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Abstract

In this paper, we give a concise survey of concepts, architectural frameworks, and design method-
ologies that are relevant in the context of self-adapting and self-optimizing systems. These topics
are motivated by open research questions and some current requirements of adaptive systems from
an industry point of view.
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1 Introduction

We consider adaptive systems as reactive, software-intensive systems, which
expose more flexible system behaviors than conventional software systems.
Adaptive systems typically use information about the system environment to
adapt themselves to certain usage situations. This adaptation can have many
forms.

In our daily life, many systems adapt their behavior in reaction to a given
usage situation. A prominent example of such systems are smart phones and
their software applications. Using the possibilities of built-in sensors, such as
location or orientation sensors, many smart phone applications are able to pro-
vide a context-aware behavior. Weather applications show the current weather
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depending on the user’s current location, navigation applications guide users
to a given destination, and graphical user interfaces automatically adjust their
screen orientation according to the orientation of the phone, allowing them to
render the content in an upright or landscape format.

But not only conventional sensors allow applications to adapt themselves
to a changing environment. Communication interfaces such as Wi-Fi or Blue-
tooth with their ever-changing context in terms of connections to other devices
force applications to adapt their behavior or internal state: the establishment,
loss and reestablishment of connections to other devices has an impact on the
behavior of applications that use these communication interfaces.

This interactive system behavior can foster many positive effects. Sys-
tems with the ability to adapt themselves provide a richer set of features and
promise to release users from certain interactions with the system by reacting
to a given context. Therefore, adaptability aspects play a major role while
designing systems. However, adaptivity capabilities have to be analyzed care-
fully, to avoid unwanted incidences as presented by the following example.

Most of modern cell phones provide the possibility to connect to a headset
through a Bluetooth interface. The user pairs the headset to the phone,
ensuring that the cell phone will always connect to the right headset. After
that, the phone is able to connect to the headset automatically: Whenever
the headset is within reach of the phone, the user has just to turn it on and
the phone will forward all calls to the headset.

Connecting to the phone via Bluetooth, however, is a feature not only
offered by headsets. Notebooks can also be connected through the same in-
terface, enabling useful functionality such as synchronization of contacts, ap-
pointments or music files. However, the user usually pairs the notebook to
the phone with other intentions than with the headset, and sometimes is un-
aware in which way the phone will adapt and which features are activated.
So, when receiving a call near the notebook with activated Bluetooth can lead
to unwanted behavior, e.g. calls being forwarded to the notebook.

This scenario shows the benefits as well as the limits and drawbacks of
adaptive behavior and context awareness. Exploring in which way systems
are able to adapt themselves, opens an interesting field of research. However,
in our understanding it has to be clearly defined what is meant by adaptive be-
havior, in which way it is emerging and what kind of properties are connected
to it.

The second motivating example originates from the context of software
development. Modern Integrated Development Environments (IDEs) such as
Visual Studio or Eclipse provide a plethora of functions to the developer.
However, only a small subset of functions is needed for specific development
tasks, e.g. coding, testing, debugging. Finding the appropriate functions for a
task can be time consuming. Also, the developer might be unaware of useful
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functions and, thus, can not benefit from them. Some IDEs already group a
certain set of functions into specific profiles, such as debugging. However, the
developer still needs to manually switch between those. Also, IDEs currently
do not recognize whether a developer is currently stuck with a problem, or
employing solution strategies, for which more appropriate functions would
be available. It would therefore be beneficial to provide an adaptive IDE,
presenting the adequate functions for the task at hand. At the same time,
care needs to be taken to not confuse the user by continuously changing the
interface they are working with.

In this context, research has been conducted by Roehm and Maalej [25]
on automatically detecting the activities of developers based on their actions.
The activities are grouped into an iterative model containing the steps in de-
velopment work, such as searching for the cause of a problem or for a solution,
applying the solution, and testing it. From these activities, they derive what
the developer is trying to do and whether they are encountering problems.
This research could help to enable IDEs to adapt to the current development
task and thus support the developer more effectively.

Research Dimensions

The above examples illustrate a number of important aspects that research
on self-adaptive systems must address. In the context of a Dagstuhl seminar,
the software engineering research community has systematically gathered fur-
ther aspects and clustered them into four wews: modeling dimensions, engi-
neering, assurances, and requirements [6]. Figure 1 captures these views and
details the aspects comprised in them:

e Modeling dimensions addresses aspects of how goals of the systems can be
captured and pursued under changing, possibly suboptimal, environmen-
tal conditions. It furthermore raises questions on how change is perceived
by the system and which mechanisms are required to adapt the system
to change. Finally, modeling is concerned with the effects that a self-
adaptation of the system has on the environment.

e Engineering is concerned with the technical realization of self-adaptive sys-
tems. It therefore comprises the aspects that need to be addressed to design,
implement, and deploy a concrete self-adaptive system. This affects all arti-
facts of the standard software development cycle, which need to be tailored
to meet the needs introduced by adaptivity.

* Requirements is considered a seperate view, as many questions are raised
by self-adaptivity: foremost, new languages are required to capture require-
ments. Then, it is not yet established how uncertainty and incompleteness
of requirement specifications can be mitigated in the face of unpredictable
environment conditions. From this follows the need for reflection of re-
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quirements during the system’s runtime, which raises issues of refinement,
traceability, and architectural mapping.

e Assurances addresses the behavioural guarantees required for self-adaptive
systems. On a technical level, these might be addressed by model-driven
development and agile runtime assurance. Preliminary for these techiques,
dynamic identification of changing requirements must be enabled. Further-
more, self-adaptation raises fundamental questions of liability and social
responsibilities with respect to safety and security.

CGoaIs * Modeling )
® Change e Architecture
* Mechanisms ® Design
o Effects ¢ Middleware
¢ Validation & Verification
e Reengineering
- Modeling Engineerin d
Dimensions & &
Assurances Requirements
( )

¢ Dynamic identification o
changing requirements

* Model-driven
development for

e Languages
o Architectural mapping
e Uncertainty

adaptive systems e Reflection
e Agile runtime assurance * Refinement
\* Liability & social aspects * Traceability Y,

Fig. 1. Research fields for adaptive systems, according to [6].

Problem Statement

Adaptivity of software systems is expected to provide great benefits. How-
ever, many different aspects need to be investigated carefully to avoid un-
wanted behavior and to mitigate limitations of these systems. Adaptive sys-
tems therefore give rise to a plethora of challenging research questions, ranging
from the definition of adaptive behavior and its goals, over modeling in which
way it is emerging, and what kind of properties are connected to it. Also,
strategies for self-adaptation need to be developed. Furthermore, an array of
engineering and assurance questions are opened by a new kind of requirements.
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Contribution

In this survey, we address aspects from the following views: modeling di-
mensions, engineering, and requirements. To lay the foundations for modeling,
we provide a general definition of system modeling followed by an extension
to express adaptivity. In doing so, we differentiate between technically mo-
tivated and informal categorizations. Furthermore, we identify the actors
involved and concerned with adaptivity. This first part of our contribution
closes with further relevant research aspects and open questions on context
interpretation and inference, comprehensive context models, and specification
of and reasoning about adaptive behaviour.

The second part of this survey focuses on aspect of the engineering view.
We provide an overview and comparison of current architectural frameworks
for adaptive systems. For deeper understanding, we detail on the characteris-
tics of one approach. We raise questions related to validation and verifiction
of adaptive systems. The requirements view is highly related to these as-
pects, as it is concerned with the mapping of requirements onto architecture.
Therefore, we briefly address two different ways of collecting requirements for
self-adaptive systems.

Outline

This paper is organized as follows. In Section 2, we discuss the require-
ments for adaptive systems from an industry point of view. In Section 3,
we provide the mathematical foundations for the formal definition of adap-
tive system behavior. Then, Section 4 makes the notion of adaptive system
behavior more precise and discusses corresponding methodological implica-
tions for building adaptive systems. In Section 5, we evaluate state-of-the-art
architectural frameworks for building self-adaptive systems in the context of
Autonomic Computing. Then, Section 6 describes a concrete architectural
framework for building adaptive systems which was developed at the TUM; a
basic methodology tailored for this framework is outlined. Finally, Section 7
concludes this paper by discussing relevant research questions, open problems,
and blind spots in current research.

2 Industrial Requirements on Adaptive Systems

This section gives an overview on requirements for adaptive systems from
an industry point of view. The requirements are derived from two specific
scenarios that apply to many more general scenarios as well.

Scenario 1: Consumerization of IT
The first scenario is based on a trend that more and more enterprises are
currently observing: the consumerization of I'T. Instead of centrally managing
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company owned resources, like PCs, Notebooks, network infrastructure, or
mobile phones, I'T departments have to shift towards providing services to
their users, which can be accessed from arbitrary devices, including devices
that are not even owned or managed by the company. Mobile devices enabling
employees to access corporate services are part of any modern scenario in
commercial and industrial environments. Conceivably, mobile devices will also
plug into home entertainment devices to provide the same personal services on
a big screen that they provide on the device itself. Designing adaptive systems
that provide context-dependent functionality is one of the key challenges in
this scenario that needs to be addressed for the devices, and the services that
those devices can access.

Nowadays management of enterprise I'T resources often implies that a set
of policies are enforced on devices, for example, imposing restrictions on pass-
words or PINs, hard drive encryption, or even disabling hardware drivers (e.g.
USB, camera) on devices. As those devices used to be company owned, peo-
ple accept these restrictions that are enforced on their work devices. A recent
trend that enterprises face, and also often actively support, is people bringing
their own private devices, like mobile phones and tablets, into the enterprise
context and expect them to operate seamlessly in the work environment. Still,
people are usually not willing to allow IT operations to manage those private
devices as they are also used in the private context, but the enterprise also
needs to protect sensitive business data. This is leading to conflicting interests
what data should be accessible from a device and how it can be accessed.

To address this problem, a different way of IT operations management
is necessary: instead of limiting access and rights on a device, restrictions
can now only be imposed on the services that devices access. These services,
like email or storage-server access, should behave differently depending on the
properties of the device accessing the service. While a fully managed device
with enforced access control might be allowed to keep a local cache of company
emails also for offline use, privately owned devices might only be allowed access
to emails with client software that keep no local cache of the messages. The
adaptivity of the service and devices always tries to give the best possible
service quality to the user, and is only restricted by the constraints that the
IT operations enforce. As these constraints might be conflicting, finding a
good or even optimal solution it not a trivial task.

As the perception of IT becomes one of services that are merely mediated
by devices, the fixed association of different but similar services to different
devices will be perceived as anachronistic. People find it annoying to install
different applications on different devices to obtain the “same” service. In-
stead of having many special purpose devices, which have to be managed
individually, today’s mobile devices like phones and tablets have the potential
to serve as the gateway to all personal services an individual is using. The
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devices are personalized and have access to all relevant personal context data,
like calendar or address book, but also to the sensors of the devices, like GPS
or wireless technologies. These devices could utilize special-purpose devices in
its vicinity to provide a context-adequate user experience by connecting to TV
or media players at home, sensors and antennas in the car, and to company
resources at work.

To enable such aspects of this scenario, several challenges have to be ad-
dressed: first, a service model will be necessary that supports discovery, aggre-
gation, and adaption. As new devices or sensors might appear and disappear
at any time, the applications need to quickly adapt to the changing environ-
ment to always provide the best possible service with the available resources.
Second, interfaces, protocols, and matching platform features are required to
allow a mobile device to smoothly and efficiently connect to and use sensors,
actuators, and Ul in its vicinity to provide a genuine user experience. Finally,
the mentioned functionality should be exposed as a programming model to
developers, to allow them concentrating on the application logic instead of or-
chestrating the different devices and services. The programming model has to
provide appropriate abstractions to control distribution of functionality and
adaption to changing availability of devices and services.

Scenario 2: Adaptivity in Data Centers

A second scenario addresses an issue that operators of data centers often
encounter. Datacenter architectures today consist of many virtual machines
running on the same PC hardware, several PCs are stored inside a rack and
multiple racks are assigned to clusters. Managing such datacenters is a very
complex task. The overall goal of the operators is to keep up the functionality
of the services, although failures might happen at any level of the architecture.
Once a failure is detected, the system automatically adapts its configuration,
by isolating the failing component, and redeploying the services to other parts
of the data center.

Resiliency against faults by automatically adapting its internal configura-
tion is one of the key requirements for datacenters, as they constantly have to
deal with the fact that certain components will fail—from a statistical point
of view. To achieve resilience against hardware faults, the nodes need to pro-
vide diagnostics functionality, which constantly measures its own state and
aggregates the state of the hosted components. A certain level of adaption,
like restarting a crashed virtual machine, can be triggered locally, while other
changes, like moving virtual machines between nodes, might also require re-
configuring other components of the data center as well.

Many of the necessary function to achieve the required level of adaptivity
requires platform support. For example, the platform needs to ensure that
a malicious or crashing virtual machine cannot interfere with the monitoring
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and sensing platform; also moving a running virtual machine from one node
to another needs platform support as the virtualized client should not realize
that it has been moved. Adaptivity is a key feature of cloud operating systems,
and it needs to be investigated how this feature can be exposed to users in an
easy to understand abstraction, as today’s operating systems already do on a
per PC level, for example, by providing the process abstraction.

One of the key challenges in building adaptive systems is supporting the
engineer in designing such a system. The engineer requires tool support to
verify that an architecture is able to support at least degraded functionality
under the assumption that one component fails and that the functionality can
be moved to another node. A platform should provide a capability to dynam-
ically deploy, start, and stop functionality on a node and seamlessly move the
functionality to another node. Not only functionality, but also data from the
environment and other computation nodes must be moved between nodes. If
a platform supports dynamic adaption to faults by moving functionality be-
tween nodes, the question remains which of several deployment options is the
best. A designer needs a way to express quality criteria, which could be used
to optimize different deployment options.

Another aspect in this scenario is the optimization of resource utilization
in data centers. Data center operators regularly observe peaks in usage of the
services at specific times of a day, while at other times the usage is significantly
lower. Being able to dynamically scale up and down services, or moving
multiple virtual machines to a single host, allows for shutting down hosts and
saving energy. Due to the size of the data centers the capability to dynamically
adapt to load can help to significantly reduce the cost of operations.

Conclusion

We believe that the design of adaptive systems will be a key technology
to address many of the challenges we see in next generation systems. On the
one hand, the systems designer will require design patterns and frameworks
that help in building and deploying adaptive systems; on the other hand, the
increasing complexity demands for good design tools which assist the designer
and provide capabilities to verify the validity and consistency of the design.
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3 Foundations

In this section, we introduce the formalism to express our intuition of adap-
tive system behavior in a concise manner. The basis for our formalism are the
Focus theory [5] for specifying interactive systems and the JANUS approach
[2] as its extension to services. Since we define adaptation in terms of the
interactions between a subject, a system and its environment, we concentrate
on the system structure and the interface behavior of the communicating enti-
ties. Focus and JANUS provide appropriate modeling techniques for treating
both aspects on a mathematical basis.

3.1 Streams and components

In Focus, the behavior of a system is described by relating system inputs
and outputs. Both inputs and outputs are sent along typed input and output
channels, respectively. A typed channel is a directed communication line over
which messages of its specific type are communicated. A type is simply a
name for a data set.

Let M be a set of messages, for instance the carrier set CAR(M) of a
given type M. By M * we denote the finite sequences of elements from M. By
M > we denote the set of infinite streams of elements of set M, which can be
represented by functions N, — M, where N, = N\{0}. By M¥ = M *UM *°
we denote the set of streams of elements from the set M, which are finite or
infinite sequences of elements from M. A stream represents the sequence of
messages sent over a channel during the lifetime of a system.

The syntactic interface (I>0O) of a system is characterized by its set [
of input channels and its set O of output channels. A channel is basically a
name for a stream.

Let C' be a set of typed channels, a channel history is a function

z:C —= MY

mapping each channel to the messages communicated over that channel, where
the stream z(c) carries only messages of the type of ¢. We denote the set of
all channel histories for the channel set C' by both H(C') and c.

The interface behavior of a system specifies an input/output (I/0O) function
that defines a relation between the input streams and the output streams of
a system. It describes the behavior of a system in the most abstract way.

An I/0O function is represented by a set-valued function F' : 7= © (8)
The function yields a set of histories for the output channels O for each history
of the input channels I.

An interactive composed system consists of a family of subsystems called
components. These components interact by exchanging messages via their
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channels, which connect them. A network of communicating components
forms a system architecture, which can be graphically represented by directed
graphs (cf. Fig. 2). Components are depicted as rectangles, directed chan-
nels are denoted as arrows, pointing from their source to their destination. A
channel can be labeled to indicate its name and data type (name : Type). We
refer to [5] for further details regarding the properties of composition and the
semantics of FOCUS specifications.

l:X
i R Component™ Component| © - S

— A m:Y: B

Fig. 2. Syntactic interface of two components

3.2 Services

A service has a syntactic interface (1 > O) and a corresponding behavior func-

tion F: 1 — © (8) just like a component. By F[I > O] we denote the set of
all service interfaces with input channels I and output channels O. However,
as opposed to a component, a service may have a partial interface behavior,
i.e. I is only defined for a subset of input histories x € H(/). This subset is
called the service domain, which is defined by

Dom(F) = {z: F(x) # 0}.
The corresponding service range is defined by
Ran(F)={y € F(x):x € Dom(F)}.

Hence, a component is a special case of a service, with either an empty or a
total domain.

In order to relate a system with the services it provides, we use the concept
of splicing or projection, respectively. For a set of typed channels C" C C' and
a channel history « € H(C'), we denote x| € H(C") as the restriction of x to
the channels and messages in C".

Given a service F' € F[I > O] and a subset of channels I’ C I, O" C O,
we define its projection F'1 (I'>0’) € F[I' > O] to the interface (I't>O') as
follows: for all input histories ' € H(I’),

Ft(I'sO)@') = {ylo:3w e T o' =2l Ay € F(z)).

We call a projection F' 1 (I' > O') faithful if for all input histories x € Dom(F),
we have

F(a)lo = F1I'>0')(alr).
10
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In other words, a faithful projection does not introduce additional non-deter-
minism, since the input deleted by the projection does not influence the output
(cf. [3] for more details).

We also say, that a service F’' € F[I'>0'] is a sub-service of a service
F e F[I>O0], where I' C I, 0" C O, if I/ = Ft(I'>0'") (see Fig. 3). In
this light, a faithful projection is a projection of a behavior to a sub-service
that forms an independent sub-behavior, where all input messages in [ are
included that are relevant for the considered output messages.

Let Fy € F[I; > Oq] and Fy € F[I; > O] be two services with [; C I and
O; C Os, respectively. Fy is a service refinement of Fy, denoted by Fy ~» Fj,
if for all input histories 2’ € Dom(Fy),

%
{ylo, : Fx € I : 2’ = a|;, Ny € Fy(x)} C Fi(2') and

Dom(Fy) C{z|, : € Dom(F»)}.

In other words, the refining service Fy behaves more deterministic than the
refined service [}, since the set of possible output histories of Fy is reduced.
On the other hand, the service domain of F5 is enlarged. This enables us to
properly replace each occurrence of F} by its refinement F;, without violating
any design contracts.

INI" | Ft(\I's0\0) O\ O

Fig. 3. Splicing a sub-interface of service F'

4 Adaptive System Behavior

4.1 Informal Definitions

Basically, adaptive systems are interactive systems, i.e. systems that contin-
uously exchange information with their environment. At a certain level of
abstraction it is formally insignificant, from where input to the system origi-
nates, e.g. whether the input comes directly from a user or a technical sensor.
Therefore, a key question is which aspects differentiate non-adaptive behavior
from adaptive behavior? A tendency is that observing the environment makes
the difference. In order to investigate the crucial decision criterion, we classify
the system inputs into direct / explicit inputs as well as indirect / implicit
inputs and use an explicit user model to distinguish both. The user model
comprises all interaction possibilities for a user.

11



BAUER, BrROY, IRLBECK, LEUXNER, SPICHKOVA, SANTEN, DAHLWEID

The methodological implications of this decision are discussed in Sec-
tion 4.3. We assume that user inputs are always entered explicitly. Intuitively,
a user experiences an adaptive system behavior, if the system reaction result-
ing from his inputs is additionally determined by some information about the
environment, i.e. implicit inputs. In the following, we distinguish between
four perspectives of observable system behavior w.r.t. the user.

1. Non-adaptive behavior: The system behavior is exclusively determined
by user inputs. In particular, the behavior is independent of implicit inputs
of the system environment.

2. Non-transparent adaptive behavior: Both user inputs and implicit inputs
of the proximate system environment determine the behavior of the considered
system. In addition, we assume that the user can not observe the implicit in-
puts that influence the system behavior. Infrared measurements are examples
for non-observable implicit system inputs.

3. Transparent adaptive behavior: Again, the system behavior is deter-
mined by user inputs as well as inputs of the environment. As opposed to
the previous perspective, the user (partially) observes those implicit inputs.
Hence, the user infers a relationship between events occurring in the observ-
able environment and the resulting system reactions. Nevertheless, the user is
not able to influence or control the former. Weather conditions are an example
thereof.

4. Diverted adaptive behavior: Consider that the user is also able to con-
trol some of the implicit inputs of the environment. Obviously, users might
unintentionally influence their environment — and sometimes adaptation ex-
actly relies on detecting these influences. However, what we are concerned
with is the intentional influencing of the environment in order to achieve cer-
tain system reactions. Users influencing a system in that way certainly miss
some directly accessible usage functionality or are unsatisfied with the result-
ing system reactions. We say that a system exposes this “diverted adaptive”
behavior, whenever a user exploits this additional possibility for influencing
the system.

The above classification implies that a system can not be attributed to
behave adaptive without explicitly relating to

* a subject (person or other technical system) and
¢ the environment of use (modeled as context).
Regarding the subject we differentiate between

e ordinary users that have no mental model of the adaptive system behavior,
i.e. from their perspective the system exposes a non-transparent adaptive
behavior;

 cautious users having a mental model of the adaptive behavior, but do not

12
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try to control the implicit system inputs of the environment;

e manipulative users, which intentionally influence the environment in order
to achieve certain system reactions.

This classification leads to a user taxonomy, which we recommend to take into
account when constructing adaptive systems (cf. Section 4.3). Formal defini-
tions of the four perspectives are presented subsequently. Details concerning
the proposed user taxonomy can be found in [27].

4.2 Formal Definitions

According to the classification provided in Section 4.1, we distinguish between
three different types of adaptive system behaviors; two of them are formally
described in the following. Basically, we consider the interactions between
three entities:

o the subject U (person or other technical system) communicates with,

o the system S through a set Iy of input channels and a set Oy of output
channels, respectively,

* the system S observes certain aspects of its proximate environment E by
means of sensors through a set I of input channels.

The system might also influence its environment by actuators sending signals
along a set Og of output channels. The basic construction is formulated in
terms of the abstract system architecture illustrated in Fig. 4-6. All channels
just described are depicted as solid arrows.

4.2.1 Non-transparent adaptive behavior

The non-transparent adaptive behavior is schematically presented in Figure 4:
the subject U is not able to observe or influence the system environment F,
since no communication channels between U and E exist. The interaction
takes place only between the system and its environment and between the
subject and the considered system, respectively. Thus, the syntactic interfaces
of U and E are denoted by (Oy > Iy) and (O > I), respectively.

The system S exposes the syntactic interface (I > O), whereby I = U Iy,
and O = O UOyp. By SY we denote the sub-service of system S obtained by
projecting the overall interface (I > O) to the communication channels with
subject U, that is, SY = S1 (Iy > Oy). Sub-service ST is defined analogously,
that is, SE = ST (IE DOE)

In order to formally characterize the notion of adaptive system behavior,
we introduce a predicate nonfaithful : F xF — B, which is defined for a service
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System
Environment ‘e Oe
e <, |«
Ou U
Subject b S
U ly ~

”

Fig. 4. Architecture of “non-transparent” adaptive behavior of the system w.r.t. the subject.

F € F[I> 0] and its sub-service F' € F[I' > '], where I' C I,0" C O:

nonfaithful (F, F') = 3z, y € Dom(F) :
Fr=F1(I'bO") Aalp = ylp A F(z)lor 7 F(y)lor

In other words, nonfaithful (F, F") is true if F' = F'{ (I’ > ') is not a faithful
projection of F, that is, =Vx € Dom(F') : F(z)|or = F'(z|r). More precisely,
we obtain the following two equations

3 € Dom(F) : Fla)lor C F'(aly),
Vo € Dom(F) : F(x)lor C F'(x|p).

Thus, F’ introduces additional non-determinism since it abstracts away in
projection x|, some input messages of x that are needed to determine the
output in F(z)|o.

Definition 4.1 System S exposes a non-transparent adaptive behavior w.r.t.
subject U if nonfaithful(S, SY) is true, i.e., U observes some non-deterministic
system reactions of S.

Clearly, each implementation is deterministic. Hence, the indeterminate
system reactions observed by U are attributed to (unobservable) system in-
puts, which implicitly influence the behavior of S. We call such input context.

Example 4.2 A context-aware car navigation which adjusts the route in case
of a traffic jam exposes a non-transparent adaptive behavior w.r.t. an ordinary
driver, who has not already been informed about the traffic jam.

4.2.2  Transparent adaptive behavior

In order to express that subject U may at least partially observe the system
environment F, we first of all introduce an additional set of communication
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channels ', pointing from F to U. C refines the syntactic interfaces of both
entities to £’ and U’, respectively. Furthermore, we split up the contextual
system inputs /g into two disjoint channel sets I NCy (contextual inputs ob-
servable by U’) and I \ C} (contextual inputs not observable by U’). Fig. 5
illustrates this situation.

System
Environment
> SF
M|
Ou' 9
Subject b sV
U’ Iy ~

Fig. 5. Architecture of “transparent” adaptive behavior of the system w.r.t. the subject.

We exploit service refinement as described in Section 3.2 for our further argu-
mentation concerning the notion of “transparent adaptive” behavior. Consider
a “cautious user” U’ with the syntactic interface (Oy/UC) > I;/), who at least
partially observes the system environment through the channel set Cf.

We assume that U’ interprets the messages received along C; as contex-
tual system inputs. From the perspective of U’, the service SU” constitutes
an appropriate characterization of the system’s behavior, since its interface
comprises all system inputs and outputs observable by U’. In comparison to
the service SY that represents the “non-transparent adaptive” behavior, Sv’
behaves more deterministic. Obviously, some of the non-deterministic system
reactions previously exposed by SY can easily be explained by means of the
additional system inputs x € H(Iz N Cy). Formally, nonfaithful (S, SV") =
nonfaithful (S, SY). Moreover, SU' fulfills the refinement relation defined in
Section 3.

Definition 4.3 A system S exposes a transparent adaptive behavior w.r.t.
subject U’ if the proposition

35V, 8V e F . nonfaithful(S,SY) A SV~ SV’

is true, that is, due to its refined interface, the subject U’ observes a more
o« . . . ! . .
deterministic service SV in comparison to SY.
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Clearly, the sub-services resulting from those projections to observable com-
munication channels behave more and more deterministically from the per-
spective of the subject, as we enlarge the set of observable input channels
originating from the environment. If the projection comprises all input chan-
nels originating from the subject and the environment, respectively, the re-
sulting service SU” becomes totally deterministic, since it accumulates to the
overall system S, that is, SU" ~» S.

Example 4.4 The car navigation from Example 4.2 exposes a transparent
adaptive behavior w.r.t. a cautious driver who actually recognizes that the
route is adjusted according to an oncoming traffic jam, since the jam was
announced via radio broadcasting (implicit input for the system).

4.2.8  Diverted adaptive behavior

We denote the last perspective as diverted adaptive behavior w.r.t. a “manip-
ulative user”. It reflects the circumstance, that a user may not only observe
but also influence the system environment over a set Cy of communication
channels (cf. Fig. 6). A formalization of this circumstance results in refin-
ing the system environment E’ in order to behave more deterministic. For
the sake of brevity, we skip the formalization, since it does not contribute to
a better understanding. The corresponding methodological implications are
discussed subsequently.

System
sF
Subject * sv
U’ Iy _

Fig. 6. Architecture of “diverted” adaptive behavior of the system w.r.t. the subject.

4.8  Methodological Implications

Requirements elicitation: As discussed in the previous sections, the behavior
of a (context) adaptive system does not only depend on user inputs and in-
ternal system states. “External” factors concerning the situation of use need
also to be taken into account. The user needs associated with a certain usage
situation constitute such an external factor. The context elicitation denotes
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the identification of such external factors in terms of context. The formal
definitions provided in [4] contribute to this task by helping the requirements
engineer to specify the context information, which is relevant for the adap-
tation of the system. Formally, this task comprises the specification of the
environment £, the subject U and all contextual channels Ir between the
environment and the system.

Architectural pattern: The decomposition of the system’s functionality into
two sub-services (cf. Fig. 4) indeed constitutes a design proposal. It already
suggests a certain decomposition of the overall system into two main con-
stituents as proposed in [29]:

e a service SY comprising all core functionalities of the system, that is, the
set of all observable behaviors, and

« an adaptation logic service S¥, which is responsible for realizing the “most
appropriate” behavioral pattern for a given usage situation.

Both constituents interfere with each other in order to provide the required
system behavior, while their separate design fundamentally reduces the system
complexity.

Tailored methodology: The template-like structure of our definition enables
the designer to determine whether a considered system exposes an adaptive
behavior. If the system’s interface description contains some output channels
to the user, whose histories not only dependent on the user’s input, but also
on additional information about the proximate environment, this fact can be
exploited. In order to reduce the system complexity and to facilitate the model
analyses, a designer might

* reconsider some design decisions along the lines of the architectural pattern
described in the following section and [29], respectively, and

¢ choose a tailored design methodology, such as [13,11,10,28], which facilitates
the specification of adaptive behavior and exploits appropriate models, such
as mode-automata for structuring reconfigurable behavior.

We review such a tailored methodology in Section 6.3.

Unwanted behavior: A “perfect” adaptive system would—depending on the
situation of use—always expose the most appropriate behavior to the user.
This system adapts its behavior “perfectly transparent”, i.e. the user always
understands and affirms the taken adaptation decisions of the system, re-
spectively. Given this idealized system, all misunderstandings concerning the
system usage and related effects like automation surprises [26] and unwanted
behavior [12] can be neglected. However, as argued in Section 3, a perspec-
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tive called “diverted adaptive behavior” often can be experienced, which is
associated with profound methodical implications. The detection of use cases
exposing such a behavior reveals deficiencies of the system’s interaction inter-
face or its adaptation logic. In the first case the system’s interaction interface
needs to be enhanced by additional services the user is currently missing. The
second case requires a mechanism for influencing the logic of the adaption.
Fahrmair et al denote such a mechanism as calibration [9].

5 Architectural Frameworks

In this section, we summarize and discuss relevant requirements for architec-
tures and frameworks enabling the construction of adaptive systems along the
lines of [16]. We focus on one particular application domain which is closely
related to adaptive systems: autonomic computing (AC). In a nutshell, AC de-
notes an emerging paradigm aiming to simplify the administration of complex
computer systems. In this light, adaptation can be regarded as an enabling
technology for future applications in the AC field. Consequently, we present
a survey of past and future secrets of this enabling technology within the AC
context. Section 5.1 presents the criteria for evaluating state-of-the-art archi-
tectural frameworks, while Section 5.2 evaluates these frameworks concerning
the criteria.

5.1 FEwvaluation Criteria for Frameworks

Adaptability: The core concept behind adaptability is the general ability to
change a system’s observable behavior, structure or realization [12,8]. This re-
quirement is amplified by self-adaptation. Self-adaptability enables a system
to decide about an adaptation by itself—in contrast to an “ordinary” adapta-
tion, which in turn is decided and triggered by the system’s environment, e.g.
a user or administrator. Adaptation may affect the change of some functional-
ity, algorithm or parameters as well as the total system structure or any other
aspect of the system. If an adaptation comprises the change of the complete
system model, including the model that actually decides on the adaptation
and deploys the decisions, this system is called a totally reconfigurable system.
In case a change of behavior can be expressed by exchanging some functional
entities, the system is simply called reconfigurable. Self-adaptation requires a
model of the system’s environment. This model is often referred to as context.
Thus, self-adaptation is also called context adaptation. We use both terms
synonymously throughout the paper.

Awareness: Awareness is closely related to adaptation and context, as it is
a prerequisite for self-adaptation. It has two aspects: self-awareness enabling
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a system to observe its own system model, state, etc. and awareness of the
environment. As stated above, the model of the system’s environment is often
called context [8,17]. More precisely, we denote context as the sufficiently
exact characterization of the situations of a system by means of perceivable
information that is relevant for the adaptation of the system [12]. In principle
any (measurable) characteristic of the system or its environment could be
considered for adaptation decisions. A systematics to model a system’s context
is proposed in [29].

Introspection / Monitoring: Since monitoring is often regarded as a prereq-
uisite for error discovery and handling, it is also required in the context of
awareness [23,20]. The peculiarities of monitoring are not discussed within
this document. However the notion of monitoring is relevant for this discus-
sion, since it is closely related to the notion of context. Context embraces
the system state, its environment, and any information relevant for the adap-
tation. Consequently, it is also a matter of context, which information for
instance indicates an erroneous system state and hence characterizes a situa-
tion in which a certain adaptation is necessary. In this case, adaptation can
be compared to error handling, as it transfers the system from an erroneous
(unwanted) system state to a well-defined (wanted) system state.

Dynamicity / Reconfigurability: Dynamicity embraces a system’s ability to
change during runtime. In contrast to adaptability, this only constitutes the
technical facility of change. While adaptability refers to the conceptual change
of certain system aspects, which does not necessarily imply the change of
components or services, dynamicity is about the technical ability to remove,
add, or exchange services and components. Once more, there is a close but not
dependable relation between both dynamicity and adaptation. Dynamicity
may also include a system’s ability to exchange certain (defective or obsolete)
components without changing the observable behavior. Dynamicity deals with
concerns like preserving states during functionality exchange, starting and
stopping functionality etc.

Autonomy: As the term Autonomic Computing already suggests, autonomy
is one of the essential characteristics of such systems. AC aims at unbur-
dening human administrators from complex tasks, which typically require a
lot of decision making without human intervention (and thus without direct
human interaction, i.e. the set of communication channels Ig, cf. Fig. 4 is
restricted or even contains only channels for system initialization/start). Au-
tonomy, however, is not only intelligent behavior but also an organizational
manner. Context adaptation is not possible without a certain degree of au-
tonomy. A rule engine obeying a predefined set of conditional statements (e.g.
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if then_else) is the simplest form of autonomy. In many cases, such a simple
rule-based mechanism, however, may not suffice.

Robustness: Robustness is a requirement that is claimed for almost every
system. AC applications will specially benefit from robustness since this may
facilitate the design of system parts that deal with self-healing and self-defense.
In addition, the system architecture could ease the appliance of measures in
cases of errors and attacks. Robustness states the first and most obvious step
on the road to dependable systems. Beside a special focus on error avoidance,
several requirements aiming at correcting errors are forced. Robustness is often
achieved by decoupling and asynchronous communication. Both are approved
techniques in software and systems engineering which help to prevent the
propagation of errors.

Mobility: Mobility enfolds all parts of the system: from mobility of code
on the lowest granularity level via mobility of services or components up to
mobility of devices or even mobility of the overall system [20,9]. Mobility
enables dynamical discovery and usage of new resources, recovery of crucial
functionalities etc. Often, mobile devices are used for detection and analysis
of problems.

Runtime-Traceability: Traceability enables the unambiguous mapping of the
logical onto the physical system architecture, which inter alia facilitates an
easy deployment of necessary measures [20]. The notion of traceability is
once more closely related to that of adaptation: adaptation decisions namely
also base on an abstract system model in order to reduce the necessary com-
putational power. These decisions are afterwards deployed in the physical
system, too. The deployment is usually automatic, and thus requires trace-
ability. Traceability is additionally helpful when analyzing the reasons for
wrong decisions made by the system.

Criteria relations: Fig. 7 shows the relations between the above evaluation
criteria, which is based on the categorization suggested by [6]. First, we as-
sume that a set of goals is given for a system. Goals have to maintained by
the system by all means and are the aim of each adaption the system decides
to take.

Each adaptive system needs to gather information about the change of its
environment or the internal system state in order to adapt its behavior. In
this sense, awareness of the present context of use can be understood as a key
prerequisite of adaptive behavior. Thereby, the concept of introspection and
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Fig. 7. Relations between evalutation criteria

Fig. 8. Exemplary adaptation cycle

more specifically monitoring or (runtime-) traceability can be seen as a special
case of awareness, which focuses on the internal states of the system—instead

of the system’s environment. Sensing is used to gather external information,
e.g. through the usage of sensors.
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Adaptability enables the system to change to a new situation. Therefore the
system is using different mechanisms which can be applied to reach the goals
of a system. Among the set of systems with an adaptive behavior, more so-
phisticated systems expose at least some degree of autonomy with respect to
their reactions onto system inputs. The degree of autonomy thereby deter-
mines how intense a user must interact with the system to accomplish a given
objective. Another, not necessarily disjoint set of systems with an adaptive
behavior is able to change its internal structure on the service, component, or
hardware level during runtime, which we denote by reconfigurable or dynamic
systems. A third set of systems with an adaptive behavior can be attributed
by the term mobile, which for instance implies that such a system runs on
a mobile device that can dynamically connect to other devices in the (proxi-
mate) environment, e.g. through wireless communication channels. Note that
the above sets of systems are not necessarily disjoint, so that an adaptive
system can satisfy any combination of the attributes awareness, mobility, and
dynamicity.

Each adaptation may have effects on the system and its environment which
may influence the stability of the system. Resilience, robustness and conver-
gence are refined measures to overcome an unstable state and to stabilize the
system again.

Adaptation cycle: Fig. 8 illustrates the cycle in which systems adapt to a
changing context. The observation starts at a given, stable state and config-
uration of the system (1). The information obtained by aware parts of the
system, like sensors, indicates a change in the context of the system (2), sym-
bolized by triangles surrounding the system in the figure. In order to maintain
its goals, the system may use this stimulus to activate mechanisms that e.g.
change its structure or configuration (3). In step 4 the system is adapted to the
new usage context, the effects of the adaptation become visible. Whenever a
new stimulus is sensed (5), the system may use its adaptation mechanisms (6)
to return to a already taken configuration (1) or to change again its structure.

5.2 Bwvaluation of Architectural Frameworks

There is a number of architectural styles and frameworks that already support
at least some of the above mentioned requirements for Autonomic Computing
applications. In the following, a brief characterization of currently available
styles and frameworks is given in order to enable a later mapping onto the AC
requirements. We evaluate the frameworks especially regarding their suitabil-
ity to develop AC applications.

Accord Framework: The accord framework [1] was designed to cope with
three challenges: heterogeneity, dynamism and uncertainty. As the inventors
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had a focus on grid environments, these three problems are especially imma-
nent. Therefore the framework implements three requirements that aim at
solving these problems:

(i) separate interface definition
(ii) separate computational behavior from interaction and coordination

(iii) computation, interaction and coordination should be context aware to
adapt them to “dynamic requirements”

The first two requirements are attributes of component and service-based
architectures. The third requirement is introduced to cope with dynamism.
Accord does not explicitly include the application model into the context. The
accord framework can be classified as a managed, agent-based architecture.
Components act as agents but are observed and managed by a controller.
Replacing components is quite complex, since components maintain a state,
which has to be migrated during the replacement.

Weaves Framework: In Weaves [15], messages are objects that are for-
warded and manipulated throughout the system. Weaves facilitates blind
communication: connectors and components are separated, components do
not know sources or destinations of objects and neither their semantics. This
ensures that components can be replaced without rearranging connections and
vice versa. Weaves architectures can be edited on the fly. As weaves uses asyn-
chronous communication, typical problems arising from connection loss that
are problematic for synchronous communication, are avoided.

C2 Framework: C2 [30] is another architectural style that focuses on a hi-
erarchical organization of components to enable decoupling. Components are
connected via connectors and are only aware of components that are above
them. Therefore direct invocation can only be made from the bottom to the
top. Communication is asynchronous and based on a request/reply pattern.
However state changes can be propagated via the connectors top-down. There-
fore components on a lower level can be exchanged without causing problems
on an upper level.

PitM Framework: PitM [19] is an extension of the C2 style aiming at “Pro-
gramming in the Many”. Inter-components connection is extended in a way,
that—in addition to top and bottom connectors—side connectors enable syn-
chronous component interaction. As a constraint, two components may not be
in a side-to-side and top-down connection at the same time. This restriction
prevents from ports misuse. Behavior is described by means of provided and
required services and interaction via event-based communication. Further-
more, special connectors called border connectors abstract from distribution
over devices, since components may not see the device borders. PitM has a
second architecture level called meta-level. Components on this level act as
effectors that are aware of the application-level components and may inter-
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act with them. This meta-level controls the application behavior. Application
data messages are used simply for application related communication, whereas
component content, architectural model and system monitoring messages are
used to coordinate adaptive features.

CAWAR Framework: The CAWAR framework [21,22,9,12] differs from the
former described approaches in that it is a purely service-based approach.
CAWAR distinguishes four basic service types: sensors acquire data, inter-
preters process data and actuators deploy instructions. Context elements
are abstract and possibly distributed information buffers, which decouple the
other three service types dealing with the data processing. Certain constraints
govern the possibilities for composition and ensure unambiguous data process-
ing. The usage of services abstracts from implementation details and focuses
on describing the behavior of the specified system. All CAWAR architectures
are self-describing, i.e. the system model itself is part of the system and stored
in a dedicated context element. This enables inferencing from the model. The
CAWAR architecture contains a special management service called model ac-
tivator. This service implements the adaptation decisions within the system
model, which may lead to a reconfiguration of the system. Since the activator
itself is part of this model, even the activator may be affected by such an
adaptation decisions (total reconfigurability). The communication between
context elements and the other service types is synchronous, while it is asyn-
chronous in-between the three other types due to the mentioned decoupling
via context. Beside the service communications, direct communications on the
component layer are also possible and can be negotiated via the context. The
context thus buffers information concerning the system states®, the system
model itself and the system environment.

Summary of the Fvaluation: Each of the architectural styles described
above supports a subset of the former described requirements. All of them
are suitable for designing self-healing application, or more generally AC ap-
plication with specified self-X attributes. However, some architectural styles
better support the design of certain self-X requirements than others. Table 1
summarizes the evaluation results, whereas “0” means the architecture style
does not explicitly support the requirement; however it does not avoid its
fulfillment in principle. “+” means the architecture style somehow supports
the requirement, while “4++" expresses, that the corresponding requirement
is highly supported by the architecture. As mentioned in the introduction, we
focus our considerations on the self-healing attribute, although support of the
further attributes may be straightforward.

We consider both PitM and CAWAR as promising approaches for equipping
system with self-X characteristics, since they support the design of context-

1 the involved services are usually stateless.
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Accord | Weaves | C2 | PitM | CAWAR

Adaptability | + 0 0 ++ +4+
Awareness + + + + 4
Monitoring + o o 4 4
Dynamicity | + + + + 4
Autonomy + + + + +

Robustness + + + + +

Mobility 0 + + . 4
Traceability | o 0 0 + 4+

Table 1

Evaluation of Different Architecture Styles

adaptive systems. C2 and Weaves state first attempts in supporting more
flexible system designs. Accord has a slightly different focus, since it is de-
signed for grid environments, where context is usually limited to indicate the
availability of certain resources within the computer grid.

Both PitM and CAWAR support all requirements for Autonomic Comput-
ing. However, autonomy for any style and framework is highly dependent
on the applied techniques for decision making. CAWAR provides a more so-
phisticated awareness concept than PitM, since CAWAR architectures dictate
an explicit model of the system environment in form of context. Moreover,
CAWAR inherently supports self-awareness of the system model for inference
purposes, whereas PitM merely considers awareness of application related as-
pects; adaptation related aspects of the system are not taken into account.
CAWAR explicitly integrates adaptation and application aspects: the context-
adaptive system behavior is specified by only four service types, thus enabling
a comfortable design of system architectures. Thanks to management services
like the model activator, this architecture can be discovered, deployed and
reconfigured at runtime. We refer to Section 6.2.3 for a detailed evaluation of
the CAWAR framework with respect to the above criteria.

6 CAWAR Design Methodology

We now review a basic design methodology tailored for the CAWAR framework
along the lines of [10]. This framework is based on the notion of a calibrateable
adaptation model (K-Model) which is introduced below. Then, the CAWAR ar-
chitectural framework is described in a nutshell. A basic development process
for constructing K-Models for the CAWAR framework concludes this section.
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6.1 Calibrateable context adaptation model

Several architectures and fewer modeling techniques have been evolved for de-
signing (context-) adaptive systems, whereby a couple of selected approaches
are shortly summarized in [8] together with their associated pros and cons.
The general idea of the CAWAR modeling approach is to provide system de-
signers with a clear and structured notation for explicitly representing the
(context-) adaptive system behavior, which can be communicated to end users.
The principle of this notation is to make both the modular structure and the
workflow of the adaptation subsystem explicit in such a way that reasoning
about the modeled system behavior is facilitated. This approach explicates
the decision logic for the adaptation and makes it comprehensible and modifi-
able for (expert) users. In conventional software systems, this logics is usually
inaccessible for the outside. In contrast we recommend to express the adaptive
system behavior by means of adaptation models or shortly K-Models, which
are formally founded on the Focus theory introduced in [5].

The development of the proposed modeling technique and it’s correspond-
ing implementation on the basis of the CAWAR framework (Section 6.2) is
motivated by an observation that was made over and over deploying adap-
tive systems within real world environments: despite of running perfectly
under laboratory conditions, these prototypes usually exposed some kind of
unexpected behavior when deployed in the wild, even though the underlying
specification was accurately implemented. Hence this phenomenon can not
be reduced to classical implementation defects. Since no established notion
concerning this observation exists, we simply call it Unwanted Behavior or
shortly UB [12]. The reasons for Unwanted Behavior can on the one side
originate from insufficient Requirements Engineering (RE), in which certain
user needs and usage situations are overlooked. On the other side does even
the most sophisticated RE process ultimately result in a requirements spec-
ification, which is an abstraction based on static assumption made at some
stage in the development process. However this inherently static abstraction is
consequently subject to the frame problem [24] known from Al In either case
does the system model generated at design time not comply with the mental
model, which the user is currently associating with the considered system. In
consequence a system behavior is exposed, which differs at least for certain
usage situations from what the user would expect. Since the frame problem
is still an open — and eventually unsolvable — issue, we propose the K-Model
and it’s runtime calibration as an efficient mechanism for circumventing this
issue.

The K-Model uses only four basic elements for describing an arbitrary
complex and adaptive system behavior. These elements structure all possible
services of the adaptation subsystem into the four service types sensors, inter-
preters, actuators and context elements, which exhibit a type-specific behavior
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on their own. Currently two representation forms for documenting K-Models
exist:

e For the purpose of designing and communicating adaptation models, a
graphical notation augmented by different annotations and abstraction tech-
niques was invented, which enhance the readability of adaptation models.

e A machine-readable representation in form of a platform independent XML
file was chosen for implementing adaptation models via the CAWAR frame-
work (Section 6.2).

The four basic service types of an adaptation model are described in the
following sections.

Sensors Sensors are responsible for retrieving relevant information from in-
side and outside the system. They accomplish this task by writing sensed
information to dedicated context elements, which in turn act as information
buffers. Sensors within an adaptation model qualify to model physical sen-
sors like thermometers, movement and light sensors as well as internal or
external software entities that enter information into the system’s context
(e.g. a remote web service) or even human beings, since terminal inputs
may also be treated as perceivable context information.

Context elements Context elements act as buffers for storing arbitrary in-
formation. In addition they decouple the three other service types (sensor,
interpreter and actuator), since a direct communication without context is
not allowed for any of these service types. Depending on the adjacent ser-
vice types and their associated semantics, a context element may represent
measured context data (written by a sensor), combined and interpreted
information (arranged by an interpreter) as well as resulting adaptation
decisions which are gathered and implemented by an actuator (see Fig. 9).

Interpreters Interpreters are the information processing entities within an
adaptation model. They both gather input in the form of context elements
and store the processed information to context elements. The way how
interpreters transform their gathered input relies on the underlying logic the
certain interpreter exposes and may embrace a simple data forwarding as
well as an arbitrary complex interpretation logic (e.g. rule engine, neuronal
network). Interpreters acquire the decision making within the adaptation
subsystem and hence may expose certain learning capabilities.

Actuators Finally actuators are responsible for implementing a calculated
context adaptation by triggering the control components within the core
system or the environment, which in turn change the system behavior ac-
cording to the resulting adaptation decision. The context representing this
adaptation decision is usually derived from perceivable sensor data, which
is appropriately composed by interpreters as described above. For better
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differentiation, the context elements coupled with actuators are also called
adaptation context.

The overall process of context adaptation by means of a K-Model con-
taining the just described service types is illustrated in Fig. 9. The typical
activities involved in the adaptation process thereby are the acquisition of
contezt (step 1), the situation identification (step 2) and the application of
the adaptation decision (step 3).

«— Step 1 —> — Step 2 —> ¢— Step3 —>
Data Context Data Adaptation  Adaptation Adaptation
Sources Data Processing Decision Result  Application

v v v v ¥ v
Sensor

Context
Interpreter

Actuator

Context

Sensor

Context

Fig. 9. Context adaptation by means of an adaptation model (K-Model)

As previously stated, these four elements suffice to represent an arbitrary
adaptive system behavior. In order to achieve a better structuring of the
model, which is easier to read and maintain, it is often beneficial to annotate
certain elements like context and interpreters. The context space is thereby
separated into a) sensor contexrt denoting any information that directly origi-
nates from a sensor, b) situation context containing all information necessary
in order to identify the current usage situation on basis of sensor context and c)
adaptation context which ultimately comprise the decision about the required
adaptation.

Designated interpreters are analogously annotated as situation adaptors,
which typically combine context information (sensor and situation context)
in order to identify a sufficiently exact abstraction of the current usage situ-
ation. Adaptation actions are another annotation possibility, which helps to
model the situational requirements occurring in a certain usage situation —
represented by a situation adaptor. As opposed to a situation adaptor, an
adaptation action is a rather abstract modeling concept (i.e. placeholder)
which needs to be refined by one or more basic elements (e.g. a single context
element or an interpretation chain), as soon as the exact model representation
for this situational requirement is at hand.
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It should already be mentioned, that all elements contained in a K-Model
are solely services; in order to use a contained service, it previously needs to be
bound to an actual component fulfilling this service. For maximum software
flexibility, this service-component coupling may be delayed until runtime, after
appropriate components fulfilling the specified services are discovered. This
proceeding is of particular importance when employing external resources only
available in certain usage situations: consider an external monitor (environ-
ment component), which is detected by the adaptive system hosted on a Pocket
PC when entering the room. This monitor is bound to a specified display ser-
vice for the duration the Pocket PC resides within this room. By the time the
user — who is carrying the Pocket PC — is leaving the room, the monitor gets
out of range; hence the display service falls back upon it’s default display of
the Pocket PC. By exchanging the currently available components (reconfig-
uration), the system adapts itself to provide the most appropriate resources
currently available, thus enabling a usage in as many situations as possible.

The following definition outlines the main characteristics of a K-Model. An
activator represents a special actuator, which inter alia identifies and binds
components to specified services.

Definition 6.1 A K-Model is a model of a calibrateable context adaption
containing an activator that acts on a set of sensors, interpreters, actuators
and context elements [9].

6.2 CAWAR framework in a nutshell

The CAWAR framework is a generic approach to support all kinds of adapta-
tion in reconfigurable systems. Selected aspects of this framework, which are
necessary for the understanding of how context adaptation models are techni-
cally realized, are outlined in the following sections. For a detailed conceptual
introduction of the framework we refer to [21], whereas a description of it’s
technical realization can be found in [22].

In this section, a short overview of the overall CAWAR (Context Aware
ARchitectures) framework is given, while the two subsequent sections discuss
certain framework concepts in more detail. The framework principally consists
of the following elements:

(i) A set of components comprising the technical implementation of typical
infrastructure functionality, e.g. context storage, discovery, etc.

(ii) A set of low level interfaces (API), that provide the most generic ab-
straction of context management, e.g. sensors produce context, actuators
consume context, etc.

(iii) A reference architecture that suggests a basic generic pattern of how
a context-adaptive system can be designed in a completely reconfig-
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urable way; formally, context adaptation can be understood as a self-
reconfiguring filter [9]. Following that pattern, any implementation of a
context-adaptive application can serve as a framework for bootstrapping
any other context-adaptive application.

Components, interfaces and architecture together form a basic framework
for context awareness and adaptive applications. To develop a certain appli-
cation, the framework merely must be fed with the desired system behavior in
form of an adaptation model, whereby the principles for designing adaptation
models are described in Section 6.3. Furthermore the components fulfilling
the respective application services must be made available to the framework.
However, provided a proper discovery mechanism, such components can be
detected and bound at runtime.

The framework initialization is conducted by a designated actuator compo-
nent named model activator, which expects a list of all required services (logical
service descriptions) and a list of (currently) available components (technical
realizations or references) from the context itself. Such a description is, e.g.
given by an XML file representing the adaptation behavior of the considered
system, i.e. the K-Model. This model has to be previously read by a special
sensor and written into an appropriate context element. The context com-
prising the K-Model can be further processed—allowing for self-introspection
and self-adaptation—before it is ultimately deployed by the model activator.
The latter finally reorganizes the services (sensors, interpreters, etc.) as well
as their corresponding component bindings (if available), thus reconfiguring
the system in order to technically implement the K-Model.

ContextAdaptationMetaModel

1
E3
-listener
Interpreter
S
% . *
01 -incontext
-outcontext *
Context Actuator
* * -incontext -listener
Sensor

-outcontext

0..

1

Fig. 10. Meta model describing the principle structure of the K-Model
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The underlying meta model of any K-Model, which describes the principle
composition of it’s logical service architecture—so to speak it’s grammar—is
illustrated in Fig. 10. A concrete K-Model, containing the particular services
that constitute the adaptive behavior of a considered application, is indeed an
instance of the depicted meta model, which can be read by the model activator
for initializing the context-adaptive system as mentioned above.

6.2.1 Syntactical and semantical types

As previously mentioned, all services are contained in a K-Model specified by
a logical service description. Each description thereby contains a syntactical
(syType) and semantical (smType) description of the service it provides. Both
types are used to match a suitable technical component that could imple-
ment the specified service. In other words, syType and smType specify, which
components the service could possibly route messages to.

sy Type describes any higher level protocol the service implementing compo-
nent should understand using the standardized low level interfaces of sensors,
interpreters, actuators and context elements, including at least the data format
accepted. Moreover it could contain any other technical information needed to
reduce the number of matching components, such as QoS parameters, billing
information etc. syType should contain information needed by the activator
to contact and bind possible candidates or it contains even the reference to
a single component instance ensuring that only one specific component will
match the description.

smType in contrast describes the meaning or usage intention of a certain
component instance besides its technical characteristics. Usually this can be
used to distinguish between several instances of technical identical compo-
nents. For example there could be several identical temperature sensors or
terminals connected to a single system. However they can have different
meanings with respect to the context, such as outside temperature, inside
temperature, kitchen termina,l or entrance terminal. A syntactical descrip-
tion is insufficient in this case since it could match more than one component
instance. In order for the activator to distinguish which component instance
should be bound to, e.g. a sensor that delivers an “outside temperature” an
smType can be used. One of the available sensors needs to be marked with a
meaning of “outside temperature” as well. Note that semantical marking is
specific to the application scenario and hence part of the context and one of
the main tasks of calibration.

It should be mentioned that the real “meaning” (smType) of a component
is only generated by observation in a larger correlation with other entities
and can not be grounded in a symbolic description of the component instance
alone. An indication of this fact would be a component instance that, though it
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has a constant behavior, can have different meanings in two different observa-
tion contexts. For example the same camera instance that shows the entrance
of a building additionally could show for one observer a certain street segment
while for a third observer it shows the weather conditions, the water level of
the nearby river and so on. Another example would be a temperature sensor
on the outside of a package. It can mean the outside temperature (compared
to the packages inside temperature) but also at the same time could have a
meaning of inside temperature for the owner of a storage house the package
is currently stored in.

6.2.2  Application subsystem

A context-adaptive system built with the CAWAR framework typically consists
of three subsystems: a) the adaptation subsystem embracing all parts that are
responsible for adaptive behavior and which are subject to the frame problem
b) the system environment including all service-fulfilling components which are
not permanently available due to resource restrictions and c) the application
subsystem comprising a single system bootstrapper (System Seed) with all
components vital to the running system. Each application usually has its own
System Seed that can be installed and uninstalled separately. A System Seed
package typically includes:

(i) A boot sensor,
(ii) An optional boot actuator and

(iii) The applications core system.

Usually the application core system initialized by the System Seed con-
tains only a boot sensor specification and an administration component im-
plementing that boot sensor. The administration component, usually a GUI,
connects to the application origin server and from there downloads or up-
dates a K-model XML file for the application and any necessary core system
components that run in the domain of the application. These core system
components are necessary for providing a required minimal functionality of
the system. This may include at least the necessary framework components
as well as a default context server, which handles the initial service commu-
nication by storing the messages to (persistent) context elements. Following
the principles described in the previous sections, this minimal functionality
can of course be extended on the fly, in case the corresponding resources for
fulfilling additional services become available.

6.2.3 FEvaluation of CAWAR w.r.t. the Framework Criteria

We illustrate how the CAWAR framework contributes to the individual evalu-
ation criteria from Section 5.1 in the following.
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Adaptability is realized in CAWAR through the concept of an adaption
model (K-Model), which contains the logic that is responsible for the adap-
tation of the system behavior. Every aspect of the system behavior that is
prone to the frame problem must be represented in an adaptation model.

Awareness and monitoring are realized in CAWAR through the sensor
services contained in the adaptation model and their implementations in terms
of system components.

Dynamicity is realized in CAWAR through the dynamic binding and the
reconfiguration possibilities of the services contained in the adaptation model.
In this light, changing an adaptation model and deploying it via the model
activator may change each of the system’s structural and behavioral aspects.

Autonomy is realized in CAWAR through the service-fulfilling compo-
nents, which are bound to the services contained in an adaption model, such
as interpreters and actuators. These may be autonomous, third-party compo-
nents or tailored in-house developments.

Robustness is realized in CAWAR as a combination of several concepts,
such as the dynamic service-component binding, which decouples an abstract
service of the adaptation model from its (unreliable) component implemen-
tation, the context elements, which decouple the potentially unreliable inter-
service communication, and the model activator implementing theses concepts.

Mobility is realized in CAWAR through the portability of the application
subsystem and the .NET technologies underlying the framework.

Traceability is realized in CAWAR through the service-component binding
via syntactical (syType) and semantical (smType) types.

6.3 Methodical Steps

The development of adaptive systems for realistic scenarios is today, fifteen
years after the announcement of the vision of ubiquity by Mark Weiser [32],
extremely difficult and, if at all, only prototypically possible. Development
tools and methods are still in an early stage [7]. This is above all a consequence
of the fact that these applications are very complex regarding aspects, such
as multi-functionality, distribution and situational context. The development
as well as the deployment of context-adaptive systems is furthermore often
associated with very specific challenges as changing environmental conditions
and Unwanted Behavior [12].

The methodology proposed in this section considers these challenges and
thereby states an iterative design methodology, starting with the design of
adequate scenarios and closing with the final design of the adaptive system
behavior of the considered application.

The overall methodology for designing adaptation models is structured
into eight individual design steps, which in conjunction guide the engineering
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Fig. 11. The overall CAWAR design methodology

of the adaptation behavior of a context-adaptive system. The particular de-
sign activities thereby chronologically build upon each other, so that certain
results of previous activities are required by succeeding activities. However it
is possible, and of course also recommended, to iterate through each individ-
ual phase if required. Fig. 11 illustrates the particular steps of the proposed
methodology.

It should be mentioned that the activities proposed in the methodology
are not mandatory. But, since the proposition is based on several experiences
gained from previous application developments, we strongly recommend them.
A brief description of the steps illustrated in Fig. 11 is given in the following.
The details can be found in [10].

6.3.1 Step 1: Scenario Design

As usual, the methodology starts with the elicitation of functional system
requirements in terms of scenarios. As soon as an initial set of scenarios
which reflects the usage of the considered application has been designed and
was accepted by all involved stakeholders, a decision concerning a ubiquitous
or adaptive implementation of the system should be discussed on basis of this
scenario set.

Fig. 12 illustrates a simple checklist that is applied in order to determine
whether an adaptive or even ubiquitous realization of the application is recom-
mendable or not. Since an adaptive or ubiquitous realization is associated with
additional efforts in the development process, this decision should be carefully
considered. In case this decision cannot be determined on basis of the previ-
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ous domain knowledge, this step also can be delayed until the requirements
engineering has been completed (step 2 in the overall design process), which
ideally results in a complete and non-divergent set of situational requirements
sufficient for unambiguously resolving the ubiquity decision.

Is the application
used in different

no——— . ———yes
locations or from

— different devices?
Does the application
provide a large set of
functions, whereby
always a small
subset is employed

Will external resources
be employed, whose
———no—— availabilty cannotbe ——
guaranteed by the

concurrently? W application itself?
T
no ves
v ! v
Does the application Are the hardware
require a high degree «———no—— resources strongly ——
of automation? limited?
yes

no

v
Should the application
be used during other
activities of the user ,
i.e. are the interaction
capabilities of the user

Is a large amount of
yes——— | information presented ——
to the user?

limited? ‘
\ no
no v
v Should it be possible to

upgrade the application | yes
by an arbitrary set of
functions?

not ubiquitous <—nNo—|

yes
h 4

ubiquitous f«——

Fig. 12. Decision for or against ubiquity and hence explicit adaptivity

If this decision reveals no need for ubiquity, the further system design can
be continued with any conventional software engineering process. Otherwise,
step 2 will be applied afterwards, namely a scenario and goal driven require-
ments engineering. The accomplishment of this first step should result in
“adequate scenarios” describing the usage of the considered system.

The outcome of the activities described in step 1 is a sufficiently complex
scenario description of the application under consideration. In most cases this
step also reveals the decision, whether a ubiquitous realization of the applica-
tion is recommended and hence an explicit handling of context adaptation is
necessary.
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6.3.2 Step 2: Scenario-Based Requirements Engineering

On basis of scenarios derived from the previous step, a textual-based require-
ments elicitation is conducted subsequently. The main purpose of this elicita-
tion is to derive an adequate set of requirements, which accurately reflects the
intended system behavior and is as consistent and complete as possible. In
case of ubiquitous and context-adaptive systems, that are likely to be employed
within highly dynamic environments characterized by changing conditions and
corresponding user needs, it is indispensable to collect as many information
as possible regarding the individual situations, in which the identified require-
ments occur. Such perceivable information are referred to as context.

The requirement of a (context-) adaptive system usually relate to a cer-
tain context which characterizes the conditions or situations, under which the
requirement is valid. In order to reflect this circumstance, the concept of
requirement chunks is consequently augmented by an additional context in-
formation. Hence every individual chunk consists of a goal or requirement,
the associated context in which the former is valid as well as the scenario
description, both goal /requirement and context are deduced from. Tab. 2 il-
lustrates such an exemplary requirement chunk taken from a case study of a
context-aware task scheduler named CATS.

G1: The user wants | Cl: The user is cur- | S1: While Jeff is cur-
to be notified silently | rently  attending a | rently attending his 8
about incoming mes- | meeting. o’clock meeting, the
sages. scheduler reminds him
silently of a consecu-
tively appointment in
order to not disturb the
participants of the on-
going meeting.

Table 2
Augmented requirement chunk containing a situation depending goal

As a result of this design step a sufficient number of requirements should
be identified together with their corresponding validity conditions represented
as context. Due to the notion of requirement chunks and goal refinement
graphs, these requirements are already documented in a concise and structured
way, which enables the tracing back to underlying analysis documents as the
scenario descriptions resulting from step 1. On basis of these requirements and
contexts an initial context adaptation model is subsequently designed, which
explicitly describes the adaptive behavior of the system under construction.
Since the CAWAR methodology represents an iterative approach towards the
design of context-adaptive systems, the requirements elicited at this stage do
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not have to be complete. A further elaboration of the requirements namely is
conducted by means of an adaptation model in step 4 of the design process.

6.3.3 Step 3: First Adaptation Model

Starting from a set of requirements and associated context data, an initial
adaptation model of the considered system can be constructed. Using the
requirement chunks introduced in the previous section facilitates the process,
although it is not mandatory to document requirements in this way. The
purpose of this activity is to express the identified requirements by means of
a K-Model. In [10], a couple of design rules are recommended which help to
express the textually documented requirements by means of the four service
types sensors, context elements, interpreters and actuators.

Due to the comfortable graphical notation of the K-Model consisting of
only four service types, such models are easy to create and revise. The outcome
of this step is a first preliminary K-Model. This model needs by no means to
be complete and may also contain adaptation actions and situation adaptors.
Both elements enable a more comfortable modeling of the system, since also
vague information of the analysis, which are not specified in detail by now,
can be integrated into the model. Both elements however have to be refined
later on.

6.3.4 Step 4: Context Requirements Engineering

After step 3 an initial adaptation model is available, which usually does not
yet cover all aspects of the considered system behavior. Hence the purpose
of this step is to fill in the missing elements, thus completing the adaptation
model by preferably expressing all requirements and context data identified
in the requirements specification. The graphical notation of K-Models facili-
tates the exposure of gaps previously hidden within the textual requirements
specification.

The refinement and elaboration activities described in the following are
in principle applied to all elements contained in an adaptation model. How-
ever, isolated or unconnected elements which represent the “open ends” of a
depicted adaptation thread are of particular interest within this step.

The following table (Tab.3) provides guiding questions for identifying fur-
ther requirements for situation adaptors (interpreters of sensor data in a K-
Model), context elements, interpreters, adaptation actions (context directly
fed into actuators) and indications for their possible transformations in a K-
Model (see Fig. 9).
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Table 3
Guiding questions

Requirements for situation adaptors

— Which information is necessary for identifying a pictured situation in an unambiguous
manner?

— Are there any further requirements/actions/needs that apply to this situation?
— Is it possible to further decompose the associated requirements?
— Do any of the associated requirements occur in further depicted situations?

— Do the existing situations cover all relevant usage situations, or are there distinguishable
situations not considered so far?

— Is the correlation between the contexts used for a situation detection and the requirements
applying to this situation comprehensible? If not, additional interpretation chains should be
appended, which make the considered adaptation thread more readable.

Requirements for context elements

— Can a depicted sensor context be directly used in order to reason about an actual situation,
or is additional information necessary?

— Is a sensor context appropriate for making an adaptation decision, or is further information
necessary?

— From which information is a depicted situation or adaptation context composed of? How
can this information be deduced from existing contexts?

Requirements for interpreters

— Can a necessary information be supplied by an existing context element? If not, does a
combination of existing contexts provide the necessary information?

— How does a depicted sensor context contribute to an adaptation decision?

— Is it possible to enhance the readability of an adaptation model by appending further
interpretation threads? If so, then enhance the model.

— Are several contexts relevant for making an adaptation decision? If so, they should be
bundled by an interpretation chain and delivered to the responsible actuator afterwards.

Requirements for adaptation actions

— Shall a depicted action also be triggered in further situations?

— Which steps are necessary for implementing the action? Should the action be decomposed
in a set of (smaller) sub-actions?

— Can an action be directly transformed into an adaptation context, or are further interpre-
tations necessary for this task?

Application of metrics: There are in principle two metrics which enable
an evaluation of an adaptation model (cf. [9]). An evaluation by means of
these metrics may expose some fundamental deficiencies within the considered
model. However, in order to produce an expressive evaluation, the considered
K-Model must satisfy certain characteristics, which in some cases cannot be
assumed a priori. The adaptation metric for instance counts the number of sit-
uation adaptors within the model for evaluating the system’s ability to adapt
to different situations of usage. If for any reason the designer deliberately
renounces to use situation adaptors within a certain model (design decision),
the metric will certify a non-adaptive model, even if the system may differ-
entiate between several situations very well. Similar constraints apply for the
balancing metric, since it builds upon the adaptation metric. We therefore
recommend the usage of such metrics with great care and preferably only af-
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ter subsequent iterations of the design process, when informations concerning
the system models have consolidated.

Limatations of explicit modelling: An important question concerning the
refinement of the K-Model is, which aspects of the system behavior should
be explicitly modeled within the adaptation model, and which aspects are
encapsulated within the individual services of the model. The obvious answer
is, that every aspect which is subject to the frame problem should be modeled
explicitly. However, it depends on the designer, the application domain and
certain other external factors, which aspects are prone to the frame problem.
As a rule of thumb, every service that is prone to change or reconfiguration
requests, should be modeled explicitly. Similarly, every aspect that is somehow
related to personalization should be modeled explicitly. From a technical point
of view, every service that possibly can be realized by external components
not contained within the system core (e.g. the mobile device), should also be
explicitly modeled in the adaptation model.

The outcome of this step is a refinement/extension of the initial adapta-
tion model. At this stage of maturation, the K-Model should ideally cover
all functionalities of the desired system. However, there still might be some
obscurities about certain aspects of the system, technical realizations or even
coherences of aspects. Such obscurities are treated in subsequent steps and
iterations, thus weaving new insights into the model.

6.3.5 Step 5: Prototyping

Prototyping is an appropriate concept for gaining new insights and early feed-
back concerning the system under construction. Prototypes may implement
certain aspects of a system in order to study different technologies, functional-
ities or even parts of the system model. Therefore, prototyping in combination
with software testing serves as an evaluation tool for interfaces (mainly user
interfaces) and for providing deeper insights concerning the usability of the
considered system. For instance, a prototype may be used to test, if the in-
put/output behavior of some component is correct or if an algorithm fulfills
the specified (non-)functional requirements.

In the case of context-adaptive applications, one might also be interested
in studying the correlation of certain contexts, their relation to identified sit-
uations and their effects on the adaptations of the system. An appropriate
prototype may highly contribute to resolving obscurities within a K-Model.
In[10], paper prototypes and executable prototypes are discussed in more de-
tail.

39



BAUER, BrROY, IRLBECK, LEUXNER, SPICHKOVA, SANTEN, DAHLWEID

6.3.6 Step 6: Implementing the System Core

Due to the development activities carried out in previous steps, a mature adap-
tation model reflecting all identified requirements and associated contexts is
available. The prototypes of step 5 are important indicators for the upcoming
implementation of all services included in the K-Model. At first, a decision is
made, which of the specified services required by the adaptation model should
be realized by components within the system core, and which of them should
be moved to the system environment, respectively. Heuristics for guiding this
decision are given in the subsequent section.

However, the implementation of each individual component itself is accom-
plished by conventional concepts of software and systems engineering. The ac-
tual implementation is therefore beyond the scope of the CAWAR methodology.
The only precondition the service fulfilling components must ensure, is to im-
plement the framework specific interfaces for sensors, contexts, interpreters or
actuators, respectively. In case the interface cannot be directly implemented
due to 3rd party software components, these components must be bound to the
framework via intermediary wrapper components (Adapter pattern see [14])
fulfilling the interface imposed by the framework. A short discussion con-
cerning which services should explicitly appear within an adaptation model at
all, and which functional behavior should be implicitly encapsulated within a
component, respectively, is given in Section 6.3.4.

The initial structuring of the overall system functionality into the system
core and its environment is mainly motivated by the lessons learned during the
prototyping accomplished in step 5. The decisions are based on the availability
of resources and the dependencies between functions. The implementation of
certain services may require the addition of further adaptations, resulting in an
extension of the adaptation model. This issue is discussed in more detail within
the subsequent step. Moreover, the core components implemented during this
step should be used for replacing the according simulation components within
the associated CAWAR prototype.

6.3.7 Step 7: Revision of Adaption Design

To enhance the quality of the context-adaptive system under construction, and
hence of the underlying adaptation model, the CAWAR methodology requires
a certain degree of iterative development. After all services contained in the
adaptation model have been implemented as internal or external components,
the model usually needs to be iteratively updated. The reason for this revision
is, that during the implementation of services often details concerning a bet-
ter modeling of certain adaptations become visible, which can be conducted in
this step. Such modifications result in a modified adaptation model, which in
general is augmented by additional, usually more technically oriented adapta-
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tions (e.g. discovery of external components, optimizations, autonomic failure
recovery etc.). The resulting adaptation model furthermore provides the right
stage of maturation for additional evaluations concerning consistency and the
appliance of appropriate metrics, respectively. The outlined modifications are
described in more detail in [10].

The outcome of this step is a revised K-Model, which includes all secondary
adaptations that are necessary due to the implementation of services. The
marking of services involved in secondary adaptations is an important input
for the subsequent step. In a second iteration, the remaining core system
is revised and implemented. Marked services thereby must be implemented
in the core system to avoid the emergence of further technical context and
associated external service dependencies, respectively.

6.3.8 Step 8: Revision of System Core

In this final step all new services of the modified adaptation model are imple-
mented as internal or external components. The required activities are analog
to that already described in step 6: (a) decision for internal or external realiza-
tion and (b) conventional implementation of components. The only exception
is, that all services involved in the technically oriented adaptations added in
previous step 7 should be realized internally. Otherwise an external imple-
mentation of these services can cause single points of failures, which derive
from possible external service dependencies.

The revision of the system core is the final step in the overall CAWAR
methodology. This step produces implementations for all services contained
in the adaptation model, which were chosen to be implemented within the
system core. Moreover, for all services to be externally realized, we assume
the existence of appropriate service fulfilling components. As a result of this
step, an augmented prototype is available, in which all simulated components
are replaced by actual components of the core system and its environment,
respectively.

7 Conclusion

The terms adaptation and adaptive systems are commonly used in order to
characterize computer-based systems, which expose a somehow more flexible
behavior. However, when it comes to definitively express which part of this
behavior constitutes the adaptation and which aspects are adapted, the state-
ments are usually rather vague and the understandings quite differ. Thus, the
term adaptation is often used ambiguously. Some approaches provide rather
technically motivated definitions or informal categorizations for the notion of
adaptation (e.g. [9,31,18]). We aimed at a more general definition, which ac-
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tually provides a more differentiated viewpoint of this notion and emphasizes
its methodological implications.

We argued that adaptation always refers to a certain subject — a human
or other technical system — whose interaction with the system is influenced
on basis of contextual information usually measured by sensors. W.r.t. the
subject we identified three possible perspectives of adaptive system behavior,
which differ in the interaction patterns between the subject, the system and
its proximate environment.

Adaptive systems are basically interactive systems, and principally can be
treated in the same way as the latter. The actual contribution when con-
structing systems with an adaptive behavior in mind, consists in facilitating
the development of complex software systems exposing a certain degree of
automation. “Complex” in the sense that those systems fulfill a series of situ-
ation dependent requirements concerning their usage. Proposed concepts and
programming paradigms such as i) separating the adaptation logic from the
actual application logic, ii) modular, component-oriented system design and
iii) monitoring and introspection of the system and its environment are exam-
ples for enabling technologies in order to realize an adaptive system behavior.

We conclude by identifying relevant research questions, open problems,
and blind spots in current research.

Context Interpretation and Inference: Which context information is neces-
sary to identify a certain situation of use (e.g. driver is tired)? Which possible
situations can be inferred from available contexts?

Comprehensive Context Model: What are appropriate concepts for man-
aging the possible contexts available within a complex systems like modern
vehicles (e.g. central context repository vs. local contexts in subsystems)?

Specification of and Reasoning about Adaptive Behavior: Which modeling
techniques are adequate for making the adaptation logic explicit (e.g. system
modes)?

Validation € Verification of adaptive systems: Adaptive systems promise
to release users from certain interactions with the system by reacting con-
text aware. This is often realized by internal reconfigurations of the system.
Thereby, a reconfiguration either ensures that the user is provided with a cer-
tain functionality despite of changes in the technical infrastructure, such as
network connectivity or mobile devices in the proximate environment, or a
reconfiguration enables a context-aware reaction by adapting user interface
modalities in a situation-dependent fashion. In either case, the verification of
such reconfigurations is highly desirable to guarantee safety-critical proper-
ties in any context of use. Moreover, certain requirements must only be met
in particular contexts. Thus, the verification task needs to take the specific
context of a requirement into account.
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