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Fixpoint engines are the core components of program analysis tools and compilers. If these tools are to be
trusted, special attention should be paid also to the correctness of such solvers. In this paper we consider two
local generic fixpoint solvers RLD and RLDE, which can be applied to constraint systems x w fx, x ∈ V ,
over some (semi-)lattice D where the right-hand sides fx are given as arbitrary functions implemented in
some specification language. Verification of these algorithms is challenging, because they use higher-order
functions and rely on side effects to track variable dependences as they are encountered dynamically during
fixpoint iterations. Here, we present a correctness proof of these algorithms and show that RLDE is an exact
solver while RLD is not. Proofs are formalized by means of the interactive proof assistant COQ.

This paper is an extended version of [Hofmann et al. 2010a].
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1. INTRODUCTION
A generic solver computes a solution of a constraint system x w fx,x ∈ V , over some
(semi-)lattice D, where the right-hand side fx of each variable x is given as a function
of type (V → D) → D implemented in some programming language. A local generic
solver, when started with a setX ⊆ V of interesting variables, tries to determine values
for X of a solution of the constraint system by touching as few variables as possible.

Local generic solvers are a convenient tool for implementation of efficient frame-
works for program analyses. They have first been proposed for the analysis of logic
programs [Charlier and Hentenryck 1992; Fecht 1995; Fecht and Seidl 1998; 1999]
and model-checking [Jorgensen 1994], but recently have also attracted attention in
interprocedural analyzers of imperative programs [Backes and Laud 2006; Seidl and
Vojdani 2009]. One particularly simple instance RLD of a local generic solver has been
included into the textbook on Program Analysis and Optimization [Seidl et al. 2012],
although without any proof of correctness of the algorithm. The proof of partial cor-
rectness of RLD was first presented in [Hofmann et al. 2010a].

Efficient solvers for constraint systems exploit that often right-hand side functions
query the current variable assignment only for few variables. A generic solver, how-
ever, must consider right-hand sides as black boxes, which cannot be preprocessed
for variable dependencies beforehand. Therefore, efficient generic solvers rely on self-
observation to detect and record variable dependencies on-the-fly during evaluation of
right-hand sides. The local generic solver TD by van Hentenryck [Charlier and Hen-
tenryck 1992] as well as the solver RLD add a recursive descent into solving variables
before reporting their values. Both self-observation through side-effects and the recur-
sive evaluation make these solvers intricate in their operational behavior and there-
fore their design and implementation are error-prone. In fact, during experimentation
with tiny variations of the solver RLD we found that many seemingly correct algo-
rithms and implementations are bogus. In view of the application of such solvers in
tools for deriving correctness properties, possibly of safety critical systems, it seems
mandatory to us to have full confidence in the applied software.
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Providing a modular implementation of a generic fixpoint algorithm [Pottier 2009],
Pottier poses as open problems

(1) whether a purely functional implementation of such an algorithm exists, and
(2) whether a formal verification of the algorithm is possible.

The first issue in proving any generic solver correct is which kind of functions may
be safely applied as right-hand sides of constraints. In the companion paper [Hofmann
et al. 2010b], we have presented a semantic property of purity for second-order func-
tionals. The notion of purity is general enough to allow any function expressed in a
pure functional language without recursion, but also allows certain forms of (well-
behaved) stateful computation. Purity of a function f allows f to be represented as
a strategy tree. This means that any evaluation of f on a variable assignment σ can
be considered as a sequence of variable lookups followed by local computations and
ending in an answer value.

Based on the notion of purity, we tackle and solve the problems posed by Pottier.
Indeed, we show the local generic solver RLD admits a purely functional implementa-
tion and is correct. Related formal correctness proofs have been provided for variants
of Kildall’s algorithm for dataflow analysis [Klein and Nipkow 2003; Cachera et al.
2004; Coupet-Grimal and Delobel 2004]. However, this fixpoint algorithm is neither
generic nor local. It also exploits variable dependencies which, nevertheless, are ex-
plicitly given through the control-flow graph.

In many applications constraint systems are not arbitrary but have good properties
such as providing right-hand sides which are monotonic. In that case, the Knaster-
Tarski theorem for complete lattices guarantees the existence of the unique least solu-
tion. A good fixpoint algorithm, therefore, when applied to such a system should return
this least solution (or parts of it) whenever it terminates. Such kind of solvers we call
exact.

The fixpoint algorithm RLD, however, may not return (parts of) the least solution,
even if all right-hand sides of constraints are monotonic. The reason is that evalua-
tions of right-hand sides are not executed atomically, implying that different evalua-
tions may interfere, and thus values of variables may change during the evaluation.
Therefore, if a variable is queried more than once, leaves in the strategy trees may be-
come reachable, which could not have been reached by atomic evaluation. Accordingly,
RLD is guaranteed to return parts of the least solution only for constraint systems
where on every branch of a right-hand side every variable occurs at most once.

In order to deal with arbitrary monotonic constraint systems, we enhance the algo-
rithm RLD to the algorithm RLDE which still allows interference of different evalua-
tions but identifies potentially superfluous evaluations and ignores their contributions.
Thus, algorithm RLDE is exact.

The paper is structured as follows. In section 2 we describe the fixpoint algorithm
RLD. In section 3 we provide an example of a small, seemingly natural, but erroneous
optimization of RLD. In sections 4, precise definitions of constraint system and solver
are given. Further, in section 5 we give a purely functional implementation of RLD
(in a pure ML-like language) with explicit state passing, which is proven to be a local
solver in section 6. In section 7 we analyse behaviour of RLD when applied to mono-
tonic constraint systems. We show that RLD is not an exact solver and therefore, in
section 8, we present the enhanced version RLDE. In section 9 we sketch a proof of
termination of RLD (RLDE) under certain conditions. All theorems and proofs (be-
sides termination proof) are formalized by means of the interactive theorem prover
COQ [The Coq Development Team 2012]. The source codes are available online on the
second author’s homepage http://www2.in.tum.de/~karbyshev/.

This paper is an extended version of [Hofmann et al. 2010a].
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2. THE LOCAL GENERIC SOLVER RLD
The algorithm RLD performes on a constraint system x w fx, x ∈ V , where V is a
set of variables, defined over some bounded join-semilattice D = (D,t,v,⊥) consisting
of a carrier D equipped with the partial ordering v and the least upper bound oper-
ation t, and having the distinguished least element ⊥. Generally, we do not require
completeness or the ascending chain condition of D.

One basic idea of the algorithm RLD is that, as soon as the value of variable y is
requested during reevaluation of the right-hand side fx, the algorithm does not naively
return the current value for y. Instead, it first tries to get a better approximation of it,
thus reducing the overall number of performed iterations. This idea is similar to that
of the algorithm TD [Charlier and Hentenryck 1992].

Both algorithms also record the variable dependencies (x,y) (w.r.t. the current vari-
able assignment) as they are encountered during evaluation of the right-hand side
fx as a side-effect. The main difference between the two algorithms is in that how
they behave when a variable x changes its value. While the algorithm TD recursively
destabilizes all variables which also indirectly (transitively) depend on x, the algorithm
RLD only destabilizes variables which are influenced by x locally (immediately), and
triggers reevaluation of these variables at once.

The algorithm RLD maintains the following data structures.

(1) Finite map σ, storing current values (from D) of variables. We track only finite
number of observed variables, since the overall size of set V can be extremely large.
We define the auxiliary function

σ⊥ x =

{
σ x if x ∈ dom(σ)

⊥ otherwise

that returns a current value of σ x if it is defined; otherwise, it returns ⊥.
(2) Finite set stable ⊆ V . Intuitively, if variable x is marked as stable then either x is

already solved, i.e., a computation for x has completed and σ gives a solution for x
and all those variables x transitively depends on, or x is called and it is in the call
stack of solve function and its value is being processed.

(3) Finite map infl, which stores dependencies between variables. More exactly, infl x
returns an overapproximation of a set of variables y, for which evaluation of fy
on the current σ⊥ depends on x. For the sake of efficiency, we implement infl as a
(finite) mapping from V to lists of V . We define the auxiliary function

infl[ ] x =

{
inflx if x ∈ dom(infl)

[ ] otherwise.

The structures have initial values σinit = ∅, stableinit = ∅, inflinit = ∅.
The algorithm RLD proceeds as follows (see Fig. 1). The function solve all is in-

voked for a list X ⊆ V of interesting variables from the initial state. The function
solve all calls recursively solve x for every x ∈ X in turn.

The function solve when called for some variable x first checks whether x is already
in the set stable. If so, the function returns; otherwise, the algorithm marks x as being
stable and tries to satisfy a constraint σ x w fx σ. For that, it evaluates a value rhs
of the right-hand side fx by invoking eval rhs x. After eval rhs returns, solve cal-
culates a least upper bound of rhs with cur , the current value of σ x, and stores the
produced value in new . Then it compares values of new and cur . If the current value is
larger than a new one, the constraint for x is satisfied, and solve returns. Otherwise,
the value of σ for x gets updated with new . Since the value of σ x has changed, all
constraints of variables y dependent on x may not be satisfied anymore. Hence, the
function solve destabilizes all the variables accumulated in work = infl[ ] x by invok-
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function eval(x : V , y : V ) =
solve(y); infly← x:: infly; σ⊥ y

function eval rhs(x : V ) =
fx(λy.eval(x, y))

function extract work(x : V ) =
let work = infl[ ] x in
stable← stable \work; inflx← [ ]; work

function solve(x : V ) =
if x ∈ stable then ()
else

stable← stable ∪ {x};
let rhs = eval rhs(x) in
let cur = σ⊥ x in
let new = cur t rhs in
if new v cur then ()
else

σ x← new ;
let work = extract work(x) in
solve all(work)

end
end

function solve all(work : 2V ) =
foreach x ∈ work do solve(x)

begin
σ = ∅; stable = ∅; infl = ∅;
solve all(X);
(σ⊥, stable)

end

Fig. 1. The recursive solver tracking local dependencies (RLD)

ing extract work, i.e., those are subtracted from the set stable. Then inflx is reset to
empty and solve all work is recursively called. Note that for efficiency reasons the
comparison new v cur can be replaced by an equality check. This may be beneficial
if every element of the (semi-)lattice D has a unique representation and the equality
operation is implemeted efficiently.

We mention that the right-hand side fx is not evaluated directly on σ, but by using
an auxiliary stateful function λy.eval(x,y), which allows firstly to get better values
for variables the variable x depends on. Thus, once eval(x,y) is invoked, it first calls
solve y and then adds x to infly. The latter reflects the fact that the value of x possibly
depends on the value of y. Only after recording the variable dependence (x,y) the
current value of y is returned.

Our goal is to prove that the algorithm RLD is a local generic solver for any (possibly
infinite) constraint system S = (V, f) where right-hand sides fx are pure functions in
the sense of [Hofmann et al. 2010b].
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(*...*)
function extract work(x : V ) =

let work = infl[ ] x in
stable← stable \ (work\called); inflx← [ ]; work

function solve(x : V ) =
if x ∈ stable then ()
else

stable← stable ∪ {x};
called← called ∪ {x};
let rhs = eval rhs(x) in
called← called \ {x};
let cur = σ⊥ x in
let new = cur t rhs in
if new v cur then ()
else

σ x← new ;
let work = extract work(x) in
solve all(work)

end
end

(*...*)
begin

σ = ∅; stable = ∅; called = ∅; infl = ∅;
solve all(X);
(σ⊥, stable)

end

Fig. 2. The erroneous optimization of RLD

3. AN ERRONEOUS OPTIMIZATION
When starting to reason about the algorithm RLD from Figure 1, one might feel
tempted to avoid to call solve for variables whose evaluation has already been trig-
gered, but has not yet been completed.

We note that the meaning of the set stable is twofold. First, it contains all the vari-
ables x for which a call solvex already has terminated. Those variables are solved,
i.e., the corresponding constraints are satisfied. Second, it contains variables being
proccesed, for which reevaluation of right-hand sides is triggered but not yet finished,
and corresponding constraints may not be satisfied. Therefore, it seems reasonable to
distinguish this kind of called variables and prevent them from redundant destabi-
lization since their recomputation is pending. This idea would lead to the following
optimization.

We introduce the set of variables called (initially, called = ∅). It tracks a subset of
stable variables currently being processed, i.e., called ⊆ stable is invariant for every
program point. We say that the variable x is solved if x ∈ stable \ called. Variable
x is added to called just before a reevaluation of fx starts and is removed from it
right after the reevaluation returns. The function extract work does not destabilize
variables from the set called, i.e., the algorithm does not trigger recomputation of vari-
ables from infl x that currently belong to called and keep them in the sets stable and
called (see Fig.2).

This optimization appears to be wrong as shown by the counterexample which
appears in Fig.3. The constraint system is defined over the three-element lattice
D = ({⊥, a,>},v,t) with ⊥ @ a @ >. Figure 3 represents right-hand sides of the con-
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Fig. 3. Counterexample for erroneous opti-
mization The constraint system is defined over
the lattice D = ({⊥, a,>},v,t) with ⊥ @ a @ >.

t w s s

s w v x v t x

x w s u v s t u t v

u w v

>v 6v ⊥

a
v v ⊥

v w s s

straint system by means of strategy trees (precise definition of a strategy tree follows
in Section 4). Here, round nodes denote queries to variables while rectangle boxes de-
note answers expressed in terms of constants and received values of queried variables.
Conceptually, query nodes have one outgoing edge for every value of D corresponding to
every possible received value for the variable. In the figure, however, we merge edges
with equal subtrees for the sake of simplicity. In the example, these right-hand sides
could be represented in a pure ML-like language by:

fs = fun σ → let v1 = σ v in let x1 = σ x in v1 t x1 ,
fu = fun σ → let v1 = σ v in if (v1 v ⊥) then a else > .

Functions ft, fx and fv can be represented similarly.
We want to compute a local solution for the variable t. Let us trace computations

done by the solver from the initial state. We call solve t, which in turn recursively
calls solve s. During the invocation of solve s, the algorithm recursively computes
new values of variables v, then x and u. For the sake of brevity, we skip a description
of those steps, but note that they lead to change in σ x. Before an altered value of s
(which equals a) is returned, the algorithm recomputes all the variables dependent on
s (these are variables from infl s = [x;v]), and resets infl s to [ ].

1. solve x is called, and the variable x is added again to the sets stable and called.
The state just prior to reevaluation of the right-hand side fx (call of eval rhs x) is:

stable = {s, t,u,x}, called = {t,x},
σ(s) = σ(u) = σ(x) = a, σ(t) = σ(v) = ⊥,
infl t = infl s = [ ], infl u = [x], infl v = [x;u; s], infl x = [s] .

During the invocation of eval rhs x the algorithm traverses the tree representing fx
and tries to recompute variables s, u and v in turn.

— Since s,u ∈ stable, the algorithm does not descend into solving them. The structures
σ, stable and called are not changed, but the solver records that x depends on s and
u, in particular, x is added to infl s and infl u.

— The algorithm recomputes v (call to solve v), which gets a large value a (as
σ(s) = a). Since σ(v) has changed, variables influenced by v might need to be re-
computed, these are variables from infl v = [x;u; s]. However, the algorithm does
not destabilize x, as x ∈ called. Thus, the variable u is destabilized and recom-
puted (since u ∈ stable \ called), and gets a greater value >. At this point, although
infl u = [x;x], the variable x is again not recomputed, since x ∈ called. Thus, the
value of x remains as before, σ(x) = a. Then s gets recomputed, but this does not
lead to a change in the state. Finally, solve s returns.
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2. solve v is called, but v is solved at this moment.
Finally, the algorithm returns the variable assignment

σ1(t) = σ1(s) = σ1(x) = σ1(v) = a, σ1(u) = >
that is not a solution, since the constraint for x is not satisfied:

σ1(x) = a @ > = fx σ1 .

We conclude that this “natural” optimization is wrong. The counterexample was our
guiding motivation for a rigorous verification of the fixpoint algorithm RLD.

4. SYSTEMS OF CONSTRAINTS
Instead of reasoning about an algorithm which modifies a global state by side-effecting
functions as in Fig. 1, we prefer to reason about the denotational semantics of such an
algorithm, i.e., about the corresponding purely functional program where the global
state is explicitly threaded through the program.

Assume D = (D,t,v,⊥) is a bounded join-semilattice. A pair (V, f) is a constraint
system, where V is a set of variables and f is a functional of type

f : V → (V → TD)→ TD

that for every x ∈ V returns a corresponding right-hand side

fx : (V → TD)→ TD,

where T is a monad constructor with associated monad operations valXT : X → TX and
bindX,YT : TX → (X → TY ) → TY . We will omit indices when it is clear from context
which monad and sets are meant. Our application is formulated in terms of a state
monad TS , that is, given a set S of states, we define

TSX = S → X × S ,

valXTS
x = fun s→ (x, s) ,

bindX,YTS
t g = fun s→ let (x1, s1) = t s in g x1 s1 .

The constraint function f is assumed to be polymorphic in S. This means that right-
hand sides may have side effects onto the global state and that they can be applied
to variable assignments whose evaluation themselves may have side effects. What we
assume, however, is that the side effects of the evaluation of a call fx σ only are at-
tributed to side-effects incurred by the evaluation of the function σ. This property is
not captured by polymorphism in a state alone [Hofmann et al. 2010b]. It is guaran-
teed, however, by the notion of purity introduced in [Hofmann et al. 2010b]. If the
function fx is pure in the sense of [Hofmann et al. 2010b], then fx is representable by
means of a strategy tree. This means that any evaluation of fx on a variable assign-
ment consists of a sequence of variable look-ups followed by some local computation
leading to further look-ups and so on until eventually a result is produced.

4.1. Strategy trees
Definition 4.1. For a given set of values D and a set of variables V we define the set

TreeV,D of strategy trees inductively by:

— for a ∈ D, Ans(a) ∈ TreeV,D;
— for x ∈ V and c : D → TreeV,D, Que(x, c) ∈ TreeV,D.

Fix a monad T . We define the function

J·KT : TreeV,D → (V → TD)→ TD
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recursively by:
JAns(a)KT h = valT a ,
JQue(x, c)KT h = bindT (hx) (fun a→ Jc aKT h) .

For the state monad TS , we have
JAns(a)KS h = fun s→ (a, s) ,
JQue(x, c)KS h = fun s→ a1, s1) = hx s(in(Jc(a1KS h s1 .

Evaluation of a strategy tree thus formalizes a stateful evaluation of the pure function
represented by this tree. Moreover, if the argument h does not depend on state and has
no effect on state, i.e., is of the form

h = valTS
◦σ = fun x→ valTS

(σ x), for some σ : V → D,

then for all states s and trees t ∈ TreeV,D

JtKh s = (a, s), a ∈ D .

Therefore, we define the function

J·K? : TreeV,D → (V → D)→ D

by
JtK? σ = fst(JtKunit (valTunit

◦σ) (?)), where unit = {?}.
In our application, the solver not only evaluates pure functions, i.e., strategy trees, but
also records the variables accessed during the evaluation. In order to reason about the
sequence of accessed variables together with their values, we instrument the evalua-
tion of strategy trees by additionally taking a list of already visited variables together
with their values and returning updated list for the rest computations. That is, for a
monad T ,

J·K′T : TreeV,D → (V ×D) list→ (V → TD)→ T (D × (V ×D) list)
is defined by

JAns(a)K′T l h = valT (a, l) ,
JQue(x, c)K′T l h = bindT (hx) (fun a→ Jc aK′T (l@ [(x, a)])h) ,

and, again instantiated for a state monad TS ,
JAns(a)K′S l h = fun s→ ((a, l), s) ,
JQue(x, c)K′S l h = fun s→ let (a1, s1) = hx s in Jc a1K′S (l@ [(x, a1)])h s1 ,

where @ is a list append function. Then for every strategy tree t ∈ TreeV,D, h : V → TD,
l1 ∈ (V ×D) list, a ∈ D

JtKS h s = (a, s′) iff JtK′S l1 h s = ((a, l2), s′) for some l2 .

Thus, instrumentation does not influence the state. Moreover, if h = valTS
◦σ for some

σ : V → D then for every state s we have

JtK′S [ ]h s = ((a, l), s) for some a ∈ D, l ∈ (V ×D) list .
In this case, the list l represents a trace of variables together with their respective
values that are accessed within evaluation of JtKS h for any S, in particular, for JtK? σ.
Note that if, for some variable x, (x, a1) and (x, a2) occur in l then a1 = a2 necessarily.
Given f̄ : V → TreeV,D and σ : V → D, we define

traceσ t = l , where JtK′unit (valTunit ◦σ) [ ] (?) = (( , l), ), t ∈ TreeV,D ,
depf̄ ,σ x = {y | (y, ) ∈ traceσ(f̄x)} .
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Intuitively, the function depf,σ applied to a variable x returns a set of variables
that x directly depends on relative to σ, i.e., a set of those variables values of which
are required to evaluate the strategy tree f̄x. For X ⊆ V , we define depf̄ ,σ(X) =⋃

x∈X depf̄ ,σ x.

4.2. Solutions
Definition 4.2. Let S = (V, f) be a constraint system over a (semi-)lattice D. We say

that the variable assignment σ : V → D is a solution of the constraint system S if for
every x ∈ V , σ x w d whenever (d, ?) = fx(valTunit ◦σ) (?) holds. For the latter, we also
write σ x w fx σ.

Let S = (V, f) be a constraint system over a (semi-)lattice D with a pure state poly-
morphic f : V → ΛS. (V → TSD) → TSD. As shown in [Hofmann et al. 2010b], we can
construct a strategy function f̄ : V → TreeV,D such that fx h s = Jf̄xKS h s for all x ∈ V ,
sets of states S, functions h : V → TSD, and s ∈ S.

Definition 4.3. Let X ⊆ V . We say that the pair (σ,X ′) is a local solution of S
relative to X if

(1) X ⊆ X ′ and depf̄ ,σ(X ′) ⊆ X ′;
(2) σ x w Jf̄xK? σ holds for every x ∈ X ′.
In particular, this means that the restriction σ �X′ is a solution of the constraint system
(X ′, f �X′).

Note that if D has a greatest element >D, we can trivially extend any local solution
(σ,X ′) to a global one by

σX′ x =

{
σ x x ∈ X ′

>D otherwise.

Definition 4.4. The partial function

AV,D : (V → TreeV,D)× 2V → (V → D)× 2V

polymorphic in V and D is (a denotational semantics of) a generic local solver if given a
constraint system S = (V, f) over some bounded join-semilattice D = (D,v,t,⊥) with
pure f , A when applied to a pair (f̄ , X) of a strategy function f̄ (for f ) and a set X ⊆ V
of interesting variables returns a local solution (σ,X ′) of S relative to X, whenever it
terminates.

We say that the function f : (V → D)→ D is monotonic if σ1 v σ2 implies f σ1 v f σ2.
We say that the stateful function f : ΛS. (V → TSD) → TSD is monotonic if it is
monotonic for Tunit . Recall that by theorem of Knaster-Tarski for any complete lattice
D and a constraint system S = (V, f) over D with monotonic f there exists the least
solution µ : V → D of S, and µx = fx µ, for all x ∈ V .

Definition 4.5. We say that the generic local solver AV,D is exact if, for any con-
straint system (V, f) over a complete lattice D with pure and monotonic f , A when
applied to a pair (f̄ , X) of a strategy function f̄ (for f ) and a set X ⊆ V of interesting
variables — if it terminates — returns a local solution (σ,X ′) of S relative to X such
that for the least solution µ of S, µ �X′= σ �X′ holds.

5. FUNCTIONAL IMPLEMENTATION WITH EXPLICIT STATE PASSING
In the functional implementation of algorithm RLD, the global state is made explicit,
and passed into function calls by means of a separate parameter. Accordingly, the mod-
ified state together with the computed value (if there is any) are jointly returned. The



10 M. Hofmann et al.

let rec eval x y = fun s→
let s = solve y s in
let s = add infl y x in
(get y s, s)

and eval rhs x = fun s→
Jf̄xKstate (evalx) s

and solve x = fun s→
if is stable x s then s
else

let s = add stable x s in
let (rhs, s) = eval rhs x s in
let cur = get s x in
let new = cur t rhs in
if new v cur then s
else

let s = set x new s in
let (work, s) = extract work x s in
solve all work s

and solve all work = fun s→
match work with
| [ ]→ s
| x :: xs→ solve all xs (solve x s) in

let sinit = (∅, ∅, ∅) in
let s = solve all X sinit in
(get s, get stable s)

Fig. 4. Functional implementation of RLD

type of a state is

type state = (V ⇀ D)× (V ⇀ V list)× 2V .

The three components correspond to the finite (partial) map σ, the finite (partial) map
infl, and the set stable in imperative implementation, respectively. To facilitate the
handling of the state we introduce the following auxiliary functions:

— get : state→ V → D implements the function σ⊥;
— set : V → D → state → state when applied to x and d updates the current value of
σ x with d;

— get stable : state→ 2V extracts the component stable from a given state;
— is stable : V → state→ bool checks if a given variable x is in stable;
— add stable : V → state→ state adds a given variable to stable;
— rem stable : V → state→ state removes a given variable from stable;
— get infl : V → state→ V list implements the function infl[ ];
— add infl : V → V → state → state applied to variables x and y adds the pair (y,x)

to infl;
— rem infl : V → state→ state applied to a variable x resets the list infl[ ] x in a given

state to [ ].

The auxiliary function extract work : V → state→ (V list×state) applied to a variable
x determines the list w of variables immediately influenced by x, resets inflx to [ ], and



On the Verification of Local Generic Solvers 11

subtracts w from the component stable of a given state as follows:
let extract work x = fun s→

let w = get infl x s in
let s = rem infl x s in
let s = fold left (fun s y → rem stable y s) s w in
(w, s)

Using the evaluation function J·Kstate for strategy trees specialized for the state monad
Tstate, the mutually recursive functions eval, eval rhs, solve and solve all of the al-
gorithm are then given in Fig. 4. Provided a list of interesting variables X ⊆ V , the
algorithm calls the function solve all from the initial state sinit = (∅, ∅, ∅).

From now on, RLD refers to this functional implementation. We prove:

THEOREM 5.1. The algorithm RLD is a local generic solver.

6. PROOF OF THEOREM 5.1
The proof consists of four main steps:

(1) We instrument the functional program introducing auxiliary data structures —
ghost variables.

(2) We implement the instrumented program in COQ.
(3) We provide invariants for the instrumented program.
(4) We prove these invariants jointly by induction on number of recursive calls.

6.1. Instrumentation
In order to express the invariants necessary to prove the correctness of the algorithm,
we introduce additional components into the state which do not affect the operational
behavior of the algorithm but record auxiliary information. The auxiliary data struc-
tures appear in the program as ghost variables, i.e., variables which are not allowed
to appear in case distinctions and may not be written into ordinary structures. Thus,
they do not influence the “control flow” of the program. We distinguish

— the set called of variables which are being processed;
— the set queued of variables which have been destabilized, i.e., removed from the set

stable by the algorithm, and have not yet been reevaluated by solve.

Accordingly, the type state in the instrumented program is given by:

type state = (V ⇀ D)× (V ⇀ V list)× 2V × 2V × 2V .

The five components correspond to the finite (partial) map σ, the finite (partial) map
infl, and the sets stable, called, and queued, respectively. In what follows, we will re-
fer to the components of state by these names. We introduce the following auxiliary
functions:

— add called : V → state→ state adds a given variable to called;
— rem called : V → state→ state removes a given variable from called;
— add queued : V → state→ state adds a given variable to queued;
— rem queued : V → state→ state removes a given variable from queued.

In the instrumented implementation, we also replace the evaluation J·K for strategy
trees with J·K′ which additionally returns the list of accessed variables together with
their respective values. Also, the function extract work for a given x additionally re-
moves all the variables influenced by x from the set called and adds them to the set
queued in the current state. The instrumented functions eval rhs and solve are given
in Fig. 5. The functions eval and solve all remain unchanged.
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(*...*)
and eval rhs x = fun s→

Jf̄xK′state (eval x) [ ] s

and solve x = fun s→
if is stable x s then s
else

let s = rem queued x s in
let s = add stable x s in
let s = add called x s in
let ((rhs, ), s) = eval rhs x s in
let s = rem called x s in
let cur = get s x in
let new = cur t rhs in
if new v cur then s
else

let s = set x new s in
let (work, s) = extract work x s in
solve all work s

Fig. 5. Instrumented implementation of the functions eval rhs and solve

It is intuitively clear that the instrumentation does not alter the relevant behavior
of the algorithm and that therefore the subsequent verification of the instrumented
version also establishes the correctness of the original one. We now sketch two ways
for making this rigorous. For the rest of this section let us used primed notation, e.g.,
state′, solve′ etc. for the instrumented versions, leaving the unprimed ones for the
original version.

We can define a simulation relation ∼⊆ state × state′ as the graph of the projection
from state′ to state. We define a lifted relation T (∼) ⊆ TstateX × Tstate′X for any X by

f T (∼) f ′ ≡ ∀s, s′, s1, s
′
1, x, x

′. f(s) = (x, s1) ∧ f ′(s′) = (x′, s′1)∧
(s ∼ s′ =⇒ s1 ∼ s′1 ∧ x = x′) .

Functions f : X → TstateY and f ′ : X → Tstate′Y are related if f(x) T (∼) f ′(x) holds
for all x ∈ X. One can show then inductively that each component of the algorithm
is related to its primed (instrumented) version, and thus that they yield equal results
when started in related states after discarding the instrumentation. We provide a for-
malization of this approach in COQ.

Alternatively, we can modify the verification of the instrumented version to yield a
direct verification of the original version by existentially quantifying the instrumenta-
tion components in all invariants. When showing that such existentially quantified in-
variants are indeed preserved, one opens the existentials in the assumption yielding a
fixed but arbitrary instrumentation of the starting state; one then updates this instru-
mentation using the above updating functions rem queued, add stable etc. and uses
the resulting instrumentation as existential witness for the conclusion. The remaining
proof obligation then follows step by step the verification of the instrumented version.
See [Hofmann and Pavlova 2007] for a formal account of this proof-transforming pro-
cedure in the context of Hoare logic.

6.2. Implementation in COQ

COQ accepts the definition of a recursive function only if it is provably terminating.
Since the algorithm RLD is generic, we neither make any assumptions concerning the
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(semi-)lattice D (e.g., w.r.t. finiteness of ascending chains), nor assume finiteness of the
set of variables V . Accordingly, termination of the algorithm cannot be guaranteed in
general. Therefore, our formalization of the algorithm in COQ relies on the representa-
tion of partial functions through their function graphs. The mutual recursive definition
of these relations exactly mimics the functional implementation of the algorithm. The
definitions are as follows (for more details see Appendix or refer to the source code).

— for every x,y : V , s, s′ : state, d : D, Eval(x,y, s, s′, d) holds iff the call eval x y s
terminates and returns the value (d, s′);

— for every x : V , f : V → TstateD, Evalx(x, f) holds iff f is a total function extending
the partial function eval x, i.e., for every x,y : V , s, s′ : state, d : D, Eval(x,y, s, s′, d)
holds iff f(x)(s) = (d, s′);

— for every x : V , t : TreeV,D, s, s′ : state, d : D, l, l′ : (V × D) list,
Wrap Eval x(x, t, s, s′, d, l, l′) holds iff the call JtK′state (eval x) l s terminates and re-
turns the value ((d, l′), s′);

— for every x : V , s, s′ : state, d : D, l′ : (V ×D) list, Eval rhs(x, s, s′, d, l′) holds iff the
call eval rhs x s terminates and returns the value ((d, l′), s′);

— for every x : V , s, s′ : state, Solve(x, s, s′) holds iff the call solve x s terminates and
returns the value s′;

— for every X : V list, s, s′ : state, SolveAll(X, s, s′) holds iff solve all X s terminates
and returns the value s′.

The defined predicates relate states before the call and after termination of the cor-
responding functions. Therefore, they can be used to reason about properties of the
algorithm, even if its termination is not guaranteed, such as partial correctness.

6.3. Invariants
To formulate invariants, we first provide several definitions that relate finite sequences
of pairs of variables and values from D with variable assignments σ : V → D and
traces generated by σ in a tree t ∈ TreeV,D. Given σ, the relation valid ⊆ (V ×D) list×
(V → D) is inductively defined by:

— valid([ ], σ);
— for any x ∈ V , d ∈ D and l : (V ×D) list, if valid(l, σ) and d = σ x then valid((x, d)::l, σ);

and the relation legal ⊆ (V ×D) list× TreeV,D by:

— legal([ ], t) for any t ∈ TreeV,D;
— for any x ∈ V , d ∈ D, l : (V × D) list and c : D → TreeV,D, if legal(l, c(d)) then

legal((x, d)::l,Que(x, c)).

Intuitively, valid(l, σ) holds iff the sequence l agrees with the variable assignment σ,
and legal(l, t) means that one can walk along the path l in the tree t, for every (x, d)
from l using a value d as an argument of a corresponding continuation function, still
staying in the tree t. For example, one can show by induction on tree structure that
traceσ t is valid for σ and is legal in t, i.e., valid(traceσ t, σ) and legal(traceσ t, t) hold for
any t ∈ TreeV,D and given σ : V → D.

Given a strategy tree t and a path l legal in t, we can define a function subtree(l, t)
recursively as follows:

— if l = [ ] then subtree(l, t) = t;
— if l = (x, d)::vs and t = Que(x, c) then subtree(l, t) = subtree(vs, c(d)).

It is not difficult to show that subtree(traceσ t, t) = Ans(a) holds for every tree t ∈
TreeV,D and variable assignment σ. By induction on length of a path we prove the
following lemma.
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LEMMA 6.1. For any given t ∈ TreeV,D, a path l : (V ×D) list and a variable assign-
ment σ : V → D, the following is equivalent:

— l = traceσ t;
— valid(l, σ), legal(l, t), subtree(l, t) = Ans(a), for some a ∈ D, hold.

From now on, for brevity, we denote get infl as infl[ ] and get as σ⊥. States s and
s′ will denote a state before a call of a function and a state after the call terminates,
respectively. Structures stable, called, queued, infl and σ are components of the state
s, primed structures are components of the state s′. Let f̄ : V → TreeV,D be a given
strategy function. We say that variable x is solved in the state s if x ∈ stable \ called.
We treat lists as sets in the formulae below.

We define

I0(s) ≡ called ⊆ stable ∧ queued ∩ stable = ∅ ,
I1(s, s′) ≡ stable′ ⊇ stable ∧ called′ ⊆ called ∧ queued′ ⊆ queued .

We call a state s (a transition from s to s′) consistent if I0(s) (respectively, I1(s, s′))
holds. Thus, I0(s) tells that the set of called variables is always a subset of stable
variables, and those variables that are queued for reevaluation cannot be in stable.
I1(s, s′) asserts that for a consistent transition the set of stable variables may only
increase and the sets of called and queued may only shrink. For example, we will show
below that Solve(x, s, s′) relates s and s′ consistently. The formula

Iσ(s, s′) ≡ ∀z ∈ V. σ⊥ s′ z w σ⊥ s z

expresses that current values of variables are large in the state s′ than those in the
state s. The formula

Iσ,infl(s, s′) ≡ ∀z ∈ V. (σ⊥ s′ z v σ⊥ s z =⇒ infl[ ] z s ⊆ infl[ ] z s′)∧
(σ⊥ s′ z 6v σ⊥ s z =⇒ infl[ ] z s ⊆ stable′ \ called′)

relates structures σ and infl. For every variable z, it asserts the following. If the value
of z did not increase, then infl′ contains more dependencies; otherwise, if the value of
z is altered in s′, all the variables influenced by z in s are solved in s′. The formula

Idep(x, s) ≡ ∀z ∈ depf̄ ,(σ⊥ s) x. z ∈ stable ∪ queued ∧ x ∈ infl[ ] z s .

asserts that for every variable z influencing x, this dependency is stored in the state s,
and z is either stable or queued. The formula

Icorr(s) ≡ ∀x ∈ stable \ called. σ⊥ s x w Jf̄xK?(σ⊥ s) ∧ Idep(x, s)

defines the correctness of the state s. This means that for every variable x which is
solved in s, the constraint σ x w fx σ is satisfied for x and dependencies of x are treated
correctly. Namely, as implied by the Idep(x, s) conjunct, inflx overapproximates the
set of actual dependencies of x returned by depf̄ ,(σ⊥ s) x, for every solved variable x

in s. The most difficult part of the proof was to determine invariants for the main
functions of the algorithm which are sufficiently strong to prove its correctness. The
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most intricate invariant refers to the function J·K′state (evalx). The formula

IJ·K′(evalx)(x, t, s, s
′, d, vlist, vlist′) ≡

x ∈ stable ∧ I0(s) ∧ Icorr(s) ∧ (∀(y, v) ∈ vlist.y ∈ stable) =⇒
I0(s′) ∧ I1(s, s′) ∧ vlist ⊆ vlist′ ∧ (∀(y, v) ∈ vlist′.y ∈ stable)∧
Iσ(s, s′) ∧ Iσ,infl(s, s′) ∧ Icorr(s

′)∧[
x ∈ called ∧ (∀(y, v) ∈ vlist.x ∈ infl[ ] y s)∧
valid(vlist, σ⊥ s) ∧ legal(vlist, f̄x) ∧ subtree(vlist, f̄x) = t =⇒(

x ∈ called′ =⇒
valid(vlist′, σ⊥ s′) ∧ legal(vlist′, f̄x) ∧ subtree(vlist′, f̄x) = Ans(d)∧
(∀(y, v) ∈ vlist′.x ∈ infl[ ] y s′) ∧ Idep(x, s′)

)
∧(

x /∈ called′ =⇒ x ∈ stable′ \ called′
)]

relates the arguments vlist and s with the result value ((d, vlist′), s′) of the call
JtK′state (evalx) vlist s, if it terminates. Remind that the function proceeds recursively
on the tree t, taking as a parameter a list vlist of already visited variables along with
their received values.
IJ·K′(evalx)(x, t, s, s

′, d, vlist, vlist′) asserts that if the function JtK′state (evalx) vlist s is
invoked for a stable variable x and a partial path vlist of stable variables starting from
an initial consistent correct state s then — if it terminates — it returns a value d and
a longer path vlist′ (that extends vlist) of stable visited variables, together with a con-
sistent correct state s′. The Iσ(s, s′) part tells that in result values σ x of all variables
x grew, and Iσ,infl(s, s′) guarantees that infl alters according to changes in σ.

The invariant distinguishes the case when x ∈ called initially. Then if vlist is a valid
and legal path in f̄x leading to the subtree t and if x ∈ called′ then the result path
vlist′ is again valid and legal in f̄x and leads to an answer d and all the dependencies
of x are recorded. Note that by lemma 6.1 this implies that vlist′ is a trace in f̄x by σ′.
If x ∈ called and x /∈ called′ then x was reevaluated and solved during a recursive call
for some variable y of t. It does not matter which value d is returned in this case since
x is solved in s′ and the corresponding constraint is satisfied and will be preserved
after a consecutive update of σ x. In the case x /∈ called, x was solved in s, and thus we
deduce that x is solved in s′ using I1(s, s′).

The formula

Ieval rhs(x, s, s
′, d, l′) ≡

x ∈ called ∧ I0(s) ∧ Icorr(s) =⇒
I0(s′) ∧ I1(s, s′) ∧ Iσ(s, s′) ∧ Iσ,infl(s, s′) ∧ Icorr(s

′)∧[
x ∈ called′ =⇒ d = Jf̄xK?(σ⊥ s′) ∧ l′ = traceσ′ f̄x ∧

(∀(y, v) ∈ vlist′.x ∈ infl[ ] y s′) ∧ Idep(x, s′)
]

relates the arguments x and s of the call of eval rhs x s with the result state s′ when-
ever it terminates. If the input state s is consistent and correct then so is the state s′.
In the case when x is still called in s′, we have that l′ is a trace in f̄x by σ′ and d is a
value of the right-hand side of x on σ′. The latter can be shown by lemma 6.1. In the
case x /∈ called′, the variable x is processed during some intermediate recursive call
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and is solved in s′. The formula

Isolve(x, s, s′) ≡
I0(s) ∧ Icorr(s) =⇒
I0(s′) ∧ I1(s, s′) ∧ Iσ(s, s′) ∧ Iσ,infl(s, s′) ∧ Icorr(s

′)∧[
x ∈ stable =⇒ s = s′

]
∧[

x /∈ stable =⇒ stable′ ⊇ stable ∪ {x} ∧ queued′ ⊆ queued \ {x}
]

relates arguments x and s with the result state s′ of the call of solve x s whenever it
terminates. If the state s is consistent and correct then so is s′. In the case x ∈ stable
the state does not change. If x /∈ stable then eventually x is solved in s′ and is removed
from the set queued. The formula

Isolve all(w, s, s
′) ≡

I0(s) ∧ Icorr(s) =⇒
I0(s′) ∧ I1(s, s′) ∧ Iσ(s, s′) ∧ Iσ,infl(s, s′) ∧ Icorr(s

′)∧
(w ∪ stable \ called ⊆ stable′ \ called′) ∧ (queued′ ⊆ queued \ w)

relates the arguments w and s with the result state s′ of the call solve all w s when-
ever it terminates. It states that all the variables solved in s together with the variables
from w are solved in s′ and none of the variables from w is in queued′. We note that
although w = inflx (for corresponding x) may contain invalid dependencies, i.e., vari-
ables not dependent on x on the current σ, Icorr(s

′) states that inflx is appropriately
recomputed.

By induction on number of unfoldings of definitions we prove in COQ that the for-
mulae Ieval, IJ·K′(evalx), Ieval rhs, Isolve and Isolve all are invariants of corresponding
functions in the following sense.

THEOREM 6.2. For all states s, s′ : state the following is true:

— for every x,y : V , d : D, EvalRel(x,y, s, s′, d) implies Ieval(x,y, s, s′, d);
— for every x : V , t : TreeV,D, d : D, l, l′ : (V ×D) list, Wrap Eval x(x, t, s, s′, d, l, l′) implies
IJ·K′(evalx)(x, t, s, s

′, d, l, l′);
— for every x ∈ V , d : D, l′ : (V × D) list, Eval rhs(x, s, s′, d, l′) implies
Ieval rhs(x, s, s

′, d, l′);
— for every x : V , Solve(x, s, s′) implies Isolve(x, s, s′);
— for every w : V list, SolveAll(w, s, s′) implies Isolve all(w, s, s

′).

6.4. Putting things together
Having verified the invariants, we now prove that theorem 5.1 holds, i.e., that RLD is a
local solver. Let sinit be the initial state with stable = called = queued = ∅, σ = infl = ∅.
Assume that RLD applied to (f̄ , X) terminates and let s′ be the state returned by the
call solve allX sinit. According to the definition 4.4, we have to show that:

(1) X ⊆ stable′ and depf̄ ,(σ⊥ s′)(stable′) ⊆ stable′;
(2) σ⊥ s′ x w Jf̄xK?(σ⊥ s′) holds for every x ∈ stable′.

By theorem 6.2, the invariant Isolve all(X, sinit, s
′) holds; and its premise is true, inas-

much as both I0(sinit) and Icorr(sinit) hold. Therefore, we have I1(sinit, s
′), and hence

called′ = queued′ = ∅. From (X ∪ stable \ called ⊆ stable′ \ called′) we conclude, that
X ⊆ stable′. From Icorr(s

′) it follows, that ∀x ∈ stable′. σ⊥ s′ x w Jf̄xK?(σ⊥ s′) and
depf̄ ,(σ⊥ s′)(stable′) ⊆ stable′ hold, and the statement of theorem 5.1 follows.
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7. MONOTONIC CASE
In many applications, right-hand sides f arise as monotonic functions, i.e., σ1 v σ2

implies f σ1 v f σ2. In this case, one would expect that a “good” solver produces more
precise results. As shown by the following example, RLD is not an exact solver, i.e., it
may not return a precise solution even if right-hand sides are monotonic functions.

Consider the constraint system with right-hand sides as on Figure 6 over the lattice
D = ({⊥, a, b,>},v,t), where ⊥ @ a, b @ >, a and b are incomparable. For example, the
third tree on the figure may represent a right-hand side

fx = fun σ →
let s1 = σ s in
let u1 = σ u in
if u1 v ⊥ then

let v1 = σ v in
let u2 = σ u in
if u2 v ⊥ then v1 t a else b

else
let v1 = σ v in v1 t a

Note that a result of the query to s is never used during computations of fx σ, but this
dependency allows to trigger recomputation of x once a value of s changes. Also, there
is a path in f̄x where variable u is queried twice. Those query nodes are marked by
(1) and (2). We want to compute a local solution for the variable t. It is not difficult to
check that all the right-hand sides are monotonic functions and the least solution of
the system is

σ0(x) = a, x ∈ {t, s,x,u,v} .
Will RLD return an exact solution?

To figure out the problem, let us trace the computations done by the instrumented
RLD. From initial state, we call solve t, which in turn recursively invokes solve s.
During the invocation of solve s, the algorithm recursively computes new values of
variables x, u, and v. We skip a description of these computation steps. Before a new
(altered) value of s (for which σ(s) = a) is returned, the algorithm needs to recompute
all the variables dependent on s (these are variables from infl s = [x;v]). Thus, infl s
is reset to [ ], and x and v are removed from the sets stable and called.

1. For recomputation of x, solve x is called, and variable x is put back into stable
and called. The state just prior to reevaluation of the right-hand side f̄x (the call of
eval rhs x) is as follows:

stable = {s, t,u,x}, called = {t,x},
σ(s) = σ(x) = a, σ(u) = σ(t) = σ(v) = ⊥,
infl t = infl s = [ ], infl u = [x;x], infl v = [x;u; s], infl x = [s].

During the run of eval rhs x the algorithm traverses the tree f̄x and recomputes nec-
essary variables as described below.

— Since s,u ∈ stable, the algorithm does not descend into solving them. The structures
σ, stable and called are not changed, but the solver records that x depends on s and
u, i.e., x is added to infl s and infl u.

— Since σ(u) = ⊥, the algorithm takes the upper branch of (1) in f̄x. Thus, it recom-
putes v, which gets a larger value a (as σ(s) = a). Since the value of v has changed,
variables influenced by v might need to be recomputed before solve v returns. At
this point, these are variables from infl v = [x;u; s]. Those are removed from the sets
stable and called, and get recomputed by calling consequently solve x, solve u, and
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Fig. 6. Counterexample for the monotonic
case. The constraint system is defined over
the lattice D = ({⊥, a, b,>},v,t) with ⊥ @
a, b @ >, a and b are incomparable.

t w s s

s w v x v t x
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solve s. At the end end of their run, the altered state components are (infl structure
is omitted)

stable = {s, t,u,v,x}, called = {t},
σ(s) = σ(u) = σ(v) = σ(x) = a, σ(t) = ⊥.

Thus, the value σ(u) is altered and equals a. The algorithm returns from solve v
and meets the branching (2) in f̄x. This time, the algorithm must follow the branch
u 6v ⊥, as σ(u) = a and returns the “bad” value b.

Then, evaluation of eval rhs x finishes and σ(x) receives a value atb = >. Thus, more
recomputations triggered which we omit here.

2. For recomputation of v, solve v is called, but v is solved at this moment.
Finally, the algorithm terminates and returns a solution σ1 with σ1(x) = >, and thus

σ1 is not minimal. The reason why the “bad” value b is reached during the run of the
solver is that u changes its value between branchings (1) and (2). Note that the leaf b
is not reachable in Jf̄xKunit(valTunit

◦σ), for any variable assignment σ. We will discuss
this issue in more detail in the next section.

Although RLD does not return a minimal solution generally, it is exact for a subclass
of monotonic strategy functions. We say that a strategy tree t has an unique-lookup
property if for any path through the tree any variable v is queried at most once. The
property does not hold for the tree f̄x as on Fig. 6, since there exists a path on which
the variable u is queried twice. We prove:

THEOREM 7.1. Given a constraint system S = (V, f) over the complete lattice D with
a pure and monotonic f such that f̄x enjoys the unique-lookup property for every x ∈ V .
RLD when applied to (f̄ , X) — if it terminates — returns a local solution (σ,X ′) such
that σ �X′= µ �X′ , where µ is a least solution of S.

PROOF. To show this, we need to establish extra invariants for every function of the
algorithm. The one for the function solve all is as below.

I ′solve all(x, s, s
′) ≡UniqueLookup(f̄) ∧Monotone(f̄) =⇒
∀µ : V → D.µx w Jf̄xK?µ ∧ σ⊥ s v µ =⇒ σ⊥ s′ v µ ,

where σ⊥ s denotes the function get s. The invariant states that, given any solution µ,
if σ⊥ is (pointwise) less than µ in the state s then it stays so in the state s′. We provide
similar invariants for the rest of functions. The proof is by induction on number of
unfoldings of definitions.
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Let sinit be an initial state with stable = called = queued = ∅, σ = infl = ∅, and let
µ be the least solution of S. Assume that RLD applied to (f̄ , X) terminates and let s′

be the state returned by the call solve all X sinit. Since σ⊥ sinit x = ⊥ v µx, for all x,
we have σ⊥ s′ v µ. Let σ′X′ be an extension of σ⊥ s′ to a global solution as defined in
Section 4.2. Since X ′ is dep-closed, we have

Jf̄xK (σ⊥ s′) = Jf̄xK σ′X′ for all x ∈ X ′ .
Using monotonicity of f , for every x ∈ X ′ we get µx w σ⊥ s′ x w Jf̄xK (σ⊥ s′) =
Jf̄xK σ′X′ w Jf̄xKµ = µx. Therefore, µx = Jf̄xK (σ⊥ s′) holds, for all x ∈ X ′. This proves
the theorem.

8. THE SOLVER RLDE
In this section, we present a modification of the solver RLD which is exact.

The idea of improvement comes from a careful inspection of behavior of the instru-
mented RLD. In the previous example, we observed that, for variable x, during a call
to solve x after eval rhs x returns, x may not belong to called. This may happen
in the presence of cyclic variable dependencies — for example, when x depends on
some v (met in f̄x), which gets a strictly larger value while evaluating eval rhs x.
In this case, a recursive call to solve x is triggered in order to recompute x. The in-
variant Isolve guarantees that x is solved after the recursive call to solve returns, i.e.,
x ∈ stable \ called and the constraint for x is satisfied. The variable x still stays solved
after an answer-value, say b, is reached, and thus there is no need to update it with
join with b (although, it is always safe to do it). In the previous example, b spoils the
result solution, although it is not reachable in f̄x by any stateless variable assignment
σ.

The idea, therefore, is to check whether x is still in called before updating it. To
implement this idea, we adjust the original RLD in the following way (Fig. 7). The
structure called is maintained in states explicitly, as in the instrumented version. This
information can then be used to avoid unnecessary updates.

We prove the modified algorithm RLDE correct. Moreover, whenever it terminates
it returns an exact solution if right-hand sides are monotonic functions over a complete
lattice. We have:

THEOREM 8.1. The algorithm RLDE is an exact generic local solver.

A proof is similar to the proofs of theorems 5.1 and 7.1. The corresponding invariants
can be reused with small changes.

9. TERMINATION
THEOREM 9.1. For any finite constraint system S = (V, f) with pure f over a

(semi-)lattice D that has no infinite strictly ascending chains, the algorithm RLD
(RLDE) when called with (f̄ , X), for a finite X ⊆ V , terminates.

PROOF (SKETCH). First, we show that each variable can be destabilized at most
finitely many times. Suppose, by contradiction, that there exists a variable x destabi-
lized infinitely often. Since V is finite, there exists z such that σ(z) increases infinitely
often while x ∈ infl z. That contradicts to the ascending chain condition of D.

Suppose, that the algorithm does not terminate for (f̄ , X). Since strategy trees
are well-founded (by definition), function solve must be called infinitely many times.
Therefore, there exist a variable x ∈ V such that solve x is triggered infinitely often.
Note that solve x is executed only either when evaluating right-hand side eval rhs y,
for some variable y (such that x is queried in f̄y), or when x is destabilized. Since x can
be destabilized at most finitely many times, there exists a variable y such that solve x



20 M. Hofmann et al.

function extract work(x : V ) =
let work = infl[ ] x in
called← called \work; stable← stable \work; inflx← [ ]; work

function solve(x : V ) =
if x ∈ stable then ()
else

stable← stable ∪ {x};
called← called ∪ {x};
let rhs = eval rhs(x) in
if x ∈ called then

let cur = σ⊥ x in
let new = cur t rhs in
called← called \ {x};
if new v cur then ()
else

σ x← new ;
let work = extract work(x) in
solve all(work)

end
end

end

Fig. 7. Main functions of the optimized solver (RLDE)

is called infinitely often from eval rhs y. For that, y itself has to be destabilized in-
finitely often, since solve y when called with y ∈ stable does not launch eval rhs y
and simply returns a current state. Contradiction.

10. CONCLUSION
In the present paper, we introduce two general-purpose local solvers RLD and RLDE.
As we have shown, the solvers admit a purely functional implementation. Based on
the semantical notion of purity [Hofmann et al. 2010b], we have presented a rigourous
proof of partial correctness of the algorithms. Moreover, we provide further verified
properties of the solvers, such as sufficient conditions for returning fragments of the
least solution of a given constraint system by RLD, and exactness of RLDE. Since we
require neither the ascending chain property of an abstract value domain nor finite-
ness of an equation system, the solvers may not terminate in general. However, as
we demonstrate, one can guarantee termination of RLD (RLDE) under certain condi-
tions.

By all that, we enabled the inclusion of this algorithm into the trusted code base of a
verified program analyzer. Since the solver can be applied to constraint systems where
right hand sides of variables are arbitrary pure functions, this enables the design and
implementation of flexible and general verified analyzer frameworks. A modification of
the solver RLD (for systems with multiple constraints) has been implemented in the
static analyser for concurrent C programs GOBLINT [Seidl and Vojdani 2009].
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In TYPES, J.-C. Filliâtre, C. Paulin-Mohring, and B. Werner, Eds. Lecture Notes in Computer Science
Series, vol. 3839. Springer, 115–137.

FECHT, C. 1995. Gena — a tool for generating prolog analyzers from specifications. In 2nd Static Analysis
Symposium (SAS). LNCS 983, 418–419.

FECHT, C. AND SEIDL, H. 1998. Propagating differences: An efficient new fixpoint algorithm for distributive
constraint systems. In European Symposium on Programming (ESOP). LNCS 1381, Springer Verlag,
90–104. Long version in Northern Journal of Computing 5, 304–329, 1998.

FECHT, C. AND SEIDL, H. 1999. A faster solver for general systems of equations. Sci. Comput. Pro-
gram. 35, 2, 137–161.

HOFMANN, M., KARBYSHEV, A., AND SEIDL, H. 2010a. Verifying a local generic solver in Coq. In SAS,
R. Cousot and M. Martel, Eds. Lecture Notes in Computer Science Series, vol. 6337. Springer, 340–355.

HOFMANN, M., KARBYSHEV, A., AND SEIDL, H. 2010b. What is a pure functional? In ICALP (2), S. Abram-
sky, C. Gavoille, C. Kirchner, F. M. auf der Heide, and P. G. Spirakis, Eds. Lecture Notes in Computer
Science Series, vol. 6199. Springer, 199–210.

HOFMANN, M. AND PAVLOVA, M. 2007. Elimination of ghost variables in program logics. In Proc. Trustwor-
thy Global Computing, LNCS 4912, G. Barthe and C. Fournet, Eds. Lecture Notes in Computer Science
Series, vol. 4912. Springer, 1–20.

JORGENSEN, N. 1994. Finding fixpoints in finite function spaces using neededness analysis and chaotic
iteration. In 1st Static Analysis Symposium (SAS). LNCS 864, Springer Verlag, 329–345.

KLEIN, G. AND NIPKOW, T. 2003. Verified bytecode verifiers. Theor. Comput. Sci. 3, 298, 583–626.
POTTIER, F. 2009. Lazy least fixed points in ML. Unpublished.
SEIDL, H. AND VOJDANI, V. 2009. Region analysis for race detection. In Static Analysis, 16th Int. Sympo-

sium, (SAS). LNCS 5673, Springer Verlag, 171–187.
SEIDL, H., WILHELM, R., AND HACK, S. 2012. Compiler Design: Analysis and Transformation. Springer-
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