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Zusammenfassung

In dieser Arbeit werden inverse Optimalsteuerungsprobleme für unterschiedliche Anwendun-
gen, die alle menschliche Bewegungen betrachten, modelliert, eine Lösungsmethode wird
analysiert und numerische Ergebnisse werden diskutiert.

Die der Problemstellung zugrundeliegende Annahme ist, dass menschliche Bewegungen
bezüglicher einer unbekannten Kostenfunktion (näherungsweise) optimal sind. Die Kom-
bination einer Kostenfunktion mit der Dynamik des Menschen führt auf ein Optimal-
steuerungsproblem und die zugehörige Lösung kann dann mit aufgezeichneten Daten mensch-
licher Bewegungen verglichen werden. Ziel der Inversion ist es, diejenige Kostenfunktion
innerhalb einer gegebenen (parametrisierten) Menge zu bestimmen, die einen minimalen
Abstand zwischen den Daten und der Lösung des zugehörigen Optimalsteuerungsproblems
liefert. Die in dieser Arbeit verwendete Lösungmethode basiert auf einem Kollokations-
ansatz zum Diskretisieren des Optimalsteuerungsproblems und einer Reformulierung des
resultierenden Bilevel-Problems mittels Optimalitätsbedingungen. Zur Lösung der daraus
folgenden nichtlinearen Optimierungsprobleme wird dann auf eine Innere-Punkte-Methode
zurückgegriffen.

Ein weiterer wesentlicher Teil der Arbeit ist die Modellierung verschiedener menschlicher Be-
wegungen und die Diskussion numerischer Lösungen der entsprechenden inversen Optimal-
steuerungsprobleme. Die dargestellten Beispiele sind menschliche Armbewegungen in zwei
und drei Dimensionen, vom Menschen gesteuerte Spurwechsel von Autos und menschliche
Navigationsprobleme, bei denen die allgemeine Pfadplanung beim menschlichen Gehen
analysiert wird.
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Preface

Stereotypic human motions are observed for a broad range of tasks in daily life. In con-
sequence, the identification of the basic principles governing these motions is the goal of a
significant amount of research. The characteristics observed in various experimental settings
seem to be the outcome of an efficient learning scheme and a fast adaptation to new settings
is reported. One central idea discussed in literature is that, after an initial learning phase, the
stereotypic human motions are approximately optimal with respect to an unknown criterion
and thus several of such cost functions have been proposed.

If the goal is to simulate human motions being optimal with respect to one of these cost
functions, a model of the dynamics of the human system is needed. This means that a differ-
ential equation has to relate the values that can be controlled, the controls, to the temporal
change of the values representing the current state of system, the states; we focus here on
dynamics that can be posed in form of a system of ordinary differential equations. Combin-
ing one hypothesized cost function, a model of the dynamics of the human and conditions
stating the motion task with respect to the state values at the start and end of the motion,
a mathematical optimal control problem is obtained. Assuming that the model captures the
dynamics sufficiently well and that the correct cost function is known, the solution of the
optimal control problem should correspond to the observed human motion. Even if this is
possible, one has to note that, from the biological perspective, such an optimal control prob-
lem should not be identified with the real biological system, but is a modeling tool within a
range of validity which has to be specified.

The research presented in this work has been carried out within the cluster of excellence
CoTeSys at the Technische Universität München where scientists of various disciplines rang-
ing from psychology over sport sciences to electrical engineering work on the topic of cognitive
technical systems. The ultimate goal is that humans and robots cooperate intuitively in an
environment of daily life, e.g., jointly setting a table in a kitchen. Since an environment
of daily life is non-static and unforeseen changes of mind of cooperating humans occur, an
adaptable control strategy has to be used for the robot control. Consequently, a reasonably
precise model of standard human motions is needed to anticipate movements. Addition-
ally, knowing the underlying principles of human motions, one could control an humanoid
robot accordingly and thereby increase the anticipation of the robot’s motions by cooperating
humans.

Naturally, the question arises which cost function does a human optimize when doing a
certain task in daily life? We address this problem by stating an optimization problem: Find
the cost function for the optimal control problem that minimizes the distance between the
corresponding optimal state and the recorded human data. We assume that the set of feasible
cost functions for this data matching problem is a continuously parameterized family of cost

1



2 Preface

functions, i.e., the goal is to determine a vector of parameters such that the corresponding cost
function yields a state minimizing the distance measure. In consequence, two optimization
problems are obtained where one is part of the constraints of the other; such a combination
is called a bilevel problem. Because one of the two problems is an optimal control problem,
our problems fall into the class of bilevel optimal control problems; in this work we use the
term inverse optimal control problem since the data fitting problem is a standard problem of
inverse optimization.

The presented solution strategy is based on discretizing the optimal control problem by a
suitable collocation approach and then transform the bilevel problem into a standard (one-
level) optimization problem via the first-order necessary optimality conditions. The resulting
problem is a mathematical program with complementarity constraints (MPEC) which needs
further modifications in order to be solved with a standard interior-point algorithm. Con-
sequently, theory on nonlinear optimization, bilevel programs, MPECs and optimal control
has to be reviewed in order to state our solution strategy in full detail. Both analysis of
the problem structure and numerical experiences with our optimization method coreIOC are
discussed.

Three application examples are presented in this work: the central one is the problem of
human arm motions. For this example we discuss in detail the state of the art in the related
disciplines to clearly define where our approach fits into the main research lines and to
highlight the limits of our open-loop optimal control modeling of human motions. All elements
needed to model the dynamics of the human arm as a combination of rigid bodies and muscles
are introduced and, in addition to a standard planar arm model, a three-dimensional arm
model is derived. Two scenarios to use the result of the inverse optimal control problem for
robot control are discussed.

This is followed by the second application example where characteristics of lane changes
on a highway are analyzed. Optimization results of the inverse optimal control problem
for two dynamics, a linear and a nonlinear single-track model of the car’s dynamics, are
discussed. Cost functions describing human behavior can be used in this scenario to control
an autonomous car and thereby to raise the acceptance by both the passengers and the other
traffic participants.

The third class of application examples considers the human locomotion problem where the
task is to walk from a start to an end position while avoiding a collision with a crossing
person. The goal is to describe the overall motion by a model considering one rigid body,
neglecting the details of the dynamics of individual steps. A characteristic element observed
in human locomotion is the adaptation process during the motion to account for changes in
the environment, i.e., the changes in the position of the interfering person. In consequence,
we consider a model predictive control approach where the overall motion is split into a
sequence of submotions. Thus a system of optimal control problems has to be considered in
the inverse optimal control approach and numerical results are presented showing that our
solution strategy can handle this problem class, too.

A more detailed introduction stating the central aspects of each chapter and relation between
them can be found in the next chapter.



Introduction

Chapter 1

The problems of inverse optimal control, which form a special class of bilevel optimal control
problems, are the central topic of this work. Each bilevel problem is a combination of a lower
level program (LLP) and an upper level program (ULP) where the LLP is part of the upper
level constraints. In case of a bilevel optimal control problem at least one of the two problems
is an optimal control problem.

In [59] such problems are first introduced in the context of Stackelberg games and related
publications deal, for example, with systems with feedback (e.g. [10, 228]) or with dynamic
games (e.g. [22, 39]). Recently, two works on bilevel optimal control problem have been
presented. First, the problem of a rack feeder is discussed in [177, 178] where the task is to
optimally control a ceiling-attached rack feeder in a high rack. Modeling the dynamics as a
mathematical pendulum and considering, for example, the minimization of the controls or the
oscillations of the load handling device, bilevel optimal control problems are obtained which
range from parametric optimization in the upper level to a combination of several optimal
control problems. The solution strategy used to solve these bilevel optimal control problems
is a hybrid method combining the indirect approach for optimal control problems with the
direct one for the overall problem (cf. section 3). Second, the problem of optimizing the track
of an air race is addressed in [95]. Combining a complex model of the plane dynamics and
assuming time-optimal control, a bilevel optimal control problem is solved where in the ULP
the gate positions of the track are optimized in order to maximize safety- and fairness-related
cost functions. The optimal control problem is solved by a direct method and sensitivity
analysis of the optimal solution is used to solve the upper level problem.

If the ULP is a data fitting problem and the LLP the optimal control problem, an inverse
optimal control problem results. In addition to our publications [4, 5, 6, 7, 187] such problems
are discussed in [26, 34, 50, 217]. First, the problem of determining the best combination of
three given cost functions for double lane changes of a car is discussed in [50] where a simplified
single-track model is used for the dynamics of the car. The sensitivity information of the
LLP solution is determined by solving a linear-quadratic optimal control problem and this
information is used to solve the bilevel problem with a variant of the Levenberg-Marquardt
algorithm. Second, in [34] a solution strategy is explained which is similar to the one presented
in this work. However, numerical results are not presented for an optimal control problem
in the LLP, but only standard bilevel problems are solved. Note that neither details on
discretizing the optimal control problem nor on solving the resulting nonlinear problem are
given. Third, the inverse optimal control problem of human locomotion is addressed in [217]
and the goal is to use the optimal cost function to control a humanoid robot. The human
walking problem is considered on the level of trajectories of position and orientation, but
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individual steps or rigid body and muscle dynamics are not of interest. The resulting optimal
control problem in the lower level is solved by a multiple shooting method and in the upper
level a derivative-free optimization approach is used. This approach is also used in [26] to
analyze planar arm motions. For further details on these related works in bilevel and inverse
optimal control see section 4.2.

The solution strategy realized in this work reformulates the inverse optimal control problem
as a nonlinear optimization problem and, consequently, differs from the approaches named
above which use two separate optimization methods for the two problems. In our case a
parameterized family of feasible cost functions for the optimal control problem is given in form
of convex combinations of basic cost functions (see for example section 6.4.4). The inversion
problem in the upper level is to find the optimal vector of parameters corresponding to one
lower level cost function such that the corresponding optimal state has minimal distance to
the given data. The issue of finding a distance measure suitable for each problem is addressed
in section 4.3.

The first step in the solution process of the inverse optimal control problem is to address the
optimal control problem in the lower level on its own. Considering the special structure of the
dynamics of the examples, it is shown in section 3.4 by using the existence theorem of Filippov
that under certain assumptions an absolute minimum of the optimal control problem exists.
To numerically solve the problem, we use a collocation technique to discretize the problem
to obtain a nonlinear optimization problem. Following the line of [330], it is shown in section
3.2.1 that the optimality conditions for the discretized optimal control problem converge to
the (continuous) optimality conditions of optimal control theory if the discretization step
size goes to zero. Consequently, the polynomial basis of the collocation approach has to be
chosen in accordance with an adaptive time discretization (section 5.2.1) to obtain a good
approximation of the continuous solution using a small number of discretization points.

Using the discretized optimal control problem in the lower level, a standard bilevel optimal
control problem results. A standard technique to solve such a problem is to replace the lower
level by its first-order necessary optimality conditions; however, the resulting problem is in
general not equivalent to the original inverse optimal control problem. In consequence of
adding the KKT-conditions to the constraints of the upper level, a problem with comple-
mentarity conditions (MPEC) is obtained if inequality conditions are part of the problem
formulation of the optimal control problem. Therefore, if necessary, we adapt the relax-
ation approach of [324] to solve the MPEC by a sequence of nonlinear optimization problems
without complementarity constraints (cf. chapter 2).

In order to evaluate our solution strategy we discuss in section 5.2.4 a reconstruction frame-
work. The idea is to generate artificial data by solving the optimal control problem for a
known cost function

1.1 Outline of the Work

In the following the structure of this work is described, i.e., the central aspects of each
chapter are summarized and their implication on the overall solution strategy is discussed.
Additionally, the dependence of the individual chapters is highlighted.

In chapter 2 the structure of (nonlinear) bilevel programs and the related MPEC problems are
discussed. Since both problem types are closely related to standard nonlinear optimization
problems, we refer to the appendix A for a short review of relevant theory on nonlinear
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optimization. Especially, the concept of constraint qualifications (CQs) with respect to the
first-order and second-order optimality conditions are discussed. Necessary extensions of the
CQ concept to bilevel programs and MPECs are covered in chapter 2 which is structured in
the following way:

First, bilevel programs are introduced as the combination of two nonlinear optimization
problems where one is part of the constraints of the other (see section 2.1); consequently, the
one is termed the lower level program (LLP) that is constraining the other one, the so-called
upper level program (ULP). The definition of the bilevel problem is closely related to the
concept of optimistic and pessimistic solutions which describe the process of determining the
solution in LLP if the solution set has more than one element. We constrain ourselves in this
work to the optimistic case, where in case of multiple LLP solutions the one is chosen that is
best to minimize the ULP.

Furthermore, a proof of the existence of a global optimistic solution under suitable conditions
following the outline given by [74] is stated in detail in section 2.2. The semicontinuity
concept for the set-valued mapping is a central element in the proof. This theorem is later
used to prove the existence of a global optimistic solution for the discretized inverse optimal
control problem under certain assumptions. The state of the art on solution strategies for
bilevel programs is discussed in section 2.3. One of the approaches is based on the optimal
value function of the LLP and this concept is used in [352] to deduce (non-smooth) optimality
conditions for bilevel optimal control problem. Another approach to solve the bilevel program
is to replace the LLP by its first-order necessary optimality condition; this approach is used
in this work to solve the inverse optimal control problem.

If the bilevel problem is transformed by this approach into a (one-level) optimization problem,
a mathematical program with complementarity constraints results. The term MPEC is
the abbreviation for mathematical programs with equilibrium constraints which is a special
class of nonlinear optimization problems characterized by the structure of the constraints.
Originally, the equilibrium constraints are parametric variational inequalities describing the
equilibrium of a system, e.g., a Nash equilibrium in game theory [202]. If suitable assumptions
are fulfilled, the variational inequalities can be replaced by a system of complementarity
conditions; to emphasize this special type of MPECs, the term MPCC is used in literature.
Here we will only consider MPECs of the MPCC-type, but still call them MPECs. Since
complementarity conditions are part of the necessary optimality conditions for a general
problem of nonlinear optimization with inequality constraints (see appendix A), the MPECs
analyzed in this work result from bilevel programs (cf. chapter 2) where the lower level
program is replaced by its first order necessary optimality conditions. The reason for treating
MPECs separately from the standard nonlinear optimization problems of appendix A is
that most standard constraint qualifications do not hold for MPECs [106, 245, 276]. Thus,
further theory concerning optima of MPECs is discussed in this chapter and adaptations of
numerical methods for standard nonlinear optimization problems are described. Naturally,
several theoretical results and numerical approaches are presented in literature, but we restrict
ourselves to the most common principles for optimality conditions of MPECs. We focus
in section 2.5.1 on the regularization scheme of [324] which is used in this work to solve
the reformulated one-level problem, but other regularization approaches are summarized in
section 2.5.2. Since the MPECs are to be solved with an interior-point method, further
considerations are needed to assure that at all instances a non-empty proper interior of the
feasible region exists. In this line we review the two-sided relaxation variant of [324] in section
2.5.3. For more details on MPECs see, for example, [202, 242, 278, 324, 353].
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In chapter 3 problems of optimal control are discussed which, in the context of our inverse
optimal control problem, correspond to the lower level programs. Two general approaches
exist to solve this problem of minimizing a cost function subject to the state dynamics and
the equality and inequality constraints on both the states and the controls: First, the indirect
approach of optimal control (cf. section 3.1) derives optimality conditions in function spaces,
yielding a multi-point boundary value problem. The two most common numerical strategies
for solving such boundary value problems are the collocation approach and the multiple-
shooting technique (see section 3.1.2). Consequently, the idea of the direct approach is to
optimize and then to discretize. Second, the direct methods of optimal control (cf. section 3.2)
follow the opposite strategy: In the first step, the optimal control problem is discretized and
then methods of nonlinear optimization are used (see appendix A) to solve it. The collocation
approach of [330] discussed in section 3.2.1 is used in this work to discretize the optimal control
problem in the LLP. Convergence results (adapted versions of the ones proposed in [330])
show that the KKT-conditions of the discretized optimal control problem converge in limit
to the optimality conditions of the indirect approach of optimal control. In section 3.3 the
one-dimensional minimum jerk problem is used as an numerical example to show convergence
of states, controls and adjoint variables and to discuss different convergence rates of different
collocation types. If the classical setting of piecewise continuously differentiable states in
the optimal control problem is weakened to allow for absolutely continuous functions, the
existence of an solution can be proven under certain assumptions by Filippovs theorem (cf.
section 3.4). We show that a weaker set of assumptions which are sufficient to proof the
existence theorem of Filippov are met by the optimal control problems considered in the
application examples (chapters 6 to 8).

Inverse optimal control problems are discussed in detail in chapter 4. Following the problem
formulation (section 4.1), the state of the art in bilevel optimal control and, especially, inverse
optimal control is presented in section 4.2. The measurement of the distance between the
LLP state and the data highly influences the solution of the inverse optimal control problem.
Therefore, this distance measure has to be selected with care and has to be suitable for the
goal of the inverse problem. Consequently, two different distance measures are introduced
in section 4.3: The first one compares points of equal relative path length and the other
measures the distance between points at equal time instances; both measures are used in
different application scenarios (see chapters 6 to 8). The last part of this chapter analyzes
the problem structure of the inverse optimal control problem. Under suitable assumptions to
the discretization strategy, it is shown (cf. section 4.4) that the discretized inverse optimal
control problem fulfills the requirements of the theorem presented in the chapter on bilevel
problems (cf. chapter 2) which guarantees the existence of a global optimistic solution.
Furthermore, a constraint qualification for the transformed one-level optimization problem is
discussed in section 4.4.2 in order to use an interior-point algorithm of nonlinear optimization
(cf. section 5.1).

Using the theoretical results of the chapters 2 to 4, some implementation details of the nu-
merical optimization method coreIOC are discussed in chapter 5.2. The basic idea is to solve,
if necessary, a sequence of relaxed problems by the interior-point method IPOPT. Alongside
the update strategy for the relaxation parameters, the time discretization of the discretized
optimal control problem has to be updated (cf. section 5.2.1) in order to approximate the
continuous optimal control problem close enough. Additionally, the issue of scaling the op-
timization parameters and functions is addressed in section 5.2.2. Numerical tests showed
that modifying the one-level problem by adding an additional constraint increases solver
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performance for certain problems, e.g., see the example in section 6.6.3. In section 5.2.4 a
framework to evaluate the performance of the inverse optimal control approach is discussed.
The data is computed by solving the LLP for a given cost function and the goal is to ana-
lyze the differences between the true cost function and the optimization result of the inverse
optimal control problem using a different starting value and adding noise to the simulated
data values. The results discussed in the chapters of the application examples show that the
presented optimization approach is well-suited to solve the given problems of inverse optimal
control.

In the second part of this work (chapters 6 - 8) three application examples are discussed.
All examples have in common that they describe tasks where humans select characteristic
controls leading to stereotypic motions. However, the problems differ in the complexity of dy-
namics, constraints and cost functions; consequently, different aspects of modeling problems
of daily life and of solving the corresponding problem are addressed. Application scenarios
for the solutions of the inverse optimal control problem are discussed for all examples. In the
following we want to briefly introduce each of the examples and discuss the structure of the
according chapters.

In chapter 6 the inverse optimal control problems of human arm motions are addressed; the
idea to use a cost function optimized in human movements to control a robotic arm was the
starting point for the research presented in this thesis. Consequently, the state of the art
of various related disciplines is discussed in section 6.1 and in more detail in appendix B to
show where the inverse optimal control strategy fits into the general lines of research and to
discuss the limits of our approach from an engineering or biological perspective. For example,
psychologists and biologists use experiments to deduce the underlying (biological) structures
and principles of human motion with the goal to understand the mechanism determining
the human actions, in contrast to the approach used in this work where the focus is on
finding an (optimal control) model that describes the observations. In consequence, one
has to distinguish between a biologically plausible principle and a mathematical model, but
nevertheless such a model might be valuable even from the biological perspective if it makes
correct predictions in different settings (cf. section B.1).

Results of various experimental studies are presented in literature and several basic properties
of human arm movements are discussed (compare section B.2); one of the most prominent
relations is Fitts’ law [96] which relates motion time to target accuracy. Central research ques-
tions are how human arm motions are actually generated by the human body (cf. section
B.3) and how the motions are planned (cf. section B.4). In this work we use the hypothesis
that human motions are generated by controlling the forces of the muscles. Two further
aspects related to human arm movements are closed-loop control (see section B.5) and adap-
tation (see section B.6). Several experiments show that humans use feedback while doing
arm motions and learning processes are observed which improve the performance for a given
task. Our basic assumption is that the arm motions analyzed in this work are controlled in
an open-loop manner and that the human movements are already (approximately) optimal
as a results of a finished learning process; since only standard motions of everyday life are
analyzed, such assumptions seem to be justified.

Since optimal control of arm movements asks for a dynamical model capturing the main
features of the human arm dynamics, a combination of dynamical models for the bones
and several lumped muscles is used. In section 6.2 the Denavit-Hartenberg notation [143]
for chains of rigid bodies, which are used to model the human bones, is discussed and the
corresponding equations of motions are motivated by the Newton-Euler equations resulting in
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a recursive framework (see section 6.2.2). To model the dynamics of human muscles is a topic
of current research (cf. section 6.3) and various models of different complexities capturing
different levels of observed effects have been presented. Two such models are specified in
section 6.3: First, a mass-damper model resulting in a linear ODE and second, a nonlinear
muscle model introduced in [291, 292].

The basic cost functions needed to formulate the inverse optimal control problem are discussed
in section 6.4. Several of these basic cost functions are proposed in literature and they yield
arm motions reasonably similar to observed human ones in certain settings. However, each of
the models has certain limitations and a cost function describing the broad range of human
arm motions is not known. Consequently, we consider the convex combinations of these basic
cost functions and try to determine the weighting parameters of the convex combinations
that yield the closest fit between data and LLP result. Combining the rigid-body dynamics,
the muscle dynamics and the LLP cost functions, two dynamical arm models with different
numbers of degrees of freedom are derived in section 6.5: A planar arm model and a three-
dimensional arm model. In both cases, human data of experiments suitable for the model
is available and numerical results of the inverse optimal control problem are presented in
section 6.6.

Finally, two technical scenarios are sketched where such an optimal LLP cost function could
be used. On the one hand, the optimal control model can be used to predict motions of
the human arm and consequently, the effects of the time-delay between measurements and
actions could be reduced in a telepresence setup. On the other hand, the information can be
used to control a humanoid robot according to the cost functions of human demonstrations.
The goal of such a transfer is to raise acceptance of a robot in a human environment and to
increase the anticipation level, allowing a closer human-robot interaction (for more details
see section 6.7).

The second application example for our inverse optimal control approach is the problem of
steering a car on a highway (see chapter 7) which is introduced in [50]. Focusing on lane
changes the general goal is to get the optimal cost function for various driving situations and
tasks. The knowledge of the cost functions used by humans can then be deployed to control
an autonomous vehicle in a human-like fashion, improving the acceptance by both the other
traffic participants and the car occupants. Two models of the car dynamics are discussed
in section 7.3. A simple linear one which is frequently used in literature and a more recent
nonlinear single-track model in accordance with [124] which allows to simulate many details
of car driving. The formulation of the inverse optimal control problem is given in section
7.4 and numerical results for data examples of human-steered lane changes can be found in
section 7.4.3.

In chapter 8 the third application example is discussed, where the task is to walk from a given
start position to a designated goal position; inverse optimal control for this type of problem
is introduced in [217]. The central idea is to maintain a macroscopic perspective and model
the human as a mass point with an orientation. If only velocities in forward direction are
allowed, this leads to the so-called unicycle model (see section 8.1). Naturally, one can model
more details of the human walking process if the application scenario demands more elaborate
information about the plant; thus, a brief overview of other models is given. The scenario we
are focusing on is the general path planning problem which, for example, has to be solved in
mobile robotic systems. Since our interest lies in locomotion in the context of daily life where
obstacles in the workspace are the standard case, human motions with crossing persons are
discussed. Therefore, new models are introduced (cf. section 8.2) and in consequence a set
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of nonlinear parameters has to be optimized in the upper level problem in addition to the
weights of the convex combination of lower level cost functions. In section 8.4 the standard
optimal control problem is extended to a model predictive control setup to account for the
adaptation done by humans to react to positional changes of obstacles. In model predictive
control the solution of an optimal control problem is only realized for a given time horizon
and then a new optimal control problem is solved with the current position as the starting
point. Consequently, the optimal control problem in the lower level is replaced by a system
of optimal control problems and the task of finding one combination of basic cost function
is extended to the case of finding one combination for the motion parts where no obstacle
has to be considered and one for the collision avoidance. This separation mimics the human
behavior observed in experiments where the participants react to a crossing interferer only
at the last possible instance. Numerical results for the inverse optimal control problem of
human locomotion are presented in section 8.5.

The last chapter states a short summary combined with a critical review of the presented
results. Finally, an outlook on possible subsequent research completes this work.
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Bilevel Optimization and MPECs

Chapter 2

The combination of two optimization problems where one is part of the constraints of the
other is called a bilevel program. The numerical solution strategy developed in this work is
used to solve inverse optimal control problems representing a special class of bilevel programs:
On the one hand, a (discretized) optimal control problem has to be solved and on the other
hand, a parameter combination minimizing a distance measure with respect to given data is
sought.

Therefore, the central concepts of the bilevel programming theory are introduced in this
chapter; the presentation follows the line of Dempe [74]. In section 2.1 the general structure
of bilevel programs is introduced; followed in section 2.2 by the discussion of the requirements
for a global optimal solution of the bilevel program. In the subsequent section 2.3 different
solution strategies presented in literature are discussed including the approach used in this
work. Using first-order optimality conditions, this approach transforms the bilevel problem
into a mathematical program with complementarity conditions; consequently, problems of
this structure are discussed in the second part of this chapter addressing MPECs.

The term MPEC is the abbreviation for mathematical programs with equilibrium constraints
which is a special class of nonlinear optimization problems characterized by the structure of
the constraints. Originally, the equilibrium constraints are parametric variational inequalities
describing the equilibrium of a system, e.g., a Nash equilibrium in game theory [202]. If
suitable assumptions are fulfilled, the variational inequalities can be replaced by a system of
complementarity conditions; to emphasize this special type of MPECs, the term MPCC is
occasionally used in literature. Here we will only consider MPECs of the MPCC-type, but
still call them MPECs.

The reason for treating MPECs separately from standard nonlinear optimization problems
(appendix A) is that most standard constraint qualifications do not hold for MPECs [106,
245, 276]. Thus, further theory concerning optima of MPECs is discussed in section 2.4
and adaptations of numerical methods for standard nonlinear optimization problems are
described in 2.5. Naturally, several theoretical results and numerical approaches are presented
in literature, but we restrict ourselves to the most common principles for optimality conditions
of MPECs and focus on the relaxation approach of [324]. For more details on MPECs see,
for example, [202, 242, 278, 324, 353].

11



12 CHAPTER 2. BILEVEL OPTIMIZATION AND MPECS

2.1 Lower and Upper Level Programs

Problems where more than one optimization take place are introduced by von Stackelberg in
[329]. Considering different market participants, a game-theoretic problem with opponents
optimizing different criteria is obtained. If this problem class is reduced to its most simple
case, the interaction of two market participants has to be analyzed and in case of a hier-
archical structure, e.g., a market leader controlling the prices (leader) and small business
searching for its niche (follower), a mathematical problem results which fits into the bilevel
framework derived in the following. Posing the problem in the optimization setup, the works
of Bracken and McGill [36, 37] start an intensive investigation of bilevel programming. Since
only fundamental properties of bilevel programs can be discussed here, we refer, for example,
to the books [11, 21, 74, 212] and the literature cited therein for more details.

The first element to define is the lower level program; here we assume that this program is
given in the form of a standard nonlinear optimization problem:

Definition 2.1.1. (Lower Level Program (LLP))
Given a nonlinear cost function φ : IRn× IRm → IR, the inequality conditions g : IRn× IRm →
IRp and the equality conditions h : IRn× IRm → IRq, all of whom are assumed to be sufficiently
smooth, the lower level program reads

min
x∈IRn

φ(x, y) subject to g(x, y) ≤ 0 and h(x, y) = 0,

where y ∈ IRm is a fixed parameter.

The solution set of the lower level program consequently depends on the choice of the pa-
rameter y which has to be provided by the second optimization problem, the upper level
program. Therefore, we denote by L(y) the parameter-dependent solution set of the lower
level program. If more than one element is optimal for the lower level program, it raises the
question which element is returned by the follower to the leader; to capture this choosing
process we introduce the function Υ : L→ IRn. Depending on the selection different types of
bilevel programs are obtained. In one case, called the optimistic case, the follower returns the
element of the solution set corresponding to the best possible choice with respect to the cost
function and the constraints of the leader. In another case, the pessimistic one, the follower
chooses the element out of the solution set that results in the worst values of cost function
and constraints for the leader.

Consequently, the most general form of an upper level program is given by the following
definition:

Definition 2.1.2. (General Upper Level Program (GULP))
Given a nonlinear cost function Φ : IRn× IRm → IR, the inequality conditions G : IRn× IRm →
IRp and the equality conditions H : IRn×IRm → IRq, all of whom are assumed to be sufficiently
smooth, the general upper level program reads

min
y∈IRm

Φ(x(y), y)

subject to

G(x(y), y) ≤ 0,

H(x(y), y) = 0,

x(y) = Υ(L(y)).
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In the following, the discussion is restricted to the special type of bilevel programs where the
upper level constraints are independent of the LLP state, thus the solution of the lower level
program influences only the ULP cost function. Consequently, the feasible set for the upper
level program is defined by

Y = {y | H(y) = 0, G(y) ≤ 0},

where the functions H and G are the upper level constraints reduced to an y input only. In
addition to this simplification of the ULP constraints, only the case of optimistic solutions is
considered for the bilevel program here.

Definition 2.1.3. (Optimistic Solution)
A point (x∗, y∗) ∈ IRn × IRm is called a local optimistic solution of the bilevel program if
y∗ is feasible, i.e., y∗ ∈ Y, and x∗ ∈ L(y∗) with

Φ(x∗, y∗) ≤ Φ(x, y∗) ∀x ∈ L(y∗)

and there exists an open neighborhood Uε(y∗), ε > 0, with

min
x
{Φ(x, y∗) | x ∈ L(y∗)} ≤ min

x
{Φ(x, y) | x ∈ L(y)}

for all y ∈ Y ∩ Uε(y∗). If the conditions hold true for all ε > 0, the point is called a global
optimistic solution.

In consequence, the following form of the upper level program is used throughout this chapter:

Definition 2.1.4. (Upper Level Program (ULP))
Given the cost function Φ : IRn × IRm → IR, the inequality conditions G : IRm → IRp and the
equality conditions H : IRm → IRq, the upper level program reads

min
x∈IRn,y∈IRm

Φ(x, y)

subject to G(y) ≤ 0, H(y) = 0 and x ∈ L(y), y ∈ Y, where the feasible set Y is assumed to
be a closed set.

2.2 Existence of a Global Optimistic Solution

The goal of this section is to prove the existence of a global optimistic solution for the bilevel
program; the presentation is according to [74]. We start with the introduction of (upper)
semicontinuity and the definition of two conditions for the successive theorems. Denote by
P̂(M) the power set of a given set M, i.e., P̂(M) is the family of all subsets of M.

Definition 2.2.1. (Upper Semicontinuity)
A mapping Γ : IRm → P̂(IRn) is called upper semicontinuous at a point w ∈ IRm if the
following condition holds:
For all open neighborhoods O of Γ(w), i.e., O is open and Γ(w) ⊂ O, there exists a scalar
ε > 0 such that

Γ(ŵ) ⊂ O ∀ŵ ∈ Uε(w).
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A mapping is called upper semicontinuous if and only if it is upper semicontinuous at any
point of its domain. An alternative definition of the upper semicontinuity of a set-valued
mapping Γ is given by the following lemma:

Lemma 2.2.2.
Let Γ(w) be compact for a vector w ∈ IRm. The mapping Γ is upper semicontinuous in w if
and only if

∀εx > 0 ∃εy > 0 : Γ(ŵ) ⊂ Uεx(Γ(w)) ∀ ŵ ∈ Uεy(w). (2.1)

The ε-ball of a set M is defined by Uε(M) := {ẑ | ∃ z ∈M : ẑ ∈ Uε(z)} .

Proof. On the one hand the set Uεx(Γ(w)) is an open neighborhood of Γ(w) and the definition
of the upper semicontinuity 2.2.1 yields then the condition (2.1) by setting εy := ε.

On the other hand each open neighborhood of a compact set Γ(w) contains a ball Uεx(Γ(w))
for a scalar εx > 0. Consequently, the condition (2.1) guarantees for this specific choice for
εx the set inclusion of the definition 2.2.1. �

Note that for a single-valued function the condition (2.1) guarantees continuity; however a
main property of a continuous single-valued function, which is the convergence of the images
of a convergent sequence in its domain against the image of the corresponding limit, does
not hold true for set-valued function fulfilling (2.1). Therefore the following complementary
definition of semicontinuity for a set-valued functions is given:

Definition 2.2.3. (Lower Semicontinuity)
A mapping Γ : IRm → P̂(IRn) is called lower semicontinuous at a point w ∈ IRm if the
following condition holds:
For each open set O with O ∩ Γ(w) 6= ∅ there is a scalar ε > 0 such that O ∩ Γ(ŵ) 6= ∅ for
each ŵ ∈ Uε(w).

The following lemma gives an alternative definition for lower semicontinuity of a set-valued
mapping:

Lemma 2.2.4.
The mapping Γ is lower semicontinuous at w ∈ IRm if and only if for all z ∈ Γ(w) and for
all sequences (ŵ(k)) ⊂ IRm converging to w, there exists a sequence (ẑ(k)) ⊂ IRn and a k ∈ IN
with

ẑ(k) ∈ Γ(ŵ(k)) ∀k ≥ k and ẑ(k) → z for k →∞. (2.2)

Proof. Both implications are addressed separately here; first it is shown that the condition
(2.2) is guaranteed by the definition of a lower semicontinuous function 2.2.3:

Let w ∈ IRm and z ∈ Γ(w) be given; consider a radius εx > 0, then Uεx(z) is an open set and
z ∈ Uεx(z) ∩ Γ(w) 6= ∅. Consequently, there exists an εy > 0 such that

z ∈ Uεx(z) ∩ Γ(ŵ) 6= ∅ ∀ŵ ∈ Uεy(w).

Let
(
ŵ(k)

)
be a sequence converging to w as given in lemma 2.2.4, then an index k ∈ IN exists

such that ŵ(k) ∈ Uεy(w) for all k ≥ k. Thus Uεx(z) ∩ Γ(ŵ(k)) 6= ∅ for all k ≥ k, which means

that elements z(k) ∈ Γ(ŵ(k)) fulfilling ||z(k) − z|| ≤ εx exist for all k ≥ k.
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Note that the sequence (z(k)) depends implicitly on the chosen εx > 0, therefore denote them
in the following with z(k)(εx) and k(εx). Consequently, define the sequence (ẑ(k)) by using

the decreasing sequence (ε
(j)
x ) with ε

(j)
x := 2−j , j ∈ IN:

k := k(ε(1)
x ) and ẑ(k) := z(k)(ε(j)

x ) for k(ε(j)
x ) ≤ k < k(ε(j+1)

x ), j ∈ IN.

This construction assures that the convergence ẑ(k) → z holds as well as ẑ(k) ∈ Γ(ŵ(k)) for
all k ≥ k.

Second, we show that the definition of a lower semicontinuous function 2.2.3 implicates the
condition (2.2):

Let U be an open set with U ∩ Γ(w) 6= ∅, then an element z ∈ Γ(w) exists with z ∈ U. Since
U is an open set, a scalar ε > 0 exists with Uε(z) ⊂ U. The lower semicontinuity is proven
by contradiction; therefore assume that no εy > 0 fulfills:

Γ(w) ∩ U 6= ∅ ∀ŵ ∈ Uεy(w).

This means that for all εy > 0 there exists a ŵ ∈ Uεy(w) such that Γ(ŵ)∩U = ∅. Considering

the sequence (ε
(k)
y ) ⊂ IR with ε

(k)
y := 2−k for k ∈ IN, a corresponding sequence (ŵ(k)) is

obtained with
ŵ(k) ∈ U

ε
(k)
y

(w) and Γ(ŵ(k)) ∩ U = ∅.

By construction the sequence (ŵ(k)) converges to w for k →∞. Consequently, there exists a
sequence (ẑ(k)) and a scalar k ∈ IN such that

ẑ(k) ∈ Γ(ŵ(k)) ∀k ≥ k and ẑ(k) → z for k →∞.

Since Uε(z) ⊂ U and ẑ(k) ∈ Γ(ŵ(k)) for all k ≥ k, but also Γ(ŵ(k))∩U = ∅ holds, the following
inequality results:

||z − ẑ(k)|| ≥ ε

2
∀k ≥ k.

This leads in limit k →∞ to a contradiction to ẑ(k) → z, which concludes the proof. �

The following two regularity conditions are used to prove the (upper) semicontinuity of the
point-to-set mapping L(·) relating the upper level state to the set of (global) optimal values
for the respective lower level program.

Definition 2.2.5. (Compactness Assumption (BL-C))
The set {(x, y) ∈ IRn × IRm | g(x, y) ≤ 0, h(x, y) = 0} is non-empty and compact.

Definition 2.2.6. (Mangasarian-Fromowitz constraint qualification (BL-MFCQ))
The BL-MFCQ is fulfilled at a point (x, y) in the bilevel setup if there exists a direction
d ∈ IRn satisfying

∇xgi(x, y)Td < 0, ∀i ∈ {j | gj(x, y) = 0},
∇xhi(x, y)Td = 0, ∀i = 1, . . . , q,

and the gradients ∇xhi(x, y), i = 1, . . . , q, are linearly independent.

To state the next theorem, the following mappings have to be defined. The first one is the
mapping of the ULP state to the corresponding feasible set X : IRm → P̂(IRn),

X(y) := {x ∈ IRn | h(x, y) = 0, g(x, y) ≤ 0}.



16 CHAPTER 2. BILEVEL OPTIMIZATION AND MPECS

Then, the optimal value function $ : IRm → IR is defined as a function of the upper level
state y by

$(y) := min{φ(x, y) | x ∈ X(y)}

and $(y) := ∞ if X(y) = ∅. Finally, the global solution mapping L : IRm → P̂(IRn) is given
by

L(y) := {x ∈ X(y) | φ(x, y) = $(y)}.

In order to show that the optimal value function $(·) is continuous under certain assumptions,
the following lemma addressing the upper semicontinuity of the feasible set mapping X(·) is
used:

Lemma 2.2.7.
Let the functions gj, j = 1, . . . , p, and hi, i = 1, . . . , q, be continuous and let assumption
BL-C be fulfilled. Then the feasible set mapping X(·) is upper semicontinuous.

Proof. The condition BL-C assures that X(y) is compact for all feasible upper level states
y. Accoring to lemma 2.2.2 it has to be proven that

∀εx > 0 ∃ εy > 0 : X(ŷ) ⊂ Uεx(X(y)) ∀ŷ ∈ Uεy(y).

Using the contradiction approach, we assume that

∃ εx > 0 ∀ εy > 0 : X(ŷ) 6⊂ Uεx(X(y)), ŷ ∈ Uεy(y).

Let (ε
(k)
y ) be a sequence with ε

(k)
y > 0, k ∈ IN and ε

(k)
y → 0 for k →∞, then the assumption

yields a sequence (ŷ(k)) with ||ŷ(k) − y|| < ε
(k)
y and a sequence (x̂(k)) with x̂(k) ∈ X(ŷ(k)), but

x̂(k) /∈ Uεx(X(ŷ)). Consequently,

||x̂(k) − x|| ≥ εx
2
∀x ∈ X(y), k ∈ IN. (2.3)

The compactness assumption BL-C guarantees that the sequence ((x̂(k))T , (ŷ(k))T )T has an
accumulation point (xT , yT )T . Without loss of generality identify the subsequence converging

to the accumulation point with the original one. Note that the assumption ||ŷ(k) − y|| < ε
(k)
y

yields y = y. The continuity of the functions gj , j = 1, . . . , p, results in

gj(x, y) = gj

(
lim
k→∞

x̂(k), lim
k→∞

ŷ(k)

)
= lim

k→∞
gj

(
x̂(k), ŷ(k)

)
≤ 0, j = 1, . . . , p,

since x̂(k) ∈ X(ŷ(k)). Analogue, for the equality constraints follows

hi(x, y) = 0, i = 1, . . . , q.

This shows that x ∈ X(y), but this contradicts

||x− x|| ≥ εx
2
∀x ∈ X(y),

which is a consequence of equation (2.3). �
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Theorem 2.2.8.
Consider the lower level problem 2.1.1 with a given parameter y ∈ IRm with X(y) 6= ∅. If
the assumptions BL-C and BL-MFCQ are fulfilled at all points (x, y) with x ∈ X(y), the
global solution mapping L(·) is upper semicontinuous and the optimal value function $(·) is
continuous in y.

Proof. The first part of the proof is to show the continuity of the mapping X(·) meaning that
both the upper semicontinuity and the lower semicontinuity hold true. In the second part
these properties are used to deduce the continuity of the optimal value function $ : IRm → IR.
The upper semicontinuity of the global solution mapping L(·) is shown in the last part of the
proof.

According to lemma 2.2.7, the upper semicontinuity of the mapping X(·) results from as-
sumption BL-C and from the continuity of the functions gj , j = 1, . . . , p, and hi, i = 1, . . . , q.

The first step to prove the lower semicontinuity of the X(·) is to reduce the problem to strictly
feasible points: The sets of strictly feasible points are defined by

Xs(y) := {x ∈ IRn | h(x, y) = 0, g(x, y) < 0}.

The condition BL-MFCQ implies that for each x ∈ X(y) there exists a sequence
(
x(k)

)
⊂ Xs(y)

converging to x. Thus, the inclusion X(y) ⊂ Xs(y) holds, i.e., each open set with non-empty
intersection with X(y) has also an non-empty intersection with Xs(y). Consequently, we
assume that x ∈ Xs(y) and obtain due to the continuity of g that constants εx > 0 and
εy > 0 exist such that

g(x, y) < 0 ∀(x, y) : ||x− x|| ≤ εx, ||y − y|| ≤ εy.

Furthermore, the condition BL-MFCQ assures that the gradients ∇xhi(x, y), i = 1, . . . , q,
are linearly independent. Using the implicit function theorem, this independence guarantees
the existence of a continuous function x(·) defined on an open set Uε′y(y), ε′y > 0, with
h(x(y), y) ≡ 0 for y ∈ Uε′y(y) and x(y) = x. As a consequence of the continuity, for all εx > 0
there exists a constant ε′′y > 0 with ε′′y < min{εy, ε′y} such that

||x(y)− x|| < εx ∀y with ||y − y|| < ε′′y.

Thus, x(y) ∈ Xs(y) ⊂ X(y) for all ||y − y|| < ε′′y and because each open set U with x ∈ U
contains a εx-ball about x for an εx > 0, the set mapping X(·) is lower semicontinuous.

Having shown that both upper and lower semicontinuity hold for the feasible set mapping,
the next step is to deduce continuity of the optimal value function $(·). Let

(
y(k)

)
⊂ IRm,

k ∈ IN, be a sequence converging to y and define a corresponding sequence
(
x(k)

)
⊂ IRn by

x(k) ∈ L(y(k)) for all k. Note that without loss of generality L(y(k)) 6= ∅, since L(y) 6= ∅ and
y(k) → y; due to the upper semicontinuity of X(·) an open neighborhood U(y) of y exists with
non-empty X(y) for all y ∈ U(y). As a consequence of assumption BL-C, this sequence has
at least one accumulation point x and each accumulation point fulfills x ∈ X(y) due to the

upper semicontinuity of X(·): Since the sequence (y(k)) converges to y, it results:

∀ε > 0 ∃ k ∈ IN : y(k) ∈ Uε(y) ∀k ≥ k.

By lemma 2.2.2 the upper semicontinuity of X(·) guarantees

∀εx > 0 ∃ εy > 0 : X(ŷ) ⊂ Uεx(X(y)) ∀ŷ ∈ Uεy(y).
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Consequently, for all εx > 0 there exists a k ∈ IN such that x(k) ∈ Uεx(X(y)) for all indices
k ≥ k. This shows that x ∈ X(y), because X(y) is closed.

This results in

lim inf
k→∞

$(y(k)) = lim inf
k→∞

φ(x(k), y(k)) ≥ $(y).

Now, to prove the complementary lim sup-inequality, let be x ∈ L(y) and let (y(k)) be a
sequence converging to y. Then using lemma 2.2.4 the lower semicontinuity of X(·) implies

that a sequence x(k) ∈ X(y(k)), k ∈ IN, exists which converges to x. Consequently,

lim sup
k→∞

$(y(k)) ≤ lim sup
k→∞

φ(x(k), y(k)) = $(y),

which implies the continuity of the optimal value function.

Finally, the continuities of the cost function of the lower level program and the optimal value
function imply that each accumulation point x of a sequence x(k) ∈ L(y(k)), k ∈ IN, satisfies
φ(x, y) = $(y). Thus, x ∈ L(y) and in combination with the assumption BL-C the upper
semicontinuity of L(·) results by using lemma 2.2.2.

The general layout of the presented proof has been sketched in [74]. �

In general, the dependence of the solution set of the lower level program on the upper level
state is not lower semicontinuous; see, for example, the following simple problem:

Example 2.2.9. Using a scalar LLP state x ∈ [−1, 1] and a scalar ULP state y, the lower
level program is defined by:

min
x
φ(x, y) := xy s.t. − 1 ≤ x ≤ 1, − 1 ≤ y ≤ 1.

The solution set is given by

L(y) =


{−1} if y > 0,
[−1, 1] if y = 0,
{1} if y < 0,

which is not lower semicontinuous since for (x, y) = (0, 0) open neighborhoods of x exist
which have no element in common with the solution sets for y 6= 0.

Theorem 2.2.10.
Let the conditions BL-C and BL-MFCQ hold at all points (x, y) ∈ IRn × Y with x ∈ X(y).
Given a feasible point for the bilevel program, a global optimistic solution exists.

Proof. The conditions BL-C and BL-MFCQ are assumed to hold at all points (x, y) ∈ IRn×Y
with x ∈ X(y) which means that the assumptions of theorem 2.2.8 are fulfilled for each
upper level state y with X(y) 6= ∅. Consequently, the solution set mapping L(·) is upper
semicontinuous for all y ∈ Y with X(y) 6= ∅. This property in combination with the closed
sets L(y) guarantees that the set {(x, y) | x ∈ L(y)} is closed:

Let
(
x(k)

)
⊂ IRn and

(
y(k)

)
⊂ IRm be convergent sequences with x(k) ∈ L(y(k)) for all k ∈ IN

and x(k) → x, y(k) → y. To show that x ∈ L(y), we note that L(y) is a closed set and define

Uδ(L(y)) :=
{
x ∈ IRn | ||x− x̃|| < δ, x̃ ∈ L(y)

}
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for a δ > 0. Since Uδ(L(y)) is open and L(y) ⊂ Uδ(L(y)), the upper semicontinuity of L(·)
yields the existence of εy(δ) > 0 such that L(y) ⊂ Uδ(L(y)) for all y ∈ Uεy(δ)(y).

Consequently, an index k(δ) exists which guarantees y(k) ∈ Uεy(δ)(y) for all k ≥ k(δ). Thus

L(y(k)) ⊂ Uδ(L(y)) for all k ≥ k(δ) and dist(x(k),L(y)) ≤ δ for all k ≥ k(δ). The limit δ → 0

shows that limk→∞ x
(k) = x ∈ L(y).

The intersection of the closed set {(x, y) | x ∈ L(y)} with IRn×Y is compact because condition
BL-C holds and Y is closed due to the general assumption in the ULP definition.

The upper level program 2.1.4 describes the minimization of the continuous upper level cost
function Φ(·, ·) over this compact set. As a consequence of the Bolzano-Weierstraß theorem,
the existence of a global solution of the (optimistic) bilevel program is proven if a feasible
point for the bilevel program exists.

The outline of this proof is in accordance with [74]. �

2.3 Solution Strategies for Bilevel Programs

In this section we want to mention some of the basic approaches used in literature to solve
bilevel programs. Naturally, a greater number of approaches deal with linear bilevel programs,
i.e., cost functions and constraints are linear in both the upper level and the lower level, or
bilevel programs with the lower level program being a convex optimization problem than
with the general nonlinear bilevel program 2.1.2, but nevertheless several different solution
strategies are known. Here the basic ideas can only be sketched and we refer for details to
[21, 74, 326] and the references cited therein.

The fact, that bilevel programs are in general a complex problem class, can already be seen
in the linear case, because it is proven in [20, 139, 169] that solving a linear bilevel program
is a strongly NP-hard problem. Typical solution strategies for such an problem are extreme
point algorithms [57] and a branch-and-bound algorithms [21, 139]. Note that the bilevel
structure is closely related to multi-criteria optimization, but the different problems have
distinct differences, see for example [113].

A first group of strategies to solve the general bilevel problem is given by methods that
consider the lower level program as a black box for the upper level and thus (iteratively)
exploit the bilevel structure by using lower level solutions for different upper level states. Both
a method of derivative-free optimization or a descent method using sensitivity information
of the lower level solution are numerical strategies for such an problem structure, e.g., [90].
Furthermore, note that the implicit function theorem proves to be a suitable tool to analyze
this problem type. Under suitable assumptions a local function x(y) : IRm → IRn is given by
this theorem and can be integrated into the upper level program formulations. Consequently,
implicitly defined constraints or cost functions are obtained. This approach can be used
to prove necessary conditions using Clark subgradients and their structure can be used to
deduce a suitable bundle technique of non-smooth optimization, cf. [242].

Another approach is based on the definition of an optimal value function $(y) by

$(y) := min
x∈IRn

{φ(x, y) | g(x, y) ≤ 0, h(x, y) = 0}.

In this case the lower level program can be replaced by the non-differentiable constraint
φ(x, y) ≤ $(y) yielding an one-level problem. Note that the differentiability properties of the
reformulated problem can be used to obtain under suitable assumptions necessary condition
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for the original bilevel program. Such conditions are, for example, proven in [354] using the
theory on subgradients of the Clark-type or in [75] utilizing the more general approach of
convexificators. Note that this approach is closely related to the approach of [242] mentioned
above and consequently, similar subgradient methods can be deduced to solve the bilevel
program [241].

The approach we use to reformulate the bilevel program as a one-level problem is based on the
KKT-conditions of the lower level program. Note that these necessary optimality conditions
are only sufficient if the lower level program is a convex optimization problem. Since this is in
general not the case, the solution of the reformulated problem might yield only a lower bound
for the optimal cost value of the bilevel program. If the lower level program is substituted by
its KKT-conditions a one-level program with equilibrium constraints, a so-called MPEC, is
obtained; see the next sections for details on MPECs. This reformulation strategy has been
succesfully used in several publications, e.g., [18, 19, 86].

2.4 Optimality Conditions for MPECs

Given two vectors zI and zII ∈ IRs, the complementarity of these are denoted in this chapter
by

0 ≤ zI ⊥ zII ≥ 0,

which means

0 ≤ zI ,

0 ≤ zII ,

0 = min
{
zI , zII

}
.

Note that both the inequalities of a vector with a scalar and the minimum operation on two
vectors have to be interpreted elementwise. This complementarity constraint can equivalently
be written as

(i) zI ≥ 0, zII ≥ 0,
(
zI
)T
zII = 0,

(ii) zIi ≥ 0, zIIi ≥ 0, zIi z
II
i = 0, i = 1, . . . , s.

To distinguish between cases where both values are zero and where one value is non-zero, the
following terms are introduced:

Definition 2.4.1. (Degeneration)

(i) The tuple (zIi , z
II
i ) ∈ IR2 for i ∈ {1, . . . , s} is called degenerate if both values equal

zero:

zIi = zIIi = 0.

(ii) If either zIi > 0 or zIIi > 0, then the tuple is called non-degenerate.

(iii) If all components of zI and zII are non-degenerate, then strict complementarity is
fulfilled by the two vectors.

The following definition states the structure of the MPECs considered in this work:
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Definition 2.4.2. (MPEC)
A mathematical program with equilibrium constraints is a nonlinear optimization
problem with additional complementarity constraints:

min
x
φ(x)

subject to h(x) = 0,

g(x) ≤ 0,

0 ≤ zI ⊥ zII ≥ 0,

where the optimization variable x ∈ IRn is the concatenation of a vector zo ∈ IRn−2s and the
complementary vectors zI , zII ∈ IRs:

x =
(

(zo)T ,
(
zI
)T
,
(
zII
)T)T

.

Again, all functions, i.e., the cost function φ, the equality constraints h and the inequality
constraints g, are assumed to be at least twice continuously differentiable and the set of feasible
points is denoted by X.

Note that standard constraint qualifications do not hold for the complementarity condition.
If the condition is formulated using smooth functions, the gradients of the active constraints
become linearly dependent, thus the LICQ cannot hold. Additionally, the complementarity
condition prohibits strictly feasible points and consequently, the MFCQ is also violated at
every feasible point [106, 245, 276]. Furthermore, if a feasible point for the MPEC has
degenerate components, then the tangent cone is non-convex and consequently, the ACQ
does not hold.

Therefore, we now state standard MPEC-stationarity concepts and start with B-stationarity
which is a necessary optimality condition for a local solution of an MPEC:

Definition 2.4.3. (B-Stationarity)
A vector x ∈ X is called B-stationary (B from Bouligand), if

∇φ(x)Td ≥ 0 ∀d ∈ T(X, x).

For the further definitions we introduce the Lagrange multipliers ψI and ψII ∈ IRs for the
inequalities assuring positivity of zI and zII and define a suitable version of the Lagrangian
for the MPEC:

LM
(
x, λ, µ, ψI , ψII

)
:= φ(x) + λT g(x) + µTh(x)−

(
ψI
)T
zI −

(
ψII
)T
zII .

Note that this version of a Lagrangian does not take the (full) complementarity conditions
into account. In addition, we define the active sets for the inequalities of the complementarity
condition by

AI(x) := {i ∈ IN | i ≤ s, zIi = 0}

and

AII(x) := {i ∈ IN | i ≤ s, zIIi = 0}.
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Definition 2.4.4. (Stationarity Concepts)
Consider the following system of equations and inequalities for given values x, λ, µ, ψI and
ψII :

∇xLM
(
x, λ, µ, ψI , ψII

)
= 0,

h(x) = 0,

g(x) ≤ 0,

λ ≥ 0,

gi(x)λi = 0, i = 1, . . . , q,

zI ≥ 0, (2.4)

zII ≥ 0,

zIi = 0 or zIIi = 0, i = 1, . . . , s,

zIi ψ
I
i = 0, i = 1, . . . , s,

zIIi ψ
II
i = 0, i = 1, . . . , s, .

The following stationarity concepts are introduced:

• A feasible point x is called C-stationary (C from Clarke) if multipliers λ, µ, ψI and
ψII exist, such that system (2.4) is satisfied and the condition

∀i ∈ (AI ∩ AII)(x) : ψIi ψ
II
i ≥ 0

is fulfilled.

• A feasible point x is called M-stationary (M from Mordukhovich) if multipliers λ, µ,
ψI and ψII exist, such that system (2.4) is satisfied and the condition

∀i ∈ (AI ∩ AII)(x) : ψIi , ψ
II
i ≥ 0 or ψIi ψ

II
i = 0

is fulfilled.

• A feasible point x is called strongly stationary if multipliers λ, µ, ψI and ψII exist,
such that system (2.4) is satisfied and the condition

∀i ∈ (AI ∩ AII)(x) : ψIi ≥ 0 and ψIIi ≥ 0

is fulfilled.

Note that the set (AI ∩ AII)(x) consists of the degenerate components of x and if this set
is empty, all three stationarity concepts are equal. On the other hand, if the set is non-
empty, strong stationarity implies M-stationarity and this in turn implies C-stationarity.
Problems are known which have a B-stationary point that is not strongly stationary, however,
other problems with M-stationary points exist that are not B-stationary (see [324] for an
example). Consequently, further information on the individual MPEC is needed to decide
which stationarity concept is suitable to characterize candidates for local solutions [276, 353].

Such information can be provided by suitable constraint qualifications for MPECs; a large
variety of such constraint qualifications exists, but we restrict ourselves to the most simple
one and refer, for example, to [105, 353] for further details on other ones.
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Definition 2.4.5. (MPEC-LICQ)
Let x be a feasible point of the MPEC 2.4.2. Then the MPEC-LICQ holds at x if the
gradients

∇hi(x) for i = 1, . . . , p,

∇gi(x) for i ∈ A,
e(n−2s+i) for i ∈ AI ,
e(n−s+i) for i ∈ AII ,

are linearly independent. Here, e(j) ∈ IRn is the j-th unit vector.

Note that the MPEC-LICQ differs from the LICQ for standard nonlinear programming prob-
lems in the point that only the conditions zI ≥ 0 and zII ≥ 0 of the complementarity condition
are considered, which is in accordance with the definition of the Lagrangian for the MPEC.
However, it is possible to construct so-called relaxed nonlinear programs (cf. 2.4.8) where the
MPEC-LICQ represents the standard LICQ and where strong stationarity corresponds with
the standard stationarity of nonlinear optimization problems (see for example [110, 276]).
Assuming that the MPEC-LICQ holds, one can prove that B-stationarity implies strong sta-
tionarity [276], i.e., in this setting strong stationarity is a necessary optimality condition.
More details on constraint qualifications and stationarity conditions can, for example, be
found in [105, 353].

In addition to the stationarity concepts, second-order sufficient conditions are now discussed
in order to relate local optimality to stationarity. Following again the line of [324] the following
sets of critical directions are defined in accordance to [254]:

Definition 2.4.6. (Sets of Critical Directions)
The sets of critical directions defined by

D(x, λ, µ, ψI , ψII) =

{
d =

(
(do)T ,

(
dI
)T
,
(
dII
)T)T ∈ IRn\{0} |

0 = ∇h(x)Td,

0 = ∇gi(x)Td, if i ∈ A(x) and λi > 0,

0 ≥ ∇gi(x)Td, if i ∈ A(x) and λi = 0,

0 = dIi , if i ∈ (AI\AII) (x),

0 = dIi , if i ∈ (AI ∩ AII) (x) and ψIi > 0,

0 ≤ dIi , if i ∈ (AI ∩ AII) (x) and ψIi = 0,

0 = dIIi , if i ∈ (AII\AI) (x),

0 = dIIi , if i ∈ (AII ∩ AI) (x) and ψIIi > 0,

0 ≤ dIIi , if i ∈ (AII ∩ AI) (x) and ψIIi = 0
}
,

D(x, λ, µ, ψI , ψII) =
{
d ∈ D(x, λ, µ, ψI , ψII) |

0 = min(dIi , d
II
i ), if i ∈ (AII ∩ AI) (x) and ψIi = ψIIi = 0

}
,
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D̃(x, λ, µ, ψI , ψII) =

{
d =

(
(do)T ,

(
dI
)T
,
(
dII
)T)T ∈ IRn\{0} |

0 = ∇h(x)Td,

0 = ∇gi(x)Td, if i ∈ A(x) and λi > 0,

0 = dIi , if ψIi 6= 0,

0 = dIIi , if ψIIi 6= 0
}
,

satisfy the relation D(x, λ, µ, ψI , ψII) ⊆ D(x, λ, µ, ψI , ψII) ⊆ D̃(x, λ, µ, ψI , ψII).

These sets of critical directions for the MPEC can now be used to define different types of
second-order sufficient conditions.

Definition 2.4.7. (Second-Order Sufficient Conditions for MPECs)

(i) Assume that x with the Lagrange multipliers (λ, µ, ψI , ψII) is a strong stationary point of
the MPEC 2.4.2. The MPEC second-order sufficient condition (MPEC-SOSC)
is satisfied at x if the inequality

dTLM (x, λ, µ, ψI , ψII)d > 0

holds for all d ∈ D(x, λ, µ, ψI , ψII).

(ii) If the inequality

dTLM (x, λ, µ, ψI , ψII)d > 0

holds for all d ∈ D(x, λ, µ, ψI , ψII), then the second-order sufficient condi-
tions of the relaxed nonlinear program (RNLP-SOSC) are fulfilled at x with
(λ, µ, ψI , ψII).

(iii) If the inequality

dTLM (x, λ, µ, ψI , ψII)d > 0

holds for all d ∈ D̃(x, λ, µ, ψI , ψII), then the strong second-order sufficient condi-
tions(SSOSC) are fulfilled at x with (λ, µ, ψI , ψII).

Remark 2.4.8. Note that the RNLP-SOSC are the standard second-order sufficient conditions
A.2.3 applied to the following relaxed nonlinear problem (RNLP) belonging to the MPEC
2.4.2:

min
x
φ(x)

subject to h(x) = 0,

g(x) ≤ 0,

zIi = 0, zIIi ≥ 0, if i ∈ (AI\AII) (x∗),

zIi ≥ 0, zIIi = 0, if i ∈ (AII\AI) (x∗),

zIi ≥ 0, zIIi ≥ 0, if i ∈ (AII ∩ AI) (x∗),
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where the index sets are fixed with respect to a given point x∗. The theorem stating that
the MPEC-SOSC is sufficient to guarantee the local optimality of a strong stationary point
x for the MPEC 2.4.2 concludes this section:

Theorem 2.4.9. (Strict Local Minimum)
If x is a strong stationary point of the MPEC 2.4.2 that satisfies the MPEC-SOSC for any La-
grange multipliers fulfilling the strong stationary conditions, then x is a strict local minimum
of the MPEC.

Proof. This is also shown in [324] by applying a corresponding result of [277]. �

2.5 Regularization Strategy for MPECs

In literature several strategies are known to regularize the complementarity condition in
order to obtain an nonlinear optimization problem fulfilling certain constraint qualifications
of standard nonlinear optimization problems which are a basic requirement for standard
nonlinear optimization methods. In this section we state the relaxation scheme of [290, 324]
which can be seen as a combination of the relaxation approach of [277] and the regularization
approach of [111]; consequently, the presentation follows the line of [324] and for further
details we refer to this original work.

2.5.1 Relaxation Scheme

The basic idea of the relaxation scheme of [324] is to relax the complementarity condition
for each pair zIi and zIIi , i = 1, . . . , s, only on a subset of the triangle with the vertices
(0, 0), (δi, 0) and (0, δi). Note that for a sufficiently small relaxation parameter δi > 0 the
complementarity conditions are only modified for degenerate components and for the choice of
δi = 0 the original complementarity condition is obtained. Since the approach is independent
for each of the scalar complementarity conditions, it is sufficient to discuss how to handle
one of them and therefore, the range of the index i is not mentioned at each instance in the
following.

A reparametrization of the complementarity problem

zIi ≥ 0, zIIi ≥ 0, zIi z
II
i = 0

into the problem
z = |z|

by introducing z := zIi + zIIi and z := zIi − zIIi allows to post the relaxation problem as a
problem of smoothing the absolute value function within the interval [−δi, δi].

Definition 2.5.1. (Kink Smoothing Function)
A function β : I → IR defined on an open interval I with [−1, 1] ⊂ I ⊂ IR is called an kink
smoothing function if the following conditions hold:

(i) β|[−1,1] ∈ C2([−1, 1], IR),

(ii) β(−1) = β(1) = 1,

(iii) β′(−1) = −1 and β′(1) = 1,
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(iv) β′′(−1) = β′′(1) = 0,

(v) β′′(z) > 0 ∀z ∈ (−1, 1).

Two of such kink smoothing functions are introduced in [324]:

βs(z) :=
2

π
sin

(
(z + 3)π

2

)
+ 1 and βp(z) :=

1

8

(
−z4 + 6z2 + 3

)
.

Using an kink smoothing function for the scaled interval [−δi, δi] and the absolute value
function for the complement, the following function ξ ∈ C2(IR× IR≥0, IR) with

ξ(z, δi) :=


|z| for |z| ≥ δi,

δiβ
(
δ−1
i z

)
for |z| < δi,

is obtained and can be used to write a relaxed version of the complementarity condition
z = |z|:

z ≥ −z, z ≥ z, z ≤ ξ(z, δi).

Switching back to the original variables zIi and zIIi , the function Ξi ∈ C2(IR × IR × IR≥0, IR)
defined by

Ξi(z
I
i , z

II
i , δi) := zIi + zIIi − ξ(zIi − zIIi , δi)

allows to state the complementarity condition for zIi and zIIi in the form

zIi ≥ 0, zIIi ≥ 0, Ξi(z
I
i , z

II
i , δi) ≤ 0.

Combining the individual functions Ξi for all i = 1, . . . , s, the definition of the vector-valued
function Ξ ∈ C2(IRs × IRs × IRs

≥0, IR
s) is straightforward and results in

zI ≥ 0, zII ≥ 0, Ξ(zI , zII , δ) ≤ 0.

Note that the vector δ ∈ IRs
≥0 allows to individually determine a suitable relaxation for each

scalar complementarity condition.

In consequence, the following parametric nonlinear optimization problem R(δ) is obtained:

Definition 2.5.2. (Relaxed Problem R(δ))

min
x
φ(x)

subject to 0 = h(x),

0 ≥ g(x),

0 ≤ zI ,
0 ≤ zII ,
0 ≥ Ξ(zI , zII , δ).

By construction the relaxation properties of the scheme are evident: If a variable x∗ is feasible
for the original MPEC problem 2.4.2, then it also feasible for the relaxed problem 2.5.2.
Denote the feasible set of R(δ) by XR(δ); if the inequality δII ≤ δI holds componentwise,
then the following inclusion for the feasible set results:

XR(δII) ⊆ XR(δI).
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Figure 2.1: Illustration of the relaxation approach of [324] for one scalar complementarity
condition using the smoothing function βp.

Furthermore, if a strict local solution x∗ of R(δI) is feasible for the MPEC problem 2.4.2,
then x∗ is a strict local solution for all δII with 0 ≤ δII ≤ δI . For more details and the proofs
of these properties see [324]. The following theorem relates second-order sufficient conditions
for the MPEC 2.4.2 to the second-order sufficient conditions of the relaxed problem 2.5.2:

Theorem 2.5.3.
Let x be feasible for the MPEC 2.4.2. Then the following implications hold true:

(i) If x is a strong stationary point for the MPEC satisfying the RNLP-SOSC, then there
exist relaxation parameter δ > 0 such that x is a stationary point for R(δ) fulfilling the
standard second-order sufficient condition A.2.3 for R(δ). Consequently, the point x is
a strict local minimum of R(δ).

(ii) If x is a stationary point for R(δ) that satisfies the standard second-order sufficient
condition A.2.3, then this point is a strongly stationary point of the MPEC 2.4.2 that
satisfies the RLNP-SOSC. Thus, x is a strict local minimum of the MPEC.

Proof. The proof of this theorem can be found in [324]. �

Note that convergence results assuming weaker constraint qualifications for the MPEC are
also presented in [324] and extended in [160].

2.5.2 Further Regularization Approaches

In this section we discuss the most relevant regularization schemes for MPECs related to the
scheme of [324]; for further details and additional approaches see [120, 324] and the references
cited therein. The first regularization scheme that has to be discussed is the approach of [277]
where the complementarity condition is relaxed to

zIi ≥ 0, zIIi ≥ 0, zIi z
II
i ≤ δi

by introducing a parameter δi > 0. The feasible region of this regularization approach is
displayed in figure 2.2.
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δi

δi

zIi

zIIi

Figure 2.2: Illustration of the relaxation approach of [277] for one scalar complementarity
condition.

It is proven in [277] that under assumptions including the MPEC-LICQ the sequence of
stationary points for the relaxed problems converge to a C-stationary point with unique
multipliers; B-stationarity or M-stationarity follows if additional assumptions are fulfilled.
Furthermore, it is shown that a piecewise smooth mapping relating the relaxation parameter
δi to the corresponding stationary point exists if suitable assumptions are met.

Second, in [111] the MPEC is rewritten in form of a standard nonlinear optimization problem
by replacing the complementarity condition by

zI ≥ 0, zII ≥ 0,
(
zI
)T
zIIi ≤ 0.

Note that this reformulation of the MPEC does not actually change the structure of the
MPEC, but it is reported in [110] that standard methods of sequential quadratic programming
(SQP-methods) can solve several problems of this type. Under assumptions including the
MPEC-LICQ and a second-order sufficient condition superlinear convergence is shown near
a strongly stationary point. Several extensions of this approach are discussed in literature,
e.g., [13, 193].

The third idea adapted in the relaxation scheme of [324] for interior-point methods is the two-
sided relaxation introduced by [72]. Here, the positivity constraints are relaxed in addition
to the part of the complementarity constraints given in product form:

zIi ≥ − δ̂i
I
, zIIi ≥ − δ̂i

II
, zIi z

II
i ≤ δi, i = 1, . . . , s,

where the positive relaxation parameters δ̂i
I
, δ̂i

II
and δi, i = 1, . . . , s, are used. A schematic

illustration of the feasible set for one of these scalar complementarity conditions is displayed
in figure 2.3.

The relaxation parameters are updated such that either δi or at least one of δ̂i
I

and δ̂i
II

is reduced, which assures that a strictly feasible set exists that is even in limit non-empty.
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δ̂i
II

δi

δ̂i
I

δi zIi

zIIi

Figure 2.3: Illustration of the relaxation approach of [72] for one scalar complementarity
condition.

Under suitable assumptions including MPEC-LICQ and SSOSC it is shown that this scheme
converges superlinearly near a strongly stationary point; further details can be found in the
next section.

2.5.3 Extension for Interior-Point Methods

In this section an extension of the relaxation scheme of section 2.5.1 is discussed that assures
that a non-empty strictly feasible set is maintained at each instance; this characteristic is a
necessary requirement for using interior-point methods for solving the relaxed problem (cf.
section 5.1.1).

δIIi

δi

δIi δi

1
2δ

Ξ
i

1
2δ

Ξ
i

zIi

zIIi

Figure 2.4: Illustration of the two-sided relaxation approach of [324] for one scalar comple-
mentarity condition using the smoothing function βp.

The principal layout of this extension follows the line of [324] which is based on the work
[72], but differences in the update procedure of the relaxation parameters resulting in different
convergence properties are addressed, too.
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The scheme introduced in [72] does not only relax the products zIi z
II
i = 0 of the comple-

mentarity conditions by zIi z
II
i ≤ δΞ

i , but also the positivity constraints to zIi ≥ −δIi and
zIIi ≥ −δIIi using suitable relaxation parameters δΞ

i , δ
I
i , δ

II
i ≥ 0. The idea of this two-sided

relaxation approach is to reduce either the parameter δΞ
i or at least one of the parameters δIi

and δIIi to zero while maintaining a strictly positive value for the other part. Following the
line of [72, 324], slack variables are used in the formulation of the two-sided relaxed problem
in order to simplify notation:

Definition 2.5.4. (Two-Sided Relaxed Problem R(δ, δ))

min
x
φ(x)

subject to 0 = h(x),

0 = g(x) + sg,

δI = sI − zI ,
δII = sII − zII ,
δΞ = Ξ(zI , zII , δ) + sΞ,

0 ≤ s,

where s ∈ IRq+3s
≥0 is the vector of the slack variables resulting from the concatenation of the

slack variables of the individual parts

s =
(

(sg)T ,
(
sI
)T
,
(
sII
)T
,
(
sΞ
)T)T

,

and δ ∈ IRq+3s is the corresponding vector of the relaxation parameters for the two-sided
scheme

δ =
(

0,
(
δI
)T
,
(
δII
)T
,
(
δΞ
)T)T

.

The parameters and the resulting feasible region are illustrated in the figure 2.4. The following
theorem states the relation between the stationary points of the relaxed problem R(δ, δ) and
the strongly stationary points of the MPEC 2.4.2:

Theorem 2.5.5.
Let the point x with the multipliers λ, µ, ψI and ψII be a strongly stationary point of the
MPEC 2.4.2 and let the relaxation parameters δ and δ fulfill the conditions

δIi = 0 if ψIi > 0,

δIi > 0 if ψIi ≤ 0,

δIIi = 0 if ψIIi > 0,

δIIi > 0 if ψIIi ≤ 0,

δΞ
i = 0 if ψIi < 0 or ψIIi < 0,

δΞ
i > 0 if ψIi ≥ 0 and ψIIi ≥ 0,

0 ≤ δi ≤ |zI − zII | if ψIi < 0 or ψIIi < 0,

δi > 0 if ψIi ≥ 0 and ψIIi ≥ 0,

for all i = 1, . . . , s. Then the following strict inequalities hold:

δIi + δΞ
i > 0 and δIIi + δΞ

i > 0, i = 1, . . . , s.
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Additionally, if the slack variables and the Lagrange multipliers of the relaxed problem R(δ, δ)
fulfill the equalities

s =
(
−g(x)T ,

(
zI + δI

)T
,
(
zII + δII

)T
,
(
δΞ − Ξ(zI , zII , δ)

)T)T
,

ψ̂I =
(
ψI
)

+
,

ψ̂II =
(
ψII
)

+
,

ψ̂Ξ
i =


(
−1

2ψ
I
)

+
if i ∈ (AI\AII) (x),(

−1
2ψ

II
)

+
if i ∈ (AII\AI) (x),

0 if i ∈ (AI ∩ AII) (x),

then
(
xT , sT

)T
with the multipliers λ, µ, ψ̂I , ψ̂II and ψ̂Ξ is a stationary point of R(δ, δ).

Furthermore, if x satisfies the MPEC-LICQ and the SSOSC, then the LICQ and the SOSC

for R(δ, δ) hold at
(
xT , sT

)T
, respectively.

Moreover, if the inequality g(x)+λ > 0 is fulfilled, then s and

(
λT ,

(
ψ̂I
)T

,
(
ψ̂II
)T

,
(
ψ̂Ξ
)T)T

satisfy strict complementarity.

Proof. The verification of this theorem can be found in [324]. �

A result for the inverse implication is given in the following theorem:

Theorem 2.5.6.
Assume that the relaxation parameter δ > 0 and the relaxation parameters δ satisfying the
strict inequalities

δIi + δΞ
i > 0 and δIIi + δΞ

i > 0, i = 1, . . . , s

are given. Additionally, the point
(
xT , sT

)T
with the Lagrange multipliers λ, µ, ψ̂I , ψ̂II and

ψ̂Ξ has to be a stationary point of the relaxed problem R(δ, δ) and the condition

min
{
zIi , z

II
i

}
= 0 ∀i = 1, . . . , s

has to be fulfilled. Then x is a strongly stationary point of the MPEC 2.4.2 with the Lagrange
multipliers λ, µ and ψI , ψII given by the equations

ψIi = ψ̂Ii −DzIi
Ξi(z

I
i , z

II
i , δi)ψ̂

Ξ
i ,

ψIIi = ψ̂IIi −
(

2−DzIi
Ξi(z

I
i , z

II
i , δi)

)
ψ̂Ξ
i ,

where i = 1, . . . , s.

Proof. The theorem is proven in [324]. �

These two theorems are not only the basic motivation to solve a sequence of relaxed problems
R(δ, δ) for decreasing relaxation parameters δ and δ, but they can be used to deduce suitable
update strategies for the relaxation parameters. Since appropriate values of the parameters
assuring min{zI , zII} = 0 are not a priori known, it is reasonable to start with strictly positive
values and analyze the solution in order to use suitable updates for the parameters.
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Both [72] and [324] discuss their version of the two-sided relaxation in combination with
an interior-point method; the basic idea is to adapt the relaxation parameters within the
interior-point optimization resulting in specially-tailored interior-point methods. It is shown
that in the course of the optimization the problem can be modified in such a way that under
reasonable assumptions superlinear convergence in the vicinity of a strongly stationary point
is maintained.

Our approach is not based on this simultaneous procedure, but each problem in the sequence
of relaxed problems is solved by a standard interior-point method and the relaxation param-
eters for the next problem are updated by using the solution of the previous relaxed problem.
Thus the standard convergence results for the interior-point method are applicable to the
individual optimization run of one relaxed problem. Our update procedure for the relaxation
parameters is discussed in the following; naturally, there are differences compared to the
update procedures of [72] and [324], but they share the basic idea.

Assume that the j-th relaxed problem given by the relaxation parameters δ(j) and δ(j) has
been solved, which means that a stationary point((

x(j)
)T

,
(
s(j)
)T)T

with Lagrange multipliers

λ(j), µ(j),
(
ψ̂I
)(j)

,
(
ψ̂II
)(j)

and
(
ψ̂Ξ
)(j)

is obtained. The goal is now to determine suitable parameters δ(j+1) and δ(j+1), therefore
the reduction factor cδ ∈ (0, 1) und a tolerance for the complementarity condition εtol > 0 is

introduced. The two-sided relaxation approach allows the stationary point of R
(
δ(j), δ(j)

)
to either violate at least one of the positivity constraints or to violate the product constraint
of the complementarity condition. Note that in both cases only the relaxation parameter
corresponding to the violated constraint should be reduced. Consequently, the slack variables
can be used to define the following update procedure:

Algorithm 2.5.7. (Relaxation Update)
Let δ(j) and δ(j) be the current relaxation parameters and assume that a stationary point of
the relaxed MPEC R(δ(j), δ(j)) is given by x(j) and s(j). Then the relaxation parameters are
updated to δ(j+1) and δ(j+1) by using the slack variable information:

δ
(j+1)
i = cδδ

(j)
i if si − δi < εtol,

δ
(j+1)
i = δ

(j)
i if si − δi ≥ εtol,

for all indices i = q + 1, . . . , q + 3s.



Optimal Control

Chapter 3

The goal of optimal control theory is to find the time-dependent state function x and control
function u minimizing a given cost function φ. The functions have to fulfill the differential
equation x′(t) = ϕ(x(t), u(t)) describing the dynamical properties of the system. Further-
more, equality and inequality constraints, such as boundary conditions, have to be met.

This leads to the following (classical) problem definition:

Definition 3.0.1. (Optimal Control Problem)
Let x ∈ C1

c ([0, 1], IRn) be the state function and u ∈ Cp([0, 1], IRm) the control function. The
following functions are assumed to be sufficiently smooth:

the terminal cost term φb : IRn × IRn → IR,
the integral cost term φI : IRn × IRm → IR,
the right hand side of the ODE ϕ : IRn × IRm → IRn,

the inequality constraints g : IRn × IRm → IRl,
the boundary conditions b : IRn × IRn → IRc.

The general optimal control problem is defined by:

min
x,u

φ(x, u) := φb(x(0), x(1)) +

∫ 1

0
φI(x(t), u(t)) dt

subject to n ordinary differential equations

x′(t) = ϕ(x(t), u(t)),

to l inequality constraints
g(x(t), u(t)) ≤ 0

and to c boundary conditions
b(x(0), x(1)) = 0.

Remark 3.0.2. Note that the term sufficiently smooth is used for functions in problem 3.0.1
because the various statements of the following theorems are based on the continuity of the
derivatives of different orders. For the most basic variational results presented in the following
the functions have to be at least elements of C1 or C1

p .

33
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Remark 3.0.3. We assume that the inequality constraints g are active only in the interior of
the time interval, i.e.,

gi(x(0), u(0)) < 0 and gi(x(1), u(1)) < 0 for all i = 1, . . . , l.

The definition of the state x and the control u to be piecewise continuously differentiable and
piecewise continuous allows for finitely many time instances where the system behavior can
change, e.g., if the differential equation of the state changes. Such time instances can result,
for example, if an inequality constraint becomes active.

The term classical optimal control problem is used for the above problem due to the designated
spaces for the state variable x ∈ C1

c ([0, 1], IRn) and the control variable u ∈ Cp([0, 1], IRm).
These smoothness assumptions allow to apply variational approaches in order to derive nec-
essary optimality conditions (see section 3.1). However, the optimal control problem can be
defined on larger classes for the state and the control: It is essential that the time-derivative of
the state exists and fulfills the fundamental theorem of calculus, but a (Lagrange) integrable
function, which needs not to be continuous, is still meaningful for the problem; this leads
to the class of absolutely continuous functions AC([0, 1], IRn) which are introduced in section
3.4. Similarly, the space for the control can be defined by all integrable functions instead of
all continuous ones. Consequently, the ordinary differential equation for the time-derivative
of the state and the inequality constraints have to be fulfilled almost everywhere (a.e.), a
standard construct in the context of Lagrange integration. Using these larger classes, other,
more advanced techniques are need to derive necessary optimality conditions for the optimal
control problem (e.g. see [58, 123]), but on the other hand these spaces allow to proof the
existence of an solution under suitable assumptions (cf. section 3.4).

Remark 3.0.4. In most cases we will consider the boundary conditions to be of the type

x(0) = xs, x(1) = xe

for given function values xs and xe ∈ IRn.

Remark 3.0.5. In optimal control theory different types of cost functions are considered
and the total problem is named accordingly. The cost function of the above problem is
a combination of a terminal cost term and an integral cost term; such problems are called
Bolza-problems. If only terminal costs exist, the problem is called a Lagrange-problem. On the
other hand, a Mayer-problem has only an integral cost term. Note that these distinctions are
mainly for simplification of presentation and a problem of one type can be easily transformed
into a problem of another problem class.

This optimal control problem can be solved by two different approaches: the direct methods
first discretize and then optimize, while the indirect methods first optimize and then dis-
cretize. In the next section we will start with the discussion of the indirect approach while
focusing on the necessary optimality conditions for the continuous problem. Then, in the
section on direct methods the collocation approach used in this work to discretize the opti-
mal control problem is discussed in detail and the convergence properties of the first-order
necessary optimality conditions of the discretized problem towards those of the continuous
one are addressed. The numerical results of the two approaches are compared for the simple
problem of minimizing jerk. Finally, the existence of an optimal solution is discussed.



3.1. INDIRECT METHODS 35

3.1 Indirect Methods

Indirect methods are based on the derivation of necessary conditions for problem 3.0.1. These
conditions are used to obtain a complex boundary value problem, which can be solved by
various numerical methods, e.g., the multiple shooting algorithm. More detail on the theory
including sufficient conditions can be found in several textbooks on optimal control theory,
see for example [44, 192, 287, 311].

In a first step we neglect the inequality constraints, thus the following problem is considered:

Definition 3.1.1. (Simplified Optimal Control Problem)
Given the functions from definition 3.0.1, minimize

φ(x, u) = φb(x(0), x(1)) +

∫ 1

0
φI(x(t), u(t)) dt

subject to n ordinary differential equations

x′(t) = ϕ(x(t), u(t)), (3.1)

and the boundary conditions
b(x(0), x(1)) = 0.

The following definition gives us a function combining the cost function φ with the ordinary
differential equations using the standard coupling approach of optimal control theory:

Definition 3.1.2. (Extended Cost Function)
The definition of the extended cost function is based on the introduction of Lagrange multi-
pliers or adjoint variables λ : [0, 1] → IRn. These are assumed to be piecewise continuously
differentiable and are used to couple the ordinary differential equations to the standard cost
function φ, which yields the extended cost function φ

+
:

φ
+

(x, u, λ) := φb(x(0), x(1)) +

∫ 1

0
φ+
I

(
x(t), u(t), x′(t), λ(t)

)
dt,

where the function

φ+
I

(
x(t), u(t), x′(t), λ(t)

)
:= φI(x(t), u(t)) + λ(t)T

(
ϕ(x(t), u(t))− x′(t)

)
states the extended integral costs.

This extended cost function is closely related to the Hamiltonian of the problem which enables
us to write the necessary conditions in a compact form:

Definition 3.1.3. (Hamiltonian)
The Hamiltonian H : IRn × IRm × IRn × IR→ IR is defined by

H
(
x(t), u(t), λ(t), α

)
:= αφ+

I

(
x(t), u(t), x′(t), λ(t)

)
− x′(t)T∇x′φ+

I

(
x(t), u(t), x′(t), λ(t)

)
.

Remark 3.1.4. An optimal control problem is called autonomous if neither the cost function
nor the constraints depend explicitly on the time t, the independent variable. The problem
3.0.1 is autonomous by definition. It can be shown that the Hamiltonian is constant for
autonomous problems, which is a good indicator of the obtained accuracy if the problem is
solved numerically.
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In the setting of 3.1.1 the following Hamiltonian results:

H
(
x(t), u(t), λ(t), α

)
= αφI(x(t), u(t)) + λ(t)Tϕ(x(t), u(t)).

Using methods of variational calculus, it can be shown that the optimal control function u∗(t)
minimizes the Hamiltonian, which is called the Pontryagin minimum principle. This leads
to the following necessary conditions:

Theorem 3.1.5.
Let (x∗, u∗) be a local optimal solution of problem 3.1.1. Then there exist α∗ ≥ 0, λ

∗ ∈ C1
p(IRn)

and σ∗ ∈ IRc not all zero such that the following necessary optimality conditions hold (at time
instances t where u∗ is continuous)

(i) the adjoint differential equations(
λ
∗
k

)′
(t) = − ∂H

∂xk

(
x∗(t), u∗(t), λ

∗
(t), α∗

)
, k = 1, . . . , n, (3.2)

(ii) the optimality conditions

∂H

∂uk

(
x∗(t), u∗(t), λ

∗
(t), α∗

)
= 0, k = 1, . . . ,m, (3.3)

(iii) the transversality conditions(
λ
∗
(0)
)T

= −α∗ ∂φb
∂x(0)

(x∗(0), x∗(1))− (σ∗)T
∂b

∂x(0)
(x∗(0), x∗(1)) , (3.4)(

λ
∗
(1)
)T

= +α∗
∂φb
∂x(1)

(x∗(0), x∗(1)) + (σ∗)T
∂b

∂x(1)
(x∗(0), x∗(1)) , (3.5)

(iv) the Legendre-Clebsch condition

∇2
uuH

(
x∗(t), u∗(t), λ

∗
(t), α∗

)
positive semidefinite, (3.6)

where time t fulfills 0 ≤ t ≤ 1.

Proof. Various proofs for these conditions exist, see for example [44].

Remark 3.1.6. Calculating the optimal control u∗ by (3.3) and (3.6) yields a multi-point
boundary value problem consisting of 2n differential equations (3.2) and (3.1) and given
boundary conditions b or transversality conditions (3.4) and (3.5).

The optimality condition (3.3) is locally uniquely dissolvable with respect to u for a regular
∇2H. However, if the Hamiltonian depends only linearly on the control, the problem is
insolvable as long as the controls are not constrained. In this case, a switching function being
the derivative of the Hamiltonian with respect to the control is introduced and the sign of
a non-zero value of this function determines whether the optimal control value equals the
upper or lower bound, so-called bang-bang control. If the value of the switching function is
zero, the singular control has to be determined from a total time-derivative of the switching
function. However, in general it cannot be assured that a derivative exists with a non-zero
derivative with respect to the control.
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3.1.1 Inequality Constraints

To extend the problem defined in definition 3.1.1 to the general problem of the type given in

definition 3.0.1, inequality constraints g : IRn × IRm → IRl have to be considered:

g(x(t), u(t)) ≤ 0, t ∈ [0, 1].

Note that if one or more inequality constraints become active, one has to assume that the
system is controllable at every instance, i.e., a feasible control exists for all t ∈ [0, 1].

In literature one distinguishes between two types of inequality constraints, depending on the
derivative with respect to the controls:

• Control constraint fulfilling the following causality:

gi(x(t), u(t)) = 0⇒ ∃uk :
∂gi
∂uk

(x(t), u(t)) 6= 0, k = 1, . . . ,m

• State constraint not explicitly depending on the controls:

∀k = 1, . . . ,m :
∂gi
∂uk

(x(t), u(t)) = 0.

If an inequality constraint is active on an interval, a differential algebraic equation (DAE)
has to be fulfilled in addition to the standard ordinary differential equation for the state.
Such an DAE changes the problem structure considerably with respect to stability properties
and initial values and consequently approaches have been introduced in literature to handle
the corresponding problems (see for example [123] and the references therein). To give an
impression of central aspects like the order of a constraint and jumps in the adjoint variables,
a few results for the case of one inequality constraint and one control are discussed.

3.1.1.1 Control Constraints

Assuming l = 1 and m = 1, the following Hamiltonian results

H
(
x(t), u(t), λ(t), µ(t), α

)
= αφI(x(t), u(t)) + λ(t)Tϕ(x(t), u(t)) + µ(t)g(x(t), u(t)),

where µ : IR→ IR is the Lagrangian multiplier for the inequality fulfilling the complementarity
condition

µ(t) = 0 if g(x(t), u(t)) < 0,

µ(t) ≥ 0 if g(x(t), u(t)) = 0.

By using variational calculus it can be proven that in addition to the optimality conditions
of theorem 3.1.5 switching conditions have to be fulfilled. Let t1 and t2 ∈ (0, 1) be the
time instances where the control constraint becomes active and inactive, respectively, the
Hamiltonian has to be continuous at both times (j = 1 or j = 2):

lim
t↑tj

H
(
x(t), u(t), λ(t), µ(t), α

)
= lim

t↓tj
H
(
x(t), u(t), λ(t), µ(t), α

)
.

Due to the assumption that the state x is continuous in [0, 1], the adjoint states λ and the
controls u have to be continuous at tj,i, too.
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3.1.1.2 State Constraints

In the context of state constraints we need to introduce the order of the state constraint:

Definition 3.1.7. (State Constraint Order)
The functions gk, k = 1, . . . , υ, are defined recursively:

g1(x(t), u(t)) :=
d

dt
g(x(t)) =

∂

∂x
g(x(t)) ϕ(x(t), u(t)),

gi(x(t), u(t)) :=
d

dt
gi−1(x(t)) =

∂

∂x
gi−1(x(t), u(t)) ϕ(x(t), u(t)).

A state constraint is said to be of order υ if

∂

∂u
gk(x(t), u(t)) = 0 ∀0 ≤ k ≤ υ−1 and

∂

∂u
gυ(x(t), u(t)) 6= 0. (3.7)

Note that the ODE of the state ϕ(x(t), u(t)) and the constraint function g(x(t)) have to be
(υ+1)-times continuously differentiable, if a state constraint of order υ is considered.

It is assumed that the state constraint becomes active only in the interior of the interval
[0, 1] and that only finitely many boundary segments exist. Different approaches exist to
couple the inequality condition to the Hamiltonian to obtain the necessary conditions for the
constrained problem. The direct coupling strategy used in the following theorem, where the
function g(x(t)) is directly attached to the Hamiltonian, has to be distinguished from the
indirect coupling strategy, where gp(x(t), u(t)) is added to the Hamiltonian.

Theorem 3.1.8. (Jacobson, Lele and Speyer [166])
Let the Lagrange multiplier µ : [0, 1]→ IR be used to couple g to the Hamiltonian:

H
(
x(t), u(t), λ(t), µi(t), α

)
= αφI(x(t), u(t)) + λ(t)Tϕ(x(t), u(t)) + µ(t)g(x(t)).

In addition to (3.2) - (3.6), an optimal solution
(
x∗, u∗, λ

∗
, µ∗, α∗

)
has to fulfill

• Sign conditions

µ∗(t) = 0 for g(x∗(t)) < 0, (3.8)

µ∗(t) ≥ 0 for g(x∗(t)) = 0.

• Jump conditions: Let tj ∈ [0, 1] be the start or end point of a boundary segment or
the time instance of a contact point for the inequality constraint, then the following
conditions have to hold:

λ
∗
(t+j ) = λ

∗
(t−j )− γ̂ ∇xg(x∗(tj), u

∗(tj)), (3.9)

H
(
x∗(t+j ), u∗(t+j ), λ

∗
(t+j ), µ∗(t+j ), α∗

)
= H

(
x∗(t−j ), u∗(t−j ), λ

∗
(t−j ), µ∗(t−j ), α∗

)
,(3.10)

γ̂ ≥ 0. (3.11)

The control for a boundary segment has to be calculated using gp(x∗(t), u∗(t)) = 0 and
the sign conditions (3.8) and (3.11) can be controlled a posteriori. To calculate the jump
parameter γ̂ the system of differential equations has to be extended by one trivial differential
equation.
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3.1.2 Numerical Methods for Boundary Value Problems

The necessary optimality conditions of the indirect approach for optimal control problems
yield a boundary value problem, i.e., a problem of the general structure:

Definition 3.1.9. (Boundary Value Problem)
Find a function r ∈ C1

p([0, 1], IRυ) that fulfills the ordinary differential equation

r′(t) = ζ(r(t)), ∀t ∈ [0, 1],

and the boundary conditions

b(r(0), r(1)) = 0

for a given function b ∈ C(IRυ×υ, IRυ).

Various numerical methods exist to solve boundary value problems, see for example [15]; we
discuss in the following only those general properties that will also be relevant for the direct
approach. Therefore, the related class of initial value problems is introduced:

Definition 3.1.10. (Initial Value Problem)
Find a function r ∈ C1

p([0, 1], IRυ) that fulfills the ordinary differential equation

r′(t) = ζ(r(t)), ∀t ∈ [0, 1],

and the initial condition r(0) = rs for a given initial value rs ∈ IRυ.

A general class of numerical methods to solve initial value problems are the Runge-Kutta
methods computing the value for the state at t + δ given the one at t by using nested
evaluations of ζ:

r(t+ δ) = r(t) + δ
κ∑
i=1

BiKi,

Ki = ζ

r(t) + δ
κ∑
j=1

AijKj

 , i = 1, . . . , κ,

where the characteristic coefficients of the Runge-Kutta method are given by the vector
B ∈ IRκ and the matrix A ∈ IRκ×κ. Note that the method is called explicit if A has only
zero entries in the upper triangular part, otherwise it is called implicit and determining Ki
results in a nonlinear problem.

Consequently, the goal is to find a combination of A and B that guarantees that the numerical
solution of the method converges towards the analytical solution of the initial value problem
if the step sizes go to zero. To formally capture this notion, we introduce a strict partition
∆ of the time interval [0, 1], i.e.,

∆ := {ti | i = 1, . . . , ν}

with t1 = 0, tν = 1 and ti < ti+1 for all i = 1, . . . , ν. The cardinality of ∆ is given by ν ∈ IN
and it is assumed that ν ≥ 3. The corresponding lengths of the subintervals are given by
δi := ti+1 − ti > 0 for i = 1, . . . , ν − 1 and the maximum is denoted by δmax.
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The discretization error related to the discretization ∆ is

ε∆ : ∆→ IRυ, ε∆(t) = r(t)− x̃∆(t),

where the mesh function x̃∆(t) is obtained by recursively using the Runge-Kutta method for
all t ∈ ∆.

Definition 3.1.11. (Convergence of Discretized Problem)
Assume that a function x̃∆ exists for all discretizations ∆ with a sufficiently small δmax. The
family of mesh functions converges towards a function r ∈ C([0, 1], IRυ) if the discretization
error fulfills

||ε∆||∞ := max
t∈∆
|ε∆(t)| → 0 for δmax → 0.

The convergence is of order κ > 0 if

||ε∆||∞ = O ((δmax)κ) for δmax → 0.

The conditions on A and B resulting if a certain order of convergence has to be fulfilled are
a direct consequence of Taylor’s formula; for more details on general Runge-Kutta methods
see for example [78, 137].

A basic technique to obtain useful Runge-Kutta methods is the collocation approach where a
polynomial q is used to approximate the state function on a subinterval [t, t+δ]. It is assumed
that the polynomial fulfills the ordinary differential equation at least at κ prescribed time
instances:

q′(t+ Siδ) = ζ(q(t+ Siδ)).

Note that the assumption
0 ≤ S0 < . . . < Si < . . .Sκ ≤ 1

is reasonable in this context. Using the Lagrange basis {Lj | j = 1, . . . , κ} of Pυκ−1, the space
of all polynomials with degree smaller than κ, one obtains

q′(t+ tδ) =
κ∑
j=1

ζ(q(t+ Siδ))Lj(t), t ∈ [0, 1].

Introducing the intermediate values Ki, i = 1, . . . , κ, by

Ki = ζ(q(t+ Siδ))

and the coefficients of A and B by

Aij =

∫ Si
0
Lj(t) dt, i, j = 1, . . . , κ,

and

Bj =

∫ 1

0
Lj(t) dt, j = 1, . . . , κ,

the collocation approach directly relates the vector S to a Runge-Kutta method.

Remark 3.1.12. Collocation approaches are also used in the context of the direct approach
for optimal control problems (cf. section 3.2); even in this context, keeping the structure of
the related Runge-Kutta method in mind proves to be useful.
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Having a suitable family of Runge-Kutta methods, the initial value problem 3.1.10 can be
solved if issues like step size control and order control are addressed (especially in the con-
sidered case of a non-stiff problem); for details we refer to [78, 137].

To solve the boundary value problem 3.1.9, several approaches are known (cf. [15]); we will
summarize only the multiple shooting approach and the collocation approach related to the
discussed methods for the initial value problems. Note that due to the inherent structure of
a boundary value problem, a precise initial value is in general not specified, but the initial
values have to be chosen in such a way that the conditions at the final time instance can be
met.

The idea of multiple shooting [45, 220] is to divide the total interval [0, 1] into subintervals
Ii := [ti, ti+1), guess approximate initial values for each subinterval and then solve the re-
sulting initial value problems. In general, non-zero differences between the final state of one
subinterval and the guessed initial state of the next one result. However, a solution of the
boundary value problem minimizes these differences. Consequently, methods of nonlinear
optimization, e.g., a Newton method, can be used to determine better guesses for the initial
values if the derivative information of the final states in dependence on the initial values is
known; publications on determining the derivative information are for example [33, 131]. This
iterative procedure has to be continued until the differences are below a user-given tolerance.
For further information see [15].

Contrary to the multiple shooting method, the concept of the collocation approach avoids
the distinction of integrating forward in time. Instead a global approximation of the solution
is used by concatenating polynomials for specified subintervals and the goal is to fulfill the
right-hand side of the ordinary differential equation at distinct time-instances. For guessed
state information at the boundaries of the subintervals, this naturally results in differences
between the derivatives of the polynomials and of the corresponding right-hand side values
at these time-instances. This leads to a nonlinear optimization problem similar to the one of
the multiple shooting method, but the derivative information can be accessed more directly.
Further details on the collocation approach can, for example, be found in [15].

3.2 Direct Methods

Contrary to the approach of the indirect methods, where optimality conditions are derived
in continuous spaces and the resulting boundary problem is then solved by a numerical inte-
grator, the direct methods discretize the optimal control problem first and use optimization
methods to determine an optimum in finite space.

Naturally, the question arises which strategies can be used to discretize the problem and which
characteristics are of importance for the choice of the discretization method. Assuming that
the optimal controls are known, the optimal control problem is a boundary value problem
with a set of ordinary differential equations. Thus, the methods discussed in section 3.1.2
are candidates in this context; most prominently the multiple-shooting methods and the
collocation methods. Following the line of von Stryk [330], we focus here on two collocation
strategies.

Since the discretization step is a problem modification, it has to be analyzed how the solutions
of the discretized problem are related to the originally continuous ones. A few publications
discuss the relations for different settings using different techniques, e.g., [133, 136, 203, 330].

In [203] the optimal control problem is discretized in both its states and its controls using
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the (forward) Euler method. A large set of assumptions is introduced in order to show the
convergence properties: First, differentiability and continuity assumptions are made for the
state, the control and the problem-describing functions. Second, assumptions on the coerciv-
ity of the Hamiltonian and the rank of the derivative of the constraints have to be fulfilled.
Additionally, the solutions of some linearized equations and Ricatti equations have to fulfill
certain properties. If all these assumptions are met and if the step size is sufficiently small,
then the discrete state, control and adjoint variables differ from the continuous counterparts
up to order one.

The application of general (higher order) Runge-Kutta methods to discretize the continuous
optimal control problem is discussed in [136] and in addition to the well-known order condi-
tions for Runge-Kutta methods [137] another set of conditions has to be fulfilled to guarantee
higher order convergence in the adjoint variables, too. Note that the problem formulation in
[136] allows to choose the control variables at each evaluation of the right-hand side of the
differential equation independently of previous values, i.e., no coupling is considered which
for example would result if the control is assumed to be piecewise linear. Combining the
extended conditions for order κ with a smoothness and a coercivity assumption, it is shown
that for a sufficiently small step size a local minimum for the discretized problem exists and
that the convergence of the states, the controls and the adjoint variables is of order κ. The
collocation strategies used in the following fulfill the extended set of conditions of the same
order as the classical one.

3.2.1 Collocation Strategies

Two collocation strategies with different degrees of approximation are considered here to
transform problem 3.0.1 into a standard nonlinear optimization problem. The strategy with
the smaller degree of approximation is more robust with respect to the choice of the starting
values for x and u, while the other strategy approximates more accurately for good starting
values.

Results from [330] are reviewed that show that the KKT-conditions applied to the discretized
problem are equal up to O(h) to the first order necessary conditions of optimal control
theory for problems with control constraints only.

In accordance with the notation of section 3.1.2, the following quantities are used to describe
the strict partition

∆ := {ti | i = 1, . . . , ν}

of the total time interval [0, 1]:

0 = t1 < t2 < . . . < tν = 1.

We define the resulting subintervals by Ii := [ti, ti+1) for i = 1, . . . , ν−2 and by Ii := [ti, ti+1]
for i = ν − 1. Consequently, the mid-point of each subinterval Ii is given by ti+1/2 :=
1
2(ti + ti+1) for i = 1, . . . , ν − 1. The following quantities describing the properties of the
partition are needed to analyze the discretization strategies:

δi(∆) := ti+1 − ti, i = 1, . . . , ν − 1, (3.12)

δmax(∆) := max{δi(∆), i = 1, . . . , ν − 1}, (3.13)

δmin(∆) := min{δi(∆), i = 1, . . . , ν − 1}. (3.14)
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3.2.1.1 Piecewise Linear State and Piecewise Constant Control Variables

Given the strict partition ∆ the control function u is approximated by a piecewise constant
function ũ ∈ Pm1,∆ such that ũ is constant on each subinterval [ti, ti+1):

ũ(t) = ũ(ti+1/2), t ∈ Ii, i = 1, . . . , ν − 1. (3.15)

The state function x is discretized by utilizing a continuous, piecewise linear function x̃ ∈
Pn2,∆ ∩ C([0, 1]):

x̃(t) = x̃(ti) +
t− ti
δi(∆)

(x̃(ti+1)− x̃(ti)), t ∈ Ii, i = 1, . . . , ν − 1. (3.16)

The original ordinary differential equation for the state vector is reduced to the condition

x̃′(ti+1/2) = ϕ(x̃(ti+1/2), ũ(ti+1/2)), i = 1, . . . , ν − 1. (3.17)

ti−1 ti−1/2 ti ti+1/2 ti+1

t

ũ(t)

ti−1 ti−1/2 ti ti+1/2 ti+1

t

x̃(t)

Figure 3.1: Schematic illustration of the approximation approach for state and control; the
arrows indicate the slopes given by ϕ at the intermediate points for the condition (3.17).

The approximating functions x̃ and ũ are utilized to transform the original infinite-
dimensional optimal control problem 3.0.1 into a finite-dimensional nonlinear optimization
problem:

min φ̃(x̃(t), ũ(t))

subject to x̃′(ti+1/2) = ϕ(x̃(ti+1/2), ũ(ti+1/2)), i = 1, . . . , ν − 1, (3.18)

b(x̃(0), x̃(1)) = 0,

g(x̃(ti), ũ(ti)) ≤ 0, i = 2, . . . , ν − 1,

where φ̃ is a suitable discrete approximation of the continuous cost function φ. Note
that x̃(t) is only required to fulfill the differential equation in the middle of each subinter-
val and that the inequality constraints are assumed to be inactive at start and end (cf. 3.0.1).

Several approaches exist to transform the original cost φ for the continuous functions into the
approximation φ̃, for example, by inserting the approximations x̃ and ũ directly into φ and
calculating the resulting integral terms explicitly. In the context of the following analysis of
pointwise convergence a linear approximation of the integral cost term proves to be suitable:

φ̃I(t) = φI(x̃(ti), ũ(ti)) +
t− ti
δi(∆)

(φI(x̃(ti+1), ũ(ti+1))− φI(x̃(ti), ũ(ti))),
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where t ∈ Ii, i = 1, . . . , ν − 1. In consequence, the approximated cost function φ̃ reads:

φ̃(x̃(t), ũ(t)) = φb(x̃(0), x̃(1)) +

∫ 1

0
φ̃I(t) dt

= φb(x̃(0), x̃(1))

+
ν−1∑
i=1

δi(∆)

2
(φI(x̃(ti), ũ(ti)) + φI(x̃(ti+1), ũ(ti+1))) .

Our goal is now to rewrite the optimization problem (3.18) in the standard notation of
nonlinear optimization to emphasize the finitely many optimization parameters. Therefore,
we define the discretized state x(i) ∈ IRn and the discretized control u(i) ∈ IRm, i = 1, . . . ν,
by

x(i) := x̃(ti), i = 1, . . . , ν,

u(i) := ũ(ti), i = 1, . . . , ν − 1,

and their respective concatenations by x ∈ IRn(ν−1) and u ∈ IRm(ν−1).

From these definitions follow the equations

x̃(ti+1/2) =
x(i+1) − x(i)

2
,

ũ(ti+1/2) = u(i),

x̃′(ti+1/2) =
x(i+1) − x(i)

δi(∆)
.

Consequently, the optimization problem (3.18) can be rewritten as follows:

Definition 3.2.1. (Discrete Optimal Control Problem [Type I])

minφ(x, u)

subject to

0 = −x(i+1) + x(i) + δi(∆)ϕ

(x(i+1) − x(i)

2
, u(i)

)
, i = 1, . . . , ν − 1,

0 = b(x(1), x(ν)),

0 ≥ g
(
x(i), u(i)

)
, i = 2, . . . , ν − 1.

Here, the cost φ is determined by

φ(x, u) = φb(x(1), x(ν))

+

ν−1∑
i=1

δi(∆)

2

(
φI(x(i), u(i))) + φI(x(i+1), u(i+1))

)
.

Remark 3.2.2. In problem 3.2.1 the form of the differential equation for the state differs from
the version of [330] by the factor δi(∆) and consequently, the resulting Lagrange multipliers
are scaled versions of those of von Stryk. The advantage of our presentation form is that
the relations between the continuous and the discrete Lagrange multipliers of the discrete
optimal control problems (type I) and (type II) are identical (compare section 3.2.1.2).
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The Lagrangian L of this problem is defined as:

L(x, u, λ, µ) := φ(x, u)

+

ν−1∑
i=1

λT(i)

(
δi(∆)ϕ

(x(i+1) + x(i)

2
, u(i)

)
− x(i+1) + x(i)

)

+
ν−1∑
i=2

µT(i)g
(
x(i), u(i)

)
+ λT(ν)b

(
x(1), x(ν)

)
,

where λ(i) ∈ IRn, i = 1, . . . , ν − 1, λ(ν) ∈ IRc and µ(i) ∈ IRl, i = 2, . . . , ν − 1, are the Lagrange
multipliers of the discretized differential equation, the boundary conditions and the inequality
constraints, respectively (cf. appendix A).

Theorem 3.2.3. (Pointwise Convergence Properties)
Assume that a CQ is fulfilled for problem 3.2.1 and that in limit, i.e., δmax → 0, the dis-
crete values µ and λ result in a piecewise continuously differentiable and a piecewise twice
continuously differentiable function, respectively. Considering only inequality constraints that
ar control constraints, the KKT-conditions of problem 3.2.1 converge pointwise to the first
order necessary conditions of the original optimal control problem 3.0.1. Furthermore, the
Lagrangian L converges to the extended cost function φ

+
.

Proof. A proof of this theorem for a problem similar to 3.0.1 can be found in [330]. Here
we only state a slight variation of a selected part of the proof to show the basic relationship
between the Lagrange multipliers of the discrete problem and the adjoint variables of the
continuous problem, i.e., cf. [330] for the stationarity condition.

The derivative of the Lagrangian L with respect to a single state x(j), where 1 < j < ν,
reads:

Dx
(j)
L(x, u, λ, λ(ν), µ) =

δj(∆) + δj−1(∆)

2
DxφI(x(j), u(j))

+ δj−1(∆)

(
λ(j−1)

2

)T
Dxϕ

(x(j) + x(j−1)

2
, u(j−1)

)

+ δj(∆)

(
λ(j)

2

)T
Dxϕ

(x(j+1) + x(j)

2
, u(j)

)
(3.19)

+ µT(j)Dxg
(
x(j), u(j)

)
− λT(j−1) + λT(j)

!
= 0.

In addition to the approximating functions x̃ for the state and ũ for the control depending
on the vectors x and u, respectively, approximating functions for the adjoint variables are

needed. The assumptions of the theorem guarantee that functions µ̃ ∈ C1
p([0, 1], IRl) and

λ̃ ∈ C2
p([0, 1], IRn) exist that fulfill the following conditions:

λ̃(tj+1/2) := λ(j), j = 1, . . . , ν − 1,

µ̃(tj) :=
µ(j)

1
2δj(∆) + 1

2δj−1(∆)
, j = 2, . . . , ν − 1.
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First, Taylor’s formula is used to rewrite the sum of the last two summands in (3.19):

λ(j) − λ(j−1) = λ̃(tj+1/2)− λ̃(tj−1/2)

= λ̃(tj+1/2)− λ̃
(
tj+1/2 −

δj(∆) + δj−1(∆)

2

)
=

δj(∆) + δj−1(∆)

2
λ̃′(tj+1/2) +O(δ2

max).

Using the Taylor approach in a similar manner, the other four summands of (3.19) result in:

δj−1(∆) + δj(∆)

2
DxφI(x(j), u(j)) + µT(j)Dxg

(
x(j), u(j)

)
+

(
λ(j−1)

2

)T
Dxϕ

(x(j) + x(j−1)

2
, u(j−1)

)

+

(
λ(j)

2

)T
Dxϕ

(x(j+1) + x(j)

2
, u(j)

)
=

δj−1(∆) + δj(∆)

2
DxφI

(
x̃(tj+1/2), ũ(tj+1/2)

)
+
δj−1(∆) + δj(∆)

2
µ̃(tj+1/2)TDxg

(
x̃(tj+1/2), ũ(tj+1/2)

)
+
δj−1(∆) + δj(∆)

2
λ̃(tj+1/2)TDxϕ

(
x̃(tj+1/2), ũ(tj+1/2)

)
+O(δ2

max).

Since δj(∆) > 0 for all j, the combination of the above equations yields

λ̃′(tj+1/2)T = −DxφI
(
x̃(tj+1/2), ũ(tj+1/2)

)
− λ̃(tj+1/2)TDxϕ

(
x̃(tj+1/2), ũ(tj+1/2)

)
− µ̃(tj+1/2)TDxgx

(
x̃(tj+1/2), ũ(tj+1/2)

)
+O(δmax).

Consequently, for δmax → 0 this equation converges to the adjoint differential equation (3.2)

λ
′
k(t) = −∇xkH(x(t), u(t), λ(t)), k = 1, . . . , n.

�

3.2.1.2 Piecewise Cubic State and Piecewise Linear Control Variables

Considering the strict partition ∆, a piecewise linear function ũ ∈ Pm2,∆ is utilized to approx-
imate the control function u such that ũ is linear on each subinterval [ti, ti+1] :

ũ(t) = u(i) +
t− ti
ti+1 − ti

(
u(i+1) − u(i)

)
t ∈ Ii, i = 1, . . . , ν − 1,

where u(i) ∈ IRν is the discrete control vector.
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The approximation of the state function x(t) is chosen to be a continuously differentiable,
piecewise cubic function x̃(t) ∈ Pn4,∆ ∩ C1([0, 1], IRn)

x̃(t) =
3∑
j=0

πij

(
t− ti
ti+1 − ti

)j
, t ∈ Ii, i = 1, . . . , ν − 1, (3.20)

satisfying the conditions

x̃(ti) = x(i) and x̃′(ti) = ϕ(x(ti), u(ti)), i = 1, . . . , ν. (3.21)

These conditions uniquely define the coefficients πij of the cubic polynomials:

j = 0 : πij = x(i),

j = 1 : πij = δiϕ(x(i), u(i)),

j = 2 : πij = −3x(i) − 2δiϕ
(
x(i), u(i)

)
+ 3x(i+1) − δiϕ

(
x(i+1), u(i+1)

)
,

j = 3 : πij = 2x(i) + δiϕ
(
x(i), u(i)

)
− 2x(i+1) + δiϕ

(
x(i+1), u(i+1)

)
.

The differential equations of the original optimal control problem 3.0.1 will again be trans-
formed into a differential condition for the middle of each interval:

x̃′(ti+1/2) = ϕ(x̃(ti+1/2), ũ(ti+1/2)). (3.22)

ti−1 ti−1/2 ti ti+1/2 ti+1

t

ũ(t)

ti−1 ti−1/2 ti ti+1/2 ti+1

t

x̃(t)

Figure 3.2: Schematic illustration of the approximation approach for state and control; the
arrows indicate the slopes given by ϕ at the boundary points for the construction of the
polynomials and at the intermediate points for the condition (3.22).

Remark 3.2.4. This type of approximation is first introduced by Hargraves and Paris [140] to
solve optimal control problems and is closely related to the approach of [184] utilizing cubic
approximations of the controls.

Remark 3.2.5. The combination of the conditions (3.21) and (3.22) yields a cubic collocation
problem. If the interval [ti, ti+1] is transformed onto the interval [−1, 1] a cubic collocation
using Lobatto-points (i.e., −1, 0 and 1) is obtained. In the interior of the interval this
approximation is of order h3. Higher orders of approximation could be realized by using
other points for collocation. Gaussian-points, for example, yield an approximation of order
h6, but the approximation would only be continuous and not continuously differentiable at
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the points ti, i = 2, . . . , ν − 1. The advantage of Lobatto-points is the small number of
collocation conditions which consequently leads to a smaller optimization problem. Note
that only 2N + 1 evaluations of the differential equations f are needed, while 3N evaluations
would be needed if Gaussian-points were used, which yields a big advantage in computational
expenses.

Consequently, the following nonlinear optimization problem is gained:

min φ̃(x̃(t), ũ(t))

subject to x̃′(ti+1/2) = ϕ(x̃(ti+1/2), ũ(ti+1/2)), i = 1, . . . , ν − 1, (3.23)

b(x̃(0), x̃(1)) = 0,

g(x̃(ti), ũ(ti)) ≤ 0, i = 2, . . . , ν − 1.

From the above definitions of x(i) = x̃(ti) and u(i) = ũ(ti), i = 1, . . . , ν, follows directly

ũ(ti+1/2) =
u(i+1) + u(i)

2
,

x̃(ti+1/2) =
x(i+1) + x(i)

2
+
δi(∆)

8

(
ϕ
(
x(i), u(i)

)
− ϕ

(
x(i+1), u(i+1)

))
,

x̃′(ti+1/2) =
3

2

x(i+1) − x(i)

δi(∆)
− 1

4

(
ϕ
(
x(i), u(i)

)
+ ϕ

(
x(i+1), u(i+1)

))
,

i = 1, . . . , ν − 1.

Using the vectors x and u, problem (3.23) can be rewritten in the following way:

Definition 3.2.6. (Discrete Optimal Control Problem [Type II])

minφ(x, u) subject to

0 = − x(i+1) + x(i) + δi(∆)

(
1

6
ϕ
(
x(i), u(i)

)
+

1

6
ϕ
(
x(i+1), u(i+1)

)
+

2

3
ϕ

(
xm,(i),

u(i+1) + u(i)

2

))
, i = 1, . . . , ν − 1,

0 = b
(
x(1), x(ν)

)
,

0 ≥ g
(
x(i), u(i)

)
, i = 2, . . . , ν − 1,

where for notational reasons the abbreviation xm,(i), i = 1, . . . , ν − 1, is used for the interme-
diate point:

xm,(i) :=
x(i+1) + x(i)

2
+
δi(∆)

8

(
ϕ
(
x(i), u(i)

)
− ϕ

(
x(i+1), u(i+1)

))
.

Remark 3.2.7. Again, the differential equations for the state are scaled versions of those in
[330]. The form of our version is inspired by the standard form of a Runge-Kutta method and
the main advantage is that the resulting relations between discrete and continuous Lagrange
multipliers are identical to those of the discrete optimal control problem (type I).
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The definition of the Lagrangian L of this problem reads:

L(x, u, λ, µ) := φ(x, u) + λT(ν)b
(
x(1), x(ν)

)
+
ν−1∑
i=2

µT(i)g
(
x(i), u(i)

)
+

ν−1∑
i=1

λT(i)

(
−x(i+1) + x(i) + δi(∆)

(
1

6
ϕ
(
x(i), u(i)

)
+

1

6
ϕ
(
x(i+1), u(i+1)

)
+

2

3
ϕ

(
xm,(i),

u(i+1) + u(i)

2

)))
.

The convergence properties of the approximation characterized in the following theorem are
analyzed by von Stryk [330].

Theorem 3.2.8. (Pointwise Convergence Properties)
Assume that a CQ is fulfilled and that in limit, i.e., δmax → 0, the discrete values µ and λ re-
sult in a piecewise continuously differentiable and a piecewise twice continuously differentiable
function, respectively. Considering only inequality constraints that are control constraints, the
KKT-conditions of problem 3.2.6 converge pointwise to the first order necessary conditions
of the original optimal control problem 3.0.1. Furthermore, the Lagrangian L converges to
the extended cost function φ

+
.

Proof. The basic techniques used by [330] to prove this theorem are identical to those of
theorem 3.2.3 for the other, simpler approximation. Consequently, we refer to [330] and state
only the points where our approach is slightly different:

In [330] the factor 2
3 is needed to scale the extended cost function and to relate the discrete

Lagrange multipliers to the continuous ones. This factor is a consequence of

∂ x̃′(ti+1/2)

∂x(i)

= −3

2
.

and the used form of the equality constraints resulting from the ordinary differential equation
of the state:

x̃′(ti+1/2) = ϕ(x̃(ti+1/2), ũ(ti+1/2)), i = 1, . . . , ν − 1.

We use a reformulated version of the equality conditions to avoid this problem and guarantee
consistency with other discretization strategies. Consequently, the relations between the
discrete Lagrange multipliers λ and µ and the corresponding functions λ̃ and µ̃ are in our
case given by:

λ̃(tj+1/2) := λ(j), j = 1, . . . , ν − 1,

µ̃(tj) :=
µ(j)

1
2δj(∆) + 1

2δj−1(∆)
, j = 2, . . . , ν − 1. �

3.3 Minimum Jerk Example

A simple numerical example is presented in this section to support the presented convergence
results for both discretization strategies. The problem is taken from human arm motions
where one of the central principles is the minimization of jerk of the hand, i.e., the third
time derivative of the hand position is minimized for a task of moving the hand from a given
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start to an end position (cf. section 6). The minimum jerk principle is normally discussed
in two dimensions [104], but since the solution is just the combination of two solutions of
one-dimensional problems, we consider here the one-dimensional problem. In the following
the problem details are presented and the analytical solution is derived using the indirect
approach, then the numerical results for both discretization strategies are compared to the
analytical ones.

The hand position is denoted by p(t) ∈ IR for a time instance t ∈ [0, 1]. The goal is to
determine a curve p(·) minimizing the integral of squared jerk, where jerk j is defined by

j(t) :=
d

dt3
p(t).

A common assumption in such physically-motivated problems is that all functions are suf-
ficiently smooth. Since the standard form of an optimal control problem assumes that the
differential equation for the state is of first order, the following equation results:

d

dt

 p(t)
v(t)
a(t)

 =

 v(t)
a(t)
j(t)

 , (3.24)

where for t ∈ [0, 1] the velocity of the hand is denoted by v(t) ∈ IR and the acceleration of
the hand by a(t) ∈ IR. The natural choice for the control function u of the resulting optimal
control problem is the hand jerk itself and the state vector is given by

x(t) := (p(t), v(t), a(t))T .

To fully state the optimal control task, boundary conditions are needed:

x(0) = xs and x(1) = xe,

where the vectors xs and xe ∈ IR3 are given. Summing up, the following optimal control
problem states the minimum jerk example:

Definition 3.3.1. (Minimum Jerk Problem)

min

∫ 1

0
u(t)2 dt subject to x′ =

 v(t)
a(t)
u(t)

 ,

x(0) = xs, and x(1) = xe.

The Hamiltonian of this problem is given by

H (x(t), u(t), λ(t)) := u(t)2 + λ1(t)v(t)

+ λ2(t)a(t) + λ3(t)u(t),

where the Lagrange multipliers are

λ(t) :=
(
λ1(t), λ2(t), λ3(t)

)T
.

The optimality condition d
dt
λ(t) = −∇xH (x(t), u(t), λ(t)) yields the equations

d

dt
λ1(t) = 0,

d

dt
λ2(t) = −λ1(t), and

d

dt
λ3(t) = −λ2(t),
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which lead to the following polynomials if the corresponding starting values λ
s
1, λ

s
2 and λ

s
3

are known:

λ1(t) = λ
s
1,

λ2(t) = −λs1t+ λ
s
2,

λ3(t) =
1

2
λ
s
1t

2 − λs2t+ λ
s
3.

The second optimality condition ∇uH (x(t), u(t), λ(t)) = 0 allows to determine the control
in dependence on the Lagrange multipliers:

0 = 2u(t) + λ3(t).

In consequence, the function of the hand position p(·) is a polynomial of order five, because the
ordinary differential equation (3.24) allows to simply integrate the second order polynomial
for the control u(·). Since the hand position and its derivatives have to fulfill the given
boundary conditions xs and xe, a linear equation system is obtained with a unique solution
corresponding to the starting values of the Lagrange multipliers.

The following boundary conditions are used in the numerical computations:

xs = (0,−5, 0)T and xe = (1,−5, 0)T .

Consequently, the hand positions minimizing the squared jerk are given by the polynomial

p∗(t) = 36t5 − 90t4 + 60t3 − 5t, t ∈ [0, 1].

0.2 0.4 0.6 0.8 1

−1

1

2

t [s]

p(t) [m]

0.2 0.4 0.6 0.8 1

−200

200

400

t [s]

u(t)
[
m/s3

]

Figure 3.3: The hand path of the analytical solution (left) and the corresponding optimal
control (right).

The minimum jerk problem 3.3.1 is now solved by using the two discretization strategies of
the previous section. To analyze the convergence properties of both approaches, uniform time
discretizations are used, i.e., the number of partitions ν directly corresponds to

δmax = δi =
1

ν − 1
, ∀i = 1, . . . , ν − 1.

Choosing one of the two discretization types and a number of discretization intervals, the
optimal values x∗, u∗ and λ∗ are determined by nonlinear optimization for the discretized



52 CHAPTER 3. OPTIMAL CONTROL

minimum jerk problem. To measure the accuracy of the obtained results we consider the root
mean square error between the numerical results and the analytical solution; note that similar
results are obtained if the max-norm is used. For example, consider the optimal positions p∗

given in form of a polynomial and the corresponding discrete values p∗; the root mean square
error normalized by the maximal value is then given by

RMSE(p∗, p∗) =

√∑ν−1
i=0 (p∗(iδi)− p∗)2

max[0,1](p
∗)

,

where p∗ is the i-th component of the vector p∗.

The numerical results for several uniform partitions of the time-interval [0, 1] of different
finenesses and for both discretization types discussed in the previous section are presented in
figure (3.4).

10 50 100

10−8

10−6

10−4

10−2

ν

RMSE

10 50 100

10−8

10−6

10−4

10−2

ν

RMSE

Figure 3.4: The root mean square errors between the analytical and numerical
solutions of the normalized state, control and adjoint variables for discretizations
of different fineness (left: discretization (type I), right: discretization (type II)).
[ : numerical values, : lines of best fit]

Using the discretization of (type I) with piecewise linear state and piecewise constant control,
one observes that the discrete values for all the states, the control and all the Lagrange
multipliers converge to the analytical solutions with quadratic convergence in δmax; curve
fitting determines the mean of the exponents to be approximately 1.98 with a standard
deviation of 0.05. Note that this observation is in accordance with the theory on Runge-
Kutta methods stating that the implicit mid-point rule is of order two. On the other hand,
the results for the discretization of (type II) show that the root mean square error is of order

O
(

(δmax)4
)

for all the state variables and the corresponding Lagrange multipliers λ1 and

λ2, which, again, is the order of the Hermite-Simpson method as a Runge-Kutta method. In
this case, the curve fitting determines the exponents to be approximately 3.81 in the mean
with a standard deviation about 0.13. However, for the control function u and the related
Lagrange multiplier λ3 we only find quadratic convergence, but the absolute values of the
errors are smaller than those determined for the discretization of (type I).

This example does not allow to determine convergence characteristics with respect to the
optimality conditions of the optimal control problem, because the discrete optimal values
fulfill the discrete versions of these conditions for all analyzed uniform discretizations; i.e.,
the errors are smaller than the solution tolerance of the solver for the optimization problem.
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3.4 Existence Results

The existence of a solution of a nonlinear optimal control problem is discussed in this section.
Usually, further assumptions on the problem structure and especially on the control structure
are needed to obtain such existence results. Here the existence theorem of Filippov using the
compactness of certain sets is discussed and the implications for the optimal control problems
presented in this work are specified.

As already mentioned when introducing the optimal control problem 3.0.1, the state space
and the control space can easily be extended if continuity assumptions on the control and
the derivative of the state are dropped. Consequently, absolutely continuous functions are
introduced in the following and some of their properties are discussed, since in these spaces
the existence of an solution can be proven.

Definition 3.4.1. (Absolutely Continuous Function)
A function z : [ta, tb] → IR with ta < tb is absolutely continuous if to every ε > 0 there
corresponds a δ > 0 such that

N∑
i=1

∣∣∣z (t(i)b )− z (t(i)a )∣∣∣ ≤ ε
for all finite systems of disjunct intervals

[
t
(i)
a , t

(i)
b

]
, i = 1, . . . ,N , in [ta, tb] with

N∑
i=1

∣∣∣t(i)b − t(i)a ∣∣∣ ≤ δ.
The set of all absolutely continuous functions z : [ta, tb]→ IR is denoted by AC([ta, tb], IR).

Absolutely continuous functions are discussed in various books on real analysis, e.g., [224,
265, 266]. Some central aspects are mentioned in the following corollary and lemma; for
proofs of these statements see these books.

Corollary 3.4.2.

(i) If the function z is in AC([ta, tb], IR), then it is continuous.

(ii) The sum, difference and product of two functions in AC([ta, tb], IR) is absolutely contin-
uous, too. If the denominator of a quotient of two absolutely continuous functions is
nonzero everywhere, then the quotient is also absolutely continuous.

Note that all Lipschitz-continuous functions on an interval [ta, tb] are examples of absolutely
continuous functions. On the other hand, an example of a function being continuous on a
closed interval and having a finite derivative almost everywhere but not being absolutely
continuous is t cos(π/(2t)). Note that the derivative of this function is not bounded.
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Lemma 3.4.3.

(i) If and only if z ∈ AC([ta, tb], IR), then z is differentiable almost everywhere in [ta, tb],
z′ ∈ L1([ta, tb], IR) and the following equation holds true for all t ∈ [ta, tb]:

z(t)− z(ta) =

∫ t

ta

z′(t) dt.

(ii) If the derivative z′ of z ∈ AC([ta, tb], IR) is zero almost everywhere in [ta, tb], then z is
constant.

Remark 3.4.4. The properties of absolutely continuous functions listed above motivate the
consideration of AC([0, tf ], IRn) as the space for the state of the optimal control problem.
Combined with the assumption that the controls are measurable and the integral cost term
is (Lagrange)-integrable, a rather general optimal control problem is obtained. Note that
in literature related settings are also common; for example, the state could be of bounded
variation only (see for example [224] for a definition of bounded variation and note that
all absolutely continuous functions have a bounded variation) or in addition to absolute
continuity a (a.e.) bounded derivative could be demanded.

The following existence theorem can be found in [58], but it is presented in a slightly modified
form because only autonomous systems are of interest here; several sets have to be introduced
for the theorem: Let tf > 0 be the final time, Y = [0, tf ] × X ⊂ IRn+1 be a subset of image
space for time-state-combinations and U ⊂ IRm be a subset of the image space for control
functions, i.e., a feasible combination of a state x and a control u is assumed to fulfill

(t, x(t)) ∈ Y, u(t) ∈ U, for t ∈ [0, tf ] a.e.

Denote by M = X×U the Cartesian product of X and U and consequently, the function ϕ is
a given mapping from M to IRn. For every x ∈ X let Q̃(x) ⊂ IRn be defined by

Q̃(x) = {ϕ(x, u) | u ∈ U} .

Furthermore, the extended sets Q(x) ⊂ IR× Q̃(x) are introduced by

Q(x) = {(q1, ϕ(x, u)) | q1 ≥ φI(x, u), u ∈ U} .

Let B be the set of feasible boundary values, i.e.,

∀
(
x(1), x(2)

)
∈ B : b

(
x(1), x(2)

)
= 0,

and consequently, the terminal cost φb is a given mapping from B to IR.

This leads to the following formulation of an optimal control problem for a state x ∈
AC([0, tf ], IRn) and a measurable control u : [0, tf ]→ IRm:

min
x,u

φ(x, u) = φb(x(0), x(tf )) +

∫ tf

0
φI(x(t), u(t)) dt

subject to n ordinary differential equations

x′(t) = ϕ(x(t), u(t)), t ∈ [0, tf ] a.e.,
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to the boundary conditions

(x(0), x(tf )) ∈ B,

to the integrability condition

φI(x(·), u(·)) (Lagrange-) integrable in [0, tf ]

and to the set constraints

(t, x(t)) ∈ Y, u(t) ∈ U, t ∈ [0, tf ] a.e.

Remark 3.4.5. Comparing the above defined optimal control problem with the original one
3.0.1, two details have to be mentioned in addition to the different spaces for the state and the
control. First, a final time tf is introduced to account for solutions with different lengths. In
the classical setting this problem is solved by using a time transformation, but in the context
of an existence analysis such an technique only obscures the underlying structure. Second,
the inequality constraints are no longer given in explicit form but in the implicit form of the
feasible set Y, which means that in the presented form the inequality constraints are limited
to pure state constraints (see [58] for a more general setting).

Theorem 3.4.6. (Filippov Existence Theorem)
Let Y be compact, B closed, M compact, φb lower semicontinuous on B and φI , ϕ continuous
on M. Furthermore, assume that almost all sets Q(x), x ∈ X, are convex. Then the cost
function φ(x, u) has an absolute minimum if a feasible (x, u)-pair exists.

Proof. The proof using the approach of orientor fields can be found in [58]. The basic
principle of orientor fields is to consider the constraint x′ ∈ Q̃(x) in the formulation of the
optimal control problem. Given the assumptions of the theorem, the representation using
orientor fields is equivalent to the standard problem formulation combining an ODE for the
states and the bounds for the controls.

A central idea of the proof is to show that a minimizing sequence is uniformly bounded
and equicontinuous and then to use the theorem of Arzela-Ascoli to obtain uniform conver-
gence. Finally, it is proven that the limit guarantees absolute continuity of the state and
measurability of the control and that it is actually an absolute minimum. �

Remark 3.4.7. Note that the assumptions of Y and M being compact are rather strong and
the proof actually uses the following weaker property: The minimizing sequence lies in a
bounded closed subset Y1 ⊂ Y and M1 = X1 × U, the part of M corresponding to X1, is
compact.

Following the line of [58], the weaker assumptions given in the previous remark can be guar-
anteed by various sets of conditions. We make use of the following ones:

Assumption 3.4.8.

(i) The set Y is closed and the final time tf is bounded from above, i.e., a constant t̂f > 0
exists such that tf ≤ t̂f .

(ii) For every constant cx > 0 the set {(x, u) ∈M | ||x|| ≤ cx} is compact.

(iii) A compact subset C of Y exists such that every feasible trajectory x has a non-empty
intersection set with C.
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(iv) A constant cϕ ≥ 0 exists such that ||ϕ(x, u)|| ≤ cϕ (||x||+ 1) for all (x, u) ∈M.

Lemma 3.4.9. If the assumptions 3.4.8 are fulfilled, a bounded closed subset Y1 ⊂ Y con-
taining the feasible states exists and M1 = X1 × U is compact.

Proof. Assumption (iv) guarantees that a constant ĉϕ ≥ 0 exists such that
∑n

i=1 xiϕi(x, u) ≤
ĉϕ
(
||x||2 + 1

)
, since with ĉϕ ≥ 2ncϕ holds

n∑
i=1

xiϕi(x, u) ≤ n||x|| ||ϕ(x, u)||

≤ n||x|| cϕ (||x||+ 1)

≤ 2ncϕ
(
||x||2 + 1

)
≤ ĉϕ

(
||x||2 + 1

)
.

This can be used to show that a constant ĉx > 0 exists such that every feasible trajectory
lies in the set

{
(t, x) | 0 ≤ t ≤ t̂f , ||x|| ≤ ĉx

}
:

Consider the function z : [0, tf ]→ IR for a given feasible state x and control u defined by

z(t) := ||x(t)||2 + 1.

It follows that z(t) ≥ 1 for all t ∈ [0, tf ] and

d

dt
z(t) = 2

n∑
i=1

xi(t)ϕi(x(t), u(t)) ≤ 2ĉϕz(t).

By assumption (iii) a time instance t∗ ∈ [0, tf ] exists such that (t∗, x(t∗)) ∈ C. Since C is
compact, a constant c̃x > 0 exists such that ||x|| ≤ c̃x for all x with (t, x) ∈ C. Consequently,
by integration from t∗ to t follows

1 ≤ z(t) ≤ z(t∗) exp(2ĉϕ|t− t∗|) ≤ (||x(t∗)||2 + 1) exp(2ĉϕ|t− t∗|) ≤ (c̃2
x + 1) exp(2ĉϕt̂f )

and finally

||x(t)|| ≤
√
z(t) ≤

√
c̃2
x + 1 exp(ĉϕt̂f ) =: ĉx.

Using assumption (i) the set X1 := {x ∈ X | ||x|| ≤ ĉx} is closed and bounded; furthermore,
we have shown that X1 contains all feasible state values. The same holds true for Y1 :=
[0, t̂f ]× X1, which proves the first part of the lemma.

The second part follows by combining the assumption (ii) with the set M1 = X1 × U which
yields that M1 is compact.

This proof is based on ideas of [58]. �

Several of the assumptions needed in Filippov’s existence theorem are directly fulfilled by the
optimal control problems discussed in this work. For instance, the set of possible boundary
values B is closed because we consider B to be the null set of a continuous function b.
Furthermore, all cost function φb and φI and all right-hand sides of the ordinary differential
equations for the state variables ϕ are continuous in our problems. Note that all problems
describe human motions and consequently, it can easily be assumed that the final time is
bounded from above.



3.4. EXISTENCE RESULTS 57

Since all state constraints are formulated as inequality constraints using continuous functions,
the set X is closed, which yields that Y is closed, too; this guarantees assumption (i) of
3.4.8. The set of feasible controls U is given in our examples by upper and lower bounds and
therefore U is compact. From this follows that assumption (ii) is fulfilled, because the relevant
set is the Cartesian product of two compact sets. Because all state variables are related to
physical quantities, bounds for the initial values that are not fixed by prescribed values can
be deduced in order to obtain meaningful quantities and consequently, the compact subset C
of assumption (iii) is given by the set of feasible initial values.

The following lemma addresses one of the remaining assumptions:

Lemma 3.4.10. Let the set U be convex, the integral cost function φI be convex with respect
to the controls and the function ϕ be linear with respect to the controls. Then all sets Q(x)
for x ∈ X are convex.

Proof. Since the function ϕ is linear with respect to the controls, the following notation is
introduced:

ϕ(x, u) = A(x) +B(x)u.

Let q(1) and q(2) be elements of Q(x) for a given x ∈ X. Consider the convex combination
with the parameter α ∈ [0, 1]:

αq(1) + (1− α)q(2) = α

(
q

(1)
1 , ϕ

(
x, u(1)

)T)T
+ (1− α)

(
q

(2)
1 , ϕ

(
x, u(2)

)T)T
=

(
αq

(1)
1 + (1− α)q

(2)
1 , αϕ

(
x, u(1)

)T
+ (1− α)ϕ

(
x, u(2)

)T)T
.

Due to the convexity of φI with respect to the controls, the first element fulfills

αq
(1)
1 + (1− α)q

(2)
1 ≥ αφI

(
x, u(1)

)
+ (1− α)φI

(
x, u(2)

)
≥ φI

(
x, αu(1) + (1− α)u(2)

)
.

Additionally, the following equations hold true for the other elements:

αϕ(x, u(1)) + (1− α)ϕ(x, u(2)) = α
(
A(x) +B(x)u(1)

)
+ (1− α)

(
A(x) +B(x)u(2)

)
= A(x) +B(x)

(
αu(1) + (1− α)u(2)

)
= ϕ

(
αu(1) + (1− α)u(2)

)
.

Consequently, the convex combination αq(1) + (1− α)q(2) ∈ Q(x) if the combination

αu(1) + (1− α)u(2) ∈ U.

The latter is a consequence of the convexity of U. �

Note that all examples discussed in this work fulfill all three assumptions of this lemma: The
set U is convex due to the simple upper and lower bounds. All considered ordinary differential
equations are linear with respect to the controls and the controls appear in the integral cost
terms in a convex manner (if they influence the cost term at all).

The remaining assumption which has to be fulfilled in order to apply the existence theorem
is assumption (iv) of 3.4.8. For some dynamics this assumption is directly fulfilled as a
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consequence of bounded controls, for example in case of linear dynamics (e.g., compare the
linear car model in section 7.3.2):

Let ϕ(x, u) := Ax+Bu for constant matrices A ∈ IRn×n and B ∈ IRn×m:

||ϕ(x, u)|| ≤ ||A|| ||x||+ ||B|| ||u|| ≤ max

{
||A||, ||B||max

u∈U
{||u||}

}
(||x||+ 1) .

In case of nonlinear dynamics one might need further assumptions to assure this condition.
If for example the nonlinear models of the human arm are considered (cf. section 6.5),
critical cases, i.e., cases where the inequality (iv) is violated, correspond for instance to arm
configurations with a singular mass matrix. Note that in most applications precisely these
configurations have to be avoided due to the related physical properties. Consequently, it can
be assumed that the pure state constraint is already added to the feasible set X in the problem
formulation. Other cases can be solved if bounds are introduced for selected state variables;
note that the biological and technical background of the discussed problems naturally results
in bounds for most state variables. If bounds exist for all state variables, the feasible set Y
is compact and Filippov’s existence theorem can be applied directly.

Remark 3.4.11. If inequalities constraining both the state and the control variables are consid-
ered, the presented approach has to be extended to state-dependent sets of feasible controls
U(x); see [58] for details. However, to guarantee the convexity and compactness proper-
ties needed in the existence theorem, it has to be assumed that such inequality constraints
guarantee the convexity and the compactness of all sets U(x).



Inverse Optimal Control

Chapter 4

In this chapter we address a generalization of the bilevel programs of chapter 2 where (at least)
the lower level program is an optimal control problem (cf. chapter 3). In our terminology such
a problem is called a bilevel optimal control problem, but in literature the term bilevel dynamic
problem is alternatively used. We are interested in problems of a special subclass where the
upper level state influences only the lower level cost function and the upper level cost function
is a distance measure between given data and the optimal lower level state. Such problems
result if one assumes that a system is controlled optimally with respect to an unknown cost
function and the goal is to determine the cost function within a given parameterized family
of cost functions that solves the inverse problem of minimizing the distance to characteristic
data of the system. Problems of this subclass are named inverse optimal control problems in
this work and for details on the problem structure and a summary of our solution strategy
see section 4.1.

In section 4.2 the state of the art in bilevel optimal control and inverse optimal control is
discussed and the connections to related research topics like differential games are presented.
Two distance measures used as upper level cost functions are introduced in section 4.3. The
structure of the discretized bilevel optimal control problem and the corresponding reformu-
lated one-level problem are discussed in section 4.4.

4.1 Inverse Optimal Control Problem

In the following the inverse optimal control problems considered in this work are defined
and the general layout of our solution strategy is summarized by combining the presented
concepts of the previous chapters. Further details on the actual realization of this strategy
can be found in chapter 5.2.

First, the lower level problem is characterized as an optimal control problem (cf. chapter 3)
with a cost function depending on a given parameter y ∈ IRm:

Definition 4.1.1. (LLP of Inverse Optimal Control)
In accordance with the definition 3.0.1 of an optimal control problem let x be the state function
and u the control function. Generalize the functions φ, φb and φI to depend additionally on
the given parameter y ∈ IRm in a continuously differentiable manner. The lower level
problem of inverse optimal control is given by:

min
x,u

φ(x, u, y) = φb(x(0), x(1), y) +

∫ 1

0
φI(x(t), u(t), y) dt

59
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subject to n ordinary differential equations

x′(t) = ϕ(x(t), u(t)),

to l inequality constraints
g(x(t), u(t)) ≤ 0

and to c boundary conditions
b(x(0), x(1)) = 0.

Remark 4.1.2. Note that the parameter y influences only the cost function φ of the lower
level problem, i.e., the parameter vector specifies a specific cost function within a given
parameterized family of cost functions. A simple example of such a parameterized family
is obtained if all convex combinations of some basic cost functions are considered; in this
case the parameters correspond to the weighting factors of the convex combination (see for
example section 6.4.4).

Remark 4.1.3. In general, the upper level variable y can also appear in the ordinary differential
equation ϕ, the inequality conditions g and the boundary conditions b. Note that in this
case only minor details in the problem structure change. However, the numerical examples
of chapters 6 to 8 address the problems where the upper level variable influence only the
objective on the lower level.

The goal of the upper level problem of inverse optimal control is to determine the optimal
value of the parameter vector y, i.e., the upper level state, such that the corresponding
optimal values x∗(y) and u∗(y) minimize the distance measure Φ in the upper level problem:

Definition 4.1.4. (ULP of Inverse Optimal Control)
Let Λd ∈ IRm×ν be a matrix of given data values, i.e., each column Λd·,i ∈ IRm corresponds

to given measurements at specific time instances tdi ∈ [0, 1] for i = 1, . . . , ν, and let Φ be a
continuously differentiable cost function. The upper level problem of inverse optimal
control is given by

min
y

Φ
(
x∗, u∗,Λd

)
subject to 0 = H(y),

0 ≥ G(y),

where x∗ and u∗ are the optimal values for the lower level problem corresponding to y.

Remark 4.1.5. If Λ
c

is a function using the inputs x∗, u∗ and a time instance t ∈ [0, 1] to
compute the LLP-related values that have to be compared to the measurements, a simple
realization of the cost function Φ could be

Φdiff (x∗, u∗,Λd) :=

ν∑
i=1

(
Λ
c
(x∗, u∗, tdi )− Λd·,i

)2
,

computing the sum of squared differences at the data time instances tdi , i = 1, . . . , ν. For a
more detailed discussion of ULP distance measures see section 4.3.

Our solution strategy for such an inverse optimal control problem is to discretize the optimal
control problem using the collocation technique presented in chapter 3. The bilevel problem
is then reformulated as a one-level problem by replacing the lower level problem by its KKT-
conditions (cf. appendix A); note that these conditions are in general only necessary but
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not sufficient optimality conditions and consequently, the reformulated problem we solve
is not equivalent to the original inverse optimal control problem. Since this reformulation
yields usually a mathematical problem with complementarity constraints (cf. chapter 2),
a relaxation approach is used to generate a sequence of standard nonlinear optimization
problems which are solved by using an interior-point method (cf. section 5.1.1). This solution
strategy is realized in the method coreDBO; for details see section 4.4 and section 5.2.

4.2 State of the Art

We will start the review of the state of the art regarding bilevel optimal control problems by
stating related problems and then advancing to necessary optimality conditions for bilevel
optimal control problems. This is followed by a more detailed discussion of recent works on
bilevel and inverse optimal control in chronological order, see sections 4.2.1 to 4.2.7.

The first problems of bilevel optimal control resulted in the context of Stackelberg games.
In [59] a two-person dynamic game is introduced which combines the problem structure of a
Stackelberg game with ideas from optimal control. Both players are assumed to choose their
individual control functions uI : [0, 1] → IRm1 and uII : [0, 1] → IRm2 in order to minimize
their individual cost functions

φ
I
(x, uI , uII) :=

∫ 1

0
φII(x(t), uI(t), uII(t), t) dt

and

φ
II

(x, uI , uII) :=

∫ 1

0
φIII (x(t), uI(t), uII(t), t) dt,

where x is the common state whose starting value x(0) is given and the dynamics are described
by the ordinary differential equation

x′(t) = ϕ(x(t), uI(t), uII , t).

Note that the two cost functions are not necessary opposing each other and consequently,
variants like cooperative games are possible. In [59] neither control nor state constraints
are considered and it is assumed that the necessary optimality conditions are sufficient for
the lower level problem. In [356] a similar strategy is used while assuming that the optimal
control problem has linear dynamics and a convex cost function.

Considering dynamic Stackelberg games with feedback, algorithms of dynamic programming
are used to solve games with dependent or independent followers and various numbers of
leaders [10, 227, 228]. A dynamic game modeling an economic control problem is discussed
in [119] and the solution strategy is based on determining a relation between state and adjoint
variables. Optimal management of fishery introduced by [62] and refined by [253] is another
application of bilevel optimal control where an analytical solution can be derived.

Closely related to bilevel optimal controls problem is the field of dynamic games [22] where
various numbers of players with continuous or discretized dynamics are considered. A special
type of dynamic games are the pursuit evasion games where different players try to force or
avoid collision. In [39, 40] this problem class is analyzed and necessary optimality conditions
are derived which lead to multi-point boundary value problems. Furthermore, numerical
methods based on the multiple-shooting algorithm are presented to solve the problem. A
related approach for a space shuttle reentry can be found in [38]. In [87] the pursuit evasion
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game is discretized yielding a min-max-problem and solved by a first-order method using
sensitivity information of the lower level problem; in a more general setting subgradient
methods might be necessary.

The problem of optimally controlling a hypersonic flight while guaranteeing full safety for mis-
sion aborts at all time instances is discussed in [56]. The safety constraint can be transformed
into a series of further optimal control problems. The problem is solved by a multiple-shooting
method. Trying to determine the global solution of a bilevel optimal control problem, the
strategy presented in [216] simplifies the problem by replacing the lower level problem by a
bound on the lower level cost.

In several publications of Ye, e.g., [351, 352], the derivation of necessary optimality conditions
for bilevel optimal control problems is addressed. The presented technique, being similar to
their approach for standard bilevel problems [354] (cf. section 2.3), is based on the optimal
value function of the lower level problem. Using our notation, the bilevel problems considered
in [352] have the following structure: Given the upper level control function uI , the lower
level problem is a standard optimal control problem:

min
x,u

φ
II

(x, uI , uII) = φIIb (x(0), x(1)) +

∫ 1

0
φIII (x(t), uI(t), uII(t), t) dt

subject to
x′(t) = ϕ(x(t), uI(t), uII(t))

and a control constraint uII(t) ∈ UII(t) for a given set of feasible controls UII(t) for t ∈ [0, 1]
almost everywhere. Constraining the upper level control by uI(t) ∈ UI(t), the upper level
cost function has the structure:

φ
I
(x, uI , uII) = φIb(x(0), x(1)) +

∫ 1

0
φII(x(t), uI(t), uII(t), t) dt.

For details on the functions and sets in the problem definitions we refer to the original work
[352]. This bilevel optimal control problem is reformulated to a one-level problem by using
the optimal value function $ which is in general a non-smooth function. Consequently,
the theory on subgradients of the Clark-type [61] is used to derive the necessary optimality
conditions. A variant where in the upper level a finite number of parameters instead of a
continuous function can be controlled is presented in [351].

4.2.1 Inverse Optimal Control of Human Car-Steering

The problem of inverse optimal control is introduced by Butz and his advisor von Stryk
in [50] where a car-steering problem is modeled by an optimal control approach and the
inverse problem of determining the underlying optimization principles of human-steered lane
changes is addressed. The models of different complexities for the dynamic system of the
car are discussed. For the numerical computations a simplified single-track model of the car
is used which assumes, for example, a constant velocity during the maneuver and linearizes
certain sine and cosine functions of the total nonlinear single-track model of the car (compare
section 7). Several cost functions that can be useful to model the lane change maneuver are
introduced; they range from state and control minimization to minimization of the deviation
from the center of the lines. The optimal control problems of the lower level are solved by
utilizing the direct optimization method DIRCOL [330] based on a collocation method (cf.
section 3).
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For solving the inverse problem a sensitivity problem is analyzed: How does the solution
of the discretized optimal control problem depend on the parameters of the discretization?
Using the accessory minimum problem known from optimal control theory for neighboring
extremals, it is shown that a linear-quadratic optimal control problem has to be solved to
determine the sensitivities. It is reported that the introduced approach to determine the
sensitivities is more robust than the approach of [49] where the sensitivities of the discretized
optimal control problem are analyzed. In consequence, the approach of [50] allows to maintain
the bilevel structure of the inverse optimal control problem and to use only the sensitivities
of the optimal control problem on the upper level to determine the next iterate of parameters
for the lower level using a variant of the Levenberg-Marquardt algorithm.

The actual inverse optimal control problems solved in [50] combine three basic cost functions
for the lower level (total path length, deviation from the center of the lines and lateral
acceleration) with the simplified single-track model. The analyzed driving maneuver is a
double lane change and numerical results of inverse optimization for both synthetic and real
measurement data are discussed. Note that the measurement data does not maintain a
constant velocity during the maneuver, thus problem characteristics have to be adapted at
each discretization instance.

4.2.2 Inverse Optimal Control of a Neuro-Musculoskeletal System

Inverse optimal control problems in the context of the human neuro-musculoskeletal system
are discussed by Bottasso, Prilutsky, Croce, Imberti and Sartirana [34]. While in the modeling
part of the paper the lower level problem is considered to be an optimal control problem, the
presented examples are only static problems. The solution strategy is based on a discretization
of the optimal control problem and the usage of the corresponding KKT-conditions to obtain
a standard nonlinear optimization problem. Note that neither details on discretizing the
optimal control problem nor on solving the resulting nonlinear problem are given; especially,
the MPEC structure of the reformulated problem is not discussed. In consequence, this work
introduces a general methodology similar to the one presented here, but numerical results on
inverse optimal control problems are not given.

For the case of the lower level problem being a static optimization problem two numerical
examples are presented: A two-dimensional leg pushing experiment and a planar arm stiffness
experiment. The goal is to determine the load of individual muscles given force or stiffness
measurements at the foot or the hand, respectively. Note that in this static setup no acti-
vation levels have to be modeled to capture the muscle behavior, but only forces have to be
determined. In both cases the family of cost functions contains objectives minimizing the
states of the model to various powers. Numerical results are reported to be similar to the
recorded EMG-data.

The authors state that their tests suggest a potential applicability to more complex problems
and that further work especially on dynamic motor problems is needed in order to assess the
real usefulness of the proposed methodology.

4.2.3 Bilevel Optimal Control of a Rack Feeder

The works of Knauer and Büskens [177, 178] do not address inverse optimal control but a
related bilevel optimal control problem. However, the presented solution approach could be
applied to inverse optimal control problems, as well. The basic task is to optimally control a
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ceiling-attached rack feeder in a high rack; such a rack feeder is a combination of a traveling
trolley and a load handling device. The traveling trolley is fixed to the ceiling by rails along a
lane of the high rack and the load handling device is connected to this trolley by four cables,
lengths of which can be controlled. Consequently, this system of two bodies is modeled as
a mathematical pendulum and the resulting ordinary differential equation is linear in most
components. A central aspect in the control of such a rack feeder is to reduce the oscillations
of the load handling device resulting from motions of the traveling trolley.

The optimal control problems discussed in [177] include physically-motivated box-constraints
for the states and the controls and combinations of boundary conditions characteristic for the
different tasks. Several cost functions are introduced for these tasks; in case of a free final
time, one of these cost functions is the minimization of the free final time. Another criterion
is motivated by maximal controllability, i.e., the sum of the squared controls is minimized,
which corresponds to minimization of the jerk of both the position of the traveling trolley
and the lengths of the cables. Other cost functions result if oscillations of the load handling
device are to be minimized; the criteria used in the presented optimal control problems are
linear combinations of these cost functions.

The considered class of bilevel optimal control problems is the combination of the following
two problems; the focus of this presentation lies on the general structure. Consequently,
details of the domain and image of the individual functions are omitted, but can be found in
the original work [177]. The upper level program is given by

min
w

∫ πf

0
ΦI(y(π), x, w(π), u) dπ

s.t. y′(π) = ϕ(y(π), w(π)), π ∈ [0, πf ],

0 = B(y(0), y(πf ), ys, ye),

G(y(π), x, w(π), u) ≤ 0, π ∈ [0, πf ],

(x, u) ∈ L(y, w),

where y and w are the state and the control of the upper level program, respectively; the start
and end value for the state is prescribed by the function B using the given values ys and ye.
The minimized ULP cost function is ΦI and the right-hand side of the ordinary differential
equation of the ULP state is given by ϕ. The lower level state and control are denoted by x
and u and the solution set of the lower level program is L. Furthermore, constraints linking
LLP and ULP quantities are denoted by G.

The corresponding lower level program has the following form:

min
u

∫ tf

t0

φ(y, x(t), w, u(t)) dt

s.t. x′(t) = ϕ(x(t), u(t)), t ∈ [t0, tf ],

0 = b(x(t0), x(tf ), xs(y, w), xe(y, w)),

where φ is the minimized cost function and ϕ the right-hand side of the ordinary differential
equation for the LLP state. Note that the time interval considered in the lower level program
might differ from the one of the upper level and that the start and end values for the LLP
state xs and xe, which are used by the function b to describe the boundary conditions, might
depend on the ULP state and control.

Three scenarios of such bilevel optimal control problems are discussed in [177] for the rack
feeder. The first problem is a parametric bilevel problem where on the lower level the squared
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control input is minimized depending on a parameter stating the start velocity of the traveling
trolley. In the upper level program the value for the parameter minimizing the oscillations
of the load is to be chosen. In consequence, no inequality constraints or ordinary differential
equations have to be considered in the upper level.

The second problem considers collision avoidance of two rack feeders whose tracks are fixed
at different heights, allowing one rack feeder to pass below the other if the corresponding load
is high enough. The control problem of the upper rack feeder is the upper level of the bilevel
program, because its actions limit the lower rack feeder more than the other way round.

The third problem, which is the initial problem of the work of [177], is the controlled stopping
of a rack feeder. To guarantee that at every moment the rack feeder can be stopped within
a given time period is essential from the engineering perspective, because safety regulations
have to be fulfilled by the system to be commercially usable. Given a current state of the
rack feeder, optimally controlling it to a state with zero velocities and accelerations within a
given time period is captured by a lower level program. The original optimal control task of
moving the rack feeder from one position to another is the upper level program. Note that
ideally one would solve this bilevel program with infinitely many lower level programs, i.e.,
one for each time instance, but to allow for a numerical solution only a limited number of such
lower level programs can be considered. Consequently, the bilevel problem solved in [177]
considers a few of these problems at time instances equally distributed over the total time
interval of the upper level motion. Approximations for intermediate values can be obtained
by sensitivity analysis of the optimal control problems on the lower level.

The solution strategy used to solve these bilevel optimal control problems is a hybrid method
combining the indirect approach for optimal control problems with the direct one. The
lower level problems are replaced by the necessary conditions of optimal control theory, i.e.,
a multi-point boundary value problem is considered. Thereby the bilevel optimal control
problem is transformed into a standard optimal control problem which is then solved by
routine NUDOCCCS [49] of Büskens.

Note that theoretically this hybrid approach can also be applied to inverse optimal control
problems. However, the disadvantages of indirect optimal control concerning the starting
values for the numerical solver would hold true for the transformed problem. Due to the more
complex dynamical systems considered in the inverse optimal control problems compared to
the mathematical pendulum of the rack feeder, these disadvantages might be significant.

4.2.4 Inverse Optimal Control of Human Navigation

The problem of inverse optimal control for human motions is introduced by Mombaur, Truong
and Laumond in [217]. Their goal is to find the cost function underlying the human locomo-
tion and use it to control a humanoid robot accordingly. The locomotion tasks are to walk
from a start position to a designated end position with given orientation at a comfortable
speed. The perspective on the human walking problem is macroscopic which means that
one is interested in the trajectories of position and orientation, but individual steps or rigid
body and muscle dynamics are not of interest. Consequently, a point model without mass or
inertia is used that can be controlled by acceleration in forward and sideward direction and
rotational acceleration (cf. chapter 8). The resulting optimal control problem in the lower
level is solved by the multiple shooting method MUSCOD [79]. This direct method solves the
obtained nonlinear problem with an SQP method.
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The upper level cost function is the sum of squared norms of differences between computed
states and controls of the lower level and the recorded ones at given time instances. The bilevel
problem is solved by using separate solvers for both levels, but without using any derivative
or sensitivity information of the lower level solution in the upper level. Consequently, the
derivative-free method BOBYQA [251] is used, which realizes an interpolation-based trust region
technique. The considered family of cost functions for the lower level is generated by linear
combinations of five basic cost functions: Minimization of the three individual controls, mini-
mization of total motion time and minimization of deviation between current orientation and
orientation to the goal position (cf. chapter 8). The numerical results for several locomotion
scenarios are discussed and it is reported that a combination of the five cost functions exists
reproducing the observed main characteristics of the human locomotion.

4.2.5 Inverse Optimal Control of Human Arm Motions

The basic techniques of the approach of [217] are used by Berret, Chiovetto, Nori and Pozzo
[26] to analyze planar human arm motions. A standard dynamical model consisting of two
rigid bodies without muscles is used to model the dynamics of the human arm. Several
basic cost functions are considered for the generation of the linear family of possible lower
level cost functions: On the one hand, integrals over the squared values of hand jerk, angle
jerk, angle acceleration, torque change and torque. On the other hand minimization of
geodesic length, energy and effort. The resulting optimal control problem is transformed
into a standard nonlinear optimization problem by using the collocation method GPOPS [255],
which is a Gauss pseudospectral method, and the nonlinear problem is then solved with the
optimization method SNOPT [125].

Two metrics for the upper level problem are discussed: First, comparison of Cartesian and
curvature differences between the solution of the lower level and the recorded data. Second,
likelihood values using a Gaussian Mixture Model resulting from the recorded data. The
upper level problem is then solved by the derivative-free trust-region method CONDOR [323].
Numerical results presented suggest that humans might use a composite cost function in the
considered planar arm motions.

4.2.6 Bilevel Optimal Control of Flight Trajectory Optimization

The bilevel problem of optimizing the track for an air race in order to minimize safety- and
fairness-related cost functions while assuming that the planes are controlled time-optimally
is addressed by Fisch [95]. A detailed dynamical model of an air race plane suitable for
optimal control is introduced using rigid body dynamics and several simplified versions are
deduced. The optimal control problems of minimizing the flight time for a given race track
are solved by using a multiple-shooting method where the entire race trajectory is divided
into subproblems with continuity conditions at the start and end of each segment. A process
of alternating simulation and optimization using plane models of increasing complexity is
presented in order to get good starting values for the optimization of the full optimal control
problem. To avoid control oscillations and to assure that this alternating process works, a
penalty term of squared control derivatives is added to the cost function.

The task of the upper level problem is to optimize the positions of the gates that have to
be passed by the planes to maximize audience safety. For each gate a specific flight position
is required and the gate position can be varied within given box constraints. Discussed
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upper level cost functions are, for example, the minimization of distance or flight time of
the plane to the crowd or minimization of flight time differences between different types of
planes. These bilevel problems are solved using a simplified model of the plane dynamics.
The sensitivity analysis for optimal control problems of [49] is utilized within a gradient-based
descent method to solve the upper level problem.

4.2.7 Inverse Optimal Control of Human Leg Motions

In their current research Hatz, Schlöder and Bock address problems of inverse optimal control.
Their specific interest lies on identifying cost functions and parameters in human gaits in order
to provide tools of optimal control to the field of orthopedics. For example, such an optimal
control model could be used to simulate the gait and analyze the interaction of the individual
body segments or to predict the outcome of certain surgeries.

In [147] a benchmark problem of a rocket car with friction is used to analyze differences
in replacing the lower level problem by its first-order necessary conditions obtained by the
direct or the indirect approach. Using the indirect approach, a multi-point boundary value
problem is obtained and solved by the optimization method MUSCOD [79]. The direct approach
is realized by using the multiple-shooting method and replacing the resulting nonlinear lower
level problem by its KKT-conditions. The necessary derivative information is obtained by
internal numerical differentiation [33] in the course of solving the ordinary differential equation
on the sub-intervals by utilizing the multiple-shooting method. Note that the structure of the
resulting MPEC is considered by following the line of [109, 111] for SQP-methods (see chapter
2). The optimizaton method MUSCOD is used to solve the resulting nonlinear optimization
problem. The numerical results for the benchmark problem presented in [147] are reported
to be reasonable for both approaches.

4.3 ULP Distance Measures

The goal of the upper level cost function Φ in the inverse optimal control problem is to measure
the distance between given data Λd and the corresponding quantities resulting from the LLP
solution. In some cases it might be necessary to compare several quantities with different
physical meanings, e.g., positional information and forces, which results in the problem of
determining a suitable (relative) scaling of the quantities. If linear combinations of distance
measures for single quantities only are considered, suitable weighting factors have to be
chosen.

Since a direct approach is used to solve the optimal control problem, we address here the
problem of defining a distance measure Φ. It is assumed that ν measurements at time
instances tdi , i = 1, . . . , ν, are given in form of the matrix Λd. This means that the column
Λd·,i ∈ IRm represents the given data for tdi . Furthermore, the state x of the optimal control
problem in the lower level yields the state information x(i) for time instances ti, i = 1, . . . , ν.

We assume that a function Λc exists that maps a state of the dynamics model to the quantity
measured in the data. In consequence, the distance of the set{(

ti,
(
Λc
(
x(i)

))T) | i = 1, . . . , ν
}

from the data set {(
tdi ,
(

Λd·,i

)T)
| i = 1, . . . , ν

}
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is sought. Two distance measures, one neglecting the temporal dimension of these set and
one explicitly using this information, are introduced in the following.

If the temporal information in the data and the LLP state is to be used, only time instances
in the interval [t̃max, t̃min] defined by

t̃max := max
{
t1, t

d
1

}
and t̃min := min

{
tν , t

d
ν

}
are suitable. Consequently, assume that ν̃ time instances t̃j ∈

[
t̃max, t̃min

]
, j = 1, . . . , ν̃, with

t̃j < t̃j+1, j = 1, . . . , ν̃−1, are given. To compare the two sets, a piecewise linear interpolation
is used, because the sets {ti | i = 1, . . . , ν},

{
tdi | i = 1, . . . , ν

}
and

{
t̃i | i = 1, . . . , ν̃

}
might

be disjoint. Given one of the time instances t̃j , the following value results for the lower level
state:

χ̂(j) := Λc
(
x(i)

)
+

t̃j − ti
ti+1 − ti

(
Λc
(
x(i+1)

)
− Λc

(
x(i)

))
for t̃j ∈ [ti, ti+1].

The term for the corresponding data value has the same structure:

χ(j) := Λd·,k +
t̃j − tdk
tdk+1 − tdk

(
Λd·,k+1 − Λd·,k

)
for t̃j ∈ [tdk, t

d
k+1].

Summing up, the following distance measure compares values at identical time instances:

Φtime(x,Λ
d) :=

ν̃∑
j=2

t̃j − t̃j−1

2

(
χ̂(j) − χ(j)

)2
+
ν̃−1∑
j=1

t̃j+1 − t̃j
2

(
χ̂(j) − χ(j)

)2
.

The second distance measure useful in inverse optimal control is based on the path lengths
(of the linear interpolations) of the LLP state l̂ and data l:

l̂ :=

ν−1∑
i=1

∣∣∣∣Λc (x(i+1)

)
− Λc

(
x(i)

)∣∣∣∣ ,
l :=

ν−1∑
k=1

∣∣∣∣∣∣Λd·,k+1 − Λd·,k

∣∣∣∣∣∣ .
Comparing points of equal relative path length, the distance measure uses only geometrical
properties of the recorded trajectories, thus it would identify a time-delayed trajectory with
the original one, which might be important if the start and the end phase of a motion are
less relevant than the middle part. Therefore, we assume that a vector σ̃ ∈ IRν̃ specifies
the relative path lengths where the distance between the data and the LLP state have to be
computed. To simplify notation, the relative path lengths σ̂ ∈ IRν and σ ∈ IRν corresponding
to the LLP states x(i) and the data instances Λd·,k, accordingly, are defined by:

σ̂j :=
1

l̂

(
j−1∑
i=1

∣∣∣∣Λc (x(i+1)

)
− Λc

(
x(i)

)∣∣∣∣) , j = 1, . . . , ν,

σj :=
1

l

(
j−1∑
k=1

∣∣∣∣∣∣Λd·,k+1 − Λd·,k

∣∣∣∣∣∣) , j = 1, . . . , ν.



4.4. STRUCTURE OF DISCRETIZED INVERSE OPTIMAL CONTROL PROBLEM 69

Consequently, the comparison points corresponding to the LLP state

ψ̂(j) := Λc
(
x(i)

)
+

σ̃j − σ̂i
σ̂i+1 − σ̂i

(
Λc
(
x(i+1)

)
− Λc

(
x(i)

))
for σ̃j ∈ [σ̂i, σ̂i+1],

and the data

ψ(j) := Λd·,k +
σ̃j − σk
σk+1 − σk

(
Λd·,k+1 − Λd·,k

)
for σ̃j ∈ [σk, σk+1],

are introduced for j = 1, . . . , ν. Finally, this yields the distance measure Φpath:

Φpath(x,Λd) :=

ν̃∑
j=2

σ̃j − σ̃j−1

2

(
ψ̂(j) − ψ(j)

)2
+

ν̃−1∑
j=1

σ̃j+1 − σ̃j
2

(
ψ̂(j) − ψ(j)

)2
.

4.4 Structure of Discretized Inverse Optimal Control Problem

In this section both the structure of the discretized inverse optimal control problem and
the structure of the reformulated one-level problem are discussed to address the existence of
a global optimistic solution and the applicability of the interior-point optimization method
IPOPT to solve the final nonlinear optimization problem.

The collocation approach of chapter 3 for discretizing an optimal control problem yields a
nonlinear optimization problem of the following structure if it is applied to the lower level
problem of inverse optimal control:

minφ(x, u, y)

subject to

0 = −x(i+1) + x(i) + Ψ
(
x(i), u(i), x(i+1), u(i+1), δi(∆)

)
, i = 1, . . . , ν − 1,

0 = b
(
x(1), x(ν)

)
,

0 ≥ g
(
x(i), u(i)

)
, i = 2, . . . , ν − 1.

Note that this problem form subsumes both discretization strategies discussed in detail in
section 3.2.1; the function Ψ consequently represents the weighted sum of evaluations of the
right-hand side ϕ of the ordinary differential equation for the state.

To write this problem in the form of a standard lower level problem (cf. section 2.1), the
following definitions are made:

The lower level state x is given by the concatenation of the states x(i) and the controls u(i):

x :=
(
xT(1), u

T
(1), . . . , x

T
(ν), u

T
(ν)

)T
,

where n := ν (n+m).
Consequently, the inequality constraints g can be defined in the form

g(x) :=

 g
(
x(2), u(2)

)
...

g
(
x(ν−1), u(ν−1)

)

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and thus p := l (ν − 2). Finally, the equality constraints h are considered to be given by

h(x, y) :=


−x(2) + x(1) + Ψ

(
x(1), u(1), x(2), u(2), δ1(∆)

)
...

−x(ν) + x(ν−1) + Ψ
(
x(ν−1), u(ν−1), x(ν), u(ν), δν−1(∆)

)
b
(
x(1), x(ν)

)


with q := (ν − 1)n+ c and a given partition ∆. Using these notations together with the cost
function

φ(x, y) := φ(x, u, y),

the discretized optimal control problem has the standard form of a lower level problem (see
definition 2.1.1):

Definition 4.4.1. (Discretized LLP of Inverse Optimal Control)

min
x
φ(x, y) subject to h(x) = 0, g(x) ≤ 0.

4.4.1 Global Optimistic Solution

Since the BL-MFCQ is a requirement for theorem 2.2.10 stating sufficient conditions for the
existence of a global optimistic solution for a standard bilevel program, the block structure of
the Jacobians for both the equality constraints and the inequality constraints are discussed
in the following.

∇g(x) =



0 0 · · · 0 0
0 0 · · · 0 0

∇xg
(
x(2), u(2)

)
0 · · · 0 0

∇ug
(
x(2), u(2)

)
0 · · · 0 0

0 0
...

. . .
...

0 0

0 0 · · · 0 ∇xg
(
x(ν−1), u(ν−1)

)
0 0 · · · 0 ∇ug

(
x(ν−1), u(ν−1)

)
0 0 · · · 0 0
0 0 · · · 0 0


In order to get a more compact notation, we drop the arguments of Ψ and denote the gradient
with respect to input value i by ∇i, e.g., the derivative ∇12Ψ in the i-th block row is then
the short form for

∇12Ψ =

(
∇x(i)Ψ

(
x(i), u(i), x(i+1), u(i+1), δi(∆)

)
∇u(i)Ψ

(
x(i), u(i), x(i+1), u(i+1), δi(∆)

) )
and abusing the notation ∇1b denotes

∇1b =

(
∇x(1)b

(
x(1), x(ν)

)
0

)
∈ IR(n+m)×c.
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As a result the derivative of the equality constraint can be written as

∇h(x) =



U +∇12Ψ 0 · · · 0 0 ∇1b

−U +∇34Ψ U +∇12Ψ
.. .

...
... 0

0 −U +∇34Ψ
.. . 0 0

...

0 0
. . . U +∇12Ψ 0

...

...
...

. . . −U +∇34Ψ U +∇12Ψ 0

0 0 . . . 0 −U +∇34Ψ ∇2b



,

where U ∈ IR(n+m)×n is the identity matrix defined by

Ui,j =

{
0 if i 6= j
1 if i = j

.

Note that for the assumptions of theorem 2.2.10 the BL-MFCQ has to be fulfilled for all
feasible points. Given a specific discretization strategy and a particular ordinary differential
equation ϕ, the structure of the above derivatives can be analyzed and the LICQ is fulfilled
in certain settings (compare the next example).

All example problems discussed in this work are based on models of dynamic systems where
the input is human-generated and at least theoretic control bounds exist. In consequence, the
set of possible states is also bounded if the ordinary differential equation relating the control
input to the change of the state satisfies a Lipschitz-condition, i.e., no blow-up is observed
[15, 78]; for the discussed examples this assumption does hold. Additionally, all constraints
of the discretized lower level problem are at least continuous. Consequently, the feasible set
of the lower level problem can be assumed to be compact and non-empty for a well-posed
problem, i.e., condition BL-C 2.2.5 is fulfilled. Compare the section 3.4 on the existence of a
solution of the optimal control problem.

Summing up, if the problem and the chosen discretization strategy guarantee that both
conditions of theorem 2.2.10 are fulfilled, the existence of a global optimistic solution for the
discretized inverse optimal control problem results.

Example 4.4.2.
If the unicycle model used in the context of human navigation (cf. chapter 8) is combined
with the discretization strategy (type I) of chapter 3, a simple example results where the
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LICQ can be shown. The considered locomotion task is to move from a start position with
specified orientation and velocity to a given end position. In addition to the dynamics and
the boundary condition, upper and lower bounds on the controls are considered.

First, we state the structures of the blocks in ∇h(x, y) by marking values with an absolute
value of one by • and other non-zero values by ◦. The block given by U+∇12Ψ and −U+∇34Ψ
has the structure 

•
•

◦ ◦ •
◦ ◦ •

◦ •
◦ •
◦ •
◦
◦


,

where the derivatives with respect to the two controls are non-zero in all cases. It can be
seen that all these blocks have full column-rank. The blocks corresponding to the boundary
conditions are structured in the following way:

•
•
•
•


and



•
•


.

As a consequence of its structure the gradient of the equality constraints has full column-
rank. Additionally, the active inequality constraints have to be considered to show that the
LICQ is fulfilled. Note that the upper and lower bound on the controls do not violate the
LICQ if they become active.

Summing up, for this simple example the existence of a global optimistic solution results. In
case of additional inequality constraints, different boundary conditions, other dynamics or
discretization approaches such a structure analysis might not be as simple as in this example
and further assumptions might be necessary to assure the linear independence constraint
qualification.

4.4.2 CQ for the Transformed (One-Level) Problem

In addition to the question whether the discretized bilevel problem has a global optimistic so-
lution, we now want to address the question whether the MPEC-LICQ holds if the lower level
problem is replaced by its first-order necessary conditions. Since an interior-point algorithm
is used in this work to solve the nonlinear optimization problems generated by the two-sided
relaxation scheme 2.5.4, it has to be analyzed under which assumptions the KKT-conditions
are necessary for the relaxed one-level problem.

The following definition states the structure of the transformed one-level problem:
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Definition 4.4.3. (Transformed Problem of Inverse Optimal Control)
The transformed (one-level) problem of inverse optimal control is given by

min Φ(x, y,Λd)

subject to 0 = ∇xφ(x, y) +∇g(x)λ +∇h(x)µ,

0 = h(x)

0 = H (y)

0 ≤ −g(x) ⊥ λ ≥ 0

0 ≥ G(y),

where Φ is a suitable discrete version of the cost function Φ and the functions H and G
define the feasible set of ULP states. Note that the Lagrange multipliers for the lower level
constraints λ and µ are optimization variables in addition to the LLP state x and the ULP
state y.

The following theorem relates assumptions on the structure of the lower and upper level
programs to the structure of the MPEC 4.4.3.

Theorem 4.4.4.
Let x∗ be optimal for the lower level problem of the inverse optimal control problem for a
given upper level state y and let λ∗ and µ∗ be the corresponding Lagrange multipliers.

Assume that the lower level solution fulfills strict complementarity and both the LICQ and
the SOSC hold true. If, additionally, the LICQ is fulfilled at the upper level, then the MPEC-
LICQ is satisfied for the reformulated problem 4.4.3.

Proof. The following two functions combine the equality and inequality constraints relevant
for the MPEC-LICQ:

h̃(x, y, λ, µ) :=

 ∇xφ(x, y) +∇g(x)λ +∇h(x)µ
h(x)
H (y)


and

g̃(x, y, λ, µ) :=

 g(x)
−λ
G(y)

 .

The Jacobians of the equality constraints and all active inequality constraints yield the fol-
lowing derivative matrix where the arguments of the functions are dropped for presentation
reasons:

(
∇h̃,∇g̃A

)T
=



Dxx (φ + gλ + hµ) Dxyφ ∇g ∇h
Dh 0 0 0
0 DH 0 0

DgA 0 0 0
0 0 −UA 0
0 DGA 0 0

 . (4.1)
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If one assumes that the LICQ holds true for both the lower and the upper level program, the
following two matrices have full row-rank:(

Dh
DgA

)
and

(
DH
DGA

)
.

The linear independence of the rows of matrix (4.1) is proven here by contraposition: Assume
a vector

d :=
(
dTx , d

T
h , d

T
H , d

T
g , d

T
G

)T ∈ IRn+q+q+p+p\{0}

exists such that dT
(
∇h̃,∇g̃A, 0

)T
= 0, then the following equations result:

dTxDxx (φ + gλ∗ + hµ∗) + dThDh + dTg

(
DgA

0

)
= 0, (4.2)

dTxDxyφ + dTHDH + dTG

(
DGA

0

)
= 0, (4.3)

dTx
(
∇gA, ∇gI

)
+ dTg

(
0, − UA

)
= 0, (4.4)

dTx∇h = 0, (4.5)

where for notation reasons it is assumed that the indices of the LLP inequality constraints
are reordered such that first all active constraints and then all inactive constraints are stated.

Note that for a vector with dx 6= 0 the following two inequalities have to hold:

dTx∇gA = 0,

dTx∇h = 0.

Consequently, the vector dx is an element of the cone T+(g, h, x∗, µ∗) (cf. section A.2) and
thus

dTxDxx (φ + gλ∗ + hµ∗) dx > 0

as a consequence of the second-order sufficient condition for the lower level solution.

However, this yields a contradiction to equation (4.2), because(
dTxDxx (φ + gλ∗ + hµ∗) + dThDh + dTg

(
DgA

0

))
dx

= dTxDxx (φ + gλ∗ + hµ∗) dx︸ ︷︷ ︸
>0

+dTh Dhdx︸ ︷︷ ︸
=0

+dTg

(
DgAdx

0

)
︸ ︷︷ ︸

=0

> 0.

Therefore, the assumption dx 6= 0 does not hold and the equation system (4.2) - (4.5) simplifies
to

dThDh + dTg

(
DgA

0

)
= 0,

dTHDH + dTG

(
DGA

0

)
= 0,

dTg
(

0, − UA
)

= 0.
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Note that this equation system can only be fulfilled by d = 0, since the LICQ is assumed
to be fulfilled for both the lower and the upper level program. This contradicts the initial
assumption and consequently, the MPEC-LICQ is fulfilled for problem 4.4.3. �

Remark 4.4.5. If all upper level states are weighting factors in a convex combination of basic
lower level cost functions, the following constraints have to be fulfilled:

1
T y = 1 and y ≥ 0.

This yields the derivative matrix (1,U) and the LICQ is consequently fulfilled, because at
least one value yi > 0.
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Numerical Methods

Chapter 5

In the previous chapters discretization and reformulation techniques have been discussed
which allow to solve optimal control problems and inverse optimal control problems with
numerical solvers for general nonlinear optimization problems. Therefore, such solvers are
addressed in the first section of the following chapter with the focus on interior point methods
(cf. section 5.1.1).

Since the implementation IPOPT [333] of an interior point method is used as the basic solver for
the inverse optimal control code coreIOC, some details relevant for the performance analysis
our approach are introduced in section 5.1.3. For the numerical realization of the solution
strategy for inverse optimal control problems discussed in chapters 2 to 4 some details on
time discretization, scaling and goal attainment are discussed in section 5.2.

5.1 Numerical Strategies for Nonlinear Optimization

For nonlinear optimization problems an evolved optimality theory exists and several theorems
characterizing local solutions are known (see appendix A). However, analytically solving a
nonlinear problem is in general not possible. Consequently, various numerical approaches have
been proposed to solve such problems; some of these approaches are specially tailored for a
rather specific subclass of problems whereas others consider the general problem. The general
idea of most methods is to iteratively solve the problem by using update strategies for the
current variable of the problem until a termination condition is fulfilled. In the following we
will briefly discuss some of the most common approaches for nonlinear optimization problems
and than have a more detailed look on interior-point methods in section 5.1.1.

Since a wide range of well-developed numerical methods for unconstrained optimization exist
[122, 230], one of the most basic approaches to solve a constrained nonlinear optimization
problem is to approximate it by a sequence of unconstrained nonlinear optimization prob-
lems where a violation of the constraints is penalized. Considering an equality-constrained
problem, i.e., q = 0, the penalty function going back to [64] is defined by

P (x, α̃) := φ(x) +
α̃

2
||h(x)||2,

where α̃ > 0 is the so-called penalty parameter. Note that for all feasible points x ∈ X the
penalty function is identical to the objective function φ. However, a non-feasible point is
penalized by the additional term α̃

2 ||h(x)||2. Consequently, the unconstrained minimum of

the penalty function for a fixed penalty parameter x∗P (α̃(i)) can be seen as an approximation
of the solution of the equality-constrained problem x∗. The approximation improves if the

77
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penalty parameter α̃ is increased and to assure equality between the two minimizer the limit
α̃ → ∞ has to be analyzed. Note that the general case including inequality constraints can
be addressed by adding the penalty term

α̃

2

q∑
i=1

(max{0, gi(x)})2 .

For detail on the convergence properties of the penalty methods see, for example, [122, 230].

The idea of the penalty method is to use a sequence of strictly increasing penalty parameters
α̃(i) and determine a sequence of minimal values x∗(α̃(i)) for the parameters α̃(i) by using the
previous value x∗P (α̃(i)) as a starting point. However, the condition of the penalty function
P (x, α̃) worsens for an increasing penalty parameter α̃, which causes numerical problems for
the numerical solvers of the unconstrained problem. In addition to the quadratic penalty
term from above other exact penalty terms exist that reduce this numerical problem at the
cost of a non-differentiable penalty function P (cf. [122, 230]).

Note that by construction the penalty methods generates a sequence x∗P (α̃(i)) which is in-
feasible for the original equality constrained problem as long as x∗P (α̃(i)) 6= x∗. A related
class of methods are the barrier methods having an penalty term which is non-zero even for
feasible points of the original problem and goes to infinity if the boundary of the feasible set
X is approached. Consequently, all iterates of a barrier methods are strictly feasible for the
original problem. Two common barrier functions to couple an g to the cost function φ are
the logarithmic barrier function

−θ
q∑
i=1

ln(−gi(x))

and the inverse barrier function

−θ
q∑
i=1

1

gi(x)
,

where θ is the barrier parameter. Since to structure of the barrier functions is unsuitable for
considering equality constraints, one possibility is to use a standard penalty term to couple
the equality constraints to the objective, which results in a so-called penalty-barrier approach.

The general structure of the barrier method is similar to the structure of penalty methods
and for a strictly decreasing sequence of barrier parameters related convergence properties
can be proven, see for example [230]; however, numerical problems occur likewise for barrier
parameters converging to zero. Note that the primal interior-point methods in recent
research are essentially barrier methods; the more advanced primal-dual interior-point
methods approximating not only the optimal state but also the corresponding Lagrange
multipliers prove to be a suitable class of methods for many nonlinear optimization problems
(see section 5.1.1 for more details).

The class of SQP-methods is an alternative class of methods for the nonlinear optimization
problem and one of the most efficient ones; several well-established optimization methods
are based on this class, e.g., FilterSQP [107] and SNOPT [125]. Note that a large num-
ber of variants of the SQP-methods with different advantages exists. One way to motivate
SQP-methods is to consider the KKT-conditions for the equality-constrained nonlinear opti-
mization problem and define the corresponding function J : IRn×p → IRn×p by

J(x, µ) :=

(
∇xLeq(x, µ)

h(x)

)
,
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where Leq is the Lagrangian of the equality-constrained nonlinear optimization problem:

Leq(x, µ) := φ(x) + h(x)Tµ.

If this problem is solved with the nonlinear Newton method, the Lagrange-Newton method
results and at iteration j with the iteration values x(j) and µ(j) the Newton system reads

DJ
(
x(j), µ(j)

)
d

(j)
N = −J

(
x(j), µ(j)

)
,

where d
(j)
N ∈ IRn×p is the corresponding Newton step. This equation system can be interpreted

as the KKT-conditions of the quadratic optimization problem

min
d∈IRn

∇φ
(
x(j)
)T

d+
1

2
dT∇2

xxLeq

(
x(j), µ(j)

)
d

subject to h
(
x(j)
)

+∇h
(
x(j)
)T

d = 0.

Considering the linearized structure of the equality constraints, the problem can be gener-
alized to nonlinear optimization problems by adding a linearized version of the inequality
constraints as an further constraint. This directly leads to the (local) SQP-method: A each
iteration of the SQP-method a quadratic approximation of the problem is solved and the
values of the variables x, µ and λ are updated accordingly; this is the reason for the term
sequential quadratic programming (SQP).

Note that a straightforward modification of the SQP-method is obtained by using approxima-
tions of the Hessian of the Lagrangian. Other modifications have to be introduced to obtain a
global version of the SQP-method or to avoid problem like infeasible quadratic subproblems
or the Maratos effect [207]. Details on this modifications and corresponding convergence
proofs can be found in [122, 230].

5.1.1 Interior-Point Methods

The goal of this section is to introduce the basic idea of interior-point methods and their
connection to barrier problems. Instead of the general optimization problem A.0.1 a nonlinear
problem with simplified inequality constraints is considered in this section to shorten the
notation:

Definition 5.1.1. (Modified Nonlinear Optimization Problem)

min
x∈IRn

φ(x) subject to h(x) = 0, x ≥ 0.

Note that the problem A.0.1 can be rewritten in the form of 5.1.1 by introducing slack
variables s ∈ IRq

≥0 and separating the positive and negative parts of x:

min
(x)+∈IRn,(x)−∈IRn,s∈IRq

φ((x)+ − (x)−)

subject to

h((x)+ − (x)−) = 0,

g((x)+ − (x)−) + s = 0,

(x)+ ≥ 0,

(x)− ≥ 0,

s ≥ 0,
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where the positive part (x)+ ∈ IRn
≥0 is defined by (x)+ := max{0, x} and the negative

part (x)− ∈ IRn
≥0 analog by (x)− := max{0,−x}. Consequently, we can define a variable

x̂, a cost function φ̂ and equality constraints ĥ guaranteeing the structure of the modified
problem 5.1.1: the variable x̂ ∈ IRn̂ is the concatenation of (x)+, (x)− ∈ IRn and s ∈ IRq,
thus n̂ = 2n + q. The function ĥ : IRn̂ → IRp̂ with p̂ = p + q is the combination of all the
equality constraints of this reformulation and the definition of the cost function φ̂ : IRn̂ → IR
is straightforward.

Remark 5.1.2. Linear problems are the starting point for theory on interior-point methods
and consequently, there exists a detailed and well-established theory on the linear case and
most phenomena are understood [348]. The nonlinear case on the other hand is still an open
research area.

There are two main ways to motivate interior-point methods and both viewpoints create
different insights: One approach is solving systems of perturbed optimality conditions and
analyzing the limit of the results if the perturbation is reduced. Alternatively, one can
interpret interior-point methods as barrier methods, which will be the way we start with.

Barrier methods solve a sequence of the following barrier problems for a decreasing barrier
parameter θ, that is finally driven towards zero. The basic assumption of such a barrier
approach is that strictly feasible points exist.

Definition 5.1.3. (Barrier Problem)
Given a barrier parameter θ ≥ 0 the following problem is to solve:

min
x∈IRn

φθ(x) subject to h(x) = 0,

where the barrier objective is defined by

φθ(x) := φ(x)− θ
n∑
k=1

ln(xk).

Remark 5.1.4. Note that the objective φθ is only defined for x ∈ IRn
>0. Thus, there is the

implicit assumption that each element of x is strictly positive.

For a local solution x∗ ∈ IRn
>0 of 5.1.3 fulfilling a CQ the following KKT-conditions A.1.7

result:

∇φ(x)− θ(V(x))−1
1 +∇h(x)µ = 0,

h(x) = 0,

where the function V : IRi → IRi×i maps a vector on the corresponding diagonal matrix, i.e.,
the (k, k)-element of V(x) equals x(k) for all k = 1, . . . , i, and the vector 1 ∈ IRn is a vector
of ones.
Introducing λ ∈ IRn by λ = θ(V(x))−1

1 allows us to rewrite these equations. Note that by
using λ the original primal equation system is transferred into a primal-dual system.

∇φ(x) +∇h(x)µ− λ = 0,

h(x) = 0, (5.1)

V(x)V(λ)1− θ1 = 0.

The implicit assumption is that x > 0 is resulting in λ > 0.
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The other approach to introduce interior-point methods is to consider relaxations of the
KKT-conditions of the problem 5.1.1. In the end we will obtain a system similar to (5.1),
but the perspective is different. The (non-relaxed) KKT-conditions read:

∇φ(x) +∇h(x)µ− λ = 0,

h(x) = 0,

V(x)V(λ)1 = 0,

x ≥ 0,

λ ≥ 0.

If a relaxation parameter θ > 0 is used in V(x)V(λ)1 = 0, we end up with a system identical
to (5.1) with the additional assumptions x > 0 and λ > 0:

hθ(x, µ, λ | θ) = 0,

x ≥ 0, (5.2)

λ ≥ 0,

where the function of the equality constraints hθ : IRn × IRp × IRn → IR2n+p for a given value
of θ ∈ IR≥0 is defined by

hθ(x, µ, λ | θ) =

 ∇φ(x) +∇h(x)µ− λ
h(x)

V(x)V(λ)1− θ1

 .

The scalar 1
nx

Tλ corresponding to the last block of hθ is called the complementarity gap and
measures the deviation from the original complementarity conditions.

Naturally, the question arises how the (primal) solutions of the barrier problems x∗(θ) are
related to the solution of the original problem x∗. It can be shown (see e.g. [115]) under some
assumptions (including the MFCQ and strict complementarity at x∗) that the solutions x(θ)
for decreasing barrier parameters θ not only converge to x∗ but also define a differentiable
path. This path is called barrier trajectory in the context of barrier problems; we, however,
will use the term central path, which is introduced in the context of interior-point problems.

Definition 5.1.5. (Central Path)
Let (x(θ), µ(θ), λ(θ)) be a solution of the system (5.2) for a given value of the parameter θ.
Define the central path as the following set:

C := {(x(θ), µ(θ), λ(θ)) | θ > 0} .

Note that in the general case the set C might not be a path in its original sense but just
a set of points, because problem (5.2) can have multiple solutions. The concept of the
central path is the basis for many interior-point methods, which use regularly steps to-
wards the central path or try to stay within a neighborhood of the central path for all iterates.

A common approach to get an interior-point method solving problem (5.2) is to use the
equation hθ(x, µ, λ | θ) = 0 to compute a search direction for the current position and to use
the inequality constraints to determine the step size.
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For a given parameter θ the Newton direction d ∈ IR2n+p of the equation at the point (x, µ, λ)
is determined by solving

Dhθ(x, µ, λ)d = −hθ(x, µ, λ). (5.3)

The Jacobian of hθ is given by

Dhθ(x, µ, λ) =

 ∇xxL(x, µ, λ) ∇h(x) −U
∇h(x)T 0 0
V(λ) 0 V(x)

 . (5.4)

Remark 5.1.6. If the value of θ is kept constant, the Newton direction is a direction towards
a point on the central path. Note that in general the complementarity gap is not reduced in
this direction, but the individual products xkλk tend towards to the mean value. Therefore,
this direction is called the centering direction.

On the other hand, a decrease of the parameter θ changes the direction towards a point given
by the KKT-conditions of 5.1.3 without considering the inequality bounds x ≥ 0 and λ ≥ 0.
The direction corresponding to the parameter θ = 0 is the affine scaling direction which
consequently would allow to reduce the complementarity gap considerably, but in most cases
the inequality constraints require a small step.

The last part missing in the formulation of a generic interior-point algorithm is the termina-
tion condition. This condition should take the numerical error in hθ(x, µ, λ | θ) = 0 and the
value of the parameter θ or of the complementarity gap into account.

In the following we will introduce the filter technique used to enhance algorithms of nonlinear
optimization and then discuss some details of IPOPT, the interior-point optimization method
of Wächter and Biegler [333].

5.1.2 Filter Techniques

The filter method introduced by Fletcher and Leyfer [108] is a technique for global convergence
proofs of nonlinear optimization. After the first work on linear sequential programming [112]
the technique is successfully used in the context of sequential quadratic programming [107], as
well. Since the filter approach is not limited to a special technique of nonlinear optimization,
it is also used in the context of interior-point methods [313, 332].

Our final goal is to solve problem 5.1.1, but it can be assumed here that the inequality
constraints are guaranteed by the numerical technique generating the iterates. Consequently,
the following problem is to be considered:

min
x∈IRn

φ(x) subject to h(x) = 0.

Remark 5.1.7. In the context of barrier methods the cost function φ could be replaced by φθ
without changing the problem structure.

Obviously, the problem has two competing aims: minimizing the cost function and minimizing
the violation of the equality constraints. The question is how to quantify whether a new iterate
is better than the iterates obtained before. The idea of [108] is to interpret the problem as a
bi-criteria optimization problem with the functions φ and χ : IRn → IR with

χ(x) := ||h(x)||.
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This bi-criteria problem naturally has a certain emphasis on the function χ, since we are
interested in a feasible point with a low cost value instead of a point minimizing the cost but
violating the constraints.

Remark 5.1.8. The filter approach tries to build the efficient border of the bi-criteria problem,
this means that the non-dominated iterates of the optimization run are stored. In multi-
criteria optimization a tuple is dominated by another if all its elements are larger than or
equal to the corresponding element of the other tuple. Note that if one point is dominated
by another, it probably is of no further interest for the optimization and can therefore be
disregarded.

So far, the filter F as a set of tuples allows for clustering of iterates at an infeasible point. To
avoid the problem of accepting points with marginal distance to points already in the filter,
a further acceptance condition is introduced by [107].

Let x be the new iterate and x(k) ∈ F; the following inequality has to be fulfilled by x to be
accepted by the filter in the version of [107]:

max
{
φ
(
x(k)

)
− φ(x), χ

(
x(k)

)
− χ(x)

}
> cFχ

(
x(k)

)
, (5.5)

where the constant cF ∈ (0, 1
2).

Naturally, there are more ways to define additional conditions like (5.5) to guarantee that
only iterates with certain properties are added to the filter. These additional conditions and
the approaches to generate iterates fulfilling them are closely connected to the techniques
used to prove global convergence of the respective algorithm. Since we will use the interior-
point algorithm IPOPT of Wächter and Biegler [333] in our applications, some details of their
variant of the filter technique are discussed in the following (the barrier parameter θ is a
given constant throughout this section).

Remark 5.1.9. Two equivalent ways exist to represent a filter: The most common way is to
use a set of tuples as it is presented here. In [332] another approach is used for notational
reasons, where the filter is identified with the parts of IR2

≥0 corresponding to non-acceptable
points.

In the filter version of [332] a new iterate x is accepted by the filter F if the following inequality
holds for all x(k) ∈ F:

φθ(x) ≤ φθ
(
x(k)

)
− cφχ

(
x(k)

)
or χ(x) ≤ (1− cχ)χ

(
x(k)

)
, (5.6)

where cφ ∈ (0, 1) and cχ ∈ (0, 1) are fixed constants.

Remark 5.1.10. Due to the fact that the version of [332] does not add every accepted iterate
to the filter (see below for details), the above inequality (5.6) must also hold with respect to
the last iterate.

Having discussed the basic layout of the filter, a common detail of the mentioned filter versions
[107, 332] is to introduce a switching condition, which means that the above filter approach
is only used if the condition does not hold.

In the setup of [332] the new (primal) iterates x(j+1)(ς), which are to be tested by the filter,
are generated along a line given by the last accepted iterate x(j) and a directional vector
d ∈ IRn (corresponding to a part of the Newton direction, see section 5.1.3 for details):

x(j+1)(ς) := x(j) + ςd,
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where ς > 0. For such an iterate the switching condition reads:

∇φθ
(
x(j)
)T

d < 0 and ς

(
−∇φθ

(
x(j)
)T

d

)cφ
> cF

(
χ
(
x(j)
))cχ

, (5.7)

where the constants fulfill cF > 0, cχ > 1 and cφ ≥ 1.

Remark 5.1.11. The first condition assures that the linearized version of the cost function φθ
decreases in the direction of d, i.e., d is in particular a descent direction of the objective. The
second condition guarantees a large cost reduction (in the linearized model) if the infeasibility
of the iterate is large.

This condition is used in the following way: If χ(x(j)) ≤ χmin for a given χmin ∈ (0,∞] and
condition (5.7) is true for x(j+1)(ς), the Armijo condition

φθ

(
x(j+1)(ς)

)
≤ φθ

(
x(j)
)

+ cAς∇φθ
(
x(j)
)T

d (5.8)

has to be satisfied instead of (5.6) for x(j+1)(ς) to be acceptable for the filter, where the
Armijo parameter cA ∈ (0, 1

2) is constant.

Remark 5.1.12. The motivation for this definition of the switching condition is given by [332]:
Condition (5.7) becomes true (under some assumptions assured by the interior-point method,
cf. [332]) if a feasible but non-optimal point is approached. In this case enforcing the decrease
of the cost function by the Armijo condition (5.8) prevents the method from converging to
such a point.

Summing up, the filter approach used by [333] has the following structure: If χ(x(j)) > χmin
or if condition (5.7) does not hold, the new iterate has to fulfill (5.6) to be accepted by the
filter. If the iterate is accepted, it is added to the filter and all dominated tuples can be
discarded. On the other hand, if χ(x(j)) ≤ χmin and condition (5.7) is true, the Armijo
condition (5.8) has to hold for acceptance. Note that in case of acceptance the new iterate is
not added to the filter.

5.1.3 Optimization Method IPOPT

Having introduced the basic idea of interior-point methods and the filter technique, this
section discusses the interior-point solver IPOPT of Wächter and Biegler [333]. Local and
global convergence properties for this solver are proven in [331, 332]. An implementation of
the algorithm is available under an open source license and is used in this work to solve the
nonlinear optimization problems arising in the application examples.

5.1.3.1 Tolerance for Optimality Error

The primal-dual equations (5.2) are used to define the optimality error which serves as the
termination criterion of the algorithm. If the individual parts of hθ are scaled separately, the
following optimality error for the barrier problem results:

Eθ(x, µ, λ) := max

{
||∇φ(x) +∇h(x)µ− λ||∞

csEθ
, ||h(x)||∞,

||V(x)V(λ)1− θ1||∞
ccEθ

}
,
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with scaling parameters ccEθ ≥ 1 for the complementarity conditions and csEθ ≥ 1 for the sta-
tionarity condition. The optimality error for the original problem is denoted by E0 and cor-
responds to the definition of Eθ for the barrier parameter θ = 0. If a combination (x∗, µ∗, λ∗)
yielding an optimality error not larger than a user-given tolerance εtol > 0 is determined, i.e.

E0(x∗, µ∗, λ∗) ≤ εtol,

the method IPOPT terminates. Using a fixed number cmaxEθ
≥ 1, the scaling factors

csEθ = max

{
cmaxEθ

,
||λ||1 + ||µ||1

n+ p

}
/cmaxEθ

and

ccEθ = max

{
cmaxEθ

,
||λ||1
n

}
/cmaxEθ

are chosen in [333] to avoid numerical difficulties for large multipliers µ and λ.

5.1.3.2 Outer Iteration

The basic idea of IPOPT is to solve a given barrier problem up to a suitable tolerance and then
decrease the relaxation parameter θ towards 0. Consequently, one can distinguish between
the outer iterations where the relaxation parameter is adapted and the inner iteration where
the solution of a barrier problem for fixed parameter θ is computed. In [331, 333] fast local
convergence is discussed for this interior-point algorithm based on the approach of [51], where
superlinear convergence is shown under second-order sufficient conditions. To obtain such
convergence properties, each barrier problem has to be solved up to a specific tolerance and
the parameter has to be updated accordingly in the outer iteration.

Given a barrier problem with parameter θ as the current problem of the outer iteration, a
solution (x∗, µ∗, λ∗) of the inner iteration has to satisfy

Eθ(x
∗, µ∗, λ∗) ≤ cεtolθ

for a given constant cεtol > 0. A new value for the barrier parameter is then determined by

max
{εtol

10
,min {cθθ, θcbp}

}
,

where the constants fulfill cθ ∈ (0, 1) and cbp ∈ (1, 2). The motivation of [51] for this update
rule is on the one hand to eventually get a superlinear decrease in θ and on the other hand to
avoid numerical difficulties for parameters which are by far smaller than the user-given final
tolerance εtol.

Remark 5.1.13. The procedure of IPOPT that separates an outer iteration from an inner iter-
ation can be interpreted from the perspective of an interior-point algorithm in the following
way: The inner iterations, which solve the barrier problem for a fixed parameter θ, are steps
in the centering direction. Solely changing the barrier parameter the outer iterations can be
interpreted as affine scaling steps (cf. remark 5.1.6).

Remark 5.1.14. The strict separation of adapting θ and of optimizing x, µ and λ is not
predetermined. For example, the interior-point algorithm of [313] introduces a scalar in [0, 1]
such that directions similar to the centering and the affine scaling directions are the two
extrema. By using such an approach it is possible to choose the scalar depending on the
individual situations withour being forced to solve the relaxed problem to a higher accuracy
than actually needed.
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5.1.3.3 Inner Iteration

Mentioned already in the section 5.1.1 on general interior-point methods, a damped Newtons
method is used to solve the barrier problem for a fixed barrier parameter θ up to a tolerance
Eθ(x

∗, µ∗, λ∗) ≤ cεtolθ.
Given a current iterate (x, µ, λ) with x > 0 and λ > 0, the search direction d is determined
by (5.3); the vector d can be split into the individual segments corresponding to x, µ and λ
and these are denoted by dx, dµ and dλ, accordingly. Instead of solving the system with the
non-symmetric Jacobian (5.4) a transformed system with a condensed, symmetric matrix is
proposed by [333]:

(
∇2
xxL(x, µ, λ) + V(x)−1V(λ) ∇h(x)

∇h(x)T 0

)(
dx
dµ

)
= −

(
∇φθ(x) +∇h(x)µ

µ(x)

)
.(5.9)

The part dλ corresponding to the eliminated block row can be computed by

dλ = θV(x)−1
1− λ− V(x)−1V(λ)dx.

Remark 5.1.15. To guarantee certain descent properties using the filter technique (see remark
5.1.12) it has to be assured that the projection of the top left block of the matrix in (5.9) onto
the null space of the Jacobian ∇h(x)T is uniformly positive definite. A method to correct
the inertia of the matrix is discussed in [333].

For a given search direction d, the goal of one inner iteration is to determine a step size ς > 0
such that the corresponding point is acceptable by the filter (cf. section 5.1.2) and fulfills the
constraints x > 0 and λ > 0.

The approach designed to respect the inequality constraints is based on the parameter

cfb ∈ [cminfb , 1) defined by cfb = max{cminfb , 1− θ},

where cminfb ∈ (0, 1) is its minimal value; consequently, if θ is reduced towards zero, the
parameter cfb goes to one. This property is used in the definition of the maximal step size
ςmax ∈ (0, 1] and ςλ ∈ (0, 1]:

ςmax := max{ς ∈ (0, 1] | x+ ςdx ≥ (1− cfb)x},
ςλ := max{ς ∈ (0, 1] | λ+ ςdλ ≥ (1− cfb)λ}.

Wächter and Biegler [333] propose to split the step size in the direction of dx and dµ from
the direction dλ and use the above defined quantity ςλ as the step size for the Lagrangian
multipliers of the inequality constraints λ. The step size ς common for the other two directions
is computed in the interval (0, ςmax] by a backtracking line-search procedure.

In some cases the backtracking procedure cannot yield a point that is acceptable to the filter,
thus a procedure called the feasibility restoration phase is introduced, which tries to find a
new iterate acceptable to the current filter.
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5.1.3.4 Feasibility Restoration Phase

A minimum step size ςmin > 0 is introduced to cope with cases where the backtracking
line-search has problems finding an acceptable iterate.

ςmin :=



cς min

{
cχ,

cφχ(x)

−∇φθ(x)T dx
, cF(χ(x))cχ

(−∇φθ(x(j))T d)
cφ

}
if −∇φθ(x)Tdx < 0 and χ(x(j)) ≤ χmin,

cς min
{
cχ,

cφχ(x)

−∇φθ(x)T dx

}
if −∇φθ(x)Tdx < 0 and χ(x(j)) > χmin,

cςcχ otherwise,

where cς ∈ (0, 1] is a safety factor. Note that this minimum step length is defined by using
the linear functions introduced in the filter definitions (compare equations (5.6) and (5.7)).

If the line-search can not find a step length ς ∈ (ςmin, ςmax] such that the iterate is acceptable
to the filter, the algorithm switches to the feasibility restoration phase. In this case a new
iterate is sought that is acceptable to the current filter by iteratively reducing the constraint
violation. Note that the original cost function φ is only indirectly considered via the filter. If
no acceptable iterate is found by the restoration phase, which can, for example, happen if the
problem is locally infeasible, [333] proposes that a local minimizer of the constraint violation
is returned.

Consider the following optimization problem where the constraint violation is minimized with
respect to the (primary) inequality constraints while penalizing deviations from the current
iterate x:

min
%∈IRn

||h(%)||1 +
$

2
||V(csc)(%− x)||22 subject to % ≥ 0, (5.10)

where $ > is the penalty factor and the scaling vector csc is defined by

csck := min{1, 1

|xk|
}.

Remark 5.1.16. The idea of minimizing the violation of the constraints and adding a regu-
larization term measuring the distance of the current iterate can be found in [313], where for
another interior-point method a related restoration algorithm is introduced.

In [333] it is proposed to reformulate the optimization problem (5.10) as a smooth opti-
mization problem that has the structure of problem type 5.1.1 and then to use the normal
interior-point algorithm to solve it. The smooth reformulation reads:

min
%∈IRn,(r)+∈IRp,(r)−∈IRp

||(r)+ + (r)−||1 +
$

2
||V(csc)(%− x)||22

subject to h(%)− (r)+ + (r)− = 0,

% ≥ 0, (r)+ ≥ 0, (r)− ≥ 0,

where (r)+ ∈ IRp
≥0 and (r)− ∈ IRp

≥0 are the positive and the negative part of the equality
constraints. This problem is solved (again) by a sequence of barrier problems. Note that the
consequence of the penalty term is usually that a strict local minimum exists.
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Naturally, it has to discussed what happens if feasibility restoration is needed inside another
restoration phase. This problem is solved in [333] by fixation of % in the respective barrier
problem, because (r)+ and (r)− can then be computed by a quadratic equation (see [333] for
details).

5.1.3.5 Convergence Results

If global convergence is ensured for each barrier problem, the global convergence of the overall
interior-point method follows. The assumption of a global convergence proof is naturally that
the algorithm generates a non-ending sequence of iterates. Consequently, it has to be assumed
that the feasibility restoration phase always terminates successfully and that the algorithm
does not stop at a point fulfilling the KKT-conditions.

It is shown in [332] that under appropriate assumptions all limit points are feasible. Fur-
thermore, if sequence of iterates (x(k)) is bounded, a limit point x∗ exists that fulfills the
KKT-conditions.

Remark 5.1.17. The approach used in [332] to show global convergence is closely related to
the one of the SQP method of [107], which introduces the idea of the filter technique (see
section 5.1.2).

Remark 5.1.18. To assure that the assumptions for global convergence are met, it is necessary
to introduce a safeguard for the Lagrangian multipliers of the inequality constraints. This
means that the values of these multipliers are changed if they become too extreme. See
[332, 333] for details.

Summing up, the discussed line-search variant of the filter technique (with a suitable feasi-
bility restoration phase) in combination with the strategy for reducing the barrier parameter
in the outer iterations defines the interior-point method of Wächter and Biegler [333]. They
show (under reasonable assumptions) that their algorithm guarantees global convergence and
fast local convergence (compare section 5.1.3.2).

Remark 5.1.19. Further details of the algorithm IPOPT like second-order corrections and
accelerating heuristics can be found in [331, 332, 333], but they are not mandatory for un-
derstanding the general approach.

5.2 Optimization Method coreIOC for Inverse Optimal Control

The inverse optimal control approach introduced in the previous chapters is realized in our
program coreIOC - the first part of the name (core) is is the combination of the first two
letters of the two main principles of the optimization strategy: collocation and relaxation;
the second part (IOC) is an abbreviation of inverse optimal control. In this chapter several
issues of the numerical computations are addressed, e.g., the scaling of the variables and the
functions of the bilevel problem (cf. section 5.2.2), and a framework to evaluate the inversion
process using simulated data are presented (see section 5.2.4).

5.2.1 Adaptive Time Discretization

The discretization of the time interval has to be sufficiently fine to assure that the solution
of the discretized optimal control problem comes close to the solution of the original optimal
control problem. On the other hand using a fine uniform discretization increases the problem
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size significantly and consequently, a strategy is needed that assures a reasonable trade-off
between the two (cf. section 3.2).

We use a static adaptation strategy which updates the time discretization after having solved
the discretized problem for the current discretization; this approach is suitable to be combined
with the relaxation strategy discussed in section 2.5.3. Other discretization strategies are
known where the time discretization is updated during the optimization of an optimal control
problem (e.g., [330]), but this introduces further nonlinearities and additional conditions have
to be added to the discretized optimal control problem.

Following the line of [27], a local discretization error is used to introduce an adaptation
strategy for the time discretization. Assuming that the equality x(i) = x(ti) holds, the
following discretization error results for the interval [ti, ti+1]:

x(i+1) − x(ti+1) = x(i+1) −
(
x(i) +

∫ ti+1

ti

ϕ (x(t), u(t)) dt

)
=

∫ ti+1

ti

x̃′(t)− ϕ (x(t), u(t)) dt.

Since the values for x and u are unknown, they are replaced by the corresponding values of
the approximations x̃ and ũ. Considering the absolute value of the difference, the following
inequality yields a suitable measure for the (absolute) local discretization error ε(i) ∈ IRn

≥0,
i = 1, . . . , ν:∣∣∣∣∫ ti+1

ti

x̃′(t)− ϕ (x̃(t), ũ(t)) dt

∣∣∣∣ ≤ ∫ ti+1

ti

∣∣ x̃′(t)− ϕ (x̃(t), ũ(t))
∣∣ dt =: ε(i).

To compare the local discretization errors of the individual intervals, a reduction to a scalar
value simplifies the problem. Due to the different scales for components of ε(i), a scaling
of the components is advantageous. In consequence, [27] propose to use the relative local
discretization error defined by

ε̂(i) := max
j∈{1,...,n}

ε
(i)
j

1 + ς̂j
, i = 1, . . . , ν − 1,

where the scaling weights are given by

ς̂j := max
i∈{1,...,ν}

{
max

{∣∣x̃j(ti)∣∣ , ∣∣ x̃j′(ti)∣∣}} .
The goal of the adaptation strategy is to refine a given discretization by subdividing the
intervals with a large relative local discretization error. The most simple approach is to
bisect these intervals, but, if one wants to add more than one intermediate discretization
point, the error reduction has to be predicted. Consequently, the type of discretization
strategy influences the choice of the time discretization.

We assume that the underlying Runga-Kutta method assures a consistency of order κ > 0,
which means that the discretization error of one integration step is O

(
δi(∆)κ+1

)
. Note that

the consistency of order κ results in a convergence of order κ (cf. [78, 137]). If constraints have
to be fulfilled in addition to the ODE, a problem with a differential-algebraic equation (DAE)
results and the standard theory on initial value problems for ordinary differential equations
has to be adapted [41]. It has to be noted that DAEs lead to order reductions and the value of
the reduction differs between different variables and varies in time if optimal control problems
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are considered [27, 41]. In consequence, the reduction values ri ∈ IN, i = 1, . . . , ν−1, fulfilling
0 ≤ ri ≤ κ are used to model the behavior of the discretization error as proposed in [27]:

ε(i) = O
(
δi(∆)κ+1−ri

)
.

If the correct reduction value was known, this model could be used to predict how the
discretization error is reduced if the interval [ti, ti+1] is divided into Si ∈ IN smaller ones of
equal size.

Since we do not have a-priori information on the reduction, the values have to be approxi-
mated by analyzing previous adaptations of the time discretization. Therefore assume that
the i-th interval with discretization error ε̂(i) is divided into Si subintervals and that the
discretization errors ε

(i)
j ∈ IRSi are obtained for the finer time discretization. Considering the

mean discretization error ε
(i)
m defined by

ε(i)
m :=

1

Si

Si∑
j=1

ε
(i)
j ,

the following approximation for the reduction value results:

ri ≈ κ+ 1−
log
(
ε(i)/ε

(i)
m

)
log (1 + Si)

.

Note that ri has to be an non-negative integer value smaller than or equal to κ and conse-
quently, the nearest integer to the right-hand side is chosen within the bounds.

The goal of the adaptation strategy of [27] is to determine the optimal values for Si, i =
1, . . . , ν−1, such that the maximal discretization error is minimized. This integer optimization
problem has to be solved under the constraints that maximal N̂max new points are added
to the overall discretization and that each individual interval is divided into maximal Nmax

subintervals for given constants N̂max and Nmax ∈ IN.

This problem can be solved iteratively: Start with the current time discretization and ini-
tialize the predicted discretization errors for the new time discretization with the computed
ones. In each iteration determine the interval with the largest predicted discretization error;
then increase the corresponding Si by 1 and update the predicted discretization errors for this
interval. Terminate if the maximal values N̂max and Nmax are reached, otherwise proceed to
the next iteration.

5.2.2 Scaling

A central aspect when solving nonlinear optimization problems is to determine a suitable
formulation of the problem which means that scaling factors for the optimization variables,
the constraints and the cost function have to be introduced. Such scaling factors can increase
the performance of the numerical solvers considerably and are in most cases as important as
the choice of the technique to determine the derivative information.

Naturally, three different strategies to use the scaling approach can be distinguished: The first
one is the a-priori strategy, where the scaling factors are computed before the computation
starts. This approach allows the determination of the scales without a hard time-constraint
and therefore advanced techniques can be used, but due to mostly insufficient information
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about the problem at hand, i.e., the local behavior of the solution, the applicability is limited.
The second strategy updates the scaling factors during the optimization in dependence on the
characteristics of the current iterate. For such an online approach efficient routines are needed
to avoid a decrease in the solver performance. A third strategy can be used if a problem has
to be solved repeatedly with minor changes in the problem parameters: The a-posteriori
approach uses the solution of one optimization run to determine scaling factors fitting to
solution characteristics which results in a good solver performance and precise solutions.

Note that the MPEC structure of the discretized inverse optimal control problems results in
a sequence of nonlinear optimization problems with slightly varying relaxation parameters if
the solution technique of chapter 2 is used. In consequence, the a-posteriori approach seems
suitable to use the information of one relaxation to increase the solver performance for the
next relaxation.

We start the introduction of the scaling approach for the general constrained nonlinear op-
timization problem A.0.1 and in a second step detailed scaling strategies are discussed that
utilize the characteristic structure of the discretized optimal control problem or the trans-
formed problem of inverse optimal control (cf. chapter 4). All scaling factors are assumed to
be strictly positive values and the resulting scaling matrices are considered to be of a diagonal
structure. Scaled quantities or functions are denoted by an index s.

Let Sx ∈ IRn×n, Sh ∈ IRp×p and Sg ∈ IRq be positive definite matrices and Kx be an element
of IRn, then the scaled variable xs and the scaled constraints hs and gs are given by

xs := Sxx+Kx,

hs(xs) := Shh(Sx
−1(xs −Kx)),

gs(xs) := Sgg(Sx
−1(xs −Kx)).

For the objective function φ a scaling factor Sφ > 0 is introduced:

φs(xs) := Sφφ(Sx
−1(xs −Kx)).

The scaling factors for the adjoint variables µ and λ are chosen such that the Lagrangian of
the scaled problem is a scalar multiple of the Lagrangian of the original problem:

µs := SφSh
−1µ,

λs := SφSg
−1λ,

which results in

Ls(xs, λs, µs) := φs(xs) + λTs gs(xs) + µTs hs(xs)

= Sφφ(Sx
−1(xs −Kx)) + λTs Sgg(Sx

−1(xs −Kx)) + µTs Shh(Sx
−1(xs −Kx))

= Sφφ(x) +
(
SφSg

−1λ
)T
Sgg(x) +

(
SφSh

−1µ
)T
Shh(x)

= Sφ(φ(x) + λT g(x) + µTh(x)) = SφL(x, λ, µ).

Note that this scaling approach results in additional factors for derivatives of scaled functions,
for example:

Dhs(xs) = ShDh(x)Sx
−1,

∇2
xsxsLs(xs, λs, µs) = SφSx

−1∇2
xxL(x, λ, µ)Sx

−1.
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Since the variables and the constraints of the discretized optimal control problem and the
transformed inverse optimal control problem exhibit the structure resulting from the dis-
cretization strategy and the transformation technique, it is reasonable to determine scaling
factors that are consistent with the underlying structure. The goal of our scaling approach is
to provide a scaled problem to the optimization method IPOPT where the state variables are
approximately within the interval [−1, 1], the value of the cost function within [0, 100] and
constraints in the range of [−1, 1].

The lower level state x (see section 4.4) combines the states x(i) and the controls u(i) of
the discretized optimal control problem (cf. chapter 3). We are interested in a appropriate
scaling of the optimal control problem rather than a scaling of the individual states x(i) and
controls u(i). Therefore, we define the maximal and minimal values of the states and controls
by

xmax = max{x(i) | i = 1, . . . , ν},
xmin = min{x(i) | i = 1, . . . , ν},
umin = max{u(i) | i = 1, . . . , ν},
umin = max{u(i) | i = 1, . . . , ν},

where the max- and min-operations are executed componentwise, and obtain the following
scaling matrices Sx ∈ IRn×n and Su ∈ IRm×m and the shifting vectors Kx ∈ IRn and Ku ∈ IRm:

(Sx)ij :=


2

(xmax)i−(xmin)
i

if i = j,

0 else

,

(Kx)i := 1−
2 (xmax)i

(xmax)i − (xmin)i
,

for the indices i, j = 1, . . . , n and

(Su)ij :=


2

(umax)i−(umin)
i

if i = j,

0 else

,

(Ku)i := 1−
2 (umax)i

(umax)i − (umin)i
,

for the indices i, j = 1, . . . ,m. Consequently, the scaling matrix Sx ∈ IRn×n is given by a
block diagonal matrix and the shifting vector Kx ∈ IRn by the corresponding concatenation
of shift vectors:

Sx :=


Sx

Su
. . .

Sx
Su

 and Kx :=


Kx

Ku
...
Kx

Ku

 .

The equality constraints for the discretized optimal control problem h are a combination of the
discretized ordinary differential equation for the state variable and the boundary conditions
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(cf. section 4.4). Consequently, the following block-diagonal scaling matrix is proposed:

Sh :=


Sx

. . .

Sx
D1b(x(1), x(ν), y)Sx

D2b(x(1), x(ν), y)Sx

 ∈ IRq×q ,

where Di denotes the Jacobian with respect to the i-th argument. Note that the scaling
factors of the boundary conditions are defined such that a boundary condition prescribing a
given value for a given state is scaled according to the variable scaling of this state.

The approach to determine suitable scaling factors Sg ∈ IRp×p for inequality constraints g
(if existent) is similar to the one of the equality constraints discussed in detail above. Since
the inequality constraints have to be considered at each time instance of the discretization,
a maximal absolute value over all these instances can be used to (approximately) scale each
element of g to the interval [−1, 0].

Note that the scaling matrices for the transformed inverse optimal control problem 4.4.3
are combinations of the matrices introduced above for the lower level problem. The scaling
factors for the LLP state and the adjoint variables are given above and the ULP variables are
assumed to be bounded such that a transformation to the interval [−1, 1] is trivial. Therefore,
we consider the equality constraints H and the inequality constraints G to be suitably scaled.
A consistent scaling of the ULP equality constraints h̃ and the ULP inequality constraints g̃
is then given by

S
h̃

=

 S−1
x

Sh
U

 and Sg̃ =

 Sg
SφS

−1
g

U

 ,

where the identity matrices U in both cases are of appropriate dimensions.

5.2.3 Goal Attainment

The number of iterations needed to compute a solution of the transformed inverse optimal
control problem 4.4.3 depends critically on the choice of the initial values. Furthermore, the
optimization method IPOPT computes only stationary points and in consequence an obtained
minimum is rather a local one than a global one. Thus the choice of the initial values
influences whether the result is close to the global minimum or not. In [5] we introduce a
strategy to considerably speed up the computations and to avoid local minima with a large
distance to the global one. For a numerical example see section 6.6.3 and the publication [5].

Observing that the upper level cost function Φ is non-negative and ideally close to zero at
the global minimizer, a further constraint can be added to problem 4.4.3:

Φ(x∗, u∗,Λd) = 0.

Note that a solution determined by IPOPT would fulfill this additional constraint only up to
the user-given solution accuracy εtol > 0. However, if the condition Φ ≤ εtol does not hold
true at the global minimum, the constraint can be relaxed by requiring an upper level cost
value to be smaller than a suitable number approximating the optimal cost value.
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In the following a brief analysis of the effects resulting from this modification on the oper-
ation of the algorithm IPOPT are stated. Since the additional constraint introduces a linear
dependence in the KKT-conditions of the reformulated problem, the constraint is only added
at the beginning of the optimization and dropped later on.

The equations determining the Newton direction in the course of the interior-point method
are given by equations (5.3) and (5.4). If the additional constraint is added to the problem,
the following systems results:

∇2
xxL(x, µ, λ) + ρ∇2

xxΦ(x) ∇h(x) −U ∇Φ(x)
∇h(x)T 0 0 0
V(λ) 0 V(x) 0
∇Φ(x)T 0 0 0




dx
dµ
dλ
dρ



= −


∇φ(x) +∇h(x)µ− λ+ ρ∇φ(x)

h(x)
V(x)V(λ)1− θ1

φ(x)

 , (5.11)

where ρ ∈ IR is the Lagrange multiplier corresponding to the additional constraint. The last
block row gives

∇Φ(x)Tdx = −φ(x),

which assures that for φ(x) > 0 the search direction dx is a descent direction of φ at x. The
system of equations (5.11) can be interpreted as a modification of the original system (5.3)
in the following two ways: On the one hand, the first block row can be written as(
∇2
xxL(x, µ, λ) + ρ∇2

xxΦ(x)
)
dx +∇h(x)dµ − dλ = − ((1 + ρ+ dρ)∇φ(x) +∇h(x)µ− λ) .

This can be viewed as the primal-dual equations of the objective function

(1 + ρ)φ(x) + dρ∇φ(x)T
(
x− x(k)

)
instead of the original φ(x). In this case, the value of dρ would have to guarantee that dx
is a descent direction. On the other hand, one can also interpret (5.11) as a modification of
the original system (5.3) in the top-left block only. To cancel the additional term ∇φ(x)dρ
on the left and −ρ∇φ(x) on the right of the first block row of (5.11), the last row multiplied

by cρ∇φ(x) is added to the first block row, where cρ ∈ IR is defined by cρ = −ρ+dρ
φ(x) . In

consequence, the only modification compared to the original system is in the top-left block
where the Hessian of the Lagrangian is replaced by

∇2
xxL(x, µ, λ) + ρ∇2

xxΦ(x) + cρ∇Φ(x)∇Φ(x)T .

Here, the factor cρ, which implicitly depends on dρ, has to be chosen such that dx satisfies
∇Φ(x)Tdx = −φ(x). Summing up, the two transformations show that the system with the
added constraint can be interpreted as a modification of the original system, preserving the
general structure of it. See section 6.6.3 for a numerical example of the goal attainment
approach; a more detailed study can be found in [5].
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5.2.4 Reconstruction Tests

The following framework is used in the subsequent numerical examples to evaluate whether
the proposed inverse optimal control approach is able to find a solution close to the global
optimal one. Since the cost function optimized in human motions is seldom known in case
of real human data, the inversion is tested on simulated values. This means that a vector of
upper level parameters y is chosen and the corresponding optimal control problem is solved.
Given this solution, data values are generated by adding a suitable amount of noise to the
computed values; this noise should assure that no artificial behavior of the optimization
method happens due to a perfect matching of data and model. Using a different vector
of upper level parameters, starting values for the inverse optimal control approach can be
computed. Starting from these values the performance of the inverse optimal control approach
can be evaluated by comparing the optimization result to the parameter vector used to
generate the data. Since the goal is to identify the original parameters given a different
starting value, we term this framework a reconstruction process.

Numerical results of applying the reconstruction framework to different inverse optimal con-
trol problems can for example be found in the sections 6.6.1, 6.6.3 and 8.5.1.
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Human Arm Movements

Chapter 6

Central aspects of the presented inverse optimal control approach are developed alongside
different problems arising in the context of human arm movements. Consequently, this ap-
plication scenario being the most complex of the three examples of this work is discussed in
detail. At the beginning of this chapter a short overview of the state of the art on human arm
motions is presented. Since this research field has many facets and the different disciplines
interested in this topic have different perspectives, a more detailed introduction to the state
of the art is given in the appendix B.

The introduction in section 6.1 is followed by the family of cost functions (section 6.4) and
the discussion of the dynamical models of the human arm that are used in this work. As a
starting point a planar arm model (section 6.5.1) is derived by combining dynamical models
of the bones (section 6.2) and several lumped muscles (section 6.3) and later in section 6.5.2
a generalization to three dimensions is given. The description of the models is accompa-
nied by the discussion of realized human experiments and the presentation of the respective
optimization results.

6.1 Introduction to Human Arm Motions

Research on human arm motions of various disciplines differs considerably, since there are
certain differences in the perspectives and goals. For example, psychologist and biologists try
to determine the underlying principles of human movements, in contrast mathematicians and
physicists try to describe the observed movements rather than explaining them [89]. Hence,
the minimum principles we obtain by the bilevel optimization approach have to be understood
as a description of the human motion and there might be various arguments why the optimal
cost function describing the human movements is not biologically or psychologically plausible.

The diverse approaches in the field of human motions can be divided into two classes: model-
free theories and model-based theories. In many cases models are successfully used, but, as
pointed out in [235], these models are theoretical constructs and should not be identified with
the phenomenon they describe, because in several cases model-free approaches can reproduce
the same characteristics, e.g., [101, 211]. Consequently, we have to keep in mind that our
model-based approach might not be the only way to obtain good approximations of human
motion and as Hogan and Flash summarized: “Theories are not immutable truths, but mental
constructions that must evolve to accommodate new data” [159].

The first characteristics of human arm motions observed in literature are the shapes of the
trajectories and the velocity profiles [2, 218] for planar tasks. In consequence, dynamical

97
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models for the arm and suitable cost functions are introduced capturing the main character-
istics by using an optimal control approach [104, 314]. This leads to the discussion whether
humans plan their motions in internal coordinates (e.g., the joint angles of the arm joints)
or in external coordinates (e.g., the hand position), see section 6.4 for details. Several exper-
iments are discussed in literature to address the question how humans adapt their motions
to changes in the environment and what kind of feedback is used. However, it is observed
in all human experiments that a characteristic variance between different trials exists. This
variation is attributed to impedance characteristics of the human arm and the noise charac-
teristics of the human muscles. Several statistical relations describing the effects of noise are
known, e.g., Fitts’ law [96] or the two-thirds power law [328]. Refer to section B.2 for a more
elaborated discussion of motion characteristics.

A central question regarding human motion control is whether humans use internal models
capturing the input-output characteristics of the human motor plant to control their move-
ments or not; which resulted in a long-standing discussion (see section B.3 details). Even
if one assumes that internal models are used, usage of forward models predicting the arm
motion for a specified control has to be distinguished from inverse models where a desired
state is mapped to the corresponding control. Experimental results supporting both types of
models are discussed in literature, cf., [76, 175], and consequently, frameworks with multiple
internal models of both types have been introduced, e.g., [347]. If one interprets different
cost functions in an optimal control problem with given dynamics and boundary conditions
as different models, the combination of these cost functions would correspond to the multiple
internal model idea and depending on the motion task the combinations could be adapted
accordingly.

The problem of planning a motion on the basis of internal models is closely related to the
question of human motion generation. Since many tasks of human arm motion can be achieved
in different ways, e.g., there might exist several arm configurations yielding the same hand
position, the motion problems are redundant problems [25] and therefore suitable principles
have to be discussed which describe the motions of these additional degrees of freedom.
The two main principles discussed in literature for controlling human arm motions are the
following ones: The approach being close to the engineering perspective is that muscle forces
are generated in order to control the arm motion [161]. We will use this perspective to build a
dynamical model of the human arm in our optimal control framework. The second approach
is the equilibrium point hypothesis which unifies posture and motion by using the stability
properties of the human arm [158]. For further details see section B.4.2.

To capture human adaptation and learning strategies, different kinds of feedback have to
be considered in the models depending on the motion task. If the feedback is incorporated
during the motion, a closed-loop framework has to be considered. However, the derivation of
optimal control strategies in such a framework is by far more complex than in the open-loop
case [307]. A discussion of open-loop and closed-loop ideas can be found in section B.5 and
the implication on adaptation behavior in section B.6. In most of our application scenarios we
assume that the human is adapted to the current task and that “the sensorimotor control is
best described as being near optimal” [308]. Consequently, we use an open-loop approach to
model the human motion problem and extend this to the model predictive control approach
if certain modification of the task happen during execution of the motion.

As sketched above (more details can be found in the appendix B) several models exist that
describe human motions as the product of an optimization process. Therefore, we use our
inverse optimal control approach as a tool to find the cost function out of a given family of
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cost functions that minimizes the distance between the recorded human data and the respec-
tive outputs of the optimal control framework. In [89] it is emphasized from the biological
perspective that the minimization criterion is a purely descriptive tool capturing recorded
data. In consequence, a cost function is only valuable from the perspective of biology if it
can predict human motions for different tasks.

6.2 Rigid Body Models

In this section the dynamics of rigid bodies are introduced with the goal of obtaining an ODE-
model of the dynamics of the human bones. Rigid bodies seem to be a good approximation
of human bones, because only minor non-rigid effects are observed in human arm motions of
daily life. Before stating strategies to derive the differential equations of a systems of rigid
bodies, a notation to model a chain of rigid bodies has to be introduced.

6.2.1 Denavit-Hartenberg notation

Several conventions have been introduced in literature to describe the structure of a
kinematic chain of rigid bodies. A common one is the Denavit-Hartenberg notation which
will be used here. Even under this name two variants exist: the original notation of Denavit
and Hartenberg [143] (in the following referred to as the classical DH notation) and the
modified notation introduced by Craig [65] (called here the modified DH notation). Since
both approaches have advantages for different structures of chains of rigid bodies, both will
be presented in the following. The main point is that for a given set of parameters one has to
know which notation is applied, but if the correct definition of the transformation between
coordinate systems is identified, both notations can be used to derive the dynamical equations.

The chain of rigid bodies has the following structure: A unique sequence of N links starting
with a base element (link 0) and ending with a link which has no successor, link N . All links
in-between are connected to the two adjoining links by joints. Without loss of generality,
assume that each joint is rotational and has one degree of freedom. Note that a joint
having m̂ degrees of freedom can be modeled as m̂ joints of one degree of freedom which are
connected by links of length zero. The goal of the DH conventions is to define for each joint
a frame, i.e., a local coordinate system, and to describe the transformation between two
successive coordinate systems by a stereotypic sequence of rotations and translations. The
parameters of the transformations are called the DH parameters and the kinematic chain is
uniquely characterized by its DH parameters.

Homogeneous coordinates, a standard tool in computer graphics, are used here to simplify
notation; they allow to write rotation and translation of a point P ∈ IR3 as matrix operations

by using the following representation: P̂ =
(
PT , 1

)T
. Let X be the first vector of the basis

of IR3, then for example a translation along X of length l0 and a rotation about X of value
ρ0 are given by

T̂ (X , l0) =


1 0 0 l0
0 1 0 0
0 0 1 0
0 0 0 1

 and R̂(X , ρ0) =


1 0 0 0
0 cos(ρ0) − sin(ρ0) 0
0 sin(ρ0) cos(ρ0) 0
0 0 0 1

 .
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The basic idea of the DH conventions is to use the structure given by the rotation axes and
the common normals of two successive rotation axes. Hence, let the Z-axis Z<i> of frame i
be coincident with the rotation axis of joint i for all i ∈ {0, . . . , N}. If the two axes Z<i> and
Z<i−1> are not located in the same plane, a common normal is uniquely defined. The classical
DH notation differs from the modified version with regard to which X -axis should be aligned
to this normal: The classical choice is X<i> whereas the modified variant uses X<i−1> (see
the following sections). Note that the respective axis intersects both Z-axes. The third axis
Y<i> follows from X<i> and Z<i> by choosing the frame i to be a right-handed coordinate
system whose origin is at the intersection of X<i> and Z<i>.

A few special cases have to be mentioned in order to have a well-defined system. If the two
axes Z-axes intersect, the origin of frame i is placed at the intersection and the corresponding
X -axis is chosen to be normal on the plane. In case of parallel axes the remaining freedom
in the choice of the origin is normally solved by setting the corresponding free DH parameter
to zero. The origin of the base frame can be chosen arbitrarily on the Z-axis of frame 0 and
also the X - and Y-axes of this right-hand frame can be appointed conveniently; note that for
many scenarios there exists a natural choice for this world coordinate system. Finally, the
coordinate system of the free end of the last link, termed hand or end effector depending on
the kinematic chain, can be chosen arbitrarily.

In the following two sections the Denavit-Hartenberg parameters for both notations are in-
troduced and the resulting transformation matrix is given.

6.2.1.1 Classical DH notation

This classical DH notation is the representation originally introduced by Denavit and Harten-
berg [143]. They align the X -axis of frame i with the common normal of Z<i> and Z<i−1>.
With this choice the frames, i.e., the coordinate systems at each joint, are defined and the
kinematic properties of the chain of rigid bodies can be described by sets of the following
four DH parameters:

βi−1: distance from X<i−1> to X<i> measured about Z<i−1>,

ϑi−1: angle between X<i−1> and X<i> measured about Z<i−1> in the right-hand sense,

li−1: distance from Z<i−1> to Z<i> measured about X<i>,

ρi−1: angle between Z<i−1> and Z<i> measured about X<i> in the right-hand sense.

This leads to the following definition of the homogeneous transformation matrix <i+1>T<i>
describing the transformation of a vector written relative to frame i to being relative to frame
i + 1. Note that by transforming one frame into the other each of the operations is applied
with the opposite sign to vectors represented in these frames.

<i+1>T<i> := R̂(X<i+1>,−ρi) T̂ (X<i+1>,−li) R̂(Z<i>,−ϑi) T̂ (Z<i>,−βi)

=


cosϑi sinϑi 0 −li

− sinϑi cos ρi cosϑi cos ρi sin ρi −βi sin ρi
sinϑi sin ρi − cosϑi sin ρi cos ρi −βi cos ρi

0 0 0 1


=:

(
<i+1>R<i> <i+1>P<i>

0 1

)
.
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link i−1
link i

joint i−1 joint i

Z<i−1> Y<i−1>

X<i−1>

joint i+1

Y<i>
Z<i>

X<i>

Figure 6.1: Frames of classical DH notation.

The leading superscript denotes according to which frame the values are stated. The rotation
matrix <i+1>R<i> ∈ IR3×3 and the translation vector <i+1>P<i> ∈ IR3 can be used to
transform a vector <i>P ∈ IR3 from frame i into one corresponding to frame i+ 1:

<i+1>P = <i+1>R<i><i>P + <i+1>P<i>,

which corresponds to <i+1>P̂ = <i+1>T<i> <i>P̂ in homogeneous coordinates.

6.2.1.2 Modified DH notation

The DH notation to be introduced now is the version of Craig [65], which is used in literature
dealing with manipulator dynamics. This version can be interpreted as the inverse approach
of the classical one, since the according parameter choices result if the classical approach is
started at the end effector and then proceeded towards the basis. Here the X -axis of frame
i− 1 corresponds to the common normal of the two rotation axes Z<i> and Z<i−1>. Again,
the frames are determined by using this choice and the following four DH parameters can be
used to describe the transformation between the frames:

li: the distance from Z<i−1> to Z<i> measured along X<i−1>,

ρi: angle between Z<i−1> and Z<i> measured about X<i−1> in the right-hand sense,

βi: distance from X<i−1> to X<i> measured about Z<i>,

ϑi: angle between X<i−1> and X<i> measured about Z<i> in the right-hand sense.
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link i−1
link i

joint i−1

Z<i−1>

X<i−1>

Y<i−1>

joint i

Z<i>
X<i>

Y<i>

joint i+1

Figure 6.2: Frames of modified DH notation.

Consequently, the homogeneous transformation matrix from frame i − 1 to frame i is given
by

<i>T<i−1> := R̂(Z<i>,−ϑi) T̂ (Z<i>,−βi) R̂(X<i−1>,−ρi) T̂ (X<i−1>,−li)

=


cosϑi sinϑi cos ρi sinϑi sin ρi −li cosϑi
− sinϑi cosϑi cos ρi cosϑi sin ρi li sinϑi

0 − sin ρi cos ρi −βi
0 0 0 1


=:

(
<i>R<i−1>

<i>P<i−1>

0 1

)
.

We also state the inverse here, because it will be useful in the context of deriving the dynamic
equations of the chain of rigid bodies:

<i−1>T<i> := T̂ (X<i−1>, li) R̂(X<i−1>, ρi) T̂ (Z<i>, βi) R̂(Z<i>, ϑi)

=


cosϑi − sinϑi 0 li

sinϑi cos ρi cosϑi cos ρi − sin ρi −βi sin ρi
sinϑi sin ρi cosϑi sin ρi cos ρi βi cos ρi

0 0 0 1


=:

(
<i−1>R<i> <i−1>P<i>

0 1

)
.

Note that the inverse <i−1>T<i> using this modified convention has the same structure as
the transformation matrix <i>T<i−1> of the original notation. In particular, <i−1>P<i> is
independent of ϑi and thus a constant vector, because, if joints are rotational joints, the only
variable DH parameters are ϑi, i = 0, . . . , N . This observation is valuable for the following
derivation of the dynamical equations by Newton-Euler recursion.
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6.2.2 Equations of Motion

The dynamic equations of a chain of rigid bodies are a system of ordinary differential equations
describing the motion caused by torques and forces acting upon the chain. Several methods
to derive these equations of motion are presented in literature. They use the structure of
the problem to different extends and differ in the computational costs. Here we state a
basic approach, the Newton-Euler algorithm, which allows to break the dynamics down into
the basic physical principles of Newtonian dynamics. The more advanced techniques are
summarized at the end of this section.

6.2.2.1 Newton-Euler Recursion

In addition to the kinematic properties describing the shapes and relative positions of the
objects (see previous section), each link i has characteristic dynamical properties like a mass
mi ∈ IR and an inertia matrix I(i) ∈ IR3×3; note that the inertia value is stated with respect
to the corresponding frame i and the rotation axis of joint i. The Newtonian theory of
dynamics shows that the distributed mass of an object can be idealized into a point mass
without changing the dynamics of the object. Therefore, each link is assumed to have a center
of mass (com) where this idealized mass point would be located; the positions are given with
respect to the corresponding frame i by the constant vectors <i>o(i) ∈ IR3. The forces and

torques acting on the center of mass of link i are denoted by <i>F
(i)
com ∈ IR3 and <i>T

(i)
com ∈ IR3,

respectively. Note that these two quantities are functions of the time t, but the argument
is omitted in the following to shorten the notation; the same holds true for all quantities

defined below. The vector
(
<i>v

(i)
com

)′
∈ IR3 states the (linear) acceleration of the center

of mass of link i. Additionally, one has to define the corresponding quantities acting upon

the joint i: force <i>F
(i)
joint ∈ IR3 and torque <i>T

(i)
joint ∈ IR3. Furthermore, the velocities and

accelerations of the frame i with respect of to the base frame 0 have to be introduced to derive
the dynamical equations: linear velocity <i>v(i) ∈ IR3, linear acceleration

(
<i>v(i)

)′ ∈ IR3,

angular velocity <i>ω(i) ∈ IR3 and angular acceleration
(
<i>ω(i)

)′ ∈ IR3.

Having defined all appearing quantities, the Newton-Euler algorithm can be written in form
of two recursions: first, an outward recursion from the base to the last link and after that
an inward recursion from the end back to the base. The input to these recursions are the
current joint angles ϑi and their time-derivatives ϑ′i and ϑ′′i for all i.

Outward Recursion: The following initial values for the outward recursion describe the
state of the basis and have to be given: <i>v(i),

(
<i>v(i)

)′
, <i>ω(i) and

(
<i>ω(i)

)′
for i = 0;

in most cases all these values are equal to zero.

The recursion step from i− 1 to i:

First, the equations relating the velocities and accelerations of frame i to those of frame i−1:

<i>v(i) = <i>R<i−1>

(
<i−1>v(i−1) + <i−1>ω(i−1) × <i−1>P<i>

)
,

<i>ω(i) = <i>R<i−1>
<i−1>ω(i−1) + ϑ′i

<i>ez,(
<i>v(i)

)′
= <i>R<i−1>

((
<i−1>v(i−1)

)′
+
(
<i−1>ω(i−1)

)′
× <i−1>P<i>

+<i−1>ω(i−1) ×
(
<i−1>ω(i−1) × <i−1>P<i>

))
,(

<i>ω(i)
)′

= <i>R<i−1>

(
<i−1>ω(i−1)

)′
+
(
<i>R<i−1>

<i−1>ω(i−1)
)
×
(
ϑ′i
<i>ez

)
+ ϑ′′i

<i>ez,
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where <i>ez ∈ IR3 is the unit vector in Z<i>-direction. Note that these four equations are
the standard equations for two systems moving around each other at a constant distance.
Consequently, the acceleration of the center of mass of link i is given by(

<i>v(i)
com

)′
=
(
<i>v(i)

)′
+
(
<i>ω(i)

)′
× <i>o(i) + <i>ω(i) ×

(
<i>ω(i) × <i>o(i)

)
.

This can be used to state the forces and torques for the center of mass by the standard
equation of Newtonian dynamics based on mass and inertia of the link:

<i>F (i)
com = mi

(
<i>v(i)

com

)′
,

<i>T (i)
com = I(i)

(
<i>ω(i)

)′
+ <i>ω(i) ×

(
I(i)<i>ω(i)

)
.

Inward Recursion: The following initial values for the inward recursion describe the forces

and torques acting on the last link of the chain of rigid bodies and have to be given: <i>F
(i)
joint

and <i>T
(i)
joint for i = N + 1; these quantities are non-zero if the last link is in contact with

the environment.

The recursion step from i+ 1 to i is given by the following two equations:

<i>F
(i)
joint = <i>R<i+1>

<i+1>F
(i+1)
joint + <i>F (i)

com,

<i>T
(i)
joint = <i>R<i+1>

<i+1>T
(i+1)
joint + <i>T (i)

com + <i>o(i) × <i>F (i)
com

+ <i>P<i+1> × <i>F
(i)
joint,

which assume that for forces linear superposition holds and that forces generate further
torques depending on the moment arms. Note that the actual torque acting upon the joint

i is the Z-component of <i>T
(i)
joint, since the other two components are absorbed by the rigid

properties of the joints.

The here presented form of the Newton-Euler recursion assumes that only rotational joints
connect the links, but a generalization to prismatic joints is straightforward. Furthermore,
external forces and external torques can easily be included in the inward recursion (see for
example [54, 55]).

6.2.2.2 State Space Equations

The Newton-Euler equations can be rewritten in a compact form, the state space equations:

T (t) = M(ϑ(t))ϑ′′(t) + Θ(ϑ(t), ϑ′(t)),

where M(ϑ(t)) ∈ IRN×N is called the mass matrix and combines all terms that are multiplied
by ϑ′′(t) in the course of the recursion. Note that the mass matrix is a function only of
ϑ(t); it can be shown that the mass matrix is always symmetric positive semidefinite. Con-
figurations where the mass matrix is not positive definite are called singular; consequently,
such configurations have to be avoided in order to uniquely solve the equations of motions.
All other terms caused by centrifugal forces, Coriolis forces and gravitation are collected in
Θ(ϑ′(t), ϑ′′(t)) ∈ IRN .
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The dynamics given by the state space equation can be written in form of the first-order
ODE

d

dt

(
ϑ(t)
ϑ′(t)

)
=

(
ϑ′(t)

M(ϑ(t))−1 (T (t)−Θ(ϑ(t), ϑ′(t)))

)
,

which has the form

x′(t) = ϕ(x(t), u(t)) (6.1)

defining the control u(t) := T (t) and the state by

x(t) :=

(
ϑ(t)
ϑ′(t)

)
.

Note that from the numerical perspective the inverse M(ϑ(t))−1 is never actually formed,
rather the value ϑ′′(t) of the second block row is the solution of the system of linear equations
given by the state space equations.

In addition to the standard Newton-Euler recursion computing the joint torques for given
joint angles and their time-derivatives, derivative information is needed for the optimization.
One possibility to get this derivative information is to a analytically derive each equation
of the recursions. To increase efficiency several quantities can be reused in the recursions
of the derived Newton-Euler algorithm, therefore the combination is called the extended
Newton-Euler recursion [55]. Other approaches to compute the derivatives are mentioned in
the following section.

The extended Newton-Euler recursion computes for the inputs ϑ(t), ϑ′(t) and ϑ′′(t) the values
of T (t), ∂T

∂ϑj
(t) and ∂T

∂ϑ′j
(t) for j = 1, . . . , N , consequently one can denote the joint torques

as a function of the three input vectors: T (t) = T (ϑ(t), ϑ′(t), ϑ′′(t)). Using this notation
the equations of the extended Newton-Euler recursion (including second derivatives) can be
written as

T (ϑ(t), ϑ′(t), ϑ′′(t)) = M(ϑ(t))ϑ′′(t) + Θ(ϑ(t), ϑ′(t)),

∂T

∂ϑj
(ϑ(t), ϑ′(t), ϑ′′(t)) =

∂M(ϑ(t))

∂ϑj
ϑ′′(t) +

∂Θ(ϑ(t), ϑ′(t))

∂ϑj
,

∂T

∂ϑ′j
(ϑ(t), ϑ′(t), ϑ′′(t)) =

∂Θ(ϑ(t), ϑ′(t))

∂ϑ′j
,

∂2T

∂ϑj∂ϑk
(ϑ(t), ϑ′(t), ϑ′′(t)) =

∂2M(ϑ(t))

∂ϑj∂ϑk
ϑ′′(t) +

∂2Θ(ϑ(t), ϑ′(t))

∂ϑj∂ϑk
,

∂2T

∂ϑ′j∂ϑk
(ϑ(t), ϑ′(t), ϑ′′(t)) =

∂Θ(ϑ(t), ϑ′(t))

∂ϑ′j∂ϑk
,

∂2T

∂ϑ′j∂ϑ
′
k

(ϑ(t), ϑ′(t), ϑ′′(t)) =
∂Θ(ϑ(t), ϑ′(t))

∂ϑ′j∂ϑ
′
k

,

j = 1, . . . , N, k = 1, . . . , N.

The structure of the ODE (6.1) shows that the values of M(ϑ(t)), Θ(ϑ(t), ϑ′(t)) and their
derivatives are needed in explicit form. Thus a strategy is needed to extract these from
the equations for T (t), ∂T

∂ϑj
(t) and ∂2T

∂ϑj∂ϑk
(t). First, the summands corresponding to Θ are
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singularized by setting the input values ϑ′′(t) to zero:

Θ(ϑ(t), ϑ′(t)) = T (ϑ(t), ϑ′(t), 0),

∂Θ(ϑ(t), ϑ′(t))

∂ϑj
=

∂T

∂ϑj
(ϑ(t), ϑ′(t), 0),

∂2Θ(ϑ(t), ϑ′(t))

∂ϑj∂ϑk
=

∂2T

∂ϑj∂ϑk
(ϑ(t), ϑ′(t), 0),

j = 1, . . . , N, k = 1, . . . , N.

The other parts corresponding to M can than be obtained by changing the input value ϑ′′(t)
to the i-th unit vector e(i) ∈ IRN for i = 1, . . . , N :

M(ϑ(t))e(i) = T (ϑ(t), ϑ′(t), e(i))− T (ϑ(t), ϑ′(t), 0),

∂M(ϑ(t))

∂ϑj
e(i) =

∂T

∂ϑj
(ϑ(t), ϑ′(t), e(i))− ∂T

∂ϑj
(ϑ(t), ϑ′(t), 0),

∂2M(ϑ(t))

∂ϑj∂ϑk
e(i) =

∂2T

∂ϑj∂ϑk
(ϑ(t), ϑ′(t), e(i))− ∂2T

∂ϑj∂ϑk
(ϑ(t), ϑ′(t), 0),

j = 1, . . . , N, k = 1, . . . , N.

which means that the mass matrix and its derivatives are assembled columnwise by N addi-
tional runs of the extended Newton-Euler recursion. Note that this strategy does not consider
the symmetry of the mass matrix. For more details on the extended Newton-Euler recursion
refer to [55, 335].

Having M(t), Θ(t) and their derivatives, a last point to address is the relation between
derivatives of the mass matrix and derivatives of the inverse of the mass matrix. Starting
point is the identity

U = (M(ϑ(t)))−1M(ϑ(t)),

where U ∈ IRN×N is the identity matrix. The first derivative with respect to ϑj , j = 1, . . . , N ,
yields:

∂(M(ϑ(t)))−1

∂ϑj
= −(M(ϑ(t)))−1∂M(ϑ(t))

∂ϑj
(M(ϑ(t)))−1.

In consequence the second derivative reads:

∂2(M(ϑ(t)))−1

∂ϑj∂ϑk
= −(M(ϑ(t)))−1∂

2M(ϑ(t))

∂ϑj∂ϑk
(M(ϑ(t)))−1

+ (M(ϑ(t)))−1∂M(ϑ(t))

∂ϑk
(M(ϑ(t)))−1∂M(ϑ(t))

∂ϑj
(M(ϑ(t)))−1

+ (M(ϑ(t)))−1∂M(ϑ(t))

∂ϑj
(M(ϑ(t)))−1∂M(ϑ(t))

∂ϑk
(M(ϑ(t)))−1,

j = 1, . . . , N, k = 1, . . . , N.

Summing up, multiple runs of the extended Newton-Euler algorithm can be used to compute
all quantities needed to state the ODEs of the rigid body dynamics and their derivatives
[55, 335].
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6.2.2.3 Methods of Forward and Inverse Dynamics

The problem the Newton-Euler algorithm in its basic form addresses is the computation
of the torques for given angles, velocities and accelerations of the joints. This problem is
commonly referred to as the problem of inverse dynamics. Two efficient approaches to solve
this problem are the Lagrangian method and the Newton-Euler recursion [17], which are
from the theoretical perspective equivalent [282], but they differ in computational complexity.
The basis of the Lagrangian method are energy considerations, whereupon the Newton-Euler
algorithm is based on the equilibrium of torques and forces [65].

On the other hand, if the torques, angles and velocities of the joints are known, the problem
of determining ϑ′′(t) by the equations of motions, the so-called problem of forward dynamics,
has to be solved. According to [167] three main solution strategies exist for this problem:
The strategy of the first group is to solve the equations of motions via decomposition of
the explicitly computed mass matrix. The second group of algorithms generate a modified
version of the dynamic equations to simplify solving the linear system. Solution strategies
that tackle the problem in a direct manner without using the structure given by the equations
of motion form the third group.

As presented in the previous section, the Newton-Euler recursion can be used to compute
the mass matrix and therefore might be used to solve the problem of forward dynamics by
decomposition of this mass matrix, a solution strategy from group one. A more efficient
version of the Newton-Euler algorithm can be realized by taking into account that in each
recursion step i the links 1 to i− 1 are at a static equilibrium and only the links i to N are
accelerated. Consequently, one can reduce the recursion to a rigid body chain of shorter length
and make use of the symmetry of the mass matrix. Another solution strategy representing
group one is the Composite Rigid Body method [91, 335]. The basic idea of this method
is to view the links accelerated in a recursion step of the Newton-Euler algorithm as one
composite rigid body. The Composite Rigid Body method is an efficient algorithm which
uses the symmetry of the mass matrix and allows for pre-computation of several quantities.

Algorithms which generate a decomposition version of the equations of motions, i.e., solutions
strategies of group two, are for example presented by [167, 264]. The method of [264] yields a
triangularization of the system using a suitable algorithmic form of the mass matrix given by
Kane’s method, whereas the method of [167] uses a special decomposition of the mass matrix.
The most important algorithm of the third group of solution strategies for the problem of
forward dynamics is the Articulated Body method [91, 325]. The idea is the reduction of
the problem of N rigid bodies on N simpler problems with one joint only. This reduction
is achieved by considering groups of links and using three recursions to compute the joint
accelerations directly.

The derivative information required by both the direct and indirect methods to optimally
control motions of a chain of rigid bodies can be obtained by various strategies like numer-
ical, symbolical or automatic differentiation. The strategy of differentiating the recursive
algorithms for the equations of motion has been pursued by a few research groups (e.g.
[168, 286]). The presentation of the extended Newton-Euler recursion in the previous section
is based on publications of the group of Callies [54, 55] and extension of the differentiation
technique to the Composite Rigid Body method generates a very efficient technique to com-
pute the derivative information [248]. For more details on the algorithms of the problem of
forward dynamics and the derivative computation, especially for comparisons of numerical
complexities see [92, 248].
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6.3 Muscle Models

A large research area is the biomechanical study of the human muscles which covers the
whole range from individual motor units to the total muscle itself [338]. A motor unit is the
smallest part of the muscle that can be controlled individually and the number of included
muscle fibers differs considerable from less than ten to more than thousand for differently
precise muscles. The individual muscle fibers themselves are a combination of different micro-
structures including the contractile element which generates the tension and the passive
connective tissue which encloses the contractile elements and connects it to the tendons at
either end. To analyze the behavior of the total muscle the mechanical characteristics of
both, the active and the passive elements, have to be modeled [338].

A central characteristic of human muscles is the force-length relation describing which force
can be generated at a given muscle length. The general relation can be split into three sub-
characteristics: The force-length curve of the contractile elements, the nonlinear behavior of
parallel elastic component, which is the connective tissue enclosing the contractile elements,
and the characteristics of the series elastic element, which combines the tissue that connects
to the tendons and the tendons themselves. In addition to the static force-length relation
one has to account for the dynamical changes which result in the force-velocity relation. A
first curve fit using an exponential function is presented by [94], followed by the work of Hill
[154] where a hyperbolic form is used and the result is put into context with the internal
thermodynamics. For more details on muscle characteristics see [229, 338].

Various muscle models have been proposed (e.g. [42, 149, 340]); they range from simple
mass-damper systems over models including several nonlinear properties of the muscles [339]
to rather complex models which try to describe every miniature effect [148, 355]. In the
following, the two examples of muscle models used later in the computations are introduced.
First, a second-order ODE is presented which captures that the muscles’ characteristics are
similar to those of a low-pass filter. Second, the nonlinear model of Stroeve is discussed which
includes the force-length and the force-velocity relation. From the mathematical perspective
we assume that the muscle dynamics can be written in form of a first-order ODE

x′(t) = ϕ(x(t), u(t)),

where x(t) is the state and u(t) the control. The output of the model is the force F (t)
generated by the muscle:

F (t) =M(x(t), u(t)).

Consequently, other muscle models fitting into this general structure can be used if needed.

6.3.1 A Linear Muscle Model

The following model taken from Winter [338] is a mass-damper system that is critically
damped. Due to similarities to waveform characteristics of muscle twitches and the responses
of the mass-damper system to impulses, the basic idea is to use the characteristic twitching
time τ of a muscle to determine the coefficient of the second-order ODE:

τ2F ′′(t) + 2τF ′(t) + F (t) = u(t),
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where F (t) denotes the generated muscle force and u(t) the scalar control. This differential
equation can be rewritten in the form of a linear first-order ODE:

x′(t) =

(
0 1
−τ−2 −2τ−1

)
x(t) +

(
0
τ−2

)
u(t)

with the state x(t) defined by

x(t) :=

(
F (t)
F ′(t)

)
.

According to [338] twitching times vary between different human muscles. While fast-twitch
motor units are reported to have twitching times of about 10 – 50 [ms], the slow twitches of
other motor units lie in a range of 60 – 100 [ms]. In consequence, the twitching times for an
overall muscle vary depending on which type of motor units is used to which amount and also
the mean twitching time differs between various human muscles. Here (in accordance to [303])
we use τ = 0.04 seconds for all muscles, which is a simplification, but actual measurements of
the human doing the considered movements would be needed to reduce this modeling error.

6.3.2 Muscle Model of Stroeve

Based on the classical work of Hill [154] for an isolated muscle, Winters and Stark [339]
propose a nonlinear model for single joint motions which includes the four most basic prop-
erties of human muscles: a torque-velocity relation for shortening and for lengthening the
muscle, the series and parallel viscoelastic properties and the static moment-angle relation.
It is shown that the model is consistent with previous publications on muscle characteristics
and that it can reproduce several sets of available data, while having a clear structure of the
processes involved in the dynamics.

For the models used in this work a slightly simplified model, the muscle model of Stroeve [291,
292] is used. It simplifies the model of [339] with respect to combined excitation and activation
dynamics and a infinitely stiff series-elastic element. The modifications are introduced to ease
the numerical simulation of the muscle model, but the main characteristics of human muscles
are still reproducible. The focus of the publications of Stroeve is on impedance characteristics
of human muscles considering both static postures and movements of a human arm. The
motor control system is modeled as a nonlinear system including feedback and the actual
neural input to this control system is given by a neural network; a learning process is applied
to train the network for human arm motions. Results show that the presented approach can
explain impedance in human arm motions and that the muscle model does properly represent
the intrinsic characteristics [291, 292]. Therefore, this model seems to be a reasonable trade-off
between model complexity and model accuracy and several details of the model are presented
in the following.

The input values for the muscle model of Stroeve are the muscle length l(t), the muscle
velocity l ′(t) and the neural input υ(t). The actual state of the model is the activation a(t)
and its time-derivative is given by a simple first-order ODE using the neural input υ(t) and
activation a(t):

a′(t) =
υ(t)− a(t)

t̂(t)
,

where t̂(t) is the current time-constant. This constant switches between the activation time
constant tac and the de-activation time constant tda in dependence on the relation of the
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neural input υ(t) and the activation a(t):

t̂(t) =

{
tac for υ(t) ≥ a(t)
tda for υ(t) < a(t)

If necessary from the optimization perspective, one could easily introduce a smoothed version
of this switching structure.

The output of this model is the muscle force F (t), which is returned by function M:

F (t) =M
(
a(t), l(t), l ′(t)

)
This function makes use of the length of the contractile element lc(t), which is the difference
between muscle length l(t) and the (constant) length of the tendon lt:

lc(t) = l(t)− lt.

And consequently for the time-derivatives the following identity holds:

l′c(t) = l ′(t).

The output function M is the product of the maximal muscle force Fmax, the current acti-
vation a(t), the force-length relation Fl (lc(t)) and the force-velocity relation Fv(l

′
c(t)):

M
(
a(t), l(t), l ′(t)

)
= a(t)Fl (lc(t))Fv(l

′
c(t))Fmax.

The force-length relation Fl depending on the length of the contractile element lc(t) is modeled
by a Gaussian curve whose width and center are determined by the constants lcsh and lco,
respectively.

Fl(lc(t)) = exp

(
−
(
lc(t)− lco

lcsh

)2
)
.

The constant lco for the center of the Gaussian curve is given by the following relation of the
constant for the minimal muscle length lmin, the maximal muscle length lmax and the length
of the tendon lt:

lco = lmin + lopt(lmax − lmin)− lt,

where optimal muscle length ratio lopt is the given constant of the model. The width of the
Gaussian curve follows by

lcsh = lsh(lmax − lmin),

where lsh is another constant stating the relative width. The definition of the force-velocity
relation Fv(t) is divided into three cases depending on the maximum contraction velocity
vmax(t).

First, if l′c(t) ≤ −vmax(a(t), lc(t)) the value of the force-velocity relation is zero:

Fv
(
l′c(t)

)
= 0.

Second, for −vmax(a(t), lc(t)) ≤ l′c(t) < 0 the value of the relation is given by:

Fv
(
l′c(t)

)
=
Vsh (vmax(a(t), lc(t)) + l′c(t))

Vshvmax(a(t), lc(t))− l′c(t)
.



6.3. MUSCLE MODELS 111

Third, in case of l′c(t) ≥ 0 the following value is assigned:

Fv
(
l′c(t)

)
=
VshVshlvmax(a(t), lc(t)) + Vmll

′
c(t)

VshVshlvmax(a(t), lc(t)) + l′c(t)
.

This model of the Hill curve uses the constants Vsh and Vshl to determine the concavity of the
curve during shortening and lengthening, accordingly. Furthermore, the maximum velocity
during concentric contraction is given by the constant Ver. Finally, the maximum contraction
velocity vmax(t) reads:

vmax(a(t), lc(t)) = Vvm (1− Ver (1− a(t)Fl(lc(t)))) ,

where the constants Vvm and Ver are used to model the characteristic muscle velocity and
the effect of the activation on the maximum velocity, respectively.

Note that all functions used to model the muscle dynamics except the characteristic
time-constant t̂(t) are at least two-times continuously differentiable, which is necessary for
smooth optimization techniques using the Hessian of problem.

A part that still needs to be discussed is the computation of the current muscle length l(t)
and its time-derivative l ′(t), the muscle velocity. Both quantities are input values of the
actual muscle model of Stroeve, since they depend on the arm configuration. Considering the
bones as rigid objects, the notation of section 6.2 is used here to model the muscle lengths
in dependence on the arm positions.

The basic assumption is that the muscle has a constant moment arm Rj ∈ IR for each link
j = 1, . . . , N . Human experiments show that the moment arm is in most cases not constant,
but the choice of a more realistic model for the moment arms is out of the scope of this work.
Note that the here presented framework allows to include better models without changing
the general problem structure.

Furthermore, a resting angle ϑr,j for each joint j = 0, . . . , N−1 is introduced which is defined
by the arm configuration assuring that the muscle is at its resting length lr. The current
muscle length is then approximated by the following equation:

l(t) = lr −
N−1∑
j=0

Rj
(
ϑj(t)− ϑr,j

)
.

In consequence, the time-derivative reads:

l ′(t) = −
N−1∑
j=0

Rjϑ
′
j(t).

Using these equations the muscle model of Stroeve depending so far on the input υ, l and l ′

can be extended to use υ, ϑ and ϑ′ as inputs, which later on will allow to combine the muscle
dynamics with the rigid body dynamics:

F (t) =M
(
ϑ(t), ϑ′(t), a(t)

)
.

Defining the extended state x(t) and the extended control by

x(t) :=

 l(t)
l ′(t)
a(t)

 and u :=


ϑ(t)
ϑ′(t)
ϑ′′(t)
υ(t)

 ,
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the differential equation of the state reads:

x′(t) =

 0 1 0
0 0 0

0 0 −t̂(t)−1

x(t) +

 0 0 0 0
0 0 −RT 0

0 0 0 t̂(t)−1

u(t).

Note that ϑ(t) and ϑ′(t) are only added to the control vector to unify the notation, i.e., the
force output is given by a function of elements of the state x(t) and the control u(t).

6.4 Cost Functions

In this section details on cost functions of human arm motions are discussed with a focus
on the open-loop optimization criteria used later on in the application examples. Naturally,
the first criteria presented in literature describe single joint motions; they are followed by
those for planar motions and, finally, for three-dimensional movements. The complexities of
the considered arm models differ considerably. To find the right combination of model and
optimization framework is a non-trivial task.

Having decided on an optimization framework and a model of the plant, the next question
is which cost function describes human behavior for a given task best and it can only be
answered if the results of the various costs are compared to recorded human motions [244].
In this context it has to be noted that a cost yielding results corresponding to observed
human motions in one setup might not be suitable to describe human arm movements in
another setup with more degrees of freedom [3, 152, 158, 174]. The consequence drawn by
[152] is that future tests of cost hypotheses should include several models and analyze not
only planar, but rather three-dimensional movements in such a comparison. Due to the fact
that some simple cost functions describe human arm movements better in one task than in
another, Todorov [302] noted that “the true performance criterion in most cases is likely to
involve a mix of cost terms.”

6.4.1 Smoothness

The development of smoothness-related cost functions is closely connected to progression of
known characteristics in human arm motions (cf. section B.2). A common principle assuring
the smoothness of the solutions is that higher-order time derivatives of joint angles or the
hand position are minimized. The discussion of such cost functions starts with criteria based
solely on the kinematics of the arm and then dynamics-based cost function are introduced.
Naturally, each of the cost function comes with a coordinate system to represent the task in,
which can cause discussions and originate experimental studies (cf. section 6.1). The authors
of [223] summarize the discussion of opposing planning spaces as follows: “This controversial
problem will continue, because the results depend on the setting of delicate task conditions,
the number of learning trails, and the instructions given in the transformation experiments.”

6.4.1.1 Minimum Jerk

The first reported characteristics of planar human arm motions are the generally straight
hand paths [104, 218] and the bell-shaped and approximately symmetric tangential velocity
profiles [2, 218]. As a result of these observations Flash and Hogan [104, 157] propose the
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minimum jerk theory. Being based purely on kinematics, the criterion postulates that the
trajectory of the human hand can be determined by minimizing jerk, which is the third
time-derivative of the hand position.

fHJ :=

∫ tf

t0

∣∣∣∣∣∣∣∣ d3

dt3
Phand(t)

∣∣∣∣∣∣∣∣2 dt,

where Phand(t) is the position of the hand at time instance t ∈ [t0, tf ].

The solution of the minimum jerk problem is given by a polynomial of fifth grade whose
coefficients are determined by the boundary conditions (cf. section 3.3). Properties of the
minimum jerk trajectories are straight-line hand paths for point-to-point motions, a linear
amplitude scaling, an endpoint translation invariance, a movement duration invariance and
a velocity profile symmetry [89]. The simplicity and the excellent agreement with the so
far known experimental observations makes this criterion “one of the most influential motor
control theories” [89]. Starting from elbow motions of monkeys, the minimum jerk cost is
initially used to describe horizontal, planar two-link movements. The error between the
model’s predictions and the observed data is reported to be up to experimental error, but
some motor variability is noted. Perception and motor noise are named as possible sources
for this variability. Already, the authors of [104] themselves question whether the minimum
jerk principle capturing several characteristics of human motions might be the single criterion
underlying all human arm movements.

In several later experiments it is noted that trajectories starting or ending near the workspace
boundaries are noticeably and systematically curved [16, 98, 314]. Such curved trajectories
could be generated by the minimum jerk criterion if via-points are introduced. A further
experimental observation inconsistent with the minimum jerk theory is that the tangential
velocity profiles of the hand are not perfectly symmetric, but tend to be right-skewed for
slow movements and left-skewed for fast movements [89]. Since these observations cannot be
explained by theory of minimizing hand jerk, further cost functions are presented in literature.

6.4.1.2 Minimum Joint Jerk

A second kinematic cost function that uses the joint coordinate frame is minimizing the jerk
of the joint angles instead of the jerk of the hand position.

fJJ :=

∫ tf

t0

∣∣∣∣∣∣∣∣ d3

dt3
ϑ(t)

∣∣∣∣∣∣∣∣2 dt,

where ϑ(t) are the joint angles at time instance t ∈ [t0, tf ].

This criterion discussed in [262] yields always straight trajectories in joint space, which nat-
urally results in curved hand paths, but they are considered to be too curved in literature
[239]. However, the authors of [98, 223] argue that the predictions are quantitatively better
than those of the minimum jerk model. Subsequently, approaches are introduced that use
a compromise between jerk on the hand and on the joint level [66, 153, 233]. Such com-
binations are reported to avoid singularities and joint limits [153], but neuro-physiological
evidence supporting this idea have not been presented [247].
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6.4.1.3 Minimum Torque Change

Due to the fact that the minimum jerk criterion, being based solely on the kinematic prop-
erties of the arm, cannot explain the observed details of the curvature of the hand paths and
the skewness of the velocity profile, a straight-forward step is to analyze whether dynamic
properties of the human arm can explain these observations. Such a dynamic cost function
guaranteeing smooth motions is proposed by [223, 314]; it minimizes the time-derivative of
joint torques.

fTC :=

∫ tf

t0

∣∣∣∣∣∣∣∣ d

dt
T (t)

∣∣∣∣∣∣∣∣2 dt,

where T (t) are the joint torques at time instance t ∈ [t0, tf ].

The resulting hand trajectories are reported to be roughly straight and slightly curved in
agreement with the experimental data [314]. The presented model of [314] is criticized due to
the fact that the used rotatory inertia value is too big. If a correct combination of viscosity
and inertia values is utilized, the trajectories are no longer similar to the observed trajectories
[223].

6.4.1.4 Minimum Commanded Torque Change

Several refined versions of the idea of minimizing torque change exist; the first to mention is
restricting the minimization to commanded torques [223].

fCTC :=

∫ tf

t0

∣∣∣∣∣∣∣∣ d

dt
Tcom(t)

∣∣∣∣∣∣∣∣2 dt,

where Tcom(t) are the commanded joint torques at time instance t ∈ [t0, tf ].

The minimum torque change cost function [314] uses only a dynamical model of the links, but
neglects other dynamical characteristics of the human arm. In consequence, this related cost
function is obtained if additionally the dynamics of the human muscles are taken into account
to differentiate between actively generated torques and those resulting from the current state
of the arm. For movements in the horizontal and sagittal plane it is reported that the
magnitudes and directions of curvatures are better reproduced by this cost function than by
the minimum hand jerk criterion or the minimum joint jerk criterion [223]. Comparing several
smoothness-related cost functions for planar motions, it is noted in [334] that the criterion
using commanded torque change comes closest to the data of two-dimensional experiments.
For three-dimensional movements it is noted in [29] that the predicted hand paths and the
observed ones consistently deviate from each other. Additionally, the predicted speed profiles
show too small peak amplitudes and double peaks, in disagreement with the observed data.

6.4.1.5 Minimum Muscle Tension Change

A second variant of the minimum torque change idea is to minimize the change of muscle
tensions, since muscles generate the torques relevant for the arm motions [315].

fMTC :=

∫ tf

t0

∣∣∣∣∣∣∣∣ d

dt
F (t)

∣∣∣∣∣∣∣∣2 dt,
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where F (t) are the muscle tensions (or forces) at time instance t ∈ [t0, tf ]. A consequence
of modeling details of muscles is that a larger amount of model parameters is needed. The
authors of [3] discuss that choosing the values for these parameters in combination with the
variability in anatomy between participants might cause large variability in the results which
complicates the quantitative comparison with experimental data.

6.4.1.6 Minimum Motor Command Change

One final step further, motor commands of the muscles are directly utilized instead of the
tension generated by them.

fMCC :=

∫ tf

t0

∣∣∣∣∣∣∣∣ d

dt
u(t)

∣∣∣∣∣∣∣∣2 dt,

where u(t) are the motor commands (or activations) used to control the motions by the
muscles at time instance t ∈ [t0, tf ].

This minimum motor command change model is proposed by [175] and the main problem
using this hypothesis is to obtain a reasonable model for motor commands at the muscle level.
In [182] an attempt to model the characteristics is made, but it too proves to be an extremely
difficult process. Consequently, the authors themselves note in [223], that “a quantitative
model, not a conceptual model, is needed to actually compute an optimal trajectory.” For
details on muscle models being the crucial part of this cost function see section 6.3.

6.4.2 Accuracy

Recording human arm motions between two given points, one easily notices that each subject
has a characteristic variation of selected trajectories. The following statement of Todorov
[302] describes the resulting problem for the so far discussed criteria: “One can be perfectly
accurate on average and yet make substantial variable errors on individual trials.”

A criterion describing human arm motions based on the observed variation is proposed by
[141] within the open-loop framework. The hypothesis of the minimum variance theory is
that humans try to minimize the variance of the hand at the final position. Naturally the
following question results: how does the variance at the end depend on the choice of the
arm motion to the final point? Harris and Wolpert base their idea on the characteristics of
human muscles, due to the fact that human motor noise is known to be control-dependent
[52, 170, 318, 316], i.e., the observed noise depends linearly on used controls. Consequently,
the choice of the controls at each time instance influence the endpoint variance. The minimum
variance hypothesis is that humans choose the trajectory that minimizes this variance. In the
initial paper [141] saccadic eye movements and goal-directed arm motions are studied and the
simulation results seem to explain the observed trajectories. Furthermore, it is noted that
the speed-accuracy trade-off predicted by Fitts’ law can also be explained by this framework.
The idea of minimum variance at the end position is extended in [138] to tasks with obstacles;
the additional constraint is to keep the collision probability below a fixed limit. It is reported
that the optimal paths accurately predict the empirical trajectories. The minimum variance
approach in the context of estimation and learning is discussed in [343] from the neuroscience
perspective. A realization of the minimum variance approach in robotics can be found in
[283, 284].
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This minimum variance hypothesis is loosely related to the smoothness-related criteria dis-
cussed before, since large control inputs are needed to generate non-smooth hand paths which
in consequence increase the signal-dependent noise. Furthermore, minimizing endpoint vari-
ance is related to the minimization of the sum of squared motor commands, which is a term
associated with effort [303]. Consequently, the minimum variability criterion and the effort
cost function often share a common minimum as [240] discuss. For a simple push-button
experiment differences are observed and a combination of the two cost functions seems to
be optimal to describe the data. Utilizing computer simulations the conclusion of [269] is
that noise cannot be the only reason causing the variability of human reaching movements.
The hypothesis is introduced that the variability of movements is caused by the errors in
the perception of the final position. Psychophysical experiments of [269] show similarities in
endpoint variance and variance of target perception. Contrarily, [318] show that noise in the
movement execution rather than sensory or planning noise explains the variability of the final
hand position. Similar to the discussion of the utilized planning spaces for the smoothness-
related costs, diverse statements contradict each other, which could be a result of different
experimental setups.

In addition to the question whether motor noise is big enough to cause the endpoint variance
observed, the model used by [141] describing the signal to noise characteristics is questioned.
In [238] the problem of co-contraction within the signal dependent noise framework is dis-
cussed. Co-contraction, which is the activation of two opposing muscles at an equal level,
increases the impedance of the limb. Consequently, according to the signal-dependent noise
framework an increase in co-contraction should cause more noise and add variation, but actu-
ally it reduces end point variation. The discussion of accuracy is closely related to closed-loop
optimal control (cf. section B.5) and adaptation (cf. section B.6).

6.4.3 Energy, Time and Others

The subjective feeling of discomfort corresponding to the given arm configurations is analyzed
in [67] from a psychophysical perspective. A two-dimensional arm model is utilized in this
study and U-shaped cost functions depending on the joint angle are obtained. Several other
studies come to similar results where humans prefer the comfort of one arm configuration
compared to others. As [89] point out, “a problem with these studies is that the concept of
discomfort is not well defined.”

The idea of minimum muscle effort is proposed in [231] and a quantitative formula to measure
effort is presented. The direct relation between muscular activity and effort is noted. The
authors hypothesize that the minimum effort idea could be a central aspect in posture control
and motion generation. Energy minimization is mostly used in human full-body posture and
locomotion where the muscle activity over the gait circle is analyzed, e.g., [60, 8, 183, 213].
The main problem of the minimum energy hypothesis is that it needs a precise muscle model,
because the metabolic energy consumption has to reflect the details of muscle physiology
[302]. Such models cannot easily be developed and verified due to the difficulties with directly
measuring the in-vivo loads of the muscles [63]; for further details on muscle models see section
6.3.

Starting with single joint arm motions, an effort-related criterion, the product of stiffness
and muscle changes, is proposed by [146]. The results compared to experimental data seem
acceptable. Planar arm movements based on metabolic costs are studied by [9]. The angular
velocity is approximated by second-order Fourier series and motions are reported to agree well
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with observed trajectories for fast movements when bi-articular muscles are considered. The
minimum approach based on muscle tension change is extended by [171, 172] to the metabolic
level, reflecting the physiological characteristics of the human arm. A numerical comparison
to minimum jerk and minimum torque change is presented in [171] and shows quantitatively,
that the proposed cost might be a good choice. The developed model relating neural input
and isometric force [172] is, however, not compared to measured muscular activities. In
[319] recorded muscle activation data is compared to the predictions of various cost functions
related to muscle quantities and it is observed that no single cost function explaining all the
effects in the data can be found, but criteria using squared muscle quantities seem to perform
better. Although energy minimization alone does not reproduce the behavior observed in
human arm movements [225], the idea that somehow energetics have to be involved is still
up to date [302].

Another cost function we want to mention is the minimization of overall motion time tf .

fT := tf .

If only this strategy is used, a control of bang-bang type results and due to properties of the
human arm contradicting this control strategy this cost is considered implausible [225]. But
note that for most optimization criteria the duration of the movement has to be prescribed
and is that way an input to the model rather than an output. In consequence, minimization
of motion time might be one of several factors describing in combination the characteristics of
human movements; e.g., the experiments of [209] show that the overall energy cost seems to
influence the motion time. Other task-dependent motion time characteristics are captured by
Fitts’ law (cf. section B.2.1). But still a description is missing of how the duration depends
upon the circumstances of the movement [155]. In addition to the systematical problem of
determining the movement time, the neural representation of time is an open field of research.
The cerebellum seems to be involved, but distinctive models are still missing; a review can
be found in [163].

6.4.4 Cost Combinations

A large variety of tasks exist where human use their arm, where the motions of one person
normally show certain characteristic properties they might differ considerably from motions
of other persons. The causes for these deviations can vary from physical properties of the
persons to cultural and social norms [176]. In consequence one can hypothesize that humans
might be aware of more than one cost function and that the relative weighting can differ from
person to person. Since different cost functions are able to explain different aspects of motor
behavior, this could indicate that the weighting factors of the considered costs are adapted
for diverse tasks [23].

Human arm motions while interacting with a crank are analyzed in [201, 232], in which no
muscle dynamics are modeled but rather muscle forces are the input to the system. It is
shown that the minimum muscle force change criterion alone cannot reproduce movement
or interaction forces. On the other hand, the minimum hand force change criterion, a task
specific cost, can reproduce the movement, but not the observed forces at the crank. Only
the combination of the two criteria agrees with the experiments.
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A special combination of standard cost functions is presented by [233]. Considering move-
ments in the horizontal plane it is proposed that a weighted combination of the minimum
jerk trajectory and the minimum torque change model describes human motions much better
than the single criterion alone. Here, again, one has to note that “expanding the workspace
to 3D space might lead to a different weighting and maybe to other constraints and more
optimization parameters” [3].

6.4.4.1 Convex Combination

A standard and simple way to combine given basic cost function is to build convex combina-
tions. The advantage of convex combinations over linear combinations is to avoid ambiguity,
because each scalar multiple of a cost function has the same optimum as the unscaled ver-
sion. Naturally, other approaches to guarantee a unique representation of a combination of
cost functions exist, for example, the weighting factor of a given basic cost function could be
normalized [217].

In this work we assume that each basic cost function fi is a function using the current state
x(t) and the current control u(t) at time instance t with

fi(x(t), u(t) | πi) ∈ IR, ∀i = 1, . . . , k,

where k ∈ IN is the number of considered basic cost functions and πi ∈ IRsi , si ∈ IN, is a
vector of parameters for the respective basic cost function. Using the weights wi ∈ [0, 1],
i = 1, . . . , k, the convex combination reads:

f(x(t), u(t) | π) :=

k∑
i=1

wifi(x(t), u(t) | πi), with

k∑
i=1

wi = 1,

where the parameter vector π is the concatenation of the weighting factors and the parameter
vectors of the basic cost functions. For later use we introduce the weight distribution w as
the vector of the weights

w := (w1, . . . , wk)
T ,

and the parameter vector of the convex combination can in consequence be written as

π :=
(
wT , πT1 , . . . , π

T
k

)T ∈ IRs,

with the number of parameters

s := k +

k∑
i=1

si.

6.5 Arm Models

Having introduced rigid body models for the bones and several muscle models, a two-
dimensional and a three-dimensional arm model are presented in the following. Since the
overall structure of a human arm is far too complex for our purposes, simplified models are
used. Before stating the arm models used in the computations, a short introduction to the
state of the art in modeling the human arm is given.
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First of all, the goal of modeling the human as a dynamical system is to explain experimental
data, explore hypotheses on human motion and generate ideas for future experimental work.
To create such a model, several aspects have to be considered and a number of details have
to be paid attention to, see for example the review [316]. All the choices of the modeler from
model structure to mathematical description have to fit to the final application, so that the
important features are well described and the behavior can be analyzed by suitable approaches
[252]. Consequently, the dimension of the simulated model for most musculoskeletal models
is smaller than that of the actual dynamical system [316].

Research of various groups is related to modeling and simulating the musculoskeletal systems
of the human body, e.g., [191, 208, 252]. Due to the lack of a common framework, several
individual computational programs are developed and novel approaches are fine-tuned for
the specific approaches. A standard approach is to combine tools for graphical design of
the musculoskeletal system (e.g. SIMM [71], Any-Body[68]) with computational packages for
multibody dynamics (e.g. Autolev, ADAMS) to simplify the process of generating the equations
of motions and to allow for generation of more complex models using an abstract layer. A
step to a common framework is the OpenSim-software [70] which is freely available and open-
source. In this thesis we do not make use of such a software package, because we are not
only interested in the simulation of the dynamics, but also in the (second-order) derivative
information of the overall arm movements.

The dynamics of the human skeleton are approximated in our arm models by rigid body
dynamics (cf. section 6.2) assuming that the kinematic structure of the arm can be modeled
by a chain of rigid bodies with joints of one degree of freedom only. This assumption con-
strains the modeling of the more complex human joints like the shoulder. The analysis of the
kinematic and dynamical behavior of the human shoulder in [320, 321] shows that several
mechanisms have to be modeled to capture the different characteristics of the system; espe-
cially, the joint between the thorax and the scapula has to be modeled as a gliding plane to
reproduce the influence on motions and stabilization of the shoulder. Additionally, it might
be necessary to model non-rigid effects and contact forces if there is a significant load on the
articulating surfaces of the bones, e.g., in the human knee. A simple model of passive joint
properties is included in our arm models and an extension to more complex models [191] is
possible.

In section 6.3 models of human muscle dynamics are discussed and implementing more re-
alistic models is always a critical challenge [316]. Closely related to the muscle dynamics
is the problem of defining the attachment sites of the individual muscles. The number of
attachment sites for human muscles differs from a single spot to long or broad areas. Most
models assume that the muscle (including the tendon) is attached to the bone at single points
or multiple discrete points. The routing in between the attachment site defines the length of
the muscle and consequently the force that is exerted; the approaches modeling the muscle
lengths range from straight lines [191] over via-point constructions [121] to cubic splines with
sliding and surface constraints [293]. The problems of the muscle routing and the insertion
angle of the muscle into the bone are closely related to the mechanical moment arms which
consequently depend on the joint angles. According to [316], it might not be necessary to
model the paths for certain applications but obtaining a mathematical expression for the
moment arm itself could suffice. We follow here the line of [291, 292] and assume constant
moment arms, but, again, an extension to more complex models is straight-forward.
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ϑ2(t)

shoulder

elbow

hand

ϑ1(t)

Figure 6.3: Schematic illustration of the joints of the planar arm model.

6.5.1 Planar Arm Model

In this section we state the planar arm model introduced in [291]. Most models used in
literature for two-dimensional arm movements have two joints with one degree of freedom
each: the shoulder and the elbow. Consequently, the shoulder angle is denoted by ϑ1(t)
and the elbow angle by ϑ2(t) (see figure 6.3). The upper limb and the lower limb are both
approximated by symmetric rigid bodies. Therefore, the lengths of limbs d1 and d2 are
sufficient to state the three fixed parameters of the classical DH notation (cf. section 6.2.1).

i = 1 i = 2

li d1 d2

ρi 0 0

βi 0 0

Table 6.1: The fixed DH parameters of the planar arm model.

Additionally, the link masses m1, m2, the corresponding inertias I (1), I (2) and the distances
dcom,1, dcom,2 between the joints and the corresponding centers of mass are of interest for the
derivation of the equations of motion (cf. section 6.2.2):

T (t) = M (ϑ(t))ϑ′′(t) + Θ
(
ϑ(t), ϑ′(t)

)
,

where M is the planar mass matrix, Θ the term combining Coriolis and centrifugal terms
and T the joint torques. Note that assuming a symmetrical shape and a homogeneous
mass distribution for each link, the center of mass of the limbs is in the center between the
corresponding two joints: dcom,1 = 0.5d1, dcom,2 = 0.5d2. The mass matrix M (ϑ(t)) can be
specified in an analytical form for this planar arm model (cf. section 6.2.2):

M1,1 (ϑ(t)) = I (1) + I (2) +m1

(
dcom,1

)2
+m2

(
(d1)2 +

(
dcom,2

)2
+ 2d1dcom,2 cos (ϑ2)

)
,

M1,2 (ϑ(t)) = m2dcom,2
(
dcom,2 + d1 cos (ϑ2)

)
+ I (2),

M2,1 (ϑ(t)) = M1,2 (ϑ(t)) ,

M2,2 (ϑ(t)) = m2

(
dcom,2

)2
+ I (2).
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d2

dcom,2m2

d1

dcom,1

m1

Figure 6.4: Schematic illustration of the parameters describing the arm’s kinematics and
dynamics.

The terms of Θ
(
ϑ(t), ϑ′(t)

)
are given by

Θ1

(
ϑ(t), ϑ′(t)

)
= −m2d1dcom,2ϑ2

′(t)
(
2ϑ1
′(t) + ϑ2

′(t)
)

sin (ϑ2) ,

Θ2

(
ϑ(t), ϑ′(t)

)
= m2d1dcom,2

(
ϑ1
′)2 sin (ϑ2) .

According to the model presented in [291] three lumped muscle pairs are used to actuate the
limbs; one single joint pair each for shoulder and elbow and a third muscle pair spanning both
joints (see figure 6.5). Combining these lumped models with the nonlinear muscle dynamics
of section 6.3.2, it is shown in [291, 292] that impedance characteristics of human arm motions
can be captured by the model. Note that in this approach the simplifying assumption is made
that each muscle has constant moment arms, i.e, a constant matrix R relates muscle forces
to torques. In addition to the torques generate by the muscles, a simplified version of passive
torques are considered. These passive torques describe the damping in the human joints
counteracting motions. Consequently, a matrix B is introduced to relate joint velocities ϑ′ to
the passive torques; the actual torques acting on a joint are the sum of the torques generated
by the muscles and the passive properties of the arm.

shoulder elbow hand

muscle pair number 1 muscle pair number 2

muscle pair number 3

Figure 6.5: Schematic illustration of the lumped muscle pairs actuating the planar arm model.
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6.5.2 Three-dimensional Arm Model

In the following a simple example of a three-dimensional arm model is introduced which can
be easily extended, for example, to cases where more degrees of freedom have to be considered
in order to optimize hand orientation in addition to the hand position. We assume for this
model that the shoulder is a joint with three degrees of freedom, i.e., a ball in a socket joint,
and the elbow has only one degree of freedom to allow for flection; for a discussion of these
simplifying assumptions see the beginning of section 6.5.

3 DoF shoulder

1 DoF elbow

Figure 6.6: Schematic illustration of the rigid bodies in the three-dimensional arm model.

If the two rigid bodies of the upper and the lower limb are approximated by symmetrical
cylinders, the following classical Denavit-Hartenberg parameters result using d1 and d2 to
denote the limb lengths:

i = 1 i = 2 i = 3 i = 4 i = 5 i = 6 i = 7

li 0 0 0 0 0 0 d2

ρi −π
2 0 −π

2 0 −π
2 0 0

βi 0 0 0 d1 0 0 0

ϑi ϑ1 −π
2 ϑ2 ϑ3 −π

2 −π
2 ϑ4

Table 6.2: The fixed DH parameters of the three-dimensional arm model.

Note that three virtual joints are used to model the arm configuration, i.e., the vector ϑ ∈ IR7

stating the Denavit-Hartenberg parameters for the joint angles has three fixed values and the
free ones are denoted by ϑ ∈ IR4. Similar to the two-dimensional case the following quantities
are used to state the dynamics of the arm model: the limb masses m1, m2, the distances to
the centers of mass dcom,1, dcom,2 and the inertia matrices I (1), I (2). However, the terms for
the mass matrix and other parts are to lengthy to be listed here.

Note that modeling the muscles for such a three-dimensional problem is a complex task
which should involve several model iterations by comparing model behavior with recorded
human data; such a task is out of the scope of this work, thus we acknowledge that the
number of considered lumped muscles and their moment arms might need improvement to
be biologically plausible.
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6.6 Numerical Results for Inverse Optimal Control

In the following section three numerical examples for inverse optimal control of arm motions
are presented. First, the reconstruction of a planar arm motion is discussed, followed by
inversion results for human arm motions recorded in a planar experiment. Finally, the recon-
struction of a three-dimensional arm movement is addressed. For numerical inversion results
of three-dimensional human arm data see section 6.7.

6.6.1 Reconstruction of Planar Arm Motions

The following first numerical example of a reconstruction for planar arm motions is kept at a
minimum complexity to discuss the basic properties of the inversion task in a setting suitable
for a detailed analysis. Consequently, we use the planar arm model introduced in section
6.5.1 in combination with four basic cost functions.

For numerical computations the following parameters of the planar arm model (cf. section
6.5.1) are chosen in accordance with the values used in the model [291].

Parameter Value

d1 0.32 [m]

d2 0.32 [m]

m1 1.8 [kg]

m2 1.6 [kg]

I (1) 0.015 [kg m2]

I (2) 0.013 [kg m2]

Table 6.3: Selected parameters for the planar arm model.

Additionally, the matrix R ∈ IR2×3 stating the moment arms of the three lumped muscles
and the matrix B ∈ IR2×2 describing the joint damping properties have to be specified:

R =

(
0.03 0 0.025

0 0.03 0.04

)
, B =

(
−0.3 0

0 −0.2

)
.

The task of the arm motions we are considering here is to start (t = 0 [s]) and stop (t = 3 [s])
at given positions, i.e., all state variables but the two joint angles have to be zero. For the
arm configurations at these two time instances we choose the following values:

ϑ(0) =

(
1.0
0.6

)
and ϑ(3) =

(
0.5π
0.5π

)
.

No constraints on states or controls are considered here and the value of the motion time is
fixed to 3 [s].

Four basic cost functions are considered for this example including one minimizing the squared
control values u of the linear muscles, which is here denoted by fMC :

f1 = fJJ , f2 = fTC , f3 = fHJ and f4 = fMC .

The following figure 6.7 displays the optimal hand paths for these four basic cost functions.
Note that each basic cost function yields an unique optimal hand path; such a property
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would not result if, for example, only joint jerk of one joint would be considered instead
of the combination used here. This special property, which does not hold true for some
later examples, allows us to address the issue of relative scaling between the different cost
functions. Naturally, one would like the numbers of the weight distribution w to be in close
relation to the respective combination of the optimal hand trajectories. Since the different
cost functions have considerably different scales (cf. table 6.4), such a behavior can only
be obtained by using a scaling approach. One possibility is to introduce a scalar factor
and a scalar shift for each cost function such that the image range of all cost functions is
approximately the same. Here we use only a scalar scaling of the cost functions because these
factors are visible in the KKT-conditions within the transformation approach. Therefore, the
cost values corresponding to the solutions minimizing each basic cost function are compared
and the scaling factor is obtained as the difference between the maximal and minimal value
on the basic trajectories. In consequence, all weight distributions stated in this section refer
to these scaled versions of the basic cost functions.

i = 1 i = 2 i = 3 i = 4

j = 1 8.8 100 8.5 10−2 6.1 10−1 1.3 103

j = 2 1.6 102 5.3 10−2 6.5 10−1 2.0 103

j = 3 1.1 102 1.2 10−1 2.3 10−1 4.6 103

j = 4 8.6 101 1.6 10−1 1.2 100 7.0 101

Table 6.4: The values of the basic cost functions fi for the optimal values with respect to one
of these costs fj .

The following reconstruction example uses data that is obtained by solving the optimal control
problem for the (randomly chosen) vector

w := (0.3, 0.5, 0.2, 0)T

and componentwise adding Gaussian white noise with a standard deviation of 0.01 times the
mean difference between the successive values of the corresponding discretized components
of the data. This added randomness should account for inaccuracies of models and mea-
surements as they occur in the human experiments and thus artificial effects resulting from
perfect fits are avoided in the reconstruction analysis.

The state minimizing the fourth cost function fMC is chosen as a starting value for this
example, because the distance of the corresponding optimal hand path to the data is the
smallest. Note that in this example case this naive strategy to choose the starting value leads
to a starting weight distribution considerably different from the data values. Furthermore,
the time-discretization is kept constant with 20 segments of equal length and the Hermite-
Simpson version is used in the collocation method. The distance measure Φtime is used as
the upper level cost function. The following difference is obtained in the weight distribution:(

9.74 10−5, 7.50 10−4, 8.48 10−4, 0
)T
.

The numerical inversion result of the reconstruction data correctly states a zero weighting
factor for the fourth basic cost function, which was chosen to be the starting value. This shows
that the interior point approach in combination with the inverse optimal control approach
does not lead to complications with respect to the bounds on the weight distribution.
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Figure 6.7: The optimal hand paths for the four basic cost functions fi (left) and the recon-
struction data with the corresponding starting value (right). The position of the shoulder is
(0.4, 0). [ fJJ , fTC , fHJ , fMC , data for reconstruction ]

Using random weight distributions for the starting value generation, the dependence of the
reconstruction results on the starting values can be analyzed. Thus the inversion problem
is solved here a hundred times with random weight distributions obtained by considering
uniformly distributed weights within the interval [0, 1] and then normalizing the sum of them
to 1. The difference of the mean values of the weight distributions corresponding to inverse
optimal control solutions from the weight distribution used to generate the data in the given
scenario is the following:(

1.73 10−4, 3.00 10−3, 1.89 10−3, 1.29 10−3
)T
.

The standard deviation of the obtained solutions is given by(
8.50 10−4, 9.94 10−3, 7.67 10−3, 2.34 10−3

)T
.

6.6.2 Inversion of Human Planar Arm Motions

The inversion of recorded human data is now exemplified for a planar arm motion. This
example is taken from an experimental study done in a cooperation with C. Passenberg and
the results considering different scenarios and participants are published in [6]. Especially, it
has to be mentioned that C. Passenberg maintained the needed experimental hardware and
conducted the actual recording of human motions.

The goal is to analyze human rest-to-rest movements recorded via an experimental setup
that combines two linear actuators mounted at a right angle on top of each other. This setup
in combination with a virtual environment reducing the visual feedback allows to study
the influences of simulated masses and simulated damping on the human reaching motions.
The example discussed here considers the baseline case (approximately) without external
influences, for the interesting cases of different mass and damper combinations see [6]. The
general motion task of the experiments is to move between three specified points; to decrease
effects described by Fitts’ law [96] (cf. section B.2.1), the target is specified as a square of
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0.1 0.2 0.3 0.4

0.1

0.2

0.3

Phand,x(t) [m]

Phand,y(t) [m]

Figure 6.8: Characteristic recorded human data (left) with the shoulder being fixed at
(0.5,−0.25) and a schematic illustration of the experimental setup (right).

size 3 [cm] by 3 [cm]. Figure 6.8 shows a schematic sketch of the experimental setup and
additionally displays the hand paths of one participant showing that the trajectories have
common characteristics.

One of the motion selected for a more detailed discussion is depicted together with the
optimal trajectories for four basic cost functions in figure 6.10. The arm model and the
family of cost functions is identical to the previous reconstruction example; however, the
motion time and the boundary conditions are adapted according to the given data. Since
only positional information of the recorded human motion is available, no consistent starting
values for the muscle forces and their time-derivatives can be prescribed; consequently, only
the joint angles and joint velocities are given as boundary conditions. Additionally, the hand
paths are compared via the path length-based ULP cost function.

The inverse optimal control approach yields the following weight distribution for this example:

w = (0.31, 0.44, 0, 0.25)T .

−0.1 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3

1

2

·10−3

t [s]

||Phand(t)− Pdata(t)|| [m]

Figure 6.9: The distance of the solution from the recorded human data over time t.

The distance of the recorded hand path and the hand path corresponding to the solution
of the inversion task is shown in figure 6.9. It shows the rather close fit between data
and numerical result which could be expected considering the characteristics of the basic
trajectories (cf. figure 6.10). The results of the whole experimental study [6] show that the
common characteristics of the hand paths lead to similar weight distributions for the different
trials. However, the recorded hand paths differ considerably between different participants
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and consequently, the weight distributions are only similar for a specific participant. A
possible application scenario for the information is a telepresence task where the operating
human and the robotic hardware are spatially separated, resulting in a considerable delay in
the feedback loop. To reduce the delay effects on the robot control, the previously computed
human cost function could be used to predict the future motion of the operator. The predicted
information can then be employed to control the robotic hardware until the human feedback
is available.

0.1 0.2 0.3

0.1

0.2

Phand,x(t) [m]

Phand,y(t) [m]

Figure 6.10: The optimal hand paths for the four basic cost functions fi and
the recorded human data. The position of the shoulder is (0.4,−0.25).
[ fJJ , fTC , fHJ , fMC , data for reconstruction ]

6.6.3 Reconstruction of Three-Dimensional Arm Motions

The three-dimensional arm model as a generalization of the two-dimensional one is discussed
in section 6.5.2. Here we use five muscle pairs to actuate the two limbs with its four degrees
of freedom. As discussed before, this is a rather large simplification, but it is not claimed
that the model is biologically plausible with respect to this aspect.

The following matrices R ∈ IR4×5 and B ∈ IR4×4 state the moment arms of the lumped muscle
pairs and the joint damping properties in a straightforward generalization of the values used
in the planar model:

R =


0.03 0 0 0 0.025

0 0.03 0 0 0
0 0 0.03 0 0
0 0 0 0.03 0.04

 , B =


−0.3 0 0 0

0 −0.1 0 0
0 0 −0.01 0
0 0 0 −0.2

 .
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In a similar manner the following values are used in the computations:

d1 0.32 [m]

d2 0.32 [m]

m1 1.8 [kg]

m2 1.6 [kg]

Table 6.5: Selected parameters for the three-dimensional arm model.

Finally, the inertia matrices of the upper and lower arm have to be stated; since the original
values of the planar model correspond to inertias of sticks with negligible radii, small values
are used for the inertia about the axes of symmetry. The quantities are stated in kg m2:

I (1) =

 0.015 0 0
0 0.015 0
0 0 0.001

 , I (2) =

 0.001 0 0
0 0.013 0
0 0 0.013

 .

Note that these inertia matrices are stated within the corresponding link frame of the DH
notation. Consequently, the the first limb extends along the Z-axis, whereas the second limb
is positioned along the X -axis of the corresponding frame.

In order to only allow for arm configurations corresponding to possible human poses (e.g.,
the rotation of the lower limb through the upper limb is theoretically possible from the DH
notation, but definitely not realistic), the following upper and lower limits on the joint values
are demanded in the numerical computation. However, in the given reconstruction example
these bounds do not become active at any time.

π
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π
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6
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3π

4
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The motion task considered in this reconstruction is a rest-to-rest movement in the time
period of 3 seconds, where the boundary values for the joint angles are the following:

ϑ(0) =
(

0, 0, 0,
π

2

)T
, ϑ(3) =

(π
3
, − π

8
, 0,

π

2

)T
.

First, we want to compare the optimal control results for the different muscle models. One
model is obtained if the rigid body model is combined with five muscle pairs of the Stroeve
model (cf. section 6.3.2); the other if the five lumped muscles are modeled by a linear ODE
(cf. section 6.3.1). Considering the motion task and the family of cost functions of this
example, both models yield similar results if the following parameters are used:

lt 0.02 [m]

lr 0.15 [m]

Vsh 0.3 [·]
Vshl 0.23 [·]
lsh 0.6 [m]

lopt 0.7 [·]
Vvm 6lco [m/s]

Ver 0.5 [·]
Vml 1.3 [·]
Fmax 2000 [N ]

Table 6.6: Selected parameters for the muscle model of Stroeve.
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The following plot shows the differences between two hand paths minimizing the torque
change criterion. One hand path is computed using the muscle model of Stroeve and the
other using the simpler muscle model.

Phand,x [m]

Phand,z [m]

Phand,y [m]

-0.1 0 0.1 0.2 0.3 0.25
0.45

0
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1 2 3
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4 10−7

5 10−7

t [s]

||P(1)
hand(t)− P(2)

hand(t)|| [m]

Figure 6.11: The hand path minimizing the torque change criterion where the shoulder is
positioned in the origin (left) and the difference between the hand paths minimzing the torque
change criterion using the two different muscle models (right).

This similarity can be interpreted in the following way: both muscle models allow for the same
arm motion minimizing the integral of the squared torque derivatives, i.e., the nonlinearities
of the Stroeve’s model do not limit the force generation compared to the simpler linear ODE
model. This observation is of course limited to the rather slow-paced arm motion without
any external forces acting on the arm. However, this result suggests to use the simpler muscle
model for the reconstruction task, because the resulting problem size is approximately half
the size of the one based on the nonlinear muscle model.

The following basic cost functions are used in this example:

f1 = fJJ , f2 = fTC , f3 = fHJ,xy and f4 = fMTC ,

where the criterion fHJ,xy considers only the hand jerk in the horizontal plane. Consequently,
it has to be noted that not all basic cost functions lead to a unique solution of the optimal
control problem. If the hand jerk was minimized in three dimensions, this would lead to
a unique hand path, but the elbow position is then not specified by this cost; since we
consider only the jerk in horizontal directions, even one more degree of freedom is obtained.
In consequence, the weight distributions have to be interpreted with care, i.e., the changes
resulting from a modification of the weight combination should be analyzed by comparing
the corresponding optimal states and hand paths.

The following table gives the weight distributions used to generate the data and the starting
value of this reconstruction example:

i = 1 i = 2 i = 3 i = 4

data value wi 0.1 0.2 0.4 0.3

starting value wi 1 0 0 0

difference in wi 3.64 10−4 7.60 10−4 4.06 10−3 5.18 10−3

Table 6.7: Weight distributions for data and starting value and the difference between the
reconstruction result and the data values.
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Both the hand path corresponding to the starting value minimizing joint jerk and the data
of the reconstruction are displayed in figure 6.12. In the numerical computations a uniform
time discretization with 40 segments is used and the upper level cost is computed by com-
paring hand positions at defined time instances. The differences in weight distribution of the
reconstruction result compared to the distribution used to generate the data are considerably
small, which is a result of extending the problem with an additional constraint. The idea
of this goal attainment approach is discussed in section 5.2.3 and a number of optimization
steps can be fixed after which this additional constraint is dropped to avoid linear dependen-
cies in the KKT-conditions. Figure 6.12 shows the course of the upper level cost during the
optimization runs where the number of iterations with the additional constraint is varied.
It can be seen that without the additional constraint the optimization does not leave the
neighborhood of the starting value and consequently, no solution is obtained in this case.
Furthermore, the curves with 50, 100, 150 and 200 iterations using the additional constraint
are shown. A forking can be observed if these maximal numbers are reached.

Note that if the additional constraint in this example is considered at least for the first 150
iterations, a solution of the problem is obtained within the smallest number of optimization
method iterations. Problems with the linear dependence in the KKT-condition are not ob-
served for the discussed example. In general, the choice of an suitable number of iterations
with the additional constraint depends significantly on the dynamics of the problem and the
boundary conditions of the motion task. The presented optimization of three-dimensional
arm motions is a complex problem. Consequently, a larger number of iterations in the inver-
sions are needed which results in larger values for the number of iterations with the additional
constraint.

A more detailed discussion of the goal attainment approach for a similar three-dimensional
arm motion problem can be found in [5].
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Figure 6.12: The hand paths of the data and the starting value with the shoulder at the origin
(left) and the upper level cost function over the iteration number of the optimization (right).
Optimization runs with different numbers of iterations using the additional constraint are
displayed (Every fifth cost value is depicted). [ : start, : data hand path]
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6.7 Transfer to Robotic Systems

In recent years a lot of research on human motions has been driven by the robotics community.
This is due to the rise of humanoid robots which become more and more suitable to work in
real world environments shared with humans. Naturally, several problems arise in order to
suitably control such robotic systems. First of all, the tasks involve interaction with a priori
unknown objects in a dynamically changing environment which makes replaying of beforehand
defined movements nearly impossible. Second, sharing a common workspace with humans
necessitates that the motions of each other can be anticipated. Third, the acceptance of a
robotic system by the human depends on the hardware design and the realized movements
and skills [81]. However, one has to keep in mind the effect known as the uncanny valley that
the acceptance of a technical system being in many aspects very similar to the human, but
not perfectly so, might cause a rejection by a human observer.

A standard way to address these issues is to build humanoid robotic systems with the goal of
controlling them in a human-like fashion, but to observe the differences in the kinematics and
dynamics between the robot and the human. Considering the large amount of possible tasks,
the best way to control the robots is to learn from humans. A considerable amount of research
in this direction is published; see section 6.7.2 for a few details on imitation learning. If
selected motions can be learned from demonstration, the task remains to generate adaptively
reasonable motions for new tasks. One way to do so is to use building blocks describing
submotions. These motion primitives can then be combined to generate a variety of overall
motions; a short introduction is given in section 6.7.1.

Even if the principles underlying human motions are known, a mapping problem has to be
solved in order to use the same principles for robot control. Due to the different kinematic
and dynamic properties of human and robot arms, a rather complex mapping process seems
to be needed [81]. Mapping strategies presented in literature range from key posture usage in
computer graphics [350] to multi-stage processes assuring feasibility and similarity [81]. The
problem of animating non-human characters using human motion data is closely related to
the robot control problem. On the one hand, the differences between the human properties
and those of the character might be greater than those between human and humanoid robot,
but, on the other hand, issues like collisions, joint limits and dynamical restrictions are not
considered [250, 268, 350]. The focus of multi-stage processes used in robotics [35, 81] is on
the latter aspects while trying to maintain a certain similarity between the robot posture
and the given human one. Another approach to tackle the mapping problem is to design the
robotic system accordingly. For example, the complex layout of the human shoulder allows
for a large range of motions which can be captured by a robot with additional degrees of
freedom [85].

6.7.1 Motion Primitives

The idea that humans use several separate models, called motion primitives, to accomplish
subtasks is supported by two basic observations. First, going back to Bernstein [25], humans
seem to follow mental templates of motion when executing motor tasks [103]. Second, a
large number of different motions are used by humans for all kind of manipulation tasks in
various environments [346]. Human motor coordination is known to develop gradually during
postnatal life. Three concurrent steps are essential in the coordination of the sensorimotor
systems [288]: a basic repertoire of spontaneous motions, the ability to sense the effects of
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various movements and selection of the actual movement. Various experiments, e.g., [32, 142,
221, 222], for different kinds of motor systems suggest that voluntary actions are composed of
simpler elements [103] and that the sensorimotor control is realized simultaneously on multiple
levels [200]. Furthermore, experiments suggest that new and more complex primitives are
obtained in a learning process by combining simpler motion primitives. Thus, the basic
assumption of this section is that motion primitives combined to a sequence can accomplish
a complete goal-directed movement [273] capturing human characteristics. Using a set of
motion primitives reduces the dimensionality and complexity associated with the motion
control problem [103]. In consequence, from the perspective of learning the primitives seem to
be much more reasonable than pure trial and error learning [275]. For unsupervised learning
methods such as reinforcement learning such complex motions might be computationally
impossible [272].

The idea of motion primitives directly leads modular frameworks like the one in [346] where
multiple forward and inverse models are used to build an enormous vocabulary of motor
behaviors. A responsibility signal is proposed to select the suitable primitives based on the
context. A related idea introduced by [145] uses a hierarchical structure with bidirectional
information exchange and a responsibility function to select the correct primitives at each
layer, which range from low level controllers to global task representations. In this context
learning new motions coincides with finding the right responsibility function for this task.
A functional hierarchy is also used by the models [195, 305] such that the lower level deals
with the dynamics of the system and the upper level controls a simplified dynamical system.
Unsupervised learning is used in [305] to build a compact model of the correlations between
motor commands and sensory feedback. In [195] the applicability is shown for arm models of
different complexities. Another approach to build a framework using motion primitives is to
model the human anatomy. Three layers modeling the musculoskeletal plant, the spinal cord
and the brain are used in [200] to approximate the hierarchical structure of the real control
problem faced by the brain.

Several approaches, e.g., [69, 114, 162, 273, 274, 300], try to find a suitable description of
primitives. If appropriate operations and transformations are used, these motion primitives
can yield complex actions. A segmentation and classification algorithm computing the se-
quence of primitives that generate the movements is discussed in [69]. Similarly, in [114] a
principal component analysis with a clustering technique is utilized to extract the primitives
out of the complex motion. [300] use an approach based on Gaussian-like tuning functions
to predict learning of hand motions. In contrast [273] use point attractors and limit cy-
cles to describe the nonlinear behavior in rhythmic motions and point-to-point movements.
Reinforcement learning is enabled by dynamic primitives based on point attractive systems
[162, 274].

6.7.2 Imitation Learning

The classical manual programming of control strategies for robotic motions exceeds its possi-
bilities if a large set of different motions has to be considered. Consequently, other methods
are needed to generate the controls for the control of humanoid robots in everyday environ-
ments. The most simple approach to get such control strategies is trail-and-error learning or
reinforcement learning where some reward function is maximized over various trials. Because
robotic control problems are in general continuous in time, states and controls, most rein-
forcement learning strategies are based on a discretization of these quantities, which causes a
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dimensionality problem. In case of a coarse discretization the control performance is poor and
in case of a fine discretization the problem size explodes and many learning trials are needed.
Thus, a number of strategies to circumvent this problem ranging from using prior knowledge
to adaptive partitioning applications have been discussed, see, for example, the book [294] for
reviews and details. A generalization of reinforcement learning to continuous problems is dis-
cussed in [83] where the Hamilton-Jacobi-Bellmann equation for infinite-horizon, discounted
reward problems and suitable approximations are used.

In order to speed up the tedious learning process, imitation learning - also termed learning by
demonstration - is proposed where the motion is demonstrated by a teacher and the student
has to copy the motion. Such a learning strategy being natural to most humans is a demand-
ing task if the student is a robotic system. With the goal to automate this learning strategy,
all relevant elements from perception models to metrics for comparisons have to be known
or consistently defined [273]. Additionally, it has to be assured that motions learned via
imitation are generalizable to other contexts, because adaptivity and robustness are needed
in dynamical environments [30, 246]. This imitation learning idea is in line with human-
inspired robot design caused by the observation that “humans exhibit all the properties we
want from a robot system in terms of adaptivity, learning capabilities, compliance, versatil-
ity, imitation and interaction capabilities etc.” [281]. All variables defining the primitives to
be learned have to be observable in imitation learning, leaving only kinematic variables as
candidates [273]. To enable robotic systems to learn from humans, a framework is discussed
in [80] which includes the whole loop from segmenting actions and understanding human
intention, over learning and representing the task to mapping and executing the learned be-
havior. For further details on these methods and other learning frameworks see, for example,
[14, 273, 281].

Using probabilistic representations of demonstrated motions, several approaches based on
regression techniques are discussed in literature [53, 132, 327] and some successful general-
izations to other situations are reported [53].

Another possibility to represent the relevant information of observed motions are motion
primitives (cf. section 6.7.1). Then, in the learning phase the perceived movements are
mapped onto the set of existing primitives [73, 246, 273, 341]. However, depending on the
choice of the motion primitives, a correspondence problem between the different kinematic
and dynamic systems might occur. Another approach to capture the learning process is to
introduce a hierarchy of artificial neural networks structured in accordance with neurological
structures [30, 280]. To enforce the plausibility from the biological perspective, the func-
tionalities of the individual networks of [30] resemble those of specific brain regions and the
parameters optimized by learning describe the connections between the networks. The idea
of [280] is to learn models for the dynamics and the cost function without prior knowledge
and then generate approximately optimal motions for the learned models.

A third major group of methods used in the context of imitation learning are strategies of
inverse reinforcement learning introduced by [226]. This group assumes a discrete problem,
in most cases in form of a Markov decision problem, and tries to find a cost function such
that the demonstrated motion is optimal. [226] present a solution strategy and discuss the
extension to a non-discrete setting using linear function approximations. If the optimal cost
function is assumed to be a linear combination of known criteria, the problem is termed
the apprenticeship learning problem [1]. A first solution strategy is presented by [1] and
the later version of [296] is reported to improve the theoretical convergence order. In [295]
the apprenticeship learning problem is given in form of a linear programming problem and
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examples of learning demonstrated impedance characteristics are discussed. One has to note
that the concept of inverse reinforcement learning can lead to ambiguities, since a demon-
strated motion can be optimal for more than one cost function [358]. In [358] a probabilistic
approach to the inverse reinforcement problem is used; utilizing approximate distributions of
the paths in the MDP, the ambiguity in choosing a distribution is resolved by the principle
of maximum entropy. Finally, the maximum margin planning framework [256, 257] tries to
solve a problem very similar to the problem of the inverse reinforcement learning.

6.7.3 Human-like Optimal Control

In this section we want to discuss an example of how to use the inverse optimal control
approach for human-like robot control. The research in this direction is done in close cooper-
ation with the research team of M. Beetz that maintained the hardware and conducted and
processed the human experiments; results exceeding the example discussed here are published
in [7].

The general idea is to observe a human doing everyday manipulation tasks in a common
environment - this special setup is focused on human motions in a kitchen. The recorded
data suggests that human arm motions have stereotypic patterns in this environment (cf.
figure 6.13). After recording and segmenting the motions of the humans, the inverse optimal
control framework is used to compute the combination of the basic cost functions that comes
closest to the data. Assuming that the used basic cost functions are transferable to a robotic
manipulator, the combination of cost functions obtained by inversion of human data can be
used to compute optimal trajectories for the robot respecting its dynamic properties.
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Figure 6.13: Two hand paths of recorded human reaching motions.

Since the recorded human motions are full three-dimensional arm motions, the three-
dimensional arm model is used here (cf. section 6.5.2). This model combines two rigid
links with several linear muscles and can only be viewed as a rather coarse approximation of
the real dynamics of the human arm. The boundary conditions on the position and velocity
of the hand at start and end are prescribed in accordance with the given data values. We
restrict the considered basic cost functions to the rigid body level and avoid the problem of
transferring cost functions based on muscle properties to the robotic system later on. Note
that in literature no general cost functions for the three-dimensional arm movements are
proposed different from the two-dimensional case, consequently, the planar ones like torque
change and hand jerk are generalized to the three-dimensional case (cf. section 6.6.3).
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The figure 6.14 shows some snapshots of a typical video sequence recorded in the kitchen
while the participant sets the table. With data processing techniques the motion data is
extracted from the video sequence and then the overall motion is segmented into individual
motions. Given the hand path of the participant, the inversion technique yields the closest
trajectory that is optimal with respect to a combination of the basic cost functions. It can
be seen in figure 6.14 that the optimization result comes close to the recorded data.

Figure 6.14: Pictures of recorded human motions in the kitchen and the corresponding hand
trajectories of the data ( ) and the inversion result ( ).

The obtained optimal weight distribution is then used to generate optimal trajectories for
a robotic manipulator. In this case an iCub robot (see figure 6.16) having kinematic and
dynamic properties similar to a small human child is used to exemplify the control approach.
The optimal control problem for the robotic system is solved with respect to the kinematic
and dynamic properties of the robot; this provides the huge advantage over a simple mapping
of recorded human joint values on the technical system that consistent motions are generated
which make use of all the actuating properties of the robotic arm and, for example, do
not violate bounds on the joint values. Futhermore, the inverse optimal control problem
yields a human-like control strategy which can easily be adapted to changes in the boundary
conditions by re-optimizing the corresponding optimal control problem. To visualize this
adaptation to task changes, the hand paths for the iCub robot are displayed in figure 6.15
that are optimal with respect to the human-demonstrated cost function.
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Figure 6.15: Projection of the three-dimensional hand paths to different final positions opti-
mized for the iCub dynamics using the inversion result.
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Finally, it has to be mentioned that the transfer of an optimal control problem to a real
technical system is a challenging task where one has to consider the hardware specific control
possibilities and the limitations resulting from actuation and model errors. However, figure
6.16 shows that the whole process from observing human motions to controlling the robot
according to the inversion result has been accomplished for example motions (cf. [7]).

Figure 6.16: The iCub robot controlled according to a cost combination obtained by inversion
of human data.



Human Car Driving

Chapter 7

The number of driver assistance systems assuring a higher level of security and improving
the comfort of car driving is increasing steadily in modern cars. The goal of the systems
is to support the driver, but not to limit possible maneuvers. In general, the tendency in
car development is clearly towards (partly) autonomous systems, which leads to the problem
of imitating human control behavior in order to increase the acceptance of such assistance
systems by the human. Consequently, we frame this problem in the setup of our bilevel
optimization approach and ask for the underlying optimization criteria reproducing data of
human car driving.

The work presented in this chapter focuses on lane changes on a highway and is the result
of a cooperation with Sven Kraus, Lehrstuhl für Fahrzeugtechnik, Technische Universität
München. Selected results are already published in our paper [187], the diploma thesis of
Weigl [336] and the dissertation of Kraus [186].

The structure of this chapter is as follows: First, a brief introduction of the state of the art
with regard to lane change characteristics and optimal control modeling of the driver is given
in section 7.1, then details on the autonomous car and the data acquisition and processing
are discussed in section 7.2. Dynamical models of the car are derived in section 7.3 using the
popular approach of a single-track model and finally, in section 7.4, aspects of formulating
the bilevel problem are discussed and some optimization results are presented.

7.1 State of the Art

Important characteristics of a lane change are the amount of time needed for the maneuver
and the lateral distance between the two lanes which is given by the structural condition of
the street. Additionally, the geometrical and temporal properties of the trajectories have to
be considered.

Several papers, e.g., [234, 289], analyze the time needed for the total movement, but the criti-
cal issue of how start and end of a lane change are determined is not discussed. Consequently,
it is hard to compare the individual results and thus they can only be used as approximate
values. In [289] values are reported to depend on the particular traffic situation and the range
of possible values is from 3.5 seconds to 6.5 seconds; in situations of emergency one might
even observe lane changes within a two-second period.

Approaches to model the geometry of lane changes originate mostly in the accident recon-
struction research. A simple approach is to combine two segments of a circle with opposite
curvatures, but the non-continuous curvature at the connection results in unrealistic controls.

137



138 CHAPTER 7. HUMAN CAR DRIVING

More realistic results can be obtained if segments of clothoids are used instead of circle seg-
ments, because they guarantee the continuity and the piecewise linearity of the curvature.
This approach is used to design the layout of streets in the construction process, but results
in a mathematically complex problem without even considering the dynamical properties of
a car. Consequently, other approaches are discussed in literature. For example, a straight
line is combined with a sinusoidal segment in [205] or a polynomial approach is used to model
the geometry of the trajectory in [258].

The goal of a driver model is to capture the complex human behavior which is highly adapt-
able to the task at hand and the corresponding traffic situation. A detailed discussion of
approaches based on an optimal control framework can be found in [50].

7.2 Experimental Vehicle

The experimental car used to record the human steering data is developed as a part of
the German trans-regional research cooperation SFB/TR-28 “Kognitive Automobile”. It is
a modified Audi Q7 3.0 TDI with various sensors and actuators which allow autonomous
control; for details on this experimental vehicle see [301]. The sensors allow to measure all
relevant dynamical quantities of the car motion.

The data of the human lane change maneuvers was recorded on the German highway A9
using segments with a totally straight layout. To reduce the noise in the measurements, the
data is smoothed with a low-pass filter according to the maximal frequency realizable by a
human controlling a car [151]. Furthermore, to reduce the dead time of the camera-based
measurements a Kalman filter is used; see [187] for details.

A central aspect in analyzing human-steered lane changes is identification of the time in-
stances of start and end. It is a hard task to obtain good approximation of these time
instances; for example, the triggering of the direction indicator is not a suitable indicator for
the start of the lane change, because the triggering only indicates the intention to change
the line, but not the actual start of the maneuver. Similarly, the measured values of indi-
vidual states do not reliably define the start or end of the motion. In consequence, we use
thresholds for several states, but nevertheless the obtained values have to be considered as
approximations.

7.3 Dynamical Car Model

A common approach to model the dynamical behavior of cars is to consider single-track
models where the pairs of wheels on each axle are virtually replaced by a single one in the
center of the respective axle. Such a simplification is possible if the rolling and pitching angles
of the car are small throughout the motion. In the following sections we will derive a system
of equations modeling the nonlinear behavior of such a single-track model and then discuss
a linearizaton of these equations.

7.3.1 Nonlinear Single-Track Model

The modeling of the single-track car follows the line of [124]. The following quantities are
relevant to state the dynamical equations of the system: The mass of the car m is abstracted
in the virtual center of mass which lies between the front and rear axle with a distance of lr and
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lf . The position of the center of mass at time instance t is given by P (t) = (Px(t),Py(t)) ∈ IR2

in Cartesian coordinates. The angle between the Px-axis of this coordinate system and the
single-track axis is the yaw-angle β(t). Using this yaw angle, one computes the positions of
the virtual front and virtual rear wheel given by Pf (t) and Pr(t) ∈ IR2, respectively. One of
the controls of the car is the steering angle ϑ(t) which is the angle between the direction of
the front wheel and the single-track axis. For all three positions P (t), Pr(t) and Pf (t) the
corresponding velocities are defined by v(t) = (vx(t), vy(t)), vf (t) and vr(t). Each of these
velocities draws a (slip) angle with the single-track axis denoted by α(t) and αr(t) or with
the direction of the wheel αf (t).

Flr(t)

Fsr(t)

lr

lf

ϑ(t)

Flf (t)

Fsf (t)

vf (t)
αf (t)

Fl(t)

Fs(t)

β(t)

Figure 7.1: Schematic model of the single-track car.

Note that the slip angle α(t) is given by

α(t) = β(t)− arctan

(
vy(t)

vx(t)

)
and the absolute value of the velocity of the center of mass follows from

|v|(t) =
√

(vx(t))2 + (vy(t))
2.

Furthermore, the slip angles at the front axle and the rear axle are given by

αf (t) = ϑ(t)− arctan

(
lfβ
′(t)− |v|(t) sin(α(t))

|v|(t) cos(α(t))

)
(7.1)
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and

αr(t) = arctan

(
lrβ
′(t) + |v|(t) sin(α(t))

|v|(t) cos(α(t))

)
. (7.2)

In addition to these kinematic properties of the single-track model, several forces have to be
introduced. First of all, the longitudinal forces Flf (t) and Flr(t), and the side forces Fsf (t)
and Fsr(t) on the respective wheels. Furthermore, air resistance of the car results in a drag
force opposing the current motion. Here in this model we assume that such forces have only
an effect along the single-track axis: denote by FA(t) ≥ 0 the absolute value of the force and
by lA the distance between the center of mass and the drag mount point. Finally, the actual
force working on the center of mass F (t) = (Fl(t), Fs(t)) ∈ IR2 in car-based coordinates is
the sum of all forces working on the car:

Fl(t) = Flr(t) + Flf (t) cos(ϑ(t))− Fsf (t) sin(ϑ(t))− FA(t),

Fs(t) = Fsr(t) + Flf (t) sin(ϑ(t)) + Fsf (t) cos(ϑ(t)).

As a consequence of Newton’s law, the following differential equation describes the transla-
tional motion of the center of mass:

d2

dt2
P (t) =

d2

dt2

(
Px(t)
Py(t)

)
=

1

m

(
Fl(t) cos(β(t))− Fs(t) sin(β(t))
Fl(t) sin(β(t)) + Fs(t) cos(β(t))

)
. (7.3)

The rotational dynamics of the car are captured by the equation

I d2

dt2
β(t) = Fsf (t)lf cos(ϑ(t))− Fsr(t)lr (7.4)

+ Flf (t)lf sin(ϑ(t))− FA(t)lA,

where I > 0 is the inertia constant of the car for rotations about the center of mass.

In the following formulas are given for the individual forces acting on the car. A standard
approach to model the drag due to air resistance is

FA(t) =
1

2
cwρAA|v|

2,

where cw is the air drag coefficient of the car, ρA the air density and A the effective surface
on which the air resistance is working.

The forces acting upon the wheels in longitudinal direction are the sum of the forces generated
by the rolling resistance of the wheels (FRr(t) and FRf (t)) and the acceleration and braking
forces controlled by the driver (FDr(t) and FDf (t)):

Flf (t) = FDf (t)− FRf , Flr(t) = FDr(t)− FRr.

In addition to the steering angle ϑ(t), the model has a second control FD(t) which is the total
forces generated by accelerating or braking; positive values refer to acceleration of the car
and negative ones to a speed reduction. Since the force distribution between front and rear
axle is seldom uniform, we use the following approximations for our experimental vehicle (cf.
section 7.2):
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FDf (t) =



1
3FD(t) if FD(t) > ε,

1
2FD(t)− 1

4εFD(t)2 + 1
12ε3

FD(t)4 if |FD(t)| ≤ ε,

2
3FD(t) if FD(t) < −ε,

FDr(t) =



2
3FD(t) if FD(t) > ε,

1
2FD(t) + 1

4εFD(t)2 − 1
12ε3

FD(t)4 if |FD(t)| ≤ ε,

1
3FD(t) if FD(t) < −ε,

where ε > 0 is a small number, e.g., ε = 0.01 [N ]. The interval [−ε, ε] is used to generate a
continuously differentiable transition between braking and acceleration behavior. If necessary,
the above polynomial could be replaced by a higher order one to assure that FDf (t) and FDr(t)
are twice differentiable with respect to FD(t).

For both the rolling resistance and the lateral forces on the wheels we use simpler models
than the ones presented in [124] which are based on the works of [243] and [260]. First,
the relations between the sidewards forces and the slip angles of the wheels are assumed to
be linear and the model seems to capture the main characteristics of the here analyzed car
maneuvers with reasonable small slipping:

Fsf (t) = cfαf (t) and Fsr(t) = crαr(t), (7.5)

where the constants are cf = 1.3 · 105 [N/rad] and cr = 2.55 · 105 [N/rad] in accordance with
measurements of the behavior of the experimental vehicle. Second, it is assumed that the
rolling resistance is independent of the velocity of the car. Consequently, the forces are the
product of the coefficient of the rolling resistance cR and the static loads on the wheels:

FRf = cR
mglf
lf + lr

and FRr = cR
mglr
lf + lr

,

where g = 9.81 [m/s2] is the gravitation constant and measurements of the rolling resistance
coefficient result in cR = 2.2 · 10−2.

In addition to the control FD(t) influencing the velocity of the car, the second derivative
of the steering angle ϑ(t) is second control variable. Summing up, the following system of
ordinary differential equations is used to model the dynamics of the car:
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Parameter Value

m mass of car 2.92 · 103 [kg]
I inertia of car 5.561 · 103 [kg m2]
lf distance between center of mass and front axle 1.533 [m]

lr distance between center of mass and rear axle 1.457 [m]
A effective surface causing air drag 2.87 [m2]

Table 7.1: Model parameters for the experimental vehicle

d

dt



Px(t)

Py(t)

β(t)

vx(t)

vy(t)

β ′(t)

ϑ(t)

ϑ′(t)



=



vx(t)

vy(t)

β ′(t)

(Fl(t) cos(β(t))− Fs(t) sin(β(t))) /m

(Fl(t) sin(β(t)) + Fs(t) cos(β(t))) /m(
Fsf (t)lf cos(ϑ(t))− Fsr(t)lr

+ Flf (t)lf sin(ϑ(t))− FA(t)lA

)
/I

ϑ′(t)

ϑ′′(t)



.

Defining the state vector by

x(t) :=
(
Px(t),Py(t), β(t), vx(t), vy(t), β

′(t), ϑ(t), ϑ′(t)
)
∈ IR8

and the control vector by
u(t) :=

(
FD(t), ϑ′′(t)

)
∈ IR2,

the dynamics of the car can be written in the standard form

x′(t) = ϕ(x(t), x′(t))

with ϕ : IR× IR→ IR combining all terms discussed in this section.

7.3.2 Linear Single-Track Model

In this section we simplify the nonlinear car dynamics by linearization; the resulting linear
single-track model is a common model to control the lateral dynamics of a car and differences
in the bilevel optimization results between the two models are discussed in section 7.4.3. The
two basic assumptions legitimating the linearization of the dynamics are that the velocity
|v|(t) is constant and that the angle β(t) +α(t) is small. Note that these assumptions result
in a motion of the car mainly in the X -direction.

We start the approximation process with the lateral forces on the wheels. The nonlinear
formulas for the slip angels of the front wheel and the rear wheel are the equations (7.1)
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and (7.2). Using the assumption that the angles are small, one can approximate the two
equations by

αf (t) ≈ ϑ(t)−
lfβ
′(t)− |v|(t)α(t)

|v|(t)
and

αr(t) ≈
lrβ
′(t) + |v|(t)α(t)

|v|(t)
.

Combining these with the equations (7.5), the following linear equations for the lateral forces
are obtained:

Fsf,lin(t) := cfϑ(t) + cfα(t)−
cf lf
|v|(t)

β ′(t),

Fsr,lin(t) := crα(t) +
crlr
|v|(t)

β ′(t).

These terms lead to the linear version of the total side force working on the center of mass
of the car:

Fs,lin(t) := Fsf,lin(t) + Fsr,lin(t).

Note that the longitudinal forces have to be zero, because otherwise they would cause a
velocity change which would violate one of the basic assumptions.

If one assumes that the absolute value of velocity is given by the constant |v|, the velocity
vector of the car is given by :

v(t) =

(
vx(t)
vy(t)

)
= |v|

(
cos(α(t) + β(t))
sin(α(t) + β(t))

)
. (7.6)

Consequently, the acceleration of the car is given by

a(t) =

(
ax(t)
ay(t)

)
= |v|

(
− sin(α(t) + β(t))
cos(α(t) + β(t))

)
(α′(t) + β ′(t)).

Using the assumption that β(t) + α(t) is small, the following linear relation is obtained for
the acceleration in Y -direction:

ay(t) ≈ |v|(α′(t) + β ′(t)).

In a similar manner, the Newton equation (7.3) can be approximated by

ay(t) ≈
Fs(t)

m
.

Combining these equations we obtain the following linear relation:

α′(t) =
cf + cr

m|v|
α(t) +

(
crlr − cf lf
m|v|2

− 1

)
β ′(t) +

cf
m|v|

ϑ(t). (7.7)

The second dynamical equation to linearize is equation (7.4) which leads to

Iβ ′′(t) ≈ Fsf,lin(t)lf − Fsr,lin(t)lr,
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if the forces due to air drag are neglected. In consequence, the following linear relation is
determined for the rotational dynamics:

β ′′(t) =
cf lf − crlr
I

α(t)−
cr(lr)

2 + cf

(
lf

)2

I|v|
β ′(t) +

cf lf
I

ϑ(t). (7.8)

Combining the linearized Y -component of equation (7.6), i.e.,

vy(t) ≈ |v|(α(t) + β(t)),

with the linear versions of equations (7.7) and (7.8) yields the following linear ordinary
differential equation:

x′lin(t) = Axlin(t) +Bulin(t),

where the state vector and its time-derivative are defined by

xlin(t) :=


α(t)
β ′(t)
ϑ(t)
β(t)
Py(t)

 and x′lin(t) :=


α′(t)
β ′′(t)
ϑ′(t)
β ′(t)
vy(t)

 ,

and the scalar control ulin(t) ∈ IR is the rotational velocity of the steering wheel ϑ′w(t); the
ratio between ϑ′w(t) and ϑ′(t) is given by the constant ζ > 0, i.e.,

ζϑ′(t) = ϑ′w(t).

The time-independent matrices A ∈ IR5×5 and B ∈ IR5×1 have the following structure:

A :=



cf+cr
m|v |

crlr−cf lf
m|v |2 − 1

cf
m|v | 0 0

cf lf−crlr
I − cr(lr)

2+cf(lf)
2

I|v |
cf lf
I 0 0

0 0 0 0 0
0 1 0 0 0
|v| 0 0 |v| 0

 ,

B :=

(
0, 0,

1

ζ
, 0, 0

)T
.

Note that this linear model of the car dynamics can be extended to motions along curved
paths by introducing a reference trajectory and considering its curvature [336]. For the
experiments analyzed in section 7.4.3 the assumption of a straight street is sufficient.

7.4 Car-Steering Bilevel Problem

In the following the elements of the car-steering bilevel problem are discussed and numerical
results for both the linear and the nonlinear version of the car dynamics are presented. The
focus of section 7.4.1 is on the definition of the parameterized family of cost functions for the
optimal control problem and in section 7.4.2 a suitable distance measure for the upper level
problem is discussed. Inverse optimal control results can be found in section 7.4.3.
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7.4.1 LLP Formulation

The problem of optimal car control being the lower level problem of the considered bilevel
problem is the combination of a cost function to minimize, a system of ordinary differential
equations modeling the car dynamics and several boundary conditions describing the driving
task. In section 7.3 two models of the car dynamics are derived; the linear version models only
the lateral dynamics of the car while assuming a constant velocity, but the nonlinear model
considers both longitudinal and lateral dynamics allowing for more control of the driving
maneuver. Consequently, the considered cost functions and the boundary conditions have to
be chosen in accordance with the respective model.

We start with the discussion of cost functions for the linear model, because these criteria can
easily be transferred to the nonlinear model, but not vice versa. Naturally, the standard cost
functions are the minimization of selected states, their time-derivatives or controls. The cost
functions related to an economical driving style are the minimization of the steering angle
ϑ(t) or the angular steering velocity at the steering wheel ϑ′w(t):

fϑ(xlin, ulin) :=

∫ tf

t0

ϑ(t)2 dt,

fϑ′(xlin, ulin) :=

∫ tf

t0

ϑ′w(t)2 dt.

On the other hand, the stability of the driving maneuver being a safety-related issue is
captured by cost functions using either the yaw angle β(t), the slip angle α(t) or their time-
derivatives β ′(t) and α′(t):

fβ(xlin, ulin) :=

∫ tf

t0

β(t)2 dt,

fα(xlin, ulin) :=

∫ tf

t0

α(t)2 dt,

fβ′(xlin, ulin) :=

∫ tf

t0

β ′(t)2 dt,

fα′(xlin, ulin) :=

∫ tf

t0

α′(t)2 dt.

A more comfort-related cost function is the minimization of the lateral acceleration ay(t)
which leads to the cost function

fay(xlin, ulin) :=

∫ tf

t0

ay(t)
2 dt =

∫ tf

t0

|v|2(α′(t) + β ′(t))2 dt.

Another set of cost functions is obtained if the deviation from a reference trajectory is con-
sidered, cf. [50]. Here we consider trajectories resulting from combining two polynomials of
fourth order according to [258]. The connection point of the two polynomials corresponds to
the sign change of the steering angle. An asymmetrical geometry is observed in human-steered
lane changes by [289] and it is reported that the length of the time-interval corresponding to
the second trajectory part is twice the length of the first one. This behavior is captured by
the trajectory r̃0.33 : [t0, tf ]→ IR. Additionally, we introduce a trajectory r̃0.70 : [t0, tf ]→ IR
where the switching point occurs at seventy percent of the total movement time. Such a more
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racy driving behavior could be necessary in crowded traffic situations. The corresponding
cost functions are:

fr̃,0.33(xlin, ulin) :=

∫ tf

t0

(Py(t)− r̃0.33(t))2 dt,

fr̃,0.70(xlin, ulin) :=

∫ tf

t0

(Py(t)− r̃0.70(t))2 dt.

Note that all the quantities minimized in these cost functions are also available in the non-
linear car model and consequently, the nonlinear equivalents of these cost functions can be
defined straightforwardly. However, the following cost functions make use of the velocity or
positional information of the nonlinear dynamics and are therefore not suitable for the linear
case.

Given the positions of the car P (t) =
(
Px(t),Py(t)

)
for all t ∈ [t0, tf ], the cost function

minimizing the jerk of the car is given by

fjerk(x, u) :=

∫ tf

t0

(
d3

dt3
Px(t)

)2

+

(
d3

dt3
Py(t)

)2

dt.

Further cost functions result if the accelerating forces FD controlled by the driver are mini-
mized

facc(x, u) :=

∫ tf

t0

(FD(t))2 dt

or the overall control input is considered:

fu(x, u) :=

∫ tf

t0

(FD(t))2 +
(
ϑ′′(t)

)2
dt.

Note that a relative scaling of the different control variables in fu might be needed. The
last cost function we want to add is the deviation of the car’s absolute velocity value from a
reference velocity v ≥ 0:

fv(x, u, v) :=

∫ tf

t0

(|v|(t)− v)2 dt.

Given these basic cost functions, the parameterized family of cost functions for the lower
level problem is obtained as convex combinations of the basic ones. To fully state the optimal
control problem, boundary conditions on the state are needed; we specify these conditions in
the section on the corresponding numerical results.

7.4.2 ULP Formulation

The definition of a distance measure is needed for the upper level program which captures
the important aspects of the deviations between the trajectory computed by optimal control
and the recorded trajectory. In general, one could consider the weighted combination of the
distances of all state values, but this would lead to the problem of determining a suitable
weight combination. Furthermore, the scales and the precisions of the measurements differ
between the states, thus finding a reasonable combination of weights is difficult.

In consequence, we here use the only the reliable positional information to compare the
recorded data with the computed values. In case of the linear dynamics the comparison is
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limited to the Y -component only, while for the more general nonlinear model the Euclidean
distance between the two points in the horizontal plane is used.

Note that (at least in the nonlinear problem) different goals might be accomplished in the
upper level problem depending on the choice of the actual distance measure. If points of equal
path length are compared, the focus is on reproducing the Cartesian path of the data, but
the temporal relation is of no importance. Contrarily, if distances of positions at the same
time instances are used, the temporal aspects gain more importance than the pure positional
information. For a more detailed discussion of distance measures for the upper level problem
see the section 4.3.

7.4.3 Numerical Results

The following numerical examples address the reconstruction and inversion of recorded lane
changes for both dynamical models. We start with an reconstruction example for the linear
model and present an inversion result considering only the lateral dynamics of the car. This
is followed by a reconstruction of a lane change using the full nonlinear car model and finally,
this model is used for inversion of recorded human data.

7.4.3.1 Reconstruction of a Lange Change for the Linear Model

The linear model is based on the assumption of a constant velocity |v| and in this first
reconstruction example the value for this velocity is given by |v| = 30 [m/s] = 108 [km/h].
Prescribing a fixed motion time of tf = 3 [s] for the maneuver, a distance of approximately
90 [m] results in forward direction. In this example the lane change corresponds to a difference
of 3.5 [m] between start and goal position in sideward direction, i.e., the following boundary
conditions are considered:

xlin(0) = (0, 0, 0, 0, 1)T and xlin(tf ) = (0, 0, 0, 0, 4.5)T .

The parameters defining the dynamical behavior of the linear car model are already stated
in table (7.1). Four basic cost functions fi are considered to define the parameterized family
of cost functions for this example:

i 1 2 3 4

fi fβ′ fϑ′ fα fy

For the data generation the weight distribution

w = (0.3, 0.5, 0, 0.2)T

is chosen and the starting value is generated by minimizing the cost function corresponding
to the weight distribution

(0.5, 0, 0.5, 0)T .

The curves of lateral positions Py(t) corresponding to the data and the starting value are
displayed in figure 7.2. Adding white noise of the magnitude 10−3 [m] to the generated data,
the following differences between the weight distribution of the data and of the numerical
result are obtained: (

1.44 10−2, 1.10 10−2, 6.85 10−6, 3.43 10−3
)T
.
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The corresponding differences in the lateral positions which are the only quantities considered
in the ULP cost function are also shown in figure 7.2. Note that the result is comparatively
good, because the maximal differences are of the order of 1 millimeter which is about the
noise level added to the generated data.

1 2 3

2

4

t [s]

Py(t) [m]

1 2 3

0.5

1

1.5

t [s]

|Py(t)− Py,data(t)| [mm]

Figure 7.2: The lateral positions corresponding to the data and the start value for the re-
construction (left) and the differences in the lateral positions between the data and the
reconstruction result (right). [ : starting value, : generated data ]

7.4.3.2 Inversion of Lateral Car Data

The inversion of a human-steered lane change is discussed in the following. Figure 7.3 shows
the recorded lateral positions for several lane changes and common characteristics can be
observed.

50 100 150

2

4

Px(t) [m]

Py(t) [m]

0.2 0.4 0.6 0.8 1

0.5

1

Px(t)/Px(tf ) [·]

Py(t)/Py(tf ) [·]

Figure 7.3: Recorded position data of human-steered lane changes (left) and normalized
versions (right).

Note that the distances needed in forward and sideward direction differ slightly for the
recorded lane changes. This variation can be explained by the slightly different street config-
urations, other traffic participants and the variance of human perception and control.
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The general setting for the inversion task is identical to the previous section on the reconstruc-
tion of data simulated with the linear model, i.e., the family of cost functions, the dynamical
model and the general structure of the boundary conditions stays the same. Only the final
value Py(t) = 4.5289 [m] and the motion time tf = 5.6 [s] are adapted to fit to the given
data. Different weight distributions including the one used in the reconstruction example
lead to the following inversion result:

w = (0, 1, 0, 0)T .

This means the basic cost function fϑ′ minimizing the squared control input yields the lateral
car position closet to the recorded human data; see figure 7.4 for plots of the recorded and
computed lateral positions and the corresponding control inputs. Note that due to the linear
dynamics some basic cost functions introduced in section 7.4.1 lead to similar lateral car
positions and consequently, the number of considered basic cost function is rather limited.
To analyze whether the linear model of the car dynamics is an adequate simplification, the
following sections will address the full nonlinear car model.
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ϑ′w(t)| [rad/s]

Figure 7.4: The lateral positions corresponding to the recorded data and
the inversion result (left) and the corresponding optimal control (right).
[ : numerical result, : recorded data ]

7.4.3.3 Reconstruction of a Lange Change for the Nonlinear Car Model

The main differences between the nonlinear and the linear model for the car dynamics are
the time-dependent velocity of the car and the representation of the car positions. In the
nonlinear case the car position is given by a point in a plane instead of a lateral position only.
Consequently, the nonlinear model allows to consider more driving maneuvers by controlling
the acceleration of the car in addition to the steering angle of the front wheels.

The following reconstruction results for the nonlinear car model consider a lane change in
tf = 5 [s]; the corresponding distances of the maneuver are 150 [m] in forward direction and
3.5 [m] in sideward direction. The sideward velocity of the car is prescribed to be 0 [m/s]
at both start and end, while the forward velocity has to be 30 [m/s] at both time instances;
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note that a constant velocity is not feasible for the given task. Consequently, the following
boundary conditions result:

x(0) = (0, 1, 0, 30, 0, 0, 0, 0)T and x(tf ) = (150, 4.5, 0, 30, 0, 0, 0, 0)T .

In this example we introduced the following bounds on the states and controls, but they do
not become active for the actual reconstruction:

(−1,−2,−0.5π, 15,−10,−1,−0.5π,−0.5)T ≤ x(t) ≤ (151, 5, 0.5π, 45, 10, 1, 0.5π, 0.5)T

and
(−15000,−1000)T ≤ u(t) ≤ (5000, 1000)T .

Again, four basic cost functions are selected for the example:

i 1 2 3 4

fi fy fβ fjerk fu

The corresponding optimal trajectories of the car using the nonlinear model are displayed
in figure 7.5 and similar to the planar arm motion example scaled versions of the weight
distributions are considered in the following. The corresponding scales are determined by
comparing the values of each cost function for the different basic trajectories (cf. section
6.6.1). The upper level cost function Φtime is used that measures the distances between the

data and the LLP state by comparing the corresponding tuples
(
Px(t),Py(t)

)T ∈ IR2 of the
car positions for given equidistant time instances.

The data trajectory of the reconstruction example is generated by optimizing the cost function
given by the (scaled) weight distribution

w = (0.05, 0.4, 0.25, 0.3)T .

The starting value of the inversion corresponds to the weight distribution (0, 0, 0, 1)T .
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Figure 7.5: The car positions minimizing the cost functions [ f1, f2, f3, f4]
(left) and the car positions of the reconstruction example [ starting value, data]
(right).
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The car trajectories corresponding to the starting value and the data are displayed in figure
7.5. Identically to previous reconstructions white noise of the magnitude 10−2 times the mean
difference of the individual data component is added to the simulated data to avoid artificial
effects resulting from a perfect model fit, i.e., the magnitude is about 1 [cm] in Y -direction
and about 0.5 [m] in X -direction. The following differences between the weight distribution
of the data and of the numerical result are obtained:(

1.10 10−3, 8.55 10−3, 3.63 10−2, 4.59 10−2
)T
.

This result indicates that our solution approach is able to determine the weight distribution
of a simulated lane change well enough and consequently, we advance to the inversion of
recorded human data.

7.4.3.4 Inversion of Planar Car Position Data

This section combines the inversion setup for the nonlinear car model as discussed in the
previous section with the data used in section 7.4.3.2. The goal is to address the differences
between the inversion results for the two car models. The inversion problem for the linear car
model is solved by the cost function minimizing the control input (cf. section 7.4.3.2). Since
in the nonlinear car model the car acceleration is as a second control variable in addition to
the derivative of the steering wheel angle, the generalization fu could be expected to yield a
good starting value for the inversion. Figure 7.6 displays the car trajectories corresponding
to the starting value, the data and the result of the bilevel optimization which is given by
the weight distribution

(0, 0, 0.391, 0.609)T .

The solution corresponds to a upper level cost value of 1.18 where a combination of the control
input and the jerk of the (planar) car position is minimized. Since both cost functions yield
similar trajectories and positional jerk is not available in the linear case, this result can be
interpreted as a generalization of the result obtained for the simpler linear car model.
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Figure 7.6: The car positions of the starting value, the inversion result and the data for the
first weight distribution (left) and the second one (right). [ starting value, inversion
result, data]
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However, random starting values show that the above mentioned starting value yields a local
solution with a ULP cost value being approximately 1.5-times larger than the value obtained
for other starting values. Exemplarily, we mention here a starting value corresponding to the
weight distribution

(0.15, 0.3, 0.45, 0.1)T .

The inversion result corresponding to this starting value has an ULP cost value of 0.73 and is
depicted together with the data in figure 7.6. The weight distribution of this inversion result
is the following: (

8.24 10−3, 7.85 10−1, 2.06 10−1, 0
)T
.

A comparison of the two plots of figure 7.6 alone does not explain the differences in the upper
level cost function. A further central aspect influencing Φtime is the velocity profile of the car
and figure 7.7 shows that the velocity profile of the second starting value is especially in the
first half closer to the recorded data than the one of the first starting value. However, the
differences are relatively small compared to the variances in the human data which clearly
shows the critical dependence of the upper level cost function on the velocity profile.
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Figure 7.7: The X -component of the car velocity for the two inversion results and the data.
[ first starting value, second starting value, data]

In consequence, this example illustrates on the one hand that the choice of the distance
measure influences considerably the result and has therefore to be selected in accordance
with the overall goal of the inversion. If one is interested only in the spatial component, the
upper level cost function should use a path representation in path length (cf. section 4.3).
A combination of such a cost function using only spatial information with one comparing
the velocity profiles separately allows for a relative weighting and might therefore be better
suited for certain applications (cf. for example the locomotion example in chapter 8). On the
other hand, the observation of a local minimum resulting from the combination of temporal
and spatial aspects is the reason for always testing multiple starting values in the inversion
and reconstruction examples.



Human Locomotion

Chapter 8

Human locomotion considers the overall problem of walking from a start position to a goal
position, without paying attention to the complex dynamical problem of taking individual
steps. Consequently, we will introduce a simple model of the locomotion dynamics, the
unicycle model, where the person is abstracted to a mass point with an orientation (cf.
section 8.1).

The idea of determining the optimal cost function used in human locomotion via inverse
optimal control is introduced in [217]. There, obstacle-free paths are considered and the
family of cost functions is given as linear combinations of five basic cost functions. The
bilevel problem is solved by nesting the individual solvers for the data fitting problem and the
optimal control problem. It is reported that the characteristics of the human motion data are
met and the results are used to control a humanoid robot (see section 4.2.4 for more details).
The goal of our research presented in this section is to extend the problem class to navigation
problems with moving obstacles, e.g., crossing persons. Therefore, we consider additional
cost functions and treat some of the modeling parameters as further optimization variables,
which introduces additional nonlinearities with respect to the parameters of the family of
cost functions. Furthermore, we extend the optimal control idea to a model predictive control
framework where the control strategies are updated during the motion according to newly
available information on the trajectory of the interferer.

Note that parts of this section are already published in [4].

8.1 Locomotion Dynamics

Simplifying the human navigation problem to a two-dimensional problem, the configuration of
the participant can be described by his/her Cartesian coordinates PP (t) = (PPx(t),PPy(t)) ∈
IR2 and its orientation βP (t) ∈ [0, 2π] at a time instance t; in the following, the direction given
by the angle βP (t) is referred to as the forward direction.

The considered model assumes that the rigid body can only be (linearly) accelerated in the
forward direction and consequently, the following ordinary differential equations state the
dynamics related to a translation of the rigid body:

d

dt
PP (t) = (vP (t) cos(βP (t)), vP (t) sin(βP (t)))T

and
d2

dt2
vP (t) = uv(t),

153
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PP (t)

βP (t)

vP (t)

Figure 8.1: Schematic illustration of the unicycle model.

where uv, one of the two control variables, is the jerk in forward direction. The rotational
dynamics are modeled by the simple differential equation

d3

dt3
βP (t) = uβ(t),

where uβ is the second control variable. Note that these simple integrator chains can easily
be extended to a model using the mass m and the inertia I of the moving person. In a similar
manner motions in sideward directions can seamlessly be included in this model. However,
the focus of this chapter is on more general properties of human locomotion and therefore
more complex models are set aside.

In consequence, the following system of first-order ordinary differential equations describes

the model dynamics: d
dt
x(t) = A(βP (t))x(t) +Bu(t), where the matrices are given by

A(βP (t)) :=



0 0 0 cos(βP (t)) 0 0 0
0 0 0 sin(βP (t)) 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 1
0 0 0 0 0 0 0
0 0 0 0 0 0 0


, B :=



0 0
0 0
0 0
0 0
0 0
1 0
0 1


,

and the state x(t) and the control u(t) are defined by

x(t) := (PPx(t),PPy(t), βP (t), vP (t), βP
′(t), aP (t), βP

′′(t))T

and u(t) := (uv(t), uβ(t))T , accordingly.

8.2 Cost Functions

The following basic cost functions are used in our computations of the locomotion problem
to build the parameterized family of LLP costs. In contrast to human arm motions where
several cost functions explaining the overall motion are given in literature, we have to start
with generic cost functions, because no single optimization criterion is proposed to explain
human locomotion. The most classic cost functions are minimization of a state or a control
variable:

fx,j(x) :=

∫ tf

t0

xj(t)
2 dt and fu,j(u) :=

∫ tf

t0

uj(t)
2 dt.
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In our setting this could, for example, correspond to minimization of forces and torques. In
addition, considering deviation from a reference value rj ∈ IR leads to the definition of further
cost functions. One realization of such a cost function could be motivated by the tendency
to walk at a comfortable walking speed:

fref,j(x) :=

∫ tf

t0

(
xj(t)− rj

)2
dt.

Note that the reference value rj corresponds to a nonlinear parameter being optimized in the
bilevel optimization. Another considered cost function is the deviation from a straight line
connecting start and goal positions.

fline(x) :=

∫ tf

t0

||PP (t)− Pline(PP (t))||2 dt,

where Pline is the projection on the straight line connecting the start and goal position.
Furthermore, the cost function fgoal introduced by [217] integrates the squared difference
between the current orientation βP (t) and the direction towards the goal position PG =
(PGx,PGy) ∈ IR2:

fgoal(x) :=

∫ tf

t0

(
βP (t)− arctan

(PGy − PPy(t)
PGx − PPx(t)

))2

dt.

Since the navigation tasks are considered to have a free final time tf , the minimization of
this final time gives a further basic cost function:

ftime(x) := tf .

8.2.1 Modeling the Interferer

In addition to the introduced cost functions for the optimal control problem a further cost
function is needed to model the influences of the interfering person on the path of the par-
ticipant. Note that the interferer does not communicate with the participant and is walking
at a (approximately) constant velocity along a straight line.

σf

σs

δIvI(t)

PI(t) C(t)

Figure 8.2: The parameters of the Gaussian model for the interferer.

The interferer cost is modeled by a normalized Gaussian centered at the point C(t) which is
computed from the current position of the interferer PI(t), and its velocity vI(t):

C(t) = PI(t) + δIvI(t),
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where the characteristic time δI ≥ 0, an optimization variable, is used to model the off-
center position observed in experiments. This takes into account the observation that the
participants tend to pass behind the interferer with a smaller distance than in front of it.
The optimization variables σs and σf are the standard deviations of the normal distribution
corresponding to the lengths of the semi-axes of the ellipsoid. Consequently, the cost function
reads:

finter(x|σf , σs, δI) :=

∫ tf

t0

exp

−1

2

( lf (t)

σf

)2

+

(
ls(t)

σs

)2
 dt,

where lf (t) and ls(t) are the distance between the center C(t) and the position of the partic-
ipant PI(t) in forward and in sideward direction, accordingly.

8.3 Human Experiments

The analysis of human navigation in the presence of interfering persons is the goal of a
cooperation with the research group of Glasauer, institute for clinical neurosciences, Ludwig-
Maximilians-Universität München, and the research group of Hermsdörfer, faculty of sport
and health sciences, Technische Universität München. The human locomotion data was
recorded at the laboratory of Hermsdörfer using a high-precision tracker based on markers.

In general, the analyzed motion tasks can be stated in the following way: Walk from a start to
a goal position where both positions are specified on the floor. No limitations on the overall
motion time are given, therefore it can be assumed that the participants used a comfortable
movement time, i.e., a comfortable walking speed. Several different scenarios of such motion
tasks are part of the recorded human data, i.e., tasks leading to straight or curved motions.
Especially, collision avoidance scenarios where an interfering person crosses the paths of the
participants are of interest, since such problems occur regularly in daily life. The interfering
person is instructed to walk along a virtual straight line at a constant speed and avoid any
interaction with the participant. Consequently, the participant has to react in order to avoid
a collision.

8.3.1 Distance Measures

For the data matching problem a distance measure Φ has to be introduced that is suitable for
the task at hand (see section 4.3). Ideally one would like to match both the Cartesian path and
the velocity profile, thus a first choice would be to compare the position of the participant
PP (ti) with the position PD(ti) of the recorded human data for given time instances ti ∈
[t0, tf ], i = 1, . . . , ν by using Φtime (cf. section 4.3).

However, the velocity profiles recorded in the experiments exhibit considerable oscillations
corresponding to the individual steps of the participants. Since individual steps are not
modeled in the introduced plant model, a data fitting with respect to this raw velocity data
is not fully appropriate. Consequently, the velocity data is smoothed to obtain the mean
velocity ṽD(t) of the center of mass.

The distance measure used in our computations is a combination of two measures; the first
one considers the differences between the velocity profiles by using Φtime. The cost function
Φpath based on path-length is selected as the second one to compute the differences between
the Cartesian paths. This decoupling of positional and temporal information proves to be a
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suitable way to assure that the Cartesian path of the solution of the optimal control problem
is compared to the originally recorded path of the human participant, and at the same time
to consider only a smoothed velocity profile suitable for the simple dynamical model.

8.4 Model Predictive Control

The experimental data suggests that in the case of linearly moving obstacles humans do not
optimally plan their overall motion from the start to the goal, but rather stick to a control
strategy ignoring the obstacle as long as the distance is large enough. Not until the distance
gets small, a maneuver of collision avoidance is started. Since it is hard to distinguish whether
the distance of the strategy switching is determined by a temporal or a spatial measure, we
introduce in the following a framework combining both kinds of measures.

The idea to repeatedly solve optimal control problems during a motion in order to react to
changes in the environment is best captured in a model predictive control framework. The
basic idea of model predictive control is to sequentially solve optimal control problems for the
task to move from the current position to the goal position, but only realize the computed
controls over a limited horizon and then start over with solving the next optimal control
problem with the new position as the starting position. In consequence, the overall motion,
which has to be compared to given data in the upper level of the inverse optimal control
problem, is a combination of segments obtained from a series of optimal control problems,
i.e., the inversion has to be done with respect to all submotions at once.

Note that the switching structure observed in human navigation asks for two combinations of
basic cost functions fi, thus the notation introduced in section 6.4.4 has to be extended here.
Consider kI and kII ∈ IN to be the numbers of basic cost functions used in the combinations:

f I(x(t), u(t) | πI) :=

kI∑
i=1

wifi(x(t), u(t) | πi),

f II(x(t), u(t) | πII) :=

kII+kI∑
i=kII+1

wifi(x(t), u(t) | πi),

where the parameter vectors πI and πII are defined by

πI :=
(
wI1, . . . , w

I
kI ,
(
πI1
)T
, . . . ,

(
πIkI
)T)T ∈ IRsI ,

πII :=
(
wIIkI+1, . . . , w

II
kI+kII ,

(
πIIkI+1

)T
, . . . ,

(
πIIkI+kII

)T)T ∈ IRsII .

Note that the dimensions sI and sII ∈ IN result from

sI := kI +
kI∑
i=1

si and sII := kII +
kII+kI∑
i=kI+1

si,

where si ∈ IN is the number of parameters for the respective basic cost function combined in
the vector πi ∈ IRsi . The idea of convex combinations of basic cost functions used in the case
of the classical inverse optimal control problems can be generalized to two combinations of
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cost functions if a relative scaling factor $ > 0 is introduced. This results in the following
conditions for the scaling factors of the basic cost functions:

kI∑
i=1

wi = $ and
kI+kII∑
i=kI+1

wi = 1.

Consequently, the vector of upper level parameters y is given by

y :=
(
πI , πII , $

)T ∈ IRsI+sII+1.

Having defined the two combinations of basic cost functions, the switching process between
the two has to be stated:

f(x(t), u(t) | y) =

{
f I(x(t), u(t) | πI) if t ≤ t and ||PP (t)− PI(t)|| ≤ d,
f II(x(t), u(t) | πII) else,

where t > 0 is the time horizon where the linear approximation of the interferer position
has to be considered and d > 0 is the maximal distance where the interferer influences
the locomotion path of the participant. Note that hard switching between the two cost
functions will cause non-differentiability in the optimal control problem; to avoid problems
that might arise in the numerical optimization, a smooth transition between the two cases is
recommended.

Remark 8.4.1. The implicit assumption is that the interferer cost finter is part of f I but
not part of f II . In this case the time condition t ≤ t leads to a reduced cost function for
the second part of the motion which can be interpreted as a terminal cost term common in
model predictive control. Such a terminal cost term should assure that the final position of
one motion segment does not lead to tremendous costs in the next one.

8.5 Optimization Results

The following examples focus on various aspects arising in the context of human locomotion.
One aspect addressed in the first example is the problem of finding a common cost function
for several motions which means that the inversion has to be done with respect to more than
one lower level problem. Additionally, some of the bounds imposed on the states and controls
of the unicycle model become active and the numerical results show that the resulting MPEC
structure can be handled. Furthermore, we address the problem of collision avoidance and
present reconstruction results for the model predictive control framework.

8.5.1 Reconstruction of Multiple Locomotions

The stereotypical locomotion tasks are combined in this example: a U-turn, a turn to the
left and a switching to a path parallel to the starting direction. Note that in all cases the
starting and end velocities are prescribed to have the value 0.5 and especially the bounds on
the velocity

0.2 ≤ vP (t) ≤ 0.7

are of interest, because they are designed to become active for some of the stereotypical
motions in this example.
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Figure 8.3: The locomotion paths and the corresponding velocity profiles
for three stereotypic motion tasks analyzed in the reconstruction framework.
[ : generated data, : 1st starting value, : 2nd starting value ]

All three motions have a common starting position where the state x has to fulfill:

x(t0) = (1, 1, 0, 0.5, 0, 0, 0)T .

The prescribed end configurations at the free final time tf for the U-turn are

x(tf ) = (1, 5, π, 0.5, 0, 0, 0)T ,

for the left turn

x(tf ) = (1, 5, 0.5π, 0.5, 0, 0, 0)T ,

and for the parallel path motion

x(tf ) = (2, 4, 0, 0.5, 0, 0, 0)T .
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Five basic cost functions fi are selected for this example using the reference value r4 = 0.8
for the cost function fref,4:

i 1 2 3 4 5

fi fu,1 + fu,2 fref,4 ftime fline fjerk

The figure (8.3) shows selected optimal states and controls for the weight vector

w = (0.3, 0.4, 0.2, 0, 0.1)T ,

which is chosen for the data construction within the reconstruction framework, and the two
vectors

(0.1, 0.05, 0.3, 0.2, 0.35)T and (0.2, 0.15, 0.35, 0.1, 0.2)T

are used to generate suitable starting values for the inversion by solving the corresponding
optimal control problems. Using the combination of the upper level cost functions comparing
the Cartesian paths by path length and the velocity profiles with respect to time, where in
both cases 50 points are used for the cost computation, the following reconstruction results
are obtained for the case where a white noise of magnitude 10−2 time the range of the
corresponding variable is added to the computed data. The table (8.1) states the differences
in the weight distributions between the reconstruction results and the values used for the
data generation.

difference in wi i = 1 i = 2 i = 3 i = 4 i = 5

1st starting value 4.59 10−4 1.22 10−3 1.08 10−3 0 3.23 10−4

2nd starting value 6.55 10−4 1.55 10−3 1.42 10−3 0 5.29 10−4

Table 8.1: Differences in weights distributions between reconstruction results for two starting
values and the values used to generate the data.

Note that for both starting values the interior point approach is able to determine that the
fourth basic cost function is not part of the combined cost function. The obtained optimal
values of the upper level cost functions are of the magnitude 10−5 which is small compared
to the scales of the considered states, however, the accuracy of the weights as stated in table
(8.1) are more distinct.

8.5.2 Inversion of U-Turn Motions

In this section we discuss the inversion of two U-turn motions recorded in human experiments
(compare section 8.3). Both motions have certain characteristics in common, for example the
choice of the maximal distance from the baseline connecting start and goal position or the
non-symmetrical drop in the velocity profile. Using the same parameterized family of feasible
lower level cost functions as in the previous section, the reference velocity of the second basic
cost function is considered here to be an upper level variable in addition to the weights of
the five basic cost functions. The following plots show the recorded velocity profiles and the
Cartesian paths for the selected motions. Note that this presentation is in accordance with
the selected combination of the two distance measures as discussed above.

The following values are obtained for the weights and the nonlinear parameter by using the
inverse optimal control approach:
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Figure 8.4: The locomotion paths and the corresponding velocity profiles for two
recorded human motions and the solution of the inversion optimal control approach.
[ : recorded data, : solution of inversion ]

wi i = 1 i = 2 i = 3 i = 4 i = 5 r4

1st U-turn 7.09 10−4 5.91 10−1 1.93 10−7 3.87 10−1 2.20 10−2 7.46 10−1

2nd U-turn 7.12 10−4 6.42 10−1 1.25 10−7 3.44 10−1 1.35 10−2 8.02 10−1

Table 8.2: Optimization results of the upper level parameters for two recorded human U-turn
motions.

The common characteristics observed in the recorded data here result in similar results for
the weight distributions, in both cases the cost functions considering the deviation of the
velocity from a reference value and the deviation of the path from a straight line connecting
start and goal position are dominant. The additional cost terms assure that the trade-off
between velocity and distance does not result in jerky motions or too large control inputs.
The obtained values for the nonlinear parameter r4 ∈ [0.4, 1.6] are close to each other and
the value of 0.8 used in section 8.5.1 seems to be a reasonable approximation.

8.5.3 Reconstruction of MPC Navigation

The model predictive control idea for human navigation problems as introduced in section 8.4
is used here for the reconstruction of a collision avoidance maneuver where a linearly moving
interferer crosses the path. The overall motion task corresponds to one of the three motions
considered in section 8.5.1. The following values are chosen for the constants describing the
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switching structure of the MPC approach: t = 3 [s] and d = 2 [m], which in this example
results in three MPC segments. The constructed data trajectory (cf. figure (8.5)) exhibits
certain characteristics which have been observed in the human experiments; for example, a
slight deviation from the path that would have been used if no interferer had crossed, and a
considerable change in the velocity profile. The deceleration assures that no collision happens
and the goal position is reached after passing behind the interferer. The starting position of
the interferer is (1, 3)T and the position after 8 seconds is (2, 3)T , i.e., the original trajectory
would result in a collision.
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Figure 8.5: The locomotion paths and the corresponding velocity profiles for MPC structured
motion analyzed in the reconstruction framework (first row) and the corresponding starting
value (second row). [ : preplanned motion segments, : MPC motion ]

The following table states the weight distributions used to generate the data and the starting
values of the reconstruction run. Additionally, the differences between the numerical result
of the inversion of the data with added noise and the original values are given. Note that wi
for i = 6 is the weighting factor for the interferer cost finter and that the weights with index
i = 7, . . . , 11 correspond to the second cost combination using the same basic cost functions
in the identical order.

Note that this reconstruction example has certain characteristics in order to focus on the
adaptation of the motion based on the interferer’s positions. Having one cost function for
the free motion and one for the collision avoidance motion would allow to use two totally
different cost functions here, but this means that the trajectory is even adapted if a static
interferer has a considerable distance to the planned trajectories, i.e., solely by advancing
the planning horizon the next motion segment would have to be planned with the collision
avoidance cost rather than the free motion cost. To avoid a mixture of these effects for
presentation reasons, we here only added the interferer cost function to the free motion cost
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combination. Furthermore, note the sum of the weights wi with index i = 1, . . . , 6 equals 6 in
this example. Since the relative scaling of the two combinations of basic cost functions is an
optimization variable, the reconstruction result shows an error of 1.82 10−2 and consequently,
the difference of the weight distributions of the reconstruction run and the data has to be of
a similar scale. However, the obtained reconstruction result for the upper level cost function
being identical to the one of section 8.5.1, where similarly three motions are compared, is
smaller than 10−4.

i = 1 i = 2 i = 3 i = 4 i = 5 i = 6

data value wi 0.15 0.7 0.15 0 0 5

starting value wi 0.15 0.3 0.15 0.4 0 5

difference in wi 2.71 10−4 3.59 10−3 1.64 10−2 2.62 10−3 0 7.72 10−3

i = 7 i = 8 i = 9 i = 10 i = 11

data value wi 0.15 0.7 0.15 0 0

starting value wi 0.15 0.3 0.15 0.4 0

difference in wi 1.17 10−3 4.74 10−3 5.83 10−3 0 1.80 10−4

Table 8.3: Weight distributions for data and starting value and the difference between the
reconstruction result and the data values.
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Summary

Inverse optimal control problems are addressed in this work, because they are a promising
approach to obtain suitable optimal control models for human motions in everyday life sce-
narios. Using this bilevel framework, it is possible to quantify that a specific model is the
best one within a given parameterized family of models, as opposed to the qualitative com-
parisons used in many works on human motions. In addition to the mathematical theories
used in our solution strategy, a major part of this work addresses three application examples.
In all three cases, details on modeling the dynamics of the according human plant are given
and the current state of the art is reviewed. The central aspects are to derive a dynamical
model that is a reasonable compromise between complexity and efficiency, i.e., the model
has to be detailed enough to describe the main aspects of the dynamics of the plant and at
the same time its outputs have to be obtainable at a relatively low computational cost, and
to deduce a suitable family of lower level cost functions that allows to capture the central
characteristics of the human motions but avoids over-fitting. The different scenarios are used
to highlight different aspects in inverse optimal control ranging from highly nonlinear plants
over nonlinear parameters in the upper level and multiple lower level problems to inequality
constraints in the optimal control problem. Numerical results of the inverse optimal control
problems for recorded experimental data are presented and the usage of such optimization
results in order to control robotic systems is discussed.

Since inverse optimal control problems have a rather complicated structure, several mathe-
matical theories have to be combined to solve them. The strategy used in this work is based
on discretizing the optimal control problem by a collocation method and to reformulate the
bilevel program to a one-level problem by replacing the discretized optimal control problem
by its KKT-conditions. The resulting MPEC is then solved by applying a relaxation scheme
and the resulting sequence of standard nonlinear optimization problems is solved by using an
interior-point method. In consequence, the theoretical part of this work starts with the in-
troduction of standard theory on bilevel optimization problems and the existence of a global
(optimistic) solution is proven under suitable assumptions. Because the solution strategy
chosen in this work to solve the bilevel problems yields a mathematical program with com-
plementarity constraints, an introduction to MPECs with their specific stationarity concepts
follows. Related relaxation schemes introduced to solve MPECs numerically are reviewed and
a variant usable in the context of interior point methods is discussed. Furthermore, theory
on optimal control is reviewed and, especially, collocation methods are discussed in order to
discretize the LLP of the inverse optimal control problem. Suitable convergence results of the
discretized problems towards the original problems are stated and a proof of the existence
of an solution for the continuous optimal problem is given using certain assumptions. Then,
the structures of the optimization problems resulting from our solution strategy are analyzed
with respect to the existence of a global optimistic solution for the resulting bilevel prob-

165



166 Summary

lems and the guarantee of a CQ for the transformed one-level problem. Finally, numerical
strategies for nonlinear optimization problems are addressed with the focus on interior point
methods and some implementation details of our optimization method are presented.

Summing up, a numerical method for solving inverse optimal control problems is developed
in this work and numerical experiences for several problems are discussed. Bilevel optimal
control problems are a relatively new problem class which seems to have many application
in engineering sciences. Consequently, further research on this problem class is needed to
improve the current theoretical framework and the numerical methods for solving these prob-
lems. The following directions seem to be promising for future research: First, approaches
of robust optimization might improve the applicability of inverse optimal control results in
technical systems with respective measurement errors and uncertainties in the boundary con-
ditions. Second, a test-set of reference bilevel optimal control problems would be useful to
verify the results and classify the performance of new numerical procedures. Third, consider-
ing the optimality conditions for bilevel optimal control problems, an optimization approach
suitable for non-smooth problems might be an efficient way of using information on the full
problem structure.



Nonlinear Optimization

Appendix A

The basic problem of nonlinear optimization is to find an optimum for a finite dimensional
optimization problem:

min
x
φ(x) subject to x ∈ X,

where the non-empty feasible set X ⊂ IRn and the continuous generally nonlinear objective
function φ : X → IR are given. In this chapter we will define the specific nonlinear
optimization problems we are interested in and discuss available theory to analyze them.
Finally, selected numerical methods for solving such problems are discussed.

The content of this chapter can be found in greater detail in many textbooks on nonlinear
optimization. For the presentation in this work we follow the line of [312] and, accordingly,
[122, 230].

Throughout this work most problems of nonlinear optimization are described by at least twice
continuously differentiable functions; thus the following definition of a nonlinear optimization
problem is made:

Definition A.0.1. (Constrained Nonlinear Optimization Problem)
In a constrained nonlinear optimization problem a nonlinear objective function φ :
X → IR is minimized over a non-empty feasible set X 6= IRn which is described by the two
functions h : X→ IRp and g : X→ IRq:

min
x
φ(x) subject to h(x) = 0, g(x) ≤ 0.

All functions, i.e., the cost function φ, the equality constraints h and the inequality constraints
g, are assumed to be twice continuously differentiable.

Remark A.0.2. The above definition leads to the following feasible set:

X = {x ∈ IRn | g(x) ≤ 0, h(x) = 0} .

A point x ∈ IRn is called feasible for problem A.0.1 if x ∈ X.

Definition A.0.3.

a) A point x∗ ∈ IRn is called a local minimum of problem A.0.1 if x∗ is feasible and a
scalar ε > 0 exists such that

φ(x) ≥ φ(x∗) ∀x ∈ X ∩ Uε(x∗),
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where the set Uε(x∗) := {x ∈ IRn | ||x− x∗|| < ε} is the ball around x∗ with radius ε.

b) A point x∗ ∈ IRn is called a strict local minimum of problem A.0.1 if x∗ is feasible
and a ε > 0 exists such that

φ(x) > φ(x∗) ∀x ∈ (X ∩ Uε(x∗)) \ {x∗} .

c) A point x∗ ∈ IRn is called a global minimum of problem A.0.1 if x∗ is feasible and

φ(x) ≥ φ(x∗) ∀x ∈ X.

c) A point x∗ ∈ IRn is called a strict global minimum of problem A.0.1 if x∗ is feasible
and

φ(x) > φ(x∗) ∀x ∈ X\{x∗}.

A.1 First-Order Optimality Conditions

In order to discuss the first-order optimality conditions of nonlinear optimization, known as
KKT-conditions, two characteristic cones have to be defined and the concept of constraint
qualification has to be used.

We start with the introduction of the tangent cone, which at a given point combines all
directions that can be generated by sequences of feasible points:

Definition A.1.1. (Tangent Cone)
For a non-empty set M ⊂ IRn the tangent cone of M at a point x ∈M is given by the following
set:

T(M, x) :=
{
d ∈ IRn | ∃η(k) > 0, x(k) ∈M :

lim
k→∞

x(k) = x, lim
k→∞

η(k)
(
x(k) − x

)
= d

}
.

A first necessary condition for a local minimum results directly:

Theorem A.1.2. (Necessary Condition)
Let x∗ ∈ IRn be a local solution of problem A.0.1, then the following statements hold:

a) x∗ ∈ X,

b) ∇φ(x∗)Td ≥ 0, ∀d ∈ T(X, x∗).

Proof. Follows directly by applying Taylor’s theorem, see [122]. �

Since checking whether a vector is an element of the tangent cone is usually not realizable in
a general setting, a second cone using the linearized versions of the constraints is defined:

Definition A.1.3. (Linearized Tangent Cone)
Using the set of active inequality constraints A(x) := {i ∈ IN | i ≤ q, gi(x) = 0}, the
linearized tangent cone is given by

Tlin(g, h, x) := {d ∈ IRn | ∇h(x)Td = 0

∇gi(x)Td ≤ 0, i ∈ A(x)} .
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The linearized tangent cone is convex as a direct consequence of the definition:

αd(1) + (1− α)d(2) ∈ Tlin(g, h, x)

for α ∈ [0, 1] if d(1) and d(2) ∈ Tlin(g, h, x).

Remark A.1.4. The tangent cone is a subset of the linearized one:

T(X, x) ⊂ Tlin(g, h, x).

Note that the tangent cone is uniquely defined by the feasible set X and the evaluation point
x. In contrast, the definition of the linearized tangent cone depends on the actual definitions
of the constraint functions. This means that a variation of the functions h and g describing
the feasible set can result in a different linearized tangent cone.

Since the other inclusion of the remark A.1.4 is not true in general, the concept of a con-
straint qualification (CQ) is introduced. The most general CQ is the Guignard constraint
qualification (GCQ) [128, 134], but for the purposes of this work it is sufficient to start with
the Abadie constraint qualification (ACQ):

Definition A.1.5. (ACQ)
The constraint

Tlin(g, h, x) = T(X, x)

is called Abadie Constraint Qualification (ACQ). Every other constraint that implies
the ACQ will be named a constraint qualification (CQ).

The theorem A.1.2 in combination with the definition of the ACQ yields the following nec-
essary condition for a local minimum of the nonlinear optimization problem:

Corollary A.1.6.
Let x∗ be a local minimum of A.0.1 and let the ACQ hold for x∗. Then follows:

a) x∗ ∈ X,

b) ∇φ(x∗)Td ≥ 0, ∀d ∈ Tlin(g, h, x∗).

This corollary is the basis for the Karush-Kuhn-Tucker conditions (KKT-conditions), the
necessary first-order optimality conditions:

Theorem A.1.7. (KKT-conditions)
Let x∗ be a local solution of problem A.0.1 where a CQ is fulfilled, then there exist Lagrange
multipliers µ∗ ∈ IRp and λ∗ ∈ IRq such that

a) ∇φ(x∗) +∇g(x∗)λ∗ +∇h(x∗)µ∗ = 0,

b) h(x∗) = 0,

c) λ∗ ≥ 0, g(x∗) ≤ 0, (λ∗)T g(x∗) = 0.

Part (a) is called stationarity condition or multiplier condition and part (c) is known
as the complementarity condition.
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Proof. This theorem can be proven by combining the corollary A.1.6 with the necessary
optimality conditions of linear optimization theory; see for example [122]. �

Remark A.1.8. The following two conditions are equivalent to the complementarity conditions
of theorem A.1.7:

c’) λ∗i ≥ 0, gi(x
∗) ≤ 0, λ∗i gi(x

∗) = 0, i = 1, . . . , q.

c”) g(x∗) ≤ 0, λ∗i ≥ 0 for i ∈ A(x∗), λ∗i = 0 for i 6∈ A(x∗).

A point fulfills strict complementarity if for all i ∈ A(x∗) follows that λ∗i (x
∗) > 0.

We now introduce the Lagrangian which can be used to shorten the notation of the station-
arity condition and will be useful later on. The Lagrangian is a function returning a scalar
value that is the sum of the cost function and the weighted constraints:

Definition A.1.9. (Lagrangian)
For problem A.0.1 the Lagrangian L : IRn × IRq × IRp → IR is defined by

L(x, λ, µ) := φ(x) + λT g(x) + µTh(x).

Corollary A.1.10.
The stationarity condition of theorem A.1.7 can be written as ∇xL(x, λ, µ) = 0.

The following constraint qualifications are most common in literature; they are easier to
check than the ACQ, but they imply the ACQ. The first one is the Mangasarian-Fromovitz
constraint qualification ensuring the existence of a direction along which all linearized active
inequality constraints strictly decrease and all equality constraints hold.

Definition A.1.11. (MFCQ)
The Mangasarian-Fromovitz constraint qualification (MFCQ) is fulfilled at a point
x ∈ X if

a) ∇h(x) has full column-rank or h is affine linear,

b) ∃d ∈ IRn : ∇gi(x)Td < 0, i ∈ A(x), ∇h(x)Td = 0.

Condition (b) can be omitted if q = 0 or A(x) = 0; the case p = 0 can be interpreted as h ≡ 0.

Remark A.1.12. To justify that the MFCQ is called a constraint qualification one has to show
that the condition implies the ACQ. The proof of this implication can be found, for example,
in [122].

A second CQ called the positive linear independence constraint qualification guarantees that
the columns of the Jacobians of the equality and active inequality constraints are positive
linearly independent, which means that the scalar factors of the columns corresponding to
the active inequality constraints are non-negative and at least one of these factors is positive:

Definition A.1.13. (PLICQ)
The positive linear independence constraint qualification (PLICQ) is fulfilled at a
point x ∈ X if

a) ∇h(x) has full column-rank or h is affine linear,
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b) No vectors λ ∈ IRq and µ ∈ IRp exist such that:

∇g(x)λ+∇h(x)µ = 0,

λA(x) ≥ 0, λA(x) 6= 0, λI(x) = 0.

Condition (b) can be omitted if q = 0 or A(x) = 0; the case p = 0 can be interpreted as h ≡ 0.

Remark A.1.14. The PLICQ is fulfilled at a point x ∈ X if and only if the MFCQ holds;
consequently, the PLICQ is a constraint qualification. For a proof of the equivalence of the
PLICQ and the MFCQ we refer to [312].

In many cases a stronger constraint qualification is used that ensures that the columns of the
Jacobians of the equality and the active inequality constraints are linearly independent:

Definition A.1.15. (LICQ)
A point x ∈ X fulfills the linear independence constraint qualification (LICQ) if the
columns of the matrix

(
(∇g(x))A(x),∇h(x)

)
are linearly independent.

Remark A.1.16. The LICQ is a constraint qualification since it implies the PLICQ, but the
reverse implication does not hold. Therefore, the LICQ is called stronger than the PLICQ.

A.2 Second-Order Optimality Conditions

The second-order optimality conditions discussed in this section are naturally based on the
assumption that all functions describing the nonlinear optimization problem A.0.1 are twice
continuously differentiable. In order to state second-order necessary and sufficient conditions
the following cone combining the relevant directions is introduced:

Definition A.2.1.
Define the cone T+ for x ∈ X and λ ∈ [0,∞)q by

T+(g, h, x, λ) :=
{
d ∈ IRn | ∇gi(x)Td = 0, if i ∈ A(x) and λi > 0,

∇gi(x)Td ≤ 0, if i ∈ A(x) and λi = 0,

∇h(x)Td = 0 } .

Using this cone in combination with the LICQ assumption assuring that the Lagrange mul-
tipliers in the KKT conditions are unique for a given primary variable yields the following
necessary conditions of second order:

Theorem A.2.2. (Second-Order Necessary Conditions)
Let φ, g and h be twice continuously differentiable and let x∗ be a local minimum of problem
A.0.1 where the LICQ is fulfilled. Then there exist (unique) Lagrange multipliers λ∗ ∈ IRq and
µ∗ ∈ IRp fulfilling parts (a) to (c) of the KKT-conditions A.1.7 and the following condition
holds true:

dT∇2
xxL(x∗, λ∗, µ∗)d ≥ 0 ∀d ∈ T+(g, h, x∗, λ∗).

Proof. See [122]. �

Similar to the case of unconstrained optimization, where a sufficient condition is obtained
if the Hessian of the cost function is not only positive semi-definite but positive definite,
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second-order sufficient conditions are obtained in the case of constraints if the Hessian of the
Lagrangian is positive definite for all non-zero vectors in T+:

Theorem A.2.3. (Second-Order Sufficient Conditions (SOSC))
Let x∗ ∈ IRn in combination with the Lagrange multipliers λ∗ ∈ IRq and µ∗ ∈ IRp fulfill the
parts (a) to (c) of the KKT-conditions A.1.7. Additionally, assume that

dT∇2
xxL(x∗, λ∗, µ∗)d > 0 ∀d ∈ T+(g, h, x∗, λ∗)\ {0} .

Then x∗ is a strict local minimum of problem A.0.1.

Proof. This is also shown in [122]. �



State of the Art on Human Arm Motions

Appendix B

In literature the research on human motions or human-like motions has various facets and
the amount of publications in this field is fast-growing. Disciplines dealing with analyzing
and describing these movements range from psychology and biology over computer and en-
gineering sciences to mathematics. Therefore this section can only give an overview of main
aspects and state the connection to the research of this work. If the reader is interested in
details of specific aspects, various references are named as starting points for further research.

We will start the discussion of the state of the art with describing the goals of analyzing
human motions (section B.1) and state characteristics of human arm motions for the different
disciplines (section B.2). This is followed by the discussion of the basic principles in human
motor control (section B.3), e.g., introduction of forward and inverse models, and the different
hypotheses on the underlying principles of human motion generation (section B.4). Finally,
in sections B.5 and B.6, the open-loop and closed-loop frameworks and human adaptation
characteristics are introduced and a brief outlook to learning frameworks is given. Details on
open-loop cost functions and on transfer of motions to robotic systems, both relevant aspects
for this work, will be discussed in more detail in the sections 6.4 and 6.7.

B.1 Research Goals of Disciplines

For different disciplines the basic goals of analyzing human motion differ and therefore the
results have to be viewed in the corresponding setting. In most cases psychologists and
biologists try to deduce the underlying structure and principles of human motions with their
experiments. The final goal is to understand the mechanisms determining the human actions.
On the other hand mathematicians and physicists attempt to build a model describing the
observed movements. The main purpose of the model is to describe behavior rather than
to explain it [89]. Hence, the minimum principles we obtain by the bilevel optimization
approach have to be understood as a description of the human motion and there might be
various arguments why the optimal cost function describing the human movements is not
biologically or psychologically plausible.

Another general distinction between diverse approaches in the field of human motions is
the usage of a model. In many cases discussed in the following models are derived, but
“these theoretical constructs should not be identified with the phenomenon they attempt to
explain” [235]. In some cases the same phenomena can be described by model-free theories,
e.g., [101, 211]. Consequently, we have to keep in mind that our model-based approach might
not be the only way to obtain good approximations of human motion and as Hogan and Flash
summarized: “Theories are not immutable truths, but mental constructions that must evolve
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to accommodate new data” [159]. Most models describing human motions are based on the
idea that human arm motions minimize an unknown cost function. Naturally, the question
arises which one of the proposed cost functions describes human motions best? “Ideally, the
cost assumed in an optimal control model should correspond to what the sensorimotor system
is trying to achieve” [302]. Bilevel optimal control is a tool to find the cost function out of a
family of cost functions that minimizes the distance between the respective simulated results
and recorded human data. From a biological perspective, as [89] pointed out, this approach
might lead into circular reasoning if the obtained cost function is viewed as an indicator that
human motions are in some way optimal. Consequently, an obtained minimization criterion
should be seen as “a purely descriptive tool that concisely summarizes a set of experimental
data” [89]. Furthermore, a minimization principle obtained by the bilevel approach “is by
itself not a significant achievement” [89], since simple functional relations describing human
arm motions exist, e.g., see [249]. Therefore a minimization criterion has only a real value in
the view of biology if it can predict different human behavior in different settings.

B.2 Motion Characteristics

We will start the discussion of the motion characteristics in human arm motions by stating
general observations on the shapes of trajectories and velocity profiles. This is followed by
the summary of results on variance in human motor generation and the resulting fundamental
relations of human motions, for example Fitts’ law.

First observations of stereotypical characteristics of human arm movements are presented
by [2] and [218]. Two-dimensional arm motions recorded by a planar handle show common
features like a single peaked shape of the tangential velocity profile and the shape of the hand
trajectory. As a consequence Morasso [218] hypothesizes that “the central commands which
underlie the observed movements are more likely to specify the trajectory of the hand than the
motion of the joints” and guesses that it might be possible to describe the paths by optimizing
a suitable criterion. In [2] basic pointing tasks are considered and roughly straight lines with
bell-shaped velocity profiles are observed. Additionally, the task of following a curved path
is analyzed and segmentation noticed.

Similar characteristics are obtained for three-dimensional movements in [219] where it is noted
that point-to-point movements at natural speed produce approximately straight trajectories
with bell shaped velocity profiles. Furthermore, it is observed that curved motions are es-
sentially planar. Alternatively to these experimental results, a simulation-based approach
is used by [161] to study the influences of interaction torques on the human arm motions.
The results show that the forces generated by Coriolis, centripetal and inertia properties are
essential for planar human arm motions. Additionally, the significance of the velocity torques
relative to the inertial torques does not change with movement speed.

The observation that planar arm motions are mostly straight is limited by the discovery of
movement regions within the workspace where the hand paths are noticeably and systemati-
cally curved [16], which is affirmed by [66, 314] for planar motions if the start and end points
are in an uncomfortable position, i.e., near the workspace boundaries. In addition to the
standard horizontal movements, upward and downward motions are analyzed by [16, 98] and
it is observed that the upwards arm movements are more curved than the downward ones.

Based on the observation of these characteristics of the hand paths, Flash and Hogan [104]
and many others argue that a planning scheme based on the Cartesian coordinate frame is
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generally used in human motor control, even for tasks that do not require the hand trajectory
to be explicitly controlled. In opposition, the idea of motion control on joint level is favored
by others, e.g., [314]. The choice of the coordinate system underlying the human motion
generation is closely related to the question whether the trajectories are formed on the basis
of the kinematics or the dynamics of the human, which leads to the proposition of different
cost functions for open-loop control, see section 6.4. An experiment to solve the question
is discussed in [344], where the visual feedback of the task is disturbed. Since humans do
react to this false feedback, the arm movements are not controlled by dynamics only. After
perturbation humans straighten their paths, but the original ones are not obtained again.

A basic observation in all experiments of human arm motions is that a considerable variance
between different trials of the identical motion task exists, e.g., [129]. This variation seems
to be a fundamental characteristic and can be attributed to the impedance characteristics
of the human arm and the noise characteristics of the human muscles (cf. section 6.3).
Furthermore, it is observed that characteristics vary for different tasks, especially, if free
motion is compared to constrained motion [77]. Consequently, one might assume that humans
control their movements in dependence on the task.

In the following, we will not only discuss Fitts’ law relating motion time and accuracy, but
also Donders’ law and the two-thirds power law; all these relations are based on empirical
observations and do not take the dynamics into account.

B.2.1 Fitts’ Law

Fitts [96] presents a relation between movement time and task-dependent accuracy to reach
the goal; consequently, the time needed by the human to do certain arm motions is neither
random nor a direct consequence of the kinematics or dynamics of the arm, but it is itself a
variable planned according to the accuracy of the task.

δ = c1 + c2 log2

(
1 +

l1
l2

)
,

where δ is the motion time, l1 the distance from the starting position to the goal and l2 the
width of the target which can be interpreted as the allowed error tolerance. The constants c1

and c2 are problem-dependent and have in consequence to be matched to the experimental
data.

Fitts’ law, being of empirical nature, has been verified by many research groups and to obtain
a closer fit to certain data, several variants of the law are known, but these improvements
come with a loss in structure, see [322] for a review.

Fitts motivates his formula using the information theory of Shannon and Weaver by assuming
that the motor control task is equivalent to the transport of information. He assumes that
due to noise the human motor system has a limited capacity of transport and the maximal
amount of information which can be transfered by the system leads then to the log-linear
relationship [96]. This information theory background caused numerous criticism for the
formula which seems empirically valid [322].

Since Fitts’ law is closely related to the inherent noise of the human motor system caused by
the basic build-up and the biomechanical characteristics [322], it seems reasonable that the
minimum variance model (it assumes that humans control their arm motions in a manner to
achieve minimal variance at the goal position while taking the noisy muscle characteristics
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into account, see section 6.4) does correctly reproduce the speed-accuracy trade-off [141].
From the biological perspective the implications of this method seem somewhat implausible
and inefficient [298], because this would imply that the human learning process has to test
various task-dependent motion times.

B.2.2 Donders’ Law and Listing’s Law

Analyzing saccadic eye motions with a fixed head, Donders observed that at the end of the
motion the eye has a constant orientation independent of the actual trajectory to the final
configuration; this observation is called Donders’ law. A stronger relation including Donders’
law is introduced in the following by Listings, who proposed that only postures are achieved
that can be attained by one rotation, i.e., a fixed rotation axis for the overall eye motion.
For more information on human eye movements see [190].

In the case of redundant arm movements, it is a straight-forward idea to analyze whether
Donders’ law can be used to describe the final configurations of a human arm, too. A detailed
analysis of pointing tasks [285] questions Donders’ law for arm movements, because small but
systematic deviations from a unique configuration are observed. In a similar manner, studies
of general three-dimensional movements [3] reveal that the model cannot give a good predic-
tion for the data. Consequently, the only workaround to use Donders’ law for determining
arm configurations seems to be to restrict the relation to the motion of the upper arm ele-
ment only [196]. If one assumes that the motions of the lower arm element depend linearly
on the movements of the upper element, the characteristic of the upper arm can be used to
determine the hand path on a kinematic basis [197].

B.2.3 Two-Thirds Power Law

Finally, for the special task of tracing a simple planar figure with the hand, we want to mention
the two-thirds power law capturing that the angular velocity ω of the hand is coupled to the
curvature κ of the traced curve:

ω = c(κ)2/3,

where c is a task-dependent constant. Several variants of this law for the relation of hand
motion and curvature are developed in literature, see [328] and previous works of the authors
mentioned therein.

Another approach [328] to explain the characteristics of curve-following is to use the theory
of minimizing hand jerk, the third time-derivative of the hand position (cf. section 6.4). It is
noted in [259] that the velocity profiles are predicted accurately for a given trajectory and the
minimization idea even captures a few details of the hand motion which elude the two-thirds
power law [328, 306].

Three-dimensional path-following tasks are analyzed in [206] and it is shown that the two-
thirds power law does not hold in 3D. Therefore a new power law is introduced to connect
curvature and hand speed in 3D tasks.

B.3 Motor Control

Having discussed some characteristics of human arm motions, the focus of this section is
on properties of the general motor control task. This includes the problem of ambiguity in
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controls and the proposition of internal models as a basic element in motion planning.

Point-to-point arm movements are the special type of motor control tasks we will focus on. A
common feature of motor control task is that the task requirements can be met by infinitely
many diverse movements. Thus, stating only the boundary conditions of the motion for given
dynamics leads to an ill-defined problem. The ambiguity causing this problem can be resolved
if an optimality principle is applied.

The basis of many scientific theories is formed by optimality principles. In the context of
human arm movements, the underlying assumption is that humans minimize an unknown
cost function. An open question is if a single cost function can explain the observations or
whether multiple criteria, each suitable for a small set of contexts [144], are needed [3]. The
performance of the models might depend on the context and instruction to the participant
[307], for example, the end-state of a manipulation task seems to have an effect on motor
planning [357].

To apply such a minimization idea resulting in an optimal control problem, several choices
have to be made by the modeler ranging from the choice of optimization principles over the
model of the musculoskeletal plant to a measure for task-performance [302]. Each of these
aspects is discussed for the examples in this work (cf. sections 6.5 and 6.4), but in the
following we focus on how humans are supposed to solve this optimal control problem.

The general question is whether humans use internal models capturing input-output char-
acteristics of the human motor plant to control their movements or not; this resulted in a
long-standing discussion. Several experiments to support each side are presented in liter-
ature; while [235] argues that from a psychological point of view little empirical evidence
is found that plainly supports the internal model idea, others consider it well-established
that the central nervous system makes use of the computational principles of internal models
[175, 267, 275].

One possibility to control the arm without a model could be closed-loop control, where at each
time instance feedback about the momentary state of the arm is available (cf. section B.5).
Such an approach where coordinated arm movements are executed solely under feedback
control is discarded by [175] due to the biological feedback loops which are slow and have
small gain.

The internal models themselves are divided into two classes, the forward models and the
inverse models. A forward model predicts the state of the arm if a control is specified, whereas
the inverse model gets as an input the desired state and has to compute a corresponding
control. This clear distinction between forward and inverse models seems to hold in the
human brain [342].

Evidences supporting the idea of internal models are increasing [130, 210, 279]; for detailed
reviews see [76, 175]. Where the results of [345] and [211] using different experimental se-
tups clearly support the existence of a predictive forward model, other experiments seem to
support the idea of inverse models (compare section B.6 on learning and adaptation). In
consequence, a framework using multiple internal models of both types is introduced in [347]
and experimental results of [28, 97, 185] support this idea.

The concept of internal models leads directly to the question of human motion generation.
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B.4 Motion Generation

Several hypotheses how humans could plan and control their movements have been introduced
in literature; ranging from purely geometrical considerations to dynamically controlling the
muscle force.

B.4.1 Redundancy

Many tasks of human arm motion can be achieved in many different ways, e.g., there might
exist several arm configurations yielding the same hand position. This property is called re-
dundancy [25]. In consequence the question arises how humans determine their characteristic
arm movements. Humans seem to use this freedom to fulfill the task in the most convenient
way.

If various arm trajectories yield the same performance with respect to the goal of the task,
the set of all these trajectories is called the uncontrolled manifold. Various theories exist
how humans choose their trajectories, e.g., avoidance of joint limits [67] or task specific
optimization [232]. Other approaches are based on the idea of minimal intervention [43, 307]
which will be discussed later.

A posture-based planning framework to determine valid goal positions is presented by [262].
The model has been constantly developed [261, 263] to account for further experimental
observations. The central idea is to combine stored postures to get to the specified positions;
most important, the goal postures are planned prior to the movement. Costs of possible
postures and postural transitions are taken into account; in the later versions of the model
a hierarchy of requirements is introduced and a two-stage process is used to obtain better
goal postures. The model has been extended to full three-dimensional motions instead of
only motions in a plane and to include obstacle avoidance, but so far it does not consider the
dynamics for the actual motion generation, using a generic velocity profile instead [261].

A further theory to solve the redundancy problem is hierarchical control. Most hierarchical
approaches originate in optimal feedback control (cf. section B.5), but an open-loop approach
based on task-decomposition is presented in [176]. Full-body control is computed by project-
ing the state and the control onto the relevant spaces. In the context of feedback control
a related method based on dimensionality reduction [308] is used. The combination of a
low-level feedback controller and a high-level controller based on an abstract and compact
state representation is adopted to mimic the different human feedback loops influencing re-
dundant control. The critical point of this approach is to find the right representations for
the higher level. Using this approach hierarchical control is computed in [199] for a redundant
three-dimensional arm considering nonlinear muscle behavior.

B.4.2 Motion Control

Mainly two principles for controlling human movements are discussed in literature. First, the
idea that humans control their motions on the level of muscle force generation is introduced
in [161]. This approach is close to the engineering perspective on the related problem of
steering a robotic arm. Where the human uses his muscle forces to generate torques moving
the limbs, robotic systems have several drives for torque generation. The second principle is
the equilibrium point hypothesis introduced by [158]. The goal is a unifying framework for
posture and motion by using the stability properties of the human arm.
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Whether human arm motions are really controlled as a dynamic optimization problem only
is not answered conclusively. Aiming for a biologically plausible model for the generation of
arm movements, a geometrical stage between the sensory input and the physical execution is
introduced in [309]. The shortest path in joint space is utilized at the geometrical stage before
the kinematics are computed. As a motivation for their approach it is noted that “there are
brain areas with force-independent representations of movement” [309]. Imprecision for three-
dimensional motion directed towards the head are reported in [247]. A related approach is
presented in [29] where the positions are first determined by the shortest path on the Riemann
sphere and then the velocity profile results from a jerk minimization along this path. This
strategy yields geodesic paths reducing the torques due to fact that only the driving torques
remain. Results are presented for the dynamical model of a three-dimensional arm.

The theory of force control is questioned for human arm motions from a psychological point
of view in [235]. It is noted that observed EMG data does not match the model predictions.
Further problems arise if physiologically realistic muscle and reflex models are incorporated
into the force control model, which lead to the basic question of how the change between stable
posture and motion should happen. If a person is at rest, the body reacts resistively to any
perturbations. Experimental observations show that such reactions are not suppressed during
movement and that postural control and co-activation of muscles are in principle separate
mechanisms [235]. Consequently, even the combination of force control and postural resetting
by using paired inverse and forward models [28] does not resolve the problem, because it is
based on a change in muscle activation [235].

Where the spring-like properties reported for the human muscles and reflex loops cause
problems from the force control perspective, these characteristics are the starting point for
the equilibrium hypothesis using the observation that the viscoelasticity can be controlled
by adjusting the co-contraction level. The idea is that the arm is controlled by a series of
stable equilibrium positions between the beginning and the endpoint of the movement. The
differences between the actual and the equilibrium positions in combination with the used
stiffness and viscosity determine the forces exerted on the arm. In [31] the conclusion is
drawn that the measured forearm movements of the monkeys (one degree of freedom only)
can be described as a series of equilibrium points towards the final position.

Several variants of the hypothesis are known, which differ in the model details like spinal
reflexes. They all have the following three levels in common [127]: First, the spring-like
properties of the neuromuscular system are utilized in movement control. Second, the brain
uses an equilibrium point trajectory as descending motor commands to the spinal cord. Third,
the equilibrium point trajectory can simply be planned; thus, the brain does not need to solve
the dynamics problem [93].

This equilibrium point hypothesis raised the question whether the spring-like properties can,
in addition to stabilizing the posture, bring about the motion by itself [127]. Experiments of
[126, 189] show that the equilibrium hypothesis cannot predict effects observed by changing
dynamical properties, which might indicate that the human brain actually does consider the
dynamic influences on motion generation and not only relies on the elastic properties [126].
On the other hand, a similarity between the equilibrium point trajectory and the actual
one is reported by [100, 127] for movements with high arm stiffness. However, [173] claim
that planning an equilibrium point trajectory resulting in the observed motions is as difficult
as explicitly solving the dynamic equations due to the low hand stiffness during motion
[24]. Furthermore, a good approximation is only obtained if high stiffness is assumed and
trajectories computed with a low stiffness differ from the observed human ones [173].
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The results of the experiments of [237] show that the relative contributions of viscoelastic-
ity and internal model control change in the course of adaptation to a setting. While the
viscoelastic effects dominate in an unknown environment, the part attributed to an inter-
nal model increases during adaptation, which can be seen as an improvement process of the
internal model. For further details on human adaptation characteristics see section B.6.

Summing up, the equilibrium point hypothesis is based on characteristic properties of the
human arm, but it fails to account for motions with low arm stiffness and for changes due
to modifications of a dynamical environment. On the other hand, if one assumes that the
arm motion is generated by muscle forces, one can reproduce the observed hand paths and
account for changes of the systems dynamics, but there might be no biological or psycholog-
ical foundation for this approach. In this work we will use the force control perspective and,
consequently, the goal of the discussed models is to capture the main features of the experi-
ments; in particular, we do not aim to explain phenomena from a biological or psychological
perspective (cf. section B.1).

B.5 Open-Loop and Closed-Loop Control

Given the characteristics of human arm motion and using the idea of internal models, a
common assumption is that humans try to execute their movements optimally. Strategies
towards this optimality are based on adaptation to new tasks and learning of new influences.
Various approaches have been made to model these learning strategies themselves (see section
B.6). Here we assume that these learning processes are completed and that “the sensorimotor
control is best described as being near optimal” [308].

Now, the goal is to find a framework that can explain the human motion under the optimality
assumption. Two main approaches have to be distinguished: On the one hand, the open-
loop approach is based on the idea that the whole control sequence is generated before the
motion starts and is executed without any feedback. On the other hand, the closed-loop
frameworks actively use feedback during the human movements. If one wants to analyze
human learning strategies such a feedback loop is essential, but the derivation of optimal
control strategies is by far more complex for the closed-loop approach than for the open-loop
one [307]. Naturally, at the beginning research was focused on the open-loop idea; thus we
will start with a discussion of the main research directions within this scope.

A large number of models of open-loop motor control exist and each model claims to describe
human motion, but several models are incompatible with others. The starting point for the
derivation of a cost function are characteristics of the human arm movements and the human
organism. Humans might minimize the sequence of control signals [12, 60, 150], or limb
states [104, 141, 225, 314]. These minimization strategies are related to physiological and
task variables such as smoothness of the hand path [104, 314], accuracy [46, 141] or error
and effort [9, 88, 116, 240, 307]. Some of these costs seem to be more natural than others,
because the human organism has only sensors for some of these properties [337].

Supporting experimental data exists for most of these cost functions. To solve this ambiguity
many experiments are discussed, for example, the spring-based experiment in [67] exploring
the differences between kinematic and dynamic costs, but no clear results in favor of only one
cost or planning space are obtained. In section 6.4 the open-loop cost functions are introduced
in more detail and the pros and cons for the individual costs and possible combinations are
discussed.
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Open-loop control discussed so far computes optimal controls for a given task and these con-
trols are used if the motion is carried out. This frame is static and does not use any feedback.
Humans, however, use sensory feedback, for example, vision, to control their arm motions,
since perturbations caused by the environment and random effects resulting from the noise
of the human motor plant influence the motion. If no feedback is used when a stochastic
partially-observable plant such as the human musculoskeletal system is controlled, only sub-
optimal performance can be achieved [303, 307], which would be contrary to the observed
human characteristics. The goal of closed-loop control is to model these feedback loops and
to compute the optimal controller utilizing the accessible feedback at each time instance to
obtain a stable control, meaning that one has to “solve a control problem repeatedly rather
than repeat its solution” [25]. The problem with the closed-loop theory is that the utilized
methods to approximate optimal feedback controllers are complex and computationally ex-
pensive [302]. The information represented by the optimal value function might visualize this
issue, because it combines the optimality information for motions between all points in the
state space [215]. The hypothesis of [299] is that fundamental developments in the control
theory are still necessary to understand motor function in detail.

Searching for the biological foundations of feedback, various experiments are discussed in
literature, compare [188, 267]. Resulting hypotheses are that the posterior parietal cortex
is updating the motor plan, while the cerebellum might compute the feed-forward control
signals. Further structures of the human nervous system might contain the state estimator
and comparator [267]. The influences of visual feedback on human arm motions are a topic
of discussion [76], but experimental results, e.g., [271], suggest that humans continuously use
visual feedback throughout their arm motions. Other experiments [99, 189] show, for example,
that the sensory feedback and the predictions of the forward model are combined by humans
in a statistically optimal way. Additionally, humans seem to be able to predict the influences
of external loads, which raises the question if internal models of the environment are utilized
and updated by feedback. Controlling a human arm solely by feedback is impossible, because
the human sensorimotor feedback loops are too slow [342]. Consequently, internal estimation
of the state is needed in combination with the delayed feedback of noisy sensors [342].

To model the feedback loop in a closed-loop framework, knowledge about the human adapta-
tion strategies is helpful. Adaptation of the reaching movements can be done on two different
levels. In the first case the task is varied and the controls have to be adapted to fulfill the
goals. This type of adaptation changes the controls, but the structure of control remains the
same, i.e., if one assumes that internal models and a cost function are utilized to describe
human motions, they remain unchanged by the considered task variations. In the other case
the environment is changed such that a new control strategy has to be learned. This learning
is also based on feedback and will be discussed in section B.6. We focus here on the first type
of adaptation demonstrating the structure of the feedback control.

The standard technique to analyze adaptation to variations of the task is to introduce per-
turbations of the final position at the beginning of the movement. The observation is that
the hand path is smoothly corrected in agreement with multiple models, e.g., [102, 156, 309].
In [198] perturbations taking place towards the end of the movement are analyzed and it is
reported that the resulting deviations are not fully corrected, i.e., a systematic endpoint error
is observed and has to be explained by a suitable closed-loop framework.

In the following we want to give an introduction to several approaches that try to model
as many of the observed human characteristics as possible. A first approach to extend the
results of the open-loop control theory to a framework including feedback is discussed by [102].
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Using the minimum jerk idea, changes of the goal position result in smooth changes of the
trajectory similar to the observed human behavior. If optimal feedback control is combined
with the minimum jerk hypothesis, the resulting trajectories are consistent with results of
several target perturbation studies [156]. Other approaches to model this characteristic of
human arm motions are based on a virtual spring pulling the hand toward the final position
[156, 309].

If a controller is based on optimal feedback theory, a minimum intervention principle holds for
a redundant task, meaning that only deviations from the average behavior that interfere with
the task performance are corrected [307]. From the biological perspective such a principle
seems preferable, because intervention generates control-dependent noise and energy costs
[302]. Experiments indicate that this minimum intervention principle observed in human
motions cannot be explained by signal-dependent noise only [317] . The controller presented
in [307] employing locally linearized models of the problem, i.e., an iterative LQG strategy
[194], is capable to explain some phenomena of human motions. For others it seems to be
necessary to tackle the more complicated problem of studying optimal feedback control for
nonlinear models, but even the computation of the optimal feedback control for movements
with one degree of freedom assuming a linear plant prove to be rather complex [303]. To
overcome these difficulties a strategy based on space discretization and dynamic programming
is presented in [198]. A composite cost function combining end point accuracy, velocity and
accelerations at the end and the integral of squared controls is utilized and the resulting
strategy reproduces the undershoot in the final hand position of humans in context with
perturbations introduced late in the motion.

To conclude the discussion of control strategies based on feedback, some recent examples
realizing closed-loop control for three-dimensional arm motions are mentioned. The approach
of [304] using a reformulation of the Bellman equation considers a simplified structure of the
cost function and the noise to apply convex optimization. Assuming separation of static and
dynamic forces in combination with a constant effort hypothesis, some human movements
can be reproduced [135], but the focus of this work is on stereotyped motions, leaving out
non-symmetric velocity profiles or avoidance of extreme joint limits [247]. The iterative LQG
algorithm used in [215] minimizes energy but assures compliance during the motion; the
physical constraints of the arm are incorporated into the cost function. Considering hand
dynamics in form of a noisy spring-damper system and modeling kinematics and dynamics of
the arm in the form of a force field, the control strategy for signal-dependent noise is reported
to be asymptotically and globally stable [247].

B.6 Adaptation

In this section we want to discuss the part of adaptation of human motions related to the
transfer of previously learned motor skills to new contexts. Learning new dynamics or new
influences from the environment seems to be a continuous process to improve behavioral
performance [302] with the ultimate goal of optimality [225]. To do so, learning strategies
might modify various parts of the strategies discussed so far; for example, updating internal
models and searching for the optimal controller. Such learning processes are used by humans
on a daily basis when manipulating objects [164], but experiments of [270, 349] show that
the task of learning an optimal control strategy needed for a given setup can be a hard if not
impossible task, i.e., human adaptation capabilities have limits.
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Several experiments have been conducted to analyze human learning behavior and two main
approaches can be distinguished [279]. On the one hand, the perceived kinematics are altered
by changing the visual feedback. On the other hand, the dynamics of the system can be altered
by using technical devices; the two most common instruments are a manipulandum, e.g., [82],
and an exoskeleton platform, e.g., [214]. The final goal of these devices is to allow motions
with unaltered dynamics, but on the other hand it should be possible to create arbitrary
dynamical environments.

The results of several experiments analyzing human learning of new environments are dis-
cussed in literature, see for example [175, 185, 189, 279]. It is observed that the subjects
learn to compensate for the new dynamics and, after the learning period, generate motions
similar to those in the original environment. If the external influences are removed, the op-
posite process is observed which might support the idea that humans learns internal models
[48, 88]. Especially the experiment of [47] where a divergent force field is used to generate
an unstable interaction with the human arm shows that humans overcome the instability by
increasing the mechanical impedance of the arm selectively in the unstable direction. It is
noted in [237, 297] that building an inverse dynamics model and impedance control reducing
the influences of model errors are two coexisting but separate mechanisms of human learning.
In case of unstable interaction the impedance is preferentially controlled [117], whereas in
the stable case the focus is on building an inverse model of the mean dynamics [236]. The
impedance of the arm is increased at the beginning of the learning in both cases, but is
gradually reduced in the stable environment [118].

The formation of the inverse model can be described by feedback error learning, i.e., feedback
information is utilized to modify the feed-forward motor commands. The standard approach
is to assume a quadratic cost if a learning task is modeled, but experiments [180] show that
humans might use a cost function that penalizes outliers significantly less than quadratic.
Consequently, a quadratic cost might only be a good approximation if nonlinearities have
only a small influence on the learning process. Closely related is the question how prior
knowledge is combined with the new information from feedback. In [179] it is shown that
human behavior is close to the Bayesian optimal way. In the conducted experiments the bias
and the noise level of the visual feedback is manipulated in point-to-point reaching tasks.
Other experiments [204, 310] are based on an explicit reward function and humans seem
to quickly maximize the potential reward within certain limits [181]. More studies utilizing
reward functions depending on several parameters could give deeper insight into the human
learning strategies [180, 181].

Learning frameworks are now discussed that capture the adaptation process observed in
the experiments, as opposed to the optimal control setups which are based exclusively on
optimization of one specified cost function and consequently, can only predict final outcome
after learning. Two examples of such learning frameworks trying to reproduce the changes in
force and impedance are [46, 116]. Others [84, 346] base their frameworks on multiple internal
models; their motivation comes from the parallels to machine learning, e.g., [165], where a
network outperforms a single agent. In motor control each of the internal models specializes
on a specific task or environment. Learning can then be interpreted as an adaptation of the
selection process. Experiments supporting the multiple internal model idea can be found,
for example, in [28, 97, 185]. The multiple internal model idea leads to the field of motion
primitives which are discussed in section 6.7.
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B.7 Discussion of Implications

The goal of our inverse optimal control approach is to find an optimal combination of basic
cost functions that reproduces common characteristics of human motions. The optimality of
a combination depends on the analyzed task, the dynamical model of the plant and the family
of considered basic cost functions. Consequently, the result of the bilevel optimization can
be interpreted as a model capturing certain characteristics of the data, but one should not
mistake it for a biologically plausible model; especially, it cannot be assumed that the optimal
cost function captures the biological or psychological reasons for the observed characteristics
(cf. section B.1). Since the considered application scenarios are related to robotics, the main
requirement of the obtained optimal control model is that changes in the task specification and
in the kinematic or dynamic properties can be accounted for. The dynamical arm models used
in this work are based on the assumption that the arm movements are executed by controlling
the joint torques or the muscle forces. This is an assumption considered reasonable by most
works on this topic, but nevertheless it might not capture all aspects of the biological plant
(cf. section B.4). We assume that the additional degrees of freedom causing redundancy are
used by the human to minimize the cost values.

The basic assumption of our work is that the observed human motions can be reproduced
by open-loop control. In general, humans do use different kinds of feedback to correct the
movement execution. Especially in the context of adaptation to new tasks or new dynamical
environments feedback is needed (cf. sections B.5 and B.6). The learning strategies used
by the human to improve performance are assumed to generate or update certain motion
models in the human brain (cf. sections B.3). Consequently, we assume that the recorded
human motion is the end product of a human learning strategy and thus nearly optimal for
an unknown cost function subject to the dynamics of the plant.
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Fahrzeugführungssysteme. Dissertation, Lehrstuhl für Fahrzeugtechnik, Technische Uni-
versität München, submitted 2012.

[187] S. Kraus, S. Albrecht, M. Sobotka, B. Heißing, and M. Ulbrich. Optimisation-based identification
of situation determined cost functions for the implementation of a human-like driving style in an
autonomous car. In Proceedings of the International Symposium on Advanced Vehicle Control,
pages 412–417, 2010.

[188] I.L. Kurtzer, J.A. Pruszynski, and S.H. Scott. Long-latency reflexes of the human arm reflect
an internal model of limb dynamics. Current Biology, 18(6):449–453, 2008.

[189] J.R. Lackner and P. Dizio. Rapid adaptation to Coriolis force perturbations of arm trajectory.
Neurophysiology, 72(1):299, 1994.

[190] R.J. Leigh and D.S. Zee. The Neurology of Eye Movements. Oxford University Press, 1999.

[191] M.A. Lemay and P.E. Crago. A dynamic model for simulating movements of the elbow, forearm,
and wrist. Biomechanics, 29(10):1319–1330, 1996.

[192] F.L. Lewis and V.L. Syrmos. Optimal Control. Wiley-Interscience, 1995.

[193] S. Leyffer. Complementarity constraints as nonlinear equations: Theory and numerical experi-
ence. In S. Dempe and V. Kalashnikov, editors, Optimization with Multivalued Mappings, pages
169–208. Springer, 2006.

[194] W. Li and E. Todorov. Iterative linear-quadratic regulator design for nonlinear biological move-
ment systems. In Proceedings of theInternational Conference on Informatics in Control, Au-
tomation, and Robotics, pages 222–229, 2004.

[195] W. Li, E. Todorov, and X. Pan. Hierarchical optimal control of redundant biomechanical
systems. In Proceedings of the International Conference of the IEEE Engineering in Medicine
and Biology Society, volume 2, pages 4618–4621, 2005.

[196] D.G. Liebermann, A. Biess, J. Friedman, C.C.A.M. Gielen, and T. Flash. Intrinsic joint kine-
matic planning. I: Reassessing the Listing’s law constraint in the control of three-dimensional
arm movements. Experimental Brain Research, 171(2):139–154, 2006.



BIBLIOGRAPHY 195

[197] D.G. Liebermann, A. Biess, C.C.A.M. Gielen, and T. Flash. Intrinsic joint kinematic planning.
II: Hand-path predictions based on a Listing’s plane constraint. Experimental Brain Research,
171(2):155–173, 2006.

[198] D. Liu and E. Todorov. Evidence for the flexible sensorimotor strategies predicted by optimal
feedback control. Neuroscience, 27(35):9354–9368, 2007.

[199] D. Liu and E. Todorov. Hierarchical optimal control of a 7-dof arm model. In Proceeding of
the Symposium on Adaptive Dynamic Programming and Reinforcement Learning, pages 50–57,
2009.

[200] G.E. Loeb, I.E. Brown, and E.J. Cheng. A hierarchical foundation for models of sensorimotor
control. Experimental Brain Research, 126(1):1–18, 1999.

[201] Z. Luo, M. Svinin, K. Ohta, T. Odashima, and S. Hosoe. On optimality of human arm move-
ments. In Proceedings of the 2004 International Conference on Robotics and Biomimetics, pages
256–261, 2005.

[202] Z.Q. Luo, J.S. Pang, and D. Ralph. Mathematical Programs With Equilibrium Constraints.
Cambridge University Press, 1996.
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[313] M. Ulbrich, S. Ulbrich, and L.N. Vicente. A globally convergent primal-dual interior-point filter
method for nonlinear programming. Mathematical Programming, 100(2):379–410, 2004.

[314] Y. Uno, M. Kawato, and R. Suzuki. Formation and control of optimal trajectory in human
multijoint arm movement. Biological Cybernetics, 61(2):89–101, 1989.

[315] Y. Uno, R. Suzuki, and M. Kawato. Minimum muscle-tension-change model which reproduces
human arm movement. In Proceedings of the Symposium on Biological and Physiological Engi-
neering, pages 299–302, 1989.

[316] F.J. Valero-Cuevas, H. Hoffmann, M.U. Kurse, J.J. Kutch, and E.A. Theodorou. Computational
models for neuromuscular function. IEEE Reviews in Biomedical Engineering, 2:110–135, 2009.



BIBLIOGRAPHY 201

[317] F.J. Valero-Cuevas, M. Venkadesan, and E. Todorov. Structured variability of muscle activations
supports the minimal intervention principle of motor control. Neurophysiology, 102(1):59–68,
2009.

[318] R.J. van Beers, P. Haggard, and D.M. Wolpert. The role of execution noise in movement
variability. Neurophysiology, 91(2):1050–1063, 2004.

[319] B.M. van Bolhuis and C. Gielen. A comparison of models explaining muscle activation patterns
for isometric contractions. Biological Cybernetics, 81(3):249–261, 1999.

[320] F.C.T. van der Helm. Analysis of the kinematic and dynamic behavior of the shoulder mecha-
nism. Biomechanics, 27(5):527–550, 1994.

[321] F.C.T. van der Helm. A finite element musculoskeletal model of the shoulder mechanism.
Biomechanics, 27(5):551–553, 1994.

[322] G.P. van Galen and W.P. de Jong. Fitts’ law as the outcome of a dynamic noise filtering model
of motor control. Human Movement Science, 14(4):539–571, 1995.

[323] F. Vanden Berghen and H. Bersini. Condor, a new parallel, constrained extension of Powell’s
UOBYQA algorithm: Experimental results and comparison with the DFO algorithm. Compu-
tational and Applied Mathematics, 181(1):157–175, 2005.

[324] S. Veelken. A new relaxation scheme for mathematical programs with equilibrium constraints:
Theory and numerical experience. Dissertation, Fakultät für Mathematik, Technische Univer-
sität München, 2009.

[325] A.F. Vereshchagin. Computer simulation of the dynamics of complicated mechanisms of robot
manipulators. Engineering Cybernetics, 6:65–70, 1974.

[326] L.N. Vicente and P.H. Calamai. Bilevel and multilevel programming: A bibliography review.
Global Optimization, 5(3):291–306, 1994.

[327] S. Vijayakumar and S. Schaal. Locally weighted projection regression: An o(n) algorithm for
incremental real time learning in high dimensional space. In Proceedings of the International
Conference on Machine Learning, volume 1, pages 288–293, 2000.

[328] P. Viviani and T. Flash. Minimum-jerk, two-thirds power law, and isochrony: converging
approaches to movement planning. Experimental Psychology, 21:32–53, 1995.

[329] H. von Stackelberg. Marktform und Gleichgewicht. Springer, 1934.

[330] O. von Stryk. Numerische Lösung optimaler Steuerungsprobleme: Diskretisierung, Parame-
teroptimierung und Berechnung der adjungierten Variablen. In Fortschritt-Berichte VDI, num-
ber 441 in Reihe 8. VDI-Verlag, 1995.
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