Auto-ID procedures (adopted from [25]). 2

2.1 An RFID Tag . 8

3.1 A simple example on the movement of RFID objects 14

3.2 The naïve approach. Left: the schema of the approach. Right: an
example based on Figure 3.1. 15

3.3 Tables for storing events in the warehouse model devised by Gon-
zalez et al. [27] . 16

3.4 Warehouse data for data model Gonzalez et al. [27] 17

3.5 The movement graph shown in Figure 3.1 is adapted to the cluster
concept of the warehouse approach [27]. 18

3.6 Tables for storing events in the RnB data model [35] 22

3.7 Warehouse data for data model RnB [35] 24

3.8 Tables for storing events in the prime number approach (adopted
from [37]). 27

3.9 An example of the path encoding scheme and region numbering
scheme (time tree) of the prime number approach [37] 28

3.10 Graph-like movement handling in the Lee and Chung approach [37]
(based on the example in Figure 3.1). 30

3.11 Bloom filter approach . 33

3.12 Data staging of the Bloom filter approach 35

3.13 Architecture of the framework for evaluating the RFID approaches. . 41

3.14 Max throughput measurement of the approaches: without index-
es/with indexes, clustered/not clustered (taken from [56]). 50000

events were loaded in the data models. 44

3.15 Query-only workload for the RnB approach using 1, 5, and 10 query
clients (QC), respectively (taken from [56]). The database was preloaded
with 5 million events. 46

3.16 Query-only workload for the naïve approach (taken from [54]). The
database was preloaded with 5 million events. 47

VIII List of Figures

3.17 Mixed workload for the RnB approach using 1, 5, and 10 query
clients (QC), respectively (taken from [56]). Concurrently, insert
batches of 500 events per second are loaded into the database. 48

3.18 Mixed workload for the naïve approach using 1, 5, and 10 query
clients (QC), respectively (taken from [54]). Concurrently, insert
batches of 500 events per second are loaded into the database. 49

3.19 Mixed Workload: OLTP Queries . 51

3.20 Mixed Workload: OLAP Queries . 52

4.1 Simple RDF example. 57

4.2 Example RDF graph data from DBpedia [2]. Predicates are repre-
sented by oval shapes and subjects by rectangle shapes. 57

4.3 RFID event as a graph. 59

4.4 RFID Triple Store indexes . 61

4.5 Data dictionary in the RFID Triple Store. 63

4.6 E Indexes . 67

4.7 T Indexes . 68

4.8 R Indexes . 69

4.9 Spare pages (adopted from [11]). 73

4.10 Merge limit and inner keys in the RFID Triple Store. 74

4.11 Overview of the event processing in the RFID Triple Store. 75

4.12 Overview of the dictionary and caching mechanisms of the RFID
Triple Store. 78

4.13 Contamination query. 79

4.14 Execution plan of the query in Figure 4.13 80

4.15 Range query: A list of objects scanned by sensor 1 within a specified
time interval. 81

4.16 Execution plan of the query in Figure 4.15 before and after opti-
mization . 82

4.17 Range query: A list of objects, which were scanned by sensor 1 after
a time threshold and by sensor 2 before a time threshold. Con-
sider, that the sensors have a specific semantic, like entry and exit.
This query determines for example the objects that passed an entry
sensor after 8 o’clock in the morning and an exit sensor before 12

o’clock in the morning, i. e., all objects produced before noon. 83

4.18 Execution plan of the query in Figure 4.17 before and after opti-
mization. 84

4.19 Distribution of the path lengths of an object in a test dataset (adopted
from [11]). 86

4.20 A mixed workload of concurrent inserts and queries on the RFID
Triple Store. 88

4.21 A mixed workload of concurrent inserts and queries and a query-
only workload on the one-week-dataset for DBMS-X. 89

4.22 Query-only workload on MonetDB. 90

List of Figures IX

4.23 Indexes used by the queries executed on the DBMS-X and the RFID
Triple Store. In the last table column queries that benefit from the
SIP technique of the Triple Store are shown. 91

4.24 A mixed workload of concurrent inserts and queries on the RFID
Triple Store (one-week-dataset). Query response time after the opti-
mizations. 92

4.25 A mixed workload of concurrent inserts and queries on the RFID
Triple Store (two-weeks-dataset). Query response time after the op-
timizations. 92

4.26 A mixed workload of concurrent inserts and queries on the RFID
Triple Store (one-month-dataset). Query response time after the op-
timizations. 93

5.1 The MapReduce paradigm. 98

5.2 Shifting of the time interval of the contaminated object myEpc (red
point to yellow point). 109

5.3 Query performance of the OLTP queries on different Hadoop clusters.116

5.4 Query performance of the OLAP queries measured on the one week
dataset, using different Hadoop cluster sizes. 117

5.5 Query performance on a fraction of the data – one day data set. . . . 120

5.6 Distributed RFID processing using the RFID Triple Store. 122

5.7 The average query performance on the distributed RFID platform.
The last column shows the number of nodes involved in the query
execution. 125

XI

List of Tables

2.1 Notational conventions for EPC tag encoding schemes (adopted
from [23]). 9

3.1 Qualitative comparison of the approaches with regard to the RFID
data management requirements . 39

3.2 The data types we used for implementing the data models. 42

3.3 Queries for an RFID scenario. 45

4.1 Prefix Compression for the RFID Triple Store 65

4.2 Using the prediction model for calculating the spare pages for each
Triple Store index. 70

4.3 Query workload for a typical RFID traceability scenario. 87

5.1 An example data set. 102

5.2 The output of the map function after partitioning, grouping, and
sorting which is also the input for the reducer function. The value
tuples are sorted by timestamp. 110

5.3 The portion of execution time (in sec) consumed by the map and
reduce procedures on the one week data set. 119

1

1
Introduction

Automatic identification (Auto ID) is the process of automatically tracking phys-
ical or logical objects – e. g., people, animals, goods, or invoices. The collected
information serves for analysis in different industries – e. g., the behavior of ani-
mals or the pedigree of pharmaceutical drugs. Figure 1.1 shows an overview of
the most common Auto ID methods [25]. Barcode systems are extremely cheap in
production, but have only low storage capacity and cannot be re-programmed. To
overcome these disadvantages, a more flexible solution was invented in the 1980’s:
Radio-frequency identification (RFID) [25].

RFID data is stored in a silicon chip and is transferred without line of sight be-
tween the object carrying the data and its reader. Tags (RFID tags are applied to
or incorporated into the scanned objects) consist of an integrated circuit for stor-
ing information and for modulating and demodulating a radio-frequency signal,
together with an antenna for receiving and transmitting the signal. This way, a
reader (or sensor) is able to interrogate the stored tag information from a distance
of several meters away and beyond a line of sight. Stable international standards as
well as the steadily maturing reliability and decreasing costs of equipment cause a
significant increase in the adoption of RFID technology. More and more different
application fields such as postal package service, aviation industry, health care,
and baggage tracing in airports [14, 15, 24, 28, 50] deploy RFID.

Infrastructures of readers enable to accurately track and trace moving objects
throughout their life-cycles. For instance, governments apply RFID technology
in traffic management and public transit for season parking tickets, for e-tolling
on motorways and bridges, for payment in bus, rail and subway, and even in
passports. Not least, retailers benefit from RFID in asset and inventory tracking
as well as in item-level sales. Touch-free payment systems have been developed,
which work with embedded tags in mobile phones. The following two examples
show two real-life application areas that apply RFID:

2 1. Introduction

Barcode
system

Auto-ID

Optical
character

recognition
(OCR)

Smart
cards RFID

Biometric
MM

Fingerprint
procedure

Voice
identification

Figure 1.1: Overview of the Auto-ID procedures (adopted from [25]).

METRO Group Initiative The METRO Group Initiative has the goal to modern-
ize the retail industry by deploying RFID. At METRO’s Toenisvorst hypermarket,
customers can experience the future store, where RFID is deployed. The goal of
the project is to test the utilization of the RFID technology (e. g., pilot applications
for warehouse management) under real-life conditions.

Pharmaceutical industry The pharmaceutical industry provides a good exam-
ple for the application of RFID data. H.D. Smith Wholesale Drug Company, a
pharmaceutical distributor in the US, is using RFID since the summer of 2005 in
order to ensure the pedigree (or authenticity) of the counterfeit-vulnerable phar-
maceuticals it distributes [45]. A typical pedigree trail would contain, for instance,
a manufacturer, a wholesaler, a chain warehouse and a pharmacy. Since this RFID
system aims primarily at eliminating drug counterfeiting and theft, it is crucial
for this scenario to have up-to-date information that is easily extractable. At the
same time, mechanisms for efficient querying of the drug’s pedigree should be
provided.

1.1 Problem Statement

Real-world awareness as described by Heinrich in [29] defines the process of ex-
tracting real-time information for gaining a better insight into the company’s sup-
ply chains. Thus, companies are increasingly employing RFID technologies to
track their goods in business processes. However, the frequently produced large
amounts of events constitute new challenges to modern databases. The main chal-
lenges, which are described in detail in Section 2.3, are (1) the huge data volume

1.2 Contributions 3

produced by the RFID sensors, (2) an efficient incremental update (data staging),
which must be triggered as soon as new events arrive, and (3) an efficient trans-
actional (OLTP) and analytical (OLAP) query processing. Fast query processing
requires up-to-date indexes that are expensive to maintain considering a heavy
update load. The challenge of efficient RFID data processing therefore is to man-
age the trade-off between the required update frequency and a reasonable query
response time.

This work concentrates on determining possible data storage and management
solutions for RFID data that can cope with the stated challenges. Tracing the
movement of individual objects in a sensor infrastructure results in large amounts
of data. A medium-sized enterprise, e. g., a single BMW factory, records about 500

events per second (see estimation in Section 2.2). Further, a world-wide operating
enterprise, e. g., all BMW factories worldwide, needs to accommodate ca. 2000

events per second. It is of particular importance that efficient query processing
is provided in the context of RFID data. OLTP queries should be executed up-
to-the-second, since positional updates may occur every second. An appropriate
query response time should be achieved for OLAP queries as well. We therefore
need an infrastructure that can manage this vast amount of data and can cope
with the update frequency as well as with the query rate. Further, traceability
information has to be updated continuously, i. e., as soon as new events arrive at
the system. This way, query processing is based on up-to-date data. Accessing
the most recent events is not only crucial for OLTP applications that are, e. g.,
interested in locating the last position of an object, but it is also an upcoming
requirement for business intelligence applications executing OLAP queries. We
explore the capabilities of common relational database systems with respect to
managing RFID data. Moreover, we focus on a dedicated approach for storage
and processing of traceability data, which is designed to fulfill the requirements
of an RFID scenario. Since with the growing amount of event data a centralized
approach will reach its limits, we deal with the topic of distributed management
of RFID data.

The approaches for management of RFID data can be applied for management
of traceability data in general.

1.2 Contributions

There are three main contributions of this thesis:

Relational DBMS Approaches for RFID Management We identify and describe
the challenges posed by RFID data. Based on that, we analyze existing approaches
that propose different data schemas for efficient RFID management on common
DBMS. We implement these solutions and compare them according to the require-
ments for RFID data. A mixed workload, consisting of concurrent inserts and
queries is defined for the approaches in order to measure the realistic achieved

4 1. Introduction

throughput. Further, we present a novel approach, where the OLTP and the OLAP
components reside in the same relational database, and compare its performance
to the existing solutions.

A Dedicated Triple Store for RFID Data A scalable dedicated system for effi-
cient storage and fast querying of RFID data, the RFID Triple Store, is introduced.
We design RFID-specific indexes for efficient event processing and use the spe-
cific RFID properties to optimize the query engine of the RFID Triple Store. We
experimentally evaluate our system by using a mixed workload consisting of in-
serts (data staging process) and queries (OLTP and OLAP) and analyze the sus-
tained throughput that can be maintained. Further, we compare the performance
of our system to the performance of a commercial row-store and a non-commercial
column-store database system.

Distributed RFID Management Mechanisms for distributed RFID data manage-
ment are explored. We evaluate how suitable MapReduce, a technique for large-
scale data processing, is in an RFID scenario. Further, we implement a framework
for distributed query processing using the RFID Triple Store as a storage system.

1.3 Outline

The remainder of this thesis is organized as follows:

Chapter 2: Characteristics of RFID Traceability Data
This chapter explores the characteristics of RFID data and summarizes the chal-
lenges that this data poses to the storage systems. Further, it gives an overview
of an RFID event representation and the amount of events that are generated per
second in a real life environment.

Chapter 3: Relational DBMS Approaches for the Efficient Management of
RFID Data
This chapter presents the main existing work in the field of RFID data manage-
ment and analyzes the presented approaches with respect to the insert frequency
and the query performance. We define a mixed workload, consisting of concur-
rent inserts and queries and measure the performance of the approaches for this
workload. Further, we propose a novel approach for RFID data management,
which combines the OLTP and OLAP part in one system and proves a competitive
performance for our mixed workload.

Chapter 4: A Dedicated Triple Store for RFID Data Management
This chapter introduces a scalable dedicated solution for efficient management of
RFID data. We leverage the characteristics of RFID data to build RFID-aware index

1.3 Outline 5

structures in order to speed up inserts. Further, we optimize the query engine
for the typical traceability queries: range queries over a time interval. Finally,
we conduct a comparison between our approach and the current state-of-the-art
approaches and show that the RFID Triple Store outperforms its counterparts.

Chapter 5: Distributed RFID Data Management
This chapter investigates mechanisms for distributed RFID data management. We
apply the MapReduce technology and analyze whether it is suitable in an RFID
context. Further, a distributed query processing using the RFID Triple Store is
presented.

Chapter 6: Conclusions and Outlook
This chapter summarizes our findings and concludes this work. It also gives an
overview of possible future work topics.

7

2
Characteristics of RFID

Traceability Data

2.1 RFID Event Data

In this section, we provide some background information about the RFID technol-
ogy. Further, we introduce the triple representation of an RFID event, which is
used throughout this work.

2.1.1 RFID Technology

The RFID technology [25] enables the automated tracking of moving objects with-
out line of sight by the use of electromagnetic waves. Data is exchanged between
an RFID tag and an RFID reader. The reader usually sends the information to
computer systems running RFID software or RFID middleware for further pro-
cessing. An RFID tag or transponder consists of an antenna and a microchip as
shown in Figure 2.1.

RFID tags differ in radio frequency, transfer rate, life time, costs, memory, read-
ing and physical range. There are two main types of RFID tags: active and passive
ones. An active tag has an on-board battery and periodically transmits its ID. A
passive tag is respectively cheaper and smaller because the battery is absent. It
uses the radio energy transmitted by the reader as its energy source. This leads to
a shorter reading range since the sensor must be close enough to transfer sufficient
power to the tag. We also distinguish between read-only and read/write tags. The
first ones use a pre-assigned serial number that is used as a key in a database. The
second ones can write and store object-specific data into the tag.

8 2. Characteristics of RFID Traceability Data

RF Module

Memory

Logic/
Microprocessor

Antenna

Figure 2.1: A basic RFID Tag. The antenna receives radio signals. Memory size
is just a few bytes in order to store an ID number. The memory type
can be read-only or read/write. The RF Module uses the antenna
to send information back to the reader. The logic unit responds to
information sent from the reader. (adopted from [29]).

2.1.2 Electronic Product Code (EPC)

RFID tags carry an Electronic Product Code (EPC) [23], which allows world-wide
interoperability. The specification of the RFID tag is published by the EPCGlobal
standard [23]. The EPC standard defines a family of coding schemes used to
identify manufactured items and to meet the needs of a global RFID usage. EPC
tags can identify individual items rather than just a manufacturer or a class of
products, in contrast to using barcodes. If a tag is compliant with an EPC standard,
its uniqueness is guaranteed.

Currently, EPCGlobal supports EPC codes up to 198 bits. The most commonly
used standard, that we also use in this work, however is the SGTIN-96 standard,
which defines the EPC length to be 96 bits. In Figure 2.1, the notational conven-
tions for EPC tag encoding schemes are described. A further specification of the
different parts of the code (the columns of the table) is given in [23].

2.1.3 RFID Events

Of particular importance is the question how the generated RFID data looks like.
Every time when an object is sensed by an RFID reader, an RFID event is gener-
ated. An object tracking event can be described by three attributes: the EPC tag e
that uniquely identifies the object, the reader ID r that interrogated the tag carry-
ing the EPC, and the timestamp t when the event was generated. RFID events are
therefore represented as triples of the form:

(e, r, t)

EPCs (as described in Section 2.1.2) are character sequences encoding a product’s
group, producer, and serial number. Typically, the sensor infrastructure is de-
ployed within the processing or supply chain of a company and remains compara-
tively stable. Objects enter the infrastructure, pass the sensors along the processing

2.2 RFID Application Scenarios 9

Header Filter Partition Company Item Serial
Value Prefix Reference Number

SGTIN-96

8 3 3 20–40 24–4 38

0011 (Refer to Refer to 999,999 – 9,999,999 274,887,906

0000 Table 5 Table 6 999,999,9 – 9 ,943

(Binary for for 99,999 (Max. (Max.
value) values) values) (Max. decimal decimal

decimal range1) value)
range 1)

1 Max. decimal value range of Item Reference field varies with the length of the Company Prefix

Table 2.1: Notational conventions for EPC tag encoding schemes (adopted
from [23]).

pipeline, eventually exiting the infrastructure after a specific number of processing
steps. Depending on the application scenario, the number of generated events per
second can be as high as several thousands. The data is generated continuously
by the sensor infrastructure and is usually passed to the storage system in batches
of a pre-defined size.

Even though the current RFID technology is becoming more stable, readings
must still be considered generally inaccurate. The wireless communication, which
is used to transfer data between the tag and the reader, is not always reliable
due to, e. g., radio-frequency collisions and signal interferences. These technical
difficulties lead to tags being missed (so-called false-negative readings) or unex-
pected extra readings (false-positive readings or “noise”). Duplicate readings can
also be often produced if an object stays at the same location for a long time or
by tags in overlapping scan areas that are read by multiple readers. In order to
eliminate these types of erroneous readings, semantic post-processing, cleaning,
and filtering must be performed at a middleware layer before the events are trans-
fered to the managing system. This work, however, does not further discuss such
issues, but rather concentrates on how the post-processed stream of triples is sub-
sequently stored in a database. Existing work on the subject of data cleaning is
briefly discussed in Section 3.4. We assume the data to be complete and correct,
i. e., that any necessary cleaning steps have been conducted as a pre-processing
step by some of the algorithms described in Section 3.4.

2.2 RFID Application Scenarios

In this chapter, a typical application scenario for the usage of RFID data is pre-
sented. Further, we give a realistic estimation of the event generation frequency,
i. e., the amount of data that is produced per second. Our benchmarks are based
on this estimated value.

10 2. Characteristics of RFID Traceability Data

BMW

According to the BMW business report from 2005 [8], 1.2 million cars have been
produced in 23 production sites. One car consists of about 20000 parts. The esti-
mation of the event generation frequency is based on the following assumptions
(adopted from the work of Sosnowski [48]):

• 1000 of the 20000 parts per car are tagged by an RFID chip.

• 20 events per part are generated until they are built into the car.

• 16 working hours per day are assumed.

• 220 working days per year are assumed.

This results in about 1890 RFID events per second for all BMW factories world-
wide. We are geared to this estimated value when we design our benchmark
experiments. Considering only the factory in Leipzig, up to 650 cars a day are
produced. This results in about 226 events per second for a dedicated BMW fac-
tory. We, therefore, take the value of 500 events per second as a measure of the
average event generation frequency for a small business company and the value
of 2000 events per second as the event generation frequency for a world-wide
enterprise.

2.3 Challenges Posed by RFID Traceability Data

The specifics of RFID data result in a number of challenges for modern databases.
We define and summarize these requirements here. They are used later in this
work in form of metrics for the performance of the evaluated storage solutions.

2.3.1 Data Volume

Tracing the movement of each individual object in a sensor infrastructure results in
large amounts of data. If we take the estimated event generation frequency of 500

events per second from Section 2.2, and assume a 10 hours working day, we will
get about 18 million events per day. A world-wide operating enterprise (e. g., all
BMW factories worldwide) needs to accommodate even 2000 events per second.
The challenge here is obvious: we need an information management infrastructure
that can manage this vast amount of data and can cope with the update frequency
as well as with the query rate.

2.3.2 Data Quality

RFID tags work under low-power and low-cost constraints. As already mentioned,
wireless communication may not always be reliable due to radio-frequency colli-
sions and signal interferences, metal shielding, or other physical obstructions.

2.3 Challenges Posed by RFID Traceability Data 11

To eliminate these false readings, semantic post-processing, cleaning, and filter-
ing must be performed at a middleware layer. This aspect of RFID data manage-
ment is beyond the scope of this thesis. The considered storage solutions assume
that the generated events are correct and complete, i. e., that data cleaning was
performed as a pre-processing step.

2.3.3 Arbitrary Object Movement

In most traceability scenarios, objects move in groups and split into smaller groups.
This tree-like object movement has to be mapped on the data model. More com-
plex scenarios, however, come along with more complex, graph-like object move-
ments. That kind of movement can be seen in a post office, where parcels that
come from a lot of different small post offices are gathered in one central post
office. If a mail is returned to its sender, a cycle occurs in our movement graph.
Therefore, we also need storage solutions that can deal with cyclic object move-
ments.

2.3.4 Data Staging

The process of propagating incoming events into a particular data model is de-
fined as data staging. In contrast to traditional warehouses, where updates occur
only at predicted time intervals, traceability information has to be updated contin-
uously. As soon as new events arrive, the data staging process must be triggered.
Accessing the most current information is crucial not only for OLTP applications
that are, e.g., interested in locating the last position of an object, but it is also an
upcoming requirement for decision processes based on business intelligence ap-
plications executing OLAP queries. Therefore, we need an efficient incremental
update (data staging).

2.3.5 Query Processing

Fast response times for both OLTP and OLAP queries are also a challenge when
managing traceability data. A typical OLTP query in a traceability scenario deter-
mines the path of an object (pedigree query [5]). A group of common OLAP queries
for this scenario are the contamination queries: e. g., determine which products have
been stored together with product X during a time window; if these products are
incompatible, an alert could be produced by the application. Fast query process-
ing requires up-to-date indexes, however high update frequency is crucial in an
RFID scenario. The challenge here is to manage the trade-off between the required
update frequency and a reasonable query response time.

13

3
Relational DBMS Approaches for

the Efficient Management of RFID
Data

This chapter discusses the current existing work for storing and querying RFID
traceability data in relational databases. We analyze, implement, and compare the
major approaches on RFID data management. However, they either ignore the
OLTP part of the data and focus on the OLAP data, or have a hybrid approach,
where OLTP and OLAP reside in different systems. We present an innovative
database approach for managing traceability data, which merges the OLTP and
OLAP components in one system. This solution allows business intelligence ap-
plications to consider the ”latest“ data for their decision processes.

3.1 Existing RFID Approaches on Relational DBMSs

In this section, we present existing approaches for efficient RFID data manage-
ment. We analyze them qualitatively according to the challenges described in
Chapter 2 and quantitatively, measuring their performance in Section 3.3. Fur-
ther, for the quantitative analysis we consider a mixed workload, consisting of
concurrent inserts and queries (OLTP and OLAP). This is very important in an
RFID context, since the expected high insert frequency must be managed by the
approaches and, at the same time, a reasonable query response time needs to be
provided. Mixed workloads, however, were not considered by previous work.

A simple example

As described in Section 2.3, RFID objects may take different movement patterns
when traversing a graph. Objects build a cluster if they travel at the same time

14 3. Relational DBMS Approaches for the Efficient Management of RFID Data

s1

s5s4

s3

s2

t1 t1

t3 t5

t8 t9

c1 c2

c4

c3

c5 c6

Figure 3.1: Squares and triangles move from sensors s1 and s2 to s3 where they
are re-clustered. Black shapes move to s4, white shapes to s5. A
timestamp at the arrow entering a sensor denotes the arrival time of
a cluster.

from one location to another. Figure 3.1 illustrates the movement of four objects
through a sensor network consisting of five sensors. The objects in clusters c1
(objects � and �) and c2 (M and N) move from sensors s1 and s2, respectively, to
s3. The objects are re-clustered at sensor s3 (they build clusters c3 and c4), where
the � object merges with the N and moves to s4 (cluster c5). The remaining � and
M objects move together to s5 (cluster c6).

We use the graph in Figure 3.1 as an example for explaining the operating prin-
ciples of the different database approaches.

3.1.1 Naïve Approach

The naïve approach represents a basic approach and is referred to as a baseline in
different works on RFID. It stores each incoming event as a row in table EVENT.
The table schema and an example are shown in Figures 3.2a and 3.2b.

Data Model

This approach stores all data (consisting of the object’s identifier e, the sensor id r
which reported the event, and the timestamp t when the event was generated) in
one huge table. The model does neither materialize the path of an object nor store
information about the belonging of an object to a cluster, i. e., the path or cluster
information must be generated at runtime.

Data Staging

The data staging procedure is simply inserting each triple (an RFID event) in the
database as shown in Algorithm 1. Data staging is very efficient for this approach,

3.1 Existing RFID Approaches on Relational DBMSs 15

Algorithm 1: Data staging
input: A batch of events tmp of the form: 〈EPC e, Rdr r, TS t〉

1 foreach tuple of tmp do
2 insert 〈e, r, t〉 into table EVENT;
3 end

EVENT

PK e
PK r
PK t

(a) EVENT
table schema

EVENT

e r t

� s1 t1

� s1 t1

M s2 t1

...

(b) EVENT table
example

Figure 3.2: The naïve approach. Left: the schema of the approach. Right: an
example based on Figure 3.1.

since it executes an one-tuple-insert in the EVENT table for each event and does
not pre-aggregate any information. Therefore, the algorithm is independent of the
object’s cluster size, i. e., every object is handled independently from the rest and
no common cluster information is aggregated.

Query Processing

When we query the naïve model, we have to process the whole EVENT table.
Therefore, appropriate indexes should be created for reasonable query response
times. Because of indexing, the naïve database design supports efficient querying
for some query types, e. g., selection of a particular EPC or reader ID. However,
queries that compute a relation between two objects or a particular path pattern
enforce the use of self-joins, which is extremely costly for the huge table.

We will show in the evaluation section that some of the typical RFID queries are
quite time-consuming using the naïve approach.

Advantages and Disadvantages

A clear advantage of the naïve database approach is that it supports an efficient
incremental update. This relies on the fact that no information is pre-computed
in advance. Working on the “raw”, not aggregated information, however, can be
disadvantageous for the query processing. We need a considerable set of indexes

16 3. Relational DBMS Approaches for the Efficient Management of RFID Data

STAY

PK gid_list

loc
ts

MAP

PK gid

gid_list

Figure 3.3: Tables for storing events in the warehouse model devised by Gonza-
lez et al. [27]

for this huge table, which also consume considerable disk space. Further, queries
that compute a cluster for a particular object (e. g., which objects travelled together
from one reader to another) cannot be implemented efficiently. Since we do not
store any type of aggregated history information, the latter has to be computed at
query time, which results in a performance decrement. One further disadvantage
of this approach is the big disk space overhead, which is explained by the fact that
the table grows proportionally with each new event.

3.1.2 Data Warehouse Approach (Gonzalez et al.)

Gonzalez et al. [27] devise a data model that aggregates and compresses the path
data of objects based on the observation that objects move in clusters, i. e., groups
of objects that move together from one sensor to the next. The approach in [27]
assumes that the movement of clusters in, e. g., a retailer scenario, can be visual-
ized as a tree: Products move in large groups and split into smaller groups as they
travel from the factory to the distribution centers and then to the stores.

Data Model

In order to store the movement of products, the Gonzalez et al. approach splits
the data in two tables: STAY and MAP (the schemas are shown in Figure 3.3)1.
The attribute names are depicted as in the original paper – gid stands for group
ID and loc represents the reader r that scanned the object. Table MAP stores the
hierarchy of clusters, i. e., how a cluster splits into sub-clusters as it moves through
the sensor network. Each row (gid, gid_list) represents a parent-child relationship,
where gid_list contains the list of clusters (identified by gid) that stem from the
cluster represented by gid. The column gid contains path-dependent information
that encodes the hierarchy of the clusters. Let the string s denote the ID of a cluster
whose objects move from the current location to n different locations. When the
i-th sub-cluster reaches the new location, we create the cluster ID by concatenating
the string “.i” (0 ≤ i < n) to s and update the MAP table: For the first sub-cluster

1We omit table INFO, which is described in [27]. The table contains path-independent informa-
tion about products, e. g., the name of the product, manufacturer, and price.

3.1 Existing RFID Approaches on Relational DBMSs 17

MAP

gid gid_list

0.0 0.0.0
0.1 0.1.0

0.0.0 0.0.0.0,
0.0.0.1

0.1.0 0.1.0.0,
0.1.0.1

0.0.0.0 �
0.1.0.0 N
0.0.0.1 �
0.1.0.1 M

(a) Example of table
MAP

STAY

gid_list loc ts

0.0 s1 t1

0.1 s2 t1

0.0.0 s3 t3

0.1.0 s3 t5

0.0.0.0,
0.1.0.0

s4 t8

0.0.0.1,
0.1.0.1

s5 t9

(b) Example of table
STAY

Figure 3.4: Warehouse data for data model Gonzalez et al. [27]

(i = 0), we add a new entry (s, s.0). For all other sub-clusters (i > 0), we append
s.i to the list of sub-clusters of cluster s. For example, the highlighted row in
Figure 3.4a indicates that cluster 0.0.0 split into two clusters, 0.0.0.0 and 0.0.0.1. At
the bottom of the cluster hierarchy, MAP maps clusters to the list of objects that
are contained in the clusters. In our example, clusters 0.0.0.0, 0.0.0.1, 0.1.0.0, and
0.1.0.1 contain only a single product each.

Based on the observation that objects move in clusters, table STAY (column ts)
stores the information when a particular cluster arrived at a location (loc). As
described above, the cluster identifiers encode how clusters split. STAY stores
the re-clustering of objects in column gid_list, which contains a list of identifiers
of clusters that move together from one location to the next. If objects stemming
from n different clusters merge into a new cluster, gid_list contains a list of n cluster
IDs. Using our running example from Figure 3.1, we show the list of cluster IDs
in the highlighted row in Figure 3.4. Items � and N move together in a cluster
from sensor s3 to s4. The cluster id 0.0.0.0, 0.1.0.0 indicates that item � stems from
cluster 0.0.0 (coming from s1) and N from cluster 0.1.0 (coming from s2).

In Figure 3.5, we show the cluster concept for the warehouse approach, extend-
ing the example in Figure 3.1. In contrast to Figure 3.1, objects are considered
to belong to the same cluster not only if they move together from one sensor to
another within the same time interval, but if they share the same path from the
beginning (from “birth”). At sensor s3 in Figure 3.5, items � and � belong to the
same cluster, because they travelled together from the beginning (path: sensor s1,
sensor s3). However, objects � and N do not belong to the same group at sensor
s4 since their complete path (pedigree) is not the same (� originates from sensor

18 3. Relational DBMS Approaches for the Efficient Management of RFID Data

s1

s5s4

s3

s2

t1 t1

t3 t5

t8 t9

0.0 0.1

0.0.0

0.1.0

0.0.0.0

0.1.0.0

0.0.0.1

0.1.0.1

c1 c2

Figure 3.5: The movement graph shown in Figure 3.1 is adapted to the cluster
concept of the warehouse approach [27].

s1 and N from sensor s2).

Data Staging

The data staging procedure of this approach is not intuitive and has to be ex-
plained in detail. The RFID data is aggregated by re-using common object paths.
Thus, for every new event it is first checked if the object ID already exists in the
database and if so whether there is a path that can be re-used for this object.

The data staging process is depicted in Algorithm 2. A batch of incoming events
of the form 〈EPC e, Rdr r, TS t〉 is stored in the data structure tmp. In order to
find out if the entries in tmp have already been scanned by a reader and if their
path can be continued or whether a new path is needed, we do the following:
First, we perform a left outer join with table MAP, joining on the columns tmp.e
and MAP.gid_list, which store the EPC of an object. If the join result contains a
non-zero gid_list entry, the incoming object with EPC tmp.e already exists in the
database. Second, we perform another left outer join between the result of the first
one and table MAP, joining the determined gid with MAP.gid_list in order to find
the parent node of the object’s gid if it exists. This information is needed when
updating the existing object’s path.

In inputData, we store following data stemming from the result of the two left
outher joins (line 1): 〈e, r, t, gid, parent_gid〉, where e is the EPC of the incoming
event, r is the sensor ID that read the EPC, t is the current timestamp, gid is the
generalized ID of the EPC (if it exists), and parent_gid stores the parent node of
the gid value. In Figure 3.4a for example, the gid for object � has the value 0.0.0.0
as in tuple 〈0.0.0.0,�〉, and its parent_gid has the value 0.0.0 because of the entry
〈0.0.0; 0.0.0.0, 0.0.0.1〉 that exists in MAP.

We process every record of inputData and distinguish between three different

3.1 Existing RFID Approaches on Relational DBMSs 19

Algorithm 2: Data staging of the approach devised by Gonzalez et al. [27]
(adopted from [56]).

input: A batch of events tmp of the form: 〈EPC e, Rdr r, TS t〉
1 inputData← (tmp tmp.e=MAP.gid_listMAP) gid=MAP.gid_listMAP;
/* inputData contains tuples of the form
〈e, r, t, gid, parent_gid〉 */

2 new_parent← null; /* the new parent node */
3 new_gid← null; /* new gid */
4 child_count← null; /* number of child nodes */
5 cluster_gid← null; /* common cluster */
6 Sort inputData by r, t, parent_gid;
7 foreach row ∈ inputData do
8 if gid = null then
9 cluster_gid←

Search in table STAY for an existing cluster path and select its gid;
10 if cluster_gid 6= null then /* path exists */
11 child_count← Count the child nodes of cluster_id;
12 if child_count = 1 then
13 new_gid← cluster_gid ::’.0’;
14 Update set MAP.gid = new_gid where MAP.gid = cluster_gid in table MAP;

15 Insert the row 〈cluster_gid, new_gid〉 in table MAP;
16 end
17 new_gid← cluster_gid ::’.child_count’;
18 Insert the row 〈cluster_gid, new_gid〉 in table MAP;
19 Insert the row 〈new_gid, e〉 in table MAP;
20 else
21 child_count← Count the child nodes of new_parent ID;
22 new_gid← 0’.child_count’;
23 Insert the row 〈new_gid, e〉 in table MAP;
24 Insert the row 〈new_gid, r, t〉 in table STAY;
25 end
26 else if parent_gid = null then
27 new_gid = gid::’.0’;
28 Insert the row 〈new_gid, r, t〉 in table STAY;
29 Insert the row 〈gid, new_gid〉 in table MAP;
30 Update set MAP.gid = new_gid where MAP.gid_list = e in table MAP;
31 else
32 new_parent←

Search for an entry in table STAY with loc = r and time_in = t and
with STAY.gid_list in MAP.gid_list where MAP.gid = parent_gid;

33 if new_parent = null then
34 new_parent← gid;
35 new_gid← gid ::’.0’’;
36 Insert the row 〈new_parent, r, t〉 in table STAY;
37 else
38 child_count← count the child nodes of new_parent in table MAP;
39 new_gid = gid ::’.child_count’;
40 end
41 Insert the row 〈new_parent, new_gid〉 in table MAP;
42 Update set MAP.gid = new_gid where MAP.gid_list = e in table MAP;
43 end
44 end

20 3. Relational DBMS Approaches for the Efficient Management of RFID Data

cases: (1) the gid value is null, i. e., the incoming EPC does not exist (lines 8-25),
(2) the parent_gid value is null, i. e., there is no parent node and the current path
ID is the beginning of the path (lines 26-30), (3) both, gid and parent_gid values
exist thus the path has to be continued (lines 31-43).

For the first case: we first check if the EPC belongs to an existing cluster, in
order to re-use its path. For this purpose, we search in table STAY for the given
location and timestamp (line 9). If an appropriate cluster exists (lines 10-19), we
count the child nodes in table MAP that belong to that cluster. If only one child
node exists, i. e., we found only a tuple of the form 〈0.0.0.0,�〉, then the existing
gid has to be extended and the current node has to be updated to point to the new
ID, which requires changes in the MAP table (lines 12-15). At the end, the new
EPC is assigned to its newly generated ID in the MAP table (lines 17-19). If there is
more than one child node in table MAP for the given gid, we don’t need to adjust
the existing leave nodes of the form 〈0.0.0.0,�〉, but just create a new ID for the
new EPC and update the MAP table (lines 17-19). If there is no appropriate cluster
for the new object in table STAY, we create a new consecutive ID and update both
tables, STAY and MAP (lines 20-25).

For the second case: the incoming EPC exists in the MAP table, but no parent ID
for its cluster exists. A new cluster ID is created by extending the current cluster
ID of the object. The new ID is inserted in table STAY and table MAP. The MAP
table is additionally updated such that the EPC is assigned to the new ID.

For the third case: the EPC value, its cluster ID and its parent cluster ID exist. If
that holds, we check whether the values of the current tuple row are the same as
the values from the last iteration (line 32). If so, the objects still belong to the same
cluster and they have the same parent ID (lines 33-40). This requires a change
only in the MAP table, where the current ID is extended and is assigned to the
incoming EPC (lines 41-42).

The third case shows the advantage of the warehouse approach. It handles big
clusters very efficiently since only small changes in the MAP table are required,
where the hierarchical identifiers are extended once and the new object IDs are
inserted. In the case that no appropriate cluster is found in the STAY table, a new
record has to be inserted there and afterwards the entries in the MAP table have
to be adjusted.

Query Processing

The query processing of the approach suffers from the hierarchical identifiers in
tables STAY and MAP that have to be resolved in order to navigate to the EPC of
an object or to its parent. Even queries determining the last position of an item,
are not able to query only table STAY, but have to perform a join between the
two tables STAY and MAP in order to find the EPC. The pedigree of an object is
calculated following the hierarchical identifiers in both tables. For more complex
queries, like the contamination query, the computation of the cluster IDs yields a
considerable overhead. The approach can, however, efficiently calculate the query:

3.1 Existing RFID Approaches on Relational DBMSs 21

“Which objects were scanned together by reader r at timestamp t?”. In this case
we just need to match all cluster IDs in STAY that fulfill the conditions to those in
MAP and select the corresponding EPCs.

Advantages and Disadvantages

The approach described by Gonzalez et al. [27] contains information about the
split and merge history of the clusters. This assembling and disassembling feature
is an advantage of the database design, since it is an additional information that
allows to work on a cluster level rather than on a single object level. Further, this
information is not available in other approaches like the naïve approach and if de-
manded, needs to be computed at runtime. The approach suffers, however, from
the database schema, which implies the implementation of the gid and gid_list
attributes as a string. For this reason the data staging procedure performs less ef-
ficient than those of the other database models. Almost all queries have to use the
recursion, defined in the MAP table, in order to resolve the child-parent dependen-
cies and perform therefore worse than for the other database designs. However,
queries which use cluster information can be answered efficiently. Another disad-
vantage of this approach is the extreme disk space consumption, incurred by the
string attributes and the indexes created on them.

3.1.3 Read and Bulk Approach (Krompass et al.)

The Read and Bulk (RnB) data model [35] also assumes that objects move in clus-
ters and materializes the path of an object. However, it solves the hierarchy be-
tween paths in a more efficient manner than Gonzalez et al. [27]. The RnB ap-
proach uses a path definition instead of a cluster definition. A path is defined as
the sequence of sensors that scanned a particular object. For example, the path of
the � object in the graph in Figure 3.1 is s1, s3, s4.

Data Model

The schema of the RnB approach is shown in Figure 3.6. Again, we follow the
notation of the attributes from the original paper. Table READ stores the current
(last) location of an object and the timestamp at which it was scanned. It enables
to answer OLTP queries concerning the last position of an item efficiently. This
table references table PATH (column pid), which materializes the path of a group of
objects that travel along the same path and thus stores historical information about
the objects. Table PATH is suitable for analytical queries (OLAP) that consider the
aggregated historical data. An example of how the object movement is handled
in the RnB approach is shown in Figures 3.7a and 3.7b. In order to minimize
redundancy, objects that move together share the same path, i. e., reference the
same entry in table PATH. An entry in PATH stores a path identifier pid and the
time ts when the cluster reached the current location sid. Each entry is linked to

22 3. Relational DBMS Approaches for the Efficient Management of RFID Data

READ

PK oid

sid
FK1 pid

ts

PATH

PK pid

FK1 prev
sid
ts
s_pid
s_sid
s_ts

Figure 3.6: Tables for storing events in the RnB data model [35]

the path entry that represents the path to the previous sensor. To facilitate query
processing, the path identifiers (s_pid), the identifiers of the sensors (s_sid) and
the timestamps (s_ts) when the objects passed the sensors are materialized as a
string. The highlighted row in PATH in Figure 3.7b shows the path entry with id
p5. Objects referencing this path traveled from s1 to s3 and then to s4 and were last
scanned at s4 at time t8. The entry references the previous path with id p3, which
represents the movement of an object from s1 to s3. Similar to the data model
devised by Gonzalez et al. described in the previous section, the RnB data model
efficiently stores the paths of objects if large groups of objects split into smaller
groups, but objects from different groups do not merge as they move along. Since
an entry in PATH materializes the entire history of the object movement, n entries
must be added to PATH if a group contains objects from n different groups. In
Figures 3.7a and 3.7b we show how the approach stores the object movement
depicted in the graph in Figure 3.1. An example for storing multiple paths for
a single group is shown in Figure 3.1 where � and N merge at sensor s3 and
move together to s4. Since � and N arrived at s3 from s1 and s2, respectively, two
separate path entries in PATH are needed to store the movement (p3 and p4).

Data Staging

The basic idea of the data staging process of the RnB approach is sketched in [35].
We provide a more detailed algorithmic description of the functionality and ex-
plain each step of it.

The data staging process is depicted in Algorithms 3 and 4. A batch of incoming
events of the form 〈EPC e, Rdr r, TS t〉 is stored in the data structure tmp. First, we
perform a left outer join of the table tmp with the table READ on EPC, in order
to determine the object IDs of all already existing items in the database (that are
present in the incoming batch) and the newly scanned items. Second, the tuples
of the result inputData are sorted by reader, timestamp, and the path they took so
far. Due to the sorting, groups of elements with similar characteristics are created:
same reader, same timestamp, and same path. These groups define clusters. Third,

3.1 Existing RFID Approaches on Relational DBMSs 23

Algorithm 3: Data staging of the RnB approach [35] (adopted from [56])
input: A batch of events tmp of the form: 〈EPC e, Rdr r, TS t〉

1 inputData← tmp tmp.e=READ.oidREAD;
/* inputData contains tuples of the form 〈e, r, t, r_last, p〉 */

2 pioneer← false; /* a pioneer item? */
3 p_raw_item← null; /* the EPC of the last run */
4 p_raw_reader← null; /* the reader of the last run */
5 p_raw_ts← null; /* the ts of the last run */
6 p_read_path← null; /* the reader path of the last run */
7 new_path_id← null; /* path ID */
8 insert_action← false; /* insert a new item? */
9 update_action← false; /* update a new item? */

10 Sort the tuples of inputData by r, t, p;
11 foreach row ∈ inputData do
12 pioneer← false;
13 if p_raw_item = null ∨

¬(p_raw_reader = row.r∧ p_raw_ts = row.t∧ p_read_path = row.p) then
14 pioneer← true;
15 p_raw_item← row.e;
16 p_raw_reader← row.r;
17 p_raw_ts← row.t;
18 p_read_path← row.p;
19 end
20 if pioneer = true then
21 if row.p = null; /* item was not scanned until now */
22 then
23 new_path_id← CALL create_new_path_rnb(null, row.r, row.t);
24 insert_action← true;
25 update_action← false;
26 end
27 else /* item was already scanned */
28 if row.r = row.r_last then
29 insert_action← false;
30 update_action← false;
31 end
32 else
33 new_path_id← CALL create_new_path_rnb(row.p, row.r, row.t);

/* Algorithm 4 */
34 insert_action← false;
35 update_action← true;
36 end
37 end
38 end
39 if insert_action = true then
40 Insert the row 〈row.e, row.r, new_path_id, row.t〉 in table READ;
41 end
42 if update_action = true then
43 Update set READ.sid = row.r, READ.pid = new_path_id,

and READ.ts = row.t where READ.oid = row.e in table READ;
44 end
45 end

24 3. Relational DBMS Approaches for the Efficient Management of RFID Data

READ

oid sid pid ts

� s4 p5 t8

� s5 p7 t9

N s4 p6 t8

M s5 p8 t9

(a) Example of the READ
table.

PATH

pid prev sid ts s_pid s_sid s_ts

p1 ⊥ s1 t1 “p1” “s1” “t1”
p2 ⊥ s2 t1 “p2” “s2” “t1”
p3 p1 s3 t3 “p1, p3” “s1, s3” “t1, t3”
p4 p2 s3 t5 “p2, p4” “s2, s3” “t1, t5”
p5 p3 s4 t10 “p1, p3, p5” “s1, s3, s4” “t1, t3, t8”
p6 p4 s4 t10 “p2, p4, p6” “s2, s3, s4” “t1, t5, t8”
p7 p3 s5 t20 “p1, p3, p7” “s1, s3, s5” “t1, t3, t9”
p8 p4 s5 t20 “p2, p4, p8” “s2, s3, s5” “t1, t5, t9”

(b) Example of the PATH table.

Figure 3.7: Warehouse data for data model RnB [35]

we iterate over inputData and determine whether a new cluster begins.
The first element of a cluster is considered as a pioneer element. A pioneer el-

ement is found if this is the first element inserted in the system or if the sensor
ID, the timestamp, or the existing path have changed since the last iteration. In
this case the pioneer variable is set to true (lines 13-14). The current EPC, scanner,
timestamp, and path ID of the pioneer element are stored for further comparisons
with the subsequent elements. Additionally, we check if the pioneer element al-
ready exists in the database or if this is the first scan of this object. In the second
case, a new path ID is generated using Algorithm 4 and is inserted in table PATH.
This also means that a new entry containing the new path ID has to be added
in table READ. Therefore, the variable insert_action is set to true and the variable
update_action is set to false (lines 24-25). If the pioneer element has already been
scanned and exists in the database, we differentiate between two situations: (1)
If the sensor ID did not change since the last iteration, there is no action to be
done, hence both, insert_action and update_action, are set to false. (2) If the sensor
ID changed since the last iteration, a new path ID out of the current path ID is cal-

3.1 Existing RFID Approaches on Relational DBMSs 25

Algorithm 4: create_new_path_rnb (adopted from [56])
input : previous_path (current path ID), reader (current reader ID), ts (current ts)
output: new_id

1 path_id← null; /* previous path ID */
2 path_reader← null; /* previous reader path */
3 new_id← null; /* new path ID */
4 new_path_id← Look up table PATH for a path with PATH.sid = reader and

PATH.pid = previous_path and PATH.ts = ts and select its ID;
5 if new_path_id = null then
6 if previous_path not null then
7 path_id← Get the path history from table PATH;
8 path_reader← Get the reader history from table PATH;
9 end

10 new_id← next available ID in table PATH;
11 new_path_id← path_id :: new_id :: ’;’; /* construct new path ID */
12 new_path_reader← path_reader :: reader :: ’;’; /* construct reader path */
13 Insert in PATH row

〈new_id, previous_path, reader, new_path_id, new_path_reader, ts, null〉;
14 else
15 new_id← new_path_id;
16 end
17 return new_id;

culated using Algorithm 4, hence the variable update_action is set to true in order
to update the entry in table READ.

Usually, the pioneer element is followed by other elements belonging to the
same cluster. In this case, the algorithm takes advantage of re-using the cluster
elements (e. g., the generated path IDs), so that it handles objects belonging to
the same cluster efficiently. Further, in contrast to Gonzalez et al. [27], the RnB
approach applies numerical identifiers for the path IDs, rather than strings, which
yields a better performance for processing them. Until a new pioneer element
is encountered, all entries belonging to the same cluster in table READ reference
the same path ID (determined for the pioneer element) and their sensor IDs are
updated.

Algorithm 4 determines the the new path ID of an item. The function expects
the following three inputs: (1) the path ID of an item from the last iteration, (2)
the current reader ID, (3) the current timestamp value. First, we look up an ap-
propriate path entry for the object in table READ, i. e., an object with the same
path history, same current sensor ID, and same current timestamp value (line 4).
If a suitable path ID is found, it is returned by the function (line 15). Otherwise,
a new path entry is generated in table PATH. We determine if the current object
already exists in the database. If this is the case, we extract the old values from ta-
ble PATH: the path ID’s and sensor ID’s history (lines 6-8). A new ID is generated
(it is assigned the next free numerical identifier) and the values for path ID and

26 3. Relational DBMS Approaches for the Efficient Management of RFID Data

sensor ID are updated. The old values are extended by a semicolon and the new
path ID and sensor ID is attached respectively (lines 10-12). Finally, the new tu-
ple 〈new_id, previous_path, reader, new_path_id, new_path_reader, ts, null〉 is inserted
in table PATH (line 13) and the new ID is returned. This ID can now be referenced
by all items belonging to a particular cluster.

Query Processing

This approach is optimized for queries which determine the last sensor that scanned
an object, because of the READ table containing the current data for an object. It is
also efficient if we want to determine the complete path (pedigree) of an element,
because this information is explicitly persisted in the schema. It does not need to
be computed at runtime as in the approach of Gonzalez et al. [27]. However, if we
want to know which objects travelled through some particular stations (i. e., were
scanned by particular sensors), we need to extract this information from attribute
s_sid in Figure 3.7b, which is implemented as a string. The same is true for the
timestamp history information.

Advantages and Disadvantages

In contrast to the approach of Gonzalez et al. [27], the RnB approach uses nu-
merical identifiers for the path IDs opposed to the gid attribute in [27]). This is
beneficial for the staging procedure and the query processing. Because of the nu-
merical identifiers, the approach is less disk space consuming than the naïve and
Gonzalez database designs. It reuses one path from the PATH table for all objects
with identical history. Further, RnB stores explicitly the sensor path history and
the timestamp path history per path. Thus, some queries that are interested in
determining a path for a particular object do not have to compute it on their own
(compare with [27]). A disadvantage of this model, similar to [27], is that clusters
can only be split and cannot be merged, e. g., if two objects travelled as a cluster
between two sensors and do not have an identical history, they are considered to
belong to two different clusters. For this reason, queries concerning the computa-
tion of one cluster like, e. g., all objects that were scanned at reader r at a particular
timestamp, that means queries that operate on the string attributes (s_pid, s_sid,
s_ts) perform badly.

3.1.4 Prime Number Approach (Lee and Chung)

The RFID database design of Lee and Chung [37] proposes a sophisticated method
for the representation of an object’s path using prime numbers. The path encoding
scheme and the region numbering scheme (for encoding the time information)
used by the approach, apply techniques from research in the XML area [57].

3.1 Existing RFID Approaches on Relational DBMSs 27

TAG_TABLE

PK,FK3 TAG_ID

FK1 PATH_ID
FK2 END
FK2 START

PATH_TABLE

PK PATH_ID

ELEMENT_ENC
ORDER_ENC

TIME_TABLE

PK START
PK END

LOC
START_TIME
END_TIME

INFO_TABLE

PK TYPE

PRODUCT_NAME
MANUFACTURER
PRICE

Figure 3.8: Tables for storing events in the prime number approach (adopted
from [37]).

Data Model

The relational schema for the approach consists of four different tables as shown
in Figure 3.8. PATH_TABLE, TAG_TABLE, and TIME_TABLE are managing the
moving of the RFID records, whereas INFO_TABLE stores product information
like product name, manufacturer, and price. PATH_TABLE stores the path infor-
mation using the prime number encoding scheme, which we explain with the
example graph depicted in Figure 3.9. The two columns ELEMENT_ENC and
ORDER_ENC in table PATH_TABLE represent the implementation of the path en-
coding scheme: ELEMENT_ENC stands for Element List Encoding Number and
ORDER_ENC stands for Order Encoding Number. To encode a path, the authors
assign a prime number to each location and calculate the product of all prime
numbers which occur in the object’s path. This product is stored in the attribute
ELEMENT_ENC in the PATH_TABLE. Before we can explain ORDER_ENC, we
need some more background information.

Figure 3.9a shows that the prime numbers 2, 3, and 11 are assigned to the
locations A, B, and C. As we see, the same location can be included in different
paths of the graph: location C. However, cycles in a path are not allowed, i. e., the
same location cannot occur more than once in a particular path. This is due to the
mathematical specifics of the approach as we will discuss later. The value of the
attribute ELEMENT_ENC for the path from location A to C (2 –> 11) is 22.

Suppose we know the ELEMENT_ENC value and want to determine the nodes
(locations) which participated in a particular path. Here, the authors make use of
the Fundamental Theorem of Arithmetic [46], which states that any natural number
(except the number 1) is uniquely expressed by the product of prime numbers.
Therefore, the value of ELEMENT_ENC can be uniquely defactorized in prime

28 3. Relational DBMS Approaches for the Efficient Management of RFID Data

CB

A

C

2

3 11

11

(a) Path encoding scheme.

113

2

(1, 8)

(2, 5) (6, 7)

11

(3, 4)

(b) Time tree structure.

Figure 3.9: An example of the path encoding scheme and region numbering
scheme (time tree) of the prime number approach [37]

numbers and that results in the locations an object passed, i. e., its pedigree.
It is not only important to know at which locations an object was scanned, but

also to determine the order in which it traversed the path. This can be done by
applying the Chinese Remainder Theorem (CRT) [46]. CRT states: Suppose that n1,
n2, . . . ,nk are positive integers which are pairwise coprime (i. e., pairwise relatively
prime numbers). Then, if a1, a2 . . . ,ak is any given sequence of integers, there
exists X between 0 and N (= n1 ∗ n2∗ . . . ∗nk) solving the system of simultaneous
congruences.

X mod n1 = a1

X mod n2 = a2

. . .
X mod nk = ak

Knowing this, we substitute the values n1, n2, . . . , nk with the nodes’ prime num-
bers and the values a1, a2, . . . , ak with the ordering of the nodes, e. g., 1, 2, etc.
Since n1, n2, . . . , nk are prime numbers, they are pairwise relatively prime. Ac-
cording to the Chinese Remainder Theorem, there exists a number X between 0
and the product of n1, n2, . . . , nk solving the linear system. This number is stored
in the column ORDER_ENC in PATH_TABLE. For our example in Figure 3.9a, we
can determine the value ORDER_ENC by solving the linear congruences:

X mod 2 = 1
X mod 11 = 2

Using the Extended Euclidean Algorithm [46], we calculate the value 13 for X
(ORDER_ENC). Given the Order Encoding Number X, one can determine the
order information for any location on the path by solving X mod n, where n is the
prime number denoting the node.

3.1 Existing RFID Approaches on Relational DBMSs 29

In order to store the time information for products, the authors construct a
time tree and apply a region numbering scheme as shown in Figure 3.9b. The
TIME_TABLE contains information about the first scan of an item at a particular
location and the time when it leaves this location. Both attributes START and
END allow for an efficient search of the predecessor or successor of a node. Note,
that the START and END columns do not store real timestamp values, but just
represent a topologic order of the time information. As depicted in Figure 3.9b,
the time tree is built out of the RFID events. Each node represents a location
containing time information, the point of time when the item enters the location
(start) and the point of time when the item leaves the location (end). If an item was
at the same location at two different points in time, then two different nodes in the
time tree are needed (location C is an example). Further, in order to determine the
values for START and END, a depth-first search is conducted. Here, for each node
first the START value is assigned and then the END value is derived according
the depth-first search. Therefore, the region numbering scheme has the property
that if a node A is a predecessor of node B, A.START < B.START and A.END >
B.END. For instance, consider the item � traveling from location 2 to location
11 in Figure 3.9b. If we want to determine at what time � visited the different
locations, we look up the last location of object � in the TIME_TABLE and then
determine the predecessor of the last location node, i. e., we search for all entries
in the table that fulfill the conditions START < 6 and END > 7. The result is node
2 with START = 1 and END = 8.

Data Staging

The encoding scheme can handle tree-like and graph-like object movements (though
not very efficiently), but has the drawback that it cannot handle cycles in the ob-
ject movement, because of the mathematical specifics of the approach. We address
these limitations in the following.

Suppose that objects travel through a graph with two or more different start
nodes. Applying the Lee and Chung approach results in a contradiction with the
region numbering scheme (shown in Figure 3.9b) used for constructing the time
tree. If we assign the same topologic order information to both start nodes, the
start/end condition of the time tree will be violated. The only possibility to apply
the Lee and Chung [37] approach to a graph-like movement is to duplicate the
graph except for the start nodes and to handle two tree-like movements. This case
is shown in Figure 3.10. We modified the example graph in Figure 3.1 in a way
that it is conform with the requirements of the approach.

Further, cycles within a path are not allowed in the object movement and cannot
be handled because of the mathematical specifics. The value of the attribute OR-
DER_ENC denotes the ordering of the nodes in the graph. Suppose that 3 nodes
with prime number labels 5, 7, and 11 build a cycle in one path of the tree. A valid

30 3. Relational DBMS Approaches for the Efficient Management of RFID Data

s1

s5s4

s3

t1

t3

t8 t9

s5s4

s3

s2

t5

t8 t9

t1(1, 8)

(2, 7)

(3, 4) (5, 6)

(9, 16)

(11, 12) (13, 14)

(10, 15)

Figure 3.10: Graph-like movement handling in the Lee and Chung approach [37]
(based on the example in Figure 3.1).

value X for ORDER_ENC should fulfill the following conditions:

X mod 5 = 1
X mod 7 = 2

X mod 11 = 3
X mod 5 = 4

According to the Chinese Remainder Theorem [46], however, the congruences can
only be solved if the prime numbers are pairwise coprime, which does not hold
in this case. Therefore, this approach cannot be used if cycles occur in the graph.

During data staging, we construct the time tree according to the region number-
ing scheme. If a new batch of events enters the system and some of the items of
the new batch have already occurred in the last batch, the affected path of the tree
has to be extended by the new location (or by the same location with new time
information). The entries in the TIME_TABLE have to be updated accordingly.
This requires to reconstruct the complete time tree and update all node entries
because of the numbering scheme. Therefore, data staging can only be applied if
the complete movement of every object is known in advance.

Query Processing

Because of its mathematical background, the approach is particular efficient for
path oriented retrieval queries. These queries determine ancestor-descendant rela-
tionships between locations, e. g., which objects travelled through location A first
and then through location C. Due to the compact representation of the paths,
PATH_TABLE will be relatively small, but if the prime numbers get large, there
will be an overhead to defactorize them. If we are interested in the last position of
an object, we have to join TAG_TABLE and TIME_TABLE, which could grow very
big. Some numbers on the query performance can be found in [37].

3.2 A Combined OLTP and OLAP Approach for Traceability Data 31

Advantages and Disadvantages

An advantage of the Lee and Chung approach is the very compact representation
of the object’s path. This results in a good disk space utilization and efficient query
performance for path queries. Some design decisions of this approach (like the de-
scribed region numbering scheme), however, impose a limitation, because it is not
possible to incrementally update the database design unless the complete move-
ment of an object is known in advance. Otherwise, the complete time tree must be
reconstructed and the entries in TIME_TABLE must be updated. This is extremely
time consuming and makes high frequently event updates practically impossible.
This means that data staging cannot be performed in the way we require it for the
other approaches. Therefore, we omit this approach in our evaluation.

3.2 A Combined OLTP and OLAP Approach for
Traceability Data

The approaches presented so far, either ignore the OLTP part of the data and focus
on the OLAP data, or have a hybrid approach, where OLTP and OLAP reside in
different systems. The naïve model does not distinguish between an OLTP and
OLAP part, but focuses only on the OLAP part. The approach of Gonzalez et
al. represents a typical warehouse approach; the RnB approach considers a main
memory component for answering the OLTP queries.

Real-time business intelligence applications are not only interested in ´´old” data
for their decision-making processes, but need to involve the latest information as
well. Hasso Plattner discusses the need for a common database approach for
OLTP and OLAP since this “could make both components more valuable to their
users” [43]. As the trend goes towards combining the OLTP and the OLAP part
in one system, we present an approach that is designed to fulfill this requirement.
Our approach is based on a new path encoding which enables us to efficiently
materialize the movement history of an object and also functions as a sort of index.
The data model of the naïve approach is extended so that the most current data
is kept separate from the historical data without aggregating or discarding any
information. In order to provide an efficient data staging, we pursue an append-
only approach, i. e., there exist only inserts and no updates, and consolidate the
database regularly. Parts of this work were published in [20].

3.2.1 Path Encoding Using a Bloom Filter

A challenge in a traceability scenario is to find a way to efficiently store the path of
an object. Objects “flow” from one sensor to another and their movement history
is of interest for traceability data applications. Materializing the path of each
object requires a complex pre-processing, i. e., the data staging process gets more
complicated. Therefore, various techniques for efficient storage of traceability data

32 3. Relational DBMS Approaches for the Efficient Management of RFID Data

and, in particular, the data path (in the example of RFID) have been proposed, see
Section 3.1. We propose a Bloom filter solution for path encoding in a traceability
scenario.

The Bloom filter is a space-efficient data structure that is used to test whether
an element is a member of a set. An empty Bloom filter is a bit array with m bits,
all set to 0. To add an element one has to find the corresponding position in the
Bloom filter using a defined hash function and set this bit to 1. For a traceability
data scenario, we assume that sensors are grouped in geographical regions. The
sensor infrastructure is known in advance. New sensors can be mapped to the
existing geographical regions. Therefore, we use one bit for every geographical
region, not for a sensor, in order to keep the length of the Bloom filter small.
When an object was scanned by a reader from a particular geographical region
we set this bit to 1. Thus, an object has visited all geographical regions for which
the corresponding bit in the Bloom filter is set. Note, that for our approach no
false positives can occur, since the length of the Bloom filter matches exactly the
number of possible geographical regions and the hash function performs a one-
to-one assignment. The Bloom filter is easily extendable in case new regions are
added to the application.

3.2.2 Data Model

We aim at creating a database schema that fulfills the requirements of traceabil-
ity applications. Those applications have to handle millions of events per second
while still being able to query the high amount of produced data in order to trace,
e. g., lost packets. We design an approach that combines the OLTP and OLAP
paradigms in one database to provide the latest information to decision-making
business intelligence applications. Our approach exploits the main advantage of
the naïve approach, namely its simplicity, while trying to avoid its drawbacks con-
sisting in the fast growth of the table, which results in inefficient query processing.
For this reason, we partition the EVENT table of the naïve approach into smaller
tables, where the readers are organized in regions. A region is a geographical unit
that comprises the sensors located in it. The granularity of a region depends on
the use case: a region can represent a country, a city, or a single factory.

Figure 3.11 shows our database design. The schema consists of the OLTP table,
where the most current data is kept and the REGION tables, where (historical)
path information is stored. In the OLTP table, the last occurrence of an object
(identified by its oid), the sensor that scanned it (rdr), and the timestamp (ts) when
the object passed the sensor are stored. The encoding with the Bloom filter de-
scribed in Section 3.2.1 is also materialized in the OLTP table. One can determine
in which geographical region an object was scanned by determining the positions
ri in the Bloom filter where an 1 occurs. The ri values specify the corresponding
REGION tables that hold the information about those (potentially outdated) read
operations. Each REGION table has the schema of the naïve approach. It stores
the objects that were scanned by sensors from the respective region. This means

3.2 A Combined OLTP and OLAP Approach for Traceability Data 33

OLTP

oid rdr ts bloom

� s4 tn 101
� s4 tn 101
© s3 t1 010
...

(a) Example of the OLTP table.

Region1

oid rdr ts

� s1 t1

� s1 t1

M s2 t2

...

(b) Example Re-
gion1 table.

Region2

oid rdr ts

© s3 t1

♦ s3 t1

N s4 t2

...

(c) Example Region2

table.

Region3

oid rdr ts

� s4 tn

� s4 tn

M s5 tn

...

(d) Example Re-
gion3 table.

Figure 3.11: Bloom filter approach

that the same object can occur several times in a REGION table. After determining
in which region an object was (using the OLTP table), one can extract from the
REGION table the explicit information about which sensor (rdr) read the object
and at what time (ts).

This approach efficiently answers both OLTP- and OLAP-style queries. As the
name indicates, the OLTP table serves OLTP requests which require up-to-date
information. The typical OLTP request in a traceability scenario is to determine
the last position of one item. OLAP queries, e. g., asking for all readers that one
item has passed, can be answered by joining the OLTP table and the REGION
tables to which the Bloom filter points. Queries examining a data flow in only one
region only read data from the corresponding region table which is advantageous
in query processing.

3.2.3 Data Staging

An efficient incremental update is one of the biggest challenges when designing a
data model for traceability data. In this section, we describe how we realize data
staging in our approach.

When an item is first read, one tuple is inserted into the OLTP table with the
Bloom value being 0 at all positions except for the region the item was read in,

34 3. Relational DBMS Approaches for the Efficient Management of RFID Data

which is set to 1. A second tuple is inserted into the corresponding region table to
which the Bloom filter is pointing. When the same item is read a second time, its
reader (rdr), timestamp (ts), and Bloom filter values in the OLTP table are updated,
and a tuple is added to the REGION table the reader belongs to. Consider the item
with oid � in Figure 3.11. It has been scanned twice, at reader s1 in region 1 and
at reader s4 in region 3. The item with oid � is in the same cluster as � and thus
passed the same readers at the same time and has the same Bloom filter. The
entries in the OLTP table for these items contain the latest information: the last
time the items were scanned is tn and the corresponding reader is s4. The Bloom
filter values contain two occurrences of 1 at the positions 1 and 3, i. e., the items �
and � have moved through the regions 1 and 3. In contrast, the item with oid ©
has only been scanned once (yet) at reader s3 in region 2, so that the information
in the OLTP table and the corresponding REGION table is identical and the Bloom
filter only points to region 2.

How the data staging algorithm manipulates the tables of the database design
is pictured in Figure 3.12. In order to provide an efficient incremental update, we
do not insert each single event, but process a batch of events. The more events a
batch contains the higher the throughput. However, a database supporting OLTP
has to contain the most current data, so there is a trade-off between batch size and
data update latency. We consider a batch size of 5000 events to be a reasonable
trade-off for our scenario. When regarding applications with very fluctuating
event arrival frequencies, we recommend to adjust the batch size to the current
arrival frequencies of events. When the frequency is low, it is not acceptable to
wait several minutes before executing a batch as this affects the timeliness of the
data in the database system. On the other side, during peaks, the high efficiency
of batch processing can be exploited to achieve a very high insert throughput.

Since updates are more expensive than inserts, we design our approach to be
append-only. Thus, we replace the updates in the OLTP table by inserts into the
OLTP table. We use two auxiliary tables in oder to make use of the efficient
batch processing and good insert performance of database systems. The tempo-
rary TEMP table holds each batch before it is processed. The Deathlist table con-
tains outdated events. Figure 3.12 illustrates how a logical update is substituted
by two inserts. In the example, items are processed with a batch size of 3. When
an item is first read, the processing is as described above (e. g., see the first batch
consisting of the tuples with the oid values �, �, and M in OLTP and REGION1
tables in Figure 3.12a). The second batch consists of the same items, now scanned
by different sensors in region 3. When the items are read for the second time, i. e.,
an update occurs, the corresponding tuples in the OLTP table are not updated, but
they are copied to the Deathlist table, which denotes that these tuples are outdated
and represent historical information. In Figure 3.12b, the first three OLTP tuples
(constituting the first batch in Figure 3.12a) are now also in the Deathlist. As the
REGION tables are not affected by updates, such historical data is still accessible.
The latest information is stored by appending an updated tuple (with new reader,
timestamp, and Bloom values) to the OLTP table (the last three OLTP tuples in

3.2 A Combined OLTP and OLAP Approach for Traceability Data 35

OLTP

oid rdr ts bloom

� s1 t1 100
� s1 t1 100
M s2 t1 100

Deathlist

oid rdr ts

Region1

oid rdr ts

� s1 t1

� s1 t1

M s2 t2

(a) After first batch

OLTP

oid rdr ts bloom

� s1 t1 100
� s1 t1 100
M s2 t1 100
� s4 tn 101
� s4 tn 101
M s5 tn 101

Deathlist

oid rdr ts

� s1 t1

� s1 t1

M s2 t2

Region1

oid rdr ts

� s1 t1

� s1 t1

M s2 t2

Region3

oid rdr ts

� s4 tn

� s4 tn

M s5 tn

(b) After second batch

OLTP

oid rdr ts bloom

� s4 tn 101
� s4 tn 101
M s5 tn 101

Deathlist

oid rdr ts

Region1

oid rdr ts

� s1 t1

� s1 t1

M s2 t2

Region3

oid rdr ts

� s4 tn

� s4 tn

M s5 tn

(c) After consolidation

Figure 3.12: Data staging of the Bloom filter approach

Figure 3.12b constitute the second batch). The most current data is now computed
as the set difference of the OLTP table and the Deathlist (as shown in Figure 3.12c).

The implementation of batch inserts (and updates) is described in Algorithm 5.
Here, we exploit the DBMS’s BULK INSERT command and efficient join compu-
tation. In lines 1 to 5 the temporary table TEMP (referred to as T) is created in the
database, all tuples to be processed are written to a file F and the data contained
in F is loaded to T by executing the BULK INSERT command. In lines 6 to 10, all
tuples in the processed batch which represent already outdated data are identified
and written to a file D, denoting the content of the Deathlist. If multiple subse-
quent reads of the same item are executed in the same batch, only the last read
(with the most current timestamp) is valid OLTP data, the rest is historical data. In

36 3. Relational DBMS Approaches for the Efficient Management of RFID Data

Algorithm 5: Algorithm processBatch
input : A batch of events S of the form 〈EPC e, Rdr r, TS t〉

1 create a temporary table T(e, r, t);
2 forall the events s ∈ S do
3 rewrite s as insert i and append i to file F;
4 end
5 BULK INSERT data from F to T;
6 forall the EPC values e ∈ T do

/* outdated tuples */
7 forall the tuples d: d.epc = e.epc ∧ d.timestamp < e.timestamp do
8 write d to deathlist file D;
9 end

10 end
11 U ← T on OLTP; /* tuples to be updated */
12 forall the tuples u ∈ U do
13 write u to deathlist file D;
14 forall the tuples t ∈ T where t.epc = u.epc do
15 write t to OLTP file O with updated Bloom value;
16 write t to corresponding region file Ri;
17 end
18 end

/* tuples to be inserted */
19 forall the tuples i ∈ T ∧ i /∈ U do
20 write t to OLTP file O with Bloom value pointing to the new region;
21 write t to corresponding region file Ri;
22 end
23 forall the files Ri do
24 BULK INSERT data from Ri to corresponding region table;
25 end
26 BULK INSERT data from O to OLTP table;
27 BULK INSERT data from D to Deathlist;

line 11, the temporary table T is joined with the OLTP table, thereby determining
the logical updates within the current batch. All tuples within the join result have
to be treated as updates (lines 12 to 18), while the rest of the batch tuples represent
“real” inserts (lines 19 to 21). All tuples that are to be updated are written to the
deathlist file. Finally, the OLTP table, the REGION tables, and the Deathlist are
loaded using the BULK INSERT command.

As described above, OLTP queries require the most current data, which is ob-
tained by computing the set difference between the OLTP table and the Deathlist.
In order to keep the overhead as small as possible and to avoid very large tables,

3.3 Performance Evaluation and Comparison 37

Algorithm 6: Algorithm consolidate

1 O← OLTP− Deathlist;
2 foreach tuple o ∈ O do
3 write o to file F;
4 end
5 drop OLTP table;
6 drop Deathlist table;
7 create OLTP table;
8 BULK INSERT data from F to OLTP;
9 create Deathlist;

we consolidate the OLTP table and the Deathlist from time to time (i. e., after a
certain number of batch inserts). The consolidation procedure (which equals a
delete from the OLTP table) is described in Algorithm 6. After determining the
most current data in line 1 and writing those tuples to a file F, we drop both the
OLTP table and the Deathlist, recreate them, and use BULK INSERT to load the
data from F into the newly created OLTP table. The Deathlist remains empty. Fig-
ure 3.12c illustrates the consolidation. The outdated tuples, which occur in both
the OLTP table and the Deathlist, are removed from the OLTP table so that only the
latest data is retained. After that, the Deathlist is emptied. The result of query pro-
cessing is now the same as before the consolidation, however it is computed more
efficiently. The REGION tables are not affected by the consolidation procedure.

3.3 Performance Evaluation and Comparison

In this section, we present the evaluation of the different approaches. Before we
show performance numbers, we compare the approaches according to the require-
ments that should be fulfilled by an RFID database design. Some of the findings in
this section were published in [56] and [54] which were supervised by the author
of this thesis.

3.3.1 Qualitative Evaluation

Some of the RFID requirements are derived from the challenges discussed in Sec-
tion 2.3 and some originate from the design of the approaches. We give a short
overview of how the requirements are defined and to what extent they are ful-
filled. The qualitative comparison is shown in Table 3.1.

38 3. Relational DBMS Approaches for the Efficient Management of RFID Data

Data Staging

As already mentioned in Section 2.3, supporting an efficient incremental update
is essential for RFID applications, in order to achieve real world awareness. We
classify the approaches according to whether they allow for an efficient data stag-
ing. We assume that if new incoming events require that the data staging pro-
cedure refactures a big part of the already stored data, then this approach does
not support an efficient incremental update. This applies for the prime number
approach [37] as stated in Table 3.1. The reasons for that are discussed in Sec-
tion 3.1.4.

The efficiency of the data staging procedure is determined in the evaluation.
Database solutions which do not pre-aggregate the data have a more efficient data
staging process.

Handling trees

In most RFID scenarios, objects move in large groups and split into smaller ones.
This simplest movement is defined as tree-like movement and is supported by all
presented approaches as can be seen in Table 3.1.

Handling DAGs

In some scenarios, more complex object movements are needed. For instance, if
we take the post office infrastructure as an example and consider the post offices
as sensors, there are parcels that come from a lot of different small post offices
and are gathered in one central post office. This constitutes a “merge” of differ-
ent object groups. This kind of splitting and merging may occur multiple times
during the parcels’ lifetimes. Thus, we need an implementation of a re-grouping
of objects for this scenario, which implies the use of a graph structure, a directed
acyclic graph (DAG), instead of a tree. Whether the observed approaches fulfill
this requirement is noted in Table 3.1. The naïve and Bloom filter approaches do
not distinguish between different object movements, but process each single event
independently. Thus, they implicitly allow for handling DAGs. For Gonzales et
al. [27] and RnB [35], storing object movements in a graph results in additional
overhead, because clusters are considered to have the same path from birth on.
Thus, entries have to be stored redundantly if they have different origins, e. g., p3
and p4 from table PATH in Figure 3.6. The approach of Chung and Lee [37] does
not provide a possibility to store a graph movement without modifying the graph
as explained in Section 3.1.4.

Handling DCGs

Consider the post office scenario explained above. If a mail is returned to its
sender, a cycle occurs in our movement graph. Therefore, we need storage so-
lutions that can deal with cyclic object movements: directed cyclic graph (DCG).

3.3 Performance Evaluation and Comparison 39

R
eq

ui
re

m
en

ts
N

aï
ve

ap
pr

oa
ch

G
on

za
le

s
et

al
.[

27
]

R
ea

d
an

d
B

ul
k

[3
5]

Pr
im

e
nu

m
be

r
ap

pr
oa

ch
[3

7]
B

lo
om

fil
te

r
ap

pr
oa

ch

D
at

a
St

ag
in

g
Ye

s
Ye

s
Ye

s
N

ot
po

ss
ib

le
ef

fic
ie

nt
ly

Ye
s

H
an

dl
in

g
tr

ee
s

Ye
s

Ye
s

Ye
s

Ye
s

Ye
s

H
an

dl
in

g
D

A
G

s
Ye

s
Ye

s,
bu

t
re

du
nd

an
tl

y
Ye

s,
bu

t
re

du
nd

an
tl

y
N

o
Ye

s

H
an

dl
in

g
D

C
G

s
Ye

s
Ye

s,
bu

t
re

du
nd

an
tl

y
Ye

s,
bu

t
re

du
nd

an
tl

y
N

o
Ye

s

Pa
th

s
of

di
ff

er
en

t
le

ng
th

Ye
s

Ye
s

Ye
s

Ye
s

Ye
s

In
se

rt
in

g
ne

w
no

de
s

on
de

m
an

d
Ye

s
Ye

s
Ye

s
N

o
Ye

s

Fo
cu

s
si

ng
le

ev
en

t
cl

us
te

r
cl

us
te

r
cl

us
te

r
si

ng
le

ev
en

t

Ta
bl

e
3.

1:
Q

ua
li

ta
ti

ve
co

m
pa

ri
so

n
of

th
e

ap
pr

oa
ch

es
w

it
h

re
ga

rd
to

th
e

R
FI

D
da

ta
m

an
ag

em
en

t
re

qu
ir

em
en

ts

40 3. Relational DBMS Approaches for the Efficient Management of RFID Data

Again, the naïve and Bloom filter approaches do not distinguish between different
object movements and therefore support handling DCGs. Gonzales et al. [27] and
RnB [35] store information redundantly if the objects move in cycles. The reasons
are the same as these for handling DAGs. The prime number approach [37] does
not support cyclic movements because of its mathematical specifics, especially be-
cause of the Chinese Remainder Theorem [46], explained in Section 3.1.4.

Paths of different length

Some objects may “stay” at a location and not move any further. This implies that
paths of different length occur in the movement tree or graph. All approaches
fulfill the requirement of modeling paths of different length, as noted in Table 3.1.

Inserting new nodes on demand

In real-life traceability applications, the sensor landscape can change over time.
Additional sensors may be dynamically inserted. A flexible solution for trace-
ability data should be able to cope with such changes. Table 3.1 shows that all
approaches except for the Lee and Chung approach [37] fulfill this requirement.
The reason why the prime number approach cannot cope with new nodes is the
applied time tree, which has to be re-built for each newly inserted node as de-
scribed in Section 3.1.4.

Focus

The different approaches process the RFID information in a different way. While
the naïve and Bloom filter approaches focus on each single event and do not orga-
nize the objects in groups, the Gonzales et al., the RnB, and the Lee and Chung ap-
proach are interested in clusters and reuse common paths of objects.

3.3.2 Framework Architecture

Figure 3.13 shows a high-level architectural overview of the framework used for
evaluating the different RFID approaches. Sensors scan objects and send the ob-
ject’s identifier (e) along with an identifier of the sensor (r) and the time when
the object was scanned (t) as an event (e,r,t) to the Middleware. The middleware
reads the events and triggers data staging which updates the data in the Warehouse
incrementally. Events are processed in batches by the staging procedure. As we
motivated in Section 2.2, our system has to be able to handle an average data ar-
rival frequency of 500 events per second. This corresponds to the event generation
frequency in the production process of a medium-sized enterprise. In this work,
we focus on the data staging component and on the different possibilities to store
the data in the warehouse. The subject of data cleaning, which is performed by
the Middleware, is described in Section 3.4 and is beyond the scope of this thesis.

3.3 Performance Evaluation and Comparison 41

Data
StagingEv

en
ts

Queries

Sensors Middleware Warehouse

<e,r,t>

Figure 3.13: Architecture of the framework for evaluating the RFID approaches.

The algorithm that performs data staging is dependent from the data model that
is used to store the data in the warehouse.

3.3.3 Evaluating the Existing RFID Database Approaches

In this section, we present a performance comparison between the three approaches
– naïve, Gonzalez et al. [27], and RnB [35]. We conducted three sets of experiments
to evaluate the different data models: we evaluated the maximum insert through-
put that can be achieved, the query-only performance, and the performance of a
mixed workload consisting of concurrent inserts and queries.

The experiments were executed on a dedicated host, equipped with two In-
tel Xeon 3.20 GHz CPUs with 2 MB cache memory respectively, 8 GB main mem-
ory and 6 U320-SCSI hard disks, running an enterprise-grade 64 bit-Linux, which
serves as a database server. A commercial row-store DBMS runs on the server.

We implemented the three data models except the model by Gonzalez et al. using
the table structures as shown in Section 3.1. The logical schema of the Gonzalez
et al. design implies the use of composite attributes as for example a list like gid
in MAP and gid_list in STAY. This is a violation of the first normal form which
requires that all attributes have an atomic domain. Therefore, we chose to nor-
malize the tables for this model. Instead of storing lists of values in a row, we
duplicate the row for each item in the list. For example, we split an entry (0.0.0;
0.0.0.0,0.0.0.1) in MAP (the highlighted row in Figure 3.4a) into two rows (0.0.0;
0.0.0.0) and (0.0.0; 0.0.0.1).

Table 3.2 summarizes the data types we used in our implementation. The elec-
tronic product code (EPC) standard [23] specifies different EPC variants, from
which we chose SGTIN-96, i. e., a 96 bit identifier that encodes the manufacturer,
the product type, and the serial number of the item (as described in Section 2).
Since the database does not provide a dedicated data type for storing EPC values,
we encode the identifier as a VARCHAR value, in order to have a generic repre-
sentation that allows the code to contain characters as well. We chose to store
the identifier of a sensor as INTEGER, since the number of readers in the sensor
infrastructure is not supposed to overflow this value range. At this point, we do

42 3. Relational DBMS Approaches for the Efficient Management of RFID Data

Column Data Type

N
aï

ve EVENT.oid VARCHAR

EVENT.sid INTEGER

EVENT.ts TIMESTAMP

G
on

za
le

z
et

al
.

MAP.gid VARCHAR

MAP.gid_list VARCHAR

STAY.gid_list VARCHAR

STAY.loc INTEGER

STAY.ts TIMESTAMP
R

nB

READ.oid VARCHAR

READ.sid INTEGER

READ.pid INTEGER

READ.ts TIMESTAMP

PATH.pid INTEGER

PATH.prev INTEGER

PATH.sid INTEGER

PATH.ts TIMESTAMP

PATH.s_pid VARCHAR

PATH.s_sid VARCHAR

PATH.s_ts VARCHAR

Table 3.2: The data types we used for implementing the data models.

not require that the sensor ID is globally unique, as the object ID is. The gid and
gid_list columns in tables STAY and MAP are implemented using VARCHARs be-
cause, as described in Section 3.1, the gids encode the hierarchy of the clusters
using dots. We note that using VARCHARs as primary keys is inefficient, both
for disk consumption and query performance. However, we decided to keep the
implementation of the data model as close to the description in [27] as possible.

We used the advisor tool of the database to determine the most appropriate in-
dexes for all tables. We fed our workload to the advisor tool, considering the fre-
quency with which each query should be executed (i. e., OLTP queries vs. OLAP
queries) and the heavy insert workload. We used the suggested indexes in the
following evaluation.

Maximal Throughput

We first examine the performance of the data staging procedure without any
queries being processed in parallel. As already determined, the approaches should

3.3 Performance Evaluation and Comparison 43

be able to process an arrival frequency of 500 events per second. However, as there
may be peaks in the event generation, the systems must be capable of handling
event frequencies greater than the expected one. Therefore, we measure the upper
limit of event frequency that the database designs and the DBMS can process.

Figure 3.14 shows the maximum insert throughput for the naïve approach, the
Gonzalez et al. implementation, and the RnB data model. We analyzed the perfor-
mance with and without indexes, with clustered and unclustered data. Thus, we
see the effect of the indexes and of the clustering on the data staging procedure.
The naïve approach has a very high insert throughput (16686), since the events do
not need to be transformed or pre-aggregated in any way, but are directly inserted
into the database. Since this approach does not exploit the grouping of the data,
clustering does not affect its performance. Indexes slow down the throughput
to 9893, but it is still the highest from the three approaches. The RnB approach
achieves a maximal insert performance of 2631 events per second without indexes
(clustered data) and 3571 events per second when indexes are applied on clustered
data. Usually, the use of indexes correlates negatively with the insert throughput,
but in this case the data staging procedure benefits from the indexes as well, be-
cause of the queries it sends to the database during staging (Section 3.1.2). For the
approach of Gonzalez et al., there is hardly a difference in the peak performance
between the solution with indexes and without on clustered data. This is due to
the fact that the main overhead during the staging procedure is not the interaction
with the database, but processing the hierarchical string identifiers. As we can see,
this approach is not able to achieve the throughput of 500 events per second that
we expect in a medium-sized enterprise.

For the approaches RnB and Gonzalez et al., there is a difference in their be-
haviour when processing clustered and unclustered data. Since these two data
models focus on grouping data with similar characteristics, they should benefit
when the data is clustered. This was proved by our experiments: when using un-
clustered data, the performance of the RnB approach without indexes decreases to
170 events per second and with indexes to 1388 events per second. Analogously,
for the Gonzalez et al. approach, the maximal throughput on unclustered data
without indexes is 71 events per second and with indexes 70 events per second.

Query-only Workload

After determining the maximum throughput for each approach, we examine the
response times of our traceability workload described in Table 3.3. We analyze the
performance of each query without parallel inserts, in order to see how the inserts
will affect the query performance, when conducting a mixed workload.

The workload shown in Table 3.3 consists of OLTP and OLAP queries. OLTP
queries are short-running point queries that extract information about a single
object. For traceability applications, it is essential to know where a certain object,
e. g., a parcel, is at each point in time. This kind of queries are therefore processed
very often in an RFID system. We can assume that each object is queried at least

44 3. Relational DBMS Approaches for the Efficient Management of RFID Data

w/o indexes
not clustered

w/ indexes
not clustered

w/o indexes
clustered

w/ indexes
clustered

0

2000

4000

6000

8000

10000 9893 9893

71 70 179 177170

1388

2631

3571

16686 16686

Ev
en

ts
pe

r
se

co
nd

Naïve Gonzalez et al. RnB

Figure 3.14: Max throughput measurement of the approaches: without index-
es/with indexes, clustered/not clustered (taken from [56]). 50000
events were loaded in the data models.

once (e. g., for its last position) during its lifetime. Q1 and Q2 in Table 3.3 are OLTP
queries. OLAP queries usually process a large part of the database and provide
aggregated information grouped by certain attributes like sensors or divided into
timeslots. They are used for report generation and thus submitted less often than
OLTP queries. Q3 through Q11 are OLAP queries.

OLTP queries are executed with a 10 times higher probability than OLAP queries
during the benchmark. Depending on the query type, different think times are set:
OLTP clients have a think time of 1 second, OLAP clients of 30 seconds. The clients
submit one query, retrieve the result, and wait for the think time before submitting
the next query. We start all OLTP and OLAP clients together after the database is
preloaded with 5 million events. The duration of the benchmark is 3600 seconds.
Three different benchmark settings are executed: using 1, 5, and 10 query clients
(OLTP and OLAP respectively). Therefore, the effect of different MPL levels on
the query performance can be seen.

As already discussed for Figure 3.14, the approach of Gonzalez et al. is not capa-
ble of achieving the event throughput frequency of 500 events per second. Trying
to preload the database with 500000 events using the data staging procedure took

3.3 Performance Evaluation and Comparison 45

Query Description

Q1 Last location of an object
Q2 The pedigree (complete path) of an object
Q3 The number of objects scanned by a certain sensor
Q4 A list of objects scanned by a sensor within a time interval
Q5 A list of objects which were scanned by sensors s1 and s2 (no order)
Q6 A list of objects which were scanned by sensors s1 and s2 in this order
Q7 The number of objects which were scanned by sensors s1 and s2 in this

order
Q8 A list of objects that were at sensor s, together with object x within a

certain time interval
Q9 A list of the number of objects per reader and timestamp which passed

in a certain time interval
Q10 A list of the number of all objects scanned by all the readers in 10

regions, ordered by region, reader, and a time interval of a second
Q11 A list of the number of all objects which were scanned by the sensors

s1, s2, and s3 in this order aggregated per second

Table 3.3: Queries for an RFID scenario.

more than 6 hours. Due to the inefficient staging and since this approach is not
suitable for our scenario, where we assume that 500 events per second arrive at
the system, we abandon this database solution from the further analysis.

Figure 3.15 shows the results of the query-only benchmark for the RnB ap-
proach. We observe that the increasing MPL level has a noticeable effect on the
query performance. As expected when only one query client is used, the response
time is the shortest and it increases with the number of query clients. However,
for most queries the performance difference between using 5 and 10 query clients
is not considerable. This means that the database system is not working to its
highest capacity even when 10 query clients are running in parallel.

The OLTP queries Q1 and Q2 are short-running. They select the last position of
an object and a pedigree for a particular object, respectively, and operate on the
created indexes.

Q3 through Q11 are OLAP queries. Q3 calculates the number of all objects
scanned by a particular reader, i. e., it counts all objects from table READ, which
reference a path in table PATH containing the sensor.

Q4 determines all items scanned at a particular reader within a time interval.
Similar to Q3, the query selects all objects with path IDs that contain the reader
and additionally checks whether the stored timestamp lies in the correct interval.
The recursive manner of this query explains the higher computational overhead
compared to Q3.

46 3. Relational DBMS Approaches for the Efficient Management of RFID Data

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 Q11
0

1000

2000

3000

4000

5000

6000

0.
5

0.
5

0.
6 24

1.
9

22
3.

5

22
4.

0

22
6.

1

48
45

.1

2.
0

2.
0 13

9.
4

11
6.

8

14
3.

4

14
0.

0

34
9.

4

34
6.

1

37
5.

2

55
3.

7

52
51

.0

73
.7 21

4.
1 50
5.

1

33
6.

2

33
9.

0

28
9.

8

55
8.

9

45
7.

1

41
7.

6

59
7.

0

55
09

.0

25
4.

3

32
0.

1

29
9.

7

R
es

po
ns

e
ti

m
e

[m
s]

1QC 5QC 10QC

Figure 3.15: Query-only workload for the RnB approach using 1, 5, and 10
query clients (QC), respectively (taken from [56]). The database
was preloaded with 5 million events.

Q5, Q6, and Q7 have a similar structure which justifies their similar execution
performance. These queries find objects that were scanned at more than one lo-
cation (sensor) and take into consideration the ordering of the locations. Due to
the string representation of the sensor paths, we have to use string operations for
calculating the right matches in the string paths. Since this locating of the sensors
in the paths is applied to each of Q5, Q6, and Q7, they perform similar.

Q8 is a heavy OLAP query determining all contaminated items, i. e., all items
that were scanned at the same reader as a contaminated item x and in a certain
time interval. This query first returns the path of x and then checks all other
existing paths if they contain any of the sensors which scanned x and whether
these sensors were passed in the correct time interval. Since all entries in table
PATH have to be examined, the performance overhead is extremely high.

Q9 lists the number of objects per reader and timestamp, which passed in a
certain time interval and Q10 lists the number of all objects scanned by 10 different
readers within a time interval, grouped by reader. Because these two queries do
not need to determine the individual objects, but return the tuples grouped by
reader or timestamp, they only operate on table PATH without joining it with
READ. For this reason, they have a good performance and behave similar.

Q11 lists the number of all objects which were scanned by three different sensors

3.3 Performance Evaluation and Comparison 47

in the given order within a time interval. The bigger overhead compared to Q9 and
Q10 can be explained by the fact that for Q11 we need to join the PATH with the
READ table in order to count the particular objects. Apart from that, the structure
of Q11 is similar to that of query Q7 and as we can see they perform very similar.

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 Q11
0

200

400

600

800

0.
4

0.
6

0.
9

5.
0

6.
0 16

.0

16
.0

15
7.

0

78
3.

0

13
8.

0

65
.0

0.
5

0.
5

0.
9

5.
0

6.
2 17

.1

17
.3

16
1.

0

82
7.

3

14
6.

6

72
.2

0.
5

0.
6

0.
9

5.
3

6.
4 17

.4

17
.7

16
1.

0

84
1.

9

14
7.

0

74
.4

R
es

po
ns

e
ti

m
e

[m
s]

1QC 5QC 10QC

Figure 3.16: Query-only workload for the naïve approach (taken from [54]). The
database was preloaded with 5 million events.

Figure 3.16 depicts the results of the query-only benchmark for the naïve ap-
proach. The benchmark settings are the same as for the RnB approach. Again,
we scale the number of query clients. However, the differences between the query
performance with 1, 5, and 10 clients are less than for the RnB approach. This is
due to the overall shorter query response times. For the given amount of events,
all queries finish in less than 1 second, which is the think time set for the OLTP
queries. For this reason, the database is not overloaded.

The OLTP queries Q1 and Q2 have a similar performance to that of the RnB
approach. All other queries perform better with the naïve approach, except for Q9

and Q10. None of the indexes proposed by the database advise tool was suitable
for Q9, such that this query performs a table scan over the huge EVENT table.
This explains its extremely high response time. The bad performance of Q10 can
be explained by the fact that this query has to perform a self-join 10 times (for
each one of the respective readers). This highlights the weak point of the naïve
approach as described in Section 3.1.1: If some sort of aggregated information is
needed, then this is computed at runtime and the whole table has to be processed.

48 3. Relational DBMS Approaches for the Efficient Management of RFID Data

Mixed Workload

A mixed workload consists of concurrent inserts and queries (OLTP and OLAP).
Here, we can analyze whether the different approaches can cope with the pre-
defined event generation frequency of 500 events per second when also queries
are executed in parallel. The benchmark setting is analog to that of the query-
only benchmark. We conduct three different runs, using 1, 5, and 10 query clients,
OLTP and OLAP respectively. The database is first preloaded with 5 million events
and after that the mixed workload, consisting of inserts and queries, is started.
There is one insert client that produces a batch of 500 events each second and
inserts them in the database using the data staging procedure.

Figure 3.17 shows the response times of the queries of the RnB approach during
the mixed workload. For all of the three benchmark settings, the approach was
able to manage the pre-defined frequency of 500 events per second. As expected,
the query performance decreases when executing concurrent inserts compared to
the query-only benchmark. Compared to Figure 3.15, the performance decreases
by a factor of ca. 2. At the same time, the correlation between the query response
times of the different runs (1, 5, and 10 query clients) remains the same.

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 Q11
0

2000

4000

6000

8000

10000

0.
9

1.
3

0.
7 35

9.
2

37
3.

9

39
3.

1

38
6.

4

88
79

.0

3.
6

5.
1 28

6.
7

24
0.

6

33
7.

6

29
3.

3

57
8.

0

46
2.

7

62
6.

2

56
2.

8

83
38

.8

21
.5 26

9.
2

65
3.

6

91
5.

6

75
5.

2

84
3.

6

11
07

.8

13
20

.1

12
34

.5

11
47

.2

94
86

.8

10
16

.8

43
2.

2 11
94

.9

R
es

po
ns

e
ti

m
e

[m
s]

1QC 5QC 10QC

Figure 3.17: Mixed workload for the RnB approach using 1, 5, and 10 query
clients (QC), respectively (taken from [56]). Concurrently, insert
batches of 500 events per second are loaded into the database.

Figure 3.18 shows the query performance of the mixed workload when using

3.3 Performance Evaluation and Comparison 49

the naïve approach. The approach achieves the pre-defined event generation fre-
quency of 500 events per second. As expected, the query response time is affected
by the concurrent inserts and is approximately a factor of 2 worse compared to the
query-only benchmarks. However, except for Q9, the overall query performance
of the naïve approach outdoes the RnB approach. The reason for the overhead of
Q9 is the same as for the query-only workload: none of the indexes proposed by
the database advise tool was suitable for Q9. The good overall performance of the
naïve approach is due to the very efficient staging procedure, which barely affects
the query performance. The staging procedure of the RnB approach is much more
time-consuming and thus has a negative influence on the query performance.

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 Q11
0

200

400

600

800

1000

1200

1400

1600

1800

7.
6

7.
1

7.
3

12
.5

12
.2

37
.5

36
.3

28
3.

4

14
64

.9

25
7.

0

11
6.

7

41
.8

40
.0

30
.4

34
.9

27
.4 58
.2

72
.7

30
7.

5

15
74

.8

31
8.

7

11
6.

6

53
.7

65
.8

61
.0

73
.6

43
.0 84

.8

10
2.

3

33
9.

8

15
42

.8

26
7.

1

14
6.

7

R
es

po
ns

e
ti

m
e

[m
s]

1QC 5QC 10QC

Figure 3.18: Mixed workload for the naïve approach using 1, 5, and 10 query
clients (QC), respectively (taken from [54]). Concurrently, insert
batches of 500 events per second are loaded into the database.

3.3.4 Evaluating the Bloom Filter Approach

We present experiments for comparing the naïve approach, that had the best over-
all performance from the existing approaches, and the Bloom filter approach im-
plementation on a commercial database. The results show that our approach
succeeds in handling a continuous event stream as expected in a medium-size
business and even outperforms the naïve approach in query processing.

50 3. Relational DBMS Approaches for the Efficient Management of RFID Data

Experiments

We report benchmark results for experiments conducted on a commercial database
implementing the Bloom filter approach and the naïve approach. The database
runs on a 64 bit-Red Hat Enterprise Linux server with two Intel Xeon 3.16 GHz
CPUs, 8 GB main memory, and 8 SAS disks associated with RAID level 5. This is
a different experimental environment from the test environment for the existing
RFID approaches. Thus, the experiment results are not directly comparable.

Data Staging

We first examined only the data staging procedure of our approach without any
queries being processed in parallel. As we motivated above, a suitable system has
to be able to handle an average data arrival frequency of 500 events per second.
We thus ran benchmarks with this fixed event generation frequency and found
out that the different data models and database systems are able to cope with the
arriving events in the data staging process. However, as there might be peaks in
event generation, we analyze the upper insert limit of the database designs. The
naïve approach has a very high insert throughput (15466 events per second), since
the events do not need to be transformed in any way, but are directly inserted
into the database. The Bloom filter implementation has a throughput of only 2240

events per second due to the overhead of the Bloom filter processing during data
staging. The conclusion would be to fall back on the naïve approach in periods
of very high loads. However, the query response times will show that the naïve
approach does not support efficient query processing when the database grows in
size and therefore it is not an appropriate long-term solution.

Mixed Workload

We also analyzed whether the specified frequency can be kept while executing
a mixed workload consisting of concurrent inserts and OLTP and OLAP queries.
Here, the workload is designed as follows: two insert clients continuously insert
events during one hour, thus generating a total of 1.8 million events. The query
clients start submitting queries after the benchmark has been running for 5 min-
utes, so that approximately 150000 events are preloaded before the first query
arrives at the database. Each query type (OLTP and OLAP) is handled by one
query client. Depending on the query type, a think time of 1, respectively 60 sec-
onds is set up for OLTP and OLAP queries. The clients submit one query, retrieve
the result, and wait for the think time before submitting the next query.

Figure 3.19 shows the average response times of the OLTP queries. The Bloom
filter approach has a better response time for Q1. The reason for this is that
in general the OLTP table contains considerably less data than the EVENT table
of the naïve approach, because it stores only the most current event per object.
Still, determining the last position of an object (Q1) has nearly the same response

3.3 Performance Evaluation and Comparison 51

time for both approaches, since the difference in the size of both tables is not
considerable for the given amount of data.

For Q2, the Bloom filter approach is a factor 2 slower than the naïve approach.
This is due to the Bloom filter processing, which requires a two-step communica-
tion of the application and the database for determining the relevant regions and
querying the corresponding tables.

Q1 Q2
0

5

10

15

20

8

14

9 9

R
es

po
ns

e
ti

m
e

[m
s]

Bloom Naïve

Figure 3.19: Mixed Workload: OLTP Queries

The response times of the OLAP queries are presented in Figure 3.20. The
queries Q3 and Q4, which operate on one particular reader, are much more effi-
cient for the Bloom filter approach, because its data is segmented by sensor, which
results in smaller tables per reader, compared to the centralized big table of the
naïve approach. This means that once we know in which region the particular
reader is located, we can operate only on the data of this table. In our case, each
one of the REGION tables contains one tenth of the data of the naïve approach.

Q5, Q6 and Q7 operate on two distinguished readers. These can reside in one
region, or in two different regions. In both cases, the approach processes less data
than the naïve approach and this affects its execution time.

Q8 is a heavy OLAP query – the contamination query. It determines the objects
that traveled together with a contaminated object in a certain time interval. For
the Bloom filter approach, we first look up the Bloom index for the contaminated
object and query then the possible contaminated regions for all objects in the
contaminated time interval. Again, if the contaminated object was located in only
one region, the query is extremely efficient.

Q9 groups information per reader and timestamp for a particular region and
outperforms consequently the naïve approach.

All shown queries except query Q10 are executed a factor of 20 slower on the
naïve approach schema. This is due to the much higher amount of data the naïve
approach has to process for each query. Query Q10 takes half the time on the
Bloom filter database schema. The query processes a union over 10 subquery
results.

Q11 selects all objects that were scanned at three distinguished readers. Again,

52 3. Relational DBMS Approaches for the Efficient Management of RFID Data

the Bloom filter approach takes advantage if the data is located in one REGION
table.

Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 Q11
0

200

400

600

2 11 12 12 13 12 16

11
1

16

90

15
3 23

5

21
9

23
5

19
6

63
1

24
0

25
4

R
es

po
ns

e
ti

m
e

[m
s]

Bloom Naïve

Figure 3.20: Mixed Workload: OLAP Queries

Overall, we can conclude that by the smart partitioning of the big EVENT ta-
ble by reader, which results in the Bloom filter database design, we achieve an
approach that can cope with the insert frequency of 500 events per second and
additionally has a considerably better query performance. Because of the par-
titioning, this approach processes often a small portion of the data, instead of
working on the complete event data. A disadvantage of the Bloom filter approach
is however that for some queries like, e. g., Q2, a two-step query processing is
needed. First the value of the Bloom filter is determined and then the correspond-
ing REGION table is queried. This drawback can be overcome if the Bloom filter
index is integrated in the database system.

3.4 Related Work

Many related RFID approaches [27, 35, 37] are primarily focusing on appropri-
ate data schemas for RFID data in relational databases. We addressed these ap-
proaches in detail in Section 3.1. We compared them qualitatively by classifying
them according to the criteria defined in Section 3.3 and quantitatively by the
conducted benchmarks.

In RFID data management, the cleaning and filtering of the raw data is an impor-
tant pre-processing step. Since readings are still considered generally inaccurate
and error-prone, in the context of traceability data, handling tags being missed (so-
called false-negative readings) or unexpected extra readings (false-positive read-
ings or “noise”) is challenging [52]. In [31], a declarative and adaptive smoothing
filter for RFID data (called SMURF) is proposed. SMURF controls the window size
of the smoothing filter adaptively using statistical sampling. A recently published
inference approach for accurate estimates of object locations under consideration
of the objects’ containment relationships is presented in [12]. This approach out-

3.5 Summary and Conclusions 53

performs SMURF’s accuracy as discussed in [12]. Data cleaning and outlier detec-
tion are also addressed in [6, 13, 38]. Data cleaning is not in the scope of this work.
We assume data cleaning was performed as a pre-processing step using one of the
existing approaches.

3.5 Summary and Conclusions

In this chapter, we first presented existing database solutions for efficient manage-
ment of RFID data. These approaches were implemented and further analyzed.
Second, we propose a new approach, which is designed such that the OLTP and
the OLAP part reside in one database in contrast to the other approaches. Fi-
nally, we evaluate the approaches using three different benchmarks: maximal
throughput, query-only evaluation, and a mixed workload consisting of inserts
and queries. We examine whether the approaches are able to manage the pre-
defined event frequency of 500 events per second. Among the existing approaches,
the naïve has the best overall performance. We compare it further to our Bloom
filter approach and find out that the latter outperforms the naïve approach with
respect to most of the queries’ response times.

The Bloom filter approach accelerates the query processing for the typical trace-
ability scenario queries. It has to be considered that there is a trade-off between
the event processing throughput and the query processing, so that the Bloom
filter approach gives something from its performance up in terms of the maxi-
mum achievable event processing throughput. It pays off, however, when it comes
to query processing. The performance advantages in terms of shorter query re-
sponse times can be attributed to the following factor: the splitting of information
is beneficial for queries occurring in a typical traceability scenario. As most of the
queries are interested only in a particular segment of the data, e.g., the behavior
of objects grouped by sensors, they take advantage of our hierarchical structure.
Determining the pedigree of an object using the Bloom filter results in two phase
transformation. If this could be proceeded in one step, we would be able to make
a better use of the Bloom filter and achieve a better performance.

55

4
A Dedicated Triple Store for RFID

Data Management

4.1 Motivation

Until now, we only considered traditional DBMS approaches for the management
of RFID data. In this chapter, we advocate our decision for going for a dedicated
solution for efficient RFID data management.

4.1.1 From a Traditional DBMS Approach to a Dedicated Solution

As described in Chapter 3, there are several related research efforts focusing on
providing solutions for efficient management of RFID data residing in relational
databases. The data model of Gonzalez et al. [27] is a typical warehouse approach,
but it doesn’t support an efficient data staging process. In our experimental bench-
marks, we found out that the throughput was only ca. 170 events per second
without queries running in parallel. The approach of Krompass et al. [35] is a
hybrid approach consisting of a main memory resident table for recent events and
a warehouse data store for historical information. In our benchmarks, the event
processing throughput of the system was ca. 500 events per second, with concur-
rent queries. The “prime number” approach of Lee and Chung [37] can only be
applied if the object movement is known in advance and thus it is not possible to
incrementally update this database solution. Following the state-of-the-art in man-
aging RFID data, in our first approach [20] we manage traceability data using a
traditional relational DBMS. We developed a schema that considers the character-
istics of traceability data and stores the OLTP and OLAP data in the same system.
We used a Bloom filter as an index in order to efficiently reconstruct the path of an
object. We explained and compared the approaches in detail in Chapter 3. Even
with the Bloom filter approach we could not fully exploit the advantages of our

56 4. A Dedicated Triple Store for RFID Data Management

schema as the Bloom filter is not implemented as part of the relational DBMS.
Therefore, some queries need a two-step communication between the application
and the database system and this affects their run time negatively. After analyzing
the limits of the presented traditional DBMS approaches for efficient management
of RFID data, we choose a different way of proceeding. We followed the argu-
ment of Stonebraker that the “one size fits all” era in database design comes to an
end [49], and show that dedicated (customized) systems outperform the generic
mainstream systems.

In this chapter, we present a scalable dedicated solution for efficient storage
and management of RFID data, the RFID Triple Store, which is inspired by re-
cent work on Resource Description Framework (RDF) triple stores [40]. The RFID
Triple Store supports an efficient data staging and fast OLTP and OLAP query
processing for traceability data. It further provides a sustained throughput of
2500 events per second, which satisfies the requirements stated in Chapter 2 for a
world-wide enterprise.

We begin with a short introduction of RDF data and explain the similarities and
differences between RDF and RFID data. Based on these findings we design the
RFID Triple Store as a dedicated storage solution for RFID data.

4.1.2 A Short Introduction to RDF

The Resource Description Framework (RDF) [3, 34] is a family of W3C standards
which provide a model for data interchange on the Web. It represents schema-
relaxable or even schema-free structured information in XML syntax. RDF is being
used in the context of Semantic Web data for ontologies and knowledge bases, in
life sciences for e-science data repositories, and also for Web 2.0 platforms and
information mash-up applications.

RDF makes statements about Web resources in form of expressions, called RDF
triples

(subject, predicate, object).

The subject denotes the resource, and the predicate expresses the subject’s attributes
and/or the relationship between the subject and the object. Subjects and predicates
are Uniform Resource Identifiers (URIs). Objects, however, can be URIs or literals.
The set of predicate names can be quite diverse and although they often resemble
attributes there is no global database schema.

For example, information about this thesis can be represented by (at least) these
triples

(idp,hasTitle,"Efficient ...")
(idp,hasAuthor,ida)
(ida,hasName,"Veneta Dobreva").

Here, the subjects idp and ida as well as the predicates hasTitle, hasAuthor,

4.1 Motivation 57

ida

idp Efficient...hasTitle

Veneta DobrevahasName

ha
sA

ut
ho

r

Figure 4.1: Simple RDF example.

and hasName, and the object ida are URIs whereas the objects "Efficient
..." and "Veneta Dobreva" are literals.

The relationships between subjects and objects that are stated by the predicates,
result in a highly interconnected graph. The RDF graph data model is composed
by vertexes – the different subjects and objects (called entities), and edges, rep-
resenting the relationships between them. Therefore, the information about an
entity is depicted by a directed named edge ending in another entity vertex or in a
special literal vertex, containing the concrete value. The RDF graph corresponding
to the example above is shown in Figure 4.1. A real example of an RDF graph from
the DBpedia RDF dataset [2] is shown in Figure 4.2. The example has been sim-
plified by omitting the long URIs in order to make it more readable. One sample
relationship is the entity "Woody Allen", which has an occupation called "Director"
and is born in "Brooklyn". As we see, RDF graphs can be highly branched and
interconnected.

Woody Allen

Brooklyn
born

New York
isPartOf

2.6M

po
pu

lat
io

n

Screenwriter
occupation

Actoroccupation

...

Director

occupation

oc
cu

pa
tio

n

Match Point

directorO
f

typeMovie language English

Figure 4.2: Example RDF graph data from DBpedia [2]. Predicates are repre-
sented by oval shapes and subjects by rectangle shapes.

58 4. A Dedicated Triple Store for RFID Data Management

RDF data is retrieved using the SPARQL [4, 44] query language. SPARQL re-
sembles query by example in that each predicate which the result data has to fulfill
is expressed as an RDF triple in which queried data and equi-joins are represented
by variables.

The following example:

select ?p where {
?x <hasTitle> ?p.
?x <hasAuthor> ?a.
?a <hasName> "Veneta Dobreva"

}

requests the titles of all documents written by Veneta Dobreva. As we can see,
?p is bound to titles, and ?x and ?a are equi-join predicates. In this example,
all predicates (i. e., hasTitle, hasAuthor, and hasName) as well as one object
"Veneta Dobreva" are given. In order to evaluate the query, at least the three
triples given above have to be considered: ?a is bound to ida, ?x is bound to idp,
and ?p is bound to "Efficient ...". Further documents written by Veneta
Dobreva are copies of the first triple only differing in the object (title) so that ?p is
bound to different objects.

Due to the triple structure, variables can occur in multiple patterns. Queries
will inherently contain long chains of selfjoins and large join stars over many-
to-many relationships. At the same time, query optimization is not possible as
join attributes are difficult to predict. Further, join order optimizations require
data statistics for selectivity estimation, but in the absence of a schema a suitable
granularity of statistics gathering is non-trivial. The evolving structure of the data
and the variance and dynamics of the workload make it unattractive to rely on
an auto-tuning approach. These properties of RDF pose technical challenges for
efficiently managing and querying RDF databases. There has been a significant
research effort in this field as discussed in Section 4.6. We were inspired by one
of these works – the RDF system RDF-3X, which stores and queries RDF data
extremely efficiently, and is found to be the fastest RDF store [30].

4.1.3 Similarities and Differences between RFID and RDF Data

The obvious similarity between RFID and RDF data is first of all the triple struc-
ture of the data: an RDF triple is represented in the form (subject, predicate, object)
and RFID data in the form (e, r, t) as described in Section 2.1.3. Second, in both
scenarios there is a high volume of data that has to be dealt with. Typical RDF
databases are, for instance, huge reference repositories in life sciences. The high
event generation frequency of RFID data leads to fast-growing RFID archives of
multiple terabytes. Further, passed or historical RFID events resemble RDF read-
only databases, where no changes are expected. Since the timestamps of the RFID
events are growing monotonically during event generation, old events will never

4.1 Motivation 59

tr e

Figure 4.3: RFID event as a graph.

need to be updated, i. e., they are static. Therefore, an RFID database will be of an
append-only manner.

However, there exist several important differences between RFID and RDF data.
RDF uses a graph data model that represents entities and their relationships as
shown in Figure 4.2. An RDF dataset usually results in a big highly interconnected
graph, whereas, if we represent an RFID dataset as a graph, it will consist of
multiple small “star” pattern graphs for each single event. Given an RFID event
triple: (e, r, t), e will be the central entity connected to r and t respectively, as shown
in Figure 4.3. Further, due to the fact that the three components of the RFID triples
are semantically independent, their value domains are disjunct and they are never
combined during query processing in a join predicate or in a comparison (e. g.,
we will never join a reader ID with a timestamp). Reasonable joins in an RFID
scenario combine a reader ID with another reader ID, since we are often interested
in information about objects that travel a certain path. Because the time factor is
of a particular importance for traceability data, timestamp joins are extremely
important. However, not equi-joins are applied in this context, but joins over a
time window, the so called range queries, which determine information within a
certain time scope. These features are leveraged in query processing for the RFID
Triple Store. Another important difference is that the RFID traceability data is
very dynamic and requires efficient data staging mechanisms, whereas RDF data
is updated less frequently and the RDF stores are primarily focused on query
processing performance.

We address the challenges posed by RFID data described in Chapter 2 and the
characteristics discussed in this chapter in the design of our dedicated system as
follows: (1) we incorporate elaborated indexing techniques leveraging the specifics
of RFID data, in order to enable efficient event processing; (2) the query engine
takes advantage of the RFID characteristics (e. g., the monotonic increase of times-
tamps) to speed up query processing. Our implementation of the RFID Triple
Store builds on the code base of the open source RDF-3X engine [40], which has
been claimed to be the fastest RDF store [30].

4.1.4 Contributions

In summary, the contributions of this chapter are the following:

• We introduce the architecture of a dedicated system for efficient RFID stor-
age and management.

• We design RFID-specific indexes for efficient event processing.

60 4. A Dedicated Triple Store for RFID Data Management

• We provide three different data dictionaries for encoding the long identifiers
of the three components of the triple format (e, r, t). The monotonic increase
of timestamps implies an order-preserving timestamp dictionary.

• We use the specific RFID properties (e. g., timestamps increase monotoni-
cally) to optimize the query engine of the Triple Store.

• We experimentally evaluate our system using a mixed workload consisting
of inserts (data staging process) and queries (OLTP and OLAP) and analyze
the sustained throughput that can be maintained. Further, we compare our
approach against a commercial row-store and a non-commercial column-
store database system.

4.2 Triple Store Architecture

The RFID Triple Store is an "RFID-aware" database, which achieves high per-
formance by leveraging characteristics specific to traceability data in the design
and implementation of its index structures and query engine. In the following,
these characteristics are described and the key design principles behind the sys-
tem are presented. Some aspects in this chapter are examined in the work of
Robert Brunel [11] which was supervised by the author of the thesis. Parts of this
work were also published in [21].

4.2.1 Triple Store Indexes

The RFID Triple Store implements a logical schema for RFID data, which stores all
event triples in a single large table with columns E, R, and T for EPC, reader, and
timestamp. This direct representation obviates the need for non-trivial prepro-
cessing steps that many related approaches suffer from (see Section 3.1). Further,
we create an extensive set of indexes, shown in Figure 4.4, that are beneficial for
query processing:

• Full Triple Indexes for any permutation of the three columns (ERT, ETR, RET,
RTE, TER, and TRE)

• Aggregated Triple Indexes for any permutation of any column pair (ER, ET,
RE, RT, TE, and TR)

• Fully-Aggregated Triple Indexes for any single column (E, R, and T)

The Full Triple Indexes store full triples redundantly, rather than pointers to the
triples table. These indexes are essentially reordered copies of the triples table,
which becomes dispensable. Consequently, the Triple Store processes all queries
using the indexes only, and does not materialize the triples table explicitly. Hav-
ing all possible orderings of the triples is beneficial during query processing (as
explained in Section 4.4).

4.2 Triple Store Architecture 61

EVENTS

E R T

1 4 6
1 5 8
2 5 8

(a)

ETR

RTE

TRE

ETR

RTE

TRE

ERT

RET

TER

(1,4,6) (1,5,8) (2,5,8)

(4,1,6) (5,1,8) (5,2,8)

(6,1,4) (8,1,5) (8,2,5)

ET

RT

TR

ET

RT

TR

ER

RE

TE

(1,4,1) (1,5,1) (2,5,1)

(4,1,1) (5,1,1) (5,2,1)

(6,1,1) (8,1,1) (8,2,1)

E

R

T

(1,2) (2,1)

(4,1) (5,2)

(6,1) (8,2)

(b)

Figure 4.4: (a) RFID events (b) RFID Triple Store indexes. For ease of presen-
tation the value ordering of only one permutation of the index type
(Full, Aggregated, and Fully-Aggregated) is depicted. The under-
lined values denote a counter for the number of aggregated triples
(explained in 4.2.1).

The indexes are implemented as clustered B+-trees. The triples in the indexes
are sorted lexicographically by (v1, v2, v3), where vi denotes the value of the i-th
column. The three types of indexes store (v1, v2, v3) tuples, (v1, v2, count) tuples,
and (v1, count) tuples, respectively, where count denotes the number of aggregated
triples with equal key values. In Figure 4.4, the count values for the Aggregated
Indexes are shown underlined, e. g., (1,2) in the Fully-Aggregated Index E depicts
that the object with EPC 1 was scanned twice. To see how these counts can be
useful in query processing, consider the query “How many objects passed reader
r yesterday?”: One possible execution plan would select all triples related to r
from the RT index and then sum up all count values for yesterday’s timestamps.
Aggregated and Fully-Aggregated indexes are much smaller than the Full indexes
so that their size can be neglected for the total database size. In general, the size of
all indexes together is less than the size of the original RFID data. This is achieved
through the index compression, which is described in the next section.

The B+-tree Data Structure

All indexes in the RFID Triple Store are represented by clustered B+-trees, which
have the additional property of their leaf node entries to be compressed. The

62 4. A Dedicated Triple Store for RFID Data Management

compression is not applied on each single leaf node entry, but on all entries of one
page. In particular, compression is not deployed across page boundaries. This is
explained in detail in Section 4.2.2. As known, the B+-tree data structure supports
lookups of data values for a particular key value. Its main characteristic is that all
its nodes are database pages. An entry on an inner node holds a key value and a
pointer to a child page. The leaf nodes are forward-linked pages, where all values
are sorted in key order. This enables very efficient range scans for our B+-tree with
optional start and stop conditions (they specify the lower and upper bound of
the scanning scope). These start and stop conditions are highly exploited during
query processing. They speed up the range queries over a time window that are
typical in an RFID scenario.

4.2.2 Index Compression

The level of redundancy generated by the 15 indexes is affordable due to three
index compression techniques used in the RFID Triple Store: data dictionary com-
pression, prefix compression, and difference compression. In the following, each
of them is described in detail.

Data Dictionary

By employing a data dictionary, repeated information (typically long strings) in
the data is replaced by a short, unique code. This reduces the used storage and
speeds up processing. RFID data is very suitable and benefits strongly from dic-
tionary encoding due to the following facts:

1. Values are long character sequences
EPCs are long identifiers encoding product groups, producers, a single prod-
uct’s serial number and other information in up to 198 bits (as defined by the
SGTIN-198 standard [23]). For our scenario, we apply the commonly used
SGTIN-96 EPC standard. Readers may also include their ID and additional
information (like GPS position) in the generated event. Timestamps contain
at least date and time, however additional information such as a time zone
might be provided.

2. Values occur multiple times
Depending on the application scenario, every EPC occurs up to hundreds
of times. The reader infrastructure is usually stable so that the same reader
will appear very frequently. Each reader will produce on average 1/x of
the events, where x is the number of readers, if a uniform distribution is
assumed. Depending on the event generation frequency and time units used
within the infrastructure, each timestamp recurs in a high number of events.

Consequently, by mapping EPC, reader ID, and timestamp values in each triple
(v1, v2, v3) to internal numerical IDs (id1, id2, id3) using a data dictionary, we can

4.2 Triple Store Architecture 63

value→ID

ID→value

hash(v1)hash(v3) hash(v2)

(id1,v1) (id2,v2) (id3,v3)

Figure 4.5: Data dictionary in the RFID Triple Store.

substantially reduce the storage space in the RFID Triple Store and speed up the
processing.

We provide one data dictionary for each of the triple values. This is based on
the fact that the three columns of E, R, and T are semantically independent, i. e.,
they are never combined during query processing in a join predicate or a com-
parison (e. g., we will never join an E with an R column or compare an E with an
R column). Each dictionary can thus be optimized for “its” value type (E, R or
T). Each dictionary assigns numbers starting from 0, which results in contiguous
sequences of IDs without gaps. Index compression, in particular prefix compres-
sion (that is additionally applied and explained below), benefits from both, lower
absolute and relative ID values. It is therefore desirable in an RFID scenario to
maintain the three ID domains as disjunct ranges, so that the IDs are as small and
as similar (the numbers are not wide apart) as possible. For T indexes, particu-
larly, IDs grow monotonically with time, and sorting by time is essentially sorting
by ID, which we leverage in query processing.

For the efficient mapping from value to ID and vice versa, we maintain two
index structures, which are illustrated in Figure 4.5. Assuming that all values of
a certain type (EPC, reader, and timestamp) have a common length, the entries in
each dictionary have a fixed size. This allows for efficiently mapping from ID to
value in one step by the use of a direct mapping index [22]. Direct mapping is
a technique used to efficiently map logical OIDs (in our case dictionary IDs) to a
physical address (in our case the address of the real triple value). It is more robust
than mapping logical identifiers via hashing or B+-trees and outperforms both
methods, as stated in [22]. The mapping index is implemented as a sequence of
ID-value pairs stored on subsequent pages. Accessing the i-th element (0 <= i <
number of entries in the dictionary) can be done quickly using an in-memory list
of page blocks (“chunks”) and some arithmetics.

To efficiently support the reverse mapping from value to ID, each dictionary
maintains a B+-tree that maps the hash of a value to a set of candidate page num-
bers within the mapping index. These pages are then searched for the value with
the respective hash. We use the hash values of the strings instead of the long char-

64 4. A Dedicated Triple Store for RFID Data Management

acter sequences, in order to speed up the search operations in the B+-tree and to
reduce the space consumption of the dictionary on disk.

One can use a hash index instead of B+-tree for managing of the reverse map-
ping. There is however a trade-off between the access speed and the insert rate
into the data structure. Since RFID data is not static, but highly dynamic, there
will be continuous inserts. Hash tables do not perform well when there is a big
amount of inserts so that they have to be often extended. For this reason, the
B+-tree is the better choice in this case.

Prefix and Difference Compression

Tuples that share a common prefix benefit from a technique called prefix com-
pression. In the indexes RET, RTE, RE, RT, and R, most triples share the same first
triple value, the reader ID. For EPCs and timestamps the same is true, albeit less
pronounced. The ID tuples of the RFID Triple Store are stored in a lexicographical
order and therefore neighboring elements are usually very similar (e. g., EPCs are
assigned in ascending order and time values are monotonically increasing). Thus,
for the Full Triple R Indexes, most neighboring ID triples have equal id1 values.
The Full Triple E and T Indexes have only slightly different id1, id2, and id3 val-
ues. Depending on the data generation (the path length of an EPC) and on the
event generation frequency, the E and T indexes benefit from an equal id1 value
as well. This observation leads to the idea of the difference compression: storing
only changes between IDs rather than “full” ID values. The tuples (1, 4, 7), (1, 5, 8),
and (1, 5, 9) will be therefore compressed to (1, 4, 7) (−, 1, 8) (−,−, 1), where “−”
denotes prefix compression and the value 1 represents the difference to the pre-
decessor value. If a value changes according to its predecessor, then the following
triple values are not difference-compressed.

The ID values as well as the count values of the data tuples to be compressed are
4 byte unsigned integers. A full triple as well as an aggregated triple has three, and
a fully-aggregated triple has two such values. The differences (“deltas”) between
a tuple component and its predecessor consume between 0 and 4 bytes per value,
as only the non-zero tail bytes are written and leading zero bytes are skipped.
Per tuple of deltas, one header byte with size information is required to encode
(and later reconstruct) the total number of bytes used by the deltas. Remaining
unused bits in the header byte are used for an extra compact encoding, in case
only v3 changes for a triple and the delta is less than 128 (as is very common).
The compression used for Aggregated and Fully-Aggregated Triple Indexes has
minor differences: Most changes involve a gap in v2 for aggregated triples or in v1
for fully aggregated triples, together with a low count value. More details on the
algorithms are given in [40].

Prefix and difference compression are applied to all of the index B+-tree leaf
pages, but not to inner nodes. Using compression in inner nodes would make it
impossible to use binary search for keys. Also, in order to preserve the properties
of the standard B+-tree, the index pages are always compressed and decompressed

4.2 Triple Store Architecture 65

as a whole, and compression is not applied across page boundaries. Therefore, the
first triple on a page is stored uncompressed and is used as an anchor.

Index ERT ETR ER ET

Items: 107 107
9901313 107

Pages: 3016 (12225) 2379 (12225) 1213 (7260) 1425 (7332)
Items per Page: 3315 (818) 4203 (818) 8162 (1364) 7017 (1364)
Item Size: 4.0–5.4 B 3.8–4.8 B 1.9–2.3 B 1.89–2.5 B
Compression Time: 197 ms [65 µs] 241 ms [101 µs] 205 ms [169 µs] 186 ms [130 µs]
Decompression Time: 325 ms [107 µs] 105 ms [44 µs] 84.3 ms [69 µs] 81.4 ms [57 µs]

Index TRE TER TR TE

Items: 107 107
9759253 107

Pages: 2968 (12225) 2325 (12225) 840 (7155) 839 (7332)
Items per Page: 3369 (818) 4301 (818) 11618 (1364) 11918 (1364)
Item Size: 4.0–5.0 B 3.8 B 1.4–1.5 B 1.3–1.4 B
Compression Time: 208 ms [69 µs] 231 ms [99 µs] 137 ms [162 µs] 102 ms [121 µs]
Decompression Time: 95.1 ms [32 µs] 104 ms [44 µs] 62 ms [73 µs] 62.5 ms [74 µs]

Index RET RTE RE RT

Items: 107 107
9901313 9759253

Pages: 2999 (12225) 2972 (12225) 1743 (7260) 1738 (7155)
Items per Page: 3334 (818) 3364 (818) 5680 (1364) 5615 (1364)
Item Size: 4.7–5.0 B 4.7–5.0 B 2.8–3.0 B 2.8–3.0 B
Compression Time: 191 ms [63 µs] 202 ms [67 µs] 198 ms [113 µs] 207 ms [119 µs]
Decompression Time: 89.4 ms [29 µs] 164 ms [55 µs] 72.7 ms [41 µs] 115 ms [66 µs]

Index E R T

Items: 501783 1000 200094

Pages: 73 (246) 1 (1) 36 (98)
Items per Page: 6873 (2046) 1000 (2046) 5558 (2046)
Item Size: 2.3–2.4 B 3.0 B 2.9–3.0 B
Compression Time: 10.6 ms [144 µs] 26 µs 3.84 ms [106 µs]
Decompression Time: 3.49 ms [47 µs] 13 µs 1.62 ms [44 µs]

Table 4.1: Results for the prefix compression benchmark test (adopted
from [11]). For time measurements, the values in square brackets are
the average per-page values derived from the accumulated times. For
page and item counts, corresponding numbers of uncompressed data
are given in round brackets for comparison. The two given item sizes
per index are the minimum and maximum of the set of average item
sizes on all its compressed pages.

We found out that data dictionary, prefix and difference compression reduces
the size of the indexes to the factor of four (see Table 4.1) compared to using

66 4. A Dedicated Triple Store for RFID Data Management

uncompressed indexes. The Aggregated and Fully-Aggregated indexes are much
smaller than the Full Triple Indexes and the increase of the total database size due
to these indexes is negligible. These observations can be proved in the following
experiment. We measured the compressed data sizes for every index as well as the
accumulated time needed for all compression operations and all decompression
operations. The results are summarized in Table 4.1. The test illustrates a typical
mini RFID scenario: it is conducted with a set of 107 ID triples, i. e., events, equally
distributed over the 1000 RFID sensors and read from a pre-processed file with
size of about 78.3 MB. From this set of triples, 15 sequences corresponding to the
15 different indexes (with different permutation order and aggregation levels) are
built. For each index, all triples are subsequently compressed and packed into
chunks of 16 KB (matching the size of a page) and then decompressed again.
For every index, the total number of items, the pages used (the occupied pages
without compression are given in brackets), items per page (in brackets without
compression), the item size (minimum and maximum value), the compression
and decompression time (in brackets the calculated time per page) are given. We
observe that the compression factors depicted in the table can be considered good,
but significantly vary from index to index. They depend not only on the type of
index (Full, Aggregated or Fully-Aggregated) but also on the ordering of the data
within the index (RET, RTE, ...).

The compression factor is in the range of 19-24% for the Full, 11-24% for the
Aggregated, and 30-37% for the Fully-Aggregated Triple Indexes. The R index
consists of only one page, since we presume 1000 different readers in our scenario,
which together take only 3000 bytes. This is realistic since in a real-world RFID
scenario the number of sensors that are applied in the infrastructure is usually not
more than several hundreds. For some indexes (ERT and ETR), the minimum and
maximum average item size differ by more than 30%. This is caused by the fact
that the compressed sizes of absolute EPC and timestamp IDs increase slightly,
that means from 2 to 3 bytes once they exceed 216, i. e., when there are more
than 65535 items from each type. Respectively, similar effect will be expected at
ID value 224 (on the boundary between 3 and 4 bytes) and so on. This behavior
repeats when the IDs surpass certain threshold values. However, the increase in
the compressed sizes is small enough to be neglected. As explained in this section,
for the Full Triple Indexes, each time id2 changes, the absolute value of id3 is stored
instead of the difference delta. Thus, each time id1 changes, both id2 and id3 are
stored as absolute values and need more space. This is why the average item size
for the ERT indexes increases from 4.0 to 5.4 bytes for higher absolute ID values.

An upper bound for the compression time can be given with 170 µs. Decom-
pression is for all indexes (except for the ERT index, which is an outlier in this mea-
surement) more than twice as fast as compression and can be lower-bounded by
75 µs. Therefore, the compression and decompression algorithms are fast enough
to provide efficient processing for the RFID Triple Store.

4.3 Event Processing 67

e1

e2r2r1

insertinsert
(a) ERT Index

e1

e2t2t1

insertinsert
(b) ETR Index

Figure 4.6: E Indexes

4.3 Event Processing

In this section, we provide details about the Triple Store index design that enables
a high insert throughput.

4.3.1 Index Design

The 15 indexes differ in how new triples distribute over existing B+-tree leaf pages.
The potentially most expensive part during an insert operation is allocating new
pages. This operation involves finding free space inside the index segment and
extending the segment physically if none is available. Furthermore, the insertion
of newly allocated pages destroys the very convenient clustering of the data. In
order to support efficient index updates, we therefore reserve (pre-allocate) index
leaf pages in advance, which we refer to as spare pages. Rather than being allocated
on-demand, a range of multiple spare pages is allocated at once. This mechanism
has two considerable benefits: (1) it can speed up inserts as it obviates on demand
page allocation, (2) it also speeds up sequential scans in queries as spare pages
preserve the clustering of the data. Using the data dictionaries, new EPC, reader,
and timestamp values will be mapped to unused IDs that are higher than all
existing IDs for the corresponding value type. In the indexes, triples are ordered
by their IDs, not by their values. Consequently, all (v1, v2, v3) triples with a newly
created ID for v1 will be placed at the right end of the tree. For this purpose we
pre-allocate spare pages at the right end of most indexes. In the following, we
describe for each index at which position(s) spare pages are needed and how the
different indexes manage upcoming events.

68 4. A Dedicated Triple Store for RFID Data Management

t1

t2e2e1

insert
(a) TER Index

t1

t2r2r1

insert
(b) TRE Index

Figure 4.7: T Indexes

E Indexes

Figure 4.6 illustrates the Full Triple Indexes ordered by E first. The sequence of
regular, forward-linked leaf pages is shaded gray and spare pages are white. As
objects are supposed to enter and leave the sensor infrastructure within a certain
time window (corresponding to their production or transportation time), most
new events are inserted at the tail of the indexes. This is indicated by the bold
arrow denoting the predominant insert position. However, depending on the event
generation frequency and the length of the production chain, some inserts might
occur in between, as indicated by the thin arrows. For the ERT index, events
generated by different sensors, which read an existing EPC e1 might be inserted
at different positions within the index leaves covered by e1. For instance, e1 might
first be read by r2, then by r1. The second event must be inserted before the first
as the indexes are sorted lexicographically. Thus, small gaps must be left to fit
triples concerning existing EPCs and readers. For the ETR index, it is clear that
new events for an existing EPC e1 can only be appended at the right end of “its”
index leaves as past timestamps won’t appear again. At the same time, there must
be enough space at the tail to hold new objects that did not appear yet.

T Indexes

Figure 4.7 illustrates the Full Triple Indexes ordered by T first. New events are
always appended to the tail of the indexes, because recent events have greater
(or equal) timestamps than existing events. Therefore, no space at all is required
among the existing triples. We only reserve spare pages at the tail of the index
tree.

4.3 Event Processing 69

r1

r2e2e1

insert insert
(a) RET Index

r1

r2t2t1

insert
(b) RTE Index

Figure 4.8: R Indexes

R Indexes

Figure 4.8 illustrates the Full Triple Indexes ordered by R first. All sensors in the
infrastructure continuously read EPCs and generate events. Thus, the insertions
are distributed over the whole breadth of the tree. For a static infrastructure, we
do not need to reserve spare pages for newly created reader IDs. For the RET
index, most of the inserts will be at the tail of one reader’s index leaves. This
is because new objects are much more likely to produce events than old objects.
Further, the readings of reader r1 might occur in an arbitrary order, e. g., first e2
and then e1. Here again, the lexicographical order requires the second reading to
be stored before the first in the index. In the RTE index, new events for a reader
r1 are always appended to the last event within the index leaves covered by r1.

4.3.2 Analysis of Index Updates

As a first step towards designing the described indexes, we provide a thorough
analysis of the number of needed spare pages and their position for each index.
We exploit the following facts about traceability data: (1) the sensor infrastructure
in a particular application scenario is known in advance and is not supposed to
change, (2) the expected event generation frequency for a particular application
scenario can be approximated in advance, e. g., due to publications like the BMW
experience report [8], as discussed in Section 2.2, (3) timestamps increase mono-
tonically so that younger events have a greater or equal timestamp than older
events, (4) monitored objects are supposed to move steadily from reader to reader
and disappear from the scene after they have traversed a path of a certain length,
e. g., a production process, so that their EPCs are unlikely to appear again in fu-
ture events. The path length for an object in a particular application scenario is
thus predictable.

We determine the number of tuples expected to occur in the next S seconds and

70 4. A Dedicated Triple Store for RFID Data Management

ERT, ETR Reserve space for u(v1) − n[v1, _, _] items after each group of
(v1, _, _) triples; Reserve space for f · S items at the tail.

ER, ET Reserve space for u(v1) − n[v1, _, _] items after each group of
(v1, _) triples; Reserve space for f · S items at the tail.

E Reserve space for f · S/u(v1) items at the tail.
RET, RTE Reserve space for w(v1) · f · S items after each v1-run.
RTE Reserve space for w(v1) · f items after each v1-v2-run.
RE Reserve space for w(v1) · f · S/u(v2) items after each v1-run.
RT Reserve space for S items after each v1-run.
R Reserve space for w(v1) · f · S items after each v1-run.
TRE, TER Reserve space for f · S items at the tail.
TR, TE Reserve space for f · S items at the tail.
T Reserve space for f · S items at the tail.

Table 4.2: Using the prediction model for calculating the spare pages for each
Triple Store index.

estimate the number of spare pages that need to be pre-allocated for each index.
We use the notation n[·, ·, ·] for the number of (e, r, t)-triples with a certain pattern
[·, ·, ·] which are currently (at time t0) in the database. For example, for the ERT
index n[v1, _, _] denotes the number of tuples with EPC v1. With f we denote the
event generation frequency in events per second. The notation u(e) represents the
expected number of events generated by a certain object. The variable u is the
median of all existing EPC path lengths. The function w : R → [0,1] denotes for
each known reader its relative weight such that ∑r(w(r)) =1.

Using these parameters, we can calculate the required information in order to
“prepare” the spare pages for all expected triples in the time between now (t0)
and t0 + S. Table 4.2 shows a summary of how these considerations are applied
for calculating the spare pages of each index. In the ERT and ETR indexes, we
need to anticipate u(v1) events for an EPC value v1. Considering the number
n[v1, _, _] of already stored events for this EPC value, we need to reserve space
for another u(v1)− n[v1, _, _] events after the respective group of (v1, _, _) triples.
The same considerations hold for the ER and ET indexes. Most of the events in
the E and T indexes are inserted at the tail of the index leaf level. For ease of
computation, space for f · S events can be reserved at the end of each index, i. e.,
the total number of expected events in a time interval of length S. For the E index,
we need only reserve space for f · S/u(v1) events as the u(v1) expected events for
one EPC are aggregated into one value for this index.

For the indexes RET and RTE, we have to reserve space per reader for the ex-
pected events. The total number of expected events during the time interval S,

4.3 Event Processing 71

i. e., f · S, is thus multiplied by the weight function of the respective reader w(v1)
to determine the number of events generated by reader v1. For the RTE index, we
further split the reserved space into smaller spaces for each v1-v2-run. For each
reader and timestamp value we expect f · w(v1) events to be inserted. For the
RE index we divide the total number of expected events for the respective reader
value by the average path length of an EPC because the path is aggregated into
the count value of this index. In the RT index we expect S different timestamp
values for a reader as we assume all readers to continuously generate events in
our traceability scenario.

For all T indexes, space is reserved only at the right end of the index tree (for
f · S triples), because of the monotonically increase of timestamps.

The presented analysis shows how the different indexes behave during updates
and determines the number of spare pages needed for a particular scenario. Using
these observations, but generalizing our ideas, we present the implementation of
the indexes in the next section. By providing auto-tuning mechanisms we auto-
matically adapt the Triple Store to the changes in the environment and omit the
need of specifying the predicted parameters u(e) and w(r).

4.3.3 Index Implementation

Providing correct and up-to-date values to the parameters presented in Section 4.3.2
can be inconvenient if not impossible for the database administrator. In the follow-
ing we describe an approach for dynamic adaption of the RFID Triple Store. The
sequence of leaves in Figures 4.6, 4.7, and 4.8 is logically divided into page ranges,
called chunks. Each chunk consists of a sequence of regular, forward-linked leaves
and a range of spare pages. For the R-indexes, one chunk per reader is provided,
whereas all other indexes contain one big chunk. As soon as all available spare
pages are used up, a chunk grows automatically by a number of pages propor-
tional to its size (we use a grow factor of 50%). All chunks grow independently,
and they grow less frequently the larger they get. Therefore, a chunk of a heavily-
frequented reader will grow faster and in larger increments than a chunk of an
average reader. The leaf page structure will thus eventually adapt to the reader
weights. We therefore no longer need the weight function w(v1) from Table 4.2
to be provided by the database administrator. For the R indexes, this technique
successfully adjusts the number of spare pages needed for each reader. For the T
indexes, free spare pages are needed only at the tail of the indexes as shown in
Figure 4.7 and these are reserved using the automatic growing factor. For the E
trees, the spare pages that are reserved at the right end of the tree are determined
the same way as for the T indexes. The spare pages that have to be pre-allocated at
the positions in between (see Figure 4.6) still use the formulas stated in Table 4.2.
However, the expected path length u(v1) for a new EPC value v1 can be deter-
mined from an existing EPC e′ that is known to belong to a similar group of ob-
jects (product group) by looking up the count value for e′ in the Fully-Aggregated
E Index. This way, we can dynamically adapt the system to the current load.

72 4. A Dedicated Triple Store for RFID Data Management

Applying the self-adaption of the RFID Triple Store indexes, the leaves of the
indexes are filled up on average more than 90 percent and overflows (due to an
unexpectedly high number of actually generated events) are rare.

4.3.4 Pre-allocation of Spare Pages

The space allocation mechanism inserts the correct amount of space (the calcu-
lated spare pages) at the respective positions on the index leaf page level. The
implementation of the pre-allocation is carefully crafted so as to keep the com-
putational overhead minimal. Given an ordered stream of triples (that should be
merged with the triples already stored), the algorithm can decide to insert free
space by only looking at the currently processed triple and its successor. The de-
cision of whether to leave space behind a triple t̂ = (v1, v2, v3) from the input
stream depends on t̂ itself and the next triple t̂′ = (v′1, v′2, v′3) in the stream. All
considerations described here are for Full Triple Indexes, but are equally applied
to the Aggregated and Fully-Aggregated Indexes. If, for example, v1 6= v′1, then
t̂ is the last triple in a run of triples with equal v1 values. For the ERT index,
this would mean that a new run of events concerning the EPC v′1 begins behind
t̂, and space has to be left for future events concerning EPC v1. In addition to t̂
and t̂′, the values of three counters are considered: n[v1], the number of triples
in the current v1-run, n[v1, v2], the number of triples in the current v1-v2-run, and
n[v1, v2, v3], the number of triples in the current v1-v2-v3-run. These counters are
incremented or reset based on the values of t̂ and t̂′ while processing the input
triple stream. In the example, after processing t̂, their values are all reset to 1. In
fact, n[v1, v2, v3] will always be 1 as there cannot be duplicate triples. Note that
the counters correspond to certain n[·, ·, ·] values from Section 4.3.2. For example,
for the ERT, ER, ETR, ET, and E indexes, n[v1] equals n[v1, _, _].

Conceptually, reserved space might be needed at any position where a v1-run,
a v1-v2-run, or a v1-v2-v3-run ends, to hold a certain number of expected triples
n that belong to the respective run. In other words, any run can “own” reserved
space for a number of triples. Usually, many runs fit on a single database page
(including reserved space), and it is not convenient to reserve space directly be-
hind a run. Instead, the reserved space for all runs on a page is accumulated and
placed behind the existing triples.

A difficulty lies in the fact that a number of tuples, in the presence of leaf
compression, may occupy a varying number of bytes when stored on a page. We
therefore introduce the average triple sizes tso for each index o. The self-adaption
mechanism can obtain tso at virtually no cost each time a page is compressed.
Now, given that space should be reserved for n triples and that another nsp triples
fit on the currently processed leaf page P with page size ps, the number of spare

4.3 Event Processing 73

Figure 4.9: Spare pages (adopted from [11]).

pages p to be pre-allocated behind P is:

p =

0 nsp > n,⌈
(n− nsp) · tso/ps

⌉
otherwise.

A range of spare pages can therefore be assigned to a singe leaf page. In the
header of the leaf page, an extra field points to the first available spare page. In
Figure 4.9 a leaf page, its two spare pages, and its right neighbor page are depicted.
As shown, spare pages are invisible and not linked in the tree structure as long as
they are not used. Hence, spare pages are not considered by the lookup algorithm
and sequential scans are not affected by them, as they navigate through the leaf
pages using their next pointers which always refer to non-empty pages. If a spare
page is needed during updates it is only linked in. In case no more spare pages
are available, a new empty leaf page has to be allocated.

Inner Keys and Merge Limits

In order to correctly reserve spare pages in the index structures of the RFID Triple
Store, some implementation details have to be discussed. When new triples are
merged in the B+-tree data structure, the following has to be considered: if the par-
ticular leaf page P has a right neighbor page P′, the left-most key m = (v′1, v′2, v′3)
on P′ is used as a so-called “merge limit” for those new entries that are merged
onto P, as illustrated in Figure 4.10a. This means that all keys merged with entries
from P must be smaller than the first key on its neighbor leaf P′. Normally, when
the merging on P is processed, the right-most key t = (v1, v2, v3) on P is used as
the key for the entry on the parent inner node pointing to P, that means t is used
as a splitter key s = (v1, v2, v3). Both the merge-limit m and the selection of t as
inner key (or splitter key s) have to be revised for the process of pre-allocating free
space on a page.

If we assume that space was reserved on page P for a number of triples of
the form t∗ = (v1, ·, ·), which have to be inserted after t, we will encounter the
following problem: the triples t∗ would not be stored on P, but on its neighbor
page P′, because t was used as a splitter key and t < t∗. This results in wasting
the reserved space on P and occupying space reserved for other triples on P′. To
avoid this problem we do not use t as a splitter key, but rather a “virtual” key
computed from t and m: e. g., s = (v1, ∞, ∞). This is shown in Figure 4.10b. As a
beneficial side-effect, splitter keys no longer have to be updated every single time

74 4. A Dedicated Triple Store for RFID Data Management

leaf page P right neighbor page P’

t m

t = (v1, v2, v3)

s = (v1, v2, v3)

space for
additional triples

space for
additional triples

s

m = (v1', v2', v3')

(a) Merge limit and inner keys in a B+-tree .

leaf page P right neighbor page P’

t m

t = (v1, v2, v3)

s = (v1, ∞, ∞)

space for
additional triples

space for
additional triples

s

m = (v1+1, 0, 0)

(b) Adjusted merge limit and inner keys.

Figure 4.10: Merge limit and inner keys in the RFID Triple Store.

the maximum key on a page changes, saving some additional overhead.
Another problem is that if entries are bigger than (v1, ∞, ∞) but smaller than m,

they can get merged onto P together with a run, while actually belonging to P′.
We set the merge limit m to (v1 + 1, 0, 0), in order to solve this issue. Figure 4.10b
shows the revised values for t, s, and m.

These considerations apply also for the (Fully-)Aggregated Indexes.

Safety Margins on Leaf Pages

As already described, for some indexes we reserve spare pages only at the tail
of the index. The space reserving algorithm decides to ignore the triple sizes tso
for each index o in some cases if it detects that the number of triples to reserve
space for is zero for all runs on a page. As a result, maximally-charged pages are
created. This is the case for the TER, TE, TRE, TR, and T indexes, as no triples
with old timestamps are expected in the stream of newly arriving events. These
maximally-charged pages combined with certain specifics of the prefix compres-
sion can lead to the following problem: inserting new items on a page could
change the compressed sizes of existing triples that are placed after the newly in-
serted ones. Besides, all aggregated triples apply an extra small encoding if the
count value of an aggregated triple is less or equal to 4. So, the size of the triples

4.3 Event Processing 75

main memory

RETRT
E

TE RTRE

ET
R

ERT
E

dict

T
dict

R
dict

ca
ch

in
g

di
ct

io
na

ry

uncompressed
differential indexes

compressed indexes

hard disk

RETRT
E

TRETE
R

ERTET
R

RE

TR

ER

RT
TE

ET

R
R

dict

T

E

T
dict

E
dict

INSERTS

E batch insert

T batch insert

R deferred insert

QUERIES

ca
ch

in
g

di
ct

io
na

ry
ca

ch
in

g
di

ct
io

na
ry

Figure 4.11: Overview of the event processing in the RFID Triple Store.

may slightly grow if the count values get updated and exceed 4. As a result, es-
pecially maximally-charged pages are likely to overflow, generating undesirable
split pages. Therefore, the RFID Triple Store leaves a safety margin of 100 bytes
per page. Triples that are packed on a newly created page may not use the safety
margin, but on a later update, the space taken by the elements can grow into the
safety margin. The 100 bytes take less than 1% of the available page size, but
significantly reduce undesirable overflows of the maximally-charged pages.

4.3.5 Index Update

It is a challenge to design the indexes in a way which allows for an efficient update
for the heavy continuous insert stream typical for traceability data. In our system,
inserts are always done in a batched manner. This means that events are collected
in a batch within the interval of one second and are then fired to the system.
Figure 4.11 illustrates how the event processing in the RFID Triple Store looks like
and gives an overview of the indexes in main memory and on disk. All new triples
are first loaded into small differential indexes, which are uncompressed indexes in
main memory. In memory only the six differential Full Triple Indexes (ERT, ETR,
RTE, RET, TER, TRE) exist. The differential Aggregated Triple Indexes and Fully
Aggregated Triple Indexes can be derived from the Full Triple Indexes on the fly,
if a query requires them, and are not created in advance.

Periodically, the differential indexes are merged (as batches) with the main in-
dexes on disk. The merging process for the Full Triple Indexes is depicted in
Algorithm 7. For each batch, the input is first sorted in the order of the corre-
sponding index (lines 1-5 for RTE, 6-10 for RET, and so forth). Second, for each
element of the batch we look up the leaf page on which it belongs and memorize
the path for further lookups (see Algorithm 8). Third, we process the input, i. e.,

76 4. A Dedicated Triple Store for RFID Data Management

Algorithm 7: Algorithm processBatch
input : batch, bs (batch size)

/* Updating the Full Triple Indexes for one batch */
/* RTE */

1 sort batch in RTE order;
2 forall the ri in batch do

// 1000 (= |R|) times;
3 p← search(ri, RTE); /* Algorithm 8 */
4 process(p); /* Algorithm 9 */

5 end
/* RET */

6 sort batch in RET order;
7 forall the ri, ej in batch do

// 2500 (= bs) times;
8 p← search(< ri, ej >, RET); /* Algorithm 8 */

9 process(p); /* Algorithm 9 */

10 end
/* TER */

11 sort batch in TER order;
12 p← last not-full page of index;
13 process(p); /* Algorithm 9 */

/* TRE */
14 sort batch in TRE order;
15 p← last not-full page of index;
16 process(p); /* Algorithm 9 */

/* ERT */
17 sort batch in ERT order;
18 forall the ei, rj in batch do

// 2500 (= bs) times;
19 p← search(< ei, rj >, ERT); /* Algorithm 8 */

20 process(p); /* Algorithm 9 */

21 end
/* ETR */

22 sort batch in ETR order;
23 forall the ei in batch do

// 2500 (= bs) times;
24 p← search(ei, ETR); /* Algorithm 8 */
25 process(p); /* Algorithm 9 */

26 end

after decompressing the page found during the search, we merge the batch entries

4.3 Event Processing 77

with the entries on this page. If the page overflows we can use one of the spare
pages. At the end, we write back the resulting triple stream and compress the
pages again. If a spare page was used, the next pointer to this page has to be
activated. Algorithm 9 describes the processing of the batch items. As we can see,
the costs of the merging process depend on the costs for the lookup operation as
well as the costs for the compression and decompression of a page.

Algorithm 8: Algorithm search
input : Value vi or value pair < vi, vj >, index i
output: The first leaf page for vi or < vi, vj > in the specified index

1 p←root node;
/* search for insert page(s), first in the differential,

than in the main dictionaries */
2 while p is inner node do

// 2 (=height of index without root page) times;
3 read page p;
4 do a binary search;
5 p← reference of next page;
6 end
/* p is a leaf node */

7 return p;

Algorithm 9: Algorithm process
input : Page p

1 read p (and possibly subsequent pages);
2 decompress p;
3 find insert position at end of p;
4 compress batch on p (and possibly on subsequent pages);
5 write all updated pages;

For the E and T indexes, the triples in a batch are inserted mostly at the tail
of the tree, whereas R indexes are updated at each reader’s position. For the
processing of one batch this requires one lookup per reader to determine the right
insert position. Since this is very costly, especially when the indexes are growing
in depth, we are following a “hybrid” approach: The four E and T differential
indexes are flushed to disk immediately after a batch of triples has been inserted;
for the two R differential indexes, on the other hand, we use a staging architecture
with deferred index updates and these are flushed to disk much less frequently to
avoid high merge costs. Since the T and E differential indexes are merged with the
main indexes after each event batch, they are depicted smaller than the R indexes
in Figure 4.11. At particular points in time (or when memory is exhausted) the

78 4. A Dedicated Triple Store for RFID Data Management

ca
ch

in
g

di
ct

io
na

ry
ca

ch
in

g
di

ct
io

na
ry

ca
ch

in
g

di
ct

io
na

ry

cache per batch

main
dictionaries

diff
dictionaries

Figure 4.12: Overview of the dictionary and caching mechanisms of the RFID
Triple Store.

differential R indexes are flushed into the corresponding B+-trees in a bulk insert
operation.

Caching Techniques

Analogously to the differential indexes, three small differential dictionaries (for
the E, R, and T values) reside in main memory during a batch execution. This way,
dictionary lookups during the batch processing are cached and can be retrieved
at no disk I/O cost. Like the other indexes, the delta dictionaries are flushed to
disk at the end of a batch execution. Since in an RFID scenario we are mainly
querying the recent activities of the objects, we use an additional data structure
called a caching dictionary. The caching dictionary keeps current object IDs across
batch boundaries in main memory. It is organized as a least-recently-used-queue.
This caching of dictionary lookups is beneficial to inserts and queries over recent
events, which are likely to still reside in the cache. We use three caching dic-
tionaries for the E, R, and T values. In Figure 4.11, an example of caching the
last accessed values from the differential and main RET index is depicted by the
thin arrows. In Figure 4.12, the dictionary and caching mechanisms of the RFID
Triple Store are summarized. Next to the differential and main dictionaries that
were already discussed, there exists a very small cache per batch for the repeated
information during batch execution, for instance the long reader identifiers. The
caching dictionary holds, as already explained, frequently used object IDs across
batch boundaries in main memory. These IDs can originate from the differential
as well as from the main dictionaries.

4.4 Query Processing 79

SELECT o1 . e
FROM events o1

WHERE o1 . r IN
(SELECT o2 . r
FROM events o2

WHERE o2 . e=1 AND abs (o1 . t − o2 . t) < 300)

Figure 4.13: Contamination query.

4.4 Query Processing

Business traceability applications need to refer to up-to-date information in order
to provide meaningful information for the decision-making processes relying on
them. Therefore, these applications have to process not only historical (OLAP)
data, but need to additionally involve the latest OLTP information in the analysis
process. The RFID Triple Store answers OLTP queries (e. g., “Where is object o at
this moment?”) “up-to-the-second”, i. e., they are fast enough in order to provide
the information of the last second. Further, the Triple Store supports efficient
OLAP query processing, particularly range queries over a time interval, which are
typical in RFID applications.

For query processing, the information in the differential indexes and the in-
formation in the main indexes have to be taken into account. To obtain a com-
plete/unified view on this data, additional union/merge joins (merge joins with
union semantics) between the differential indexes and the main indexes are inte-
grated in the query plan during query processing. This is however transparent for
the application or user. If there are no relevant or no new triples in the differential
indexes during query execution, additional joins with the differential index will
be unnecessary. Consequently, the union/merge joins are omitted if the query
plan generator detects that a differential index contains no triples that are relevant
to a current query. Since we propagate the changes in the T and E indexes im-
mediately (after each batch) to the main indexes, the T and E differential indexes
will be empty most of the time. Therefore we don’t have the overhead of the cor-
responding differential index scans or union/merge joins. For the R indexes, we
take this overhead into account for the sake of the insert efficiency.

Using some typical RFID queries as an example, we will explain the query
processing features of the RFID Triple Store. Figure 4.13 shows an example OLAP
query (a contamination query), which determines all objects that passed the same
readers as the object with EPC 1 within a time interval of 300 seconds. Its execution
plan, which uses only the main indexes, is shown in Figure 4.14. The query parser
derives triple patterns of the form (e, r, t). The components of these patterns can
be either a variable or a constant value. For our example query, there are two
triple patterns: (r1, e1, t1) and (1, r2, t2).

80 4. A Dedicated Triple Store for RFID Data Management

πe1

σ(abs(t1−t2)<300)

MergeJoin
onr1=r2

IndexScan
(1, r2, t2)

ERT index

IndexScan
(r1, e1, t1)

RET index

SIP (r2)

Figure 4.14: Execution plan of the query in Figure 4.13

In the following, we discuss the query engine characteristics of the RFID Triple
Store which speed up the query processing.

4.4.1 Index Range Scans and Merge Joins

The thorough indexing of the data and the fact that the data is sorted by all pos-
sible column permutations allows most queries to be answered by using a range
scan on a specific index. Furthermore, the wide choice of different sort orderings
of the indexes enables most often the execution of efficient merge joins. The op-
timizer plans are geared to preserve important orders in intermediate results for
subsequent joins. When this is no longer possible, the query engine switches to
hash-based join processing. For our example query in Figure 4.13, the ERT index
is used to determine all tuples containing e = 1 and a range scan over the index
leaves implying (only cheap) sequential I/O is done. Since the result of the left
index scan is sorted by R, an appropriate merge join with the RET index on the
reader attribute is then executed.

4.4.2 SIP

The query engine of the RFID Triple Store takes advantage of the sideways infor-
mation passing (SIP) technique as described in [39]. This is a mechanism of passing
filter information across pipelined operators that process comparable identifiers,
in order to accelerate joins and index scans. This information is used to identify
irrelevant index parts that will be skipped by parallel operator(s) and thus make
query processing more efficient. Our example query also benefits from the SIP
technique: the intermediate results produced by scanning the ERT index for e = 1
are passed to the RET scan, which will therefore skip irrelevant index parts by
jumping directly to the “correct” reader values. Since in our scenario an EPC is in

4.4 Query Processing 81

SELECT DISTINCT e
FROM events
WHERE r = 1

AND t s > 5

AND t s < 10

Figure 4.15: Range query: A list of objects scanned by sensor 1 within a speci-
fied time interval.

average scanned by 20 out of 1000 readers, this will result in only accessing 2% of
the RET index leaves.

As described in [39], the SIP technique is only applied to the main indexes, since
the differential indexes are comparatively small. We, however use the deferred
index update for the R indexes as described in Section 4.3.5 and keep the R indexes
for as long as possible in main memory, so that they can grow large. For this
reason, we also implement the SIP technique for the R differential indexes, which
brings a significant performance benefit for the queries that use these indexes (see
Section 4.5).

4.4.3 Order-preserving Dictionary

As mentioned in Section 4.2, using three dictionaries for each of the triple columns
E, R, and T enables considerable query processing optimizations. Due to the fact
that the timestamps of scanned events increase monotonically, the ID-mapping in
the T dictionary is order-preserving. Furthermore, through the employment of
dedicated data dictionaries, the assigned dictionary IDs are contiguous. We lever-
age this characteristic in query processing and apply three different optimization
methods: (1) IDs-only comparison, (2) pushing down selections, and (3) extended
SIP.

IDs-only Comparison

Most of the queries in an RFID scenario are time-restricted, i. e., they are usually
concerning a specific time interval or are interested in events that occurred at a
particular time. We consider queries containing selection patterns like t < value
or t1 < t2 as shown in Figure 4.15. Observing the query plan for this range query
in Figure 4.16, we can see that after performing the RET index scan, the selection
predicates on the timestamp values are evaluated. One will usually first perform
dictionary lookups in order to determine for each tuple (in this case the result
coming from the scan) the actual value corresponding to the dictionary ID t.

Only then this actual value (say t1) can be finally compared to the given time
value or to another determined timestamp value (t2). Taking advantage of the
order-preserving characteristic of the T dictionary, we can omit the dictionary

82 4. A Dedicated Triple Store for RFID Data Management

πe1

σt1>5

σt1<10

IndexScan
(1, e1, t1)

RET index
(a)

πe1

IndexScan + σ(5<t1<10)
(1, t1, e1)

RTE index
(b)

Figure 4.16: Execution plan of the query in Figure 4.15 before and after opti-
mization

lookups in this case and perform the comparison directly on the ID values. For
the first pattern (t < value) we determine the ID of the given value once at query
compilation time and then compare it to the timestamp IDs t. For the second
pattern (t1 < t2) we just compare the IDs of values t1 and t2. Query execution is
drastically accelerated by this technique (by several orders of magnitude).

Pushing Down Selections

Further, for range queries over a time interval, we can push down the selection in
the index scan. Consider the example query in Figure 4.15. Since we know the
timestamp IDs of the given values (5 and 10), we can choose an index scan where
the input is sorted by T and can only iterate over the tuples in the applicable time
range. In Figures 4.16a and 4.16b, the original query plan and the query plan
after pushing down the selection is shown. By choosing the RTE index, the input
is sorted by T since the reader value is set to a particular value provided by the
query (r = 1 in this case). Thus, during the scan, we can only iterate through the
tuples where the timestamp is bigger than 5 and smaller than 10. It is, however,
not always possible to choose an index scan that is sorted by T. For example if
a particular ordering is needed for building a merge join, then this ordering is
preferred. This is due to the fact that fast merge joins are always favored over
hash joins. We extended the existing cost model in the query engine of the RFID
Triple Store by the special case of pushing down selection in range queries.

The decision which index scan should be preferred is based on the expected
output cardinality of this scan, i. e., how many pages/items have to be read. If
the selection predicate of a range query can be pushed down, i. e., if the selection
predicate is time restricted, we integrate start and stop conditions within the index
scan. Thus, the expected output cardinality of the index scan is adjusted for this
case and this optimized plan will be favored. However, each operator calculates
its own costs so that even if the index scan with the optimized variant of pushing

4.4 Query Processing 83

SELECT o1 . e
FROM events o1 , events o2

WHERE o1 . e = o2 . e
AND o1 . r = 1

AND o2 . r = 2

AND o1 . t s > 5

AND o2 . t s < 10

Figure 4.17: Range query: A list of objects, which were scanned by sensor 1 af-
ter a time threshold and by sensor 2 before a time threshold. Con-
sider, that the sensors have a specific semantic, like entry and exit.
This query determines for example the objects that passed an entry
sensor after 8 o’clock in the morning and an exit sensor before 12
o’clock in the morning, i. e., all objects produced before noon.

down the selection would have been possible, another index ordering can be cho-
sen. Especially if that will result in applying a more efficient merge join, rather
than hash join in the query processing as can be seen in Figure 4.17. For these
cases, where for range queries an index ordering different from T was chosen, we
can again apply an optimization within the index scan. We prune the result set
and ignore the irrelevant parts of the index scan, i. e., skip them, as shown in Fig-
ure 4.18. For each of the RET index scans, we pass only the relevant tuples: t1 > 5
and t2 < 10 respectively. By omitting the irrelevant triples during the scan, we
pass less triples to the next operators, and thus increase the performance of the
query processing. This optimization brings a considerable performance benefit
for range queries (up to one order of magnitude), which are typical in an RFID
scenario. For more details, see Section 4.5.

Extended SIP

Consider again our example query plan in Figure 4.14. As explained in the be-
ginning of the section, this query benefits from SIP, since the right index scan
takes advantage of the r2 hints of the left index scan and can directly jump to
the leaf pages containing the reader values. Instead of producing the intermedi-
ate results of the merge join and applying the selection predicate on top of it, we
could also pass the corresponding t2 values along with the r2 values using the
SIP technique and push the selection down this way. This is again possible due
to the order-preserving T dictionary. We can perform all comparisons directly on
the timestamp ID values. Further, if we apply these two different SIP hints (r2
and t2) on the index scan over RTE in place of RET, we will just have to jump to
each of the r2 hint values and iterate over the T column as long as the condition
t2 > t1 − 300 holds (assumed that t1 > t2). For queries that benefit from the SIP
technique anyway and which also contain a selection predicate over timestamps,

84 4. A Dedicated Triple Store for RFID Data Management

πe1

MergeJoin
one1=e2

σt2<10

IndexScan
(2, e2, t2)

RET index

σt1>5

IndexScan
(1, e1, t1)

RET index

SIP (e2)

(a)

πe1

MergeJoin
one1=e2

IndexScan
(2, e2, t2) +

Prune (t2 < 10)

RET index

IndexScan
(1, e1, t1) +

Prune (t1 > 5)

RET index

SIP (e2)

(b)

Figure 4.18: Execution plan of the query in Figure 4.17 before and after opti-
mization.

this smart optimization brings a considerable performance improvement. For the
query in Figure 4.14, this technique accelerates the query performance by a factor
of 2. For more details, see Section 4.5.

Another implementation of an efficient dictionary-based, order-preserving com-
pression is discussed in [7]. In contrast to that approach, we don’t deal with dic-
tionary updates and thus benefit from a very efficient implementation of the data
dictionary.

4.5 Performance Evaluation and Comparison

In this section, we present the measurements and analysis of the insert and query
performance of the RFID Triple Store. For comparison, we implemented the triple
store schema (with the columns E, R, T) using a commercial, general-purpose row-
store database system, referred to as DBMS-X, and the column-store open-source
database system MonetDB [1, 9].

4.5.1 Experimental Setup

For all experiments, we first pre-load a certain amount of data (The data gener-
ated during one week, two weeks and one month with the event frequency of
2500 events per second respectively.) into the database. Then, we execute a mixed
workload consisting of continuous inserts, OLTP and OLAP queries running con-
currently. We set the insert frequency to 2500 events per second in order to prove
the applicability of the particular system for the scenario reported by BMW [8].
As a measurement of the system’s performance, we evaluate whether the different ap-

4.5 Performance Evaluation and Comparison 85

proaches can maintain the consistent insert throughput of 2500 events per second
and at the same time achieve reasonable query response times. We further inves-
tigate the scalability of our approach by experimenting with different pre-loaded
data sizes.

For the RFID Triple Store and MonetDB there are no configuration parameters
to be set. For DBMS-X, the memory parameters were set to be self-tuned. After de-
termining the self-tuned values once, this property was switched off to avoid the
effect of back-and-forth tuning. Additionally, we consulted the physical design
tuning tool of DBMS-X for index suggestions using our experimental workload
as input. The MonetDB system does not support indexing. The remaining ap-
proaches use up-to-date indexes and statistics.

All experiments were conducted on a 64 bit-Red Hat Enterprise Linux server
with four quad-core Intel Xeon 2.40 GHz CPUs, 16 GB main memory, using one
1 TB SATA disk without RAID.

4.5.2 Data Generation

As there is no publicly available dataset for traceability data, we use an event
generator whose implementation follows the RFID data generator implementation
provided by IBM [5], extending it by a more flexible object movement. We generate
our data based on a realistic RFID scenario to simulate the movement of items
through different locations. The created objects are scanned on average by 20

sensors during their lifetime. Ca. 5% of the events represent new objects, and
95% are positional updates of existing objects. Without loss of generality equal
distribution of the readers in the infrastructure is assumed. Therefore, with x
readers, on average 1/x of the events are generated by an individual reader. We
use this fact and generate the events at random locations, so that cycles in the
movement graph may occur. In our scenario, events are tracked at 1000 different
locations. The average path length of the tracked objects is in the range of 19 to
21. This is a realistic life cycle for an object in the traceability scenario. For 10000

batches and 250000 objects the distribution of the path lengths for the objects
appearing in the dataset is illustrated in Figure 4.19.

Our event generator is designed as follows: We generate three different datasets
for pre-loading – a one-week-dataset, a two-weeks-dataset and a one-month-dataset
– in order to analyze the scaling ability of the system. The datasets result in 450

million, 900 million, and 1980 million events respectively, which is significantly
bigger than the largest datasets used in the referenced papers [27], [35] and [37].
The database size for the RFID Tripe Store amounts 39 GB, 74 GB, and 170 GB for
the different pre-loaded datasets, respectively.

4.5.3 Query Working Set

We create a typical query workload for RFID traceability data consisting of the
11 query types shown in Table 4.3. These queries resemble the queries presented

86 4. A Dedicated Triple Store for RFID Data Management

Figure 4.19: Distribution of the path lengths of an object in a test dataset
(adopted from [11]).

in Table 3.3. However, some of the queries have been further refined, i. e., con-
strained by a time interval. For this reason we provide again a short description
of the query workload. Q1 and Q2 are OLTP-style queries that are supposed to
be submitted for every object in the database. Q1 determines the last position of
an object and Q2 the pedigree of an object [5]. This type of queries is common
in scenarios like parcel services: e. g., tracking a packet. The remaining 9 queries
are OLAP-style queries. Q3 and Q4 collect information about a certain sensor.
Q3 determines the number of objects scanned by the sensor and Q4 lists all items
that have been scanned by the sensor in a specific time interval. This informa-
tion is important in production scenarios in order to detect if a certain sensor is
overloaded or if there is a bottleneck in the production process. Q5 through Q7

collect data about items that were scanned by multiple (in this case two) certain
sensors. Q5 lists all objects that have been seen by two different sensors within
a particular time interval. Q6 focuses only on objects that have crossed two con-
secutive sensors within a time interval and Q7 counts the objects determined by
Q6. The results might provide diagnostic information about a certain possibly
faulty route of transport. Furthermore, Q6 and Q7 show the difference between
only counting the triples and using the reverse lookup in order to map the IDs to
literals as described in Section 4.2.2. Q8 is a contamination query, as described in
detail in Section 4.4. It determines all objects that were with a certain object at a
certain sensor within a specified time interval. If, for example, an error occurs at
one station of the production chain so that all goods being at the same place are
contaminated, this query provides all possibly affected objects. Q9 through Q11

4.5 Performance Evaluation and Comparison 87

provide an overview of statistical information about one or multiple sensors, e. g.,
for determining production peaks. Further, information about particular object
routes or specific paths is gathered. This kind of information is usually required
for regular reports, e. g., for providing an overview of the whole infrastructure and
its load. Thus, these are OLAP-style queries, processing big amounts of data and
usually long-running. OLAP queries are typically submitted for report generation
or decision making and occur less often than OLTP queries.

4.5.4 Mixed Workload

No. Query

Q1 Last location of an object
Q2 The pedigree (complete path) of an object
Q3 The number of objects scanned by a certain sensor
Q4 A list of objects scanned by a sensor within a time interval
Q5 A list of objects, which were scanned by two sensors s1 and s2 within

the given time constraints
Q6 A list of objects, which were scanned first by sensor s1 and then by

sensor s2 within a time interval
Q7 The number of objects, which were scanned first by sensor s1 and

then by sensor s2 within a time interval
Q8 A list of objects that were at sensor s, together with an object x (sus-

pected to be contaminated) within a certain time interval (contamina-
tion query)

Q9 Listing the number of objects per reader and timestamp which passed
in a certain time interval (e.g., to identify production peaks)

Q10 Listing the number of all objects scanned by all 10 readers within a
time interval, grouped and ordered by reader, and a time interval of
a second

Q11 Listing the number of all objects which were scanned by the sensors
s1, s2, and s3 within a time interval in this order, aggregated per
second

Table 4.3: Query workload for a typical RFID traceability scenario.

For the mixed workload, inserts and queries (OLTP and OLAP) are executed
concurrently in the system. We are interested in (1) whether the pre-defined
throughput can be managed by the approaches, and (2) how the query response
times behave during the benchmark. The mixed workload is designed as follows:
One insert client constantly inserts 2500 events per second over the course of 10

hours into the database. This simulates the load (event generation) produced dur-

88 4. A Dedicated Triple Store for RFID Data Management

ing one working day. Concurrently, two query clients are running in the system:
one OLTP and one OLAP client. The OLTP client sends one of its two queries
(Q1 and Q2) and after that simulates a think time of 10 ms (i. e., almost every new
object is queried once). The OLAP client executes one of its 9 queries and has a
think time of 1 s.

Mixed workload

Insert TP No. QRT [ms] 1 week QRT [ms] 2 weeks QRT [ms] 1 month

avg 95th perc avg 95th perc avg 95th perc

25
00

ev
en

ts
/s

Q1 1 2 3 21 19 85

Q2 1 2 3 21 20 85

Q3 1 1 1 1 2 2

Q4 39 52 84 93 263 369

Q5 33 37 62 69 265 268

Q6 40 38 62 70 155 274

Q7 11 12 21 22 58 172

Q8 1432 1872 2868 3838 8905 13474

Q9 43 24 77 24 303 79

Q10 15 9 23 9 15 43

Q11 17 28 55 56 110 288

Figure 4.20: A mixed workload of concurrent inserts and queries on the RFID
Triple Store. The query performance for the three different pre-
loaded datasets is shown: one week, two weeks and one month. The
system copes with the sustained insert throughput of 2500 events
per second. The query response time (QRT) for each setting, di-
vided in average response time (avg) and the 95th percentile (95th
perc) is depicted.

RFID Triple Store

For our approach we pre-load the three different datasets (one-week-dataset, two-
weeks-dataset and the one-month-dataset) and conduct the mixed workload ex-
periment for each of these settings. As explained in Section 4.3.5, the T and E
indexes are flushed to disk immediately after each batch, whereas for the R in-
dexes we perform a deferred update. The differential R indexes are incrementally
merged with the indexes on disk, i. e., the main indexes are not reconstructed
from scratch each time, but only the new differential parts of the index are incre-
mentally added. For our use case, we experimentally chose to perform the merge
each 3000 batches (each batch contains 2500 events). The costs for the merging are

4.5 Performance Evaluation and Comparison 89

increasing only slightly for bigger database sizes: the margin between the one-
week-dataset and the one-month-dataset ranges from 75 seconds to 120 seconds.
But this extra overhead for merging, resulting in a number of unprocessed batches
is quickly compensated by the insert client, which executes the overdue batches
without delay.

For all three experiments, the RFID Triple Store achieved the desired sustained
throughput of 2500 events per second. The query performance for each data size
can be seen in Figure 4.20 and is discussed in comparison with the other ap-
proaches below.

Comparison of the Approaches

Mixed workload Query-only workload

Insert TP No. QRT [ms] QRT [ms]

avg 95th perc avg 95th perc

24
4

ev
en

ts
/s

Q1 9697 38219 17 77

Q2 9774 36658 23 95

Q3 7058 13777 285 590

Q4 6668 14359 35 97

Q5 10249 20210 799 1783

Q6 9013 20546 607 1587

Q7 12065 23869 4583 9194

Q8 50918 76618 24712 32826

Q9 6323 12816 121 245

Q10 17254 26947 9024 10790

Q11 19656 35107 7481 11412

Figure 4.21: A mixed workload of concurrent inserts and queries and a query-
only workload on the one-week-dataset for DBMS-X.

For the comparison experiments, we take the one-week-dataset, which results in
the following database sizes including indexes: 39 GB for the Triple Store, 345 GB
for DBMS-X, and 35 GB for MonetDB. We conduct two experiments with DBMS-X:
(1) a mixed experiment with inserts and queries and (2) a query-only experiment,
where only the two query clients (OLTP and OLAP) are running on the initially
pre-loaded data. For MonetDB, we perform only the query experiment, i. e., (2),
since this system is not optimized for heavy insert workloads as stated in [1].

The performance results of DBMS-X and MonetDB are shown in Figures 4.21

and 4.22, respectively. In general, MonetDB performs poorly here, DBMS-X better
and the RFID Triple Store is the best among the three approaches. When con-

90 4. A Dedicated Triple Store for RFID Data Management

Query-only workload

No. QRT [ms]

avg 95th perc

Q1 2386 · 103 4182 · 103

Q2 3297 · 103 7031 · 103

Q3 3589 · 103 4189 · 103

Q4 15798 26564

Q5 6472 · 103 7055 · 103

Q6 4947 · 103 5588 · 103

Q7 12958 · 103 13300 · 103

Q8 2971 · 103 3136 · 103

Q9 12544 13571

Q10 365 · 103 428 · 103

Q11 13145 · 103 17528 · 103

Figure 4.22: Query-only workload on MonetDB.

ducting a mixed experiment with inserts and queries on DBMS-X, the system only
achieves an insert throughput of 244 events per second. The average query re-
sponse times here are up to three orders of magnitude higher than those for the
Triple Store. The concurrent inserts that have to touch and update all the indexes
affect greatly the query performance of DBMS-X. We can verify this in the query-
only experiment for DBMS-X, where the query response time improves by up to
two orders of magnitude. The MonetDB performance suffers from flushing data
to disk (lacking memory) and the absence of indexes for the OLTP queries. Q4

and Q9 benefit from the column-wise storage and perform better than the rest of
the queries on this system.

The corresponding indexes used by DBMS-X and the Triple Store, which are
listed in Figure 4.23 are almost identical for each query. This means that the phys-
ical design tool of DBMS-X proposed the same indexes as used by the Triple Store
on the given workload. However, the indexes of DBMS-X are not compressed
and their size is considerably bigger than the size of the Triple Indexes. DBMS-
X’s query performance for the query-only workload is in general by one order of
magnitude worse than the mixed query performance of the Triple Store. Queries
Q1 and Q2 can be expected to be very frequent in OLTP-tracing applications, so it
is particularly important that they are executed very efficiently. The RFID Triple
Store significantly outperforms DBMS-X for these two queries. Both systems make
use of the ETR index to determine the location(s) for a particular EPC. However,
this index is very large for DBMS-X, it consumes more disk space than the event
table itself. Consequently, the Triple Store reads less data due to its highly com-

4.5 Performance Evaluation and Comparison 91

Used Indexes

Query No. DBMS-X Triple Store SIP

Q1 ETR ETR -
Q2 ETR ETR -
Q3 R R -
Q4 RTE RET -
Q5 RTE, RET 2 x RET SIP
Q6 RTE, ERT 2 x RET SIP
Q7 2 x RET 2 x RET SIP
Q8 ERT, RTE ERT, RET SIP
Q9 TR TR -
Q10 RT TR -
Q11 3 x RET 3 x RET SIP

Figure 4.23: Indexes used by the queries executed on the DBMS-X and the RFID
Triple Store. In the last table column queries that benefit from the
SIP technique of the Triple Store are shown.

pressed indexes, which explains its performance gain for these queries. Query Q3

can be answered extremely efficiently by the RFID Triple Store due to the Fully
Aggregated R index. This index contains a count value for each reader, which is
read and returned by the query. Further, the Fully Aggregated Index R is highly
compressed and therefore fits into main memory. Queries considering time inter-
vals (range queries) or relations between timestamps, such as Q5, Q6, Q7, Q9, Q11

leverage the order-preserving dictionary in sorts and comparisons of timestamps
as described in Section 4.4. Except for Q9, these queries additionally benefit from
the SIP technique used in the RFID Triple Store. For query Q4, both systems have
a similar performance. DBMS-X exploits the RTE index for this query, whereas
the Triple Store scans over all qualifying RE-triples first and applies the selection
on top (having a bigger intermediate result). Q8 is a contamination query, whose
execution plan is discussed in Section 4.4 (see Figure 4.14). It also benefits strongly
from the SIP processing. Even though both systems require the TR index for Q9,
these two indexes differ greatly in their implementation. The Triple Store can
take advantage of the count values and doesn’t need to perform aggregation first,
whereas DBMS-X does. The Triple Store takes the same advantage for Q10 that
also uses the TR index.

92 4. A Dedicated Triple Store for RFID Data Management

Mixed workload

Query No. Query RT [ms] 1 week Query RT [ms] 1 week optimized

avg 95th percentile avg 95th percentile card

Q1 1 2 1 5 1

Q2 1 2 1 5 19

Q3 1 1 1 1 count 494966

Q4 39 52 2 3 29

Q5 33 37 12 15 83

Q6 40 38 11 13 29

Q7 11 12 11 12 count 29

Q8 1432 1872 612 1161 23

Q9 43 24 39 23 29900

Q10 15 9 4 5 286

Q11 17 28 17 28 2

Figure 4.24: A mixed workload of concurrent inserts and queries on the RFID
Triple Store (one-week-dataset). Query response time after the op-
timizations.

Mixed workload

Query No. Query RT [ms] 2 weeks Query RT [ms] 2 weeks optimized

avg 95th percentile avg 95th percentile card

Q1 3 21 3 24 1

Q2 3 21 4 24 19

Q3 1 1 1 1 count 945450

Q4 84 93 4 16 29

Q5 62 69 25 35 59

Q6 62 70 23 28 29

Q7 21 22 21 22 29

Q8 2868 3838 1173 2370 23

Q9 77 24 20 23 29900

Q10 23 9 4 5 287

Q11 55 56 55 56 2

Figure 4.25: A mixed workload of concurrent inserts and queries on the RFID
Triple Store (two-weeks-dataset). Query response time after the op-
timizations.

4.5 Performance Evaluation and Comparison 93

Mixed workload

Query No. Query RT [ms] 1 month Query RT [ms] 1 month optimized

avg 95th percentile avg 95th percentile card

Q1 19 85 15 57 1

Q2 20 85 15 57 19

Q3 2 2 2 2 count 1844343

Q4 263 369 59 104 29

Q5 265 268 110 305 59

Q6 155 274 84 241 29

Q7 58 172 58 172 29

Q8 8905 13474 3927 8206 23

Q9 303 79 25 54 29900

Q10 15 43 36 7 71197

Q11 110 288 110 288 2

Figure 4.26: A mixed workload of concurrent inserts and queries on the RFID
Triple Store (one-month-dataset). Query response time after the
optimizations.

Query Optimizations

The performance numbers presented in Figure 4.20 are based on the optimizations
discussed in the first paragraph of Section 4.4 (IDs-only comparison). By working
only on IDs for the T values, the query execution is accelerated by several orders
of magnitude. This was the first and most significant query speed up for our RFID
Triple Store. As already mentioned, range queries which select a particular time
interval are very typical in a traceability scenario, such that the IDs-only compar-
ison for T values brings a benefit to almost every query from the RFID workload.
Figures 4.24, 4.25, and 4.26 show the performance when additionally the query
optimizations for pushing down selections and extended SIP are applied. Queries
Q4, Q5, Q6, and Q9 are affected from the first optimization - pushing down selec-
tions, whereas the extended SIP optimization applies only to Q8. As explained in
Section 4.4, if we take an index where the values are ordered by the T column, we
can take advantage of the very fast sequential scan using start/stop conditions.
This is the case for Q4, which performs after the optimization one order of magni-
tude better. For Q5, Q6, and Q9 this gain is not that significant (up to the factor of
3) because these queries have only one start or stop condition per index and thus
cannot prune so big part of the indexes.

Applying extended SIP for Q8, i. e., we pass not only the reader values, but also
the calculated timestamp values during the index scan (see Section 4.4) results in

94 4. A Dedicated Triple Store for RFID Data Management

a speed up of a factor of 2 for this query.

Scalability

We observe that for the different pre-loaded database sizes shown in Figure 4.20,
the query execution times of the mixed workload scale linearly. This is due to the
bigger indexes that have to be loaded into main memory. Hence, only a smaller
part of the indexes’ working set is fitting into memory and the system performs
more disk accesses. When doubling the initial data load size, all OLAP queries
except for Q8 and Q11 grow by the factor of 2. Q8 and Q11 require scans of
large amounts of intermediate data (which won’t fit entirely into memory at some
point) and also grow linearly, but with a higher slope, i. e., by a factor of 3 and 4.
The OLTP queries are executed very often in the course of the benchmark. The
interaction of growing execution times for the concurrent OLAP queries and the
increasing lack of memory affects their response times greater than those of the
OLAP queries. Further, there is a difference between the average values and the
95th percentile values. We determined that the 80th percentile is very close to the
average value, i. e., only 20% of the queries have a higher response time. This is
due to the fact that we query recent events with a probability of 80%; thus 20% of
the queries are likely to perform disk access.

The experimental analysis shows that the dedicated Triple Store outperforms
the examined general-purpose DBMSs regarding the event processing throughput
as well as the query performance. Further, scaling the number of stored events,
our approach can still provide the desired insert throughput.

4.6 Related Work

In the context of RDF, a variety of architectures which are optimized to natu-
rally handle the triple-structured datasets have been proposed [32, 40, 55]. Those
datasets are, in this respect, somewhat similar to RFID event data. The early
open-source system Jena [32] uses property-clustered tables (triples grouped by
the same predicate) for the storage of RDF data. In [55], a storage scheme called
hexastore is presented, which allows for fast and scalable query processing. The
RDF data is indexed in six possible ways, one for each possible ordering of the
three RDF elements. The RDF-3X engine by Neumann et al. [40] – on which the
RFID Triple Store is based – is a dedicated system for efficiently storing and query-
ing RDF data. In RDF-3X, the triples are stored in one huge table which is exhaus-
tively indexed. Furthermore, indexes are heavily compressed. RDF-3X achieves
a very good query performance for read-mostly workloads in RDF scenarios by
optimizing join orders so as to enable very fast merge join processing. Several in-
teresting similarities between RDF and RFID data inspired us to use the approach
of RDF-3X as a base for the RFID Triple Store.

4.7 Summary and Conclusions 95

4.7 Summary and Conclusions

In this chapter we presented a new dedicated solution for storage of RFID data, the
RFID Triple Store. We showed that the system can easily handle the high insertion
rates that are typical for object tracking applications. As was noted in Chapter 2,
a database system should be able to cope with ca. 2000 events arriving per second
for large enterprises. Our measurements showed that the RFID Triple Store can
sustainably cope with an event frequency of 2500 events per second. We addressed
the characteristics of RFID data in the architectural design of the RFID Triple Store.
The RFID-aware indexes allow for efficient event processing. The performance for
data extraction meets as well the requirements of an RFID scenario. The query
engine greatly benefits from 15 clustered indexes providing all possible orderings
of the triples table and from the order-preserving data dictionary, which speeds up
the execution of range queries. Further optimizations of the query engine in order
to exploit the RFID specific features brought an additional query acceleration.
Our experimental study shows that our system can achieve a significantly higher
throughput for event processing and a better query performance compared to
general-purpose DBMSs.

Overall, the the RFID Triple Store approach clearly has the potential to meet the
requirements of today’s large-sized enterprises.

97

5
Distributed RFID Data

Management

In this chapter, we present mechanisms for distributed processing of RFID data.
First, we show how to use the MapReduce paradigm to conduct distributed RFID
management. We evaluate and analyze the MapReduce performance. Second, an
approach for distributed query processing on RFID data is presented, which uses
the Triple Store discussed in Chapter 4.

5.1 Using MapReduce for the Management of RFID Data

Distributed processing paradigms like MapReduce [16] are gaining more and
more attention in different application fields where large data sets are being pro-
cessed. These include warehousing [53], extract-transform-load (ETL) tasks [17],
graph [51] and software mining solutions [47]. Further, especially in the e-science
community, MapReduce is increasingly being used for processing massive amounts
of data.

MapReduce is an algorithmic concept which builds the basis for a huge variety
of algorithms. It consists of two main steps: map and reduce. The MapReduce
framework takes care of the automatical parallelization of the map and reduce
functions, the partitioning of the input data, the scheduling of the program’s ex-
ecution and the managing of the data flow across the nodes in the cluster. The
implementation of the map and reduce procedures is provided by the user.

In the map step, the input records are filtered, pruned or if possible divided into
smaller sub-problems. The original input records are assigned to the map tasks by
the MapReduce scheduler. A task in this context is every parallel executed instance
created by the invocation of the map or reduce function respectively. The input
file(s) are partitioned in equi-sized blocks of a pre-defined size. The generated map
output is a set of intermediate “tuples” in the form of newly calculated key/value

98 5. Distributed RFID Data Management

input mappers reducers output

Figure 5.1: The MapReduce paradigm.

pairs. They are then redistributed (usually using hash partitioning) among the
reducers. A typical hash function is, for instance: hash(key) mod R, where key is the
hashed item key and R is the number of reducers. All map output tuples with the
same hash value are processed by the same reducer. Therefore, the map function
finishes with the creation of a number of output files, one for each reducer. Before
the reduce phase starts, the relevant intermediate files (generated by the map
functions) are transferred over the network from the maps’ nodes to the reducers’
nodes. Thus, the smaller the output from the map function, the more efficient this
transfer step is due to the limitation of the network bandwidth.

In the reduce step, the map output is further processed and combined until the
original task is solved. The reducers’ output is written to files, one per reducer.

Sometimes more than one map and reduce phases may be needed for the com-
pletion of a single MapReduce program. Thus, the output of the reducers can
be passed to another map task. Distributed processing of the map and the re-
duce steps is highly exploited. A sketch of the MapReduce paradigm can be seen
in Figure 5.1. As illustrated, the map function retrieves its portion of the input,
processes it and generates the output for the reducers, which produce the final
output. Note that each of the m map tasks produce r output files, each assigned
to a different reducer. This results in a total of m ∗ r produced files after the map
phase.

For the management of RFID data, MapReduce [16] provides a feasible approach
as it incurs practically no overhead for loading and storing the data. While the
data staging process causes a major overhead in relational DBMSs (because of
heavy index updates), using MapReduce we can simply store the log files con-
taining the sensor events. These could be the direct output produced by the RFID

5.1 Using MapReduce for the Management of RFID Data 99

sensors. Standard open-source MapReduce implementations do not provide the
ability to index the data. However, there exist MapReduce extensions [18, 19] us-
ing built-in indexes that are implemented as user-defined functions. Furthermore,
for analytical queries (as used in RFID applications), MapReduce proves a good
performance [16]. To get an idea of the performance of MapReduce for managing
RFID data, we designed our query workload using Hadoop [10] – an open-source
implementation of MapReduce.

We found that there are some accruing fixed costs for the Hadoop framework
due to synchronization overhead comprised of monitoring and starting the tasks
on all nodes. Further, for each MapReduce program, in the map phase the whole
(possibly huge) input has to be scanned, which makes the framework less appro-
priate for interactive workloads. DeWitt et al. confirm this observation in [41]
by analyzing and comparing the performance of MapReduce (its Hadoop imple-
mentation) and parallel DBMSs. The results of the benchmark showed that both
parallel database systems outperformed Hadoop when regarding different query
tasks. For the data loading experiment, however, the opposite was shown: the
MapReduce approach outperforms both distributed DBMSs by up to an order of
magnitude. This is due to the fact that each input file is simply copied from the
local disk into the Hadoop distributed file system, as opposed to a complex data
staging procedure. Since we need fast event processing and since the MapRe-
duce paradigm is known to perform good for analytical workloads we consider
managing RFID data using Hadoop.

In this chapter, we analyze the performance of Hadoop regarding an RFID sce-
nario. We implement a typical RFID query workload using Hadoop and measure
the query response time.

5.1.1 A Short Introduction to Hadoop – An Implementation of
MapReduce

Hadoop [10], developed by the Apache Software Foundation, is the most popular
open-source implementation of the MapReduce framework. It is written in Java
and thus platform independent. Hadoop comes with an own file system: the
Hadoop Distributed File System (HDFS), which was derived by the Google File
System (GFS) [26].

HDFS

HDFS is the distributed storage used by Hadoop. The map input and the reduce
output are stored in the HDFS and they are thus accessible from every node in the
cluster. HDFS is designed to be fault-tolerant and compensates hardware failures,
which are very probable in huge clusters. This is achieved by replicating data
blocks according to a specified replication factor. Files are split into data blocks by
the HDFS. In contrast to common file systems, the size of the data blocks in HDFS
is considerably higher: 64 MB. The reason for this is to decrease the amount of

100 5. Distributed RFID Data Management

references (to the single blocks) that have to be stored and managed by a central
instance. A HDFS cluster consists of a NameNode that manages the client access
to files (the references to data blocks) as well as the file system’s namespace and a
number of DataNodes, one per cluster node, where the node’s local data is stored.
More details on the architecture of HDFS can be found in [10].

Processing a Hadoop job

A Hadoop job can be processed by committing it to a central instance called Job-
Tracker. It supplies components for tracking the progress of tasks and getting the
cluster’s status information. The input records cannot be handled directly by the
map procedure, since it expects key/value pairs. Therefore, the input is first split
up according to an input specification described by the InputFormat class. This is
responsible for parsing the input, splitting it up into logical instances (e. g., tuples)
and providing a function for reading the records. A commonly used split function
partitions the file into lines and uses the line number as a key and the content
of the line as a value in the key/value pair. It is a primary goal of the HDFS
to avoid transferring data between the nodes and it provides mechanisms for the
applications to rather bring the processing task (the map tasks) to the data. The
JobTracker tries to distribute the map tasks on the DataNodes such that no data
is shuffled. The generated key/value pairs are assigned to the according mapper,
where they are further processed and new key/value pairs are produced as out-
put. Note that the input and output key/value pairs can have different data types,
but all input and all output pairs have the same data type. As mentioned before,
the default partitioning of the input uses the line number as a key and the line
content as a value. This behavior can be, however, customized for each use case.
For instance, a convenient way of representing our event triples is the following:
the key value consists of an EPC data type and the value part has a complex data
type consisting of the reader and timestamp entries. We apply this input format
when implementing our queries.

The map output is then partitioned by the Partitioner instance. The default
partition function is a hash function applied to the key. The user can define a
custom partitioning function as well. All tuples with the same key are assigned to
the same reducer. After transferring all data belonging to the same reducer to the
reducer’s local disk, the records are sorted by key by the Hadoop framework. The
key/value pairs passed to the reducer have the form 〈key, {v : value v belongs to key}〉.
Similar to the mapper, the output of the reducer task can have a different data type
than that of its input. For instance, if the map input contains the following input
pairs 〈EPC, RdrTS〉, the corresponding output format can contain only reader IDs
as a key: 〈Rdr〉. The reducer’s output is written to files residing in the HDFS and
is formatted according to the OutputFormat class. It specifies that each key/value
pair is written in one line. The number of output files created is equal to the
number of reducers. The records in each output file are sorted by the key value.

In order to minimize the data transfer between the nodes, combiner tasks can

5.1 Using MapReduce for the Management of RFID Data 101

be inserted between the mapper and the reducer tasks. If a combiner is used,
the key/value pairs of the mapper are not written immediately to disk, but are
first collected in memory in form of lists – one per key. These lists are passed
to the combiner’s reduce method, which can be seen as a local reducer. It can
aggregate the output of the mapper before it is distributed to the reducer nodes.
By doing this, the key/value output pairs are reduced and only this smaller output
is written to disk. Therefore, using an appropriate combiner accelerates Hadoop’s
performance. More information can be found in [10].

5.1.2 Implementing RFID Queries Using Hadoop

In this section, we show how our RFID queries are implemented using Hadoop. A
primary goal is to reduce the amount of data that is redistributed over the network.
If this is not considered in the query implementation, Hadoop’s performance will
decrease and the overhead of distributing the data could outweigh the advantages
of parallel processing. We therefore try to keep the size of the map step results
as small as possible. The map, combine, and reduce functions for each query are
described in the following. This section builds upon the work in [33] which was
supervised by the author of this thesis.

An example data set

In order to illustrate the input and output of the map and reduce procedures for
each query, the data set in Table 5.1 is used as an example. It depicts four objects
(with the EPC codes 1, 2, 3, and 4) that pass through different scanners at different
points in time. The time intervals in which the EPCs are scanned are chosen to
partly overlap for a better demonstration of the RFID range queries – in order to
have more matches. The data is ordered by EPC.

Q1: Last location of an object

Mapper: The mapper for Q1 is shown in Algorithm 10. It first selects those events
which contain the requested object ID (myEpc). All other triples are omitted and
not processed further.

Algorithm 10: Mapper Q1

input : 〈EPC key, RdrTS value〉, EPC myEpc
output: 〈EPC key, RdrTS value〉

1 if key = myEpc then
2 write(〈key, value〉);
3 end

102 5. Distributed RFID Data Management

EVENTS

epc rdr ts

1 1 1

1 2 2

1 3 5

1 2 6

1 1 10

2 3 2

2 4 4

3 1 2

4 4 4

4 5 6

4 1 15

Table 5.1: An example data set.

If the given EPC is 1 for our example in Figure 5.1, the mapper output is:
〈1, [1, 1]〉, 〈1, [2, 2]〉, 〈1, [3, 5]〉, 〈1, [2, 6]〉, 〈1, [1, 10]〉.
Combiner: A local maximum of the timestamp value can be calculated by the
combiner as shown in Algorithm 11. This saves some timestamp value compar-
isons for the reducer. However, since the average object’s path in our experimental
scenario has the length of 19 (as described in Chapter 4), the combiner’s work does
not have much impact on the performance. There are as many combiner outputs
as reducers in the cluster.

Algorithm 11: Combiner Q1

input : 〈EPC key, List〈RdrTS〉 values〉
output: 〈EPC key, List〈RdrTS〉 values〉

1 maxTs, maxRdr = −∞;
2 for v: values do
3 if v.ts > maxTs then
4 maxRdr = v.rdr;
5 maxTs = v.ts;
6 end
7 end
8 write(〈key, pair(maxRdr, maxTs)〉);

Reducer: Since all selected event tuples have the same key (the selected EPC),
they will end up in the same reducer. The reducer for Q1, which is depicted in

5.1 Using MapReduce for the Management of RFID Data 103

Algorithm 12, needs therefore to compare all timestamps, to choose the latest one,
and to return the sensor at which the object was scanned last.

Algorithm 12: Reducer Q1

input : 〈EPC key, List〈RdrTS〉 values〉
output: 〈Rdr value〉

1 maxTs, maxRdr = −∞;
2 for v: values do
3 if v.ts > maxTs then
4 maxRdr = v.rdr;
5 maxTs = v.ts;
6 end
7 end
8 write(〈maxRdr〉);

For our example, the reader with ID 1 is the output.

Q2: The pedigree (complete path) of an object

Mapper: The mapper of Q2 shown in Algorithm 13 selects those events which
contain the requested object ID (myEpc). All other triples are omitted and not
processed further. In order to have the keys sorted by the timestamp value (that
means it should be partitioned by timestamp), we use the timestamp as a key
and the reader as a value in the output key/value pair. This yields an appropriate
order of the timestamps for the reduce step. If myEpc = 1 the output of the mapper
for our example is: 〈1, 1〉, 〈2, 2〉, 〈5, 3〉, 〈6, 2〉, 〈10, 1〉.

Algorithm 13: Mapper Q2

input : 〈EPC key, RdrTS value〉, EPC myEpc
output: 〈TS key, Rdr value〉

1 if key = myEpc then
2 write(〈value.ts, value.rdr〉);
3 end

Reducer: The mapper streams the result tuples ordered ascendingly by their
timestamp values. The reducer for Q2 depicted in Algorithm 14 just passes the
sensor IDs (identity reducer). Therefore the output of the reducer is: 〈1〉, 〈2〉, 〈3〉,
〈2〉, 〈1〉. Since the reducer’s output is sorted by timestamp but partitioned in dif-
ferent output files, we need to execute one final merge step at the end to globally
merge the different outputs. Hadoop provides an appropriate function call for
this task.

104 5. Distributed RFID Data Management

Algorithm 14: Reducer Q2

input : 〈TS key, List〈Rdr〉 values〉
output: 〈Rdr value〉

1 for v: values do
2 write(〈v〉);
3 end

Q3: The number of objects scanned by a certain sensor

Mapper: The mapper for Q3 which is shown in Algorithm 15 selects all the events
that were scanned by the given reader myRdr. We use the sensor ID as the key and
the EPC as the value in the key/value output of the mapper. This will guarantee
that all values with the same sensor ID are processed by the same reducer. If we
choose for the given example that the ID of myRdr is 2, then the output of the map
function is: 〈2, 1〉, 〈2, 1〉.

Algorithm 15: Mapper Q3

input : 〈EPC key, RdrTS value〉, Rdr myRdr
output: 〈Rdr key, EPC value〉

1 if value.rdr = myRdr then
2 write(〈value.rdr, key〉);
3 end

Algorithm 16: Reducer Q3

input : 〈Rdr key, List〈EPC〉 values〉
output: 〈Rdr key, count values〉

1 Set s = {};
2 for v: values do
3 s = s ∪ {v};
4 end
5 write(〈key, |s|〉);

Reducer: The reducer for Q3 performs duplicate elimination and counts all the
different EPCs for the particular reader. Our implementation uses a set to elimi-
nate duplicates as shown in Algorithm 16. For the chosen example, the reducer
returns only one group: 〈2, 1〉.

5.1 Using MapReduce for the Management of RFID Data 105

Q4: A list of objects scanned by a sensor within a time interval

Mapper: The mapper for Q4 described in Algorithm 17 selects all events read by
the given sensor myRdr and checks if the events were created within the given time
interval]t0, t1[. Given the reader ID myRdr = 1 and the time interval]1, 15[the
result of the map function is: 〈1〉, 〈3〉 generated from the tuples 〈1, 1, 10〉, 〈3, 1, 2〉.

Algorithm 17: Mapper Q4

input : 〈EPC key, RdrTS value〉, Rdr myRdr, TS t0, TS t1
output: 〈EPC key〉

1 if value.rdr = myRdr ∧ value.ts > t0 ∧ value.ts < t1 then
2 write(〈key〉);
3 end

Reducer: The mapper does all the work for this query so only correct tuples, i. e.,
tuples that fulfill the select conditions, arrive at the reducer. Since the query per-
forms duplicate elimination on the key (EPC) values, each reducer just returns one
key value per key group. Therefore, the reducer for Q4 is an identity-reducer that
outputs only one key for each key/value group and performs this way duplicate
elimination. The output for the example query is thus: 〈1〉, 〈3〉.

Q5: A list of objects which were scanned by sensor rdr1 after a time
threshold and by sensor rdr2 before a time threshold

Mapper: The mapper for Q5 depicted in Algorithm 18 selects all events that were
read by one of the two sensors rdr1 or rdr2, such that the timestamps of the ob-
jects scanned by rdr1 are greater than t0 and the timestamps of the objects scanned
by rdr2 are smaller than t1. This query filters objects that were scanned by both
readers within the given time constraints without regarding the sequence in which
these events passed the readers. Consider, that the sensors have a specific seman-
tic, like entry and exit. This query determines for example the objects that passed
an entry sensor after 8 o’clock in the morning and an exit sensor before 12 o’clock
in the morning, i. e., all objects produced before noon. We can calculate the join
condition (determining that the objects were scanned by both sensors) only in the
reducer since not all tuples with the same EPC will end up in the same mapper.
Thus, for every object, the reducer has to validate whether the object was scanned
by both sensors. Therefore, we take the EPC as the key. For the example data in
Figure 5.1 given the sensor IDs 1 and 2 and the timestamps 1 and 15 for the vari-
ables t0 and t1 respectively, the mapper output is: 〈1, [2, 2]〉, 〈1, [2, 6]〉, 〈1, [1, 10]〉,
〈3, [1, 2]〉.
Reducer: The reducer for Q5 checks for the presence of every object at both sensors
(join condition). In this case the object’s ID, the EPC, is written to the output.

106 5. Distributed RFID Data Management

Algorithm 18: Mapper Q5

input : 〈EPC key, RdrTS value〉, Rdr rdr1, Rdr rdr2, TS t0, TS t1
output: 〈EPC key, RdrTS value〉

1 if (value.rdr = rdr1 ∧ value.ts > t0) ∨ (value.rdr = rdr2 ∧ value.ts < t1) then
2 write(〈key, value〉);
3 end

Algorithm 19 shows how this is done in Hadoop. The output for our example is
the EPC with ID 〈1〉.

Algorithm 19: Reducer Q5

input : 〈EPC key, List〈RdrTs〉 values〉, Rdr rdr1, Rdr rdr2
output: 〈EPC key〉

1 isrdr1, isrdr2 = false;
2 for v: values do
3 if v.rdr = rdr1 then
4 isrdr1 = true;
5 end
6 if v.rdr = rdr2 then
7 isrdr2 = true;
8 end
9 end

10 if isrdr1 ∧ isrdr2 then
11 write(〈key〉);
12 end

Q6: A list of objects which were scanned first by sensor rdr1 and then by
sensor rdr2 within a time interval

Mapper: The mapper for Q6 selects all events that were read by one of the two
readers rdr1 and rdr2 in the given interval]t0, t1[. The difference to Q5 is that
Q6 considers the order in which the events passed the readers, e. g., first rdr1,
then rdr2. The mapper’s implementation is identical to Algorithm 18. Given the
example parameters rdr1 = 2, rdr2 = 3, t0 = 1, and t1 = 10, the map function
returns: 〈1, [2, 2]〉, 〈1, [3, 5]〉, 〈1, [2, 6]〉, 〈2, [3, 2]〉.
Combiner: The combiner for Q6 is depicted in Algorithm 20 and selects the min-
imum timestamp for the first reader and the maximum timestamp for the second
reader. This way it saves some timestamp comparisons that will be done by the
reducer otherwise.

5.1 Using MapReduce for the Management of RFID Data 107

Algorithm 20: Combiner Q6

input : 〈EPC key, List〈RdrTS〉 values〉, Rdr rdr1, Rdr rdr2
output: 〈EPC key, List〈RdrTS〉 values〉

1 currts1 = ∞;
2 currts2 = −∞;
3 isrdr1, isrdr2 = false;
4 for v: values do
5 if v.rdr = rdr1 then
6 isrdr1 = true;
7 if v.ts < currts1 then
8 currts1 = v.ts;
9 end

10 end
11 if v.rdr = rdr2 then
12 isrdr2 = true;
13 if v.ts > currts2 then
14 currts2 = v.ts;
15 end
16 end
17 end
18 if isrdr1 then
19 write(〈key, pair〈rdr1, currts1〉〉);
20 end
21 if isrdr2 then
22 write(〈key, pair〈rdr2, currts2〉〉);
23 end

Reducer: The reducer for Q6 (Algorithm 21) verifies again that the object was
scanned by both sensors and that the timestamps are in the correct order. For our
example the reducer returns the EPC with ID 〈1〉.

Q7: The number of objects which were scanned first by sensor rdr1 and then
by sensor rdr2 within a time interval

This query requires two MapReduce runs since the reducer has to operate on
two different key/value pairs in order to count all object IDs. The first run is
identical to query Q6. The second one processes the output of the first run and
only performs the counting of the tuples.

Mapper of the first run: The first mapper for Q7 selects all events that were read
by one of the two readers rdr1 and rdr2 in the given interval]t0, t1[(code identical
to Algorithm 18).

108 5. Distributed RFID Data Management

Algorithm 21: Reducer Q6

input : 〈EPC key, List〈RdrTS〉 values〉, Rdr rdr1, Rdr rdr2
output: 〈EPC key〉

1 currts1 = ∞;
2 currts2 = −∞;
3 isrdr1, isrdr2 = false;
4 for v: values do
5 if v.rdr = rdr1 then
6 isrdr1 = true;
7 if v.ts < currts1 then
8 currts1 = v.ts;
9 end

10 end
11 if v.rdr = rdr2 then
12 isrdr2 = true;
13 if v.ts > currts2 then
14 currts2 = v.ts;
15 end
16 end
17 end
18 if isrdr1 ∧ isrdr2 ∧ (currts1 < currts2) then
19 write(〈key〉);
20 end

Reducer of the first run: The first reducer of Q7 verifies that the object was
scanned by both readers rdr1 and rdr2 in the correct order (code identical to Algo-
rithm 21). The output of the reducer for the example given in Q6 is: 〈1〉.
Mapper of the second run: The second mapper for Q7 in Algorithm 22 has to
count all records. It therefore creates a dummy key value for all tuples and passes
on a value of 1 for efficient counting. For our example, this produces the output:
〈0, 1〉.

Algorithm 22: Mapper Q7 / Second run
input : 〈EPC key〉
output: 〈dummy key, count value〉

1 write(〈0, 1〉);

Reducer of the second run: The second reducer for Q7 sums up the values glob-
ally and provides the sum as output (Algorithm 23). In our case the output is:
〈1〉, as only one object fulfills the query. We can also use a combiner for this

5.1 Using MapReduce for the Management of RFID Data 109

MapReduce job that sums up the values locally, similar to that for Q3.

Algorithm 23: Reducer Q7 / Second run
input : 〈dummy key, List〈count〉 values〉
output: 〈count value〉

1 counter = 0;
2 for v: values do
3 counter+ = v;
4 end
5 write(〈counter〉);

Q8: A list of objects that were at sensor rdr, together with an object myEpc
(suspected to be contaminated) within a certain time interval [myEpc.ts− t,
myEpc.ts + t] where t is the given interval limit (contamination query)

This query is a heavy OLAP query. A naïve approach of implementing it using
Hadoop will end up in using more than one mapper and reducer runs. This
is expensive for Hadoop since the intermediate results of the reduce phases are
written to disk and have to be read from disk again for the next MapReduce
job. For this reason, we modify this approach slightly and design a solution that
needs only one map and reduce cycle. The idea is to bring all events produced by
one sensor to one reducer and have them sorted by their timestamps, so that we
iterate only once through the list and stop when the timestamp is out of range.
Therefore, it is first determined whether the contaminated object was scanned by
the particular sensor and if this holds, all other objects within the given time range
are selected. We take the following fact into account: we search for all events in
the time range of the contaminated item, i. e., the interval from myEpc.ts − t to
myEpc.ts + t where myEpc.ts is the timestamp of the contaminated object and t is
the given time range. After sorting the results by timestamp we iterate through
the list and select all possibly contaminated objects (those which lie within the
time interval).

time
t tmyEpc.ts

Figure 5.2: Shifting of the time interval of the contaminated object myEpc (red
point to yellow point).

Mapper: The mapper for Q8 given in Algorithm 24 selects the given contaminated

110 5. Distributed RFID Data Management

object with EPC value myEpc and sets its timestamp to the beginning of the time
interval: myEpc.ts− t, as illustrated in Figure 5.2. In order that the reducer gets
the data partitioned by sensor, we choose as a key the pair〈Rdr key, TS value〉. We
rewrite the Partitioner class to consider only the first part of the key for partition-
ing, i. e., the reader ID and not the timestamp. Each reducer gets all the values
for a particular reader. Since the framework sorts the input for the reducers by
key, the entries are sorted by timestamp (since the reader part is always the same).
The value part is the pair〈EPC key, TS value〉, which contains the same timestamp
as the key, and is therefore also sorted by timestamp. To give an example for this
query, we assign the ID 1 to the given contaminated EPC myEpc and consider the
given interval limit to be 1. Note that the interval is then constructed to be sym-
metric around the given interval limit t: the time interval is therefore [0, 2]. The
output of the map task as key/value pairs for the test data in Table 5.1 and the
given parameters is:

k [1, 0] [2, 1] [3, 4] [2, 5] [1, 9] [3, 2] [4, 4] [1, 2] [4, 4] [5, 6] [1, 15]
v [1, 0] [1, 1] [1, 4] [1, 5] [1, 9] [2, 2] [2, 4] [3, 2] [4, 4] [4, 6] [4, 15]

Algorithm 24: Mapper Q8

input : 〈EPC key, RdrTS value〉, EPC myEpc, Interval t
output: 〈pair〈Rdr key, TS value〉, pair〈EPC key, TS value〉〉

1 if key = myEpc then
2 value.ts = value.ts− t;
3 end
4 write(〈pair〈value.rdr, value.ts〉, pair〈key, value.ts〉〉);

Reducers’ Input

reducer no. key values

1 〈1, 0〉 〈1, 0〉, 〈3, 2〉, 〈1, 9〉, 〈4, 15〉
2 〈2, 1〉 〈1, 1〉, 〈1, 5〉
3 〈3, 4〉 〈2, 2〉, 〈1, 4〉
4 〈4, 4〉 〈4, 4〉, 〈2, 4〉
5 〈5, 6〉 〈4, 6〉

Table 5.2: The output of the map function after partitioning, grouping, and sort-
ing which is also the input for the reducer function. The value tuples
are sorted by timestamp.

Reducer: After partitioning, grouping and sorting, each reducer gets the output
of the map function as depicted in Table 5.2. The key pairs contain the reader
and its corresponding timestamp value: pair〈value.rdr, value.ts〉. The value pairs

5.1 Using MapReduce for the Management of RFID Data 111

pair〈key, value.ts〉 that are grouped by the reader are sorted by timestamp. Every
reducer processes all events scanned by one particular sensor as described in Al-
gorithm 25. In line 2, the contamination interval continterval is set to an invalid
value. The reducer first checks if the contaminated item is amongst the events
read by the sensor (line 4 of the algorithm). If this holds, the contamination inter-
val is updated to the timestamp of the contaminated item. Now, all items within
the time interval of the contaminated object (calculated by the condition in line 6)
are added to the output. All other objects are omitted. For this procedure, the
reducer function has to scan the complete list of events once for each reader. After
the reducers complete their execution the result of the example query is the triple
〈3, 1, 2〉 and the output is therefore 〈3〉.

Algorithm 25: Reducer Q8

input : 〈pair〈Rdr key, TS value〉, List〈EPCTS〉 values〉, EPC myEpc, Interval t
output: 〈EPC key〉

1 wholerange = 2 · t;
2 continterval = −wholerange− 1;
3 for v: values do
4 if v.epc = myEpc then
5 continterval = v.ts;
6 else if v.ts ≤ continterval + wholerange then
7 write(〈v.epc〉);
8 end
9 end

Q9: Listing the number of objects per reader and timestamp, which passed
in a certain time interval (e.g., to identify production peaks)

Mapper: The mapper in Algorithm 26 selects all events that were generated in
the given time interval]t0, t1[. The output is split by the sensor ID over the dif-
ferent reducers. If we take as interval]1,4[from our example data set we get the
following output from the mapper: 〈[2, 2], 1〉, 〈[3, 2], 1〉, 〈[1, 2], 1〉.

Algorithm 26: Mapper Q9

input : 〈EPC key, RdrTS value〉, TS t1, TS t2
output: 〈pair〈Rdr key, TS value〉, count counter〉

1 if value.ts > t1 ∧ value.ts < t2 then
2 write(〈pair〈value.rdr, value.ts〉, 1〉);
3 end

Combiner: The combiner counts the tuples that were produced by the mappers

112 5. Distributed RFID Data Management

locally, i. e., per reader and timestamp group from each mapper. The code is
analogous to Algorithm 23 with the difference that instead of a list of counters,
the function takes 〈pair〈rdr, ts〉〉 as an input. Further, the pair 〈pair〈rdr, ts〉〉 and
the respective counter value per pair is returned.
Reducer: The reducer counts the tuples originating from the combiner globally
and outputs the count result grouped by reader and timestamp. The code is
analogous to Algorithm 23 with the difference that instead of a list of counters,
the function takes 〈pair〈rdr, ts〉〉 as an input. Further, the pair 〈pair〈rdr, ts〉〉 and
the respective counter value per pair is returned. The output for our example is:
〈[2, 2], 1〉, 〈[3, 2], 1〉, 〈[1, 2], 1〉.

Q10: Listing the number of all objects scanned at any of a given set of
readers within a time interval, grouped and ordered by reader, and a time
interval of a second

Mapper: The mapper for Q10 is given in Algorithm 27. It selects all events that
were produced by one of the given sensors {rdr | rdr ∈ Rdr} in the pre-defined
time interval]t0, t1[. It passes key/value pairs consisting of the reader and times-
tamp as a key and 1 as a value that is to be counted by the reducer. The same
object is not supposed to be scanned at the same reader at the exact same time
again, since we assume that the data is cleaned beforehand. Therefore, we do not
need to perform duplicate elimination for this query. For our example, if we take
all five existing sensor IDs as input and the time interval]1,6[we get the following
mapper output: 〈[2, 2], 1〉, 〈[3, 5], 1〉, 〈[3, 2], 1〉, 〈[4, 4], 1〉, 〈[1, 2], 1〉, 〈[4, 4], 1〉.

Algorithm 27: Mapper Q10

input : 〈EPC key, RdrTS value〉, {rdr | rdr ∈ Rdr}, TS t0, TS t1
output: 〈RdrTS value, counter〉

1 if value.rdr ∈ {rdr | rdr ∈ Rdr} ∧ value.ts > t0 ∧ value.ts < t1 then
2 write(〈value, 1〉);
3 end

Combiner: The combiner for Q10 counts locally the number of events per reader.
The code is analogous to Algorithm 23 with the difference that instead of a list of
counters, the function takes 〈pair〈rdr, ts〉〉 as an input. Further, the pair 〈pair〈rdr, ts〉〉
and the respective counter value per pair is returned.
Reducer: The reducer for Q10 counts the number of events per reader and times-
tamp globally. The code is analogous to Algorithm 23 with the difference that
instead of a list of counters, the function takes 〈pair〈rdr, ts〉〉 as an input. Fur-
ther, the pair 〈pair〈rdr, ts〉〉 and the respective counter value per pair is returned.
For our example the reducers’ output is: 〈[2, 2], 1〉, 〈[3, 5], 1〉, 〈[3, 2], 1〉, 〈[4, 4], 2〉,
〈[1, 2], 1〉.

5.1 Using MapReduce for the Management of RFID Data 113

Q11: Listing the number of all objects which were scanned within a time
interval by the sensors rdr1, rdr2, and rdr3 in this order, aggregated per
second

The processing of this query requires two different MapReduce jobs. The first
run selects all triples that fulfill the conditions of the query. The reducer needs
to work on all events for one object, i. e., the object ID is the key in the function.
The second run is responsible for counting the result. The second reducer expects
the timestamp value as a key since the occurrence of the timestamps has to be
counted.

Mapper of the first run: This mapper depicted in Algorithm 28 selects all events
that were scanned by the three sensors in the specified time range. Given the
reader IDs 2, 3, and 1 and the time interval]1, 15[the mapper of the first run
outputs: 〈1, [1, 1]〉, 〈1, [2, 2]〉, 〈1, [3, 5]〉, 〈1, [2, 6]〉, 〈1, [1, 10]〉, 〈2, [3, 2]〉, 〈3, [1, 2]〉.

Algorithm 28: Mapper Q11 / First run
input : 〈EPC key, RdrTS value〉, Rdr rdr1, Rdr rdr2, Rdr rdr3, TS t0, TS t1
output: 〈EPC key, RdrTS value〉

1 if value.rdr = rdr1 ∧ value.ts > t0
2 ∨ value.rdr = rdr2
3 ∨ value.rdr = rdr3 ∧ value.ts < t1
4 then
5 write(〈key, value〉);
6 end

Reducer of the first run: The first reducer for Q11 given in Algorithm 29 has
to determine the minimum timestamp ts1 of events read by sensor rdr1 and the
maximum timestamp ts3 of sensor rdr3. For all events read by sensor rdr2, we
store the timestamp in order to check if it is within the interval [ts1, ts3]. If there is
one event that fulfills the conditions then its timestamp and a count of 1 is written
as output. For our example, if we apply the reducer algorithm for the triples with
EPC key = 1: 〈1, [1, 1]〉, 〈1, [2, 2]〉, 〈1, [3, 5]〉, 〈1, [2, 6]〉, 〈1, [1, 10]〉 we see that the
object with ID 1 was scanned by the reader IDs 2, 3, and 1 in the correct order
in the given time interval. Therefore, the output of the reducer is the smallest
timestamp for rdr1 : 〈2, 1〉.
Mapper of the second run: The second mapper for Q11 is a simple identity map-
per.

Reducer of the second run: The second reducer for Q11 counts the resulted times-
tamp groups. The code is analogous to Algorithm 23 except that the key is the
timestamp value and the output contains the timestamp and count pairs. The
output of the reducer from the second run is therefore: 〈2, 1〉.

114 5. Distributed RFID Data Management

Algorithm 29: Reducer Q11 / First run
input : 〈EPC key, List〈RdrTS〉 values〉, Rdr rdr1, Rdr rdr2, Rdr rdr3
output: 〈TS key, counter〉

1 ts1 = ∞ ts3 = −∞;
2 twoisin = false;
3 Set ts2 = {};
4 for v: values do
5 if v.rdr = rdr1 ∧ ts1 > v.ts then
6 ts1 = v.ts;
7 else if v.rdr = rdr3 ∧ ts3 < v.ts then
8 ts3 = v.ts;
9 else

10 ts2 = ts2 ∪ {v.ts};
11 end
12 end
13 if ts1 < ts3 then
14 for t : ts2 do
15 if t ≥ ts1 ∧ t ≤ ts3 then
16 twoisin = true;
17 break;
18 end
19 end
20 end
21 if twoisin then
22 write(〈ts1, 1〉);
23 end

5.1.3 Performance Evaluation and Comparison

Hadoop setup

For our experimental study we use Hadoop version 1.0.1 running on Java 1.6.0.
We installed Hadoop with the default configuration settings except for the fol-
lowing properties that were changed in order to get a better performance: (1) we
use 512 MB data block size instead of the default 64 MB in order that the map
instances process a bigger portion of the data at a time, (2) each Java task tracker
child process can use up to 2560 MB heap size instead of the default 200 MB in
order to hold as many intermediate results as possible in main memory. Further,
we configured the system to run two map and two reduce instances in parallel on
each node. For every Hadoop job one can additionally specify the overall number
of map and reduce instances that should be launched. Note that these Hadoop
parameters are just a hint for the framework and Hadoop decides how many map

5.1 Using MapReduce for the Management of RFID Data 115

instances to run and how to allocate them on the nodes. According to the Hadoop
documentation, one reducer per cluster node is a reasonable job configuration. We
followed this advice and the number of reducers chosen by Hadoop matched ex-
actly our input in the configuration file: the number of cluster nodes. The number
of mappers is determined by the size of the input file(s). This size divided by the
configured block size gives the number of mappers started by the framework for
the particular job. All input and output files are stored in the HDFS. Two replicas
per block were configured.

Node configuration

We use three different node configurations for the experiments: a 4-node, a 8-node,
and a 16-node cluster. Each node is equipped with an Intel(R) Core(TM)2 Quad
CPU and 7 GB RAM. HDFS is installed on a dedicated local 500 GB LVM volume.
One distinguished cluster node is serving as a NameNode and a Jobtracker as
well as a master and a slave. All other nodes are slaves (see the HDFS architecture
in [10]).

Benchmark execution

For our experiments, we generate the amount of RFID data produced in one week
in a world-wide company: 450 million events. This is the same data set we used
for evaluating the performance of our Triple Store in Section 4.5. The event triple
file loaded in HDFS has a total size of 50.8 GB, it contains 1000 different reader
values, 22494720 different EPC values and 4500049 different timestamp values.

We implemented each query as a set of Hadoop jobs according to the descrip-
tions above. We executed each query three times for each configuration (a 4-node,
a 8-node, and a 16-node cluster) and report the average time of the runs. We fur-
ther experiment with a smaller data size file containing only the events of the last
production day (ca. 10 GB) in order to avoid that Hadoop scans the whole input
for the time range queries. For the first setup, 100 mappers are running in the
framework; for the second scenario, the mappers determined by Hadoop are only
19 due to the smaller input. The query results can be seen in Figures 5.3, 5.4
and 5.5.

Results and Discussion

As expected, the experimental results in Figure 5.3 show that Hadoop is not ap-
propriate for OLTP processing. Q1 and Q2 select the last position of an object and
the whole pedigree path of an object, respectively. Due to the fact that indexes
cannot be used with plain Hadoop, the framework has to scan the whole input
files in order to find a particular record, e. g., the particular EPC. The execution
time of the queries is thus completely dominated by the map process of filtering
the data and reading data from disk – that is, disk I/O. Therefore, OLTP queries,

116 5. Distributed RFID Data Management

which are usually using fast indexing in common DBMSs, suffer badly in this
context due to the lack of built-in indexes.

Q1 Q2
0

100

200

300

400

500

600

524 513

304 306

205 200

Ex
ec

ut
io

n
Ti

m
e

[s
ec

]

4-nodes 8-nodes 16-nodes

Figure 5.3: Query performance of the OLTP queries on different Hadoop clus-
ters.

Further, we found that the fixed overhead of the MapReduce framework for
starting all services, synchronizing the tasks and performing a disk access amounts
ca. 25 seconds. This was also stated in [41]. For short-running queries, these
warm-up costs can therefore dominate the execution time.

In Figure 5.4, the performance of the OLAP queries in our RFID benchmark for
the one week data set are depicted. We notice that Q3, Q4, Q5, Q6, and Q9 show
a similar query performance and investigate the effects on these queries’ runtime
first.

For Q3, the map function selects all events at one particular reader and the
reduce function counts the outcoming events. The execution of the map function
takes expressed as a percentage of the map phase longer than the reduce functions
of the rest of the queries. This is due to the fact that this query uses only one
reducer (the map output is partitioned on the sensor ID), which processes 1/1000

of the data (the events are equally distributed over 1000 readers).
Q4’s functionality lies primarily in the mapper, whose execution time dominates

completely the performance. It is interesting that even using the identity reducer
an overhead of ca. 30 seconds is produced. This corresponds to the time for read-
ing the output of the map tasks from disk and writing it to the reduce output, i. e.,

5.1 Using MapReduce for the Management of RFID Data 117

the I/O time. The query could be further optimized if we omit the reduce phase
and use the map output as a final output of the query.

The actual join computation of Q5 is done by the reducer task, the map instances
perform the selection conditions. Each map instance filters all objects that were
scanned by one of the given readers in the desired time interval. The map phase
has to process the whole input data, while the reduce phase takes only a fraction
of the data, which again results in a longer map phase execution.

Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 Q11
0

100

200

300

400

500

600

700

800

518 510

581 586
615

533

841

686

297 303
336 340

373

305

444

404

190
208 215 208

237
210

276
250

7026
3731

2537

Ex
ec

ut
io

n
Ti

m
e

[s
ec

]

4-nodes 8-nodes 16-nodes

Figure 5.4: Query performance of the OLAP queries measured on the one week
dataset, using different Hadoop cluster sizes.

For Q6, we extend the reduce procedure of Q5 by an additional condition, which
guarantees that the items were first scanned by the first reader and then by the
second reader. Consequently, this phase takes slightly longer than the reduce
phase of Q5. Overall, that is the reason for the slight increase of the execution
time of Q6 compared to Q5.

Q9 is first selecting all 〈Rdr, TS〉 pairs in the given time interval (done in the
map phase) and is then grouping and counting the pairs in the reduce phase.
Since the key is the sensor ID and in our test data set we have 1000 readers that
produce events which are equally distributed over the time, the reducers get sim-
ilar portions of the data.

Queries Q7, Q8, Q10, and Q11 take longer than the rest and we take a closer
look at their map and reduce procedures.

As described in Section 5.1.2, Q7 needs two map and reduce phases. The first

118 5. Distributed RFID Data Management

map and reduce run is identical to Q6; the second one does an additional counting
of the output of Q6. Using more than one map and reduce phases, increases
the execution time because of the intermediate disk writes. The overhead of the
second map and reduce phases amounts ca. 28 seconds. The reduce phase of the
second run takes as long as the map phase of the second run, since the mapper is
an identity mapper.

Q8 is a long-running OLAP query. The map tasks process the whole input,
slightly modify it, and pass it to the reducers. Therefore, the map phase has an
extremely high execution time because of processing the whole output, which is
bounded by the I/O bandwidth. Further, the reducer scans the whole slightly ag-
gregated output of the mapper and filters the data. For this reason, the execution
time is only a factor 2 smaller than that of the map function. This results in an up
to 12 times higher response time than that of the other queries.

Q10 checks various conditions in its selection (map) phase in order to filter the
input data, which explains the bigger portion of execution time spent in the map
phase. The reducers just count and group the mappers’ output.

Q11 needs two map/reduce runs, which affect its run time. The first map and
reduce run executes the actual work: the mapper performs as usual the selection
and the reducer ensures that the correlated triples lie in the given time interval.
The second map/reduce run is responsible for the grouping and counting. It takes
only one fourth of the execution time compared to the first map/reduce phase.

Table 5.3 shows the average of the map and reduce execution time for each
query measured for the 16-node configuration on the small, one-day data set as
shown in Figure 5.5 and records the total execution time of the queries. The sum
of the map and reduce function’s runtime can exceed the depicted total execution
time, since the reduce phase can be launched by Hadoop before the map phase
is completed. This is due to the fact that Hadoop reserves system resources for
the reducers in advance. As soon as the map tasks produce some output, the
reducers can begin with the processing: they can fetch the data and sort it. The
real processing of the data by the reducers can, however, not be proceeded until
all map outputs were created. Note, that the query execution times in Table 5.3 are
mainly dominated by the map tasks. The reason for this is that they have to filter
the relevant triples from the huge input data and their execution time consists
mainly of the I/O overhead. The reducers however get a greatly reduced input so
that their execution time is only a fraction of the mappers’ execution time.

When scaling the number of nodes in the cluster from 4 to 8, the query perfor-
mance first increases proportionally. This is justified by the less data per node that
has to be processed (the bigger overall number of map and reduce tasks). How-
ever, when we scale further from 8 to 16 cluster nodes, the query performance does
not improve by the same factor, it increases only slightly. As the total number of
allocated map and reduce tasks increases, there is more overhead for managing
the cluster nodes. Thus, the fixed overhead increases slightly when new nodes
are added to the cluster. In our case, this additional overhead is not completely
compensated by the faster processing of the 16 nodes. The reason for this is the

5.1 Using MapReduce for the Management of RFID Data 119

Execution times of the map and reduce phases (sec)

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 Q11

map 88 88 113 72 100 88 88/15 437 89 104 94/15

reduce 46 47 71 33 55 45 45/12 215 45 37 46/12

total 101 102 126 93 114 103 103/28 675 101 117 109/27

Table 5.3: The portion of execution time (in sec) consumed by the map and re-
duce procedures for each query on the one week data set. Q7 and
Q11 consist of two map and reduce phases, the execution times are
divided by a slash, respectively. The sum of both values can exceed
the total execution time since the reduce phase can be launched by
Hadoop before the map phase is completely finished.

following: the bigger amount of mappers increases the performance, since the in-
put data is big enough and requires a total number of 100 mappers. On the other
side, however, most of the queries (all except for Q9, Q10) do not need more than
8 reducers for executing the map outputs, i. e., the result of the hash partition-
ing after the map phase is divided into less than 8 groups. Therefore, applying
more nodes and more reducers does not improve the query performance in this
case. The performance of the 16-nodes, compared to the 8-nodes configuration is
improved only in the map portion of the execution time.

Further, in order to have a fair comparison between MapReduce and our ded-
icated Triple Store, we reduce the size of the data read by the MapReduce tasks.
Since most of the queries in our benchmark are range queries over a particular
time interval, Hadoop does not need to read the whole input data, but only the
data produced within the respective time interval. For an RFID scenario, one can
consider that the input files are stored as small files ordered by timestamp, e. g.,
every day one event data file is written. Taking this into account, we can execute
the time range queries only on the file log of the day containing the requested
timestamps. The RFID range queries are therefore executed on an one-day-log.
The experimental results can be seen in Figure 5.5. Since Q2 determines the com-
plete historical path of an object, Q3 counts all items scanned by one reader over
the whole time interval, and Q8 calculates the contaminated items related to a par-
ticular object – these queries are omitted for this experiment. All other queries are
time range queries and can be executed on the data within the distinguished time
interval. As expected, the execution time relation between the different queries
remains the same. That is, queries Q7, Q10, and Q11 are slightly longer running
than the rest. However, scaling the number of nodes in the cluster has a slightly
different effect on the execution time than that in Figure 5.4. As expected, scaling
the number of nodes from 4 to 8 accelerates notably the execution. In contrast to
Figure 5.4, however, scaling the number of nodes from 8 to 16 increases the perfor-

120 5. Distributed RFID Data Management

mance less notably than for the same nodes relationship in Figure 5.4. We believe
that this smaller improvement in the performance is due to the clearly smaller
size of the input. The input data size and the defined block size require the overall
number of 19 mappers. Since on each node two mappers run in parallel, when we
take the 16-node configuration, there are some nodes that are not busy the whole
time. However, they cannot begin with the actual reduce phase execution before
all nodes finish their map phase. That is why the performance of the 16-node
configuration increases only slightly compared to the 8-node cluster.

Q1 Q4 Q5 Q6 Q7 Q9 Q10 Q11
0

50

100

150

200

142

154
163 162

189

175

232

206

103 106
114 114

142

108

157 156

101
93

114

103

130

101

117

137

Ex
ec

ut
io

n
Ti

m
e

[s
ec

]

4-nodes 8-nodes 16-nodes

Figure 5.5: Query performance on a fraction of the data – one day data set.

As we can see, the MapReduce paradigm, in particular the Hadoop implemen-
tation, was easily adapted for an RFID use case. An interesting question is there-
fore where the limitations of this model are. The authors in [36] consider the
distributed paradigm from a different point of view – a programming perspec-
tive. They define a programming model of MapReduce (analyzing the original
Google paper [16]) based on the functional programming language Haskell and
try to reveal the limitations of the system. One issue about MapReduce is that we
need a good problem-specific understanding in order to determine the optimal
values for the number of reduce tasks and to provide the partitioning method for
the intermediate keys. In general, the MapReduce processing is restricted to the
determined keys – the input as well as the intermediate results rely on keys. If
we want a more general approach, that does not involve keys we have to go be-
yond the pure MapReduce concept and use other mechanisms like, e. g., Google’s

5.2 Distributed RFID Processing Using the RFID Triple Store 121

domain specific language Sawzall [42].
Overall, we can conclude that the general-purpose MapReduce approach could

be applied easily for the RFID scenario, but the query performance is not optimal
for our use case.

5.2 Distributed RFID Processing Using the RFID Triple
Store

Hadoop is a mature and flexible approach for the distributed processing of large-
scale data analysis, but it does not provide a performance that is suitable for RFID
query processing. The RFID Triple Store described in Chapter 4 provides the best
results in a centralized RFID scenario. Therefore, we explore the possibilities of
applying this solution in a distributed manner for efficient query processing.

5.2.1 Distributed Architecture

Figure 5.6 shows the architecture of a framework for a distributed RFID processing
using the RFID Triple Store. On each node of the cluster, we install an instance
of the RFID Triple Store, as well as a client instance that manages the database
access using a JDBC connection. The data of the different storage instances is hash
partitioned by the EPC value and is nearly equally distributed over the nodes. The
controller is a monitoring instance, which manages and synchronizes the parallel
execution of the queries on the nodes in the cluster. It distributes the queries over
the nodes and collects the query results that are then globally merged. If further
processing of the results is needed (e. g., duplicate elimination), the controller takes
care of it. The controller has a similar role like the Hadoop’s job monitoring task.

For each query, we describe how it is implemented in our distributed scenario
and whether the results have to be further processed by the controlling instance at
the end.

Q1: Last location of an object

For this query, we select all events which contain the requested object ID (EPC).
Since the data of the RFID Triple Store instances is partitioned by the hash value
of the EPC, we send the query to the particular node in the cluster that hosts the
item. No global merging of the results is needed.

Q2: The pedigree (complete path) of an object

Like for Q1, we select all events which contain the requested object ID (EPC). We
therefore query only one particular RFID instance (node) and no global merging
of the results is needed.

122 5. Distributed RFID Data Management

RFID
Triple Store

data is partitioned by EPC

JDBC

Client

RFID
Triple Store

Client

RFID
Triple Store

Client

JDBC JDBC

Controller

Queries

Merging the
results

Figure 5.6: Distributed RFID processing using the RFID Triple Store.

Q3: The number of objects scanned by a certain sensor

For this query, all instances of the cluster have to be queried. Each node provides
the number of events read by the particular sensor as result. At the end, the
controller has to perform a global count of the sub-results from the different nodes.
However, no duplicate checking is needed since no objects will be double counted
due to the hash partitioning on EPC. The execution time of this query includes the
time of the additional global merge step.

Q4: A list of objects scanned by a sensor within a time interval

The query is sent to all instances of the cluster. Each node delivers the unique
EPCs of the items that were scanned by the sensor in the particular interval. The
client has to perform a global merge of the sub-results. Because the distribution
is conducted by EPC, each node will perform duplicate elimination. The same
EPC cannot occur again at another node. Therefore, no global distinct operator is
needed for the query. The query execution time includes the time for the results
to be merged by the client.

5.2 Distributed RFID Processing Using the RFID Triple Store 123

Q5: A list of objects which were scanned by sensor rdr1 after a time
threshold and by sensor rdr2 before a time threshold

For Q5, the query is executed by every node of the cluster and a join over the EPC
value is performed. The result comprises all objects that were scanned by the two
given sensors within the given time constraints without regarding the sequence in
which these events passed the readers. Consider, that the sensors have a specific
semantic, like entry and exit. This query determines for example the objects that
passed an entry sensor after 8 o’clock in the morning and an exit sensor before 12

o’clock in the morning, i. e., all objects produced before noon. Again, at the end,
the output of the different nodes has to be merged without additional processing.

Q6: A list of objects which were scanned first by sensor rdr1 and then by
sensor rdr2 within a time interval

Q6 is executed by all nodes in the cluster. The results are globally merged by the
controller without additional processing.

Q7: The number of objects which were scanned first by sensor rdr1 and then
by sensor rdr2 within a time interval

For Q7, every node in the cluster calculates the number of objects that fulfill the
select condition. They return their local counter of the result triples. The controller
sums up the individual outputs and provides the total number of all objects sat-
isfying the conditions. No global duplicate elimination is needed for the query.
Additional computational time is needed at the end due to the merge step of the
single counters.

Q8: A list of objects that were at sensor rdr, together with an object x
(suspected to be contaminated) within a certain time interval (contamination
query)

Q8 is a heavy OLAP query that has to be computed in two steps in a distributed
scenario.

Step 1: we generate a subquery that returns all tuples of the form 〈rdr, ts〉 for
the contaminated object. This means that we select all locations of the object with
EPC x and the timestamps for these locations. This subquery is analogous to Q2

and is only submitted to one cluster node where the EPC is residing.
Step 2: For each result triple of step 1, we generate a subquery that provides all

objects that were scanned by the specified reader and whose timestamp lies within
the contamination interval. This subquery is executed in parallel at all nodes. The
final results are therefore composed by the union of the results of all subqueries.

124 5. Distributed RFID Data Management

Q9: Listing the number of objects per reader and timestamp, which passed
in a certain time interval (e.g., to identify production peaks)

For Q9, every node in the cluster must execute the query. However, in this case
we cannot just merge the results of the individual nodes, but have to perform a
global sum and duplicate elimination over the result set since the same reader and
timestamp values can occur at every node. This additional distinct operator phase
represents an additional overhead for the query execution.

Q10: Listing the number of all objects scanned by 10 readers within a time
interval, grouped and ordered by reader, and a time interval of a second

Q10 is executed from every cluster node. Again, we cannot just merge the results
of the individual queries, but have to perform a global distinct over the result
set since the same reader and timestamp values can occur at every node. This
additional distinct operator phase represents an additional overhead for the query
execution.

Q11: Listing the number of all objects which were scanned within a time
interval by the sensors rdr1, rdr2, and rdr3 in this order, aggregated per
second

For Q11, every node in the cluster must execute the query. In this case we cannot
just merge the results of the individual queries, but have to perform a global
duplicate elimination over the count results since the same timestamp values can
occur at every node. This additional duplicate elimination phase represents an
additional overhead for the query execution.

5.2.2 Performance Evaluation

In this section, we present the setup of the distributed RFID platform and discuss
the achieved query performance.

Experimental Setup

For the experiments, we use the same hardware equipment as used for our Hadoop
experiments in Section 5.1. The detailed description of the environment can be
taken from this section. We set up a cluster of four nodes. On each node, the RFID
Triple Store instance and the corresponding JDBC client are installed. One of the
nodes additionally hosts the controller instance, which coordinates the execution
and merges the results.

We generate the amount of RFID data produced in one week in a world-wide
scenario: 450 million events. This is the same data set we used for evaluating the
RFID query performance using Hadoop. The data is partitioned over the nodes
using a hash function for the EPC values. This results in almost equal data load

5.2 Distributed RFID Processing Using the RFID Triple Store 125

for each node (ca. 112 million events). The size of the database file for each node
is 11 GB.

The queries for the RFID query workload are implemented as described above.
The implementation of the distributed approach using the RFID Triple Store is
prototypical, i. e., it is mainly optimized for the given workload and serves as a
proof of concept. It is supposed to show that this solution performs better than a
general-purpose solution like MapReduce.

Results and Discussion

The results of the query performance measurements can be seen in Figure 5.7.
As expected, this approach outperforms significantly the solution using Hadoop
(see Figures 5.3 and 5.4). Please note that the numbers in Figure 4.24, present-
ing the centralized Triple Store solution, are measured during a mixed workload
consisting of concurrent queries and inserts (on a different host), so that a direct
comparison with these numbers is not possible.

Query-only workload

No. QRT [ms] Nodes

Q1 8 1

Q2 7 1

Q3 14 4

Q4 17 4

Q5 58 4

Q6 20 4

Q7 16 4

Q8 176 1 + 4

Q9 355 4

Q10 89 4

Q11 24 4

Figure 5.7: The average query performance on the distributed RFID platform.
The last column shows the number of nodes involved in the query
execution.

As shown in Figure 5.7, the OLTP queries Q1 and Q2 are both executed on one
cluster node (one fourth of the original data) and have similar performance, since
they both select data for a particular EPC. In the first case, the last reader that
scanned the object is selected. In the second case, all readers that the object passed
through are selected. In Section 4.5, the average path length of an object according
to our data generation is shown. Since in our case the path length for Q2 is only

126 5. Distributed RFID Data Management

6, no significant network overhead is experienced compared to Q1.
Q3 is executed on all four nodes in parallel. At the end, the monitoring instance

sums up the counter values that come as an output of the four queries. Each one
of the four queries has one result tuple, similar to Q1. The higher response time
of Q3 is due to the additional synchronization overhead of the four clients.

For queries Q4, Q5, and Q6, no additional post-processing of the results by the
controller is needed. Each of these queries is executed on all four nodes. The
reason for the higher response time of Q5 compared to the other two, is the size
of its result set, which is twice as big as the result sets of Q4 and Q6.

Q7 is executed on all four nodes. For this query, similar to Q3, the counter result
tuple of each query is summed up to a global counter.

Q8 is executed in two phases as described above. In the first phase, only one
node is queried and its result set contains pairs 〈rdr, ts〉. From the result of this
phase, the queries for the second phase are constructed. The queries of the second
phase are sent to all four nodes and determine all objects that were scanned at a
particular reader in the contaminated interval.

For Q9, Q10, and Q11, additional post-processing of the results is needed –
a global distinct operator. This last merging step yields a bigger computational
overhead that depends on the size of the result sets. The higher execution time
of Q9 is explained by the big size of its result set (29900 tuples) compared to the
other two queries (286 and 2 respectively).

5.3 Summary and Conclusions

In this chapter, we first applied the MapReduce paradigm for RFID data manage-
ment and then we set up a distributed environment for executing queries on the
RFID Triple Store.

For the management of RFID data, MapReduce provides a feasible approach as
it incurs practically no overhead for storing the data. It can simply use log files
containing the sensor events. Furthermore, for analytical workloads MapReduce
provides good performance. However, the fixed costs of query processing heavily
influenced by scanning huge parts of the data render MapReduce inappropriate
for interactive workloads. To get an idea of the performance of MapReduce for
our application scenario, we implemented our workload using Hadoop [10] and
conducted experiments on this RFID workload. We found out that the fixed costs
per query constitute 25 seconds, which is acceptable for long-running analytical
tasks only. However, for transactional workloads or interactive sessions, response
times of less than one second are desirable. We conclude that MapReduce is
a straightforward approach for the storage of huge amounts of data for OLAP-
focused applications but does not provide sufficient performance for OLTP tasks.

As a comparison, we present a prototypical distributed environment for RFID
query processing using the RFID Triple Store as a backend. We distributed the
data by hash partitioning it by the EPC value. Since the RFID Triple Store has the

5.3 Summary and Conclusions 127

best performance for RFID query processing among the considered approaches,
it can be expected that also in a distributed environment it will outperform the
general-purpose Hadoop. The results of our experiments proved this assumption.
The performance of the distributed variant of our RFID Triple Store is several
orders of magnitude better than that of Hadoop.

129

6
Conclusions and Outlook

RFID is becoming a widespread adopted technology for seamlessly tracing prod-
ucts, possibly across a global supply chain. It provides manufacturers with up-
to-date information about the position of their products and gives companies im-
portant insights in their business processes. The term real-world awareness intro-
duced by [29] defines the process of operation on real-time data. As a result, the
latest or current data is considered in business intelligence applications. In order
to achieve real-world awareness in the context of RFID data, efficient mechanisms
for the management of this data are needed. However, the frequently produced big
amount of RFID events constitute new challenges for modern database systems.
In this thesis we identified and summarized the three main challenges posed by
RFID (traceability) data:

(1) The RFID sensors produce a huge amount of data per second. We estimated
that for a medium-sized enterprise ca. 500 events per second are generated and for
a world-wide enterprise like BMW even more than 2000 events per second should
be managed. The challenge is to design an architecture that can store and query
this big amount of data.

(2) The high amount of incoming data requires an efficient mechanism for pro-
cessing it. RFID data has to be updated continuously. Therefore, as soon as new
events arrive the data staging process should be triggered. The requirements that
a data staging procedure should fulfill is to be able to insert the heavy load per
second into the storage system and to provide the latest data for further process-
ing.

(3) In order to take advantage in business planning, efficient transactional and
analytical query processing should be provided. The latest RFID information
should be involved in the OLAP query process. As known, fast query processing
requires up-to-date indexes. The challenge in this case is to manage the trade-off
between the update frequency and a reasonable query response time.

This work focused on determining possible data storage and management solu-

130 6. Conclusions and Outlook

tions for RFID data that fulfill the challenges.
First, we analyzed and compared existing solutions for efficient RFID data man-

agement that were implemented on existing DBMSs. We conducted a thorough
qualitative and quantitative analysis of the approaches, considering the specifics
of RFID data. Further, we evaluated the approaches upon an insert-only, a query-
only, and a mixed workload consisting of concurrent inserts and queries (OLTP
and OLAP). This way we could measure the effect of the event inserts on the run-
time of the queries. The mixed workload is of particular importance in the context
of RFID data, since the high event throughput must be inserted in nearly real-time
by the database solutions, in order to realize the idea of the real-world awareness.
Our proposed Bloom filter approach was designed to fulfill this requirement, i. e.,
the latest data is used for the business intelligence analysis. Its architecture com-
bines the OLTP and the OLAP components in one system. Due to this fact, the
latest scanned events are considered in the analytical reports. The Bloom filter
approach achieves the event generation frequency for a medium-sized enterprise
and outperforms the baseline approach with respect to the query execution time.

Second, after analyzing the existing database approaches on standard DBMSs,
we developed a scalable dedicated system addressing the challenges and exploit-
ing the RFID data specifics, the RFID Triple Store. The Triple Store is specifically
designed for the requirements of RFID data. We use RFID-aware indexes for stor-
ing the data and optimize them for the expected high insert load as we pre-reserve
spare slots for the incoming events. In order to speed up query processing, the
RFID data is available in different permutations of the three components of a sin-
gle event and is aggregated to a different level. Further, to speed up the range
queries that are typical in an RFID scenario, we leverage the traceability charac-
teristics of the data and provide an RFID-aware query engine implementation.
An important optimization is the usage of the dictionary IDs rather than the real
values of the timestamps. This is possible due to the fact that timestamps grow
monotonically and ordering by IDs is basically ordering by value. A further opti-
mization favors the indexes ordered by timestamp for the range queries, in order
to apply start/stop conditions during the index scan and this way to prune the
result as early as possible. Applying all RFID-aware architectural decisions, our
Triple Store performs notably better than the existing approaches when consider-
ing the insert throughput and the query response times. It is further compliant
with the requirements posed by RFID data that we stated in this thesis.

Finally, we take a look at a distributed management of RFID data. We apply the
MapReduce technology in order to evaluate whether this technique is feasible for
an RFID scenario. When implementing the typical RFID workload using Hadoop,
we found out that this is not optimal in an RFID context due to the nature of the
queries. They suffer from (1) the lack of indexes and (2) from concentrating the
computation mainly in the map-functions, so that most of the reducers are idle.
We further create a framework for the distributed RFID query processing using the
RFID Triple Store as a storage platform. This approach outperforms the solution
using Hadoop.

131

This thesis addressed the main challenges for efficient management of RFID
data. However, there are still open issues to be solved in the context of processing
RFID data. A future research topic could concentrate on exploring more possibil-
ities for RFID event management in a distributed environment. Using the RFID
Triple Store, a framework should be devised that executes not only distributed
RFID queries, but also inserts new event batches concurrently.

Another future topic is to devise mechanisms for efficient extraction of old RFID
data from the RFID Triple Store. Old data (e. g., data older than 3 months) do not
play an important role for the daily business and for OLAP queries with a shorter
foresight. Outdated events should be therefore extracted and deleted from the
RFID Triple Store and archived in a storage, where they won’t be accessed often.

Another topic which is often considered in the context of RFID data is data
cleaning, i. e., detecting duplicate or false readings and filtering them out. There is
a lot of on-going work in this field. Implementing one of the existing algorithms
for data cleaning in the RFID Triple Store is subject of future work.

133

Bibliography

[1] MonetDB. http://www.monetdb.org.

[2] The DBpedia Knowledge Base. http://dbpedia.org/.

[3] W3C: Resource Description Framework (RDF). http://www.w3.org/
RDF/.

[4] W3C: SPARQL Query Language for RDF. http://www.w3.org/TR/
rdf-sparql-query/.

[5] R. Agrawal, A. Cheung, K. Kailing, and S. Schönauer. Towards Traceabil-
ity across Sovereign, Distributed RFID Databases. In IDEAS, pages 174–184,
2006.

[6] Y. Bai, F. Wang, and P. Liu. Efficiently Filtering RFID Data Streams. In Cle-
anDB, 2006.

[7] C. Binnig, S. Hildenbrand, and F. Färber. Dictionary-based Order-preserving
String Compression for Main Memory Column Stores. In SIGMOD Confer-
ence, pages 283–296, 2009.

[8] BMW. Quarterly Report to 30 September 2009. http://www.bmwgroup.
com. accessed February 19, 2010.

[9] P. A. Boncz, S. Manegold, and M. L. Kersten. Database Architecture Evolu-
tion: Mammals Flourished Long Before Dinosaurs Became Extinct. PVLDB,
2(2):1648–1653, 2009.

[10] D. Borthakur. The Hadoop Distributed File System: Architecture and Design. The
Apache Software Foundation, 2007.

[11] R. Brunel. Adapting the RDF-3X System for the Management of RFID
Data. Bachelor’s Thesis. Supervised by Veneta Dobreva and Martina Albutiu,
Fakultät für Informatik, Technische Universität München, 2010.

http://www.monetdb.org
http://www.w3.org/RDF/
http://www.w3.org/RDF/
http://www.w3.org/TR/rdf-sparql-query/
http://www.w3.org/TR/rdf-sparql-query/
http://www.bmwgroup.com
http://www.bmwgroup.com

134 Bibliography

[12] Z. Cao, C. Sutton, Y. Diao, and P. Shenoy. Distributed Inference and Query
Processing for RFID Tracking and Monitoring. In VLDB, pages 326–337, 2011.

[13] H. Chen, W.-S. Ku, H. Wang, and M.-T. Sun. Leveraging Spatio-temporal
Redundancy for RFID Data Cleansing. In SIGMOD Conference, pages 51–62,
2010.

[14] J. Collins. Boeing Outlines Tagging Timetable. RFID Journal.

[15] J. Collins. DOD Tries Tags That Phone Home. RFID Journal.

[16] J. Dean and S. Ghemawat. MapReduce: Simplified Data Processing on Large
Clusters. In OSDI, pages 137–150, 2004.

[17] J. Dean and S. Ghemawat. MapReduce: a Flexible Data Processing Tool.
Commun. ACM, 53(1):72–77, 2010.

[18] J. Dittrich, J.-A. Quiané-Ruiz, A. Jindal, Y. Kargin, V. Setty, and J. Schad.
Hadoop++: Making a Yellow Elephant Run Like a Cheetah (Without It Even
Noticing). PVLDB, 3(1):518–529, 2010.

[19] J. Dittrich, J.-A. Quiané-Ruiz, S. Richter, S. Schuh, A. Jindal, and J. Schad.
Only Aggressive Elephants are Fast Elephants. PVLDB, 5(11):1591–1602, 2012.

[20] V. Dobreva and M.-C. Albutiu. Put All Eggs in One Basket: an OLTP and
OLAP Database Approach for Traceability Data. In IDAR ’10: Proceedings
of the Fourth SIGMOD PhD Workshop on Innovative Database Research, pages
31–36, New York, NY, USA, 2010. ACM.

[21] V. Dobreva, M.-C. Albutiu, R. Brunel, T. Neumann, and A. Kemper. Get
Tracked: A Triple Store for RFID Traceability Data. In ADBIS, pages 167–180,
2012.

[22] A. Eickler, C. A. Gerlhof, and D. Kossmann. A Performance Evaluation of
OID Mapping Techniques. In VLDB, pages 18–29, 1995.

[23] EPCGlobal: EPC Tag Data Standards Version 1.4, Ratified Specification.
http://www.epcglobalinc.org/standards/, June 2008.

[24] R. B. Ferguson. Logan Airport to Demonstrate Baggage, Passenger RFID
Tracking. eWeek.

[25] K. Finkenzeller. RFID Handbook: Fundamentals and Applications in Contactless
Smart Cards and Identification. Wiley Publishing, 2003.

[26] S. Ghemawat, H. Gobioff, and S.-T. Leung. The Google File System. In SOSP,
pages 29–43, 2003.

[27] H. Gonzalez, J. Han, X. Li, and D. Klabjan. Warehousing and Analyzing
Massive RFID Data Sets. In ICDE, page 83, 2006.

http://www.epcglobalinc.org/standards/

Bibliography 135

[28] P. Harrop. RFID in the Postal Service. MoreRFID.

[29] C. Heinrich. RFID and Beyond: Growing Your Business Through Real World
Awareness. Wiley Publishing, 2005.

[30] J. Huang, D. J. Abadi, and K. Ren. Scalable SPARQL Querying of Large RDF
Graphs. In VLDB, 2011.

[31] S. R. Jeffery, M. N. Garofalakis, and M. J. Franklin. Adaptive Cleaning for
RFID Data Streams. In VLDB, pages 163–174, 2006.

[32] JENA. Jena - A Semantic Web Framework for Java. http://jena.
sourceforge.net/.

[33] S. Kinauer. Applying MapReduce for RFID Data Management. Bachelor’s
Thesis. Supervised by Veneta Dobreva and Martina Albutiu, Fakultät für In-
formatik, Technische Universität München, 2010.

[34] G. Klyne and J. J. Carroll. Resource Description Framework (RDF): Concepts
and Abstract Syntax. World Wide Web Consortium, Recommendation REC-
rdf-sparql-query-20080115, 2004.

[35] S. Krompass, S. Aulbach, and A. Kemper. Data Staging for OLAP- and OLTP-
Applications on RFID Data. In Database Systems for Business, Technology, and
Web (BTW), pages 542–561, 2007.

[36] R. Lämmel. Google’s MapReduce Programming Model - Revisited. Sci. Com-
put. Program., 70(1):1–30, 2008.

[37] C.-H. Lee and C.-W. Chung. Efficient Storage Scheme and Query Processing
for Supply Chain Management using RFID. In SIGMOD Conference, pages
291–302, 2008.

[38] E. Masciari. RFID Data Management for Effective Objects Tracking. In SAC,
pages 457–461, 2007.

[39] T. Neumann and G. Weikum. Scalable Join Processing on Very Large RDF
Graphs. In SIGMOD Conference, pages 627–640, 2009.

[40] T. Neumann and G. Weikum. The RDF-3X Engine for Scalable Management
of RDF Data. VLDB J., 19(1):91–113, 2010.

[41] A. Pavlo, E. Paulson, A. Rasin, D. J. Abadi, D. J. DeWitt, S. Madden, and
M. Stonebraker. A Comparison of Approaches to Large-scale Data Analysis.
In SIGMOD Conference, pages 165–178, 2009.

[42] R. Pike, S. Dorward, R. Griesemer, and S. Quinlan. Interpreting the Data:
Parallel Analysis with Sawzall. Scientific Programming, 13(4):277–298, 2005.

http://jena.sourceforge.net/
http://jena.sourceforge.net/

136 Bibliography

[43] H. Plattner. A Common Database Approach for OLTP and OLAP Using an
In-memory Column Database. In SIGMOD ’09: Proc. of the 35th SIGMOD Intl.
Conf. on Management of data, pages 1–2, New York, NY, USA, 2009. ACM.

[44] E. Prud’Hommeaux and A. Seaborne. SPARQL Query Language for
RDF. World Wide Web Consortium, Recommendation REC-rdf-sparql-query-
20080115, January 2008.

[45] RFID Journal. Dedicated to Radio Frequency Identification and its Business
Applications. Vol.5, No.4.

[46] K. Rosen. Elementary Number Theory: And Its Applications. Addison-Wesley,
2011.

[47] W. Shang, Z. M. Jiang, B. Adams, and A. E. Hassan. MapReduce as a General
Framework to Support Research in Mining Software Repositories (MSR). In
MSR, pages 21–30, 2009.

[48] C. Sosnowski. Handling RFID Data in Databases. Diploma thesis, Fakultät
für Informatik, Technische Universität München, 2006.

[49] M. Stonebraker, S. Madden, D. J. Abadi, S. Harizopoulos, N. Hachem, and
P. Helland. The End of an Architectural Era (It’s Time for a Complete
Rewrite). In VLDB, pages 1150–1160, 2007.

[50] C. Swedberg. Hospital Uses RFID for Surgical Patients. RFID Journal.

[51] J. Tang, J. Sun, C. Wang, and Z. Yang. Social Influence Analysis in Large-
scale Networks. In KDD ’09: Proceedings of the 15th ACM SIGKDD international
conference on Knowledge discovery and data mining, pages 807–816, New York,
NY, USA, 2009. ACM.

[52] N. Tatbul. Streaming Data Integration: Challenges and Opportunities. In
IEEE ICDE International Workshop on New Trends in Information Integration
(NTII’10), Long Beach, CA, March 2010.

[53] A. Thusoo, J. S. Sarma, N. Jain, Z. Shao, P. Chakka, S. Anthony, H. Liu,
P. Wyckoff, and R. Murthy. Hive - A Warehousing Solution Over a Map-
Reduce Framework. PVLDB, 2(2):1626–1629, 2009.

[54] K. Valev. Implementation and Evaluation of Existing Approaches for the
Management of RFID Data. Bachelor’s Thesis. Supervised by Veneta Do-
breva and Martina Albutiu, Fakultät für Informatik, Technische Universität
München, 2011.

[55] C. Weiss, P. Karras, and A. Bernstein. Hexastore: Sextuple Indexing for Se-
mantic Web Data Management. PVLDB, 1(1):1008–1019, 2008.

Bibliography 137

[56] R.-M. Wernicke. Entwicklung eines Frameworks zur Evaluierung existieren-
der Ansätze für das Management von RFID Daten. Master’s Thesis. Super-
vised by Veneta Dobreva and Martina Albutiu, Fakultät für Informatik, Tech-
nische Universität München, 2011.

[57] X. Wu, M.-L. Lee, and W. Hsu. A Prime Number Labeling Scheme for Dy-
namic Ordered XML Trees. In ICDE, pages 66–78, 2004.

	Title Page
	1 Introduction
	1.1 Problem Statement
	1.2 Contributions
	1.3 Outline

	2 Characteristics of RFID Traceability Data
	2.1 RFID Event Data
	2.1.1 RFID Technology
	2.1.2 Electronic Product Code (EPC)
	2.1.3 RFID Events

	2.2 RFID Application Scenarios
	2.3 Challenges Posed by RFID Traceability Data
	2.3.1 Data Volume
	2.3.2 Data Quality
	2.3.3 Arbitrary Object Movement
	2.3.4 Data Staging
	2.3.5 Query Processing

	3 Relational DBMS Approaches for the Efficient Management of RFID Data
	3.1 Existing RFID Approaches on Relational DBMSs
	3.1.1 Naïve Approach
	3.1.2 Data Warehouse Approach (Gonzalez et al.)
	3.1.3 Read and Bulk Approach (Krompass et al.)
	3.1.4 Prime Number Approach (Lee and Chung)

	3.2 A Combined OLTP and OLAP Approach for Traceability Data
	3.2.1 Path Encoding Using a Bloom Filter
	3.2.2 Data Model
	3.2.3 Data Staging

	3.3 Performance Evaluation and Comparison
	3.3.1 Qualitative Evaluation
	3.3.2 Framework Architecture
	3.3.3 Evaluating the Existing RFID Database Approaches
	3.3.4 Evaluating the Bloom Filter Approach

	3.4 Related Work
	3.5 Summary and Conclusions

	4 A Dedicated Triple Store for RFID Data Management
	4.1 Motivation
	4.1.1 From a Traditional DBMS Approach to a Dedicated Solution
	4.1.2 A Short Introduction to RDF
	4.1.3 Similarities and Differences between RFID and RDF Data
	4.1.4 Contributions

	4.2 Triple Store Architecture
	4.2.1 Triple Store Indexes
	4.2.2 Index Compression

	4.3 Event Processing
	4.3.1 Index Design
	4.3.2 Analysis of Index Updates
	4.3.3 Index Implementation
	4.3.4 Pre-allocation of Spare Pages
	4.3.5 Index Update

	4.4 Query Processing
	4.4.1 Index Range Scans and Merge Joins
	4.4.2 SIP
	4.4.3 Order-preserving Dictionary

	4.5 Performance Evaluation and Comparison
	4.5.1 Experimental Setup
	4.5.2 Data Generation
	4.5.3 Query Working Set
	4.5.4 Mixed Workload

	4.6 Related Work
	4.7 Summary and Conclusions

	5 Distributed RFID Data Management
	5.1 Using MapReduce for the Management of RFID Data
	5.1.1 A Short Introduction to Hadoop – An Implementation of MapReduce
	5.1.2 Implementing RFID Queries Using Hadoop
	5.1.3 Performance Evaluation and Comparison

	5.2 Distributed RFID Processing Using the RFID Triple Store
	5.2.1 Distributed Architecture
	5.2.2 Performance Evaluation

	5.3 Summary and Conclusions

	6 Conclusions and Outlook
	Bibliography

