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Zusammenfassung

Diese Doktorarbeit behandelt nichtparametrische Schätzverfahren für das Sprungver-
halten zeitstetiger stochastischer Prozesse, die über die Klasse der Lévy-Prozesse
hinausgehen. Das Hauptaugenmerk liegt auf der Klasse der rekurrenten Markov-
Prozesse welche gleichzeitig ein Itō-Semimartingal sind. Der Lévy-Kern eines solchen
Prozesses beschreibt die Verteilung seiner Sprünge. Basierend auf diskreten Beobach-
tungen des Prozesses konstruieren wir einen Schätzer für die Dichte des Lévy-Kerns.
Wir weisen nach, daß unser Schätzer konsistent ist und ein zentraler Grenzwertsatz
gilt, wenn sowohl der Zeithorizont als auch die Beobachtungsfrequenz gegen un-
endlich divergieren. Als Herzstück dieser Arbeit erforschen wir ebenso den Fall,
daß stetige Beobachtungen des zugrundeliegenden Prozesses vorliegen. Auf analoge
Weise konstruieren wir einen weiteren Schätzer für die Dichte des Lévy-Kerns. Die
Konsistenz dieses Schätzers und die Gültigkeit eines zentralen Grenzwertsatzes be-
weisen wir für eine allgemeinere Klasse von Markow-Prozessen. Praktische Aspekte
der Schätzverfahren untersuchen wir in einer Simulationsstudie. Darüber hinaus
beschäftigen wir uns in dieser Arbeit mit der Klasse der zeittransformierten Lévy-
Prozesse. Wir konstruieren einen analogen Schätzer für die Dichte des Lévy-Maßes
eines solchen Prozesses und beweisen dessen Konsistenz und asymptotische Normal-
ität. Zum Abschluß schlagen wir einen bestimmten zeittransformierten Lévy-Prozeß
als ein geeignetes Modell für die Intermittenz in Luftturbulenzen vor. Als Teil einer
empirischen Studie wenden wir einen verwandten nichtparametrischen Schätzer für
die Lévy-Dichte in unserem Modell an.
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Summary

In this thesis, non-parametric estimation of the jumps of continuous-time stochastic
processes beyond the Lévy case is studied. The main focus lies on recurrent Markov
processes which are Itō semi-martingales. The law of their jumps is described by
the Lévy kernel. Based on observations on an equidistant time grid, we construct an
estimator for the Lévy kernel’s density. We prove the consistency of our estimator
and a central limit theorem as both, the time horizon and the sampling frequency,
tend to infinity. At the core of our study, we also investigate the case where a
sample path is continuously observed. Again, we construct an estimator for the
Lévy kernel’s density. For a more general class of Markov processes than before, we
obtain the consistency of our estimator and a central limit theorem. Practical aspects
of our estimators are investigated in a simulation study. In addition, we consider
time-changed Lévy processes. For an analogous estimator for the Lévy measure’s
density, we prove its consistency and asymptotic normality. Finally, a particular
time-changed Lévy process is advocated as a suitable model for the intermittency in
atmospheric turbulence. As a part of an empirical study, a related non-parametric
estimator for the Lévy density is applied.
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1 Introduction

In many applied fields, such as neuroscience, geology, computer science, physics,
and mathematical finance, continuous-time stochastic processes are used to model
specific dynamics. In many cases, it is natural to include sample path discontinuities,
also known as jumps, into these models. For instance, when modelling the mem-
brane potential of a neuron, jumps may represent the action potentials – modelling
statistically the actual complex biochemical reaction. When modelling tectonic move-
ments (e. g., of the San Andreas Fault in California) jumps may represent earthquakes.
And when modelling the CPU load or the main memory usage in supercomput-
ing systems (e. g., at the Leibniz Supercomputing Centre (Leibniz Rechenzentrum))
jumps may represent the commencement and termination of resource intensive jobs.

The statistical inference for continuous-time models with jumps has received
significant attention in recent years. Since, usually, only discrete observations are
available in practice, one of the main issues encountered is that the jumps are
latent. A vast amount of literature has been devoted to the class of processes with
stationary and independent increments, called Lévy processes. By the Lévy–Khintchine
representation (cf. Sato, 1999, Theorem 8.1), the law of their jumps is characterised by
their Lévy measure. Early works in the literature on parametric and non-parametric
inference for Lévy processes include Rubin and Tucker (1959), Akritas (1982), and
Basawa and Brockwell (1982). Numerous non-parametric and semi-parametric
approaches for the estimation of the characteristic triplet and, in particular, the
Lévy density have been suggested recently. We refer to the special issue Gugushvili,
Klaassen, and Spreij (2010) which contains an interesting collection of papers on this
topic with ample references to previous literature. Another comprehensive literature
review on the Lévy case is presented in the introductory section of Ueltzhöfer and
Klüppelberg (2011).

In this thesis, we study the estimation of the jumps of processes beyond the Lévy
case. First and foremost, we consider the class of Harris recurrent Markov processes
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1 Introduction

which are Itō semi-martingales. We remark that many important, continuous-time
models – at least in finance – are Itō semi-martingales as stochastic integrals and
Itō’s formula play a prominent role. For such a process X = (Xt)t≥0, by definition
and by the strong Markov property, the law of its jumps ∆Xt = Xt − Xt− is more or
less described by a kernel F on the state space, say E. In particular, for every Borel
function g on E× E and t > 0, we have

E ∑
0<s≤t

g(Xs−, ∆Xs)1{Xs− 6=Xs} = E

t∫
0

ds
∫

F(Xs, dy)g(Xs, y), (1.1)

where E denotes the usual expectation. The kernel F is unique (outside an excep-
tional set). We call it the Lévy kernel of X. It is a generalisation of the notion of Lévy
measures: Suppose X is a Lévy process with Lévy measure ν; then F(x, dy) = ν(dy)
is the Lévy kernel of the Markovian Itō semi-martingale X. We assume that the mea-
sures F(x, dy) on E admit a density y 7→ f (x, y) and we aim for the non-parametric
estimation of the function (x, y) 7→ f (x, y).

Our main concern is the case where we observe a sample X0(ω), . . . , Xn∆(ω)

of the process on an equidistant time grid. Such a discrete observation scheme
is commonly observed in literature on the estimation of stochastic processes; we
refer to the monograph Jacod and Protter (2012) which is entirely devoted to the
“discretisation of processes”. We study a kernel density estimator for f (x, y) which
resembles the Nadaraya–Watson estimator in classical conditional density estimation.
For kernel functions g1, g2 and a bandwidth η = (η1, η2) > 0, in particular, our
estimator is of the form

f̂ ∆,η
n (x, y) =

∑n
k=1 g1(η

−1
1 (X(k−1)∆ − x))g2(η

−1
2 (Xk∆ − X(k−1)∆ − y))

ηd
2 ∆ ∑n

k=1 g1(η
−1
1 (X(k−1)∆ − x))

. (1.2)

As our main results, we show its consistency as n∆ → ∞, ∆ → 0 and η → 0
under a smoothness hypothesis on the estimated density. Also, we prove a central
limit theorem: In the positive recurrent case, henceforth also called ergodic case,
our estimator is asymptotically normal. In the null recurrent case, we impose an
additional assumption which goes back to Darling and Kac (1957). Thereunder, we
prove that our estimator is asymptotically mixed normal. As the convergence in
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our central limit theorem holds stably in law (a notion due to Renyi, 1963), we also
obtain a standardised version of our theorem which can be used for the construction
of asymptotic confidence intervals.

At the core of this thesis, and en route of the proof of the previously mentioned
results, we essentially study the case first, where a continuous sample path {Xs(ω) :
s ∈ [0, t]} is observed and, in particular, all jumps are discerned. In this case, we
consider a more general class of strong Markov processes with càdlàg sample paths
than Itō semi-martingales only. Benveniste and Jacod (1973) proved that, for a Hunt
process X, viz. a quasi-left continuous, strong Markov process with càdlàg sample
paths, the law of its jumps is more or less described by a pair (F, H), where F
is a kernel on the state space and H is a non-decreasing, continuous additive
functional of X. A similar equality as in eq. (1.1) holds where, on the right-hand
side, the differential ‘ds’ is replaced by ‘dHs’. The pair (F, H) is called a Lévy
system. Apparently, it is a further generalisation of the notions of Lévy measures
and Lévy kernels: Suppose X is an Itō semi-martingale with Lévy kernel F as before;
then (F, H) with Ht = t is a Lévy system of the Hunt process X.

We emphasise that, in general, neither the Lévy kernel F nor the additive
functional H is uniquely defined. With our main results for the Itō semi-martingale
case in mind, we restrict ourselves to the case where Ht = t. This amounts to assume
the existence of a Lévy system for some additive functional H̄ which is absolutely
continuous. For the – then distinguished – Lévy system (F, t), we have that the Lévy
kernel is unique (outside an exceptional set). Again, we call F the (canonical) Lévy
kernel of X, and assume that the measures F(x, dy) on E admit a density y 7→ f (x, y).
Based on the additional observed information, we study the following version of our
estimator given by eq. (1.2) for the function (x, y) 7→ f (x, y):

f̂ η
t (x, y) =

∑0<s≤t g1(η
−1
1 (Xs− − x))g2(η

−1
2 (∆Xs − y))1{Xs− 6=Xs}

ηd
2

∫ t
0 g1(η

−1
1 (Xs − x))

. (1.3)

Under slightly weaker assumptions than before, we prove the estimator’s consistency
and asymptotic (mixed) normality as t→ ∞ and η → 0.

Along with these main results, we obtain various complementary ones – some
of which are of independent interest: Firstly, we prove a triangular array extension
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1 Introduction

of Birkhoff’s theorem for additive functionals. The theorem proves useful in the
analysis of the asymptotic behaviour of our estimator as, jointly, t→ ∞ and η → 0.
Secondly, we present a new construction of a uniformly ergodic, auxiliary Markov
chain which is based on a “splitting” of the sample paths of our Markov process at
specific jump times. Although the presentation thereof is tailored specifically for our
needs, the technique may provide a helpful alternative to the famous Nummelin
splitting. Thirdly, we have thoroughly studied the influence of discretisation on our
estimates in the Itō semi-martingale case. In particular, we quantified the difference
between our estimator f̂ ∆,η

n (x, y) based on discrete observations and the estimator
f̂ η
n∆(x, y) based on the full observation of a sample path. We use the corresponding

results in the following part of this thesis. Lastly, we prove a non-standard limit
theorem for a triangular, martingale array scheme.

In the second part of this thesis, we turn our attention to another class of processes
which, in general, is non-Markov. We consider time-changed Lévy processes X =

L ◦ T, where L is a Lévy process with Lévy measure F and dTt = Ytdt for some
non-negative, càdlàg process Y which is independent of L. Time-changed Brownian
motion, as far as known to us, was first studied by Bochner (1949). In mathematical
finance and econometrics, this class of processes received prominent attention (e. g.,
Clark, 1973; Carr, Geman, Madan, and Yor, 2003; Barndorff-Nielsen and Shephard,
2006). In statistical physics, it may also serve as a building block for the modelling
of atmospheric turbulence.

Again, our concern is the case where we observe a sample X0(ω), . . . , Xn∆(ω) of
the process on an equidistant time grid. We assume that the Lévy measure F(dx)
admits a density x 7→ f (x). We study an estimator which resembles the classical
Rosenblatt–Parzen window estimator. For a kernel function g and a bandwidth
η > 0, our estimator specifies to

f̂ ∆,η
n (x) =

1
n∆ηd

n

∑
k=1

g
(Xk∆ − X(k−1)∆ − x

η

)
. (1.4)

Under the assumption that Y is ergodic with finite fourth moment and under a
smoothness condition on the estimated density, we prove the consistency of our
estimator as n∆→ ∞, ∆→ 0 and η → 0. Under an additional tightness assumption

4



on a functional of the time-change, we also prove that our estimator is asymptotically
normal. Since, as in the Markov setting before, the convergence in our central limit
theorem holds stably in law, we also obtain a standardised version of our theorem
which can be used for the construction of asymptotic confidence intervals.

We remark that the proofs for these results are heavily based on the results and
techniques presented in the case of a Markovian Itō semi-martingale. Especially our
analysis of the influence of discretisation plays a crucial role. Moreover, we remark
that a study which is similar – but distinguished from ours – is presented by Figueroa-
López (2009b, 2011). There, estimators of the form (n∆)−1 ∑n

k=1 g(Xk∆−X(k−1)∆) are
investigated. Under the assumption that Y is an ergodic diffusion, Figueroa-López
proved the consistency of such an estimator for

∫
F(dx)g(x) and a central limit

theorem. In our study, in contrast, the fixed function g is replaced by a sequence of
functions (gn)n∈N (namely, gn(z) = η−d

n g((z− x)/ηn)) where ηn → 0 as n→ ∞.
The third part of this thesis is dedicated to the empirical modelling of the

intermittency in atmospheric turbulence. This part is joint work with Vincenzo
Ferrazzano. Modelling of turbulence is a long-standing problem in physics and
mathematics. Since the seminal work of Kolmogorov (1941a,b, 1942) and its refine-
ment Kolmogorov (1962), it is commonly accepted that turbulence can be regarded
as a random phenomenon.

In our study, we focus on the modelling of the velocity V = (Vt)t∈R of a
turbulent flow along the main (longitudinal) flow direction at a single, fixed location.
Virtually every observed turbulent flow displays several stylised facts. Experimental
investigations highlighted that their magnitude depends only on a control parameter
called the Reynolds number. Our paramount aim is to advocate a statistical model,
which is able to reproduce the following essential “intermittent” features of flows
with a high Reynolds number, called fully developed turbulent flows: Firstly, the
velocity increments display a distinctive clustering; the phenomenon originally
called intermittency. In particular, the squared increments of turbulent flow velocities
are significantly correlated; their auto-correlation function is positive and slowly
decaying. Secondly, the velocity increments are semi-heavy tailed and display a
distinctive scaling: On large time-scales, on the one hand, the distribution of the
increments is approximately Gaussian. On small time-scales, on the other hand, the
distribution develops exponential tails and is positively skewed.
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1 Introduction

Barndorff-Nielsen and Schmiegel (2008) proposed a causal continuous-time
moving average process

V = (Vt)t∈R, where Vt = v̄ +

t∫
−∞

g(t− s)dXs, (1.5)

driven by some normalised random orthogonal martingale measure dX, as a suitable
statistical model for a fully developed turbulent flow with mean v̄ > 0. In such
a model, the second-order properties of V depend only on the square-integrable
moving-average kernel g. The driving martingale X, henceforth called the intermit-
tency process, accounts for all higher-order properties. Deviating from Barndorff-
Nielsen and Schmiegel (2008), we advocate that the intermittency process is appro-
priately modelled by a time-changed Lévy process X = L ◦

∫ ·
0 Ysds, where L is a

purely discontinuous martingale with tempered stable Lévy measure (see Rosiński,
2007) and Y is itself a positive, ergodic, causal continuous-time moving average
process – independent of L.

We estimated our model from a data set which consists of measurements taken
at the atmospheric boundary layer, about 35m above the ground. Brockwell, Fer-
razzano, and Klüppelberg (2012) proposed a method to estimate the kernel g from
an observed sample V0(ω), V∆(ω) . . . , Vn∆(ω) of the velocity. Ferrazzano and Fuchs
(2012) extended this method to estimate the increments Xk∆(ω) − X(k−1)∆(ω) of
the intermittency process in addition. Treating these estimated increments as true
observations, we estimated the time-change using a method of moment approach
(see Kallsen and Muhle-Karbe, 2011). Next, we estimated the Lévy density of the
Lévy process L using the projection estimator of Figueroa-López (2009b, 2011) and
the penalisation method which Ueltzhöfer and Klüppelberg (2011) studied in the
case of Lévy processes. Under a constraint on the moments of the time-changed
Lévy process, we also calculated least-squares fits of certain parametric families of
tempered stable Lévy densities to our non-parametric estimate. We minimised an
information criterion to find an optimal choice of parameters. In a simulation study,
we compare a sample of increments from our intermittency model and the data. The
fit of the empirical stationary distribution and of the auto-correlation of the squared
intermittency increments (that is, the clustering of large increments) is convincing.
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General outline

Apart from this introduction, this thesis contains five chapters, some of which are
based on papers.

In Chapter 2, we introduce the relevant notions used in this thesis and summarise
essential theorems. This includes the notions of semi-martingales and Markov
processes and important limit theorems for stochastic processes. Alongside, we
develop the relevant notation.

In the first part of this thesis, which consists of Chapters 3 and 4, we study the
estimation of the jumps of processes beyond the Lévy case:
Chapter 3 is based on the paper Ueltzhöfer (2012). In this chapter, we study the
kernel density estimation of the Lévy kernel of a Markov process. An individual
introductory section is provided. In Section 3.2, we study the estimation of the
Lévy kernel based on discrete observations; we present the statistical problem, our
standing assumptions and our estimator; and we state our main results of this
chapter. In Section 3.3, we study the case where continuous-time observations
are available. The proofs for the latter section are presented in Section 3.4. This
section also contains our extension of Birkhoff’s theorem for additive functionals
to triangular arrays and the construction of the aforementioned auxiliary Markov
chain. The proofs for our main results of Section 3.2 are presented in Section 3.5.
Some technical considerations are put off to the supplementary Section 3.6.
In Chapter 4, we study the kernel density estimation of the Lévy measure of a
time-changed Lévy process. The chapter is organised analogously to Chapter 3. An
individual introductory section is provided. In Section 4.2, we present the statistical
problem, our standing assumptions and our estimator; and we state our main results
of this chapter. The corresponding proofs are in Section 4.3.

In the second part of this thesis, which consists of Chapters 5 and 6, we study
the estimation of jumps in practice:
In Chapter 5, we present a simulation study for the kernel density estimator pre-
sented in Chapter 3 and a simulation study for the penalised projection estimation
of the Lévy measure of a Lévy process. The latter study is based on Section 4 of the
paper Ueltzhöfer and Klüppelberg (2011). In the former study, inter alia, we focus on
the influence of discretisation and the importance of suitable bandwidth selection.
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1 Introduction

Chapter 6 is based on Ferrazzano and Ueltzhöfer (2012). This chapter is joint work
with Vincenzo Ferrazzano and is dedicated to the empirical modelling of the inter-
mittency in atmospheric turbulence. An individual introductory section is provided.
In Section 6.2 we present the statistical problem and the estimation methods which
we apply. In Section 6.3, we perform an empirical study of the so-called Brookhaven
wind speed data set. Finally, in Section 6.4, we compare our fitted model and the
data set in a short simulation study.

Notational conventions

The following notational conventions are used throughout this thesis without further
explanation:

• R denotes the real numbers; R+ denotes the non-negative real numbers; R∗+
denotes the positive real numbers; R := R∪ {−∞, ∞}; R+ := R+ ∪ {∞}

• Z denotes the integers; N denotes the non-negative integers; N∗ denotes the
natural numbers excluding zero; N := N∪ {∞}

• For p ∈ N∗, Zp := Z/(pZ) denotes the ring of the residual classes of integers
modulo p

8



2 Semi-martingales, Markov processes, Limit theorems

The theory developed and studied in this thesis is based on various fields of prob-
ability theory: Firstly, the general theory of stochastic processes (cf. Jacod, 1979).
Secondly, the limit theory for semi-martingales (cf. Jacod and Shiryaev, 2003; Jacod
and Protter, 2012). Thirdly, the theory of Markov processes (cf. Getoor, 1975; Sharpe,
1988; Höpfner and Löcherbach, 2003) and their discrete-time analogues – the Markov
chains (cf. Revuz, 1984; Meyn and Tweedie, 1993). We emphasise at this point that
other fields such as measure theory, topology, and functional analysis are an integral
part of the aforementioned. To make this thesis self-contained as far as possible,
we dedicate this chapter to summarise the theory applied in subsequent chapters.
Alongside, we develop the relevant notation.

2.1 Résumé of the general theory of stochastic processes

The presentation of the general theory of stochastic processes in this section is mainly
based on Jacod (1979) and Jacod and Shiryaev (2003). The development of the theory
is closely connected to the work of Joseph Leo Doob, Kiyoshi Itō, Paul-André Meyer,
Shinzo Watanabe, and Claude Dellacherie, to just name a few.

2.1.1 Random sets; Processes; Optional and predictable σ-field

Let (Ω, F ,P) be a probability space and let F := (Ft)t≥0 be a filtration, that is, an
increasing sequence of sub-σ-fields of F . For convenience, we suppose F∞ = F

and F∞− = ∨s≥0Fs.

2.1.1 Definition. The filtered probability space (Ω, F ,F,P) is said to satisfy the usual
conditions if

(i) it is complete, that is, F is P-complete and every Ft contains all P-null sets
of F ; and

9



2 Semi-martingales, Markov processes, Limit theorems

(ii) the filtration F is right-continuous, that is, Ft = ∩s>tFs for all t ≥ 0. �

Given a single probability measure P on (Ω, F ), it is no loss of generality to assume
that the usual conditions are satisfied (cf. Jacod and Shiryaev, 2003, I.1.4).

A first notion of interest is that of random sets:

2.1.2 Definition. (i) A subset of Ω×R+ is called a random set.

(ii) A random set A is called evanescent if P({ω : ∃t ≥ 0 s. t. (ω, t) ∈ A}) = 0. �

An important example of random sets are stochastic intervals: Let S, T : Ω → R+.
Then, we define

[[S, T]] := {(ω, t) : S(ω) ≤ t ≤ T(ω)} (2.1.1)

and, analogously, [[S, T[[, ]]S, T]] and ]]S, T[[. Also, we set [[T]] := [[T, T]].
Having introduced the space on which our main objects of interest, the stochastic

processes, will be defined, at this point it remains to introduce the space in which
these will take their values: Let (E, T ) be a topological space. The σ-field generated
by the topology T is called the Borel σ-field on E, denoted E 0 := B(E) := σ(T ).
By Mb(E) we denote the set of all finite (positive) measures on the measurable
space (E, E 0). For every µ ∈ Mb(E), we denote the µ-completion of E 0 by E µ. The
sets in the family E u := ∩µ∈Mb(E)E

µ are called universally measurable; E u is called
the universally measurable σ-field on E. Throughout the remainder of this section, we
abbreviate E = (E, E ), where E denotes an “intermediate σ-field” E 0 ⊆ E ⊆ E u.

2.1.3 Definition. (i) A family X = (Xt)t≥0 of mappings Xt : Ω → E is called
an E-valued process. The process X is called measurable if it is F ⊗B(R+)-E -
measurable as a mapping X : Ω×R+ → E. The mappings t 7→ Xt(ω) for
fixed ω ∈ Ω are called the trajectories or sample paths of X.

(ii) Let X and Y be two E-valued processes. We call them indistinguishable if the
random set {(ω, t) : Xt(ω) 6= Yt(ω)} is evanescent. �

For ω ∈ Ω, we denote the left-limit at time t > 0 by Xt−(ω) := lims→t,s<t Xs(ω) as
soon as it exists for the respective trajectory. Also, we agree to set X0−(ω) = X0(ω).

10



2.1 Résumé of the general theory of stochastic processes

In the case that E is an additive group, we set ∆Xt(ω) := Xt(ω)− Xt−(ω), again,
as soon as Xt−(ω) exists. Processes where all trajectories are right-continuous and
admit left-limits are of utmost importance to the theory: They are called càdlàg
for “continu à droite avec des limites à gauche”. Likewise, processes which are
right-continuous (resp., left-continuous) are called càd (resp., càg). For a càdlàg
process X, we denote X− := (Xt−)t≥0 and ∆X := (∆Xt)t≥0. We say that the trajec-
tory t 7→ Xt(ω) has a jump at time t > 0 if ∆Xt(ω) 6= 0.

2.1.4 Definition. (i) An E-valued process X is called adapted (to the filtration F) if
the mappings Xt : Ω→ E are Ft-E -measurable for all t ≥ 0.

(ii) The σ-field over Ω×R+ generated by all càdlàg, F-adapted processes is called
the optional σ-field, denoted O = O(F). The random sets in O are called optional.

(iii) The σ-field over Ω×R+ generated by all càg, F-adapted processes is called
the predictable σ-field, denoted P = P(F). The random sets in P are called
predictable. �

By Proposition I.1.24 of Jacod and Shiryaev (2003), we have P ⊆ O .

2.1.2 Stopping times; Predictable times; Quasi-left continuity

The notions of optionality and predictability are closely linked to stopping times:

2.1.5 Definition. A mapping T : Ω → R+ is called a stopping time if {T ≤ t} ∈ Ft

for all t ≥ 0. For a stopping time T, we denote

FT :=
{

A ∈ F : A ∩ {T ≤ t} ∈ Ft for all t ≥ 0
}

(2.1.2)

and

FT− := σ
(
F0 ∪ {A ∩ {t < T} : t ∈ R+ and A ∈ Ft}

)
. (2.1.3)

The process XT = (XT
t )t≥0 given by XT(ω, t) := X(ω, t ∧ T(ω)) is called the process

stopped at time T. �

By Remark I.1.26 of Jacod and Shiryaev (2003), the optional σ-field is generated
by the stochastic intervals [[0, T[[ where T is a stopping time. By Theorem I.2.2 of
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2 Semi-martingales, Markov processes, Limit theorems

Jacod and Shiryaev (2003), the predictable σ-field is generated by the stochastic
intervals [[0, T]] where T is a stopping time and the sets A× {0} where A ∈ F0.

The following results give further insight on optional and predictable processes:

2.1.6 Proposition (Jacod and Shiryaev (2003) I.1.21 and I.1.25). (i) Let X be an op-
tional process and T be a stopping time. Then XT1T<∞ is FT-measurable and the
stopped process XT is optional.

(ii) Let X be a càdlàg, adapted process. Then the processes X− and ∆X are optional.

2.1.7 Proposition (Jacod and Shiryaev (2003) I.2.4 and I.2.6).

(i) Let X be a predictable process and T be a stopping time. Then XT1T<∞ is FT−-
measurable and the stopped process XT is predictable.

(ii) Let X be a càdlàg, adapted process. Then the process X− is predictable. If X is
predictable in addition, then ∆X is predictable.

Predictable and totally inaccessible (stopping) times play an important role:

2.1.8 Definition. A mapping T : Ω→ R+ is called a predictable time if [[0, T[[∈P . A
stopping time T is called totally inaccessible if P(T = S < ∞) = 0 for all predictable
times S. �

2.1.9 Definition. A càdlàg process X is called quasi-left continuous if, for every pre-
dictable time T, ∆XT = 0 a. s. on {T < ∞}. �

We have:

2.1.10 Proposition (Jacod and Shiryaev (2003) I.2.24 and I.2.26).

(i) Let X be a predictable, càdlàg process. Then there exists a sequence (Tn)n∈N of
predictable times such that {∆X 6= 0} = ∪n∈N[[Tn]]. Furthermore, ∆XT = 0 almost
surely on {T < ∞} for all totally inaccessible stopping times T.

(ii) Let X be a càdlàg, adapted process. Then X is quasi-left continuous if, and only
if, there exists a sequence (Tn)n∈N of totally inaccessible stopping times such that
{∆X 6= 0} = ∪n∈N[[Tn]] and if, and only if, for every increasing sequence (Sn)n∈N of
stopping times with limit S, we have XSn → XS a. s. on {S < ∞} as n→ ∞.

12



2.1 Résumé of the general theory of stochastic processes

2.1.3 Martingales; Increasing processes; Doob–Meyer decomposition

An important class of processes is the class of martingales.

2.1.11 Definition. A process X is called a martingale (resp., sub-martingale) if it is
adapted and a. s. càdlàg such that every Xt is integrable and such that

Xs = E[Xt | Fs] (resp., Xs ≤ E[Xt | Fs])

for every s ≤ t. A martingale X is called uniformly integrable if the family of
random variables (Xt)t≥0 is uniformly integrable, and is called square-integrable
if supt≥0EX2

t < ∞. �

The next theorem is known as Doob’s inequality:

2.1.12 Theorem (Jacod and Shiryaev (2003) I.1.43). Let X be a square-integrable mar-
tingale. Then

E sup
t≥0

X2
t ≤ 4 sup

t≥0
EX2

t = 4EX2
∞. (2.1.4)

2.1.13 Definition. A process X is called a local martingale if there exists an increasing
sequence (Tn)n∈N of stopping times, called a localising sequence, such that Tn → ∞
a. s. and each stopped process XTn is a martingale. A process X is of class (D) if
the set of random variables {XT : T is a finite valued stopping time} is uniformly
integrable. �

The processes of finite variation form a second important class:

2.1.14 Definition. (i) We denote by V + (resp., by V ) the class of adapted, increasing
processes (resp., of processes of finite variation); that is, of all real-valued, càdlàg,
adapted processes such that all its paths are non-decreasing (resp., have finite
variation over each finite interval [0, t]).

(ii) We denote by A + (resp., by A ) the class of integrable, increasing processes (resp.,
of processes of integrable variation); that is, of all processes X ∈ V + (resp., X ∈ V )
such that EX∞ < ∞ (resp., EVar[X]∞ < ∞, where Var[X] denotes the variation
process of X). �
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2 Semi-martingales, Markov processes, Limit theorems

This allows to formulate the Doob–Meyer decomposition for sub-martingales:

2.1.15 Theorem (Jacod and Shiryaev (2003) I.3.15). Let X be a sub-martingale of
class (D). Then there exists a unique (up to indistinguishability) increasing, integrable,
predictable process H with H0 = 0 such that X− H is a uniformly integrable martingale.

There is an important extension of this theorem which we extensively use in this
thesis. We remark that the “localising procedure” of Definition 2.1.13 is used analo-
gously for various classes of processes. A process X belongs to the localised class Cloc

of the class C if there exists a localising sequence (Tn)n∈N as in Definition 2.1.13
such that the stopped processes XTn belong to C .

2.1.16 Theorem (Jacod and Shiryaev (2003) I.3.18). Let X ∈ Aloc. Then there exists a
predictable process Xp of locally integrable variation, called the predictable compensator
of X, which is unique up to an evanescent set, such that X− Xp is a local martingale.

2.2 Semi-martingales

The presentation of the theory of semi-martingales in this section is mainly based on
the monographs Jacod and Protter (2012) and Jacod and Shiryaev (2003). Throughout
this section, let (Ω, F ,F,P) be a filtered probability space.

2.2.1 Semi-martingales; Stochastic integrals; Quadratic variation

2.2.1 Definition. A process X : Ω × R+ → Rd is called a d-dimensional semi-
martingale if each of its components X1, . . . , Xd is adapted and càdlàg such
that Xi

t − Xi
0 is the sum of a local martingale and of a process of finite variation. �

Semi-martingales are used as integrators to define stochastic integrals. For a thor-
ough introduction thereof, we refer to Protter (2005) and Section I.4d of Jacod
and Shiryaev (2003). For a semi-martingale X and a predictable, locally bounded
process H, we denote by H · X the stochastic integral given by

(H · X)t :=
t∫

0

H
ᵀ

s dXs =
d

∑
i=1

t∫
0

Hi
sdXi

s. (2.2.1)
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2.2 Semi-martingales

Semi-martingales admit various decompositions. A first decomposition is in
terms of the (local) martingale part.

2.2.2 Definition. A local martingale M is called purely discontinuous if M0 = 0 and
if MN := (MtNt)t≥0 is a local martingale for every continuous local martingale N.�

2.2.3 Proposition (Jacod and Shiryaev (2003) I.4.18). Let M be a local martingale, then
there exists a unique (up to indistinguishability) decomposition

Mt = M0 + Mc
t + Md

t ,

where Mc
0 = Md

0 = 0, Mc is a continuous martingale, and Md is a purely discontinuous
local martingale.

2.2.4 Theorem (Jacod and Shiryaev (2003) I.4.27). Let X be a semi-martingale. Then
there exists a unique (up to indistinguishability) continuous martingale Xc with Xc

0 = 0
such that

Xt = X0 + At + Xc
t + Md

t , (2.2.2)

where A0 = Md
0 = 0, A is an adapted process of finite variation, and Md is a purely

discontinuous local martingale.

The process Xc is called the continuous martingale part of X. We note that a local
martingale M with EM2

0 < ∞ such that ∆M is locally bounded is locally square-
integrable. By Theorem 2.1.15, thus, there exists an Rd ⊗Rd-valued process 〈Xc, Xc〉
such that each of its components 〈Xi,c, X j,c〉 is an increasing process and such that
each process Xi,cX j,c − 〈Xi,c, X j,c〉 is a local martingale.

2.2.5 Definition. For a semi-martingale X, we call the Rd⊗Rd-valued process [X, X]

with components given by[
Xi, X j

]
t

:=
〈

Xi,c, X j,c
〉

t
+ ∑

0<s≤t
∆Xi

s∆X j
s, (2.2.3)

the quadratic variation of X. In the case that (each component of) [X, X] is locally
integrable, by Theorem 2.1.15, there exists a predictable process 〈X, X, 〉, called the
predictable quadratic variation of X, such that [X, X]− 〈X, X〉 is a local martingale. �
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2 Semi-martingales, Markov processes, Limit theorems

2.2.2 Random measures; Characteristics

The notion of random measures is essential to the understanding of semi-martingales.
A topological space is called a Polish space if it is completely metrisable and separable.

2.2.6 Definition. Let E = (E, E ) be a Polish space with Borel σ-field E . A fam-
ily m = (m(ω; dt, dx) : ω ∈ Ω) of non-negative measures on (R+ × E, B+ ⊗ E )

with m(ω; {0} × E) = 0 is called a random measure. �

We denote (Ω̃, F̃ ) = (Ω×R+ × E, F ⊗B+ ⊗ E ), Õ := O ⊗ E and P̃ := P ⊗ E . A
function on Ω̃ is called optional if it is Õ-measurable. Likewise, it is called predictable
if it is P̃-measurable. For a random measure m and every optional function g on Ω̃,
we denote by g ?m the stochastic integral given by

g ?mt(ω) :=


∫

[0,t]×E
g(ω, s, x)m(ω; ds, dx), if |g| ?mt(ω) < ∞,

∞, otherwise.
(2.2.4)

2.2.7 Definition. (i) A random measure m is called optional (resp., predictable)
if the process g ?m is optional (resp., predictable) for every optional (resp.,
predictable) function g on Ω̃.

(ii) An optional random measure m such that Em(R+× E) < ∞ is called integrable.

(iii) An optional random measure m is called P̃-σ-finite if there exists a strictly
positive, predictable function h on Ω̃ such that h ?m∞ is integrable. �

Theorem 2.1.16 admits an important generalisation, a “Doob–Meyer decomposition
for random measures”:

2.2.8 Theorem (Jacod and Shiryaev (2003) II.1.8). Let m be a P̃-σ-finite random mea-
sure. Then there exists a predictable random measure mp, called the predictable compen-
sator of m, which is unique up to a P-null set, such that the following holds: For every
predictable function h on Ω̃ with |h| ?m ∈ A +

loc, we have |h| ?mp ∈ A +
loc and h ?m− h ?mp

is a local martingale.
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2.2 Semi-martingales

The most important example of a random measure is the so-called jump-measure
of a semi-martingale; that is, the random measure m = mX given by

m(ω; dt, dx) = ∑
{s:∆Xs(ω) 6=0}

ε(s,∆Xs(ω))(dt, dx), (2.2.5)

where εx denotes the Dirac measure at x. We note that the jump-measure takes its
values in N, and is optional and P̃-σ-finite. We denote the predictable compensator
of m, which exists due to Theorem 2.2.8, by n = nX. By Corollary II.1.19 of Jacod and
Shiryaev (2003), we have that X is quasi-left continuous if, and only if, there exists a
version of n with n(ω; {t} × E) = 0 for all (ω, t) ∈ Ω×R+.

A construction of an integral h ? (m− n) of some predictable function h on Ω̃
w. r. t. the compensated jump-measure m− n is presented, e. g., in Section II.1d of
Jacod and Shiryaev (2003). By eqs. (2.1.16) and (2.1.17) of Jacod and Protter (2012),
if (h2 ∧ |h|) ? nt < ∞ for all t ≥ 0, then h ? (m− n) is defined as the unique (up to
indistinguishability) purely discontinuous local martingale with jumps given by

∆(h ? (m− n))t = h(t, ∆Xt)−
∫
E

h(t, x)n({t}, dx).

Eventually, we arrive at a second decomposition of semi-martingales. Jacod and
Protter (2012) call it the isolated big jumps canonical decomposition:

2.2.9 Theorem (Jacod and Shiryaev (2003) II.2.34). Let X be a semi-martingale. Then
there exists a predictable process of locally finite variation B with B0 = 0 such that

Xt = X0 + Bt + Xc
t + (x1‖x‖≤1) ? (m− n)t + (x1‖x‖>1) ?mt. (2.2.6)

We call (B, C, n), where C = 〈Xc, Xc〉, the characteristics of X.

2.2.3 Itō semi-martingales; Itō’s formula

An important class of semi-martingales are those with absolutely continuous charac-
teristics.

2.2.10 Definition. Let X be a semi-martingale with characteristics (B, C, n). Then X
is called an Itō semi-martingale if its characteristics are absolutely continuous with
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2 Semi-martingales, Markov processes, Limit theorems

respect to Lebesgue measure; that is,

dBt = btdt, dCt = ctdt, and n(dt, dx) = dt⊗ Ft(dx), (2.2.7)

where b (resp., c) is a process with values in Rd (resp., in Rd ⊗Rd) and Ft(ω; ·) is a
measure on Rd for each (ω, t) ∈ Ω×R+. �

For Itō semi-martingales, Itō’s formula reads as follows:

2.2.11 Theorem (Jacod and Protter (2012) eq. 2.1.20). Let X be a semi-martingale with
characteristics (B, C, n) given by eq. (2.2.7) and let g ∈ C2(Rd). Then g(X) is a semi-
martingale and satisfies

g(Xt) = g(X0) +

t∫
0

(
b
ᵀ

s∇g(Xs)
)

ds +
1
2

t∫
0

tr
(

cs∇2g(Xs)
)

ds

+
[(

g(X− + x)− g(X−)− x
ᵀ∇g(X−)

)
1‖x‖≤1

]
? nt

+

t∫
0

∇g(Xs−)
ᵀ
dXc

s +
[(

g(X− + x)− g(X−)
)
1‖x‖≤1

]
? (m− n)t

+
[(

g(X− + x)− g(X−)
)
1‖x‖>1

]
?mt,

(2.2.8)

where tr(·) denotes the trace operator on Rd ⊗Rd and ∇2g denotes the Hessian of g.

These processes admit another decomposition due to Grigelionis (1971). In the
following theorem, let d′ ≥ d be an integer, and λ be an infinite measure without
atom on some arbitrary Polish space E. For the definition of a very good extension,
see Section 2.1.4 of Jacod and Protter (2012).

2.2.12 Theorem (Jacod and Protter (2012) 2.1.2). Let X be a d-dimensional Itō semi-
martingale with characteristics (B, C, n) given by eq. (2.2.7). Then there exists a very
good extension of the probability space on which a d′-dimensional Brownian motion W and a
Poisson random measure p with compensator q(dt, dx) = dt⊗ λ(dx) are defined such that

Xt = X0 +

t∫
0

bsds +
t∫

0

σsdWs + (h1‖h‖≤1) ? (p− q)t + (h1‖h‖>1) ? pt, (2.2.9)
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2.2 Semi-martingales

where σ is an Rd ⊗ Rd′-valued, predictable process and h is a predictable function
on Ω̃ = Ω×R+ × E. Outside a null set, we have σtσt

ᵀ
= ct and the measure Ft(ω; ·)

coincides with the image of the measure λ under the map x 7→ h(ω, t, x) restricted to the
set {x : h(ω, t, x) 6= 0}.

Itō semi-martingales of the form eq. (2.2.9) admit useful estimates.

2.2.13 Proposition (Jacod and Protter (2012) eq. 2.1.43). Let X be a d-dimensional Itō
semi-martingale with characteristics (B, C, n) given by eq. (2.2.7). Then, for t > 0, p ≥ 2
and every finite stopping time T, there exists a finite constant ζ < ∞ such that

E

[
sup
s≤t
‖XT+s − XT‖p

∣∣∣∣∣FT

]
≤ ζ E


 T+t∫

T

‖bs‖ds

p

+

 T+t∫
T

‖σs‖2ds

p/2

+

T+t∫
T

ds
∫

λ(dz)‖h(s, z)‖p +

 T+t∫
T

ds
∫

{z:‖h(t,z)‖≤1}

λ(dz)‖h(s, z)‖2


p/2

+

 T+t∫
T

ds
∫

{z:‖h(t,z)‖>1}

λ(dz)‖h(s, z)‖


p ∣∣∣∣∣∣∣FT

 .

(2.2.10)

Moreover, the class of Itō semi-martingales is closed under absolutely continuous
time-changes.

2.2.14 Theorem (Jacod (1979) 10.12). Let X be a d-dimensional Itō semi-martingale with
characteristics (B, C, n) given by eq. (2.2.7). Moreover, let Y = (Yt)t≥0 be a positive càdlàg
process – independent of X – such that

Tt :=
t∫

0

Ysds is an Ft-stopping time for all t ≥ 0.

Then the time-changed process X′ = (X′t)t≥0 given by X′t := XTt is an Itō semi-martingale
w. r. t. the filtration F′ given by F ′t := FTt . Moreover, its characteristics (B′, C′, n′) satisfy

dB′t = btYtdt, dC′t = ctYtdt, and n′(dt, dx) = Ytdt⊗ Ft(dx).
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2 Semi-martingales, Markov processes, Limit theorems

2.3 Tightness; Convergence of processes; Limit theorems

The definitions and limit theorems in this section are based on Chapters VI and VII
of Jacod and Shiryaev (2003). See also Section 2.2 of Jacod and Protter (2012). The
notions of almost sure convergence, convergence in probability, and convergence in
law for Rd-valued random variables is assumed to be known. A less common notion
of convergence (introduced by Renyi, 1963) is stable convergence in law:

2.3.1 Definition. Let (Xn)n∈N be a sequence of random variables defined on some
probability space (Ω, F ,P). Moreover, let X be a random variable defined on an
extension (Ω×Ω′, F ⊗F ′, P̃) where P̃ is a probability measure whose marginal
on Ω is P. Then we say that Xn converges stably in law to X if

E[ f (Xn)Y] −−−→n→∞
Ẽ[ f (X)Y]

holds for every bounded continuous f on Rd and every bounded random variable Y
on (Ω, F ). We write Xn

L−st−−−→ X. �

2.3.1 Tightness

Let E be a Polish space and let E denote its Borel σ-field. On the space of probability
measures on (E, E ), denoted P(E), we consider the weak topology which makes P(E)
another Polish space.

2.3.2 Definition. A subset A ⊆ P(E) is called tight if, for every ε > 0, there exists a
compact C ⊆ E such that µ(E \ K) ≤ ε for every µ ∈ A. �

The famous Prokhorov’s theorem is essential to the sequel:

2.3.3 Theorem (Jacod and Shiryaev (2003) VI.3.5). A subset A ⊆ P(E) is relatively
compact for the weak topology if, and only if, it is tight.

The importance of this theorem is appreciated in the following corollary:

2.3.4 Corollary. A tight subset A ⊆ P(E) admits at least one limit point in P(E).
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2.3.2 Skorokhod topology and the convergence of processes

In the following, we introduce various modes of convergence for a sequence
of Rd-valued, càdlàg processes. We consider such processes as random variables
which take their values in the Skorokhod space D(Rd) := D(R+,Rd) of all càdlàg
mappings from R+ to Rd. Skorokhod (1956) introduced a topology on this space
which makes it a Polish space. We refer to Sections VII.1 and VII.2 of Jacod and
Shiryaev (2003) for further details on this topology and to Billingsley (1995) for
details on the space D([0, T];Rd) where T < ∞.

2.3.5 Definition. Let (Xn)n∈N be a sequence of càdlàg processes and X be another
càdlàg process. We say that

(i) Xn converges in law to X if the distributions L (Xn) of theD(Rd)-valued random
variables Xn converge weakly in P(D(Rd)) to the distribution L (X);

(ii) Xn converges almost surely (resp., in probability) to X if the D(Rd)-valued random
variables Xn converge almost surely (resp., in probability) to X w. r. t. to the
Skorokhod topology;

(iii) Xn converges uniformly on compacts in probability (or in ucp) to X if, for all t ≥ 0,
we have sups≤t‖Xn

s − Xs‖ → 0.

We write Xn L⇒X (resp., Xn a.s.⇒X; resp., Xn P⇒X; resp., Xn ucp
=⇒X). �

We note that, as in the random variable case, convergence in law of stochastic pro-
cesses is equivalent to the convergence of E f (Xn) to E f (X) for every bounded
continuous function f ; here, f is continuous w. r. t. Skorokhod’s topology on the
space D(Rd). Stable convergence in law of processes is defined analogously to Defini-
tion 2.3.1.

We summarise important classical results about Skorokhod convergence, which
we use in subsequent chapters of this thesis.

2.3.6 Proposition (Höpfner, Jacod, and Ladelli (1990) eqs. 3.2–5).
Let (An)n∈N and (Bn)n∈N be sequences of non-decreasing, càdlàg processes, let (Xn)n∈N
be a sequence of càdlàg processes, and let A and X be càdlàg processes. In addition, we
set U(n, t) := inf{s ≥ 0 : An

s > t} and U(t) := inf{s ≥ 0 : As > t}.
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2 Semi-martingales, Markov processes, Limit theorems

(i) If (An, Xn)
L⇒ (A, X) where A is a. s. continuous such that P(Ut− 6= Ut) = 0

for all t, then (An, Xn, (U(n, ti), Xn
U(n,ti)

)i≤k))
L⇒ (A, X, (U(ti), XU(ti)

)i≤k)) for
all k ∈ N∗ and ti ≥ 0.

(ii) Let εn → 0. If Xn L⇒ X where X is a. s. continuous, then Xn
t+εn

L⇒ Xt. If An L⇒ A
and A is as in (i), then U(n, t + εn)→ U(t).

(iii) If (An, Xn)
L⇒ (A, X) where (A, X) is a. s. continuous, then (An, Xn

An)
L⇒ (A, XA).

(iv) If (An, Xn)
L⇒ (A, X) and (An, Bn)

L⇒ (A, A), then (An, Xn, Bn)
L⇒ (A, X, A).

Moreover, we have (An, A′n) L⇒ (A, A) where A′nt := Bn
t∧σ(n) + An

t − An
t∧σ(n)

with σ(n) = inf{t ≥ 0 : Bn
t > u} for some u ≥ 0.

Families as in the previous proposition, whose limit points are all laws of
continuous processes, play a special role:

2.3.7 Definition. A sequence (Xn)n∈N of processes is called C-tight if it is tight and if
every limit point of the family {L (Xn) : n ∈ N} is the law of a continuous process.�

2.3.8 Proposition (Jacod and Shiryaev (2003) VI.3.33). Let (Yn)n∈N be a C-tight se-
quence of d-dimensional processes; let (Zn)n∈N be a tight (resp., C-tight) sequence
of d′-dimensional processes. Then

(i) the sequence (Yn, Zn)n∈N of (d + d′)-dimensional processes is tight (resp., C-tight);
and

(ii) if d = d′, then the sequence (Yn + Zn)n∈N is tight (resp., C-tight).

2.3.3 Martingale limit theorems

A general, generic scheme to prove limit theorems for stochastic processes was
suggested by Prokhorov:

2.3.9 Theorem (Jacod and Shiryaev (2003) VI.3.18).
A sequence (Xn)n∈N of càdlàg processes converges to a process X if, and only if,

(i) the sequence (Xn)n∈N is tight (that is, the family {L (Xn) : n ∈ N} is tight); and
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2.4 Markov chains

(ii) the law L (X) is the only possible limit point of the family {L (Xn) : n ∈ N}.

For our purposes, the following martingale (central) limit theorem and its finite-
dimensional version are the most important:

2.3.10 Theorem (Jacod and Shiryaev (2003) VIII.3.6 and VIII.3.24). Let X be a con-
tinuous Gaussian martingale with characteristics (0, C, 0); let (Xn)n∈N be a sequence of
locally square-integrable martingales with characteristics (Bn, Cn, nn) and Xn

0 = 0; and
let D ⊆ R+.

(i) If Bn
t
P→ 0 and sups≤t |∆Xn

s |
P→ 0 and

either [Xn, Xn]t
P→ Ct or 〈Xn, Xn〉t

P→ Ct (2.3.1)

holds for all t ∈ D, then

for all k ∈ N∗ and t1, . . . , tk ∈ D : (Xn
t1

, . . . , Xn
tk
)

L→ (Xt1 , . . . , Xtk). (2.3.2)

(ii) Suppose that D is dense in R+ and that the following “Lindeberg condition” holds:(
‖x‖21{‖x‖>ε}

)
? nn

t
P−−−→

n→∞
0 for all t ≥ 0, ε > 0. (2.3.3)

Then Xn L⇒ X if, and only if, [Xn, Xn]t
P→ Ct for all t ∈ D and also if, and only

if, 〈Xn, Xn〉t
P→ Ct for all t ∈ D.

2.4 Markov chains

Before we come to the class of continuous-time Markov processes, we dedicate this
section to give a résumé of their discrete-time counterparts: The Markov chains. The
presentation in this section is mostly based on the book of Meyn and Tweedie (1993).
Let E = (E, E ) be a fixed measurable space.

2.4.1 Definition. (i) A kernel P : E × E → R+ is called a transition kernel if
P(x, E) = 1 for all x ∈ E. For a kernel P, a σ-finite measure ν, and a measurable
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2 Semi-martingales, Markov processes, Limit theorems

function g on E, we denote

Pg(x) :=
∫

P(x, dy)g(y), νP(A) :=
∫

ν(dx)P(x, A), ν(g) :=
∫

ν(dx)g(x).

(ii) Let π be a probability measure on E and let P be a transition kernel on E.
A family X = (Xn)n∈N of random variables, defined on some probability
space (Ω, F ,Pπ) endowed with a discrete-time filtration F := (Fn)n∈N, is
called a Markov chain with initial law π and transition kernel P if X is F-adapted,

a) Pπ(X0 ∈ A) = π(A) for each A ∈ E ; and

b) Eπ[ f (Xn+1) | Fn] = P f (Xn) for every n ∈ N and every bounded E -
measurable function f .

(iii) A collection X = (Ω, F ,F, (Xn)n∈N, (Px)x∈E) is called a Markov chain with
transition kernel P if, under every law Px, (Xn)n∈N is a Markov chain with
initial law εx and transition kernel P. �

We refer to Section I.2 of Revuz (1984) for a rigorous introduction and the proof of
existence of Markov chains. For a probability measure π, we denote the expectation
w. r. t. to the law Pπ :=

∫
Px π(dx) by Eπ. Furthermore, we denote the so-called

n-step transition kernel by Pn; these are inductively defined by

P0(x, A) = εx(A) and Pn(x, A) :=
∫

P(x, dy)Pn−1(y, A). (2.4.1)

The Chapman–Kolmogorov equations (see Theorem 3.4.2 of Meyn and Tweedie,
1993), that is, Pm+n = PmPn for all m, n ∈ N, are key to much of the following
analysis of Markov chains.

2.4.1 Irreducibility; Small sets; Periodicity; Feller chains

Many of the notions and concepts developed in this and the following subsection
will find their counterpart in the continuous-time context.
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2.4 Markov chains

2.4.2 Definition. Let A ∈ E . We call

ηA :=
∞

∑
k=1
1A(Xn), and τA := min{n ≥ 1 : Xn ∈ A},

the sojourn time of, and the return time on A, respectively. �

The concept of irreducibility is best defined in terms of the return times of sets:

2.4.3 Definition. A Markov chain X = (Xn)n∈N is called ϕ-irreducible if there exists
a measure ϕ on E such that ϕ(A) > 0 implies Px(τA < ∞) = 1 for all x. �

2.4.4 Proposition (Meyn and Tweedie (1993) 4.2.2). Let X be a ϕ-irreducible Markov
chain. Then there exists a probability ψ on E such that X is ψ-irreducible and, for every ϕ′

for which X is ϕ′-irreducible, we have ψ � ϕ′ and, for every ψ-null set A ∈ E , we have
that {y : Py(τA < ∞) > 0}) is ψ-null.

Such a measure ψ is also called a maximal irreducibility measure for X. It is unique up
to equivalence. Thus, the following notions are well-defined:

2.4.5 Definition. Let X be a ψ-irreducible Markov chain. A set A ∈ E is called full if
its complement is ψ-null; it is called absorbing if P(x, A) = 1 for all x ∈ A. Moreover,
we set E + := {A ∈ E : ψ(A) > 0}. �

2.4.6 Proposition (Meyn and Tweedie (1993) 4.2.3). Let X be ψ-irreducible. Then ev-
ery absorbing set is full, and every full set contains a non-empty, absorbing set.

An important – at first glance not apparent role – for the asymptotic behaviour of
a Markov chain play small sets and petite sets. To prevent confusion, we emphasise
that we strictly follow the nomenclature of Meyn and Tweedie (1992).

2.4.7 Definition. (i) A set C ∈ E is called a small set if there exists an m ∈ N∗

and a non-trivial measure νm on E such that Pm(x, A) ≥ νm(A) for all x ∈ C
and A ∈ E ; C is also called νm-small.

(ii) A set C ∈ E is called a petite set if there exits a probability ρ on N∗ and a
non-trivial measure νρ on E such that ∑∞

k=1 ρ(k)Pk(x, A) ≥ νρ(A) for all x ∈ C
and A ∈ E . �
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2 Semi-martingales, Markov processes, Limit theorems

Apparently, set ρ = εm, every small set is petite. The following theorem guarantees
the existence of small sets for ψ-irreducible chains.

2.4.8 Theorem (Meyn and Tweedie (1993) 5.2.2 and 5.2.4). Let X be ψ-irreducible.

(i) For every A ∈ E +, there exists an m ≥ 1 and a νm-small set C ⊆ A such that C ∈ E +

and νm(C) > 0.

(ii) There exists a countable covering of X by small sets.

(iii) If C ∈ E + is νm-small, then there exists an m′ ∈ N∗ such that C is νm′-small
with νm′(C) > 0.

2.4.9 Definition. Let X be ψ-irreducible.

(i) A collection D0, D1, . . . , Dp−1 ∈ E of disjoint sets is called a p-cycle if

a) for every i ∈ Zp and x ∈ Di, we have P(x, Di+1) = 1, and

b) the complement of ∪i∈Zp Di is ψ-null.

(ii) The largest p ∈ N∗ for which a p-cycle exists is called the period of X.

(iii) We call X aperiodic if its period is one. �

2.4.10 Theorem (Meyn and Tweedie (1993) 5.4.4, 5.4.6 and 5.4.7). Let X be a ψ-irre-
ducible Markov chain.

(i) Let C ∈ E + be a νm-small set with νm(C) > 0 and let p denote the greatest common
divisor of the set{

n ∈ N∗ : C is νn-small with νn = ζnνm for some ζn > 0
}

.

Then there exists a p-cycle D0, . . . , Dp−1 ∈ E and, moreover, p is the period of X.

(ii) Furthermore, let Xp denote the so-called sampled Markov chain with transition ker-
nel Pp. Then each set Di is an absorbing, ψ-irreducible set for Xp and the restriction
of Xp to each Di is aperiodic.

(iii) If X is aperiodic, then every petite set is small.
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2.4 Markov chains

In general, the identification of petite sets is a tedious task. In an important
special case, however, it is straightforward.

2.4.11 Definition. (i) We denote by C(E) (resp., Cb(E)) the class of continuous
(resp., bounded continuous functions on E.

(ii) A kernel P is called weak Feller if Pg ∈ Cb(E) for every g ∈ Cb(E).

(iii) A kernel P is called strong Feller if Pg ∈ Cb(E) for every bounded, E -measurable
function g. �

Obviously, the strong Feller property implies the weak Feller property.

2.4.12 Theorem (Meyn and Tweedie (1993) 6.2.5 (ii) and 6.2.9). Let X be a ψ-irredu-
cible Markov chain with transition kernel P. If P is weak Feller and if the support of the
measure ψ has non-empty interior, then every compact set is petite.

2.4.2 Recurrence; Invariant measure; Ergodicity

Usually, a presentation of the recurrence properties of Markov chains would also
take care of its complementary notion, the transience. Since the transient case is
irrelevant in the sequel, we neglect it.

2.4.13 Definition. (i) Let X be ψ-irreducible. We call X Harris recurrent if

ψ(A) > 0 =⇒ Px(ηA = ∞) = 1 for all x ∈ E. (2.4.2)

(ii) A σ-finite measure µ on E is called an invariant measure for X if µP = µ. �

2.4.14 Proposition (Meyn and Tweedie (1993) 9.1.7 (ii)). Let X be ψ-irreducible. If
there exists a petite set C ∈ E such that Px(ηC = ∞) = 1 for all x ∈ E, then X is
Harris recurrent.

2.4.15 Theorem (Meyn and Tweedie (1993) 10.4.4 and 10.4.5). Let X be Harris recur-
rent. Then there exists an invariant measure µ which is unique up to constant multiples. If,
in addition, X is aperiodic, then a measure is invariant for X if, and only if, it is invariant
for every sampled chain Xm with transition kernel Pm, m ∈ N∗.
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2 Semi-martingales, Markov processes, Limit theorems

As an essential consequence we obtain the following proposition:

2.4.16 Proposition. Let X be Harris recurrent with invariant measure µ, period p > 1,
and p-cycle D0, . . . , Dp−1. Then the restriction of the sampled chain Xp with transition
kernel Pp to each Di is aperiodic and Harris recurrent with invariant measure µi given
by µi(A) = µ(A ∩ Di).

Proof. By Theorem 2.4.10 (ii), the sampled chain restricted to each of the sets Di is
aperiodic. Since µ is invariant for P, by definition of the p-cycle we have µiP = µi+1.
By iteration, we obtain µiPp = µi. In other words, µi is invariant for Pp. Finally, for
each measurable A ⊆ Di with µi(A) > 0, we have Px(ηA = ∞) = 1 for all x ∈ Di.
Thus, we also have Harris recurrence. 2

Recurrent processes are further classified in terms of their invariant measure.

2.4.17 Definition. (i) Let X be Harris recurrent with invariant measure µ. We
call X positive (Harris recurrent) if µ(E) < ∞. Otherwise, we call X null (Harris
recurrent). In the positive case, we call the unique invariant probability measure,
the stationary distribution.

(ii) A Markov chain with transition kernel P and invariant measure µ is called
ergodic if, for every initial probability π on E, the total variation norm

‖πPn − µ‖ := sup
{ f :| f |≤1}

|πPn f − µ( f )| (2.4.3)

of the signed measures πPm − µ converges to zero as n→ ∞. The chain is
called uniformly ergodic if

lim
n→∞

sup
x∈E
‖εxPn − µ‖ = 0. (2.4.4)

2.4.18 Theorem (Meyn and Tweedie (1993) 13.3.3). An aperiodic, positive Harris recur-
rent Markov chain is ergodic.

2.4.19 Theorem (Meyn and Tweedie (1993) 16.2.1 and 16.2.2). A Markov chain with
invariant measure µ is uniformly ergodic if, and only if, there exists a constant ζ < 1 such
that ‖εxPn − µ‖ ≤ ζn for every n ∈ N∗ and x ∈ E. A ψ-irreducible, aperiodic Markov
chain with invariant measure µ is uniformly ergodic if, and only if, the state space is petite.
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2.5 Markov processes

2.5 Markov processes

In this section, we turn our attention to the class of processes which we study at
the core of this thesis: The Markov processes. In the previous section, we have
introduced their discrete-time counterparts, the Markov chains, and introduced
various notions which we will analogously introduce in the continuous-time case.
Due to the abundance of literature on the theory of Markov processes, we only
present selected topics. The presentation is based on the monograph Getoor (1975) as
well as a couple of individual papers (see also Blumenthal and Getoor, 1968; Sharpe,
1988).

2.5.1 Résumé of the theory of Ray processes; Hunt processes

This subsection is dedicated to briefly touch the embedding of the theory of Markov
processes into the general theory of stochastic processes (recall Section 2.1).

The theory of Markov processes, put differently, is the theory of transition
semi-groups and resolvents. Let E = (E, E ) be a fixed measurable space.

2.5.1 Definition. Let (Rα)α>0 be a family of kernels on E. Then (Rα)α>0 is called a
sub-Markov resolvent (resp. Markov resolvent) if

i) αRα1 ≤ 1 (resp. αRα1 = 1) for each α > 0,

ii) Rα − Rβ = (β− α)RαRβ for all α, β > 0. �

It is immediate from (i) that each kernel is bounded. Hence, (ii) is well-defined.
Additionally, we note that Rα(·, A) is E u-measurable whenever A ∈ E u. There-
fore, (Rα)α>0 is also a resolvent on (E, E u). By abuse of notation, in this subsection,
we write f ∈ E (resp., f ∈ pE ; resp., f ∈ bE ) for f being an E -measurable (resp., a
positive E -measurable; resp., a bounded E -measurable) function.

2.5.2 Definition. Let (Rα)α>0 be a resolvent on (E, E ), let f ∈ pE , and α ≥ 0.
If βRα+β ≤ f for all β > 0, then f is called α-supermedian. An α-supermedian function
is called α-excessive if limβ→∞ βRα+β f = f pointwise. We denote by Sα (resp., Eα) the
class of all continuous, α-supermedian functions (resp., of all α-excessive functions).
In addition, we write S∞ :=

⋃
α>0 Sα. �
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For the remainder of this subsection, we suppose that E is a compact metric
space.

2.5.3 Definition. (i) A sub-Markov resolvent (Rα)α>0 is called a Ray resolvent
if RαC ⊆ C for all α > 0 and for each pair x, y ∈ E with x 6= y there exists a
function f ∈ S∞ with f (x) 6= f (y).

(ii) A family (Pt)t≥0 of sub-Markov kernels on E is called a sub-Markov semigroup
if Pt+s = PtPs for all s, t ≥ 0. �

Remark. We note that P0 is not assumed to be the identity map.

2.5.4 Theorem (Getoor (1975) 3.6). Let (Rα)α>0 be a Ray resolvent on E. Then there
exists a unique sub-Markov semigroup (Pt)t≥0 such that

(i) t 7→ Pt f (x) is right continuous on R+ for each x ∈ E and f ∈ C;

(ii) Rα f =
∫ ∞

0 e−αtPt f dt for all α > 0 and f ∈ C.

In addition,

(iii) a function f is α-supermedian if, and only if, e−αtPt f ≤ f for all t ≥ 0. Moreover,
we have e−αtPt f → P0 f ∈ Eα as t ↓ 0.

(iv) Let D := {x ∈ E : limα→∞ αRα f (x) = f (x) ∀ f ∈ C}. Then D ∈ E and
P0(x, ·) = εx if, and only if, x ∈ D. Moreover, Pt(x, ·) is carried by D for all x ∈ E
and t ≥ 0.

(v) (Pt)t≥0 is Markovian if and only if (Rα)α>0 is Markovian.

The set D in (iv) is called the set of non-branch points of (Rα)α>0 (or of (Pt)t≥0).
Accordingly, B := E \ D is called the set of branch points of (Rα)α>0 (or of (Pt)t≥0).

Remark. It is standard in literature to reduce the sub-Markovian case to the Marko-
vian case by, firstly, attaching a cemetery state to the state space, secondly, constructing
a Markov resolvent and, lastly, constructing a Markov semi-group by means of Theo-
rem 2.5.4 (see Getoor, 1975, p. 16).
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2.5.5 Definition. (i) Let π be a probability measure on E and let (Pt)t≥0 be a
Markov semi-group. A family X = (Xt)t≥0 of random variables, defined on
some filtered probability space (Ω, F ,F,Pµ), is called a Markov process with
initial law π and transition semi-group (Pt)t≥0 if X is adapted to F,

a) Pπ(X0 ∈ A) = π(A) for each A ∈ E ; and

b) Eπ[ f (Xt+s) | Fs] = Pt f (Xs) for every t, s ≥ 0 and bounded measurable
function f on E.

(ii) A Markov process X = (Ω, F ,F, (Xt)t≥0,Pµ) is called strong Markov if, for
every F-stopping time, we have

Eπ[ f (XT+t)1{T<∞} | FT] = Pt f (XT)1{T<∞} (2.5.1)

for every t ≥ 0 and bounded measurable function f on E. �

2.5.6 Theorem (Getoor (1975) 5.1). Let (Rα)α>0 be a Markov and a Ray resolvent, and
let (Pt)t≥0 denote the semi-group constructed from (Rα)α>0 by means of Theorem 2.5.4.
Furthermore, let D denote the set of non-branch points of (Rα)α>0 and denote by

W := {w ∈ D(E) : w(t) ∈ D ∀t ≥ 0}

the class of all càd mappings from R+ to D such that left-limits exist in E on R∗+. Let X
be the canonical process on W given by Xt(w) = w(t) and set G 0 := σ(Xt : t ≥ 0)
and G 0

t = σ(Xs : s ≤ t). Then, for every probability measure π on E, there exists a law Pπ

on (W , G 0) such that X := (W , G 0, (G 0
t )t≥0, (Xt)t≥0,Pπ) is a Markov process with initial

law µP0 and transition semi-group (Pt)t≥0.

By virtue of this theorem, of every Ray resolvent (Rα)α>0, there exists a càdlàg
realisation. In the following, we summarise some of its interesting properties.

We start with some notation: Let θ = (θt)t≥0 denote the semi-group of shift
operators on W given by Xt ◦ θs = Xt+s for all t, s ≥ 0. For every probability π

on (E, E ) we denote by G π the Pπ-completion of G 0, and by N π(G ) the σ-ideal
of Pπ-null sets in G π. Moreover, G π

t := Gt ∨N µ(G ). Furthermore, we consider
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the family (Rα)α>0 as a resolvent on (E, E u) rather than on (E, E ). Thus, we change
slightly the definition of the α-excessive functions.

2.5.7 Proposition (Getoor (1975) 5.6). Let f ∈ pE u. Then f is α-excessive if, and only
if, e−αtPt f ↑ f as t ↓ 0.

2.5.8 Definition. A numerical function f ∈ E u is called nearly Borel (relative to X) if
for every initial law π there exist g, h ∈ E such that g ≤ f ≤ h and the processes g(X)

and h(X) are Pπ-indistinguishable. �

The class E n := {A ∈ E u : 1A is nearly Borel} forms a σ-algebra, and f is nearly
Borel if, and only if, f is E n-measurable. Also, we have E ⊆ E n ⊆ E u.

2.5.9 Theorem (Getoor (1975) 5.8 and 5.11). (i) For every probability π on E, the fil-
tration Gπ := (G π

t )t≥0 is right-continuous; that is, (W , G π,Gπ,Pπ) satisfies the
usual hypotheses of the general theory of stochastic processes.

(ii) The stochastic process X from Theorem 2.5.6 satisfies the strong Markov property
relative to Gπ.

(iii) Let α > 0. Then Eα ⊆ E n. In addition, for each f ∈ Eα, the process f (X) is càdlàg.

(iv) Let π be a probability on E. Let (Tn)n∈N be an increasing sequence of Gµ-stopping
times. Set T := supn Tn and Λ := {w ∈ W : T(w) < ∞, Tn(w) < T(w) ∀n ∈ N}.
Then, for every bounded, universally measurable f on E,

Eπ

[
f ◦ XT1{T<∞}

∣∣∣∣∣∨n G π
Tn

]
= f ◦ XT1{T<∞}1Λc + P0 f (XT−)1Λ.

2.5.10 Corollary (Getoor (1975) 5.16). On {XT− ∈ D, T < ∞}, we have XTn → XT

Pπ-almost surely. If there are no branch points, that is, if D = E, then X is quasi-left
continuous.

2.5.11 Definition. Let x ∈ B. Then x is called a degenerate branch point if there exists
a y ∈ E with εxP0 = εy. The set of degenerate branch points is denoted by Bd. �

2.5.12 Theorem (Getoor (1975) 6.2, 6.4, 6.7 and 7.3). Let π be a probability on E and T
be a Gπ-stopping time.
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2.5 Markov processes

(i) The set Bd is Borel.

(ii) Suppose T is predictable. We have G π
T = G π

T− if, and only if, Pπ(XT− ∈ B \ Bd, 0 <

T < ∞) = 0. Therefore, if B = Bd (in particular, if B is empty), then the filtration
Gπ is quasi-left continuous for every π.

(iii) If XT = XT− P
π-a. s. on {0 < T < ∞}, then T is predictable and G π

T = G π
T−.

(iv) Let A = {0 < T < ∞, XT− ∈ D, XT 6= XT−}. Then TA := T1A + ∞1Ac is the
totally inaccessible part of T.

In summary, we have introduced resolvents, semi-groups, and Markov processes.
We have presented existence results for an important special case – the Ray resolvents.
The corresponding Ray process constructed by Theorems 2.5.6 and 2.5.9 is defined
on a probability space which satisfies the usual conditions, has càdlàg sample paths,
and is strong Markov. By Corollary 2.5.10, moreover, we are given a criterion for
quasi-left continuity. For presentational purposes, we end our presentation of the
general theory at this point (although, there would still be much more to say).
Throughout the remainder of this thesis, all Markov processes which we deal with
are supposed to satisfy the hypothesis (A) of Hunt (1957):

2.5.13 Definition. A Markov process X = (Ω, F ,F, (Xt)t≥0, (θt)t≥0, (Px)x∈E) with
values in some locally compact, separable space E is called a Hunt process if its
sample paths are almost surely càdlàg and if it is strong Markov and quasi-left
continuous. �

2.5.2 Recurrence; Additive functionals; Ergodic theorems

The notions of recurrence and invariant measure are defined analogously to the
discrete-time case (see Definitions 2.4.13 and 2.4.17).

2.5.14 Definition. Let X be a Hunt process with transition semi-group (Pt)t≥0.

(i) We call X Harris recurrent if there exists a σ-finite measure ϕ on E such that

ϕ(A) > 0 =⇒ Px

 ∞∫
0

1A(Xs)ds = ∞

 = 1 for all x ∈ E. (2.5.2)
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2 Semi-martingales, Markov processes, Limit theorems

(ii) A σ-finite measure µ is called invariant if µPt = µ for all t ≥ 0.

(iii) If X is Harris recurrent with invariant measure µ, then we call X positive (Harris
recurrent) if µ(E) < ∞; otherwise, we call X null (Harris recurrent). In the
positive case, we call the unique invariant probability measure, the stationary
distribution. �

2.5.15 Theorem (Azéma, Kaplan-Duflo, and Revuz (1967) Théorème I.3).
If X is Harris recurrent, then there exists an invariant measure µ which is unique up to
constant multiples.

Next, we introduce the notion of additive functionals:

2.5.16 Definition. A process H = (Ht)t≥0 is called a (perfect, homogeneous) addi-
tive functional of X if it is adapted to the filtration F and if, for all s, t ≥ 0, we
have Ht+s = Ht ◦ θs + Hs. �

Example. Let g be a measurable function on E and x ∈ E.

(i) The process Ht :=
∫ t

0 g(Xs)ds is an absolutely continuous additive functional.

(ii) The process H′t := ∑s≤t g(∆Xs)1{∆Xs 6=0} is a discontinuous additive functional.

(iii) The local time of X at x (see Blumenthal and Getoor, 1964, for details) is a
continuous additive functional which is not absolutely continuous.

2.5.18 Definition. Let X be a Hunt process with invariant measure µ and H be an
additive functional. We call H integrable if µ(H) := Eµ H1 < ∞. �

Then the Chacon–Ornstein theorem for additive functionals reads as follows:

2.5.19 Theorem (Azéma et al. (1967) Théorème II.1). Let H and H′ be integrable addi-
tive functionals such that µ(H′) > 0. Then

Ex Ht

Ex H′t
−−→
t→∞

µ(H)

µ(H′)
µ-almost surely. (2.5.3)

And Birkhoff’s theorem for additive functionals reads as follows:
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2.5 Markov processes

2.5.20 Theorem (Azéma et al. (1967) Théorème II.2). Let H and H′ be given as in The-
orem 2.5.19. Then, for every x ∈ E,

Ht

H′t
−−→
t→∞

µ(H)

µ(H′)
Px-almost surely. (2.5.4)

2.5.3 Deterministic equivalents; Darling–Kac’s condition; Mittag–Leffler process

Since H′t = t is an integrable additive functional if, and only if, µ(E) < ∞, by
Theorems 2.5.19 and 2.5.20, we obtain convergence for t−1Ht and t−1Ex Ht in the
positive recurrent case. In the null recurrent case, we obtain a more differentiated
picture.

2.5.21 Definition. A non-decreasing, deterministic function v : R+ → R+ is called a
deterministic equivalent of a Markov process X if the families{

L (v(t)−1Ht) | Pπ : t > 0
}

and
{

L (v(t)H−1
t ) | Pπ : t > 0

}
(2.5.5)

are tight for every probability π on E and each non-decreasing, additive functional H
of X with 0 < µ(H) < ∞. �

As seen before, v(t) = t is a deterministic equivalent in the positive recurrent
case. Löcherbach and Loukianova (2008) showed that some deterministic equivalent
exists whenever X is Harris recurrent. For further details on the generality of their
approach, we also refer to Löcherbach and Loukianova (2011).

2.5.22 Definition. Let X be a Harris recurrent Markov process with invariant mea-
sure µ and resolvent (Rα)α>0. We say that X satisfies Darling–Kac’s condition if, for
some 0 < δ ≤ 1, there exists a function v : R+ → R+ which is regularly varying of
index δ at infinity such that

1
v(1/λ)

Rλg(x) −−→
t→∞

µ(g) µ-almost everywhere as λ ↓ 0 (2.5.6)

for every µ-integrable function g on E. �

We note that, in the positive recurrent case, Darling–Kac’s condition holds with δ = 1
and v(t) = t/µ(E).
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2 Semi-martingales, Markov processes, Limit theorems

2.5.23 Definition. For 0 < α < 1, let K = (Kt)t≥0 denote the α-stable Lévy subordina-
tor with Laplace transform E e−ξKt = e−tξα

for ξ, t ≥ 0. Set Lt := inf{s > 0 : Ks > t}.
We call L = (Lt)t≥0 the Mittag-Leffler process of order α. By abuse of notation, we also
call Lt = t the Mittag-Leffler process of order one. �

For a brief introduction to the properties of the Mittag-Leffler processes, we refer to
Höpfner and Löcherbach (2003).

2.5.24 Theorem (Touati (1987) Théorème 3). Let X be a Harris recurrent Markov pro-
cess which satisfies Darling–Kac’s condition for some 0 < δ ≤ 1 and some v.
Let H = (H1, . . . , Hn) be a µ-integrable additive functional of X with (component-wise)
non-decreasing paths. Then, under every law Pπ, we have the following convergence in law
in D(Rn):(

v(t)−1H1
st, . . . , v(t)−1Hn

st

)
s≥0

L
=⇒
t→∞

(
µ(H1)Ls, . . . , µ(Hn)Ls

)
s≥0

, (2.5.7)

where L is the Mittag-Leffler process of order δ.

2.5.4 Jumps of Markov processes; Lévy system; Lévy kernel

2.5.25 Theorem (Benveniste and Jacod (1973) Théorème 1.1). Let X be a Hunt pro-
cess on some state space E. Then there exists a kernel F on E with F(x, {0}) = 0 and a
non-decreasing, continuous additive functional H of X such that, for every Borel function
g : E× E→ R+, every probability π on E, and every t > 0,

Eπ ∑
0<s≤t

g(Xs−, ∆Xs)1{Xs− 6=Xs} = Eπ

t∫
0

dHs

∫
E

F(Xs, dy)g(Xs, y). (2.5.8)

A pair (F, H) satisfying eq. (2.5.8) is called a Lévy system (see also Watanabe, 1964).
We call F a Lévy kernel of the Hunt process X. If there exists a Lévy system (F, H)

with Ht = t, we call the – then distinguished – kernel F of the Lévy system (F, t) the
(canonical) Lévy kernel of X.

The proofs in Benveniste and Jacod (1973) show that the continuity of the addi-
tive functional H is intimately related to the quasi-left continuity of the process and,
hence, to the absence of branch points (recall Corollary 2.5.10). In the terminology of
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2.5 Markov processes

Section 2.2, the random measure dHt ⊗ F(Xt, dy) on R+ × E is the predictable com-
pensator of the jump measure of the càdlàg process X. For conditional expectations
w. r. t. to the strict past of jump times, in this thesis we apply the following result.

2.5.26 Theorem (Weil (1971) Théorème 1). Let X be a Hunt process with Lévy system
(F, H) and let A ⊂ {(x, y) ∈ E× E : x 6= y}. We set T := inf{s > 0 : (Xs−, Xs) ∈ A}
and suppose that (XT− , XT) ∈ A almost surely on {0 < T < ∞}. Then, for every Borel
function g on E× E and every probability π on E, we have

Eπ
[

g(XT−, XT)10<T<∞ | FT−
]
= FAg(XT−)10<T<∞ Pπ-almost surely, (2.5.9)

where

FAg(x) :=


∫

F(x,dy)g(x,y)1A(x,y)∫
F(x,dy)1A(x,y) , if 0 <

∫
F(x, dy)1A(x, y) < ∞,

0, otherwise.
(2.5.10)
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The estimation of jumps

beyond the Lévy case
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3 On non-parametric estimation of the Lévy kernel of

Markov processes

This chapter is based on Ueltzhöfer (2012). The individual introduction in Section 3.1
has been edited for presentational purposes in view of the general introduction of
this thesis (Chapter 1). Cross-references to the material presented in Chapter 2 have
been added. The proof of Lemma 3.4.10 is presented in a more detailed version.

3.1 Introduction

In this chapter, we consider a Harris recurrent Markov process X which is an Itō
semi-martingale. In view of Theorem 2.2.12, such a process is a solution of some
stochastic differential equation

dXt = b(Xt)dt + σ(Xt)dWt +
∫

δ(Xt−, y)1{‖δ(Xt−,y)‖>1}p(dt, dy)

+
∫

δ(Xt−, y)1{‖δ(Xt−,y)‖≤1}(p− q)(dt, dy),
(3.1.1)

with coefficients b, σ and δ; the SDE is driven by some Wiener process W and some
Poisson random measure p (with intensity measure q(dt, dy) = dt⊗ λ(dy)). The
law of its jumps is more or less described by the kernel F where, for each x, the
measure F(x, ·) coincides with the image of the measure λ under the map y 7→ δ(x, y)
restricted to the set {y : δ(x, y) 6= 0}. We call F the (canonical) Lévy kernel of X. We
assume that the measures F(x, dy) admit a density y 7→ f (x, y), and we aim for
non-parametric estimation of the function (x, y) 7→ f (x, y).

On an equidistant time grid, we observe a sample X0(ω), X∆(ω), . . . , Xn∆(ω) of
the process; the jumps are latent. We study a kernel density estimator for f (x, y).
We show its consistency as n∆→ ∞ and ∆→ 0 under a smoothness hypothesis on
the estimated density. In the ergodic case, we obtain asymptotic normality. In the
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3 On non-parametric estimation of the Lévy kernel of Markov processes

null recurrent case, we impose a condition on the resolvent of the process which
goes back to Darling and Kac (1957). Thereunder, we prove asymptotic mixed
normality. We also provide a standardised version of our central limit theorem for
the construction of asymptotic confidence intervals.

Our results are comparable to those in classical non-parametric density estima-
tion. In particular: Our estimator’s asymptotic bias and variance resemble those of
the Nadaraya–Watson estimator in classical conditional density estimation. Just as in
the classical context, moreover, the bandwidth choice is crucial for our estimator’s
rate of convergence. We conjecture that, for instance, a cross-validation method
applies here analogously; see Fan and Yim (2004) and Hall, Racine, and Li (2004).
By an optimal choice, if ∆ → 0 fast enough, the rate is v(n∆)α1α2/[d(α1+α2)+2α1α2],
where α1 > 0 (resp., α2 > 0) stands for the smoothness of f as a function in x
(resp., in y), and the function v plays the role of an information rate. In the ergodic
case, v(t) = t; in the null recurrent case with Darling–Kac’s condition imposed
(see Definition 2.5.22), v(t) = tδ`(t) for some 0 < δ ≤ 1 and some slowly varying
function `. We remark that, in the case α1 = α2, our achieved rate v(n∆)α1/(2α1+2d)

equals the non-parametric minimax rate of smooth density estimation, related to the
smoothness of f as a 2d-dimensional function and with respect to v(n∆).

At the core of our statistical problem, we essentially have to study the case first,
where the process is observed continuously in time and, in particular, all jumps are
discerned. In this case, we can consider a more general class of quasi-left continuous,
strong Markov processes with càdlàg sample paths than just Itō semi-martingales.
For these, the law of their jumps is again described by their Lévy kernel. We present
a version of our estimator which utilises that the sojourn time of certain sets and the
jumps are observed. Under slightly weaker assumptions, we prove the estimator’s
consistency and asymptotic (mixed) normality. As these results are valid for a quite
general class of processes, we believe that they are of independent interest, not
only as a benchmark for all possible estimators which are based on some discrete
observation scheme.

For discrete-time Markov chains, a related result is presented in Karlsen and
Tjøstheim (2001). We are aware that our final steps of proof appear to be similar. We
emphasise that the main difficulties in our context, however, come in two respects: on
the one hand, from establishing an appropriate auxiliary framework where related
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3.1 Introduction

methods apply; on the other hand, from the discrete observation scheme where our
primary objects of interest – the jumps – are latent.

For continuous-time Markov processes, apart from the Lévy process case and as
far as known to us, estimation of their Lévy kernel has been confined to the special
case of Markov step processes. For these, there exists a one-to-one correspondence
between the Lévy kernel and the infinitesimal generator. On the one hand, efficient
non-parametric estimation of Markov step process models has been studied by
Greenwood and Wefelmeyer (1994). They assume the mean holding times to be
bounded, and the transition kernel to be uniformly ergodic. This excludes the null
recurrent case. On the other hand, the work on parametric estimation of Markov
step processes is more exhaustive. The null recurrent case has been studied, for
instance, by Höpfner (1993). There, the process is observed up to a random stopping
time such that a deterministic amount of information (or more) has been discerned.
Local asymptotic normality is shown in various situations. With a slightly different
aim, in contrast, Höpfner et al. (1990) considers Markov step processes observed
up to a deterministic time. Accordingly, the observed amount of information is
random. Local asymptotic mixed normality (of statistical experiments) is shown
under Darling–Kac’s condition. Here, we utilise some of their results and methods.
We improve upon the restrictions within the aforementioned literature: First and
foremost, we do not restrict ourselves to Markov step processes. Secondly, we
consider processes, null recurrent in the sense of Harris, in a non-parametric setting.
Thirdly, we address the influence of observations on a discrete time grid.

We briefly outline this chapter. In Section 3.2 we study the estimation of the
Lévy kernel based on discrete observations. Split into three subsections, we present
the statistical problem with our standing assumptions; we give our estimator along
with a bias correction; and state our main results – the estimator’s consistency and
the central limit theorem. In Section 3.3, we study the case where continuous-time
observations are available. This section is organised analogously to Section 3.2.
The corresponding proofs are in Section 3.4. The proofs for our main results of
Section 3.2 are in Section 3.5. Each proofs section comes with its own short outline
at its beginning. Since we bring together potential theoretic aspects of Markov
processes with functional and martingale limit theory, we put some of our technical
considerations off to Section 3.6.
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3 On non-parametric estimation of the Lévy kernel of Markov processes

3.2 Density estimation of the Lévy kernel from high-frequency

observations

3.2.1 Preliminaries and assumptions

On the filtered probability space(s) (Ω, F , (Ft)t≥0, (Px)x∈E), let X = (Xt)t≥0 be a
Markovian Itō semi-martingale with values in Euclidean space E = (Rd, Bd), or a
subset thereof, such that Px(X0 = x) = 1 for all x. For n ∈ N and ∆ > 0, we observe
X0(ω) and the increments

∆n
k X(ω) := Xk∆(ω)− X(k−1)∆(ω) k = 1, . . . , n. (3.2.1)

We emphasise that the jumps of the process are latent.

Throughout this chapter, we use the notation introduced in Chapter 2 and,
moreover: We abbreviate E∗ := E \ {0}. For α ≥ 0 and A ⊆ E, in addition, Cα

loc(A)

denotes the class of all continuous functions on A which are bαc-times continuously
differentiable such that every x ∈ A has a neighbourhood on which the function’s
(partial) bαc-derivatives are uniformly Hölder of order α− bαc.

We recall from Section 2.2.3: The characteristics (B, C, n) of X are absolutely
continuous with respect to Lebesgue measure; there are mappings b : E → E and
c : E→ E⊗ E, and a kernel F on E with F(x, {0}) = 0 such that

Bt =

t∫
0

b(Xs)ds, Ct =

t∫
0

c(Xs)ds, and n(dt, dy) = dt⊗ F(Xt, dy). (3.2.2)

The random measure n is the predictable compensator of the process’s jump measure
(see eq. (2.2.5)): For every Borel function g : E× E→ R+, (initial) probability π, and
t > 0, we have

Eπ ∑
0<s≤t

g(Xs−, ∆Xs)1{Xs− 6=Xs} = Eπ

t∫
0

ds
∫
E

F(Xs, dy)g(Xs, y). (3.2.3)

We call F the Lévy kernel. It is unique outside a set of potential zero. We assume it
admits a density (x, y) 7→ f (x, y) which we want to estimate.
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Throughout, we work under the following technical hypothesis on the character-
istics:

3.2.1 Assumption. (i) The process X satisfies the following (linear) growth condi-
tion: There exists a constant ζ < ∞ and a Lévy measure F̄ on E such that

‖b(x)‖ ≤ ζ(1 + ‖x‖), ‖c(x)‖ ≤ ζ(1 + ‖x‖2), and F(x, A) ≤ (1 + ‖x‖)F̄(A)

holds for all x ∈ E and every Borel set A ⊆ E. We denote by β ∈ [0, 2] some
constant such that

∫
F̄(dw)(‖w‖β ∧ 1)) < ∞.

(ii) The Lévy measure F̄ admits a density f̄ which is continuous on E∗.

(iii) There exists a constant ζ < ∞ such that sup‖z‖>1‖z‖ f̄ (z) ≤ ζ. �

Remark. Apart from the growth condition, there is no assumption on b and c.
Whether X is a weak or a strong solution of eq. (3.1.1) is irrelevant to us.

We impose assumptions on the recurrence of X and on the smoothness of f . To
obtain consistency for our estimator below, we impose:

3.2.2 Assumption. The process X is Harris recurrent with invariant measure µ (see
Definition 2.5.14). �

3.2.3 Assumption. There exists an α > 0 for which the Lévy kernel admits a den-
sity f ∈ Cα

loc(E× E∗); and the invariant measure from Assumption 3.2.2 admits a
continuous density µ′. �

To obtain a central limit theorem, we also impose:

3.2.4 Assumption. For some 0 < δ ≤ 1, the process X satisfies Darling–Kac’s condi-
tion with an – at infinity – regularly varying function v : R+ → R+ of index δ (see
Definition 2.5.22). �

Remark. In the positive recurrent case (that is, when µ is finite), Assumption 3.2.4
indeed is satisfied for δ = 1 and with v(t) = t/µ(E). We also refer to Touati (1987)
and to Höpfner and Löcherbach (2003).
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3 On non-parametric estimation of the Lévy kernel of Markov processes

3.2.5 Assumption. For some α1, α2 ≥ 2, the Lévy kernel admits a density f which
is twice continuously differentiable on E× E∗ such that x 7→ f (x, y) ∈ Cα1

loc(E) for
all y ∈ E∗, and y 7→ f (x, y) ∈ Cα2

loc(E∗) for all x ∈ E; and the invariant measure
from Assumption 3.2.2 admits a continuous density µ′ which is (dα1e − 1)-times
continuously differentiable. �

Example. Suppose that f is bounded and vanishes outside {‖x‖ ≤ 1, ‖y‖ ≤ 1};
that is, there are neither jumps with left-limit outside the unit ball nor jumps of
size bigger than one. Then our process’s recurrence (or transience) is completely
determined by drift and volatility. For instance:

(i) If the volatility σ vanishes everywhere and the drift satisfies b(x) = −x, then
X is positive recurrent.

(ii) If the drift b vanishes everywhere, and the volatility satisfies σ(x) = 1, then
X is not positive. In fact, X has the recurrence (or transience) of Brownian
motion: In the univariate case, X is null recurrent and Darling–Kac’s condition
holds with δ = 1/2; in the bivariate case, X is null recurrent and Darling–Kac’s
condition fails; and in all other multivariate cases, X is transient.

3.2.2 Kernel density estimator

In principle, we are free to choose our favourite estimation method, for instance, the
method of sieves with projection estimators. Here, however, we introduce a kernel
density estimator as it allows for a more comprehensible presentation of the proofs.
Also, the method is well-understood in the context of classical (conditional) density
estimation.

An outline: Firstly, we choose smooth kernels g1 and g2 with support B1(0) (the
unit ball centred at zero) which are, at least, of order α1 and α2, respectively; that is,
for every multi-index m = (m1, . . . , md) ∈ Nd \ {0} and each i ∈ {1, 2}, we have

|m| := m1 + · · ·+ md < αi =⇒ κm(gi) :=
∫

xm1
1 · · · · · x

md
d gi(x)dx = 0. (3.2.4)

Secondly, we choose a bandwidth vector η = (η1, η2) > 0. Lastly, we construct an
estimator for f (x, y) using the kernels gη,x

i (z) := η−d
i gi((z− x)/ηi). If the bandwidth
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is chosen appropriately, we achieve a consistent estimator which follows a central
limit theorem.

3.2.7 Definition. For η = (η1, η2) > 0, we call f̂ ∆,η
n defined by

f̂ ∆,η
n (x, y) :=


∑n

k=1 gη,x
1 (X(k−1)∆)gη,y

2 (∆n
k X)

∆ ∑n
k=1 gη,x

1 (X(k−1)∆)
if ∑n

k=1 gη,x
1 (X(k−1)∆) > 0,

0 otherwise,
(3.2.5)

the kernel density estimator of f (w. r. t. bandwidth η based on X0, X∆, . . . , Xn∆). �

In analogy to classical conditional density estimation, we also introduce a bias
correction for our estimator.

3.2.8 Definition. For η = (η1, η2) > 0, we call γ̂
∆,η
n defined by

γ̂
∆,η
n (x, y) :=



ηα1
1 ∑
|m1+m2|=α1
|m2|6=0

κm1+m2(g1)

m1!m2!
∑n

k=1
∂m1

∂xm1 gη,x
1 (X(k−1)∆)

∑n
k=1 gη,x

1 (X(k−1)∆)

∂m2

∂xm2
f̂ ∆,η
n (x, y)

+ ηα2
2 ∑
|m|=α2

κm(g2)

m!
∂m

∂ym f̂ ∆,η
n (x, y), if

∑n
k=1 gη,x

1 (X(k−1)∆) > 0
α1, α2 ∈ N∗

,

0, otherwise,

the bias correction for f̂ ∆,η
n . (The sums in the previous equation are over all multi-

indices of appropriate length.) �

3.2.3 Consistency and central limit theorem

Here, we present our main results. We agree to the following conventions: Under
Assumptions 3.2.2 and 3.2.4, v denotes the regularly varying function given in
eq. (2.5.6). Under Assumption 3.2.2 only, v denotes an arbitrary deterministic
equivalent of the Markov process X (see Definition 2.5.21). For typographical
reasons, we may write vt for v(t) or X(t) for Xt etc. as convenient.

We utilise the following conditions as n∆→ ∞ and ∆→ 0, where 0 ≤ ζ1, ζ2 < ∞:

vn∆ηd
1,nηd

2,n → ∞, and η1,n → 0, η2,n → 0; (3.2.6)

47



3 On non-parametric estimation of the Lévy kernel of Markov processes

vn∆ηd+2α1
1,n ηd

2,n → ζ2
1, and vn∆ηd

1,nηd+2α2
2,n → ζ2

2. (3.2.7)

In addition, we also utilise the following conditions due to discretisation, where
ζ < ∞ is independent of n:

∆η
−2−d[(1−2/(β+d))∨0]
1,n → 0, and ∆η

−2∨(β+d)
2,n → 0; (3.2.8a)

n∆2ηd
1,nηd

2,n ≤ ζ, vn∆∆2η
d−4−2d[(1−2/(β+d)∧0]
1,n ηd

2,n → 0, (3.2.8b)

and vn∆∆2ηd
1,nη

d−4∨2(β+d)
2,n → 0. (3.2.8c)

Remark. If ∆→ 0 fast enough, then eqs. (3.2.6) and (3.2.7) are the crucial conditions.

3.2.9 Theorem. Grant Assumptions 3.2.1 to 3.2.3. Let ηn = (η1,n, η2,n) be such that
eqs. (3.2.6) and (3.2.8a) hold. Moreover, let (x, y) ∈ E× E∗ be such that µ′(x) > 0 and
F(x, E) > 0.

(i) If n∆2 → 0, then, under any law Pπ, we have the following convergence in probability:

f̂ ∆,ηn
n (x, y) Pπ

−−−→
n→∞

f (x, y). (3.2.9)

(ii) Grant Assumption 3.2.4 in addition. If (n∆)1−δ∆ → 0, then, under any law Pπ,
eq. (3.2.9) holds as well.

Remark. By this theorem, our estimator is consistent for every x and y 6= 0 if n∆→ ∞
and ∆ → 0. In practice, however, both n and ∆ are given! Then, for instance, if a
continuous martingale component is present, our estimator is unreliable for all y
close to the origin. To illustrate this important point, suppose that X is a univariate
process with constant volatility σ2 > 0. Increments with absolute value less than
ζσ∆1/2, where ζ is quite a large constant (e. g., ζ = 5), are predominantly due to
the continuous martingale and not due to jumps. On the set {y : |y| ≤ ζσ∆1/2},
therefore, our estimator f̂ ∆,η

n (x, ·) is unreliable regardless of the chosen bandwidth η.
We illustrate this point in a simulation study (see Section 5.1).

For the next theorem, we establish additional notation. On an extension

(Ω̃, F̃ , P̃) := (Ω×Ω′, F ⊗F ′,Pπ ⊗P′) (3.2.10)
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3.2 Estimation from high-frequency observations

of the probability space, let V = (V(x, y))x∈E,y∈E∗ be a standard Gaussian white
noise random field (that is, the finite dimensional marginals of V are i. i. d. stan-
dard normal) and let L = (Lt)t≥0 be the Mittag-Leffler process of order δ (see
Definition 2.5.23) such that V, L and F are independent. In the theorem below,
convergence holds stably in law (recall Definition 2.3.1).

3.2.10 Theorem. Grant Assumptions 3.2.1 to 3.2.5. Let ηn = (η1,n, η2,n) be such that
eqs. (3.2.6) and (3.2.8) hold, and let (xi, yi)i∈I be a finite family of pairwise distinct points
in E× E∗ such that µ′(xi) > 0 and F(xi, E) > 0 for each i ∈ I. If (n∆)1−δ∆ → 0, then,
under any law Pπ, we have the following stable convergence in law:(√

vn∆ηd
1,nηd

2,n

(
f̂ ∆,ηn
n (xi, yi)−

µ(gηn,xi
1 Fgηn,yi

2 )

µ(gηn,xi
1 )

))
i∈I

L−st−−−→
n→∞

(
σ(xi, yi)√

L1
V(xi, yi)

)
i∈I

,

where the asymptotic variance is given by

σ(x, y)2 :=
f (x, y)
µ′(x)

∫
g1(w)2dw

∫
g2(z)2dz. (3.2.11)

In addition, let ηn be such that eq. (3.2.7) holds as well. Suppose either that α1, α2 ∈ N∗

or that ζ1 = ζ2 = 0 in eq. (3.2.7). Then, under any law Pπ, we have the following stable
convergence in law:(√

vn∆ηd
1,nηd

2,n

(
f̂ ∆,ηn
n (xi, yi)− f (xi, yi)

))
i∈I

L−st−−−→
n→∞

(
γ(xi, yi) +

σ(xi, yi)√
L1

V(xi, yi)

)
i∈I

,

where – in the former case – the asymptotic bias γ(x, y) is given by

γ(x, y) =
ζ1

µ′(x) ∑
|m1+m2|=α1
|m2|6=0

κm1+m2(g1)

m1!m2!
∂m1

∂xm1
µ′(x)

∂m2

∂xm2
f (x, y)

+ ζ2 ∑
|m|=α2

κm(g2)

m!
∂m

∂ym f (x, y),

(3.2.12)

and – in the latter case – γ(x, y) = 0.
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3 On non-parametric estimation of the Lévy kernel of Markov processes

Remark. The asymptotic bias and variance of our estimator are analogous to those
of the Nadaraya–Watson estimator in classical conditional density estimation (see
Hansen, 2009): κm(gi) and

∫
gi(z)2dz are the relevant moment and the roughness of

the kernel gi, respectively; and f (resp., µ′) plays the role of the conditional (resp.,
marginal) density.

We recall that v from Darling–Kac’s condition (see Definition 2.5.22) satisfies
vt = t in the ergodic case, and vt = tδ`(t) for some slowly varying function ` in the
null recurrent case. If we choose ηi,n = v−ξi

n∆ with

ξ1 =
α2

d(α1 + α2) + 2α1α2
and ξ2 =

α1

d(α1 + α2) + 2α1α2
,

then eqs. (3.2.6) and (3.2.7) hold with ζ1 = ζ2 = 1. If ∆ → 0 fast enough such that
n∆1+[d(α1+α2)+2α1α2]/ζ → 0 in addition, where ζ denotes the maximum of

(1− δ)d(α1 + α2) + 2α1α2, δα1(α2 + 2 + d) and δα2

(
α1 + 2 +

d2

2 + d

)
,

then our choice of ηn also satisfies eq. (3.2.8) for every β ≤ 2. Consequently, our
estimator’s rate of convergence is

vα1α2/[d(α1+α2)+2α1α2]
n∆ . (3.2.13)

In the case α1 = α2, the achieved rate vα/(2α+2d)
n∆ equals the non-parametric minimax

rate of smooth density estimation, related to the smoothness of f as a 2d-dimensional
function and w. r. t. vn∆.

Remark. Bandwidth selection has always been a crucial issue in these kind of studies.
Although orders of magnitude are crucial from an asymptotic point of view and
ηi,n = (n∆)−ξi for some ξi > 0 may be a good choice , we note that, in practice,
ηi,n = ζ(n∆)−ξi with leading constant ζ 6= 1 could be a better one. A detailed
analysis would go beyond the scope of this chapter. We briefly comment on two
problems: How to choose the bandwidths manually such that conditions (3.2.6–3.2.8)
are satisfied for the unknown vn∆, α1, α2 and β? What needs to be considered when
employing data-driven methods for selecting optimal bandwidths?
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3.2 Estimation from high-frequency observations

(i) Let α0 ≥ 2 and 0 < δ0 ≤ 1 such that δ0 > d/(d + α0). If we choose ηi,n =

(n∆)−1/(2d+2α0), then eqs. (3.2.6) and (3.2.7) hold for all processes X such that
Assumptions 3.2.4 and 3.2.5 hold for some α1, α2 ≥ α0 and δ0 < δ ≤ 1. If
∆ → 0 fast enough such that n∆1+2[α0+d]/[α0+(2+d)∨α0] → 0 in addition, then
our chosen bandwidth also satisfies eq. (3.2.8).

(ii) The asymptotic bias and variance are proportional to the value of f and its
derivatives at the point of interest. The optimal bandwidth choice in terms
of the asymptotic mean squared error, therefore, may depend heavily on x
and y. Especially for processes with infinite activity – where y 7→ f (x, y) has
a pole at zero – this is an important issue in practice. In a future study on
data-driven bandwidth selection methods like cross-validation, this distinction
from estimating a bounded probability density has to be addressed carefully.

Theorem 3.2.10 does not allow for a direct construction of confidence intervals.
For this purpose, we also obtain the following standardised version.

3.2.11 Corollary. Grant Assumptions 3.2.1 to 3.2.5. Let ηn = (η1,n, η2,n) be such that
eqs. (3.2.6) to (3.2.8) hold. Suppose either that α1, α2 ∈ N∗ or that ζ1 = ζ2 = 0 in eq. (3.2.7).
Then under any law Pπ, we have the following stable convergence in law:√√√√ηd

1,nηd
2,n∆ ∑n

k=1 gηn,xi
1 (X(k−1)∆)

ξ2
g f̂ ∆,ηn

n (xi, yi)

(
f̂ ∆,ηn
n (xi, yi)− γ̂

ηn
n (xi, yi)− f (xi, yi)

)
i∈I

L−st−−−→
n→∞

(
V(xi, yi)

)
i∈I

,

where ξ2
g =

∫
g1(w)2dw

∫
g2(z)2dz.

Remark. In principle, the results of this section are extendible to more general Markov
models with Lévy kernel F such that eq. (3.2.3) holds. In view of our proofs, the
assumption that X is an Itō semi-martingale is crucial for the analysis of the influence
of discretisation (see Section 3.5.1). Suppose that an explicit upper bound for the
small-time asymptotic “error”∣∣∣∣ 1

∆
Ex [gη,y

2 (∆n
1 X)

]
−
∫

F(x, dw)gη,y
2 (w)

∣∣∣∣
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3 On non-parametric estimation of the Lévy kernel of Markov processes

and an explicit sufficient condition which ensures

sup
s≤1

ξn

vn∆ηd
1,n

∣∣∣∣∣∣∆
bsnc

∑
k=1

hn(X(k−1)∆)−
bsnc∆∫

0

hn(Xr)dr

∣∣∣∣∣∣ Pπ

−−−→
n→∞

0

for ξn = 1 or ξ2
n = vn∆ηd

1,nηd
2,n are available for some Markov process X. Then it is

straightforward (see Lemma 3.5.7 and eq. (3.5.31) — Lemmata 3.5.6, 3.5.9 and 3.5.10,
respectively) to come up with sufficient conditions for Theorems 3.2.9 and 3.2.10,
which replace eq. (3.2.8).

3.3 Density estimation of the Lévy kernel from continuous-time

observations — A benchmark

The Lévy kernel of a Markov process is related with jumps. In fact, our estimator
eq. (3.2.5) uses X(k−1)∆ and ∆n

k X as proxies for the pre-jump value Xt− and the jump
size ∆Xt if, at a time t ∈ [(k− 1)∆, k∆], there is a jump from a neighbourhood of x
and of size close to y. Eventually, such time intervals contain either zero or one such
jump; never more. Certainly, the statistical analysis simplifies if we observed the
whole path of X; introducing proxies would be useless. So, despite observing the
whole path of X is somewhat unrealistic, it is theoretically important to study what
happens in this case. This section is devoted to this question and can be viewed
as a benchmark for what properties are achievable with a more realistic, discrete
observation scheme.

3.3.1 Preliminaries and assumptions

On the filtered probability space(s) (Ω, F , (Ft)t≥0, (Px)x∈E), let X = (Xt)t≥0 be a
strong Markov process with values in Euclidean space E = (Rd, Bd), or a subset
thereof. Its sample paths are supposed to be càdlàg; and X is supposed to be
quasi-left continuous (see Definition 2.1.9). In other words, X is a Hunt process
(see Definition 2.5.13). We observe – continuously in time – one sample path
{Xs(ω) : s ∈ [0, t]} for t > 0; in particular, we discern all jumps.
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3.3 Estimation from continuous-time observations

Benveniste and Jacod (1973) proved the existence of a Lévy system (F, H) where
H is continuous (recall Theorem 2.5.25): For every Borel function g : E× E→ R+,
probability π on E, and t > 0, we have

Eπ ∑
0<s≤t

g(Xs−, ∆Xs)1{Xs− 6=Xs} = Eπ

t∫
0

dHs

∫
E

F(Xs, dy)g(Xs, y). (3.3.1)

We remark once more that the disintegration into F and H is by no means unique.
For an appropriate reference function g0 with Fg0(x) > 0, nevertheless, ratios of the
form Fg(x)/Fg0(x) are unique outside a set of potential zero.

Throughout this section, we work under the following hypothesis:

3.3.1 Assumption. There exists a Lévy system (F, H) of X where Ht = t. �

Recalling eq. (3.2.3), we observe that all Markovian Itō semi-martingales satisfy
Assumption 3.3.1. In analogy to the semi-martingale case, we call this F in Assump-
tion 3.3.1 the (canonical) Lévy kernel of X. It is unique outside a set of potential zero.
Again, we assume it admits a density (x, y) 7→ f (x, y) which we want to estimate.

Compared to Section 3.2, we slightly weaken the assumptions imposed on
the smoothness of f . To obtain consistency for our estimator below, we impose
Assumption 3.2.2 and:

3.3.2 Assumption. The canonical Lévy kernel admits a density f , continuous on
E × E∗; and the invariant measure from Assumption 3.2.2 admits a continuous
density µ′. �

To obtain a central limit theorem, we also impose Assumption 3.2.4 and:

3.3.3 Assumption. For some α1, α2 > 0, the canonical Lévy kernel admits a density
f such that x 7→ f (x, y) ∈ Cα1

loc(E) for all y ∈ E∗, and y 7→ f (x, y) ∈ Cα2
loc(E∗) for

all x ∈ E; and the invariant measure from Assumption 3.2.2 admits a continuous
density µ′ which is (dα1e − 1)-times continuously differentiable. �

3.3.2 Kernel density estimator

In Section 3.2.2, we introduced a kernel density estimator and its bias correction based
on discrete observations. Here, we present corresponding versions which utilise
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3 On non-parametric estimation of the Lévy kernel of Markov processes

the continuous-time observation scheme. We recall that g1 and g2 are kernels with
support B1(0) which are, at least, of order α1 and α2, respectively. Given a bandwidth
vector η = (η1, η2) > 0, we utilise the kernels gη,x

i (z) = η−d
i gi((z− x)/ηi).

3.3.4 Definition. For η = (η1, η2) > 0, we call f̂ η
t defined by

f̂ η
t (x, y) :=


∑0<s≤t gη,x

1 (Xs−)gη,y
2 (∆Xs)1{Xs−6=Xs}∫ t

0 gη,x
1 (Xs)ds

if
∫ t

0 gη,x
1 (Xs)ds > 0,

0 otherwise,

the kernel density estimator of f (w. r. t. bandwidth η up to time t). �

Our estimator in Definition 3.2.7 is the discretised analogue from the one pre-
sented here: In the numerator of the former, the jumps ∆Xt and the pre-jump left-
limits Xt− are replaced by the increments ∆n

k X and the pre-increment values X(k−1)∆,
respectively. In the denominator, the sojourn time

∫ t
0 gη,x

1 (Xs)ds is replaced by its
Riemann sum approximation ∆ ∑n

k=1 gη,x
1 (X(k−1)∆). In analogy to Definition 3.2.8,

we also introduce a bias correction for our estimator:

3.3.5 Definition. For η = (η1, η2) > 0, we call γ̂
η
t defined by

γ̂
η
t (x, y) :=



ηα1
1 ∑
|m1+m2|=α1
|m2|6=0

κm1+m2(g1)

m1!m2!

∫ t
0

∂m1
∂xm1 gη,x

1 (Xs)ds∫ t
0 gη,x

1 (Xs)ds

∂m2

∂xm2
f̂ η
t (x, y)

+ ηα2
2 ∑
|m|=α2

κm(g2)

m!
∂m

∂ym f̂ η
t (x, y), if

∫ t
0 gη,x

1 (Xs)ds > 0
α1, α2 ∈ N∗

,

0, otherwise,

the bias correction for f̂ η
t . �

3.3.3 Consistency and central limit theorem

Here, we present our results of this section. We continue to use the notation and
conventions from Section 3.2.3.

We utilise the following conditions as t→ ∞, where 0 ≤ ζ1, ζ2 < ∞:

vtη
d
1,tη

d
2,t → ∞, and η1,t → 0, η2,t → 0; (3.3.2)

54



3.3 Estimation from continuous-time observations

vtη
d+2α1
1,t ηd

2,t → ζ2
1, and vtη

d
1,tη

d+2α2
2,t → ζ2

2. (3.3.3)

3.3.6 Theorem. Grant Assumptions 3.2.2, 3.3.1 and 3.3.2. Let ηt = (η1,t, η2,t) be such that
eq. (3.3.2) holds. Moreover, let (x, y) ∈ E× E∗ be such that µ′(x) > 0 and F(x, E) > 0.
Then, under any law Pπ, we have the following convergence in probability:

f̂ ηt
t (x, y) Pπ

−−→
t→∞

f (x, y).

3.3.7 Theorem. Grant Assumptions 3.2.2, 3.2.4, 3.3.1 and 3.3.2. Let ηt = (η1,t, η2,t) be
such that eq. (3.3.2) holds. Moreover, let (xi, yi)i∈I be a finite family of pairwise distinct
points in E× E∗ such that µ′(xi) > 0 and F(xi, E) > 0 for each i ∈ I. Then, under any
law Pπ, we have the following stable convergence in law:(√

vtηd
1,tη

d
2,t

(
f̂ ηt
t (xi, yi)−

µ(gηt,xi
1 Fgηt,yi

2 )

µ(gηt,xi
1 )

))
i∈I

L−st−−−→
t→∞

(
σ(xi, yi)√

L1
V(xi, yi)

)
i∈I

,

where the asymptotic variance is given by

σ(x, y)2 :=
f (x, y)
µ′(x)

∫
g1(w)2dw

∫
g2(z)2dz. (3.3.4)

In addition, grant Assumption 3.3.3 and let ηt be such that eq. (3.3.3) holds as well.
Suppose either that α1, α2 ∈ N∗ or that ζ1 = ζ2 = 0 in eq. (3.3.3). Then, under any law
Pπ, we have the following stable convergence in law:(√

vtηd
1,tη

d
2,t

(
f̂ ηt
t (xi, yi)− f (xi, yi)

))
i∈I

L−st−−−→
t→∞

(
γ(xi, yi) +

σ(xi, yi)√
L1

V(xi, yi)

)
i∈I

,

where – in the former case – the asymptotic bias γ(x, y) is given by

γ(x, y) =
ζ1

µ′(x) ∑
|m1+m2|=α1
|m2|6=0

κm1+m2(g1)

m1!m2!
∂m1

∂xm1
µ′(x)

∂m2

∂xm2
f (x, y)

+ ζ2 ∑
|m|=α2

κm(g2)

m!
∂m

∂ym f (x, y),

(3.3.5)

and – in the latter case – γ(x, y) = 0.
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We compare Theorems 3.2.10 and 3.3.7: Firstly, we remark that the asymptotic
bias and variance of f̂ ∆,η

n are equal to those of our benchmark estimator f̂ η
t . Secondly,

if we choose ηi,t = v−ξi
t with

ξ1 = α2/[d(α1 + α2) + 2α1α2] and ξ2 = α1/[d(α1 + α2) + 2α1α2]

again, then eqs. (3.3.2) and (3.3.3) hold with ζ1 = ζ2 = 1. The rate of convergence in
Theorem 3.3.7 is

vα1α2/[d(α1+α2)+2α1α2]
t ; (3.3.6)

the rates in eqs. (3.2.13) and (3.3.6) are equivalent. Thirdly, we observe that our
remark on the issue of bandwidth selection holds analogously. Lastly, we note that
Theorem 3.3.7 does not allow for a direct construction of confidence intervals just
as Theorem 3.2.10. In analogy to Corollary 3.2.11, we also obtain the following
standardised version.

3.3.8 Corollary. Grant Assumptions 3.2.2, 3.2.4 and 3.3.1 to 3.3.3. Let ηt = (η1,t, η2,t) be
such that eqs. (3.3.2) and (3.3.3) hold. Suppose either that α1, α2 ∈ N∗ or that ζ1 = ζ2 = 0
in eq. (3.3.3). Then under any law Pπ, we have the following stable convergence in law:

√√√√ηd
1,tη

d
2,t
∫ t

0 gηt,xi
1 (Xs)ds

ξ2
g f̂ ηt

t (xi, yi)

(
f̂ ηt
t (xi, yi)− γ̂

ηt
t (xi, yi)− f (xi, yi)

)
i∈I

L−st−−−→
t→∞

(
V(xi, yi)

)
i∈I

,

where ξ2
g =

∫
g1(w)2dw

∫
g2(z)2dz.

3.4 Proofs for results of Section 3.3

The notion of a deterministic equivalent of a Markov process plays a crucial role in the
limit theory for our estimator (recall Definition 2.5.21). We emphasise the following
consequence of Théorème 3 of Touati (1987) (see Theorem 2.5.24): Under Darling–
Kac’s condition, the function v in eq. (2.5.6) is a deterministic equivalent of X. For
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every H as in Definition 2.5.21, furthermore, we have that (v(t)−1Hst)s≥0 converges
in law to a non-trivial process as t→ ∞. For Markov processes violating Darling–
Kac’s condition, the latter convergence may not hold. Nevertheless, Löcherbach and
Loukianova (2008) showed that some deterministic equivalent already exists when
X is Harris recurrent.

This section is organised as follows: Firstly, in Section 3.4.1 we prove a triangular
array extension of Birkhoff’s theorem for additive functionals. Secondly, in Sec-
tion 3.4.2 we introduce auxiliary Markov chains Z and Z′ derived from our Markov
process X. We show that our result from Section 3.4.1 applies to these chains. Some
technicalities are put off to Section 3.6. Thirdly, in Section 3.4.3 we demonstrate a
preliminary version of Theorem 3.3.6 which depends only on Z and Z′; we conclude
with the final steps in the proof of consistency. Lastly, in Section 3.4.4 we demonstrate
a preliminary central limit theorem which depends only on Z and Z′; we conclude
with the final steps in the proof of Theorem 3.3.7 and Corollary 3.3.8.

3.4.1 An extension of Birkhoff’s theorem

The theorem presented in this subsection is the underlying key result for our proofs.
It is a triangular array extension of Birkhoff’s theorem for additive functionals (recall
Theorem 2.5.20). We prove a rather general version.

3.4.1 Theorem. Let Z = (Zk)k∈N∗ be a Markov chain with values in some state space D,
with invariant probability ψ, and with transition kernel Ψ. Assume that the state space is
petite, that is, there exist a probability ρ on N∗ and a non-trivial measure νρ on D such that,
for every Borel set A ⊆ D,

inf
x∈D

∞

∑
k=1

ρ(k)Ψk(x, A) ≥ νρ(A).

Let (hn)n∈N∗ be a sequence of functions such that (Ψhn)n∈N∗ is uniformly bounded. Let
ξn > 0 be such that

nξn → ∞, ξ−1
n ψ(hn)→ c < ∞, (nξ2

n)
−1ψ(|hn|)→ 0 and (nξ2

n)
−1ψ(h2

n)→ 0

as n→ ∞. Then, under every lawPπ for some probability π on D, the following convergence
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holds uniformly on compacts in probability:

Gn
s

ucp
=⇒
n→∞

cs, where Gn
s :=

1
nξn

bsnc

∑
k=1

hn(Zk). (3.4.1)

Remark. If (hn)n∈N∗ is non-negative (resp., uniformly bounded), then nξn → ∞ and
ξ−1

n ψ(hn)→ c < ∞ already imply (nξ2
n)
−1ψ(|hn|)→ 0 (resp., (nξ2

n)
−1ψ(h2

n)→ 0).

Proof (of Theorem 3.4.1). Convergence in probability is equivalent to the property that
– given any subsequence – there exists a further subsequence which converges almost
surely. By Proposition 17.1.6 of Meyn and Tweedie (1993), therefore, it is sufficient to
prove this theorem under the law Pψ only.

For each s ≥ 0 and n ∈ N∗, we observe Gn
s = Hn

s + H′ns , where

Hn
s =
bsncψ(hn)

nξn
and H′ns =

1
nξn

bsnc

∑
k=1

(
hn(Zk)− ψ(hn)

)
.

By assumption, we have Hn
s → sc uniformly in s as n→ ∞. It remains to show that

H′ns converges to zero uniformly on compacts in probability.
We note Eψ[hn(Zk)] = ψ(hn) for every k, n ∈ N∗; thus, Eψ[H′ns ] = 0 for all s ≥ 0.

Moreover, its second moment satisfies Eψ[(H′ns )2] = Kn
s + K′ns , where

Kn
s =

1
n2ξ2

n

bsnc

∑
k=1

(
ψ(h2

n)− ψ(hn)
2
)

and

K′ns =
2

n2ξ2
n

bsnc−1

∑
k=1

∫
ψ(dz)hn(z)

bsnc

∑
l=k+1

(
Ψl−khn(z)− ψ(hn)

)
.

Firstly, we note

|Kn
s | ≤

bsnc
n

∣∣∣∣ψ(h2
n)

nξ2
n
− ψ(hn)2

nξ2
n

∣∣∣∣ −−−→n→∞
0. (3.4.2)

Secondly, let m ∈ N∗ denote the period and D0, . . . , Dm−1 denote an m-cycle of
Z (recall Theorem 2.4.10). By Proposition 2.4.16, the restriction of the sampled
chain with transition kernel Ψm to each set Di is aperiodic and Harris recurrent
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with invariant probability mψ( · ∩ Di). For every i ∈ {1, . . . , m} and z ∈ Di, we
denote j(l, z) := (i + l) mod m, where ‘mod’ stands for the modulo operator. For
every n0 ∈ N∗, we observe

n0

∑
l=1

(
Ψlhn(z)− ψ(hn)

)
=
b n0

m c
∑
k=0

m

∑
l=1

(
Ψkm+lhn|Dj(l,z)

(z)−mψ(hn|Dj(l,z)
)
)

+
n0 mod m

∑
l=1

(
Ψb

n0
m cm+lhn|Dj(l,z)

(z)− ψ(hn)
)

.

(3.4.3)

Hence,∣∣∣∣∣ n0

∑
l=1

(
Ψlhn(z)− ψ(hn)

)∣∣∣∣∣ ≤ ∞

∑
k=0

m

∑
l=1

∣∣∣Ψkm+lhn|Dj(l,z)
(z)−mψ(hn|Dj(l,z)

)
∣∣∣+ m|ψ(hn)|.

As the state space D is petite w. r. t. Ψ, so is each Di w. r. t. Ψm. By Theorems 16.2.1
and 16.2.2 of Meyn and Tweedie (1993) (see Theorem 2.4.19), there exists a ζ < 1
such that, for every l = 1, . . . , m and each k ∈ N,

sup
z∈D

∣∣∣Ψkm+lhn|Dj(l,z)
(z)−mψ(hn|Dj(l,z)

)
∣∣∣ ≤ ζk. (3.4.4)

Consequently,

|K′ns | ≤
2bsncm

n

(
ζψ(|hn|)
(1− ζ)nξ2

n
+

ψ(|hn|)|ψ(hn)|
nξ2

n

)
−−−→
n→∞

0. (3.4.5)

By eqs. (3.4.2) and (3.4.5), Eψ[(H′ns )2]→ 0, hence H′ns → 0 in probability as n→ ∞.
It remains to show the local uniformity in s of this convergence.

By eqs. (3.4.3) and (3.4.4), we have that hn − ψ(hn) is in the range of (I−Ψ). Let
ĥn denote its pre-image under (I−Ψ) (that is, its potential), and define the process
Mn by

Mn
s :=

1
nξn

bsnc

∑
k=1

(
ĥn(Zk)−Ψĥn(Zk−1)

)
.

We note that Mn is a G n
s -martingale where G n

s := σ(Zk : k ≤ bsnc). Since (Ψhn)n∈N∗

is uniformly bounded by assumption, so is (Ψĥn)n∈N∗ . As n→ ∞, therefore, we
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3 On non-parametric estimation of the Lévy kernel of Markov processes

have
|H′ns −Mn

s | = (nξn)
−1|Ψĥn(Z0)−Ψĥn(Zbsnc)| → 0.

Likewise,
Eψ[(Mn

s )
2] ≤ 2Eψ(H′ns )2 + 2Eψ |H′ns −Mn

s |2 → 0.

By Doob’s inequality (recall Theorem 2.1.12), therefore, Mn ⇒ 0 in ucp. Hence, also
H′n ⇒ 0 uniformly on compacts in probability as n→ ∞. 2

3.4.2 The auxiliary Markov chains

In this subsection, we construct auxiliary Markov chains Z and Z′ to which Theo-
rem 3.4.1 applies. Once and for all, we fix our points of interest, i. e., {(xi, yi) : i ∈ I}
of Theorem 3.3.7 such that µ′(xi) > 0 and F(xi, E) > 0 for each i. Moreover, we
choose a compact set C ⊃ {xi : i ∈ I} and constants 0 < ε, ε′ < ∞ such that
ε < ‖yi‖ < ε′ for all i ∈ I and such that

inf
x∈C

F
(

x, {y : ε < ‖y‖ < ε′}
)
> 0. (3.4.6)

Remark. Under Assumptions 3.2.2 and 3.3.2, such a set C always exists by the choice
of the points xi and the continuity of f on E× E∗.

Let T1, T2, . . . denote the successive times of jumps of size between ε and ε′

starting from C; that is,

T1 := inf
{

t > 0 : ε < ‖∆Xt‖ < ε′, Xt− ∈ C
}

and Tn+1 := T1 ◦ θTn + Tn.

The conditional expectation w. r. t. the strict past of the stopping times Tn plays a key
role. We set

q(x) := F
(

x, {y : ε < ‖y‖ < ε′}
)
1C(x),

p(x, y) :=

q−1(x) f (x, y), if x ∈ C and ε < ‖y‖ < ε′,

0, else.
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It is well-known that T1 < ∞ a. s. if, and only if, µ(q) > 0. In our case, this holds by
eq. (3.4.6). Therefore, Tn < ∞ a. s. for all n as well. For convenience, we abbreviate
the kernel with density p by Π; its shifted version with density (x, y) 7→ p(x, y− x)
we denote by Π̄. By Théorème 1 of Weil (1971) (recall Theorem 2.5.26), Π (resp., Π̄)
is the conditional transition probability kernel of the jumps at the time(s) Tn in the
following sense: On the set {Tn < ∞}, for every random variable Y, measurable
function g, and all x, we have

Ex[g(∆XTn) | FTn−] = Πg(XTn−), (3.4.7)

Ex[Y ◦ θTn | FTn−] = Π̄E·[Y](XTn−). (3.4.8)

We note Π̄E·[Y](x) =
∫

p(x, y)Ex+y[Y]dy.

Let D := D([0, 1[; E)×R+ × C. For every k ∈ N∗, we define the D-valued and
C-valued random variables

Zk :=
(

s 7→ X(1−s)Tk−1+sTk
, Tk − Tk−1, XTk−

)
and Z′k := XTk−.

The corresponding filtration (Gk)k∈N∗ is given by Gk := FTk−. We emphasise that we
exclude time k = 0. From eq. (3.4.8) and T1 < ∞ a. s., we deduce that Z = (Zk)k∈N∗

and Z′ = (Z′k)k∈N∗ are Gk-Markov chains. We denote their transition probabilities by
Ψ and Φ, respectively. We refer to Section 3.6 for technical results on these auxiliary
Markov chains.

3.4.2 Lemma. Let (g, t, x) ∈ D, let A ⊆ C and A ⊆ D be measurable, and let k ∈ N∗.
Then

Φ(x, A) = Π̄P·(Z′1 ∈ A)(x), (3.4.9)

Ψk+1((g, t, x), A) = ΦkΨ(x, A). (3.4.10)

Proof. We deduce eqs. (3.4.9) and (3.4.10) directly from eq. (3.4.8) and the Markov
property of X, respectively. 2

By Lemma 3.4.2, Theorem 3.4.1 applies to Z′ and, also, to Z.
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3.4.3 Lemma. Grant Assumptions 3.2.2 and 3.3.2. Then the Markov chain Z′ is strong
Feller. Its state space C is petite with respect to Φ.

Proof. Let f be a bounded Borel function and x0 ∈ C. Under Assumption 3.3.2, we
deduce from Lebesgue’s dominated convergence theorem that q is continuous. By
eq. (3.4.6), we have that x 7→ p(x, y) is also continuous for every y and sup{p(x, y) :
x ∈ C, y ∈ E} < ∞. Again by Lebesgue’s dominated convergence theorem, we
conclude that

lim
x→x0

Π̄g(x) = lim
x→x0

∫
p(x, y)g(x + y)dy =

∫
p(x0, y)g(x + y)dy = Π̄g(x0).

By eq. (3.4.9), consequently, Φ = Π̄P·(Z′1 ∈ ·) is strong Feller on C.

By the same argument as for the equivalence of T1 < ∞ a. s. and µ(q) >

0, we have that the measure with µ-density q is an irreducibility measure of Z′.
Under Assumption 3.2.2, it is absolutely continuous. Thus, its support has non-
empty interior. By Theorems 6.2.5 and 6.2.9 of Meyn and Tweedie (1993) (see
Theorem 2.4.12), therefore, every compact set – hence the state space C of Z′ – is
petite with respect to Φ. 2

3.4.4 Corollary. Grant Assumptions 3.2.2 and 3.3.2. Then the state space D of Z is petite
w. r. t. Ψ.

Proof. By Lemma 3.4.3, there exists a probability ρ on N∗ and a non-trivial measure
νρ on C such that, for every Borel set A ⊆ C,

inf
x∈C

∞

∑
k=1

ρ(k)Φk(x, A) ≥ νρ(A).

Let (g, t, x) ∈ D, A ⊆ D be measurable, and ρ̃ be the probability on N∗ given by
ρ̃(1) = 0 and ρ̃(k) = ρ(k− 1) for k > 1. By eq. (3.4.10), then

∞

∑
k=1

ρ̃(k)Ψk((g, t, x), A) =
∞

∑
k=1

ρ(k)ΦkΨ(x, A) ≥ νρΨ(A) =: ν̃ρ̃(A).

Since νρ is non-trivial, so is ν̃ρ̃. 2
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3.4.3 Proof of Theorem 3.3.6

Throughout the remainder of Section 3.4, we work under the law Pπ for some
initial probability π on E and, for presentational purposes, we suppose w. l. o. g. that
µ(q) = 1.

We consider the processes Gn,η, Jn,η and Sn,η given by

Gn,η
s (x, y) :=

1
n

bsnc

∑
k=1

gη,x
1 (XTk−)gη,y

2 (∆XTk), (3.4.11)

Jn,η
s (x) :=

1
n

bsnc

∑
k=1

gη,x
1 (XTk−) and Sn,η

s (x) :=
1
n

Tbsnc∫
0

gη,x
1 (Xr)dr. (3.4.12)

We emphasise that these processes are of the form ∑bsnc
k=1 hn(Zk) where Z is the

auxiliary Markov chain defined in Section 3.4.2. We utilise the following preliminary
condition as n→ ∞ (cf., eq. (3.3.2)):

nηd
1,nηd

2,n → ∞, and η1,n → 0, η2,n → 0. (3.4.13)

3.4.5 Lemma. Grant Assumptions 3.2.2, 3.3.1 and 3.3.2. Let ηn = η1,n be such that
eq. (3.4.13) holds. Then the following convergences hold uniformly on compacts in probability:

Jn,ηn
s (x)

ucp
=⇒
n→∞

sq(x)µ′(x) and Sn,ηn
s (x)

ucp
=⇒
n→∞

sµ′(x).

Proof. Let ψ and ϕ denote the invariant probabilities of Z and Z′, respectively. We
apply Theorem 3.4.1:

(i) We note that Jn,ηn(x) is of the form eq. (3.4.1) with ξn = ηd
n and hn : C → R

given by hn(z) = g1((z− x)/ηn); (hn)n∈N∗ is uniformly bounded. By Corollary 3.6.6
where µ(q) = 1, q is the µ-density of ϕ. Also q and µ′ are continuous. By Lebesgue’s
differentiation theorem, thus,

η−d
n ϕ(hn) = η−d

n

∫
µ(dz)q(z)g1((z− x)/ηn) −−−→n→∞

q(x)µ′(x).

Since nηd
n → ∞, likewise, (nη2d

n )−1ϕ(|hn|)→ 0 as n→ ∞. �
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(ii) We note that Sn,ηn(x) is of form eq. (3.4.1) with ξn = ηd
n and hn : D → R

given by hn(g, t, z) = t
∫ 1

0 g1((g(s) − x)/ηn)ds. By Corollary 3.6.6, ψ = ϕΨ. By
Lemmata 3.6.2 and 3.6.5, thus,

η−d
n ϕ(hn) = η−d

n

∫
µ(dz)g1((z− x)/ηn) −−−→n→∞

µ′(x).

Likewise, (nη2d
n )−1ϕ(|hn|) ≤ (nη2d

n )−1
∫

µ(dz)|g1((z − x)/ηn)| → 0. By Corol-
lary 3.6.4, in addition, we observe

ψ(h2
n)

nη2d
n
≤ 2‖g1‖∞

infz∈C q(z)

∫
µ(dz)|g1((z− x)/ηn)|

nη2d
n

−−−→
n→∞

0.
2

3.4.6 Lemma. Grant Assumptions 3.2.2, 3.3.1 and 3.3.2. Let ηn = (η1,n, η2,n) be such
that eq. (3.4.13) holds. Then the following convergence holds uniformly on compacts in
probability:

Gn,ηn
s (x, y)

ucp
=⇒
n→∞

s f (x, y)µ′(x).

Proof. Let (H n
s )s≥0 be the filtration given by H n

s := FTbsnc+1−. By eq. (3.4.7), we
have

E[∆Gn,ηn
s |H n

s−] = gηn,x
1 (Z′k)Πgηn,y

2 (Z′k) for s = k/n.

Thus, the compensator of Gn,ηn w. r. t. (H n
s )s≥0 is given by

Hn,ηn
s := n−1

bsnc

∑
k=1

gηn,x
1 (Z′k)Πgηn,y

2 (Z′k).

Fix s ≥ 0. In analogy to the proof of Lemma 3.4.3, Πgηn,y
2 is continuous under

Assumption 3.3.2. In analogy to Lemma 3.4.5, s 7→ n−1 ∑bsnc
k=1 |g

ηn,x
1 (Z′k)| converges in

ucp to a non-trivial process as n→ ∞. Therefore,

∣∣∣Hn,ηn
s −Πgηn,y

2 (x)Jn,ηn
s (x)

∣∣∣ ≤ sup
z∈Bηn (x)

∣∣∣Πgηn,y
2 (z)−Πgηn,y

2 (x)
∣∣∣ · 1

n

bsnc

∑
k=1

∣∣∣gηn,x
1 (Z′k)

∣∣∣
−−−→
n→∞

0.
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Since p is continuous under Assumption 3.3.2, limn→∞ Πgϑn,y
2 (x) = p(x, y) by

Lebesgue’s differentiation theorem. We recall f (x, y) = q(x)p(x, y). By Lemma 3.4.5,
hence,

Hn
s

ucp
=⇒
n→∞

s f (x, y)µ′(x).

It remains to prove Mn
s := Gn

s −Hn
s ⇒ 0 uniformly on compacts in probability. By

eq. (3.4.13), we have sups‖∆Mn
s ‖∞ ≤ (nηd

nϑd
n)
−1‖g1‖∞‖g2‖∞ → 0. By the martingale

limit theorem 2.3.10, thus, it is sufficient to show that the predictable quadratic
variation 〈Mn, Mn〉s of Mn converges in probability to zero for all s. We observe

〈
Mn, Mn

〉
s
=

1
n2

bsnc

∑
k=1

Eπ
[

gηn,x
1 (Z′k)

2
(

gηn,y
2 (∆XTk)−Πgηn,y

2 (Z′k)
)2 ∣∣∣H n

k/n

]
≤ 1

nηd
1,nηd

2,n
· 1

n

bsnc

∑
k=1

ηd
1,ngηn,x

1 (Z′k)
2
∫

B1(0)

p(Z′k, y + η2,nz)g2(z)2dz.

In analogy to Lemma 3.4.5 again, s 7→ n−1 ∑bsnc
k=1 ηd

1,ngηn,x
1 (Z′k)

2 converges in ucp to
a non-trivial process as n→ ∞. As in the proof of Lemma 3.4.3, moreover, p is
bounded on C× E. Consequently, 〈Mn, Mn〉s → 0 in probability as n→ ∞. 2

Next, we carry Lemmata 3.4.5 and 3.4.6 over to the time-scale of X. Let J be the
process given by

Jt :=
∞

∑
k=1
1[0,t](Tk). (3.4.14)

We note that J is a non-decreasing additive functional of X. It is the random clock of
Z (and Z′) in terms of X. By eq. (3.3.1) – where Ht = t –, we have µ(J) = µ(q) = 1.

3.4.7 Lemma. Grant Assumptions 3.2.2, 3.3.1 and 3.3.2. Let v : R+ → R+ denote a
deterministic equivalent of X, and let ηt and (x, y) ∈ E× E∗ be as in Theorem 3.3.6. Then

the family
{

L
(

Gvt,ηt
Jt/vt

(x, y), Svt,ηt
Jt/vt

(x) | Pπ
)

: t > 0
}

is tight. (3.4.15)

Moreover, each limit point of the family in eq. (3.4.15) is the law L ( f (x, y)µ′(x)L̃, µ′(x)L̃)
for some positive random variable L̃.
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Proof. As J is a non-decreasing additive functional of X, by definition, the families
{L (Jt/vt | Pπ) : t > 0} and {L (vt/Jt | Pπ) : t > 0} are tight. By Proposition 2.3.8
and Lemma 3.4.6, thus,

the family {L (Gvt,ηt(x, y), Svt,ηt(x), Jt/vt, vt/Jt | Pπ) : t > 0} is tight. (3.4.16)

Let Q denote a limit point of the family in eq. (3.4.16), and let (tn)n∈N a sequence
such that

L (Gvtn ,ηtn (x, y), Svtn ,ηtn (x), Jtn /vtn , vtn /Jtn | Pπ)
w−−−→

n→∞
Q.

On some extension of the probability space, w. l. o. g., there exists a random variable
L̃ > 0 such that Q = L (s 7→ s f (x, y)µ′(x), s 7→ sµ′(x), L̃, 1/L̃). Since its first and
second marginal are the laws of continuous processes, we have

L
(

Gvtn ,ηtn
Jtn /vtn

(x, y), Svtn ,ηtn
Jtn /vtn

(x) | Pπ
)

w−−−→
n→∞

L
(

f (x, y)µ′(x)L̃, µ′(x)L̃
)

. 2

Proof (of Theorem 3.3.6). For every t ≥ 0 and each x and y, we have

f̂ ηt
t (x, y) =

Gvt,ηt
Jt/vt

(x, y)

Svt,ηt
Jt/vt

(x) + v−1
t
∫ t

TJt
gηt,x

1 (Xs)ds
.

Let hn : D → R be given by hn(g, t, z) := t
∫ 1

0 |g
ηn,x
1 (g(s))|ds. By Lemma 3.6.2

and Corollaries 3.6.4 and 3.6.6, we have ψ(h2
n) ≤ 2‖g1‖∞η−d

1,n (infz∈C q(z))−1µ(|gηn,x
1 |).

By Markov’s inequality, since v2
t ηd

1,t → ∞, therefore,

v−1
t

t∫
TJt

gηt,x
1 (Xs)ds ≤ v−1

t hvt(ZJt+1)
Pψ

−−→
t→∞

0. (3.4.17)

By Proposition 17.1.6 of Meyn and Tweedie (1993), in analogy to the proof of
Theorem 3.4.1, this convergence in probability holds under every law Pπ.

We recall the results from Lemma 3.4.7. Let L̃ > 0 be a random variable such
that the law L ( f (x, y)µ′(x)L̃, µ′(x)L̃) is a limit point of the family in eq. (3.4.15).
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Moreover, let (tn)n∈N∗ be a sequence such that(
Gvtn ,ηtn

Jtn /vtn
(x, y), Svtn ,ηtn

Jtn /vtn
(x)
)

L−−−→
n→∞

(
f (x, y)µ′(x)L̃, µ′(x)L̃

)
.

We recall µ′(x) > 0. Consequently, f̂ ηtn
tn

(x, y) → f (x, y) in law as n→ ∞ by the
continuous mapping theorem. As this limit is unique and independent of the
particular limit point of the family in eq. (3.4.15), we have that f̂ ηt

t (x, y) converges to
f (x, y) in law, hence, in probability. 2

3.4.4 Proofs of Theorem 3.3.7 and Corollary 3.3.8

In this subsection, we work on the extended space eq. (3.2.10), L denotes the Mittag-
Leffler process of order 0 < δ ≤ 1, and W = (W i)i∈I denotes an I-dimensional
standard Wiener process such that L, W and F are independent.

In addition to the processes Gn,η, Jn,η and Sn,η given in eqs. (3.4.11) and (3.4.12),
we consider the process Un,η given by

Un,η
s (x, y) :=

√
nηd

1 ηd
2

(
Gn,η

s (x, y)−
µ(gη,x

1 Fgη,y
2 )

µ(gη,x
1 )

Sn,η
s (x)

)
. (3.4.18)

We emphasise again that these processes are of the form ∑bsnc
k=1 hn(Zk) where Z is the

auxiliary Markov chain defined in Section 3.4.2.

3.4.8 Lemma. Grant Assumptions 3.2.2, 3.2.4, 3.3.1 and 3.3.2. Let ηn = (η1,n, η2,n) be
such that eq. (3.4.13) holds. Then we have the following convergence in law in D(RI):(

Un,ηn
s (xi, yi)

)
i∈I

L
=⇒
n→∞

(
µ′(xi)σ(xi, yi)W i

s

)
i∈I

,

where σ(x, y)2 is given by eq. (3.3.4).

Proof. For n ∈ N∗, let Mn,η be the process given by

Mn,η
s (x, y) :=

√
ηd

1 ηd
2√

n

bsnc

∑
k=1

gη,x
1 (Z′k)gη,y

2 (∆XTk)−
Tk∫

Tk−1

gη,x
1 (Xs)Fgη,y

2 (Xs)ds

 ,
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and let (H n
s )s≥0 be given by H n

s := FTbsnc . By the martingale limit theorem 2.3.10,
it is sufficient to prove (i)–(iv) as follows:

(i) We have Un,ηn
s (x, y)−Mn,ηn

s (x, y)⇒ 0 in ucp as n→ ∞.

(ii) The process Mn,η is an H n
s -martingale for each n.

(iii) For all i, j ∈ I, we have〈
Mn,ηn(xi, yi), Mn,ηn(xj, yj)

〉
s

Pπ

−−−→
n→∞

s[σ(xi, yi)µ
′(x)]2δij.

(iv) We have the “conditional Lyapunov condition”

Kn,ηn
s (x, y) :=

bsnc

∑
k=1

Eπ

[(
∆Mn,ηn

k/n (x, y)
)4
∣∣∣∣H n

k/n−

]
Pπ

−−−→
n→∞

0.

(i) We note that Un,η(x, y)−Mn,η(x, y) is of form eq. (3.4.1) with hn : D → R

given by

hn(g, t, z) = t
1∫

0

g1

(
g(s)− x

η1,n

)(
Fgηn,y

2 (g(s))−
µ(gηn,x

1 Fgηn,y
2 )

µ(gηn,x
1 )

)
ds,

and ξn = ηd/2
1,n η−d/2

2,n n−1/2. By Lemmata 3.6.2 and 3.6.5 and Corollary 3.6.6, we have

ξ−1
n ψ(hn) =

√
nηd

1,nηd
2,n

∫
µ(dz)gη,x

1 (z)

(
Fgηn,y

2 (z)−
µ(gηn,x

1 Fgηn,y
2 )

µ(gηn,x
1 )

)
≡ 0.

Since η2,n → 0, we also observe

ψ(|hn|)
nξ2

n
≤ ηd

2,n

(
µ(|gηn,x

1 Fgηn,y
2 |) + µ(|gηn,x

1 |) ·
∣∣∣∣∣µ(gηn,x

1 Fgηn,y
2 )

µ(gηn,x
1 )

∣∣∣∣∣
)

−−−→
n→∞

0.
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By Corollary 3.6.4, likewise,

ψ(h2
n)

nξ2
n
≤

2ηd
2,n‖g1‖∞‖Fgηn,y

2 ‖∞

infz∈C q(z)

(
µ
(∣∣∣gηn,x

1 Fgηn,y
2

∣∣∣)+ µ
(∣∣∣gηn,x

1

∣∣∣) ∣∣∣∣∣µ(gηn,x
1 Fgηn,y

2 )

µ(gηn,x
1 )

∣∣∣∣∣
)

−−−→
n→∞

0.

Since nξn → ∞, we deduce from Theorem 3.4.1 that (i) holds. �

(ii) By construction, Mn,η is integrable and adapted to (H n
s )s≥0. For s = k/n, we

note H n
s− = FTk−1 . By eq. (3.3.1) – where Ht = t – the compensator of our process’s

jump measure is given by dt⊗ F(Xt, dy). By Doob’s optional sampling theorem,
thus,

Eπ

gη,x
1 (Z′k)gη,y

2 (∆XTk)−
Tk∫

Tk−1

gη,x
1 (Xs)Fgη,y

2 (Xs)ds

∣∣∣∣∣∣∣FTk−1

 = 0

for all k ∈ N∗. Therefore, Mn,η(x, y) is an H n
s -martingale. �

(iii) Let i, j ∈ I. In analogy to step (ii), we deduce〈
Mn,ηn(xi, yi), Mn,ηn(xj, yj)

〉
s

=
ηd

1,nηd
2,n

n

bsnc

∑
k=1

Eπ
[

gηn,xi
1 g

ηn,xj
1 (Z′k)gηn,yi

2 g
ηn,yj
2 (∆XTk)

∣∣∣FTk−1

]
.

For all n large enough, we have gηn,xi
1 g

ηn,xj
1 = 0 whenever xi 6= xj, and gηn,yi

2 g
ηn,yj
2 = 0

whenever yi 6= yj. For all ω, if i 6= j, thus, 〈Mn,ηn(xi, yi), Mn,ηn(xj, yj)
〉

s
→ 0.

Moreover, let J′n,ηn
s (x) := n−1ηd

1,n ∑bsnc
k=1 E

XTk−1 [gη,x
1 (Z′1)

2]. We note that J′n,ηn is of
form eq. (3.4.1) with ξn = ηd

1,n and hn : D→ R given by

hn(g, t, z) = Eg(0)
[

g1

(
(Z′1 − x)/η1,n

)2
]

.

By Lemma 3.6.5 and Corollary 3.6.6 and under Assumption 3.3.2, we observe

η−d
1,n ψ(hn) =

∫
µ′(x + η1,nz)q(x + η1,nz)g1(z)2dz −−−→

n→∞
µ′(x)q(x)

∫
g1(z)2dz.
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3 On non-parametric estimation of the Lévy kernel of Markov processes

By Theorem 3.4.1, since hn is non-negative and uniformly bounded, thus,

J′s
n,ηn(x)

ucp
=⇒
n→∞

sq(x)µ′(x)
∫

g1(z)2dz. (3.4.19)

Hence, we observe∣∣∣∣〈Mn,ηn(x, y), Mn,ηn(x, y)
〉

s
− J′s

n,ηn(x)p(x, y)
∫

g2(w)2dw
∣∣∣∣

≤ J′s
n,ηn(x)

∫
g2(w)2dw sup

z,w∈B1(0)

∣∣∣p(x + η1,nz, y + η2,nw)− p(x, y)
∣∣∣

Pπ

−−−→
n→∞

0.

Since f (x, y) = q(x)p(x, y), consequently,〈
Mn,ηn(x, y), Mn,ηn(x, y)

〉
s

Pπ

−−−→
n→∞

s f (x, y)µ′(x)
∫

g1(w)2dw
∫

g2(z)2dz;

that is, (iii) holds. �

(iv) We observe |Kn,ηn
s (x, y)| ≤ K′n,ηn

s + K′′n,ηn
s , where

K′n,ηn
s :=

4η2d
1,nη2d

2,n

n2

bsnc

∑
k=1

E
XTk−1

[(
gη,x

1 (Z′1)gη,y
2 (∆XT1)

)4
]

,

and

K′′n,ηn
s :=

4η2d
1,nη2d

2,n

n2

bsnc

∑
k=1

E
XTk−1


 T1∫

0

gη,x
1 Fgη,y

2 (Xs)ds

4
 .

We note that K′n,ηn and K′′n,ηn are of form eq. (3.4.1) with ξn = nη2d
1,nη2d

1,n/4 and,
respectively,

hn(g, t, z) = Eg(0)
[

g1((Z′1 − x)/η1,n)
4g2((∆XT1 − y)/η2,n)

4
]

,

and

hn(g, t, z) = Eg(0)


 T1∫

0

g1

(
Xs − x

η1,n

) ∫
F(Xs, dw)g2

(
w− y
η2,n

)4
 .
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By Lemma 3.6.5 and Corollary 3.6.6, for K′n, we have

ψ(hn)

ξn
=

4
nηd

1,nηd
2,n

∫∫
µ′(x + η1,nz)g1(z)4 f (x + η1,nz, y + η2,nw)g2(w)4dwdz

−−−→
n→∞

0.

By Corollary 3.6.4 and Lemma 3.6.5, for K′′n moreover, there exists a ζ < ∞ such that

ψ(hn)

ξn
≤ 4ζ

nηd
1,nηd

2,n

∫∫
µ′(x + η1,nz)|g1(z)| f (x + η1,nz, y + η2,nw)|g2(w)|dwdz

−−−→
n→∞

0.

Since, in both cases, hn is non-negative and uniformly bounded, we deduce from
Theorem 3.4.1 that |Kn,ηn

s (x, y)
∣∣∣ ≤ K′n,ηn

s + K′′n,ηn
s ⇒ 0 in ucp as n→ ∞. 2

Next, we carry Lemma 3.4.8 over to the time-scale of X. We recall that the
additive functional J of X, given in eq. (3.4.14), is the random clock of Z (and Z′) in
terms of X. In addition, let Lt denote the process given by Lt

s := v−1
t Jst.

We recall that, under Darling–Kac’s condition, we have Touati’s theorem 2.5.24
at hand. Recalling Lemma 3.4.5, by Proposition 2.3.6 (iii), we directly obtain:

3.4.9 Lemma. Grant Assumptions 3.2.2, 3.2.4, 3.3.1 and 3.3.2. Let ηt = η1,t be such that
eq. (3.3.2) holds. Then we have the following convergence in law in D(R1+I):(

Lt,
(
Svt,ηt

Lt (xi)
)

i∈I

)
L
=⇒
t→∞

(
L,
(
µ′(xi)L

)
i∈I

)
.

2

3.4.10 Lemma. Grant Assumptions 3.2.2, 3.2.4, 3.3.1 and 3.3.2. Let ηt = (η1,t, η2,t) be
such that eq. (3.3.2) holds. Then we have the following convergence in law in D(R1+I):

(
Lt, (Uvt,ηt(xi, yi))i∈I

) L
=⇒
t→∞

(
L,
(

µ′(xi)σ(xi, yi)W i
)

i∈I

)
,

where σ(x, y)2 is given by eq. (3.3.4).

71



3 On non-parametric estimation of the Lévy kernel of Markov processes

Proof. From Lemma 3.4.9 and Lemma 3.4.8, we infer

Lt L
=⇒
t→∞

L and
(

Uvt,ηt(xi, yi)
)

i∈I

L
=⇒
t→∞

(
µ′(xi)σ(xi, yi)W i

)
i∈I

. (3.4.20)

Thus, the families

{
L (Lt | Pπ) : t ≥ 0

}
and

{
L
(
(Uvt,ηt(xi, yi))i∈I | Pπ

)
: t ≥ 0

}
are C-tight. By Proposition 2.3.8, we conclude that

the family
{

L
(

Lt, (Uvt,ηt(xi, yi))i∈I | Pπ
)

: t ≥ 0
}

is C-tight. (3.4.21)

In the remainder of this proof, we abbreviate Uvt := (Uvt,ηt(xi, yi))i∈I .

Let (Ω̄, F̄ ) := (D(R × RI), D(R × RI)) denote the canonical space, and let
(L, W) be the canonical process. Moreover, let P̄ be an arbitrary limit point of the
family in eq. (3.4.21). We deduce from eq. (3.4.20) that its marginals are given by the
Mittag-Leffler law of order δ and the I-dimensional (scaled) Wiener law, respectively.
For convenience, we abbreviate Q1 := L (L | P̄) and Q2 := L (W | P̄). Suppose
that L and W are independent processes under P̄. Then P̄ = Q1 ⊗Q2 holds. As
P̄ is an arbitrary limit point of the family in eq. (3.4.21), then it has to be unique.
Hence, (L ((Lt, Uvt) | Pπ)→ Q1 ⊗Q2 weakly as t→ ∞. �

Let K denote the right-inverse of L, i. e., Kt := inf{s : Ls > t}, and let (Ht)t≥0 be
the filtration on Ω̄ which is generated by the process (K, W). Suppose that – under
P̄ – K and W are processes with independent increments relative to (Ht)t≥0. (That
is, Kt+s − Kt and Ht are independent for all s, t > 0, and Wt+s −Wt and Ht are
independent for all s, t > 0.) Then, in analogy to Step 6 on p. 122 of Höpfner et al.
(1990), we deduce that – under P̄ – the pair (K, W) itself is a process with indepen-
dent increments relative to (Ht)t≥0. We recall that K is a δ-stable subordinator, thus,
purely discontinuous (resp., deterministic if δ = 1). Since W is continuous, hence, K
and W are independent processes – under P̄. Consequently, P̄ = Q1 ⊗Q2. �

It remains to show that – under P̄ – K and W are processes with independent
increments relative to (Ht)t≥0. We closely follow Step 7 on pp. 123f of Höpfner et al.
(1990):
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Let 0 ≤ u1 < · · · < ul = u and r > 0; let also

V :=
(
(K, W)u1 , . . . , (K, W)ul

)
, V′ := Ku+r − Ku, and V′′ := Wu+r −Wu.

In analogy to Step 7 on pp. 123f of Höpfner et al. (1990), it is sufficient to show that

Ē[g(V)h′(V′)] = Ē[g(V)]EQ1 [h
′(Kr)],

Ē[g(V)h′′(V′′)] = Ē[g(V)]EQ2 [h
′′(Wr)]

(3.4.22)

holds for all continuous g : (R×R2I)l → [0, 1], h′ : R→ [0, 1], and h′′ : R2I → [0, 1])
with compact support.

We abbreviate c′r := EQ1 [h
′(Kr)] and c′′r := EQ2 [h

′′(Wr)]. By eq. (3.4.21), there
exists a sequence (tn)n∈N such that L ((Lt, Uvt | Pπ) → P̄. For every y ∈ E,
moreover, we have

L (Lt | Py)→ Q1 and L (Uvt | Py)→ Q2.

Since Q1 (resp., Q2) is the law of an a. s. continuous process, and K (resp., W) has
no fixed time of discontinuity, we deduce from Proposition 2.3.6 (ii) that

c′r(y, tn, ε)→ c′r and c′′r (y, tn, ε)→ c′′r as n→ ∞ and ε ↓ 0,

where

c′r(y, tn, ε) := Ey[h′(Ktn
r+ε)] and c′′r (y, tn, ε) := Ey[h′′(Uvtn

r+ε)]

with Ktn
u := inf{s : Ltn

s > u}. Therefore, there exists a set A ∈ E , 0 < µ(A) < ∞ such
that, up to a subsequence,

|c′r(y, tn, ε)− c′r| ≤ n−1 and |c′′r (y, tn, ε)− c′′r | ≤ n−1 ∀y ∈ A, |ε| ≤ 1/n. (3.4.23)

Let Ht := µ(A)−1
∫ t

0 1A(Xr)dr, Htn
s = v−1

tn
Hstn , κ(tn) = inf{s : Htn

s > u}, and
L̂tn

s := Ltn
s + sv−1

tn
. We define

L′tn
s = Htn

s∧κ(tn)
+ L̂tn

s − L̂tn
s∧κ(tn)

and L′′tn
s := Ltn

s∧κ(tn)
+ L̂tn

s − L̂tn
s∧κ(tn)

.
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3 On non-parametric estimation of the Lévy kernel of Markov processes

Moreover, we set K̂(tn, r) = inf{s : L̂tn
s > r},

K′(tn, r) = inf{s : L′tn
s > r}, and U ′tn

r = Uvtn
(

L′′tn
K′(tn,r)

)
,

where we note that κ(tn) = K′(tn, u) as L̂ is strictly increasing. We set also

V tn =
(
(K′(tn, u1), U ′tn

u1
)), . . . , (K′(tn, ul), U ′tn

ul
))
)

,

V′tn := K′(tn, u + r)− K′(tn, u) and V′′tn := U ′tn
u+r −U ′tn

u .

Due to the choice of (tn)n∈N, we then have under Pπ for the pre-limiting processes
and under P̄ for the limit:

(Ltn , Htn)→ (L, L) by eq. (2.5.7); (3.4.24)

(Ltn , L′tn , L′′tn)→ (L, L, L) by eq. (3.4.24) and P. 2.3.6 (iv); (3.4.25)

(Ltn , L′tn , L′′tn , Uvtn )→ (L, L, L, W) by eq. (3.4.25) and P. 2.3.6 (iv); (3.4.26)

(L′tn , L′′tn , Uvtn
L′′tn )→ (L, L, WL), by eq. (3.4.26) and P. 2.3.6 (iii); (3.4.27)

(V tn , V′tn , V′′tn , L
′tn
K′(tn,u))→ (V , V′, V′′, u) by eq. (3.4.27) and P. 2.3.6 (i). (3.4.28)

By eq. (3.4.28), therefore,

Eπ g(V tn) −−−→
n→∞

Ēg(V)

Eπ g(V tn)h′(V′tn) −−−→
n→∞

Ēg(V)h′(V′),

Eπ g(V tn)h′′(V′′tn) −−−→
n→∞

Ēg(V)h′′(V′′).

In addition, we note

V′tn(ω) = K̂
(

tn, u + r− L
′tn
κ(tn)

(ω), θtnκ(tn)(ω)
)

, (3.4.29)

and

V′′tn(ω) = Uvtn

(
L̂tn

K̂(tn,u+r−L
′tn
κ(tn)

(ω))
, θtnκ(tn)(ω)

)
= Uvtn

(
u + r− L

′tn
κ(tn)

(ω)) + O(1/vtn), θtnκ(tn)(ω)
)

.

(3.4.30)
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In combination with the Markov property of X, therefore,

Eπ g(V tn)h′(V′tn) = Eπ g(V tn)c′r(Xtnκ(tn), tn, u− L′tn
κ(tn)

),

Eπ g(V tn)h′′(V′′tn) = Eπ g(V tn)c′′r (Xtnκ(tn), tn, u− L′tn
κ(tn)

+ O(1/vtn)).

By the definition of κ(tn), we observe that Xtnκ(tn) ∈ A. By eq. (3.4.28), we ob-
serve L′tn

κ(tn)
→ u in law. Up to a further subsequence, thus, we can suppose that

Pπ(|L′tn
κ(tn)
− u| ≥ n−1) ≤ n−1 for all n ∈ N. Recalling eq. (3.4.23), since g, h′ and h′′

are bounded by one, we conclude that∣∣∣Eπ[g(V tn)h′(V′tn)]− c′rE
π[g(V tn))]

∣∣∣ ≤ 2n−1,∣∣∣Eπ[g(V tn)h′′(V′′tn)]− c′′r E
π[g(V tn))]

∣∣∣ ≤ 2n−1.

Since Eπ[g(V tn))] → Ē[g(V)], consequently, eq. (3.4.22) holds. That is, K and W
have independent increments relative to (Hu)u≥0. 2

Next, we demonstrate that the convergence in Lemma 3.4.10 holds stably in law.

3.4.11 Lemma. Grant Assumptions 3.2.2, 3.2.4, 3.3.1 and 3.3.2. Let ηt be given as in
Lemma 3.4.10. Then, we have the following stable convergence in law in D(R1+I):(

Lt,
(

Uvt,ηt
Lt (xi, yi)

)
i∈I

)
L−st
=⇒
t→∞

(
L,
(

µ′(xi)σ(xi, yi)W i
L

)
i∈I

)
,

where σ(x, y)2 is given by eq. (3.3.4).

Proof. Let h be a bounded, Lipschitz continuous function on D(R1+I) and Y be a
bounded F -measurable random variable. With σ(x, y)2 given by eq. (3.3.4), we
abbreviate

Uvt :=
(

Uvt,ηt(xi, yi)
)

i∈I
and W :=

(
µ′(xi)σ(xi, yi)W i

)
i∈I

.

We have to demonstrate

Eπ
[

h(Lt, Uvt
Lt)Y

]
−−→
t→∞

Ẽ
[

h (L, WL)
]
Eπ Y. (3.4.31)
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3 On non-parametric estimation of the Lévy kernel of Markov processes

At first, we suppose that Y is Fu-measurable for some u ≥ 0. Let at be given by
at

s = (s− ut−1)+. Then at converges to as = s as t→ ∞. By Lemma 3.4.10, since at

is non-random, L (at, Lt, Uvt | Pπ) → L (a, L, W | P̃) weakly as t→ ∞. The paths
of the limit process are a. s. continuous. By Proposition 2.3.6 (iii), therefore,

L
(

at, Lt
at , Uvt ◦ Lt

at | Pπ
)

w−−→
t→∞

L
(

a, L, WL | P̃
)

.

Since Eπ[h(Lt
at ◦ θu, (Uvt ◦ Lt

at) ◦ θu)Y] = Eπ[EXu [h(Lt
at , Uvt ◦ Lt

at)]Y] by the Markov
property, and since Eπ[Ẽ[h(L, WL)]Y] = Ẽ[h(L, WL)]E

π Y, consequently,

Eπ
[

h
(

Lt
at ◦ θu, (Uvt ◦ Lt

at) ◦ θu)Y
]
−−→
t→∞

Ẽ
[

h(L, WL)
]
Eπ Y.

For every r > 0, we note

sup
s≤r

∣∣∣Lt
s − Lt

at
s
◦ θu

∣∣∣ = sup
s≤r

∣∣∣v−1
t Jst∧u

∣∣∣ ≤ v−1
t Ju

a.s.−−→
t→∞

0,

and

sup
s≤r

∥∥∥(Uvt ◦ Lt
at

s
) ◦ θu −Uvt ◦ Lt

s

∥∥∥
∞
≤
‖g1‖∞(‖g2‖∞ Ju + ηd

2,t‖Fgη,y
2 ‖∞u)√

vtηd
1,tη

d
2,t

a.s.−−→
t→∞

0.

Since h is Lipschitz, therefore,∣∣∣h(Lt, Uvt ◦ Lt)− h(Lt
at ◦ θu, (Uvt ◦ Lt

at) ◦ θu)
∣∣∣ a.s.−−→

t→∞
0.

Since h and Y are bounded, we deduce from Lebesgue’s dominated convergence
theorem that eq. (3.4.31) holds for all bounded Fu-measurable random variables Y.

Next, for arbitrary bounded F -measurable Y, we have Eπ[Y|Fu] → Y in L1

as u→ ∞. Consequently, again by Lebesgue’s dominated convergence theorem,

lim
u→∞

sup
t>0

∣∣∣Eπ
[

h(Lt, Uvt ◦ Lt, Ūvt ◦ Lt)(Eπ[Y|Fu]−Y)]
∣∣∣ = 0.

Thus, eq. (3.4.31) holds in general. 2

By Lemma 3.4.9 and Proposition 2.3.6 (iv), we obtain the following corollary.
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3.4.12 Corollary. Grant Assumptions 3.2.2, 3.2.4, 3.3.1 and 3.3.2. Let ηt be given as
in Lemmata 3.4.10 and 3.4.11. Then we have the following stable convergence in law in
D(R2I): (

Svt,ηt
Lt (xi), Uvt,ηt

Lt (xi, yi)
)

i∈I

L−st
=⇒
t→∞

(
µ′(xi)L, µ′(xi)σ(xi, yi)W i

L

)
i∈I

,

where σ(x, y)2 is given by eq. (3.3.4). 2

Proof (of Theorem 3.3.7). For every t ≥ 0 and each x and y, we have√
vtηd

1,tη
d
2,t

(
f̂ ηt
t (x, y)− f̄ ηt(x, y)

)
=

Uvt,ηt
Jt/vt

(x, y)− f̄ ηt(x, y)
√

ηd
1,tη

d
2,t/vt

∫ t
TJt

gηt,x
1 (Xs)ds

Svt,ηt
Jt/vt

(x) + v−1
t
∫ t

TJt
gηt,x

1 (Xs)ds
,

where f̄ η(x, y) := µ(gη,x
1 Fgη,y

2 )/µ(gη,x
1 ). Let hn : D → R be as in the proof of

Theorem 3.3.6. We recall ψ(h2
n) ≤ ζη−d

1,n for some ζ < ∞. We also note vtη
−d
2,t → ∞.

In analogy to eq. (3.4.17), thus,√
ηd

1,tη
d
2,t

vt

t∫
TJt

gηt,x
1 (Xs)ds ≤

√
ηd

1,tη
d
2,t

vt
hvt(ZJt+1)

Pπ

−−→
t→∞

0.

Since L and W are independent, V(xi, yi) := L−1/2
1 W i

L1
defines an I-dimensional

standard Gaussian random vector such that L, V and F are independent. By the
continuous mapping theorem and Corollary 3.4.12, consequently,(√

vtηd
1,tη

d
2,t

(
f̂ ηt
t (xi, yi)− f̄ ηt(xi, yi)

))
i∈I

L−st−−−→
t→∞

(
σ(xi, yi)V(xi, yi)L−1/2

1

)
i∈I

,

where σ(x, y)2 is given by eq. (3.3.4). �

In addition, grant Assumption 3.3.3 and let ηt = (η1,t, η2,t) be such that eq. (3.3.3)
holds as well. We abbreviate γ̄η(x, y) = f̄ η(x, y)− f (x, y) and note

µ(gη,x
1 )γ̄η(x, y) =

∫∫
µ′(x + η1z)

(
f (x + η1z, y + η2w)− f (x, y)

)
g1(z)g2(w)dwdz.
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3 On non-parametric estimation of the Lévy kernel of Markov processes

We apply Taylor’s theorem to µ′ and f : In x, we expand up to the order dα1e − 1 and,
in y, we expand up to the order dα2e − 1. We recall from eq. (3.2.4) that g1 and g2

are, at least, of order α1 and α2, respectively. By a classical approximation argument,
therefore, there exists a constant ζ < ∞ such that |µ(gη,x

1 )γ̄ηt(x, y)| ≤ ζ(ηα1
1,t + ηα2

2,t).
If ζ1 = ζ2 = 0 in eq. (3.3.3), then it is immediate that (vtη

d
1,tη

d
2,t)

1/2γ̄ηt(x, y) → 0. If
α1, α2 ∈ N∗, more explicitly,

µ(gη,x
1 )γ̄η(x, y) = ηα1

1,t ∑
|m1+m2|=α1
|m2|6=0

κm1+m2(g1)

m1!m2!
∂m1

∂xm1
µ′(x)

∂m2

∂xm2
f (x, y)

+ ηα2
2,t ∑
|m|=α2

κm(g2)

m!
µ′(x)

∂m

∂ym f (x, y) + o(ηα1
1,t + ηα2

2,t).

Since µ(gη,x
1 )→ µ′(x), we have (vtη

d
1,tη

d
2,t)

1/2γ̄ηt(x, y)→ γ(x, y) given by eq. (3.3.5).2

Proof (of Corollary 3.3.8). In analogy to the proof of Theorem 3.3.7, by Corollary 3.4.12
it remains to show that (vtη

d
1,tη

d
2,t)

1/2γ̂
ηt
t (x, y) is a consistent estimator for γ(x, y).

We recall that in classical (conditional) density estimation, the (partial) derivatives
of a consistent density estimator – provided they exist – are consistent for the (partial)
derivatives of the estimated density. In analogy to Lemma 3.4.7, we observe that this
is also true in our context. In particular,

∂m1+m2

∂xm1∂ym2
f̂ ηt
t (x, y) Pπ

−−→
t→∞

∂m1+m2

∂xm1∂ym2
f (x, y) and

∫ t
0

∂m

∂xm gηt,x
1 (Xs)ds∫ t

0 gηt,x
1 (Xs)ds

Pπ

−−→
t→∞

∂m

∂xm µ′(x)
µ′(x)

.

If either α1, α2 ∈ N∗ or ζ1 = ζ2 = 0 in eq. (3.3.3), consequently,

(vtη
d
1,tη

d
2,t)

1/2γ̂
ηt
t (x, y) Pπ

−−→
t→∞

γ(x, y).
2

3.5 Proofs for results of Section 3.2

Throughout this section, ζ < ∞ denotes some generic constant which may depend
on the variables specified at the beginning of each proof. It may change from line to
line.
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3.5 Proofs for results of Section 3.2

This section is organised as follows: Firstly, in Section 3.5.1 we study the influence
of discretisation on our estimator. We prove results for the small-time asymptotic
of Itō semi-martingales and for the sojourn time discretisation error. Secondly, in
Section 3.5.2 we prove an auxiliary, non-standard martingale limit theorem. Thirdly,
in Section 3.5.3 we prove the consistency of our estimator (Theorem 3.2.9) utilising our
results from Sections 3.4.3 and 3.5.1. Lastly, in Section 3.5.4 we apply Theorem 3.5.5
from Section 3.5.2 to our case and conclude with the final steps in the proof of the
central limit theorem (Theorem 3.2.10 and Corollary 3.2.11) utilising our results from
Sections 3.4.4 and 3.5.1.

3.5.1 Small-time asymptotic and sojourn time discretisation error

In this subsection, we study the influence of discretisation.
We compare our estimators in Definitions 3.2.7 and 3.3.4: In the numerator

of the former, the jumps ∆Xt and the pre-jump left-limits Xt− are replaced by
the increments ∆n

k X and the pre-increment values X(k−1)∆, respectively. Our Itō
semi-martingale meets the following small-time asymptotic:

3.5.1 Proposition. Let A be a compact subset of E × E∗, η0 < min{‖y‖ : (x, y) ∈ A},
and let g be a twice continuously differentiable kernel with compact support. Grant Assump-
tions 3.2.1 and 3.2.3. Then, for every m ∈ N∗, there exists ζ < ∞ such that∣∣∣∣ 1

∆
Ex [gη,y(∆n

1 X)]−
∫

F(x, dw)gη,y(w)

∣∣∣∣
≤ ζ

[
∆(α∧1)/2 +

∆
η2∨(β+d)

(
1 +

m

∑
k=1

∆k

η2k

)
+

∆m

η2(m+1)+d

] (3.5.1)

holds for every (x, y) ∈ A, η < η0 and ∆ ≤ 1, where gη,y(w) = η−dg((w− y)/η).

Remark. For presentational purposes, we have left a small gap in the finite activity
case. For instance, if f is locally bounded on E× E, then we can improve the bound
in eq. (3.5.1) replacing η2∨(β+d) by η2 independently of the dimension d.

In the former estimator’s denominator, the sojourn time
∫ t

0 gη,x
1 (Xs)ds is replaced by

its Riemann sum approximation ∆ ∑n
k=1 gη,x

1 (X(k−1)∆).
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3 On non-parametric estimation of the Lévy kernel of Markov processes

3.5.2 Proposition. Let x ∈ E, v : R+ → R+ be a non-decreasing function, ξn > 0,
ηn → 0, and (hn)n∈N∗ be a uniformly bounded family of twice continuously differentiable
functions supported on Bηn(x) such that (η|m|n ∂mhn)n∈N∗ is uniformly bounded for every
multi-index m with |m| ∈ {1, 2}. As n∆→ ∞ and ∆→ 0, we suppose v(n∆)ηd

n → ∞ and
ξn∆η

−2−d[(1−2/(β+d))∨0]
n → 0.

(i) Grant Assumptions 3.2.1 to 3.2.3. If n∆2ξn → 0 and v(s) = v̄(st) for some determin-
istic equivalent v̄ of X and some t > 0, then, under any law Pπ, we have the following
convergence in probability:

sup
s≤t

ξn

v(n∆)ηd
n

∣∣∣∣∣∣∆
bsnc

∑
k=1

hn(X(k−1)∆)−
bsnc∆∫

0

hn(Xr)dr

∣∣∣∣∣∣ Pπ

−−−→
n→∞

0. (3.5.2)

(ii) Grant Assumptions 3.2.1 to 3.2.4. If (n∆)1−δ∆ξn → 0 and v is the regularly varying
function from eq. (2.5.6), then, under any law Pπ, eq. (3.5.2) holds for all t > 0.

Before we turn to the proofs of Propositions 3.5.1 and 3.5.2, we present two
auxiliary upper bounds for the small-time asymptotic of Itō semi-martingales. Below,
we heavily utilise the results and notation presented in Section 2.2.

We recall that our underlying process X is an Itō semi-martingale with absolutely
continuous characteristics (B, C, n) satisfying eq. (3.2.2). By Grigelionis decomposi-
tion theorem 2.2.12, we can assume w. l. o. g. that there exists a d-dimensional Wiener
process W, defined on (Ω, F , (Ft)t≥0, (Px)x∈E), and an E ⊗ E-valued function σ

with c = σσ
ᵀ

such that

Xt = X0 +

t∫
0

b(Xs)dt +
t∫

0

σ(Xs)dWs + (w1‖w‖≤1) ? (m− n)t + (w1‖w‖>1) ?mt.

For ξ > 0, we denote by Tξ := inf{t > 0 : ‖∆Xt‖ > ξ} the first time of
a jump greater than ξ . Also, we introduce the following decomposition of our
semi-martingale X:

Xt = X0 + Xξ
t + X′ξt , where X′ξt := (w1‖w‖>ξ) ?mt = ∑

s≤t
∆Xs1‖∆Xs‖>ξ .
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3.5 Proofs for results of Section 3.2

We note that Xξ and X′ξ are again Itō semi-martingales; we denote their characteris-
tics by (Bξ , C, nξ) and (B′ξ , 0, n′ξ), respectively. Furthermore, we decompose Xξ into
drift Bξ , continuous martingale part Mc, and purely discontinuous martingale part
Mξ . These are given by

Bξ
t =

t∫
0

bξ(Xs)ds, Mc
t =

t∫
0

σ(Xs)dWs and Mξ
t = (w1‖w‖≤ξ) ? (m− n)t,

where bξ(x) = b(x) −
∫

ξ<‖w‖≤1 F(x, dw)w in the case ξ < 1, and bξ(x) = b(x) +∫
1<‖w‖≤ξ F(x, dw)w in the case ξ ≥ 1. Under Assumption 3.2.1, we derive the

following two lemmata.

3.5.3 Lemma. Let ξ0 > 0 and p ≥ 2. Grant Assumption 3.2.1. Then, there exists a
constant ζ < ∞ such that, for every 0 < ξ ≤ ξ0, x ∈ E, and t ≤ 1, we have

Ex sup
s≤t
‖Xξ

s∧Tξ‖p ≤ ζ(1 + ‖x‖p)t.

Proof. In this proof, ζ < ∞ may depend on ξ0 and p but neither on t, x, ξ nor ζ ′.
(i) Let 1 ≤ ξ ≤ ξ0. We emphasise that, in this case,

‖bξ(x)‖ ≤ ‖b(x)‖+ ξd+1
0 F(x, {1 < ‖w‖ ≤ ξ0}). (3.5.3)

By eq. (3.2.2), we have nξ(dt, A) = dtFξ(Xt, A) := dtF(Xt, A∩ Bξ(0)) for every Borel
set A. By construction, X′ξt = 0 on {t < Tξ}. By Proposition 2.2.13, thus,

Ex sup
s≤t
‖Xξ

s∧Tξ‖p ≤

ζ Ex

tp−1
t∫

0

‖bξ(X0 + Xξ

s∧Tξ )‖pds + tp/2−1
t∫

0

‖c(X0 + Xξ

s∧Tξ )‖p/2ds

+

t∫
0

ds
∫

Fξ0(X0 + Xξ
s , dw)‖w‖p

+ tp/2−1
t∫

0

ds
(∫

Fξ0(X0 + Xξ
s , dw)‖w‖2

)p/2
 .
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3 On non-parametric estimation of the Lévy kernel of Markov processes

Under Assumption 3.2.1, for all t ≤ 1, we observe

Ex sup
s≤t
‖Xξ

s∧Tξ‖p ≤ ζ

t∫
0

(1 +Ex‖X0 + Xξ

s∧Tξ‖p)ds.

For ζ ′ > 0, let Sζ ′ := inf{s > 0 : ‖Xξ
s ‖ > ζ ′}. Then

Ex sup
s≤t
‖Xξ

s∧Tξ∧Sζ′‖
p ≤ ζ

t∫
0

(1 +Ex‖X0 + Xξ

s∧Tξ∧Sζ′‖
p)ds,

where we note sups≤t‖X
ξ

s∧Tξ∧Sζ′‖ ≤ ζ ′ + ξ. By the Grönwall–Bellmann inequality,
thus,

Ex sup
s≤t
‖Xξ

s∧Tξ∧Sζ′‖
p ≤ ζ(1 + ‖x‖p)

t +
t∫

0

ζeζ(t−s)ds

 = ζ(1 + ‖x‖p)(eζt − 1).

Since Sζ ′ ∧ Tξ → Tξ as ζ ′ → ∞, therefore, Ex sups≤t‖X
ξ

s∧Tξ‖p ≤ ζ(1 + ‖x‖p)t. �

(ii) Let 0 < ξ < 1. We note that Xξ
t 1t<Tξ = (Xt − X0)1t<Tξ holds, and that Xξ is

continuous at Tξ outside the null set {‖∆XTξ‖ = ξ}. As Tξ ≤ T1 for all ω, thus,

sup
s≤t
‖Xξ

s∧Tξ‖ = sup
s≤t
‖(Xs − X0)1s<Tξ‖ ≤ sup

s≤t
‖(Xs − X0)1s<T1‖ = sup

s≤t
‖X1

s∧T1‖

almost surely. By case ξ ≥ 1, consequently, Ex sups≤t‖X
ξ

s∧Tξ‖p ≤ ζ(1 + ‖x‖p)t. 2

3.5.4 Lemma. Let y 6= 0 and η0 < ‖y‖. Grant Assumption 3.2.1. Then, for every m ∈ N∗,
there exists a constant ζ < ∞ – non-increasing in ‖y‖ – such that, for every x ∈ E, η < η0,
and t ≤ 1,

Px(Xt ∈ Bη(X0 + y))

≤ ζ
(

1 + ‖x‖2(m+1) + ‖y‖2(m+1)
) [

tηd

(
1 +

m

∑
k=1

tk

η2∨(β+d)+2(k−1)

)
+

tm

η2m

]
.

(3.5.4)
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3.5 Proofs for results of Section 3.2

Proof. Let 1 < ζ ′ < (‖y‖/η0)
1/(m+1), ε := (ζ ′m+1η0 − ζ ′mη0)/6 > 0 and ξ < ε/2. In

addition, let g be a C2-kernel such that 1B1(0) ≤ g ≤ 1B(ζ′+1)/2(0)
. We set gη(z) =

g((z− x− y)/η) and abbreviate h(t, η) := Px(Xt ∈ Bη(x + y)) ≤ Ex gη(Xt). In this
proof, ζ < ∞ may depend on η0, ζ ′, β and m, but neither on x, t nor η.

By Itō’s formula eq. (2.2.8), we have h(t, η) ≤ |Hη
t |+ |H

′η
t |+ |H

′′η
t |, where

Hη
t := Ex

t∫
0

b(Xs)
ᵀ∇gη(Xs)ds +

1
2
Ex

t∫
0

tr
(

c(Xs)∇2gη(Xs)
)

ds,

H′ηt := Ex
t∫

0

ds1Bζ′η(x+y)(Xs)

·
∫

F(Xs, dw)
{

gη(Xs + w)− gη(Xs)− w
ᵀ∇gη(Xs)1‖w‖≤1

}
,

H′′ηt := Ex
t∫

0

ds1Bζ′η(x+y)c(Xs)
∫

F(Xs, dw)gη(Xs + w).

Under Assumption 3.2.1, b(z) and c(z) are bounded in norm by ζ(1 + ‖z‖2). More-
over, the gradient and Hessian of gη vanish outside B(ζ ′+1)η/2(x + y) and satisfy
‖∂igη‖ ≤ ζη−1 and ‖∂ijgη‖ ≤ ζη−2. Hence,

∣∣Hη
t
∣∣ ≤ ζ(1 + ‖x‖2 + ‖y‖2)η−2Ex

t∫
0

1B(ζ′+1)η/2(x+y)(Xs)ds.

For z ∈ Bζ ′η(x + y), furthermore,

∫
F(z, dw)

{
gη(z + w)− gη(z)− w

ᵀ∇gη(z)1‖w‖≤1

}
≤

ζ(1 + ‖z‖)
η2

∫
F̄(dw)(1∧ ‖w‖2).

Therefore,

∣∣Hη
t
∣∣+ ∣∣∣H′ηt

∣∣∣ ≤ ζ(1 + ‖x‖2 + ‖y‖2)

η2

t∫
0

h(s, ζ ′η)ds. (3.5.5)
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Suppose that |H′′ηt | ≤ ζ(1 + ‖x‖3 + ‖y‖3)(tηd + t2η−β) holds. Then,

h(t, η) ≤

ζ(1 + ‖x‖3 + ‖y‖3)tηd(1 + tη−(β+d)) +
ζ(1 + ‖x‖2 + ‖y‖2)

η2

t∫
0

h(s, ζ ′η)ds.

By iteration, we obtain eq. (3.5.4) after m steps. �

It remains to prove |H′′ηt | ≤ ζ(1 + ‖x‖3 + ‖y‖3)(tηd + t2η−β). Under Assump-
tion 3.2.1 (iii), on the one hand, we have∫

F(z, dw)gη(z + w) ≤ ζ(1 + ‖z‖)ηd
∫

f̄ (y + x− z + ηw)g(w)dw

≤

ζ(1 + ‖x‖)ηd, if z ∈ B3ε(x),

ζ(1 + ‖x + y‖)ηd if z ∈ B1+ζ ′η(x + y)c.

For z ∈ B1+ζ ′η(x + y) \ Bζ ′η(x + y), on the other hand, we have

∫
F(z, dw)gη(z + w) ≤ ζ(1 + ‖z‖)

((ζ ′ − 1)η/2)β

∫
dwg

(
w + z− x− y

η

)
f̄ (w)‖w‖β.

Since ηd ≤ η−β and
∫

F̄(dw)(‖w‖β ∧ 1) < ∞ by assumption, thus,

∫
F(z, dw)gη(z + w) ≤

ζ(1 + ‖x + y‖)η−β, if z ∈ Bζ ′η(x + y)c,

ζ(1 + ‖x‖)ηd, if z ∈ B3ε(x).
(3.5.6)

Let Sε,ξ := inf{t > 0 : ‖Xξ
t ‖ > 3ε}, and Ωε,ξ

t := {Sε,ξ ≤ Tξ ∧ t}. We split the set
Ω× [0, t] into

A1 := Ω× [[0, t ∧ Tξ ∧ Sε,ξ [[,

A2 := (Ωε,ξ
t )c × [[Tξ ∧ t, t]],

A3 := Ωε,ξ
t × [[Sη,ξ , t]].

Then we obtain the following:
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3.5 Proofs for results of Section 3.2

Firstly: Since sups≤t‖X
ξ

s∧Tξ∧Sε,ξ − X0‖ ≤ 3ε, by eq. (3.5.6), we obtain

∫∫
A1

dPx ds1Bζ′η(x+y)c(Xs)
∫

F(Xs, dw)gη(Xs + w) ≤ ζ(1 + ‖x‖)tηd.

Secondly: Under Assumption 3.2.1, we have

Px(Tξ ≤ t ∧ Sε,ξ) ≤ Ex
t∫

0

ds1B3ε(x)(Xs)F(Xs, ‖w‖ > ξ) ≤ ζ(1 + ‖x‖)t.

By the Markov property and eq. (3.5.6), therefore,∫∫
A2

dPx ds1Bζ′η(x+y)c(Xs)
∫

F(Xs, dw)gη(Xs + w)

≤ Ex 1{Tξ≤t∧Sε,ξ}E
XTξ

∫ t

0
ds1Bζ′η(x+y)c(Xs)

∫
F(Xs, dw)gη(Xs + w)

≤ ζ(1 + ‖x + y‖)tη−βPx(Tξ ≤ t ∧ Sε,ξ)

≤ ζ(1 + ‖x‖2 + ‖y‖2)t2η−β.

(3.5.7)

Thirdly: By Lemma 3.5.3, we have Px(Ωε,ξ
t ) ≤ ζ(1 + ‖x‖2)t. By the Markov property

and eq. (3.5.6), therefore,∫∫
A3

dPx ds1Bζ′η(x+y)c(Xs)
∫

F(Xs, dw)gη(Xs + w)

≤ ζ(1 + ‖x + y‖)tη−βPx(Ωε,ξ
t )

≤ ζ(1 + ‖x‖3 + ‖y‖3)t2η−β.

(3.5.8)

2

We turn to the proofs of Propositions 3.5.1 and 3.5.2.

Proof (of Proposition 3.5.1). Let 1 < ζ ′ < (min{‖y‖ : (x, y) ∈ A}/η0)
1/(m+2), and

ε, ξ > 0 be given as in the proof of Lemma 3.5.4. In this proof, ζ < ∞ may depend
on η0, ζ ′, β, m and the set A, but neither on x, y, ∆ nor η.

Let η ≤ η0, and (x, y) ∈ A. W. l. o. g., we assume that g is supported on B1(0).
To avoid cumbersome notation, we abbreviate hη = gη,x+y. From eq. (3.2.2) and Itō’s

85



3 On non-parametric estimation of the Lévy kernel of Markov processes

formula eq. (2.2.8), we obtain Ex hη(X∆) = Hη
∆ + H′η∆ + H′′η∆ , where

Hη
∆ = Ex

∆∫
0

b(Xt)
ᵀ∇hη(Xt)dt +

1
2
Ex

∆∫
0

tr
(

c(Xt)∇2hη(Xt)
)

dt,

H′η∆ = Ex
∆∫

0

dt1Bζ′η(x+y)(Xt)

·
∫

F(Xt, dw)
{

hη(Xt + w)− hη(Xt)− w
ᵀ∇hη(Xt)1‖w‖≤1

}
,

H′′η∆ = Ex
∆∫

0

dt1Bζ′η(x+y)c(Xt)
∫

F(Xt, dw)hη(Xt + w).

By eq. (3.5.5), we observe

∣∣Hη
∆

∣∣+ ∣∣∣H′η∆

∣∣∣ ≤ ζ

ηd+2

∆∫
0

Px(Xt ∈ Bζ ′η(x + y))dt.

By the choice of ζ ′, Lemma 3.5.4 implies

∣∣Hη
∆

∣∣+ ∣∣∣H′η∆

∣∣∣ ≤ ζ

[
∆2

η2

(
1 +

m

∑
k=1

∆k

η2∨(β+d)+2(k−1)

)
+

∆m+1

η2(m+1)+d

]
. (3.5.9)

Suppose∣∣∣∣∣∣H′′η∆ −
∫

F(x, dw)hη(x + w)

∆∫
0

dtPx(Xt 6∈ Bζ ′η(x + y))

∣∣∣∣∣∣
≤ ζ(∆1+(α∧1)/2 + ∆2η−(β+d)).

(3.5.10)

Combining eq. (3.5.9) and eq. (3.5.10), we obtain eq. (3.5.1). �

It remains to prove eq. (3.5.10). By eq. (3.5.6), we observe

∫
F(z, dw)hη(z + w) ≤

ζη−(β+d), if z ∈ Bζ ′η(x + y)c,

ζ, if z ∈ B3ε(x).
(3.5.11)
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Let the stopping time Sε,ξ , and the event Ωε,ξ
∆ be given as in the proof of Lemma 3.5.4.

We split the set Ω× [0, ∆] into A1 := Ω× [[0, ∆ ∧ Tξ ∧ Sε,ξ [[, A2 := (Ωε,ξ
∆ )c × [[Tξ ∧

∆, ∆]] and A3 := Ωε,ξ
∆ × [[Sη,ξ , ∆]]. For convenience, we also abbreviate

f̃ η
x,y(z, w) := f (z, y + x− z + ηw)− f (x, y + ηw).

Then we obtain, firstly: By the choice of ε, we have that the convex hull of the set

{(z, y + (x− z) + ηw) : (x, y) ∈ A, ‖z− x‖ ≤ 3ε, ‖w‖ ≤ 1}

is a compact subset of E×E∗. By Assumption 3.2.3 and for all (z, w) ∈ B3ε(x)× B1(0),
we have | f̃ η

x,y(z, w)| ≤ ζ‖z− x‖α∧1. By Lemma 3.5.3, therefore,

∫∫
A1

dPx dt
∫

dwg(w) f̃ η
x,y(Xt, w) ≤ ζ∆Ex sup

t≤∆
‖Xξ

t∧Tξ∧Sε,ξ‖ ≤ ζ∆1+(α∧1)/2.

Secondly and thirdly: We compare eqs. (3.5.6) and (3.5.11). In analogy to
eqs. (3.5.7) and (3.5.8), respectively, by the Markov property and eq. (3.5.11), therefore,∫∫

Ai

dPx dt1Bζ′η(x+y)c(Xt)
∫

dwg(w) f̃ η
x,y(Xt, w) ≤ ζ∆2η−(β+d),

for i ∈ {2, 3}. In summary, we proved eq. (3.5.10). 2

Proof (of Proposition 3.5.2). W. l. o. g., we assume η < 1/4. In this proof, ζ < ∞ may
neither depend on n, ∆ nor η.

By Itō’s formula eq. (2.2.8), we observe

ξn

vn∆ηd
n

∣∣∣∣∣∣
bsnc∆∫

0

hn(Xr)dr− ∆
bsnc

∑
k=1

hn(X(k−1)∆)

∣∣∣∣∣∣ ≤ |Hn
s |+ |H′ns |+ |H′′ns |+ |Mn

s |,

where

Hn
s :=

ξn

vn∆ηd
n

bsnc

∑
k=1

k∆∫
(k−1)∆

dt
t∫

(k−1)∆

(
b(Xr)

ᵀ∇hn(Xr) +
1
2

tr
(

c(Xr)∇2hn(Xr)
))

dr,
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H′ns :=
ξn

vn∆ηd
n

bsnc

∑
k=1

k∆∫
(k−1)∆

dt
t∫

(k−1)∆

dr

·
∫

‖w‖≤1

F(Xr, dw)
{

hn(Xr + w)− hn(Xr)− w
ᵀ∇hn(Xr)

}
,

H′′ns :=
ξn

vn∆ηd
n

bsnc

∑
k=1

k∆∫
(k−1)∆

dt ∑
(k−1)∆<r≤t

1‖∆Xr‖>1

{
hn(Xr− + ∆Xr)− hn(Xr−)

}
,

and

Mn
s :=

ξn

vn∆ηd
n

bsnc

∑
k=1

k∆∫
(k−1)∆

dt

 t∫
(k−1)∆

∇hn(Xr)
ᵀ
σ(Xr)dWr

+

t∫
(k−1)∆

∫
‖w‖≤1

{
hn(Xr− + w)− hn(Xr−)

}
(m− n)(dr, dw)

 .

It remains to show:

(i) Under Assumptions 3.2.1 to 3.2.3, if v(s) = v̄(st) for some deterministic equiv-
alent v̄ of X and some t > 0, and if n∆2ξn → 0, then Hn

s , H′ns , H′′ns and Mn
s

converge to zero uniformly on {0 ≤ s ≤ t} in probability.

(ii) Under Assumptions 3.2.1 to 3.2.4, if v is the regularly varying function from
eq. (2.5.6), and if (n∆)1−δ∆ξn → 0, then Hn

s , H′ns , H′′ns and Mn
s converge to zero

uniformly for {0 ≤ s ≤ t} in probability for all t > 0.

(a) Under Assumption 3.2.1, b(z) and c(z) are bounded in norm by ζ(1 + ‖z‖2).
Moreover, the gradient and Hessian of hn vanish outside Bηn(x) and satisfy ‖∂ihn‖ ≤
ζη−1

n and ‖∂ijhn‖ ≤ ζη−2, by assumption. Thus,∣∣∣∣b(z)ᵀ∇hn(z) +
1
2

tr
(

c(z)∇2hn(z)
)∣∣∣∣ ≤ ζ(1 + ‖z‖)η−21Bηn (x)(z).

By Fubini’s theorem, therefore,

sup
r≤s
|Hn

r | ≤ ζ(1 + ‖x‖2)
∆ξn

η2 S′n,∆,ηn
s , where S′n,∆,η

s =
1

vn∆ηd

bsnc∆∫
0

1Bη(x)(Xr)dr.
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In case (i), we deduce from Lemma 3.4.7 that the family {L (S′n,∆,ηn
t | Px) : n ∈ N∗}

is tight under Assumptions 3.2.2 and 3.2.3. As ∆ξnη−2
n → 0, sups≤t |Hn

s | → 0 in
probability. In case (ii), we obtain from Lemma 3.4.9 that S′n,∆,ηn converges stably in
law to a non-trivial process. As ∆ξnη−2

n → 0, sups≤t |Hn
s | → 0 in probability for all

t > 0. �

(b) Let ζ ′ > 1 and κ = 1∧ 2/(β + d). Under Assumption 3.2.1, we have∣∣∣∣∣∣∣
∫

‖w‖≤1

F(z, dw){hn(z + w)− hn(z)− w
ᵀ∇hn(z)}

∣∣∣∣∣∣∣
≤


ζ(1 + ‖z‖)η−2

n
∫
‖w‖≤1 F̄(dw)‖w‖2, for ‖z− x‖ ≤ ζ ′ηκ

n,

ζ(1 + ‖z‖)η−κβ
n

∫
‖w‖≤1 F̄(dw)‖w‖β, for ζ ′ηκ

n < ‖z− x‖ ≤ 1 + ηn,

0, else.

(3.5.12)

Again by Fubini’s theorem, therefore,

sup
t≤s
|H′nt | ≤ ζ(1 + ‖x‖)

(
∆ξnηκd

n

ηd+2
n

S′n,∆,ζ ′ηκ
n

s +
∆ξn

ηd+κβ
S′n,∆,1+ηn

s

)
.

In analogy to step (a), since ∆ξnη
−2−d(1−κ)
n → 0, H′ns → 0 uniformly on {0 ≤ s ≤ t}

in probability in case (i); and for all t > 0 in case (ii). �

(c) In analogy to steps (a) and (b), we note

|H′′ns | ≤ ξn∆(vn∆ηd
n)
−1(|hn(X− + w)|+ |hn(X−)|)1‖w‖>1 ?mbsnc∆

≤ |Kn
s |+ |Nn

bsnc/n|+ |K
′n
s |+ |N′nbsnc/n|,

where

Kn
s := ξn∆(vn∆ηd

n)
−1|hn(X− + w)|1‖w‖>1 ? nbsnc∆,

K′ns := ξn∆(vn∆ηd
n)
−1|hn(X−)|1‖w‖>1 ? nbsnc∆,

Nn
s := ξn∆(vn∆ηd

n)
−1|hn(X− + w)|1‖w‖>1 ? (m− n)sn∆,

N′ns := ξn∆(vn∆ηd
n)
−1|hn(X−)|1‖w‖>1 ? (m− n)sn∆.

Under Assumption 3.2.1, since
∫
‖w‖>1 F(z, dw)|hn(z + w)| = 0 for z ∈ B1−2ηn(x), we
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3 On non-parametric estimation of the Lévy kernel of Markov processes

have ∫
‖w‖>1

F(z, dw)|hn(z + w)| ≤ ζ(1 + ‖x‖).

In both cases (i) and (ii), therefore,

sup
s≤t
|Kn

s | ≤ ζ(1 + ‖x‖) tn∆2ξn

vn∆
−−−→
n→∞

0,

for all t > 0. Furthermore, we observe that Nn is a martingale w. r. t. the filtration
(Fsn∆)s≥0. Its predictable quadratic variation satisfies

〈Nn, Nn〉s =
∆2ξ2

n

v2
n∆
|hn(X− + w)|21‖w‖>1 ? nsn∆ ≤ ζ(1 + ‖x‖) sn∆3ξ2

n

v2
n∆ηd

n
−−−→
n→∞

0.

Since bsnc/n→ s, Nn
bsnc/n → 0 uniformly on {0 ≤ s ≤ t} in probability for all t > 0.

In addition, we recall that F(z, {‖w‖ > 1} ≤ ζ(1 + ‖z‖) under Assumption 3.2.1.
Thus,

sup
s≤t
|K′ns | ≤ ζ(1 + ‖x‖)ξn∆S′n,∆,ηn

t
Pπ

−−−→
n→∞

0

in case (i); and for all t > 0 in case (ii). Again, we observe that N′n is a martingale
w. r. t. the filtration (Fsn∆)s≥0. Its predictable quadratic variation satisfies

〈N′n, N′n〉s =
∆2ξ2

n

v2
n∆η2d

n
|hn(X−)|21‖w‖>1 ? nsn∆ ≤

ζ(1 + ‖x‖)∆2ξ2
n

vn∆ηd
n

S′n,∆,ηn
s −−−→

n→∞
0.

Thus, N′nbsnc/n → 0 uniformly on {0 ≤ s ≤ t} in probability in case (i); and for all
t > 0 in case (ii). �

(d) Let (M′ns )s≥0 and (M′′ns )s≥0 denote the Fsn∆-martingales given by

M′ns :=
ξn

vn∆ηd
n

sn∆∫
0

ϕ∆(r)∇hn(Xr)
ᵀ
σ(Xr)dWr,

M′′ns :=
ξn

vn∆ηd
n

ϕ∆(r)(hn(X− + w)− hn(X−))1‖w‖≤1 ? (m− n)sn∆,
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where ϕ∆(r) := ∆ − (r − br/∆c∆). The predictable quadratic variation of M′n

satisfies

〈M′n, M′n〉s =
ξ2

n

v2
n∆η2d

n

sn∆∫
0

ϕ∆(r)2∇hn(Xr)
ᵀ
c(Xr)∇hn(Xr)dt

≤ ζ(1 + ‖x‖2)∆2ξ2
n

vn∆ηd+2
n

S′n,∆,ηn
s .

As ∆ξnη−2
n → 0 and vn∆ηd

n → ∞, M′ns → 0 uniformly on {0 ≤ s ≤ t} in probability
in case (i); and for all t > 0 in case (ii).

In addition, the predictable quadratic variation of M′′n satisfies

〈M′′n, M′′n〉s =
ξ2

n

v2
n∆η2d

n
ϕ∆(r)2(hn(X− + w)− hn(X−))21‖w‖≤1 ? nsn∆

≤ ∆2ξ2
n

v2
n∆η2d

n

sn∆∫
0

dr
∫

‖w‖≤1

F(Xr, dw)(hn(Xr + w)− hn(Xr))
2.

Let ζ ′ > 1 and κ = 1∧ 2/(β + d) be as in step (b). By eq. (3.5.12),∣∣∣∣∣∣∣
∫

‖w‖≤1

F(z, dw)(hn(z + w)− hn(z))2

∣∣∣∣∣∣∣
≤


ζ(1 + ‖z‖)η−2

n
∫
‖w‖≤1 F̄(dw)‖w‖2, for ‖z− x‖ ≤ ζ ′ηκ

n,

ζ(1 + ‖z‖)η−κβ
n

∫
‖w‖≤1 F̄(dw)‖w‖β, for ζ ′ηκ

n < ‖z− x‖ ≤ 1 + ηn,

0, else.

Therefore,

〈M′′n, M′′n〉s ≤
ζ(1 + ‖x‖)∆ξn

vn∆ηd
n

(
∆ξnηκd

n

ηd+2
n

S′n,∆,ζ ′ηκ
n

s +
∆ξn

η
d+κβ
n

S′n,∆,1+ηn
s

)
.

Again since ∆ξnη
−2−d(1−κ)
n → 0, M′′ns → 0 uniformly on {0 ≤ s ≤ t} in probability

in case (i); and for all t > 0 in case (ii). 2
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3.5.2 Auxiliary martingale limit theorem

The theorem presented in this subsection serves as a preliminary result for the
proof of our central limit theorem (Theorem 3.2.10 and Corollary 3.2.11). It is a
non-standard limit theorem for a triangular, martingale array scheme.

Here, we work on the extension eq. (3.2.10) of the probability space, L denotes the
Mittag-Leffler process of order 0 < δ ≤ 1, and W = (W i)i∈I denotes an I-dimensional
standard Wiener process such that L, W and F are independent.

3.5.5 Theorem. For n ∈ N∗, let (G n
s )s>0 be the filtration given by G n

s := Fbsnc∆, and I
be a finite index set. Moreover, let hn : E× E → RI be such that ‖hn‖∞ → 0 as n→ ∞.
Grant Assumptions 3.2.2 and 3.2.4, and suppose that the process Mn given by

Mn
s :=

bsnc

∑
k=1

hn(X(k−1)∆, ∆n
k X) (3.5.13)

is a G n
s -martingale such that the predictable quadratic co-variation 〈Mni, Mnj〉 is identically

zero for every i 6= j and all n large enough. If (〈Mni, Mni〉)i∈I converges stably in law in
D(RI) to (ς2

i L)i∈I , then

Mn L−st
=⇒
n→∞

(ςiW i
L)i∈I .

Proof. Let δ = 1. Then we have Ls = s. Therefore, the convergence of Mn to
(ς2

i W i)i∈I follows directly from the martingale limit theorem Theorem 2.3.10.
For the remainder, let 0 < δ < 1. We consider the processes Lni, L̄n, Kn and Nn

given by

Lni
s := 〈Mni, Mni〉s =

bsnc

∑
k=1

E
X(k−1)∆ hi

n(X(k−1)∆, ∆n
k X)2,

L̄n
s := ∑

i∈I
Lni

s , Kn
u := inf {s > 0 : L̄n

s > u} and Nn
s := Mn

Kn
s
.

We emphasise that Nn
L̄n

s
= Mn

s + ∆Mn
Kn(L̄n

s )
holds for all s. As ‖∆Mn‖∞ ≤ ‖hn‖∞ → 0,

it is sufficient to prove the following stable convergence in law in D(R×RI):(
L̄n, Nn

)
L−st
=⇒
n→∞

(
ς̄2L,

(
(ςi/ς̄)W i

)
i∈I

)
, where ς̄2 := ∑

i∈I
ς2

i . (3.5.14)
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By the continuous mapping theorem, we obtain(
L̄n,
(

Lni
)

i∈I

)
L−st
=⇒
n→∞

(
ς̄2L,

(
ς2

i L
)

i∈I

)
. (3.5.15)

In addition, we remark that Kn
u is a predictable G n

s -stopping time for all u ≥ 0. Thus,
Nn is a martingale w. r. t. the time-changed filtration H n

s := G n
Kn

s
. Moreover, we

observe that its predictable quadratic variation satisfies

〈Nni, Nni〉s = Lni
Kn

s
.

By eq. (3.5.15), we have |Lni − (ςi/ς̄)2 L̄n| → 0 uniformly on compacts in probability
for all i ∈ I. We note that the (scaled) Mittag-Leffler process ς̄2L is a. s. continuous.
Its right-inverse K given by Ku := inf{s > 0 : ς̄2Ls > u} is a (deterministically
time-changed) δ-stable Lévy process, hence, without fixed time of discontinuity. By
Proposition 2.3.6 (i), therefore, Lni

Kn
s
→ (ςi/ς̄)2s in law for every s ≥ 0; hence, in

probability. By construction, we have that ‖∆Nn
s ‖∞ is bounded above by ‖hn‖∞. This

bound converges to zero. By the martingale limit theorem 2.3.10, consequently,

Nn L−st
=⇒
n→∞

(
(ςi/ς̄)W i

)
i∈I

. (3.5.16)

In analogy to the proof of Lemma 3.4.10 and Steps 6 and 7 on pp. 122–124 of Höpfner
et al. (1990), we obtain that the pair (L̄n, Nn) converges in law in D(R×RI) to
the process (ς̄2L,

(
(ςi/ς̄)W i)

i∈I). Finally, the stable convergence in law and the
independence from F follows in analogy to the proof of Lemma 3.4.11. 2

3.5.3 Proof of Theorem 3.2.9

Throughout the remainder of Section 3.5, we work under the law Pπ for some initial
probability π on E, and we denote E⊕ := {x ∈ E : µ′(x) > 0, F(x, E) > 0}.

We consider the processes Gn,∆,η and Rn,∆,η given by

Gn,∆,η
s (x, y) :=

1
vn∆

bsnc

∑
k=1

gη,x
1 (X(k−1)∆)gη,y

2 (∆n
k X), (3.5.17)
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3 On non-parametric estimation of the Lévy kernel of Markov processes

Rn,∆,η
s (x) :=

∆
vn∆

bsnc

∑
k=1

gη,x
1 (X(k−1)∆). (3.5.18)

3.5.6 Lemma. Grant Assumptions 3.2.1 to 3.2.3. Let ηn = η1,n be such that eq. (3.2.6)
holds, and let x ∈ E⊕.

(i) If n∆2 → 0, then,

the family
{

L
(

Rn,∆,ηn
1 (x) | Pπ

)
: n ∈ N∗

}
is tight. (3.5.19)

(ii) Grant Assumption 3.2.4 in addition. If (n∆)1−δ∆ → 0, then, eq. (3.5.19) holds as
well.

In both cases, each limit point of the family in eq. (3.5.19) is the law L (µ′(x)L̃) for some
positive random variable L̃.

Proof. Let St,η
s (x) := v−1

t
∫ st

0 gη,x
2 (Xr)dr. By Lemma 3.4.7, the family {L (Sn∆,ηn

1 (x) |
Pπ) : n ∈ N∗} is tight; moreover, each of its limit points is the law L (µ′(x)L̃) for
some random variable L̃ > 0. In both cases (i) and (ii), since ηn is such that eq. (3.2.6)
holds, we have ∣∣∣Sn∆,ηn

1 (x)− Rn,∆,ηn
1 (x)

∣∣∣ Pπ

−−−→
n→∞

0

by Proposition 3.5.2. Consequently, the family {L (Rn,∆,η
1 (x) | Pπ) : n ∈ N∗} is tight;

moreover, each of its limit points is a limit point of {L (St,η
1 (x) | Pπ) : t > 0}, hence,

the law L (µ′(x)L̃) for some random variable L̃ > 0. 2

3.5.7 Lemma. Grant Assumptions 3.2.1 and 3.2.3. Let ηn = (η1,n, η2,n) be such that
η1,n → 0, η2,n → 0 and ∆η

−2∨(β+d)
2,n → 0. Moreover, let (x, y) ∈ E⊕ × E∗, and let g be a

C2-function with compact support. Then

lim
n→∞

sup
z∈Bη1,n (x)

∣∣∣∣ 1
∆
Ez gηn,y(∆n

1 X)− f (x, y)
∫

g(w)dw
∣∣∣∣ = 0. (3.5.20)
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Proof. Firstly, by Proposition 3.5.1 – where we choose m large enough – we have

lim
n→∞

sup
z∈Bη1,n (x)

∣∣∣∆−1Ez gη,x(∆n
1 X)− Fgη,y(z)

∣∣∣ = 0.

Secondly, under Assumption 3.2.3, f ∈ Cα
loc(E× E∗) for some α > 0. Therefore,

lim
n→∞

sup
z∈Bη1,n (x)

∣∣∣Fgηn,y(z)− Fgηn,y(x)
∣∣∣ ≤ lim

n→∞
ζηα∧1

1,n = 0.

Lastly, by Lebesgue’s differentiation theorem, we observe

lim
n→∞

∣∣∣∣Fgηn,y(x)− f (x, y)
∫

g(w)dw
∣∣∣∣ = 0.

2

3.5.8 Lemma. Grant Assumptions 3.2.1 to 3.2.3. Let ηn = (η1,n, η2,n) be such that
eq. (3.2.6) holds. Moreover, let (x, y) ∈ E⊕ × E∗. Then, in both cases as in Lemma 3.5.6,

the family
{

L
(

Gn,∆,ηn
1 (x, y), Rn,∆,ηn

1 (x) | Pπ
)

: n ∈ N∗
}

is tight. (3.5.21)

Moreover, each limit point of the family in eq. (3.5.21) is the law L ( f (x, y)µ′(x)L̃, µ′(x)L̃)
for some positive random variable L̃.

Proof. We note that Gn,∆,η
s (x, y) = f (x, y)Rn,∆,η

s (x) + Hn,∆,η
s (x, y) + Mn,∆,η

s (x, y) with

Hn,∆,η
s (x, y) =

1
vn∆

bsnc

∑
k=1

gη,x
1 (X(k−1)∆)

(
E

X(k−1)∆ [gη,x
2 (∆n

1 X)]− ∆ f (x, y)
)

, (3.5.22)

Mn,∆,η
s (x, y) =

1
vn∆

bsnc

∑
k=1

gη,x
1 (X(k−1)∆)

(
gη,y

2 (∆n
k X)−EX(k−1)∆ [gη,x

2 (∆n
1 X)]

)
. (3.5.23)

By Lemma 3.5.6, it is sufficient to prove that Hn,∆,ηn
1 (x, y) and Mn,∆,ηn

1 (x, y) converge
to zero in probability as n→ ∞.

(H) We observe

∣∣∣Hn,∆,η
1 (x, y)

∣∣∣ ≤ sup
z∈Bη1 (x)

∣∣∣∆−1Ez[gη,x
2 (∆n

1 X)]− f (x, y)
∣∣∣ n

∑
k=1

∆hη,x(X(k−1)∆)

vn∆
, (3.5.24)
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where h is a C2-function dominating |g1|. In analogy to Lemma 3.5.6, the sequence
(v−1

n∆ ∑n
k=1 ∆hηn,x(X(k−1)∆))n∈N∗ is tight. As

sup
z∈Bη1,n (x)

| 1
∆
Ez[gηn,x

2 (∆n
1 X)]− f (x, y)| −−−→

n→∞
0

by Lemma 3.5.7, we have Hn,∆,ηn
1 (x, y)→ 0 in law, hence, in probability. �

(M) We observe that Mn,∆,η is an Fbsnc∆-martingale. We note sups≤1‖∆Mn,∆,ηn
s ‖∞

≤ (vn∆ηd
1,nηd

2,n)
−1‖g1‖∞‖g2‖∞ → 0 by eq. (3.2.6). By the martingale limit theo-

rem 2.3.10, thus, it is sufficient to show that the predictable quadratic variation of
Mn,∆,ηn at time one, denoted 〈Mn,∆,ηn , Mn,∆,ηn〉1, converges to zero in probability.

We observe

〈
Mn,∆,η, Mn,∆,η

〉
1
≤ ‖g1‖∞

vn∆ηd
1 ηd

2
sup

z∈Bη1 (x)

∣∣∣∣∣ηd
2

∆
Ez gη,y

2 (∆n
1 X)2

∣∣∣∣∣ v−1
n∆

n

∑
k=1

∆hη,x(X(k−1)∆).

By Lemma 3.5.7,

sup
z∈Bη1,n (x)

|∆−1Ez ηd
2,ngηn,x

2 (∆n
1 X)2| −−−→

n→∞
f (x, y)

∫
g1(w)2dw.

In analogy to step (H), since vn∆ηd
1.nηd

2,n → ∞, we have 〈Mn,∆,ηn , Mn,∆,ηn〉1 → 0 in
law, hence, in probability. 2

Proof (of Theorem 3.2.9). We recall the results from Lemma 3.5.8. Let L̃ > 0 be a
random variable such that the law L ( f (x, y)µ′(x)L̃, µ′(x)L̃) is a limit point of the
family in eq. (3.5.21), and let (nk)k∈N∗ be a sequence such that(

G
nk,∆,ηnk
1 (x, y), R

nk,∆,ηnk
1 (x)

)
L−−−→

k→∞

(
f (x, y)µ′(x)L̃, µ′(x)L̃

)
.

Since µ′(x) > 0, by the continuous mapping theorem, we conclude

f̂
∆,ηnk
nk (x, y) =

G
nk,∆,ηnk
1 (x, y)

R
nk,∆,ηnk
1 (x)

L−−−→
k→∞

f (x, y).
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As this limit is unique and independent of the particular limit point of the family in
eq. (3.5.21), we have that f̂ ∆,ηn

n (x, y) converges to f (x, y) in law, hence, in probability.2

3.5.4 Proofs of Theorem 3.2.10 and Corollary 3.2.11

Throughout this subsection, we work on the extension eq. (3.2.10) of the probability
space, L denotes the Mittag-Leffler process of order 0 < δ ≤ 1, and W = (W i)i∈I

denotes an I-dimensional standard Wiener process such that L, W and F are
independent.

We consider the processes Gn,∆,η and Rn,∆,η given by eq. (3.5.17) and eq. (3.5.18),
and the processes Un,∆,η and R′n,∆,η given by

Un,∆,η
s (x, y) :=

√
vn∆ηd

1 ηd
2

(
Gn,∆,η

s (x, y)−
µ(gη,x

1 Fgη,y
2 )

µ(gη,x
1 )

Rn,∆,η
s (x)

)
(3.5.25)

R′n,∆,η
s (x) :=

∆
vn∆

bsnc

∑
k=1

ηd
1 gη,x

1 (X(k−1)∆)
2. (3.5.26)

We recall that, under Darling–Kac’s condition, Touati’s theorem 2.5.24 at hand. First,
we obtain an extension of Lemma 3.5.6.

3.5.9 Lemma. Grant Assumptions 3.2.1 to 3.2.4. Let ηn = η1,n be such that eq. (3.2.6)
and eq. (3.2.8a) hold, and let (xi)i∈I be a family of pairwise distinct points in E⊕. If
(n∆)1−δ∆→ 0, then, under any law Pπ, we have the following stable convergence in law
in D(R2I):

(
Rn,∆,ηn(xi), R′n,∆,ηn(xi)

)
i∈I

L−st
=⇒
n→∞

(
µ′(xi)L, µ′(xi)

∫
g2(w)2dwL

)
i∈I

. (3.5.27)

Proof. Let St,η
s (x) := v−1

t
∫ st

0 gη,x
1 (Xr)dr and S′t,ηs (x) := v−1

t
∫ st

0 ηdgη,x
1 (Xr)2dr. We

note that µ(gηn,x
1 ) → µ′(x) and µ(ηd

n(gηn,x
1 )2) → µ′(x)

∫
g1(w)2dw for all x. By

Theorems 2.5.24 and 3.4.1, we deduce – in analogy to Corollary 3.4.12 – that

(
Sn∆,ηn(xi), S′n∆,ηn(xi)

)
i∈I

L−st
=⇒
t→∞

(
µ′(xi)L, µ′(xi)

∫
g2(w)2dwL

)
i∈I

.
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3 On non-parametric estimation of the Lévy kernel of Markov processes

For every x, moreover, we deduce from Proposition 3.5.2 that∣∣∣Rn,∆,ηn(x)− Sn∆,ηn(x)
∣∣∣ ucp
=⇒
n→∞

0 and
∣∣∣R′n,∆,ηn(x)− S′n∆,ηn(x)

∣∣∣ ucp
=⇒
n→∞

0.

Consequently, we obtain eq. (3.5.27). 2

In view of Theorem 3.5.5, we obtain the following preliminary result.

3.5.10 Lemma. Grant Assumptions 3.2.1 to 3.2.5. Let ηn = (η1,n, η2,n) be such that
eqs. (3.2.6) and (3.2.8) hold, and let (xi, yi)i∈I be a finite family of pairwise distinct points
in E⊕ × E∗. If (n∆)1−δ∆ → 0, then, under any law Pπ, we have the following stable
convergence in law in D(RI):(

Rn,∆,ηn(xi), Un,∆,ηn(xi, yi)
)

i∈I

L−st
=⇒
n→∞

(
µ′(xi)L, σ(xi, yi)µ

′(xi)W i
L

)
i∈I

, (3.5.28)

where σ(x, y)2 is given by eq. (3.2.11).

Proof. Let (G n
s )s≥0 be given by G n

s = Fbsnc∆, and let the process Mn,∆,η be given by

Mn,∆,η
s (x, y) :=

√
ηd

1 ηd
2

vn∆

bsnc

∑
k=1

gη,x
1 (X(k−1)∆)

(
gη,y

2 (∆n
k X)−EX(k−1)∆ gη,y

2 (∆n
1 X)

)
.

We note that Mn,∆,η is a G n
s -martingale of the form eq. (3.5.13). The proof is divided

into four steps: Firstly, we prove∣∣∣Un,∆,ηn(x, y)−Mn,∆,ηn(x, y)
∣∣∣ ucp
=⇒
n→∞

0. (3.5.29)

Secondly, we show that the predictable quadratic variation of Mn,∆,η(x, y) satisfies(
〈Mn,∆,ηn(xi, yi), Mn,∆,ηn(xi, yi)〉

)
i∈I

L−st
=⇒
n→∞

(
[σ(xi, yi)µ

′(xi)]
2L
)

i∈I
(3.5.30)

in D(RI). Thirdly, we show that 〈Mn,∆,ηn(xi, yi), Mn,∆,ηn(xj, yj)〉 vanishes for all n
large enough if i 6= j. Lastly, we argue(

Rn,∆,ηn(xi), 〈Mn,∆,ηn(xi, yi), Mn,∆,ηn(xi, yi)〉
)

i∈I

L−st
=⇒
n→∞

(
µ′(xi)L, [σ(xi, yi)µ

′(xi)]
2L
)

i∈I
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3.5 Proofs for results of Section 3.2

in D(R2I). By Theorem 3.5.5 and Proposition 2.3.6 (iv), we then obtain eq. (3.5.28).

(i) We note Un,∆,η
s (x, y)−Mn,∆,η

s (x, y) = Hn,∆,η
s (x, y) + H′n,∆,η

s (x, y) with

Hn,∆,η
s (x, y) :=

√
vn∆ηd

1 ηd
2

∆
vn∆

bsnc

∑
k=1

g1(X(k−1)∆)

(
Fgη,y

2 (X(k−1)∆)−
gη,x

1 Fgη,y
2

µ(gη,x
1 )

)
,

and∣∣∣H′n,∆,η
s (x, y)

∣∣∣ ≤ √vn∆ηd
1 ηd

2 sup
z∈Bη1 (x)

∣∣∣∣ 1
∆
Ez gη,y

2 (∆n
1 X)− Fgη,y

2 (z)
∣∣∣∣ R′′n,∆,η

s (x),

where R′′n,∆,η
s (x) = ∆v−1

n∆ ∑bsnc
k=1 hη,x(X(k−1)∆) for some C2-function h, dominating |g1|.

Under Assumption 3.2.5, Fgη,y
2 is twice continuously differentiable. Since eq. (3.2.8)

holds, by Proposition 3.5.2 and step (i) in the proof of Lemma 3.4.8, Hn,∆,ηn(x, y)⇒ 0
in ucp as n→ ∞. By Proposition 3.5.1 – where we choose m large enough – we have

sup
z∈Bη1 (x)

∣∣∣∣ 1
∆
Ez gη,y

2 (∆n
1 X)− Fgη,y

2 (z)
∣∣∣∣ ≤ ζ

(√
∆ + ∆η

−2∨(β+d)
2

)
since eq. (3.2.8a) holds. Since, moreover, eq. (3.2.8) holds, therefore,

√
vn∆ηd

1,nηd
2,n sup

z∈Bη1,n (x)

∣∣∣∣ 1
∆
Ez gηn,y

2 (∆n
1 X)− Fgηn,y

2 (z)
∣∣∣∣ −−−→n→∞

0. (3.5.31)

In analogy to Lemma 3.5.9, R′′n,∆,ηn(x) converges stably in law to some non-trivial
process. So, |H′n,∆,η

s (x, y)| ⇒ 0 in ucp as n→ ∞. Thus, eq. (3.5.29) holds. �

(ii) We note 〈Mn,∆,η(x, y), Mn,∆,η(x, y)〉s = Kn,∆,η
s (x, y)− K′n,∆,η

s (x, y), where

Kn,∆,η
s (x, y) =

ηd
1 ηd

2
vn∆

bsnc

∑
k=1

gη,x
1 (X(k−1)∆)

2
(
E

X(k−1)∆ gη,y
2 (∆n

1 X)2
)

,

and

|K′n,∆,η
s (x, y)| ≤ sup

z∈Bη1 (x)

∣∣∣∣ 1
∆2

(
E

X(k−1)∆ gη,y
2 (∆n

1 X)
)2
∣∣∣∣∆ηd

2 R′n,∆,η
s (x).
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3 On non-parametric estimation of the Lévy kernel of Markov processes

By Lemma 3.5.7 and the continuous mapping theorem,

sup
z∈Bη1,n (x)

∣∣∣∣ 1
∆2

(
Ez gηn,y

2 (∆n
1 X)

)2
∣∣∣∣ −−−→n→∞

f (x, y)2.

By Lemma 3.5.9, R′n,∆,ηn
s (x) converges stably in law. Since ∆ηd

2,n → 0, we observe that

|K′n,∆,ηn
s (x, y)| converges to zero uniformly on compacts in probability as n→ ∞.

Again by Lemma 3.5.7,

sup
z∈Bη1,n (x)

∣∣∣∣∣ηd
2,n

∆
E

X(k−1)∆ gηn,y
2 (∆n

1 X)2 − f (x, y)
∫

g2(w)2dw

∣∣∣∣∣ −−−→n→∞
0.

In analogy to K′n,∆,η(x, y), therefore,∣∣∣∣Kn,∆,ηn(x, y)− f (x, y)
∫

g1(w)2dwR′n,∆,ηn(x)
∣∣∣∣ ucp
=⇒
n→∞

0. (3.5.32)

By Lemma 3.5.9, consequently,

(
Kn,∆,ηn(xi, yi)

)
i∈I

L−st
=⇒
n→∞

(
f (xi, yi)

∫
g1(w)2dwµ′(xi)

∫
g2(z)2dzL

)
i∈I

;

hence, eq. (3.5.30) holds. �

(iii) Let i, j ∈ I. We note that for all n large enough such that η1,n, η2,n are small
enough, we have gηn,xi

1 g
ηn,xj
1 ≡ 0 whenever xi 6= xj, and gηn,yi

2 g
ηn,yj
2 ≡ 0 whenever

yi 6= yj. For all ω and n large enough, thus, 〈Mn,∆,ηn(xi, yi), Mn,∆,ηn(xj, yj)〉s ≡ 0 if
i 6= j. �

(iv) By Lemma 3.5.9 and eq. (3.5.32), we obtain the joint convergence of the pro-
cesses (Rn,∆,ηn(xi))i∈I and 〈Mn,∆,ηn(xi, yi), Mn,∆,ηn(xi, yi)〉)i∈I to the required limit.2

Proof (of Theorem 3.2.10). For every n, and (x, y) ∈ E⊕ × E∗, we have

√
vn∆ηd

1,nηd
2,n

(
f̂ ∆,ηn
n (x, y)− f̄ ηn(x, y)

)
=

Un,∆,ηn
1 (x, y)

Rn,∆,ηn
1 (x)

,

where f̄ η(x, y) := µ(gη,x
1 Fgη,y

2 )/µ(gη,x
1 ). Since L and W are independent, V(xi, yi) :=
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L−1/2
1 W i

L1
defines an I-dimensional standard Gaussian random vector such that L, V

and F are independent. By the continuous mapping theorem and Lemma 3.5.10,
consequently,√

vn∆ηd
1,nηd

2,n

(
f̂ ∆,ηn
n (xi, yi)− f̄ ηn(xi, yi)

)
i∈I

L−st−−−→
n→∞

(
σ(xi, yi)V(xi, yi)L−1/2

1

)
i∈I

,

where σ(x, y)2 is given by eq. (3.2.11).

In addition, let ηn = (η1,n, η2,n) be such that eq. (3.2.7) holds as well. It remains
to prove (vn∆ηd

1,nηd
2,n)

1/2( f̄ ηn(x, y)− f (x, y)) → γ(x, y). This, however, follows in
analogy to the proof of Theorem 3.3.7. 2

Proof (of Corollary 3.2.11). In analogy to the proof of Theorem 3.2.10, by Lemma 3.5.10
it remains to show that (vn∆ηd

1,nηd
2,n)

1/2γ̂
ηn
n (x, y) is a consistent estimator for γ(x, y).

This, however, follows in analogy to the proof of Corollary 3.3.8. 2

3.6 On the auxiliary Markov chains Z and Z’

In this section, we derive an explicit representation for the transition kernel Φ of the
auxiliary process Z′, and (in-)equalities for expectations of the formEx(

∫ T1
0 h(Xs)ds)k.

In addition, we derive representations for the stationary probability measures ψ and
ϕ of the processes Z and Z′.

We invoke technical results on resolvents of semi-groups. We recall from
Section 2.5 that the resolvent (Rλ)λ>0 of a semi-group (Pt)t≥0 is given by Rλ :=∫ ∞

0 exp(−λt)Ptdt. For bounded measurable functions h, the generalised resolvent
kernel Rh is given by

Rh(x, A) := Ex
∞∫

0

e−
∫ t

0 h(Xs)ds1A(Xt)dt ∀x ∈ E, A ∈ E .

These kernels were first introduced by Neveu (1972). For a comprehensive interpre-
tation, we refer to Section 4 of Down, Meyn, and Tweedie (1995).
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3 On non-parametric estimation of the Lévy kernel of Markov processes

3.6.1 Lemma. Let (Rλ)λ>0 be the resolvent of X, and let (R∗λ)λ>0 be given by

R∗λ := Rλ

∞

∑
k=0

(
(Iq − IqΠ̄)Rλ

)k
, where Iqh(x) := q(x)h(x). (3.6.1)

Then (R∗λ)λ>0 is the resolvent of a positive contraction semi-group. For its corresponding
process X∗, we have that the laws of X∗1[[0,T1[[

and X1[[0,T1[[
are equal.

Proof. Since IqΠ̄ is a bounded kernel, (R∗λ)λ>0 is the resolvent of a positive contrac-
tion semi-group by Theorem 4.2 of Bass (1979). It follows from Sawyer (1970) and
Chapter 6 of Bass (1979) that, for the process X∗ (corresponding to (R∗λ)λ>0), we have
that the laws of X∗1[[0,T1[[

and X1[[0,T1[[
are equal. 2

3.6.2 Lemma. Let h be a measurable function on E. Then

Ex h(Z′1) = R∗q Iqh(x) and Ex
T1∫

0

h(Xs)ds = R∗q h(x), (3.6.2)

where R∗q denotes the generalised resolvent kernel associated with the modified resolvent
(R∗λ)λ>0 and the function q. For every λq ≥ ‖q‖∞, we have R∗q = ∑∞

k=0 R∗λq
(Iλq−qR∗λq

)k.

Proof. We recall that the laws of X∗1[[0,T1[[
and X1[[0,T1[[

are equal. The expectation of
h(Z′1) under Px, therefore, coincides with the expectation of h(X∗) sampled at an in-
dependent killing time according to the multiplicative functional exp(−

∫ ·
0 q(X∗s )ds).

In formulas, we have

Ex h(Z′1) = Ex
∞∫

0

e−
∫ t

0 q(X∗s )dsq(X∗t )h(X∗t )dt.

By eq. (19) of Down et al. (1995), hence, Ex h(Z′1) = R∗qIqh(x), where R∗q denotes
the generalised resolvent kernel associated with the modified resolvent (R∗λ)λ>0. By
Chapter 7 of Neveu (1972), R∗q = ∑∞

k=0 R∗λq
(Iλq−qR∗λq

)k holds for every λq ≥ ‖q‖∞.
Similarly, we observe

Ex
T1∫

0

h(Xs)ds = Ex
∞∫

0

e−
∫ t

0 q(X∗u)duq(X∗t )
t∫

0

h(X∗s )dsdt. (3.6.3)
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By Fubini’s theorem (cf., eq. (20) of Down et al. (1995)), consequently,

Ex
T1∫

0

h(Xs)ds = Ex
∞∫

0

e−
∫ t

0 q(X∗s )dsh(X∗t )dt = R∗q h(x).
2

Remark. It is immediate from Lemma 3.4.2 that Φ = Π̄R∗qIq.

We obtain two corollaries:

3.6.3 Corollary. Let h1, . . . , hk be measurable functions on E. Then

Ex
k

∏
j=1

T1∫
0

hj(Xs)ds =
k

∑
j=1
Ex

∞∫
0

e−
∫ t

0 q(X∗u)duhj(X∗t )∏
l 6=j

t∫
0

hl(X∗s )dsdt. (3.6.4)

Proof. In analogy to eq. (3.6.3), we observe

Ex
k

∏
j=1

T1∫
0

hj(Xs)ds = Ex
∞∫

0

e−
∫ t

0 q(X∗u)duq(X∗t )
k

∏
j=1

t∫
0

hj(X∗s )dsdt.

By the Leibniz rule, moreover,

k

∏
j=1

t∫
0

hj(X∗s )ds =
k

∑
j=1

t∫
0

hj(X∗s )∏
l 6=j

s∫
0

hl(X∗r )drds.

By Fubini’s theorem, therefore, we have eq. (3.6.4). 2

3.6.4 Corollary. Let h be a bounded measurable function on E. For all k ∈ N∗, if
infx∈supp(h) q(x) > 0, then

Ex

 T1∫
0

h(Xs)ds

k

≤ k!‖h‖k−1
∞

(infx∈supp(h) q(x))k−1 R∗q |h|(x). (3.6.5)
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3 On non-parametric estimation of the Lévy kernel of Markov processes

Proof (by induction). By Lemma 3.6.2, we immediately have eq. (3.6.5) for k = 1. We
assume that eq. (3.6.5) holds for some k ∈ N∗. Then we deduce from Corollary 3.6.3
and |h| ≤ q‖h‖∞/(infx∈supp(h) q(x)) that eq. (3.6.5) holds for k + 1. 2

3.6.5 Lemma. µIqΠ̄R∗q = µ.

Proof. By Theorem 4.2 of Bass (1979) and Section 7 of Neveu (1972), we have

(IqΠ̄− (I− R−1
1 ))R∗q = I,

where the formal inverse of R1 is defined by R−1
1 := ∑∞

k=0(I − R1)
k. Since µ is

invariant w. r. t. (Pt)t≥0, we also have µR1 = µ and µ = µR−1
1 . Hence, µIqΠ̄ =

µ(IqΠ̄− (I− R−1
1 )). Therefore, µIqΠ̄R∗q = µ. 2

3.6.6 Corollary. The measures ϕ := (µ(q))−1µIq and ψ := ϕΨ are the invariant probabil-
ity measures w. r. t. Φ and Ψ.

Proof. Since Φ = Π̄R∗qIq, we observe µIqΦ = µIq. By eq. (3.4.10), ϕΨk+1 = ϕΦkΨ =

ϕΨ in addition. 2
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4 On the estimation of the Lévy measure of

time-changed Lévy processes

This chapter is dedicated to the case of a time-changed Lévy process. In general,
such a process is no longer Markov; unless, for instance, the time-change is a Lévy
subordinator itself. In analogy to Chapter 3, we study a kernel density estimator
for the density of the Lévy measure. Our results and methods of proof are adapted
from the Markov case.

4.1 Introduction

In this chapter, we consider a process Xt = LTt where L is a Lévy process with Lévy
measure F and T is an absolutely continuous time-change. We assume that F admits
a density x 7→ f (x), which we want to estimate in a non-parametric way.

On an equidistant time grid, we observe a sample X0(ω), X∆(ω), . . . , Xn∆(ω) of
the process; the jumps and the time-change are latent. We study a kernel density
estimator for f (x). We show its consistency as n∆ → ∞ and ∆ → 0 under a
smoothness hypothesis on the estimated density and an ergodicity assumption on
the time-change. In addition, we prove a central limit theorem. A standardised
version for the construction of asymptotic confidence intervals is provided.

Our results are comparable to those in the positive recurrent Markov case and
to those in classical non-parametric density estimation. By an optimal choice of
the bandwidth, if ∆ → 0 fast enough, our estimator’s rate is (n∆)α/(2α+d), where
α stands for the smoothness of the function f . We remark that our achieved rate
equals the non-parametric minimax rate of smooth density estimation.

Several non-parametric estimation methods and divers statistical frameworks
for the estimation of the Lévy measure of a time-changed Lévy process have been
considered in literature. For the low-frequency case, where observations take place
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4 On the estimation of the Lévy measure of time-changed Lévy processes

on a fixed sampling grid with ∆ > 0, we refer, for instance, to Belomestny (2011).
Figueroa-López (2009b, 2011) considers the high-frequency setting. Consistency and
a central limit theorem are proved for an estimator of the integral

∫
F(dx)g(x) of a

test function g w. r. t. to the Lévy measure. Estimators for such integrals serve as the
main building block for projection estimators. Although Figueroa-López’s estimator
is related to ours, the results are clearly distinguishable. In our study, we consider a
sequence of functions (gn)n∈N which satisfy

∫
F(dx)gn(x)→ f (x); this is in contrast

to the usage of a fixed function g in Figueroa-López (2009b, 2011).
We briefly outline this chapter. In Section 4.2 we study the estimation of the Lévy

measure based on discrete observations. Split into three subsections, we present the
statistical problem with our standing assumptions; we give our estimator along with
a bias correction; and state our main results – the estimator’s consistency and the
central limit theorem. The corresponding proofs are in Section 4.3.

4.2 Estimation of the Lévy density from high-frequency

observations

Throughout this chapter, we use the notation introduced in Chapters 2 and 3.

4.2.1 Preliminaries and assumptions

On the filtered probability space (Ω, F , (Gt)t≥0,P), let L = (Lt)t≥0 be a Lévy process
with values in E = Rd and characteristic triple (b, c, F). Moreover, let Y = (Yt)t≥0 be
a positive càdlàg process – independent of L – such that

Tt :=
t∫

0

Ysds is a Gt-stopping time for all t ≥ 0.

By Corollaire 10.12 of Jacod (1979) (recall Theorem 2.2.14), the time-changed Lévy
process X given by Xt := LTt is an Itō semi-martingale w. r. t. the filtration (Ft)t≥0

given by Ft := GTt . Moreover, its characteristics (B, C, n) satisfy

dBt = bYtdt, dCt = cYtdt, and n(dt, dx) = Ytdt⊗ F(dx).
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4.2 Estimation from high-frequency observations

For n ∈ N∗ and ∆ > 0, we observe the increments

∆n
k X(ω) := Xk∆(ω)− X(k−1)∆ k = 1, . . . , n.

We emphasise that the jumps of the process and the time-change are latent.
Throughout, we impose the following assumption on the time-change:

4.2.1 Assumption. The process Y is ergodic with stationary distribution µ on R∗+
such that Eµ Y4

t =
∫

x4µ(dx) < ∞. �

W. l. o. g., we suppose that Eµ Yt = 1. Moreover, we assume that the Lévy measure F
of L admits a density x 7→ f (x) which we want to estimate. Also, we impose an
assumption on the smoothness of f :

4.2.2 Assumption. There exists an α > 0 for which the Lévy measure F of L admits
a density f ∈ Cα

loc(E∗). �

To obtain a central limit theorem, we suppose in addition:

4.2.3 Assumption. The family {(
√

t(t−1Tst − s))s≥0 : t > 0} is tight. �

4.2.2 Kernel density estimator

We briefly outline our method of estimation: Firstly, we choose a smooth kernel g
with support B1(0) which is, at least, of order α; that is, for every multi-index
m = (m1, . . . , md) ∈ Nd \ {0}, we have

|m| := m1 + · · ·+ md < αi =⇒ κm(g) :=
∫

xm1
1 · · · · · x

md
d g(x)dx = 0. (4.2.1)

Secondly, we choose a bandwidth η > 0. Lastly, we construct an estimator for
f (x) using the kernel gη,x(z) := η−dg(η−1(z − x)). If the bandwidth is chosen
appropriately, we achieve a consistent and asymptotically normal estimator.

4.2.4 Definition. For η > 0, we call f̂ ∆,η
n defined by

f̂ ∆,η
n (x) :=

1
n∆

n

∑
k=1

gη,x(∆n
k X) (4.2.2)

the kernel density estimator of f (w. r. t. bandwidth η based on X0, X∆, . . . , Xn∆). �
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4 On the estimation of the Lévy measure of time-changed Lévy processes

In analogy to classical kernel density estimation, we also introduce a bias correc-
tion for our estimator.

4.2.5 Definition. For η > 0, we call γ̂
∆,η
n defined by

γ̂
∆,η
n (x) :=

ηα ∑|m|=α
κm(g)

m!
∂m

∂xm f̂ ∆,η
n (x), if α ∈ N∗,

0, otherwise,
(4.2.3)

the bias correction for f̂ ∆,η
n (x). �

4.2.3 Consistency and central limit theorem

In this subsection, we present our main results of this chapter. We utilise the
following conditions as n∆→ ∞ and ∆→ 0, where 0 ≤ ζ < ∞:

n∆ηd
n → ∞, and ηn → 0; (4.2.4)

n∆ηd+2α
n → ζ2. (4.2.5)

In addition, we also utilise the following conditions due to discretisation:

∆η−2−d
n → 0; (4.2.6a)

n∆2ηd
n → 0, and n∆3η−4−d

n → 0. (4.2.6b)

Remark. If ∆→ 0 fast enough, then eqs. (4.2.4) and (4.2.5) are the crucial conditions.

4.2.6 Theorem. Grant Assumptions 4.2.1 and 4.2.2. Let ηn be such that eqs. (4.2.4)
and (4.2.6a) hold. Moreover, let x 6= 0. Then we have the following convergence in
probability:

f̂ ∆,ηn
n (x) P−−−→

n→∞
f (x). (4.2.7)

For the next theorem, we establish additional notation. On an extension

(Ω̃, F̃ , P̃) := (Ω×Ω′, F ⊗F ′,P⊗P′) (4.2.8)
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4.2 Estimation from high-frequency observations

of the probability space, let V = (V(x))x∈R∗ be a standard Gaussian white noise
random field such that V and F are independent. In the theorem below, convergence
holds stably in law (recall Definition 2.3.1).

4.2.7 Theorem. Grant Assumptions 4.2.1 to 4.2.3. Let (xi)i∈I be a finite family of pairwise
distinct points in E∗, and let ηn be such that eqs. (4.2.4) and (4.2.6) hold. Then we have the
following stable convergence in law:(√

n∆ηd
n

(
f̂ ∆,ηn
n (xi)− Fgηn,xi

))
i∈I

L−st−−−→
n→∞

(
σ(xi)V(xi)

)
i∈I

, (4.2.9)

where the asymptotic variance is given by

σ(x)2 := f (x)
∫

g(z)2dz. (4.2.10)

In addition, let ηn be such that eq. (4.2.5) holds as well. Suppose either that α ∈ N∗ or
that ζ = 0 in eq. (4.2.5). Then we have the following stable convergence in law:(√

n∆ηd
n

(
f̂ ∆,ηn
n (xi)− f (xi)

))
i∈I

L−st−−−→
n→∞

(
γ(xi) + σ(xi)Vi

)
i∈I

, (4.2.11)

where – in the former case – the asymptotic bias γ(x) is given by

γ(x) := ζ ∑
|m|=α

κm(g)
m!

∂m

∂xm f (x), (4.2.12)

and – in the latter case – γ(x) = 0.

Remark. The asymptotic bias and variance of our estimator are analogous to those of
our estimators in the Markov case (Chapter 3) and, also, analogous to those of the
Rosenblatt–Parzen window estimator in classical density estimation.

If we choose ηn = (n∆)−1/(2α+d), then eqs. (4.2.4) and (4.2.5) hold with ζ = 1.
If ∆→ 0 fast enough such that n∆1+(2α+d)/(α+d+2) → 0 in addition, then our choice
of ηn also satisfies eq. (4.2.6). Consequently, our estimator’s rate of convergence is

(n∆)α/(2α+d).
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4 On the estimation of the Lévy measure of time-changed Lévy processes

This equals the non-parametric minimax rate of smooth density estimation.

Theorem 4.2.7 does not allow for a direct construction of confidence intervals.
For this purpose, we also obtain the following standardised version.

4.2.8 Corollary. Grant Assumptions 4.2.1 to 4.2.3. Let ηn be such that eqs. (4.2.4) to (4.2.6)
hold. Suppose either that α ∈ N∗ or that ζ = 0 in eq. (4.2.5). Then we have the following
stable convergence in law:(√

n∆ηd
n

f̂ ∆,ηn
n (xi)

∫
g(z)2dz

(
f̂ ∆,ηn
n (xi)− γ̂

∆,ηn
n (xi)− f (xi)

))
i∈I

L−st−−−→
n→∞

(
V(xi)

)
i∈I

.

4.3 Proofs

Throughout this section, we work on the extension of the probability space given in
eq. (4.2.8). Given the index family I, we denote by W = (W i)i∈I an I-dimensional
Wiener process such that W and F are independent.

Proof (of Theorem 4.2.6). For n ∈ N∗ and x 6= 0, let Gn,∆,η(x) be given by

Gn,∆,η
s (x) =

1
n∆

bsnc

∑
k=1

gη,x(∆n
k X).

Moreover let (H n
s )s≥0 be the filtration given by H n

s := Fbsnc∆. For s = k/n and
k ∈ N, we have H n

s− = F(k−1)∆. We decompose the process Gn,∆,η(x) as follows:

Gn,∆,η
s (x) = Hn,∆,η

s (x) + H′n,∆,η
s (x) + Mn,∆,η

s (x),

where

Hn,∆,η
s (x) := (n∆)−1Tbsnc∆Fgη,x,

H′n,∆,η
s (x) :=

1
n∆

bsnc

∑
k=1

E
[

gη,x(∆n
k X)− Fgη,x∆n

k T
∣∣∣F(k−1)∆

]
,
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and

Mn,∆,η
s (x) :=

1
n∆

bsnc

∑
k=1

(
gη,x(∆n

k X)− Fgη,x∆n
k T
)
− H′n,∆,η

s (x).

We prove that Hn,∆,ηn
s (x)→ s f (x), H′n,∆,ηn

s (x)→ 0 and Mn,∆,ηn
s (x)→ 0 in probability

for every s ≥ 0 as n→ ∞.

(H) Since Y is ergodic (Assumption 4.2.1), we have (n∆)−1Tbsnc∆ → s in prob-
ability as n∆ → ∞ for every s ≥ 0. Since f is continuous at x (Assumption 4.2.2),
moreover, we observe

Fgη,x =
∫

f (x + ηz)g(z)dz→ f (x) as η → 0.

Consequently, Hn,∆,ηn
s (x)→ s f (x) in probability as n→ ∞. �

(H′) We recall that – conditionally on T – the distribution L (∆n
k X | ∆n

k T) is
equal to the distribution L (L∆n

k T | ∆n
k T). Since L and Y are independent, by

Proposition 3.5.1 where we choose m = 3, we obtain that there exists a ζ < ∞ such
that∣∣∣E [gη,x(∆n

k X)− Fgη,x∆n
k T
∣∣∣F(k−1)∆

]∣∣∣ ≤
ζ E

[
(∆n

k T)3/2 +
(∆n

k T)2

η2+d

(
1 +

3

∑
j=1

(∆n
k T)j

η2j +
(∆n

k T)2

η6

) ∣∣∣∣∣F(k−1)∆

]
.

(4.3.1)

By Hölder’s inequality, we have (∆n
k T)p ≤ ∆p−1

∫ k∆
(k−1)∆ Yp

s ds for p ≥ 1. Since Y is
ergodic and Eµ Y4

t < ∞ (Assumption 4.2.1), moreover, we have

1
n∆

bsnc

∑
k=1

E

 k∆∫
(k−1)∆

Yp
s ds

∣∣∣∣∣∣∣F(k−1)∆

 P−−−→
n→∞

sEµ Yp
t for all p ≤ 4.

Since ∆η−2−d
n → 0 by eq. (4.2.6a), thus, H′n,∆,ηn

s (x)→ 0 in probability as n→ ∞. �

(M) We note that Mn,∆,ηn(x) is an H n
s -martingale. Since n∆ηd

n → ∞ by eq. (4.2.4),
we observe that supr≤s |∆Mn,∆,ηn

r (x)| → 0 in probability as n→ ∞. By the martingale
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4 On the estimation of the Lévy measure of time-changed Lévy processes

limit theorem 2.3.10, therefore, it is sufficient to prove that its predictable quadratic
variation at time s = 1 converges to zero as n→ ∞.

We observe

〈
Mn,∆,η(x), Mn,∆,η(x)

〉
s
≤ 4

n2∆2

bsnc

∑
k=1

E
[

gη,x(∆n
k X)2 + (Fgη,x)2 (∆n

k T)2
∣∣∣F(k−1)∆

]
.

In analogy to the case (H′), we have

ηd
n

n∆

bsnc

∑
k=1

E
[

gηn,x(∆n
k X)2 − F(gηn,x)2∆n

k T
∣∣∣F(k−1)∆

]
P−−−→

n→∞
0, (4.3.2)

(
Fgηn,x

n∆

)2 bsnc

∑
k=1

E[(∆n
k T)2 | F(k−1)∆] ≤

(Fgηn,x)2

n
· 1

n∆

bsnc

∑
k=1

E

 k∆∫
(k−1)∆

Y2
s ds

∣∣∣∣∣∣∣F(k−1)∆

 P−−−→
n→∞

0.

(4.3.3)

Since ηd
nF(gηn,x)2(n∆)−1 ∑bsnc

k=1 E[∆
n
k T | F(k−1)∆] → s f (x)

∫
g(z)2dz in addition, we

obtain 〈Mn,∆,ηn(x), Mn,∆,ηn(x)〉s → 0 in probability as n→ ∞. 2

Proof (of Theorem 4.2.7). For n ∈ N∗ and x 6= 0, let Un,∆,η(x) be given by

Un,∆,η
s (x) :=

√
n∆ηd

(
Gn,∆,η

s (x)− s f (x)
)

.

We decompose the process Un,∆,η(x) as follows:

Un,∆,η
s (x) =

√
n∆ηd

(
Hn,∆,η

s (x)− s f (x)
)
+
√

n∆ηdH′n,∆,η
s (x) +

√
n∆ηdMn,∆,η

s (x).

We prove that (n∆ηd
n)

1/2(Hn,∆,ηn
s (x)− s f (x))→ sγ(x) and (n∆ηd

n)
1/2H′n,∆,ηn

s (x)→ 0
in probability as well as ((n∆ηd

n)
1/2Mn,∆,ηn(xi))i∈I → (σ(xi)W i)i∈I stably in law as

n→ ∞.
(H) Immediately, we have

√
n∆ηd

n

(
Hn,∆,ηn

s (x)− s f (x)
)
= s
√

n∆ηd
n

(
Fgηn,x − f (x)

)
+
√

n∆ηd
n

(Tbsnc∆
n∆

− s
)

.
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Under Assumption 4.2.2, by Taylor’s theorem – in the case α ∈ N∗ –

s
√

n∆ηd
n

(
Fgηn,x − f (x)

)
= s
√

n∆ηd
n

ηα
n ∑
|m|=α

κm(g)
m!

∂m

∂xm f (x) + o(ηα
n)


−−−→
n→∞

sγ(x)

holds as g is of order α and – in the case ζ = 0 in eq. (4.2.5) – there is some constant
ζ ′ < ∞ such that∣∣∣∣s√n∆ηd

n

(
Fgηn,x − f (x)

)∣∣∣∣ ≤ ζ ′s
√

n∆ηd
nηα

n −−−→n→∞
0.

In addition, we directly obtain√
ηd

n ·
√

n∆
(
(n∆)−1Tbsnc∆ − s

)
P−−−→

n→∞
0

under Assumption 4.2.3. �

(H′) By step (H′) in the proof of Theorem 4.2.6, we directly obtain√
n∆ηd

nH′n,∆,ηn
s (x) P−−−→

n→∞
0

since n∆2ηd
n → 0 and n∆3η−d−4

n → 0 by eq. (4.2.6b). �

(M) Since n∆ηd
n → ∞ and ηn → 0 by eq. (4.2.4), we have

sup
r≤s

√
n∆ηd

n

∣∣∣∆Mn,∆,ηn
r (xi)

∣∣∣ P−−−→
n→∞

0

for all i ∈ I. Let Nn,∆,η and N′n,∆,η be the H n
s -martingales given by

Nn,∆,η
s (x) :=

√
ηd

n∆

bsnc

∑
k=1

gη,x(∆n
k X)−E

[
gη,x(∆n

k X) |F(k−1)∆

]

N′n,∆,η
s (x) :=

√
ηd

n∆
Fgη,x

bsnc

∑
k=1

k∆∫
(k−1)∆

Yrdr−E

 k∆∫
(k−1)∆

Yrdr

∣∣∣∣∣∣∣F(k−1)∆

 .
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We note that (n∆ηd
n)

1/2Mn,∆,η
s (x) = Nn,∆,η

s (x) − N′n,∆,η
s (x) and, for all s ≥ 0, we

prove 〈
N′n,∆,ηn(x), N′n,∆,ηn(x)

〉
s

P−−−→
n→∞

0,〈
Nn,∆,ηn(xi), Nn,∆,ηn(xj)

〉
s

P−−−→
n→∞

sσ(xi)
2δij.

In analogy to eq. (4.3.3), we observe〈
N′n,∆,ηn(x), N′n,∆,ηn(x)

〉
s
≤

∆ηd
n(Fgηn,x)2 · 1

n∆

bsnc

∑
k=1

E

 k∆∫
(k−1)∆

Y2
r dr

∣∣∣∣∣∣∣F(k−1)∆

 P−−−→
n→∞

0.

This also implies

ηd
n

n∆

bsnc

∑
k=1

E
[
∆n

k T
∣∣∣F(k−1)∆

]2 P−−−→
n→∞

0 (4.3.4)

Next, we have〈
Nn,∆,ηn(xi), Nn,∆,ηn(xj)

〉
s
=

ηd
n

n∆

bsnc

∑
k=1

E
[

gηn,x(∆n
k X)2

∣∣∣F(k−1)∆

]
−E

[
gηn,x(∆n

k X)
∣∣∣F(k−1)∆

]2
.

We observe that

ηd
n

n∆

bsnc

∑
k=1

E
[

gηn,x(∆n
k X)

∣∣∣F(k−1)∆

]2
≤ (4.3.5a)

4ηd
n

n∆

bsnc

∑
k=1

(Fgη,x)2E
[
∆n

k T
∣∣∣F(k−1)∆

]2
(4.3.5b)

+
4ηd

n
n∆

bsnc

∑
k=1

E
[

gη,x(∆n
k X)− Fgη,x∆n

k T
∣∣∣F(k−1)∆

]2
, (4.3.5c)
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where the summand in eq. (4.3.5b) goes to zero by eq. (4.3.4), and – recall eq. (4.3.1)
– the summand in eq. (4.3.5c) goes to zero in analogy to step (H′) in the proof of
Theorem 4.2.6.

Finally, we note that gη,xgη,y ≡ 0 for all η small enough if x 6= y, and recall that
ηdF(gη,x)2 → f (x)

∫
g(z)2dz as η → 0. Consequently, we deduce in combination

with eq. (4.3.2) that

ηd
n

n∆

bsnc

∑
k=1

E
[

gη,xi gη,xj(∆n
k X)

∣∣∣F(k−1)∆

]
P−−−→

n→∞

s f (xi)
∫

g(z)2dz if i = j,

0, else.
(4.3.6)

By the martingale limit theorem 2.3.10, therefore,(√
n∆ηd

nMn,∆,ηn(xi)
)

i∈I

L
=⇒
n→∞

(
σ(xi)W i

)
i∈I

,

where σ(x)2 = f (x)
∫

g(z)2dz. It remains to prove that this convergence holds stably
in law. This, however, follows in analogy to the proof of Lemma 3.4.11 for instance.2

Proof (of Corollary 4.2.8). It remains to show that (n∆ηd
n)

1/2γ̂
∆,ηn
n (x)− γ(x) → 0 in

probability as n→ ∞. This, however, follows in analogy to the proof of Corol-
lary 3.3.8. 2
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The estimation of jumps in practice:

Simulation studies and

the empirical modelling of intermittency
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5 Simulation studies

The theoretical results developed in the previous chapters are asymptotical. We
dedicate this chapter to investigate on the performance of the various estimators in
practice. We illustrate, inter alia, the influence of discretisation and the importance
of suitable bandwidth selection. In Section 5.1, we study the kernel density estimator
for the Lévy kernel of a Markovian Itō semi-martingale for an example process with
finite activity, and another example process with infinite activity. Section 5.2 is based
on Section 4 of Ueltzhöfer and Klüppelberg (2011). Within each section, all figures
and tables are put off to the end.

5.1 Markovian Itō semi-martingales

In this section, we present a simulation study for the kernel density estimators
(Definitions 3.2.7 and 3.3.4) of the canonical Lévy kernel of Markovian Itō semi-
martingales. We implemented numerical simulation schemes for a process with finite
activity (that is, with almost surely finitely many jumps on compact time-intervals)
and for a process with infinite activity. In particular, we considered the univariate
Itō semi-martingales with characteristics (B, C, n) given by

dBt = −bXtdt, dCt = cdt, and n(dt, dy) = f (Xt, y)dtdy, (5.1.1)

where b, c > 0 and

i) the density of the Lévy kernel of the process with finite activity is a mixture
of the normal density ϕ( · ; 0, σ2) with mean zero and variance σ2 > 0 and the
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exponential density ρ( · ; λ) with mean 1/λ > 0; in particular,

f (x, y) :=



ζρ(y; λ), if x ∈ ]−∞,−ξ],

ζ[m(x)ϕ(y; 0, σ2) + (1−m(x))ρ(y; λ)] if x ∈ ]−ξ, 0],

ζ[m(x)ϕ(y; 0, σ2) + (1−m(x))ρ(−y; λ)] if x ∈ ]0, ξ],

ζρ(−y; λ) if x ∈ ]ξ, ∞[,

(5.1.2)

where m(x) = (1 + cos(πx/ξ))/2;

ii) the density of the Lévy kernel of the process with infinite activity is a stable
density with state-dependent intensities; in particular,

f (x, y) :=
(

ζ+(x)1R∗+(y) + ζ−(x)1R∗−(y)
)
|y|−1−α, (5.1.3)

where

ζ+(x) :=



2, if x ∈ ]−∞,−ξ],

2− (1 + cos(πx/ξ))/2 if x ∈ ]−ξ, 0],

(1 + cos(πx/ξ))/2 if x ∈ ]0, ξ],

0 if x ∈ ]ξ, ∞[,

ζ−(x) := 2− ζ+(x).

Moreover, we have implemented the kernel density estimators f̂ η
t (x, y) based

on the sample-path {Xs(ω) : s ∈ [0, t]} and f̂ ∆,η
n (x, y) based on the sample X0(ω),

X∆(ω), . . . , Xn∆(ω) using the so-called bi-weight kernel

g(z) :=
15
16

(
1− z2

)2
1[−1,1](z). (5.1.4)

Its roughness is given by ξg =
∫

g(z)2dz = 5/7; its second moment by
∫

z2g(z)dz =

1/7. To calculate asymptotic confidence intervals derived from Corollaries 3.2.11
and 3.3.8 which are non-negative, we invert a test-statistic following, for instance,
Hansen (2009, p. 24). Let qα denote the α-quantile of the normal distribution, then
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5.1 Markovian Itō semi-martingales

the estimated asymptotic confidence interval of level α for f (x, y) is given by{
z ≥ 0 :

∣∣∣∣∣
√

η1η2∆ ∑n
k=1 gη,x(X(k−1)∆)

ξ2
gz

(
f̂ ∆,η
n (x, y)− z

)∣∣∣∣∣ ≤ qα

}
(5.1.5)

and, analogously, for the estimator f̂ η
t (x).

To calculate the bias corrections γ̂
η
t (x, y) and γ̂

∆,η
n (x, y) for our estimators, we

also estimate the derivatives of f and of the density µ′ of the invariant measure:
For the estimation of the first-order derivatives ∂x f (x, y) and dxµ′(x), we also use
the bi-weight kernel eq. (5.1.4). For the estimation of the second-order derivatives
∂2

x f (x, y) and ∂2
y f (x, y), however, we use the so-called tri-weight kernel

h(z) :=
35
32

(
1− z2

)3
1[−1,1](z). (5.1.6)

5.1.1 The finite activity case

Firstly, we investigated the performance of the estimator f̂ η
t (x, y) based on the

observation of a sample path {Xs(ω) : s ∈ [0, t]}. We chose the parameters of the
process with finite activity as reported in Table 5.1. The restriction of the Lévy
density to the set [−4, 4]× [−5, 5] for these parameters is presented in Figure 5.1. We
emphasise the discontinuity on the set R∗ × {0} and that f is not twice continuously
differentiable on the set {−ξ, ξ} ×R, which we indicated by the red dotted lines.
We investigated the scenarios

c1) t1 = 100, that is, 5000 jumps on average;

c2) t2 = 500, that is, 25 000 jumps on average; and

c3) t3 = 2500, that is, 125 000 jumps on average.

By construction, the jump-times T1, T2, . . . of the process form a Poisson random
measure on R+ with intensity ζdt. Given the value XTk for some k ∈ N (with
the convention T0 = 0), we simulated the left-limit XTk+1− by an Euler step over
the interval [[Tk, Tk+1[[. Next, we drew the jump ∆XTk+1 from the distribution with
density y 7→ ζ−1 f (XTk+1−, y). Iteratively, we obtained approximate trajectories of our
process sampled at the jump-times.
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For one simulated trajectory of each scenario c1–c3, we present the jumps
(XTk−, ∆XTk) in Figure 5.2. The shape of the Lévy density as shown in Figure 5.1 is
clearly visible in all three scenarios. We note that the number of jumps with left-limit
such that |XTk−| > 4 is small compared to the total number of jumps. As the density
f is an odd function which does not change in x for |x| > ξ = 3, we subsequently
restrict our analysis to the set [0, 3]×R∗.

At first, we compare our estimates f̂ η
t (x, y) pointwise. For each scenario c1–c3,

each bandwidth η ∈ {0.4, 0.8} × {0.2, 0.6}, each y ∈ {±0.2,±0.6, . . . ,±3,±4}, and
each x ∈ {0, 1.5, 2.5}, we summarised our estimation results in Tables 5.2 to 5.4.
Based on 100 trajectories per scenario, we give the empirical mean and the empirical
root mean squared error of our estimator, and the empirical confidence level of the
estimated 95%-confidence intervals defined by eq. (5.1.5). Likewise, we also state the
same empirical quantities for the bias corrected estimators f̂ η

t (x, y)− γ̂
η
t (x, y).

We observe the significant influence of the bandwidth choice on the bias of
the estimates. In scenario c2 (Table 5.3), for η = (0.4, 0.6) on the one hand, we
observe an empirical bias of 0.124 (resp., of 0.052; resp., of 0.011) at (0, 2.6) (resp., at
(0, 3); resp., at (0, 4)); for η = (0.8, 0.6) on the other hand, we observe an empirical
bias of 0.169 (resp., of 0.101; resp., of 0.041) at these points. In view of eq. (3.3.5),
this phenomenon was certainly expected. Moreover, we observe that there are
points where the bias correction does its job: In the former case, the bias reduces
to 0.008 (resp., to −0.021; resp., to 0.005); in the latter case, the bias reduces to 0.01
(resp., to −0.014; resp., to 0.005). Nevertheless, we also observe a downside of the
bias correction: The empirical standard deviation of the bias corrected estimator is
increased compared to the estimator itself. At points and for bandwidths where the
bias is small, this increased variability actually worsens the root mean squared error
of the estimator. In addition, we observe that the empirical confidence level of the
estimated (pointwise) confidence intervals is satisfactory. In scenarios c1 and c2, we
observe levels of 90 – 99 % for points and bandwidths where the bias is rather small,
and levels of 60 – 89 % for points and bandwidths where the bias is of significant
order. In scenario c3 (Table 5.4), this distinction becomes more apparent: For the
bandwidth choice η = (0.8, 0.6), the empirical levels drop to 0 % for points such as
(0, 2.6) or (2.5, 1.0) where the bias is dominant in front of the variance. Obviously,
this large bandwidth choice is not appropriate in scenario c3. The bias correction
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improves the results to some extent.

Next, we compare our estimates f̂ η
t in terms of their functional properties.

Due to the drawbacks of the bias correction observed in our pointwise analy-
sis before, we only consider the uncorrected estimator in the following. For sce-
nario c2 (resp., c3), the bandwidths η = (0.4, 0.4), (0.4, 0.6), (0.6, 0.2), (0.6, 0.4) (resp.,
η = (0.1, 0.4), (0.2, 0.4), (0.4, 0.2), (0.4, 0.4)), and the points x = 0, 0.75, 1.5, 2.25, we
summarised our estimation results in Table 5.5 (resp., Table 5.6). Based on 100
trajectories per scenario, we present the empirical mean (integrated) squared error
(MSE) of our estimator on intervals of the form [y1, y2] ⊆ [−3, 0[ ∪ ]0, 3]; that is,

y2∫
y1

∣∣∣ f̂ η
t (x, y)− f (x, y)

∣∣∣2dy.

Again, we observe the significant influence of the bandwidth choice on the MSE of
the estimate. The “optimal” choice within the set of presented bandwidths varies
with x as well as with [y1, y2]. In scenario c2 (Table 5.5), for x = 0.75 on the one
hand, we have that η = (0.6, 0.4) is better than the others in terms of the MSE
on [1.5, 3] but η = (0.4, 0.6) is better than the others on [−1.5,−0.6]. For x = 2.25
on the other hand, η = (0.4, 0.6) is better than the other three bandwidths on
[−3,−0.6] ∪ [0.6, 3]. In terms of the degree of smoothing and in terms of the relative
error compared to the true value of the Lévy density, we notice the following: In
scenario c2, for appropriate bandwidth choices, we obtain reasonable estimates (1)
at x = 0 on the sets {0.3 < |y| ≤ 2} and {0.4 < |y| ≤ 3}, and (2) at x = 2.25
on the sets {−4 < y < −0.6} and {0.6 < y < 2}. In scenario c3, again for
appropriate bandwidth choices, we obtain reasonable estimates (1) at x = 0 on
the sets {0.2 < |y| < 2.5} and {0.4 < |y| < 4}, and (2) at x = 2.25 on the sets
{−5 < y < −0.4} and {0.4 < y < 3}. We present the estimates corresponding to
these observations in Figures 5.3 and 5.4.

Secondly, we investigated the performance of the estimator f̂ ∆,η
n (x, y) based

on the observation of the discrete sample X0(ω), X∆(ω), . . . , Xn∆(ω). We kept the
parameters as reported in Table 5.1. We studied the scenarios

d1) t1 = 500 and ∆1 = 0.01, that is, 50 000 observations;
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d2) t2 = 2500 and ∆2 = 0.01, that is, 250 000 observations; and

d3) t3 = 2500 and ∆3 = 0.001, that is, 2 500 000 observations.

We simulated the process in analogy to before. Given the value XTk for some
k ∈ N, we simulated Euler steps over the intervals [[Tk, (bTk/∆c + 1)∆[[ up to
[[bTk+1/∆c∆, Tk+1[[. Next, we drew the jump ∆XTk+1 from the distribution with
density y 7→ ζ−1 f (XTk+1−, y). Finally, we only kept the sample X0, X∆, . . . , Xn∆.

For one simulated sample of each scenario d1–d3, we present the increments
(X(k−1)∆, ∆n

k X) in Figure 5.5. In comparison to Figure 5.2, the influence of discreti-
sation is clearly visible. Subsequently, we restrict our analysis to the same sets and
bandwidths as in the continuous observation case.

At first, we compare our estimates f̂ ∆,η
n (x, y) pointwise. For each scenario d1–

d3, each bandwidth η ∈ {0.4, 0.8} × {0.2, 0.6}, each x ∈ {0, 1.5, 2.5}, and each y ∈
{±0.2,±0.6, . . . ,±3,±4}, we summarised our estimation results in Tables 5.7 to 5.9.
Based on 100 samples per scenario, we give the empirical mean and the empirical
root mean squared error of our estimator, and the empirical confidence level of the
estimated 95%-confidence intervals defined by eq. (5.1.5). Likewise, we also state the
same empirical quantities for the bias corrected estimators f̂ ∆,η

n (x, y)− γ̂
∆,η
n (x, y).

In scenarios d1 and d2 where ∆ = 0.01, the bias due to discretisation is dominant.
In scenario d3 where ∆ = 0.001, our estimates improve significantly; the drift
component is much less influential for |y| large. Certainly, the influence of the
continuous martingale component for |y| small is still present. Since the bias
correction γ̂

∆,η
n only captures the bias due to the kernel smoothing, there is no

significant improvement observable comparing the bias corrected estimates to the
uncorrected ones. In the following, we focus on the uncorrected estimates only.

Next, we compare our estimates f̂ ∆,η
n (x, y) in terms of their functional properties.

For scenarios d2 and d3, the bandwidths η = (0.1, 0.4), (0.2, 0.4), (0.4, 0.2), (0.4, 0.4)
and the points x = 0, 0.75, 1.5, 2.25, we summarised our estimation results in Ta-
bles 5.10 and 5.11. Based on 100 samples per scenario, we present the empir-
ical mean (integrated) squared error of our estimator on intervals of the form
[y1, y2] ⊆ [−3, 0[ ∪ ]0, 3]. Again, we observe the significant influence of the band-
width choice on the MSE of the estimate. In terms of the degree of smoothing and in
terms of the relative error compared to the true value of the Lévy density, for the
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same bandwidth choices as in scenario c3, we observe the following: In scenario d2,
we only obtain reasonable estimates (1) at x = 0 on the set {1.75 ≤ |y| ≤ 3}, and (2)
at x = 2.25 on the sets {−5 < y < −3} and {1 < y < 3}. In scenario d3, neverthe-
less, we obtain reasonable estimates (1) at x = 0 on the sets {0.75 ≤ |y| ≤ 2} and
{0.5 ≤ |y| ≤ 4}, and (2) at x = 2.25 on the sets {−5 < y < −0.5} and {0.5 < y < 3}.
We present the estimates corresponding to these observations in Figures 5.6 and 5.7.
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Table 5.1: Parameters for the characteristics (B, C, n) given by eqs. (5.1.1) and (5.1.2)

b c ζ ξ σ2 λ

1 1 50 3 1 2

Figure 5.1: Contour plot (left) and topographical image plot (right) with legend (far right) of the
restriction of the Lévy density (x, y) 7→ f (x, y) given by eq. (5.1.2) with parameters as in Table 5.1
to the set [−4, 4]× [−5, 5]. The dotted red lines indicate the set {−ξ, ξ} ×R on which f is not
twice continuously differentiable.
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5.1 Markovian Itō semi-martingales

Figure 5.2: Jumps (XTk−, ∆XTk ) of one simulated trajectory of scenarios c1 (top), c2 (middle), and
c3 (bottom).
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Table 5.2: Scenario c1 — The empirical mean (columns 3, 6, 9, 12) of the estimator f̂ η
t (x, y) (resp.,

bias-corrected estimator f̂ η
t (x, y)− γ̂

η
t (x, y)) based on 100 trajectories (up to time t = 100) is

compared to the true value (col. 2) of f (x, y) given by eq. (5.1.2). In addition, the root mean
squared error (rmse; cols. 4, 7, 10, 13) and the empirical confidence level (cl; cols. 5, 8, 11, 14) in
percent of the estimated 95%-confidence interval given by eq. (5.1.5) are presented.

Estimation at x = 0

η = (0.4, 0.2) η = (0.4, 0.6) η = (0.8, 0.2) η = (0.8, 0.6)
y f (x, y) mean rmse cl mean rmse cl mean rmse cl mean rmse cl

−4.0 0.007 0.014 0.056 94 0.018 0.039 89 0.037 0.059 79 0.042 0.049 52
−3.0 0.222 0.236 0.268 92 0.280 0.156 91 0.266 0.199 93 0.324 0.148 77
−2.6 0.679 0.730 0.358 99 0.820 0.283 93 0.786 0.297 95 0.857 0.250 83
−2.2 1.774 1.973 0.745 93 2.024 0.486 88 1.902 0.510 94 2.011 0.375 88
−1.8 3.948 3.888 1.010 94 4.170 0.603 95 3.939 0.729 93 4.178 0.452 92
−1.4 7.486 7.420 1.273 97 7.597 0.778 96 7.414 0.945 95 7.585 0.521 95
−1.0 12.099 11.922 1.821 93 11.969 1.060 94 11.826 1.297 92 11.878 0.702 96
−0.6 16.661 16.632 2.277 92 16.362 1.221 96 16.434 1.614 94 16.208 0.955 91
−0.2 19.552 19.249 2.011 98 — — — 19.315 1.538 97 — — —

0.2 19.552 19.447 2.275 95 — — — 19.317 1.614 94 — — —
0.6 16.661 16.536 2.133 94 16.420 1.214 95 16.387 1.633 91 16.270 0.974 89
1.0 12.099 11.876 1.742 93 12.012 0.951 97 12.009 1.319 94 11.967 0.743 93
1.4 7.486 7.299 1.603 92 7.542 0.851 95 7.310 1.141 93 7.557 0.614 95
1.8 3.948 4.053 0.999 94 4.170 0.571 97 4.071 0.705 97 4.188 0.451 92
2.2 1.774 1.911 0.679 97 2.014 0.410 95 1.862 0.452 95 2.010 0.341 90
2.6 0.679 0.698 0.422 93 0.773 0.249 93 0.774 0.360 91 0.831 0.240 82
3.0 0.222 0.248 0.272 92 0.273 0.153 93 0.286 0.204 90 0.328 0.155 79
4.0 0.007 0.013 0.054 94 0.018 0.034 87 0.037 0.060 74 0.045 0.052 48

Estimation at x = 0 with bias correction

η = (0.4, 0.2) η = (0.4, 0.6) η = (0.8, 0.2) η = (0.8, 0.6)
y f (x, y) mean rmse cl mean rmse cl mean rmse cl mean rmse cl

−4.0 0.007 0.017 0.088 95 0.017 0.056 92 0.021 0.066 90 0.018 0.035 85
−3.0 0.222 0.249 0.397 88 0.220 0.227 88 0.232 0.293 89 0.215 0.171 74
−2.6 0.679 0.717 0.546 90 0.688 0.365 82 0.724 0.424 84 0.702 0.276 80
−2.2 1.774 2.100 1.168 75 1.941 0.676 73 1.886 0.794 75 1.820 0.476 72
−1.8 3.948 3.842 1.565 82 3.951 0.942 80 3.858 1.183 82 3.946 0.643 82
−1.4 7.486 7.422 2.090 80 7.468 1.289 74 7.373 1.440 82 7.484 0.856 79
−1.0 12.099 11.907 2.782 80 11.959 1.796 68 11.934 1.971 84 11.944 1.177 79
−0.6 16.661 16.638 3.676 70 16.726 1.913 80 16.619 2.690 68 16.649 1.409 75
−0.2 19.552 19.013 3.205 84 — — — 19.455 2.310 83 — — —

0.2 19.552 19.380 3.667 78 — — — 19.564 2.462 82 — — —
0.6 16.661 16.488 3.206 80 16.747 1.892 82 16.566 2.529 75 16.758 1.385 82
1.0 12.099 11.673 2.781 79 12.045 1.443 84 12.086 2.054 79 12.106 1.100 81
1.4 7.486 7.282 2.420 74 7.347 1.365 75 7.244 1.793 75 7.350 1.026 70
1.8 3.948 3.995 1.626 81 3.969 0.897 79 4.027 1.128 81 3.989 0.594 85
2.2 1.774 1.987 1.143 78 1.879 0.580 82 1.817 0.731 80 1.792 0.409 82
2.6 0.679 0.695 0.606 89 0.621 0.370 80 0.707 0.539 76 0.655 0.294 77
3.0 0.222 0.288 0.457 88 0.217 0.226 90 0.266 0.300 87 0.219 0.172 72
4.0 0.007 0.015 0.079 96 0.014 0.042 89 0.024 0.068 88 0.018 0.035 83
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Table 5.2a: Scenario c1 (continued)

Estimation at x = 1.5

η = (0.4, 0.2) η = (0.4, 0.6) η = (0.8, 0.2) η = (0.8, 0.6)
y f (x, y) mean rmse cl mean rmse cl mean rmse cl mean rmse cl

−4.0 1.695 1.664 0.818 96 1.642 0.496 95 1.625 0.582 98 1.605 0.369 94
−3.0 2.900 2.918 1.004 99 2.948 0.597 98 2.811 0.707 97 2.817 0.407 97
−2.6 3.746 3.887 1.144 95 3.878 0.695 96 3.650 0.851 97 3.690 0.530 97
−2.2 5.048 5.216 1.652 92 5.164 0.847 93 4.954 1.145 90 4.973 0.605 95
−1.8 7.056 6.954 1.790 96 7.256 1.014 95 6.791 1.165 95 7.018 0.705 93
−1.4 9.951 10.236 2.119 93 10.205 1.279 95 9.942 1.471 93 10.006 0.898 95
−1.0 13.631 13.200 2.256 99 13.472 1.283 96 13.368 1.715 96 13.495 0.958 95
−0.6 17.591 17.750 2.444 98 17.565 1.395 96 17.711 1.733 95 17.529 1.072 96
−0.2 21.087 20.907 3.022 95 — — — 20.818 2.241 94 — — —

0.2 9.776 9.778 2.050 95 — — — 10.282 1.503 95 — — —
0.6 8.331 8.316 1.709 96 8.235 1.020 97 8.711 1.243 95 8.627 0.809 94
1.0 6.049 6.445 1.425 97 6.168 0.857 97 6.524 1.112 96 6.399 0.678 91
1.4 3.743 3.788 1.348 93 3.931 0.788 93 4.019 0.930 92 4.086 0.608 90
1.8 1.974 2.155 0.897 96 2.225 0.583 92 2.206 0.711 95 2.278 0.482 89
2.2 0.887 1.033 0.637 92 1.077 0.386 94 1.010 0.471 90 1.078 0.313 90
2.6 0.340 0.367 0.411 90 0.420 0.250 92 0.384 0.280 93 0.427 0.186 94
3.0 0.111 0.130 0.234 93 0.149 0.142 92 0.132 0.170 93 0.148 0.102 91
4.0 0.003 0.006 0.062 99 0.004 0.026 98 0.004 0.034 98 0.003 0.014 97

Estimation at x = 1.5 with bias correction

η = (0.4, 0.2) η = (0.4, 0.6) η = (0.8, 0.2) η = (0.8, 0.6)
y f (x, y) mean rmse cl mean rmse cl mean rmse cl mean rmse cl

−4.0 1.695 1.748 1.226 85 1.607 0.753 84 1.701 0.920 78 1.657 0.566 75
−3.0 2.900 2.963 1.675 82 2.946 0.971 79 2.995 1.155 82 2.922 0.629 85
−2.6 3.746 4.033 1.911 82 3.849 1.121 80 3.892 1.266 81 3.815 0.796 77
−2.2 5.048 5.353 2.637 74 5.093 1.359 80 5.225 1.881 76 5.081 0.951 81
−1.8 7.056 6.908 2.814 75 7.161 1.595 82 6.998 1.832 82 7.067 1.162 77
−1.4 9.951 10.388 3.190 82 10.353 2.083 78 10.124 2.436 77 10.157 1.495 72
−1.0 13.631 13.088 3.546 82 13.177 2.079 79 13.372 2.591 82 13.380 1.507 83
−0.6 17.591 17.581 4.052 82 17.722 2.332 79 17.842 2.760 82 17.810 1.637 80
−0.2 21.087 20.898 4.839 80 — — — 20.753 3.631 82 — — —

0.2 9.776 9.477 3.415 78 — — — 9.715 2.377 77 — — —
0.6 8.331 8.092 2.907 81 8.145 1.637 81 8.212 1.986 77 8.262 1.231 77
1.0 6.049 6.617 2.372 83 6.172 1.427 75 6.396 1.624 82 6.096 0.988 82
1.4 3.743 3.742 2.072 81 3.757 1.231 75 3.788 1.487 82 3.772 0.847 80
1.8 1.974 2.088 1.415 84 2.127 0.840 83 2.115 1.113 77 2.103 0.614 76
2.2 0.887 1.124 1.025 76 1.016 0.570 80 1.006 0.731 75 0.953 0.401 79
2.6 0.340 0.422 0.638 84 0.377 0.357 85 0.417 0.449 83 0.348 0.252 79
3.0 0.111 0.143 0.351 89 0.147 0.198 86 0.150 0.265 82 0.128 0.152 86
4.0 0.003 0.011 0.107 99 0.006 0.045 98 0.006 0.060 99 0.003 0.025 98
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Table 5.2b: Scenario c1 (continued)

Estimation at x = 2.5

η = (0.4, 0.2) η = (0.4, 0.6) η = (0.8, 0.2) η = (0.8, 0.6)
y f (x, y) mean rmse cl mean rmse cl mean rmse cl mean rmse cl

−4.0 3.157 3.016 1.600 98 3.124 0.981 96 2.988 1.143 98 2.976 0.683 98
−3.0 5.219 4.952 1.955 98 5.115 1.279 95 5.041 1.482 99 5.075 0.911 95
−2.6 6.402 6.015 2.563 94 6.086 1.420 98 5.956 1.715 96 6.017 0.967 98
−2.2 7.883 7.505 2.750 98 7.658 1.733 96 7.341 1.804 97 7.471 1.150 96
−1.8 9.748 9.993 3.396 97 9.741 1.988 95 9.456 2.345 97 9.460 1.347 96
−1.4 12.085 11.983 3.217 98 11.932 1.957 94 11.810 2.368 96 11.854 1.342 95
−1.0 14.958 14.588 3.886 99 14.770 2.074 99 14.615 2.756 96 14.726 1.549 96
−0.6 18.396 17.922 4.051 98 18.300 2.534 96 18.251 2.887 95 18.285 1.843 97
−0.2 22.415 22.234 4.971 95 — — — 22.050 3.290 97 — — —

0.2 1.310 1.535 1.285 93 — — — 2.188 1.326 79 — — —
0.6 1.116 1.242 1.117 92 1.312 0.677 94 1.859 1.077 83 1.858 0.881 60
1.0 0.810 0.983 0.961 92 1.020 0.644 90 1.330 0.904 84 1.400 0.754 66
1.4 0.501 0.673 0.846 92 0.636 0.489 92 0.922 0.767 85 0.893 0.520 69
1.8 0.264 0.309 0.549 96 0.335 0.318 98 0.477 0.450 91 0.487 0.332 80
2.2 0.119 0.159 0.355 90 0.163 0.212 89 0.238 0.327 87 0.244 0.212 81
2.6 0.045 0.102 0.337 93 0.081 0.151 88 0.105 0.229 86 0.106 0.130 81
3.0 0.015 0.017 0.111 98 0.024 0.071 93 0.034 0.122 93 0.034 0.065 88
4.0 0.000 0.000 0.000 100 0.001 0.005 99 0.000 0.000 100 0.000 0.003 99

Estimation at x = 2.5 with bias correction

η = (0.4, 0.2) η = (0.4, 0.6) η = (0.8, 0.2) η = (0.8, 0.6)
y f (x, y) mean rmse cl mean rmse cl mean rmse cl mean rmse cl

−4.0 3.157 2.922 2.561 94 3.229 1.686 79 2.992 1.839 84 3.119 1.150 82
−3.0 5.219 4.729 3.176 83 4.946 1.982 81 5.176 2.300 87 5.289 1.389 82
−2.6 6.402 6.037 4.157 79 5.972 2.349 75 6.205 2.717 82 6.182 1.440 89
−2.2 7.883 7.591 4.308 82 7.541 2.927 77 7.674 2.949 84 7.672 1.772 83
−1.8 9.748 10.358 5.154 78 9.849 3.272 75 9.899 3.881 76 9.725 2.294 72
−1.4 12.085 11.777 5.257 80 11.714 3.167 78 11.791 3.761 83 11.972 2.094 81
−1.0 14.958 14.455 6.391 75 14.524 3.225 81 14.826 4.727 75 14.698 2.511 77
−0.6 18.396 17.613 6.520 82 18.176 4.021 75 18.040 4.924 77 18.210 2.950 73
−0.2 22.415 21.992 7.958 76 — — — 21.927 5.578 75 — — —

0.2 1.310 1.481 1.896 88 — — — 1.491 1.575 79 — — —
0.6 1.116 1.219 1.864 89 1.185 1.021 89 1.199 1.223 87 1.166 0.770 72
1.0 0.810 0.926 1.370 86 0.934 0.879 84 0.956 1.022 81 0.925 0.764 65
1.4 0.501 0.694 1.285 83 0.592 0.748 86 0.794 1.008 82 0.612 0.554 82
1.8 0.264 0.314 0.823 90 0.303 0.438 91 0.381 0.614 83 0.318 0.371 85
2.2 0.119 0.171 0.498 91 0.159 0.305 89 0.243 0.477 82 0.177 0.237 83
2.6 0.045 0.144 0.577 94 0.088 0.238 88 0.142 0.414 87 0.098 0.173 80
3.0 0.015 0.016 0.120 98 0.018 0.077 95 0.043 0.197 94 0.031 0.091 91
4.0 0.000 0.000 0.000 100 0.000 0.000 100 0.000 0.000 100 0.000 0.000 100
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5.1 Markovian Itō semi-martingales

Table 5.3: Scenario c2 — The empirical mean (columns 3, 6, 9, 12) of the estimator f̂ η
t (x, y) (resp.,

bias-corrected estimator f̂ η
t (x, y)− γ̂

η
t (x, y)) based on 100 trajectories (up to time t = 500) is

compared to the true value (col. 2) of f (x, y) given by eq. (5.1.2). In addition, the root mean
squared error (rmse; cols. 4, 7, 10, 13) and the empirical confidence level (cl; cols. 5, 8, 11, 14) in
percent of the estimated 95%-confidence interval given by eq. (5.1.5) are presented.

Estimation at x = 0

η = (0.4, 0.2) η = (0.4, 0.6) η = (0.8, 0.2) η = (0.8, 0.6)
y f (x, y) mean rmse cl mean rmse cl mean rmse cl mean rmse cl

−4.0 0.007 0.023 0.034 76 0.023 0.022 65 0.048 0.051 34 0.049 0.046 7
−3.0 0.222 0.233 0.111 96 0.284 0.093 80 0.275 0.090 92 0.324 0.116 39
−2.6 0.679 0.726 0.222 88 0.804 0.170 82 0.764 0.177 85 0.849 0.190 38
−2.2 1.774 1.786 0.296 97 1.946 0.256 81 1.852 0.219 97 1.996 0.257 59
−1.8 3.948 3.965 0.456 96 4.160 0.335 84 3.982 0.325 92 4.175 0.293 83
−1.4 7.486 7.515 0.620 96 7.668 0.419 90 7.483 0.435 95 7.636 0.300 94
−1.0 12.099 12.122 0.713 99 12.114 0.414 98 12.071 0.527 97 12.041 0.305 95
−0.6 16.661 16.539 0.958 95 16.306 0.607 91 16.437 0.722 92 16.211 0.567 80
−0.2 19.552 19.433 0.915 98 — — — 19.334 0.683 98 — — —

0.2 19.552 19.487 0.902 98 — — — 19.325 0.695 95 — — —
0.6 16.661 16.722 0.936 95 16.421 0.600 92 16.584 0.698 95 16.295 0.533 88
1.0 12.099 12.021 0.806 96 12.060 0.459 92 12.023 0.549 98 12.015 0.323 96
1.4 7.486 7.546 0.549 98 7.653 0.394 94 7.520 0.418 97 7.644 0.308 90
1.8 3.948 4.008 0.424 96 4.199 0.358 85 4.002 0.307 96 4.204 0.318 68
2.2 1.774 1.849 0.294 96 1.981 0.267 79 1.881 0.230 94 2.008 0.262 55
2.6 0.679 0.723 0.185 95 0.803 0.170 81 0.766 0.162 88 0.848 0.190 44
3.0 0.222 0.213 0.107 97 0.274 0.085 84 0.273 0.094 88 0.323 0.112 43
4.0 0.007 0.019 0.030 81 0.018 0.019 75 0.048 0.052 36 0.048 0.044 3

Estimation at x = 0 with bias correction

η = (0.4, 0.2) η = (0.4, 0.6) η = (0.8, 0.2) η = (0.8, 0.6)
y f (x, y) mean rmse cl mean rmse cl mean rmse cl mean rmse cl

−4.0 0.007 0.022 0.045 79 0.017 0.024 70 0.026 0.040 66 0.016 0.022 73
−3.0 0.222 0.220 0.177 78 0.218 0.107 74 0.215 0.121 79 0.219 0.079 75
−2.6 0.679 0.714 0.346 73 0.697 0.177 80 0.702 0.246 74 0.696 0.139 73
−2.2 1.774 1.740 0.469 78 1.758 0.291 78 1.769 0.325 80 1.764 0.206 78
−1.8 3.948 3.946 0.736 77 3.951 0.419 82 3.909 0.494 80 3.924 0.288 81
−1.4 7.486 7.533 0.962 80 7.515 0.615 75 7.487 0.678 79 7.484 0.408 79
−1.0 12.099 12.153 1.134 85 12.196 0.644 85 12.163 0.897 77 12.190 0.512 78
−0.6 16.661 16.612 1.463 81 16.573 0.805 82 16.699 1.068 78 16.601 0.580 82
−0.2 19.552 19.468 1.526 79 — — — 19.514 1.079 84 — — —

0.2 19.552 19.606 1.445 84 — — — 19.550 1.014 83 — — —
0.6 16.661 16.698 1.563 75 16.709 0.909 73 16.849 1.161 81 16.758 0.655 82
1.0 12.099 11.973 1.259 78 12.023 0.745 80 12.095 0.861 78 12.101 0.512 77
1.4 7.486 7.607 0.918 79 7.504 0.567 82 7.545 0.623 90 7.491 0.412 73
1.8 3.948 4.001 0.704 84 3.992 0.395 83 3.973 0.488 82 3.968 0.309 77
2.2 1.774 1.843 0.486 76 1.804 0.272 81 1.836 0.336 82 1.803 0.192 79
2.6 0.679 0.698 0.280 82 0.687 0.178 76 0.698 0.212 80 0.689 0.137 79
3.0 0.222 0.188 0.167 75 0.201 0.113 70 0.195 0.127 78 0.208 0.080 69
4.0 0.007 0.018 0.040 83 0.012 0.021 84 0.022 0.035 72 0.012 0.018 79
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5 Simulation studies

Table 5.3a: Scenario c2 (continued)

Estimation at x = 1.5

η = (0.4, 0.2) η = (0.4, 0.6) η = (0.8, 0.2) η = (0.8, 0.6)
y f (x, y) mean rmse cl mean rmse cl mean rmse cl mean rmse cl

−4.0 1.695 1.668 0.383 94 1.688 0.225 93 1.590 0.285 92 1.610 0.180 91
−3.0 2.900 2.915 0.480 96 2.899 0.293 94 2.799 0.353 93 2.787 0.227 93
−2.6 3.746 3.696 0.534 95 3.769 0.345 94 3.570 0.401 94 3.630 0.266 89
−2.2 5.048 5.048 0.577 98 5.152 0.388 93 4.859 0.449 92 4.976 0.273 94
−1.8 7.056 7.109 0.847 95 7.197 0.506 92 6.903 0.576 96 7.028 0.313 97
−1.4 9.951 9.896 0.811 98 10.051 0.545 96 9.789 0.585 96 9.922 0.360 95
−1.0 13.631 13.811 1.092 93 13.694 0.587 97 13.679 0.713 97 13.588 0.391 95
−0.6 17.591 17.706 1.184 98 17.565 0.618 98 17.513 0.857 94 17.467 0.454 97
−0.2 21.087 21.081 1.304 96 — — — 21.002 0.934 98 — — —

0.2 9.776 9.835 0.915 96 — — — 10.338 0.843 87 — — —
0.6 8.331 8.380 0.798 93 8.290 0.411 96 8.778 0.725 90 8.659 0.433 89
1.0 6.049 6.136 0.712 96 6.122 0.369 97 6.392 0.600 92 6.380 0.418 82
1.4 3.743 3.877 0.570 93 3.913 0.353 92 4.004 0.463 88 4.066 0.390 76
1.8 1.974 2.014 0.412 94 2.127 0.299 86 2.104 0.309 94 2.224 0.306 70
2.2 0.887 0.930 0.289 91 0.995 0.210 86 0.976 0.228 87 1.043 0.202 75
2.6 0.340 0.335 0.155 98 0.392 0.105 91 0.366 0.111 95 0.414 0.103 78
3.0 0.111 0.123 0.099 93 0.132 0.053 95 0.123 0.072 94 0.140 0.049 86
4.0 0.003 0.002 0.008 99 0.005 0.012 91 0.003 0.010 95 0.005 0.008 91

Estimation at x = 1.5 with bias correction

η = (0.4, 0.2) η = (0.4, 0.6) η = (0.8, 0.2) η = (0.8, 0.6)
y f (x, y) mean rmse cl mean rmse cl mean rmse cl mean rmse cl

−4.0 1.695 1.722 0.626 78 1.711 0.367 70 1.666 0.421 82 1.701 0.243 84
−3.0 2.900 3.000 0.765 75 2.896 0.468 78 3.012 0.557 77 2.906 0.322 82
−2.6 3.746 3.744 0.895 77 3.734 0.537 76 3.744 0.585 81 3.723 0.369 81
−2.2 5.048 5.108 0.958 85 5.119 0.552 84 5.020 0.699 82 5.049 0.398 83
−1.8 7.056 7.194 1.414 68 7.144 0.835 68 7.110 0.943 73 7.070 0.525 76
−1.4 9.951 9.971 1.325 81 9.936 0.872 74 9.907 0.912 85 9.896 0.564 77
−1.0 13.631 13.846 1.764 77 13.689 0.985 82 13.893 1.189 82 13.686 0.633 81
−0.6 17.591 17.923 1.935 82 17.642 1.032 82 17.696 1.426 77 17.634 0.727 81
−0.2 21.087 21.174 2.033 79 — — — 21.094 1.443 78 — — —

0.2 9.776 9.530 1.456 73 — — — 9.713 1.047 74 — — —
0.6 8.331 8.302 1.295 79 8.303 0.705 87 8.320 0.918 83 8.316 0.477 83
1.0 6.049 6.053 1.181 76 6.047 0.620 81 6.051 0.773 81 6.046 0.441 81
1.4 3.743 3.890 0.934 75 3.793 0.500 80 3.797 0.689 77 3.780 0.365 82
1.8 1.974 1.979 0.701 78 1.973 0.401 77 1.982 0.455 82 1.989 0.270 76
2.2 0.887 0.888 0.438 78 0.892 0.280 74 0.908 0.325 75 0.899 0.199 74
2.6 0.340 0.305 0.261 80 0.319 0.137 84 0.331 0.177 83 0.329 0.104 80
3.0 0.111 0.135 0.150 84 0.108 0.074 86 0.127 0.114 84 0.103 0.061 75
4.0 0.003 0.000 0.005 99 0.005 0.016 93 0.003 0.014 96 0.005 0.011 85
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5.1 Markovian Itō semi-martingales

Table 5.3b: Scenario c2 (continued)

Estimation at x = 2.5

η = (0.4, 0.2) η = (0.4, 0.6) η = (0.8, 0.2) η = (0.8, 0.6)
y f (x, y) mean rmse cl mean rmse cl mean rmse cl mean rmse cl

−4.0 3.157 3.021 0.731 99 3.066 0.442 96 2.969 0.519 98 2.986 0.345 95
−3.0 5.219 5.276 1.011 94 5.281 0.621 94 5.030 0.706 96 5.028 0.470 93
−2.6 6.402 6.247 1.199 94 6.395 0.739 96 6.007 0.893 91 6.125 0.580 88
−2.2 7.883 7.809 1.274 95 7.780 0.691 98 7.562 0.947 91 7.562 0.601 89
−1.8 9.748 9.498 1.524 92 9.600 0.877 89 9.286 1.068 91 9.432 0.656 91
−1.4 12.085 11.956 1.518 96 12.044 0.964 92 11.764 0.994 98 11.874 0.690 95
−1.0 14.958 14.828 1.946 94 14.895 1.054 97 14.778 1.360 91 14.815 0.758 94
−0.6 18.396 18.437 2.015 95 18.433 1.150 96 18.345 1.389 94 18.363 0.792 95
−0.2 22.415 22.711 2.091 96 — — — 22.475 1.398 97 — — —

0.2 1.310 1.549 0.609 93 — — — 2.213 0.993 36 — — —
0.6 1.116 1.315 0.562 93 1.291 0.339 88 1.892 0.871 44 1.881 0.801 6
1.0 0.810 1.033 0.499 90 0.974 0.296 89 1.451 0.735 42 1.399 0.623 7
1.4 0.501 0.612 0.342 93 0.632 0.224 89 0.857 0.437 64 0.885 0.413 14
1.8 0.264 0.413 0.292 89 0.372 0.186 84 0.511 0.307 65 0.504 0.266 32
2.2 0.119 0.157 0.171 94 0.172 0.120 90 0.208 0.151 85 0.232 0.139 62
2.6 0.045 0.052 0.097 92 0.060 0.062 93 0.083 0.095 85 0.088 0.067 76
3.0 0.015 0.013 0.050 96 0.018 0.035 92 0.022 0.042 92 0.031 0.034 84
4.0 0.000 0.000 0.000 100 0.001 0.006 99 0.000 0.003 98 0.001 0.005 96

Estimation at x = 2.5 with bias correction

η = (0.4, 0.2) η = (0.4, 0.6) η = (0.8, 0.2) η = (0.8, 0.6)
y f (x, y) mean rmse cl mean rmse cl mean rmse cl mean rmse cl

−4.0 3.157 3.008 1.188 85 3.031 0.641 84 3.060 0.844 77 3.089 0.493 78
−3.0 5.219 5.419 1.605 84 5.375 1.047 78 5.285 1.150 80 5.292 0.718 82
−2.6 6.402 6.210 1.870 80 6.439 1.188 71 6.241 1.367 75 6.362 0.831 72
−2.2 7.883 7.983 2.038 81 7.788 1.055 83 7.921 1.519 78 7.812 0.806 76
−1.8 9.748 9.650 2.327 75 9.533 1.378 75 9.562 1.649 78 9.598 0.964 77
−1.4 12.085 11.941 2.538 78 12.028 1.451 80 11.954 1.753 80 12.029 1.110 74
−1.0 14.958 14.831 3.214 73 14.744 1.701 77 14.904 2.382 72 14.850 1.253 73
−0.6 18.396 18.424 3.435 74 18.275 1.904 74 18.510 2.253 74 18.360 1.304 73
−0.2 22.415 22.939 3.558 79 — — — 22.770 2.482 79 — — —

0.2 1.310 1.344 0.903 76 — — — 1.304 0.639 76 — — —
0.6 1.116 1.141 0.813 74 1.099 0.444 82 1.111 0.700 62 1.135 0.397 73
1.0 0.810 0.958 0.667 76 0.851 0.408 78 0.903 0.566 69 0.841 0.320 72
1.4 0.501 0.542 0.499 86 0.525 0.263 86 0.547 0.406 71 0.509 0.229 73
1.8 0.264 0.450 0.445 75 0.342 0.256 73 0.379 0.300 77 0.321 0.182 71
2.2 0.119 0.178 0.264 82 0.147 0.157 87 0.153 0.171 85 0.129 0.124 85
2.6 0.045 0.053 0.146 91 0.051 0.080 89 0.073 0.131 81 0.055 0.071 81
3.0 0.015 0.015 0.079 96 0.015 0.048 93 0.020 0.057 91 0.021 0.036 88
4.0 0.000 0.000 0.000 100 0.001 0.009 99 0.000 0.000 100 0.001 0.006 98
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5 Simulation studies

Table 5.4: Scenario c3 — The empirical mean (columns 3, 6, 9, 12) of the estimator f̂ η
t (x, y) (resp.,

bias-corrected estimator f̂ η
t (x, y)− γ̂

η
t (x, y)) based on 100 trajectories (up to time t = 2500) is

compared to the true value (col. 2) of f (x, y) given by eq. (5.1.2). In addition, the root mean
squared error (rmse; cols. 4, 7, 10, 13) and the empirical confidence level (cl; cols. 5, 8, 11, 14) in
percent of the estimated 95%-confidence interval given by eq. (5.1.5) are presented.

Estimation at x = 0

η = (0.4, 0.2) η = (0.4, 0.6) η = (0.8, 0.2) η = (0.8, 0.6)
y f (x, y) mean rmse cl mean rmse cl mean rmse cl mean rmse cl

−4.0 0.007 0.019 0.018 67 0.021 0.016 36 0.049 0.045 0 0.051 0.045 0
−3.0 0.222 0.246 0.051 92 0.286 0.070 38 0.288 0.075 56 0.328 0.109 0
−2.6 0.679 0.695 0.083 94 0.792 0.123 34 0.747 0.090 81 0.841 0.165 0
−2.2 1.774 1.797 0.137 94 1.957 0.200 37 1.840 0.114 88 1.996 0.230 1
−1.8 3.948 3.974 0.208 93 4.192 0.273 42 3.977 0.153 96 4.195 0.261 15
−1.4 7.486 7.543 0.258 95 7.694 0.256 71 7.511 0.191 95 7.651 0.196 72
−1.0 12.099 12.073 0.335 94 12.071 0.212 94 11.976 0.270 93 11.990 0.189 84
−0.6 16.661 16.566 0.341 99 16.335 0.406 72 16.453 0.327 91 16.218 0.478 28
−0.2 19.552 19.557 0.409 98 — — — 19.354 0.354 90 — — —

0.2 19.552 19.481 0.433 96 — — — 19.315 0.394 93 — — —
0.6 16.661 16.555 0.396 97 16.322 0.411 67 16.453 0.332 89 16.212 0.475 22
1.0 12.099 12.008 0.348 96 12.050 0.199 96 11.970 0.270 93 11.991 0.170 93
1.4 7.486 7.534 0.307 91 7.667 0.240 81 7.509 0.205 92 7.648 0.196 77
1.8 3.948 4.012 0.213 94 4.190 0.277 46 4.020 0.159 93 4.204 0.272 16
2.2 1.774 1.829 0.144 94 1.981 0.223 25 1.864 0.128 87 2.014 0.247 2
2.6 0.679 0.727 0.093 92 0.811 0.141 25 0.765 0.106 67 0.853 0.178 0
3.0 0.222 0.242 0.051 92 0.285 0.070 37 0.289 0.076 51 0.330 0.111 0
4.0 0.007 0.018 0.017 71 0.020 0.015 28 0.049 0.044 2 0.050 0.044 0

Estimation at x = 0 with bias correction

η = (0.4, 0.2) η = (0.4, 0.6) η = (0.8, 0.2) η = (0.8, 0.6)
y f (x, y) mean rmse cl mean rmse cl mean rmse cl mean rmse cl

−4.0 0.007 0.012 0.017 78 0.009 0.011 75 0.015 0.019 67 0.010 0.011 67
−3.0 0.222 0.231 0.067 86 0.226 0.044 77 0.224 0.056 74 0.224 0.032 78
−2.6 0.679 0.657 0.125 78 0.672 0.082 73 0.664 0.093 76 0.678 0.058 71
−2.2 1.774 1.763 0.225 78 1.769 0.130 74 1.765 0.149 81 1.778 0.088 77
−1.8 3.948 3.936 0.325 80 3.978 0.193 74 3.926 0.251 73 3.967 0.137 76
−1.4 7.486 7.529 0.411 84 7.560 0.258 78 7.529 0.313 80 7.545 0.182 77
−1.0 12.099 12.084 0.571 78 12.098 0.312 84 12.092 0.387 85 12.106 0.242 76
−0.6 16.661 16.614 0.569 86 16.608 0.353 77 16.660 0.401 88 16.627 0.271 79
−0.2 19.552 19.763 0.722 76 — — — 19.644 0.489 80 — — —

0.2 19.552 19.597 0.697 80 — — — 19.561 0.494 82 — — —
0.6 16.661 16.581 0.620 77 16.604 0.411 78 16.648 0.436 81 16.623 0.266 79
1.0 12.099 11.982 0.558 79 12.065 0.329 77 12.028 0.390 82 12.090 0.210 85
1.4 7.486 7.532 0.506 75 7.517 0.265 76 7.532 0.336 70 7.528 0.184 82
1.8 3.948 4.000 0.324 72 3.968 0.203 75 3.988 0.233 74 3.970 0.151 67
2.2 1.774 1.802 0.229 70 1.798 0.134 72 1.795 0.153 80 1.795 0.094 78
2.6 0.679 0.704 0.133 77 0.696 0.082 71 0.695 0.091 78 0.695 0.061 68
3.0 0.222 0.226 0.078 78 0.218 0.042 80 0.226 0.051 79 0.223 0.034 75
4.0 0.007 0.012 0.017 82 0.009 0.009 82 0.014 0.017 69 0.010 0.009 66
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5.1 Markovian Itō semi-martingales

Table 5.4a: Scenario c3 (continued)

Estimation at x = 1.5

η = (0.4, 0.2) η = (0.4, 0.6) η = (0.8, 0.2) η = (0.8, 0.6)
y f (x, y) mean rmse cl mean rmse cl mean rmse cl mean rmse cl

−4.0 1.695 1.672 0.185 91 1.676 0.100 93 1.595 0.152 87 1.602 0.112 72
−3.0 2.900 2.833 0.221 93 2.890 0.125 95 2.735 0.222 81 2.770 0.158 71
−2.6 3.746 3.706 0.243 95 3.769 0.148 96 3.550 0.261 83 3.628 0.158 77
−2.2 5.048 5.026 0.290 91 5.128 0.184 96 4.866 0.268 88 4.974 0.138 87
−1.8 7.056 7.024 0.323 95 7.155 0.224 92 6.873 0.293 89 7.010 0.145 93
−1.4 9.951 9.905 0.406 97 10.032 0.270 90 9.790 0.318 92 9.914 0.179 94
−1.0 13.631 13.616 0.518 91 13.633 0.291 93 13.528 0.388 93 13.559 0.218 91
−0.6 17.591 17.541 0.524 96 17.496 0.331 92 17.536 0.375 97 17.452 0.259 90
−0.2 21.087 21.140 0.608 93 — — — 21.045 0.434 95 — — —

0.2 9.776 9.793 0.433 93 — — — 10.288 0.596 57 — — —
0.6 8.331 8.463 0.382 96 8.339 0.199 97 8.845 0.573 56 8.709 0.404 31
1.0 6.049 6.136 0.343 92 6.130 0.186 93 6.414 0.427 63 6.406 0.373 20
1.4 3.743 3.771 0.243 98 3.870 0.184 89 3.955 0.278 78 4.052 0.325 12
1.8 1.974 2.002 0.193 94 2.107 0.175 74 2.098 0.189 77 2.209 0.249 12
2.2 0.887 0.903 0.120 96 0.986 0.122 69 0.954 0.111 89 1.037 0.158 15
2.6 0.340 0.360 0.082 94 0.403 0.077 69 0.374 0.067 87 0.423 0.088 28
3.0 0.111 0.117 0.041 97 0.139 0.038 79 0.123 0.032 92 0.146 0.039 47
4.0 0.003 0.003 0.008 93 0.005 0.005 89 0.003 0.005 94 0.005 0.004 88

Estimation at x = 1.5 with bias correction

η = (0.4, 0.2) η = (0.4, 0.6) η = (0.8, 0.2) η = (0.8, 0.6)
y f (x, y) mean rmse cl mean rmse cl mean rmse cl mean rmse cl

−4.0 1.695 1.712 0.304 73 1.683 0.167 76 1.694 0.200 74 1.677 0.105 79
−3.0 2.900 2.871 0.330 84 2.889 0.199 82 2.874 0.243 78 2.866 0.145 75
−2.6 3.746 3.768 0.394 80 3.753 0.234 78 3.704 0.282 76 3.715 0.171 74
−2.2 5.048 5.071 0.490 72 5.071 0.297 69 5.042 0.316 82 5.047 0.196 75
−1.8 7.056 7.063 0.532 79 7.068 0.323 81 7.016 0.363 83 7.036 0.232 79
−1.4 9.951 9.934 0.663 77 9.949 0.402 77 9.910 0.454 79 9.914 0.282 75
−1.0 13.631 13.648 0.762 77 13.621 0.452 78 13.598 0.604 71 13.598 0.356 72
−0.6 17.591 17.530 0.835 78 17.559 0.505 71 17.613 0.602 81 17.597 0.358 76
−0.2 21.087 21.227 0.959 80 — — — 21.186 0.695 75 — — —

0.2 9.776 9.568 0.723 74 — — — 9.726 0.501 74 — — —
0.6 8.331 8.367 0.562 82 8.375 0.338 81 8.401 0.413 78 8.412 0.243 77
1.0 6.049 6.026 0.511 82 6.050 0.291 78 6.058 0.376 76 6.070 0.204 80
1.4 3.743 3.680 0.376 73 3.716 0.221 79 3.731 0.271 80 3.743 0.162 80
1.8 1.974 1.951 0.273 84 1.964 0.187 72 1.961 0.229 70 1.978 0.131 75
2.2 0.887 0.876 0.189 83 0.877 0.110 80 0.890 0.139 80 0.890 0.077 84
2.6 0.340 0.347 0.132 71 0.345 0.076 73 0.349 0.092 73 0.349 0.051 76
3.0 0.111 0.115 0.066 81 0.111 0.042 77 0.115 0.046 80 0.113 0.028 82
4.0 0.003 0.004 0.014 93 0.004 0.007 87 0.004 0.008 88 0.004 0.005 91
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Table 5.4b: Scenario c3 (continued)

Estimation at x = 2.5

η = (0.4, 0.2) η = (0.4, 0.6) η = (0.8, 0.2) η = (0.8, 0.6)
y f (x, y) mean rmse cl mean rmse cl mean rmse cl mean rmse cl

−4.0 3.157 3.200 0.354 97 3.170 0.213 94 3.052 0.263 94 3.036 0.199 87
−3.0 5.219 5.173 0.442 95 5.192 0.243 96 4.988 0.382 90 4.998 0.279 83
−2.6 6.402 6.328 0.501 97 6.353 0.297 94 6.087 0.451 84 6.140 0.327 77
−2.2 7.883 7.682 0.606 91 7.847 0.329 96 7.490 0.561 82 7.625 0.347 81
−1.8 9.748 9.769 0.690 93 9.801 0.417 94 9.511 0.521 89 9.557 0.336 88
−1.4 12.085 12.180 0.688 97 12.170 0.456 92 11.914 0.527 97 11.951 0.341 93
−1.0 14.958 14.910 0.883 95 14.994 0.466 96 14.781 0.633 91 14.854 0.337 93
−0.6 18.396 18.430 0.866 97 18.369 0.481 96 18.280 0.656 93 18.301 0.349 95
−0.2 22.415 22.088 1.007 94 — — — 22.137 0.752 90 — — —

0.2 1.310 1.568 0.345 82 — — — 2.262 0.970 0 — — —
0.6 1.116 1.308 0.288 90 1.298 0.225 70 1.897 0.804 0 1.881 0.772 0
1.0 0.810 0.963 0.242 86 0.955 0.185 70 1.385 0.594 0 1.386 0.583 0
1.4 0.501 0.618 0.220 81 0.622 0.156 70 0.870 0.391 6 0.889 0.395 0
1.8 0.264 0.315 0.114 91 0.334 0.095 79 0.455 0.206 27 0.481 0.222 0
2.2 0.119 0.149 0.084 91 0.156 0.059 83 0.212 0.108 54 0.225 0.111 5
2.6 0.045 0.055 0.043 95 0.063 0.032 87 0.077 0.047 79 0.090 0.049 27
3.0 0.015 0.016 0.026 93 0.022 0.018 88 0.026 0.024 88 0.031 0.020 63
4.0 0.000 0.000 0.000 100 0.001 0.002 96 0.000 0.002 99 0.001 0.002 90

Estimation at x = 2.5 with bias correction

η = (0.4, 0.2) η = (0.4, 0.6) η = (0.8, 0.2) η = (0.8, 0.6)
y f (x, y) mean rmse cl mean rmse cl mean rmse cl mean rmse cl

−4.0 3.157 3.259 0.575 80 3.223 0.324 84 3.241 0.411 78 3.201 0.254 80
−3.0 5.219 5.220 0.709 82 5.227 0.418 79 5.234 0.521 76 5.226 0.297 80
−2.6 6.402 6.418 0.854 74 6.380 0.497 79 6.359 0.519 79 6.373 0.337 76
−2.2 7.883 7.646 0.975 78 7.833 0.515 76 7.713 0.672 76 7.833 0.370 76
−1.8 9.748 9.889 1.107 79 9.842 0.640 83 9.809 0.800 72 9.782 0.456 74
−1.4 12.085 12.396 1.105 78 12.182 0.698 77 12.216 0.828 80 12.125 0.524 75
−1.0 14.958 14.922 1.484 68 14.919 0.762 74 14.958 1.013 75 14.928 0.564 73
−0.6 18.396 18.537 1.405 82 18.329 0.826 75 18.381 1.037 75 18.316 0.550 79
−0.2 22.415 21.976 1.549 73 — — — 22.138 1.231 73 — — —

0.2 1.310 1.354 0.373 83 — — — 1.347 0.319 67 — — —
0.6 1.116 1.101 0.338 79 1.114 0.216 74 1.102 0.276 75 1.128 0.169 71
1.0 0.810 0.841 0.304 78 0.805 0.186 74 0.794 0.245 70 0.804 0.142 72
1.4 0.501 0.539 0.294 68 0.527 0.169 66 0.520 0.228 56 0.512 0.124 66
1.8 0.264 0.273 0.178 74 0.264 0.099 78 0.260 0.130 70 0.253 0.075 72
2.2 0.119 0.134 0.125 84 0.120 0.071 73 0.131 0.097 65 0.110 0.055 68
2.6 0.045 0.056 0.061 88 0.050 0.039 88 0.049 0.050 84 0.040 0.032 66
3.0 0.015 0.018 0.040 88 0.019 0.025 84 0.018 0.030 87 0.015 0.017 83
4.0 0.000 0.000 0.000 100 0.000 0.001 97 0.000 0.002 99 0.001 0.002 95
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Table 5.5: Scenario c2 — The empirical mean (integrated) squared error (columns 4, 6, 8, 10)
on the interval [y1, y2] of the estimator f̂ η

t (x, ·) for f (x, y) given by eq. (5.1.2) based on 100
trajectories (up to time t = 500) is presented. In addition, the standard deviation (columns 5, 7, 9,
11) of the squared errors are shown.

x = 0 x = 0.75 x = 1.5 x = 2.25
η y1 y2 mse sd mse sd mse sd mse sd

(0.4, 0.4) −3.0 −1.5 0.094 0.074 0.137 0.109 0.285 0.197 0.864 0.527
−1.5 −0.6 0.253 0.218 0.314 0.274 0.487 0.483 1.086 0.960
−0.6 −0.4 0.108 0.147 0.092 0.110 0.184 0.250 0.345 0.499

0.4 0.6 0.111 0.153 0.081 0.095 0.075 0.088 0.052 0.064
0.6 1.5 0.287 0.277 0.217 0.200 0.216 0.214 0.171 0.180
1.5 3.0 0.108 0.098 0.086 0.079 0.068 0.078 0.041 0.036

(0.4, 0.6) −3.0 −1.5 0.097 0.096 0.162 0.155 0.227 0.195 0.508 0.423
−1.5 −0.6 0.185 0.186 0.188 0.170 0.393 0.437 0.585 0.550

0.6 1.5 0.182 0.192 0.171 0.176 0.174 0.172 0.104 0.115
1.5 3.0 0.106 0.102 0.078 0.075 0.072 0.062 0.033 0.040

(0.6, 0.2) −3.0 −1.5 0.114 0.071 0.178 0.094 0.418 0.215 1.127 0.562
−1.5 −0.6 0.307 0.218 0.430 0.288 0.705 0.484 1.411 0.823
−0.6 −0.4 0.119 0.158 0.141 0.179 0.238 0.249 0.357 0.375
−0.4 −0.2 0.143 0.186 0.124 0.122 0.277 0.299 0.442 0.569

0.2 0.4 0.138 0.162 0.111 0.140 0.122 0.162 0.141 0.168
0.4 0.6 0.126 0.182 0.101 0.107 0.103 0.113 0.117 0.153
0.6 1.5 0.364 0.277 0.292 0.174 0.327 0.244 0.284 0.186
1.5 3.0 0.109 0.064 0.099 0.049 0.094 0.063 0.079 0.064

(0.6, 0.4) −3.0 −1.5 0.062 0.049 0.110 0.097 0.218 0.139 0.602 0.402
−1.5 −0.6 0.186 0.159 0.234 0.218 0.311 0.257 0.835 0.694
−0.6 −0.4 0.066 0.089 0.068 0.072 0.090 0.113 0.345 0.454

0.4 0.6 0.070 0.083 0.060 0.077 0.055 0.076 0.078 0.097
0.6 1.5 0.176 0.154 0.165 0.135 0.166 0.141 0.208 0.147
1.5 3.0 0.071 0.053 0.063 0.051 0.058 0.056 0.050 0.046
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Table 5.6: Scenario c3 — The empirical mean (integrated) squared error (columns 4, 6, 8, 10)
on the interval [y1, y2] of the estimator f̂ η

t (x, ·) for f (x, y) given by eq. (5.1.2) based on 100
trajectories (up to time t = 2500) is presented. In addition, the standard deviation (columns 5, 7,
9, 11) of the squared errors are shown.

x = 0 x = 0.75 x = 1.5 x = 2.25
η y1 y2 mse sd mse sd mse sd mse sd

(0.1, 0.4) −3.0 −1.5 0.086 0.076 0.111 0.081 0.214 0.151 0.813 0.579
−1.5 −0.4 0.269 0.235 0.298 0.207 0.489 0.399 1.118 0.936

0.4 1.5 0.27 0.226 0.275 0.203 0.199 0.168 0.123 0.088
1.5 3.0 0.069 0.063 0.056 0.042 0.058 0.061 0.033 0.029

(0.2, 0.4) −3.0 −1.5 0.043 0.042 0.051 0.04 0.124 0.099 0.294 0.183
−1.5 −0.4 0.118 0.081 0.154 0.111 0.223 0.16 0.478 0.378

0.4 1.5 0.16 0.123 0.139 0.122 0.118 0.095 0.079 0.06
1.5 3.0 0.043 0.033 0.04 0.030 0.038 0.036 0.016 0.014

(0.4, 0.2) −3.0 −1.5 0.035 0.021 0.056 0.033 0.138 0.067 0.361 0.167
−1.5 −0.4 0.135 0.086 0.147 0.084 0.264 0.158 0.492 0.247
−0.4 −0.2 0.045 0.053 0.038 0.043 0.077 0.092 0.121 0.235

0.2 0.4 0.034 0.033 0.037 0.046 0.032 0.035 0.035 0.042
0.4 1.5 0.144 0.098 0.128 0.074 0.125 0.069 0.097 0.067
1.5 3.0 0.03 0.02 0.031 0.02 0.029 0.022 0.019 0.014

(0.4, 0.4) −3.0 −1.5 0.027 0.023 0.033 0.028 0.061 0.049 0.190 0.143
−1.5 −0.4 0.078 0.069 0.080 0.057 0.114 0.079 0.264 0.247

0.4 1.5 0.075 0.057 0.077 0.063 0.064 0.058 0.055 0.041
1.5 3.0 0.026 0.018 0.019 0.021 0.018 0.015 0.011 0.011
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Figure 5.3: Scenario c2 — Estimation of the Lévy density f (x, y) given by eq. (5.1.2) at x = 0
with η = (0.6, 0.3) (top row), at x = 0 with η = (0.4, 0.6)) (middle row), and at x = 2.25 with
η = (0.6, 0.4) (bottom row) based on continuous observations up to time t = 500. Left: One
typical estimate (grey) is compared to the true Lévy density (black). The upper and lower bounds
of the estimated (pointwise) 95% -confidence intervals given by eq. (5.1.5) are shown in red. For
x = 2.25, we note that the estimate is identically zero for y > 2.7 as there were no jumps. Right:
Estimates based on 100 trajectories (grey) are compared to the true Lévy density (black). The
(pointwise) mean of the estimates (red dashed line) and mean of the upper and lower bounds of
the 95% -confidence intervals (red solid lines) are shown.
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Figure 5.4: Scenario c3 — Estimation of the Lévy density f (x, y) given by eq. (5.1.2) at x = 0
with η = (0.4, 0.2) (top row), at x = 0 with η = (0.1, 0.4) (middle row), and at x = 2.25 with
η = (0.4, 0.4) (bottom row) based on continuous observations up to time t = 2500. Left: One
typical estimate (grey) is compared to the true Lévy density (black). The upper and lower bounds
of the estimated (pointwise) 95% -confidence intervals given by eq. (5.1.5) are shown in red. For
x = 2.25, we note that the estimate is identically zero for y > 3.5 as there were no jumps. Right:
Estimates based on 100 trajectories (grey) are compared to the true Lévy density (black). The
(pointwise) mean of the estimates (red dashed line) and mean of the upper and lower bounds of
the 95% -confidence intervals (red solid lines) are shown.
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Figure 5.5: Increments (X(k−1)∆, ∆n
k X) of one simulated sample of scenarios d1 (top), d2 (middle),

and d3 (bottom).
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Table 5.7: Scenario d1 — The empirical mean (columns 3, 6, 9, 12) of the estimator f̂ ∆,η
n (x, y)

(resp., bias-corrected estimator f̂ ∆,η
n (x, y)− γ̂

∆,η
n (x, y)) based on 100 samples (up to time t = 500

with ∆ = 0.01) is compared to the true value (col. 2) of f (x, y) given by eq. (5.1.2). In addition,
the root mean squared error (rmse; cols. 4, 7, 10, 13) and the empirical confidence level (cl; cols.
5, 8, 11, 14) in percent of the estimated 95%-confidence interval given by eq. (5.1.5) are presented.

Estimation at x = 0

η = (0.4, 0.2) η = (0.4, 0.6) η = (0.8, 0.2) η = (0.8, 0.6)
y f (x, y) mean rmse cl mean rmse cl mean rmse cl mean rmse cl

−4.0 0.007 0.061 0.077 44 0.067 0.069 10 0.088 0.092 5 0.092 0.089 0
−3.0 0.222 0.362 0.198 64 0.400 0.196 28 0.404 0.214 42 0.440 0.228 0
−2.6 0.679 0.817 0.229 91 0.867 0.221 57 0.856 0.225 68 0.917 0.253 18
−2.2 1.774 1.744 0.261 98 1.840 0.176 94 1.782 0.220 97 1.881 0.158 89
−1.8 3.948 3.463 0.624 82 3.597 0.417 76 3.485 0.556 73 3.602 0.386 53
−1.4 7.486 6.066 1.511 33 6.186 1.331 3 6.027 1.504 7 6.160 1.341 0
−1.0 12.099 9.292 2.881 2 9.321 2.805 0 9.264 2.874 0 9.262 2.851 0
−0.6 16.661 12.411 4.319 0 16.214 0.623 94 12.310 4.383 0 16.117 0.616 78
−0.2 19.552 69.575 50.048 0 — — — 69.574 50.034 0 — — —

0.2 19.552 69.664 50.132 0 — — — 69.696 50.157 0 — — —
0.6 16.661 12.462 4.253 0 16.269 0.574 95 12.367 4.323 0 16.188 0.560 83
1.0 12.099 9.445 2.739 7 9.351 2.777 0 9.337 2.798 0 9.271 2.841 0
1.4 7.486 6.124 1.498 38 6.218 1.318 7 6.065 1.493 13 6.165 1.345 0
1.8 3.948 3.471 0.625 84 3.598 0.420 75 3.468 0.570 62 3.597 0.390 54
2.2 1.774 1.751 0.315 94 1.861 0.192 91 1.782 0.219 93 1.893 0.175 83
2.6 0.679 0.830 0.247 87 0.881 0.233 52 0.869 0.239 71 0.920 0.257 15
3.0 0.222 0.358 0.184 70 0.397 0.192 23 0.391 0.189 43 0.434 0.218 0
4.0 0.007 0.071 0.085 34 0.072 0.073 5 0.091 0.097 11 0.094 0.091 0

Estimation at x = 0 with bias correction

η = (0.4, 0.2) η = (0.4, 0.6) η = (0.8, 0.2) η = (0.8, 0.6)
y f (x, y) mean rmse cl mean rmse cl mean rmse cl mean rmse cl

−4.0 0.007 0.060 0.099 59 0.055 0.069 34 0.059 0.079 40 0.054 0.061 26
−3.0 0.222 0.350 0.248 63 0.347 0.176 49 0.348 0.213 49 0.353 0.165 38
−2.6 0.679 0.806 0.315 77 0.761 0.198 71 0.809 0.260 69 0.785 0.171 61
−2.2 1.774 1.697 0.416 87 1.681 0.294 71 1.740 0.338 73 1.709 0.203 76
−1.8 3.948 3.438 0.794 72 3.450 0.617 53 3.459 0.683 65 3.456 0.568 37
−1.4 7.486 6.078 1.672 38 6.123 1.444 8 6.001 1.607 20 6.085 1.442 0
−1.0 12.099 9.281 3.012 11 9.391 2.777 1 9.310 2.892 1 9.368 2.770 0
−0.6 16.661 12.495 4.325 1 3.830 12.851 0 12.457 4.295 0 3.764 12.907 0
−0.2 19.552 52.097 32.656 0 — — — 52.242 32.749 0 — — —

0.2 19.552 52.228 32.757 0 — — — 52.479 32.975 0 — — —
0.6 16.661 12.472 4.328 1 3.824 12.858 0 12.486 4.243 0 3.842 12.829 0
1.0 12.099 9.556 2.772 21 9.424 2.747 0 9.491 2.713 3 9.378 2.759 0
1.4 7.486 6.162 1.652 40 6.156 1.452 14 6.089 1.573 25 6.104 1.442 0
1.8 3.948 3.462 0.798 69 3.457 0.621 50 3.433 0.691 55 3.441 0.579 30
2.2 1.774 1.734 0.508 74 1.719 0.289 75 1.726 0.345 77 1.734 0.208 75
2.6 0.679 0.815 0.358 70 0.790 0.209 71 0.830 0.277 68 0.799 0.175 59
3.0 0.222 0.345 0.239 62 0.342 0.177 46 0.341 0.177 66 0.341 0.145 36
4.0 0.007 0.067 0.101 52 0.064 0.077 26 0.070 0.090 36 0.062 0.068 13
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Table 5.7a: Scenario d1 (continued)

Estimation at x = 1.5

η = (0.4, 0.2) η = (0.4, 0.6) η = (0.8, 0.2) η = (0.8, 0.6)
y f (x, y) mean rmse cl mean rmse cl mean rmse cl mean rmse cl

−4.0 1.695 1.474 0.393 96 1.484 0.270 89 1.401 0.370 87 1.418 0.303 54
−3.0 2.900 2.706 0.483 97 2.746 0.292 97 2.577 0.429 93 2.626 0.325 70
−2.6 3.746 3.489 0.600 93 3.601 0.311 95 3.371 0.548 82 3.460 0.352 78
−2.2 5.048 4.770 0.707 93 4.776 0.429 90 4.589 0.642 81 4.621 0.488 65
−1.8 7.056 6.266 1.103 85 6.289 0.872 65 6.146 1.059 65 6.183 0.918 16
−1.4 9.951 8.286 1.912 51 8.329 1.689 10 8.207 1.868 25 8.242 1.741 0
−1.0 13.631 10.778 2.967 13 10.782 2.894 1 10.718 2.968 1 10.689 2.964 0
−0.6 17.591 13.354 4.351 4 18.061 0.719 96 13.210 4.436 0 17.967 0.547 96
−0.2 21.087 81.052 60.008 0 — — — 80.689 59.623 0 — — —

0.2 9.776 53.306 43.558 0 — — — 54.028 44.267 0 — — —
0.6 8.331 6.252 2.178 24 9.370 1.104 38 6.572 1.826 10 9.699 1.396 0
1.0 6.049 4.453 1.742 41 4.480 1.603 1 4.662 1.474 19 4.699 1.372 0
1.4 3.743 2.672 1.177 46 2.785 0.995 15 2.824 0.974 25 2.930 0.834 4
1.8 1.974 1.418 0.648 74 1.502 0.508 52 1.522 0.516 65 1.586 0.415 35
2.2 0.887 0.650 0.333 88 0.706 0.231 80 0.689 0.259 87 0.751 0.169 75
2.6 0.340 0.273 0.142 99 0.302 0.092 98 0.287 0.110 99 0.321 0.067 97
3.0 0.111 0.100 0.084 98 0.122 0.054 97 0.103 0.061 99 0.125 0.042 93
4.0 0.003 0.012 0.031 89 0.015 0.022 67 0.013 0.022 79 0.015 0.018 60

Estimation at x = 1.5 with bias correction

η = (0.4, 0.2) η = (0.4, 0.6) η = (0.8, 0.2) η = (0.8, 0.6)
y f (x, y) mean rmse cl mean rmse cl mean rmse cl mean rmse cl

−4.0 1.695 1.523 0.579 77 1.500 0.340 76 1.492 0.420 78 1.487 0.289 64
−3.0 2.900 2.760 0.798 75 2.767 0.441 77 2.709 0.500 78 2.729 0.332 77
−2.6 3.746 3.483 0.897 76 3.598 0.473 81 3.482 0.707 72 3.556 0.382 73
−2.2 5.048 4.860 1.108 72 4.800 0.634 73 4.762 0.768 75 4.721 0.513 65
−1.8 7.056 6.337 1.445 69 6.213 1.079 54 6.322 1.157 64 6.225 0.955 37
−1.4 9.951 8.318 2.204 49 8.272 1.845 18 8.316 1.954 36 8.276 1.768 5
−1.0 13.631 10.795 3.123 28 10.825 2.924 6 10.824 2.949 9 10.785 2.913 0
−0.6 17.591 13.555 4.340 15 3.846 13.778 0 13.347 4.399 4 3.852 13.758 0
−0.2 21.087 65.378 44.470 0 — — — 65.439 44.434 0 — — —

0.2 9.776 35.181 25.519 0 — — — 35.362 25.656 0 — — —
0.6 8.331 6.104 2.442 26 0.000 8.331 0 6.167 2.295 7 0.000 8.331 0
1.0 6.049 4.384 2.016 37 4.389 1.752 6 4.400 1.846 21 4.422 1.675 0
1.4 3.743 2.600 1.404 40 2.665 1.172 16 2.585 1.266 20 2.666 1.120 4
1.8 1.974 1.355 0.820 69 1.401 0.648 42 1.383 0.709 54 1.394 0.625 11
2.2 0.887 0.620 0.455 73 0.620 0.352 54 0.631 0.373 62 0.628 0.304 38
2.6 0.340 0.269 0.209 89 0.258 0.155 76 0.265 0.175 79 0.262 0.124 69
3.0 0.111 0.097 0.124 94 0.110 0.082 83 0.095 0.095 91 0.102 0.062 78
4.0 0.003 0.015 0.048 90 0.018 0.033 71 0.013 0.031 82 0.015 0.022 59
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Table 5.7b: Scenario d1 (continued)

Estimation at x = 2.5

η = (0.4, 0.2) η = (0.4, 0.6) η = (0.8, 0.2) η = (0.8, 0.6)
y f (x, y) mean rmse cl mean rmse cl mean rmse cl mean rmse cl

−4.0 3.157 2.786 0.894 95 2.846 0.571 91 2.689 0.694 92 2.736 0.519 77
−3.0 5.219 4.815 1.027 94 4.805 0.651 91 4.585 0.916 89 4.592 0.731 71
−2.6 6.402 5.801 1.312 94 5.804 0.903 80 5.552 1.135 82 5.595 0.913 56
−2.2 7.883 6.841 1.599 90 6.950 1.171 75 6.742 1.393 80 6.777 1.196 40
−1.8 9.748 8.222 1.951 88 8.206 1.737 51 8.063 1.887 57 8.057 1.771 17
−1.4 12.085 9.455 2.916 67 9.613 2.580 22 9.444 2.773 32 9.526 2.611 2
−1.0 14.958 11.418 3.839 49 11.318 3.744 3 11.260 3.820 11 11.251 3.753 0
−0.6 18.396 12.777 5.816 12 18.581 0.929 100 12.913 5.580 1 18.578 0.657 98
−0.2 22.415 88.398 66.075 0 — — — 87.616 65.231 0 — — —

0.2 1.310 41.612 40.369 0 — — — 42.541 41.260 0 — — —
0.6 1.116 1.192 0.409 98 3.909 2.807 0 1.619 0.592 73 4.361 3.251 0
1.0 0.810 0.783 0.359 99 0.814 0.180 100 1.093 0.407 81 1.113 0.338 63
1.4 0.501 0.532 0.288 96 0.532 0.164 96 0.703 0.297 87 0.700 0.236 68
1.8 0.264 0.202 0.202 99 0.260 0.123 97 0.319 0.162 94 0.360 0.134 85
2.2 0.119 0.140 0.167 93 0.123 0.098 96 0.166 0.126 88 0.167 0.082 89
2.6 0.045 0.045 0.098 94 0.056 0.059 94 0.062 0.070 94 0.074 0.048 90
3.0 0.015 0.024 0.066 93 0.025 0.039 85 0.030 0.056 88 0.032 0.033 84
4.0 0.000 0.016 0.060 91 0.013 0.034 83 0.012 0.035 85 0.010 0.021 75

Estimation at x = 2.5 with bias correction

η = (0.4, 0.2) η = (0.4, 0.6) η = (0.8, 0.2) η = (0.8, 0.6)
y f (x, y) mean rmse cl mean rmse cl mean rmse cl mean rmse cl

−4.0 3.157 2.773 1.447 71 2.874 0.848 74 2.815 0.962 75 2.863 0.562 79
−3.0 5.219 4.939 1.592 78 4.873 0.877 80 4.833 1.159 75 4.806 0.785 73
−2.6 6.402 5.975 1.947 78 5.881 1.253 66 5.756 1.412 75 5.807 0.937 57
−2.2 7.883 6.807 2.256 70 6.952 1.459 67 6.969 1.640 66 7.036 1.138 60
−1.8 9.748 8.239 2.609 73 8.244 1.977 52 8.332 2.057 63 8.272 1.702 35
−1.4 12.085 9.370 3.441 57 9.544 2.806 24 9.547 2.913 37 9.623 2.591 6
−1.0 14.958 11.590 4.181 53 11.383 3.877 18 11.369 3.943 23 11.350 3.741 2
−0.6 18.396 12.540 6.336 21 2.948 15.525 0 12.679 6.028 7 3.128 15.311 0
−0.2 22.415 74.752 52.710 0 — — — 73.994 51.703 0 — — —

0.2 1.310 23.691 22.773 0 — — — 23.471 22.329 0 — — —
0.6 1.116 1.042 0.703 82 0.000 1.116 0 1.069 0.539 75 0.000 1.116 0
1.0 0.810 0.678 0.572 86 0.682 0.312 87 0.707 0.500 69 0.697 0.283 75
1.4 0.501 0.464 0.464 91 0.479 0.284 80 0.497 0.344 77 0.466 0.220 72
1.8 0.264 0.188 0.289 93 0.196 0.186 90 0.201 0.232 93 0.200 0.149 74
2.2 0.119 0.150 0.233 85 0.122 0.150 89 0.142 0.175 85 0.102 0.110 91
2.6 0.045 0.053 0.156 90 0.052 0.081 89 0.057 0.108 88 0.049 0.062 86
3.0 0.015 0.029 0.113 93 0.028 0.061 82 0.033 0.086 88 0.028 0.043 78
4.0 0.000 0.022 0.096 93 0.019 0.056 84 0.016 0.060 90 0.015 0.035 76
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5.1 Markovian Itō semi-martingales

Table 5.8: Scenario d2 — The empirical mean (columns 3, 6, 9, 12) of the estimator f̂ ∆,η
n (x, y)

(resp., bias-corrected estimator f̂ ∆,η
n (x, y)− γ̂

∆,η
n (x, y)) based on 100 samples (up to time t = 2500

with ∆ = 0.01) is compared to the true value (col. 2) of f (x, y) given by eq. (5.1.2). In addition,
the root mean squared error (rmse; cols. 4, 7, 10, 13) and the empirical confidence level (cl; cols.
5, 8, 11, 14) in percent of the estimated 95%-confidence interval given by eq. (5.1.5) are presented.

Estimation at x = 0

η = (0.4, 0.2) η = (0.4, 0.6) η = (0.8, 0.2) η = (0.8, 0.6)
y f (x, y) mean rmse cl mean rmse cl mean rmse cl mean rmse cl

−4.0 0.007 0.063 0.061 3 0.068 0.063 0 0.087 0.083 0 0.092 0.086 0
−3.0 0.222 0.364 0.155 18 0.393 0.175 0 0.398 0.182 0 0.431 0.211 0
−2.6 0.679 0.802 0.157 67 0.875 0.204 5 0.841 0.177 25 0.915 0.239 0
−2.2 1.774 1.739 0.141 95 1.854 0.111 83 1.776 0.091 97 1.889 0.126 49
−1.8 3.948 3.461 0.512 28 3.584 0.377 10 3.474 0.487 6 3.596 0.357 1
−1.4 7.486 6.107 1.398 0 6.175 1.318 0 6.071 1.425 0 6.147 1.342 0
−1.0 12.099 9.309 2.803 0 9.301 2.801 0 9.261 2.845 0 9.252 2.849 0
−0.6 16.661 12.478 4.200 0 16.283 0.424 67 12.389 4.279 0 16.193 0.487 22
−0.2 19.552 69.854 50.307 0 — — — 69.744 50.195 0 — — —

0.2 19.552 69.782 50.235 0 — — — 69.689 50.139 0 — — —
0.6 16.661 12.494 4.179 0 16.289 0.422 72 12.423 4.244 0 16.207 0.474 14
1.0 12.099 9.349 2.769 0 9.341 2.762 0 9.288 2.821 0 9.282 2.819 0
1.4 7.486 6.075 1.433 0 6.180 1.314 0 6.032 1.463 0 6.146 1.344 0
1.8 3.948 3.462 0.519 31 3.592 0.373 13 3.472 0.493 7 3.598 0.357 0
2.2 1.774 1.728 0.118 99 1.852 0.102 90 1.768 0.082 99 1.888 0.122 49
2.6 0.679 0.809 0.159 70 0.874 0.201 0 0.845 0.178 21 0.913 0.237 0
3.0 0.222 0.352 0.141 26 0.389 0.171 0 0.388 0.171 2 0.425 0.205 0
4.0 0.007 0.063 0.061 2 0.067 0.062 0 0.089 0.084 0 0.092 0.085 0

Estimation at x = 0 with bias correction

η = (0.4, 0.2) η = (0.4, 0.6) η = (0.8, 0.2) η = (0.8, 0.6)
y f (x, y) mean rmse cl mean rmse cl mean rmse cl mean rmse cl

−4.0 0.007 0.054 0.060 25 0.055 0.054 5 0.058 0.059 8 0.057 0.053 0
−3.0 0.222 0.348 0.158 31 0.338 0.130 14 0.347 0.143 18 0.343 0.129 1
−2.6 0.679 0.782 0.180 61 0.782 0.132 42 0.780 0.152 55 0.789 0.127 23
−2.2 1.774 1.714 0.221 74 1.713 0.143 71 1.722 0.151 80 1.728 0.094 78
−1.8 3.948 3.438 0.571 30 3.427 0.545 5 3.437 0.546 11 3.436 0.522 0
−1.4 7.486 6.123 1.416 1 6.092 1.412 0 6.102 1.409 0 6.087 1.408 0
−1.0 12.099 9.326 2.811 0 9.307 2.803 0 9.365 2.754 0 9.344 2.760 0
−0.6 16.661 12.530 4.178 0 3.861 12.805 0 12.535 4.147 0 3.859 12.804 0
−0.2 19.552 52.608 33.081 0 — — — 52.605 33.065 0 — — —

0.2 19.552 52.589 33.058 0 — — — 52.573 33.030 0 — — —
0.6 16.661 12.536 4.158 0 3.893 12.772 0 12.585 4.092 0 3.887 12.776 0
1.0 12.099 9.370 2.776 0 9.392 2.719 0 9.362 2.765 0 9.383 2.723 0
1.4 7.486 6.080 1.470 3 6.094 1.411 0 6.031 1.480 0 6.073 1.421 0
1.8 3.948 3.428 0.595 32 3.450 0.529 9 3.446 0.547 19 3.452 0.511 1
2.2 1.774 1.693 0.202 78 1.709 0.122 75 1.700 0.153 73 1.726 0.084 77
2.6 0.679 0.791 0.185 64 0.786 0.134 48 0.787 0.156 51 0.788 0.121 23
3.0 0.222 0.331 0.142 45 0.333 0.122 14 0.333 0.128 24 0.334 0.117 1
4.0 0.007 0.056 0.063 21 0.054 0.052 4 0.059 0.059 7 0.056 0.052 1
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5 Simulation studies

Table 5.8a: Scenario d2 (continued)

Estimation at x = 1.5

η = (0.4, 0.2) η = (0.4, 0.6) η = (0.8, 0.2) η = (0.8, 0.6)
y f (x, y) mean rmse cl mean rmse cl mean rmse cl mean rmse cl

−4.0 1.695 1.454 0.287 69 1.472 0.241 35 1.403 0.314 31 1.416 0.286 2
−3.0 2.900 2.694 0.287 84 2.746 0.188 78 2.591 0.339 47 2.635 0.276 12
−2.6 3.746 3.578 0.307 87 3.597 0.204 85 3.421 0.368 52 3.461 0.300 22
−2.2 5.048 4.677 0.450 76 4.741 0.346 57 4.549 0.532 31 4.611 0.450 3
−1.8 7.056 6.250 0.881 41 6.309 0.771 2 6.137 0.954 3 6.195 0.871 0
−1.4 9.951 8.298 1.695 2 8.359 1.608 0 8.183 1.785 0 8.260 1.697 0
−1.0 13.631 10.717 2.944 0 10.746 2.895 0 10.689 2.958 0 10.681 2.955 0
−0.6 17.591 13.205 4.408 0 17.964 0.444 84 13.120 4.481 0 17.894 0.346 79
−0.2 21.087 80.692 59.612 0 — — — 80.392 59.309 0 — — —

0.2 9.776 53.619 43.851 0 — — — 54.223 44.451 0 — — —
0.6 8.331 6.326 2.031 0 9.445 1.126 0 6.596 1.750 0 9.743 1.418 0
1.0 6.049 4.460 1.612 0 4.483 1.573 0 4.684 1.381 0 4.701 1.353 0
1.4 3.743 2.719 1.046 0 2.794 0.956 0 2.856 0.901 0 2.935 0.812 0
1.8 1.974 1.445 0.545 10 1.518 0.464 0 1.531 0.453 0 1.603 0.376 0
2.2 0.887 0.666 0.245 55 0.718 0.180 28 0.698 0.204 46 0.760 0.134 25
2.6 0.340 0.267 0.098 85 0.300 0.060 87 0.289 0.069 88 0.319 0.038 92
3.0 0.111 0.099 0.041 96 0.117 0.021 98 0.107 0.029 97 0.125 0.021 88
4.0 0.003 0.015 0.020 68 0.016 0.015 36 0.016 0.017 52 0.016 0.014 15

Estimation at x = 1.5 with bias correction

η = (0.4, 0.2) η = (0.4, 0.6) η = (0.8, 0.2) η = (0.8, 0.6)
y f (x, y) mean rmse cl mean rmse cl mean rmse cl mean rmse cl

−4.0 1.695 1.463 0.338 64 1.467 0.274 40 1.475 0.285 52 1.476 0.244 25
−3.0 2.900 2.720 0.390 67 2.740 0.243 66 2.710 0.296 68 2.727 0.213 50
−2.6 3.746 3.639 0.441 73 3.607 0.271 63 3.580 0.333 67 3.567 0.238 53
−2.2 5.048 4.706 0.533 68 4.712 0.425 45 4.694 0.451 60 4.690 0.400 22
−1.8 7.056 6.269 0.950 41 6.267 0.843 9 6.272 0.891 30 6.258 0.826 1
−1.4 9.951 8.375 1.687 10 8.344 1.652 0 8.302 1.696 0 8.302 1.669 0
−1.0 13.631 10.687 3.023 0 10.789 2.868 0 10.732 2.942 0 10.769 2.876 0
−0.6 17.591 13.307 4.351 0 3.748 13.849 0 13.204 4.416 0 3.753 13.841 0
−0.2 21.087 64.880 43.818 0 — — — 64.892 43.819 0 — — —

0.2 9.776 35.630 25.888 0 — — — 35.718 25.961 0 — — —
0.6 8.331 6.232 2.170 2 0.000 8.331 0 6.247 2.120 0 0.000 8.331 0
1.0 6.049 4.399 1.703 2 4.384 1.684 0 4.410 1.670 0 4.415 1.645 0
1.4 3.743 2.657 1.141 8 2.675 1.084 0 2.658 1.115 1 2.677 1.075 0
1.8 1.974 1.408 0.606 17 1.411 0.581 1 1.414 0.579 1 1.417 0.565 0
2.2 0.887 0.656 0.286 51 0.642 0.263 17 0.650 0.267 33 0.640 0.257 0
2.6 0.340 0.261 0.135 72 0.260 0.106 49 0.259 0.108 59 0.255 0.098 28
3.0 0.111 0.093 0.063 77 0.099 0.035 85 0.096 0.049 73 0.097 0.028 77
4.0 0.003 0.015 0.026 69 0.015 0.019 49 0.017 0.022 53 0.014 0.016 37
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5.1 Markovian Itō semi-martingales

Table 5.8b: Scenario d2 (continued)

Estimation at x = 2.5

η = (0.4, 0.2) η = (0.4, 0.6) η = (0.8, 0.2) η = (0.8, 0.6)
y f (x, y) mean rmse cl mean rmse cl mean rmse cl mean rmse cl

−4.0 3.157 2.896 0.383 98 2.918 0.297 84 2.760 0.442 69 2.774 0.402 18
−3.0 5.219 4.758 0.619 88 4.783 0.507 61 4.570 0.707 52 4.605 0.637 9
−2.6 6.402 5.767 0.802 78 5.786 0.683 49 5.566 0.895 38 5.587 0.839 2
−2.2 7.883 6.936 1.056 69 6.915 1.011 12 6.756 1.168 13 6.738 1.164 0
−1.8 9.748 8.145 1.703 28 8.173 1.609 0 8.003 1.790 3 8.025 1.738 0
−1.4 12.085 9.654 2.518 6 9.635 2.476 0 9.538 2.588 1 9.544 2.554 0
−1.0 14.958 11.249 3.768 0 11.305 3.674 0 11.267 3.721 0 11.294 3.676 0
−0.6 18.396 13.135 5.309 0 18.695 0.464 96 13.141 5.280 0 18.667 0.367 95
−0.2 22.415 87.664 65.268 0 — — — 87.293 64.886 0 — — —

0.2 1.310 41.572 40.277 0 — — — 42.510 41.209 0 — — —
0.6 1.116 1.193 0.237 95 3.880 2.769 0 1.621 0.533 12 4.344 3.230 0
1.0 0.810 0.780 0.176 97 0.791 0.104 95 1.084 0.301 46 1.099 0.299 3
1.4 0.501 0.482 0.140 96 0.481 0.083 95 0.658 0.190 67 0.669 0.179 25
1.8 0.264 0.250 0.096 97 0.258 0.059 97 0.345 0.109 85 0.360 0.105 39
2.2 0.119 0.110 0.067 97 0.121 0.039 96 0.151 0.059 91 0.168 0.057 63
2.6 0.045 0.051 0.046 95 0.058 0.031 88 0.073 0.047 75 0.077 0.038 59
3.0 0.015 0.023 0.031 87 0.027 0.023 81 0.028 0.026 81 0.034 0.024 53
4.0 0.000 0.008 0.020 81 0.009 0.013 53 0.009 0.016 65 0.009 0.012 31

Estimation at x = 2.5 with bias correction

η = (0.4, 0.2) η = (0.4, 0.6) η = (0.8, 0.2) η = (0.8, 0.6)
y f (x, y) mean rmse cl mean rmse cl mean rmse cl mean rmse cl

−4.0 3.157 2.953 0.542 80 2.969 0.348 75 2.916 0.400 77 2.924 0.312 59
−3.0 5.219 4.885 0.759 76 4.814 0.596 57 4.815 0.600 64 4.796 0.516 43
−2.6 6.402 5.816 1.028 68 5.841 0.740 49 5.812 0.806 62 5.805 0.686 31
−2.2 7.883 7.014 1.171 63 6.957 1.037 30 7.009 1.029 46 6.961 0.986 10
−1.8 9.748 8.209 1.804 42 8.179 1.659 7 8.212 1.665 14 8.173 1.622 0
−1.4 12.085 9.727 2.605 25 9.665 2.489 1 9.687 2.514 4 9.635 2.489 0
−1.0 14.958 11.268 3.844 3 11.280 3.729 0 11.284 3.752 0 11.317 3.672 0
−0.6 18.396 13.097 5.422 0 3.274 15.138 0 13.135 5.334 0 3.406 14.997 0
−0.2 22.415 73.311 50.960 0 — — — 73.582 51.201 0 — — —

0.2 1.310 23.602 22.369 0 — — — 23.505 22.238 0 — — —
0.6 1.116 1.054 0.359 74 0.000 1.116 0 1.064 0.270 74 0.000 1.116 0
1.0 0.810 0.679 0.326 73 0.667 0.222 61 0.680 0.244 72 0.678 0.179 53
1.4 0.501 0.427 0.234 80 0.400 0.160 67 0.424 0.184 69 0.398 0.146 48
1.8 0.264 0.222 0.158 79 0.204 0.112 71 0.218 0.130 76 0.207 0.090 61
2.2 0.119 0.106 0.102 91 0.089 0.070 69 0.094 0.086 65 0.088 0.057 68
2.6 0.045 0.045 0.066 91 0.049 0.042 85 0.054 0.058 77 0.047 0.036 63
3.0 0.015 0.026 0.047 81 0.025 0.029 78 0.024 0.034 80 0.022 0.021 71
4.0 0.000 0.009 0.029 86 0.010 0.019 66 0.009 0.022 74 0.009 0.015 46
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5 Simulation studies

Table 5.9: Scenario d3 — The empirical mean (columns 3, 6, 9, 12) of the estimator f̂ ∆,η
n (x, y)

(resp., bias-corrected estimator f̂ ∆,η
n (x, y)− γ̂

∆,η
n (x, y)) based on 100 samples (up to time t = 2500

with ∆ = 0.001) is compared to the true value (col. 2) of f (x, y) given by eq. (5.1.2). In addition,
the root mean squared error (rmse; cols. 4, 7, 10, 13) and the empirical confidence level (cl; cols.
5, 8, 11, 14) in percent of the estimated 95%-confidence interval given by eq. (5.1.5) are presented.

Estimation at x = 0

η = (0.4, 0.2) η = (0.4, 0.6) η = (0.8, 0.2) η = (0.8, 0.6)
y f (x, y) mean rmse cl mean rmse cl mean rmse cl mean rmse cl

−4.0 0.007 0.024 0.023 55 0.026 0.022 14 0.052 0.048 0 0.056 0.050 0
−3.0 0.222 0.262 0.065 85 0.301 0.085 21 0.302 0.088 40 0.343 0.123 0
−2.6 0.679 0.726 0.087 94 0.815 0.145 20 0.766 0.102 71 0.857 0.181 0
−2.2 1.774 1.824 0.152 93 1.967 0.212 33 1.859 0.137 83 2.004 0.239 2
−1.8 3.948 3.961 0.213 96 4.125 0.212 67 3.971 0.141 94 4.141 0.210 31
−1.4 7.486 7.298 0.331 89 7.478 0.172 93 7.285 0.276 84 7.457 0.121 94
−1.0 12.099 11.804 0.451 87 11.747 0.397 60 11.728 0.448 70 11.673 0.449 16
−0.6 16.661 16.012 0.744 71 23.403 6.745 0 15.924 0.784 27 23.310 6.651 0
−0.2 19.552 189.703 170.153 0 — — — 189.604 170.053 0 — — —

0.2 19.552 189.826 170.275 0 — — — 189.672 170.121 0 — — —
0.6 16.661 16.124 0.647 80 23.479 6.822 0 15.972 0.743 32 23.332 6.673 0
1.0 12.099 11.785 0.506 85 11.761 0.393 64 11.673 0.501 55 11.670 0.451 16
1.4 7.486 7.356 0.300 91 7.493 0.161 90 7.342 0.253 86 7.472 0.121 94
1.8 3.948 3.938 0.213 93 4.115 0.215 71 3.953 0.153 94 4.135 0.210 45
2.2 1.774 1.808 0.139 96 1.954 0.196 33 1.846 0.124 89 1.992 0.226 4
2.6 0.679 0.723 0.092 93 0.809 0.139 24 0.770 0.107 63 0.855 0.179 0
3.0 0.222 0.252 0.057 90 0.296 0.080 27 0.302 0.090 36 0.342 0.123 0
4.0 0.007 0.025 0.023 47 0.027 0.022 8 0.054 0.049 0 0.056 0.050 0

Estimation at x = 0 with bias correction

η = (0.4, 0.2) η = (0.4, 0.6) η = (0.8, 0.2) η = (0.8, 0.6)
y f (x, y) mean rmse cl mean rmse cl mean rmse cl mean rmse cl

−4.0 0.007 0.017 0.021 68 0.013 0.014 64 0.018 0.021 54 0.015 0.015 53
−3.0 0.222 0.245 0.087 71 0.241 0.050 73 0.241 0.062 76 0.241 0.039 70
−2.6 0.679 0.715 0.125 83 0.702 0.077 77 0.698 0.082 82 0.697 0.055 76
−2.2 1.774 1.797 0.200 81 1.790 0.142 69 1.785 0.160 75 1.793 0.108 69
−1.8 3.948 3.939 0.343 75 3.918 0.189 81 3.936 0.228 78 3.931 0.130 78
−1.4 7.486 7.259 0.483 77 7.303 0.345 57 7.269 0.369 68 7.314 0.262 50
−1.0 12.099 11.833 0.620 78 11.817 0.418 62 11.853 0.471 71 11.806 0.370 53
−0.6 16.661 16.082 0.830 64 0.000 16.661 0 16.099 0.705 55 0.000 16.661 0
−0.2 19.552 0.000 19.552 0 — — — 0.000 19.552 0 — — —

0.2 19.552 0.000 19.552 0 — — — 0.000 19.552 0 — — —
0.6 16.661 16.222 0.714 78 0.000 16.661 0 16.163 0.655 56 0.000 16.661 0
1.0 12.099 11.866 0.698 65 11.807 0.448 62 11.783 0.546 62 11.782 0.389 45
1.4 7.486 7.326 0.457 79 7.328 0.293 74 7.367 0.333 76 7.361 0.233 69
1.8 3.948 3.904 0.337 70 3.893 0.215 72 3.914 0.258 71 3.908 0.155 66
2.2 1.774 1.783 0.209 79 1.771 0.125 76 1.774 0.159 77 1.776 0.087 79
2.6 0.679 0.700 0.128 76 0.697 0.083 69 0.699 0.089 81 0.697 0.060 70
3.0 0.222 0.231 0.071 79 0.233 0.050 69 0.240 0.061 76 0.237 0.038 74
4.0 0.007 0.017 0.021 69 0.016 0.014 56 0.019 0.021 61 0.016 0.014 44
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5.1 Markovian Itō semi-martingales

Table 5.9a: Scenario d3 (continued)

Estimation at x = 1.5

η = (0.4, 0.2) η = (0.4, 0.6) η = (0.8, 0.2) η = (0.8, 0.6)
y f (x, y) mean rmse cl mean rmse cl mean rmse cl mean rmse cl

−4.0 1.695 1.636 0.184 95 1.649 0.108 94 1.568 0.170 82 1.579 0.132 61
−3.0 2.900 2.845 0.215 98 2.895 0.117 95 2.726 0.226 83 2.769 0.155 72
−2.6 3.746 3.724 0.202 99 3.772 0.127 98 3.578 0.221 91 3.630 0.146 80
−2.2 5.048 4.997 0.275 95 5.078 0.177 94 4.846 0.275 86 4.934 0.170 83
−1.8 7.056 6.884 0.404 90 7.037 0.227 92 6.752 0.402 73 6.901 0.222 80
−1.4 9.951 9.731 0.474 89 9.824 0.272 91 9.646 0.424 84 9.724 0.283 73
−1.0 13.631 13.314 0.534 95 13.321 0.404 83 13.216 0.511 80 13.246 0.422 50
−0.6 17.591 17.011 0.819 77 25.112 7.528 0 17.018 0.692 66 25.056 7.468 0
−0.2 21.087 203.550 182.466 0 — — — 203.120 182.035 0 — — —

0.2 9.776 168.806 159.032 0 — — — 169.593 159.818 0 — — —
0.6 8.331 8.175 0.409 92 15.142 6.816 0 8.581 0.375 81 15.531 7.202 0
1.0 6.049 5.952 0.357 92 5.953 0.225 88 6.226 0.296 84 6.231 0.228 72
1.4 3.743 3.620 0.264 95 3.731 0.163 93 3.816 0.183 95 3.917 0.207 57
1.8 1.974 1.958 0.186 95 2.034 0.129 88 2.039 0.149 92 2.130 0.176 44
2.2 0.887 0.867 0.112 99 0.958 0.103 78 0.912 0.089 94 1.001 0.127 42
2.6 0.340 0.333 0.071 94 0.384 0.063 83 0.353 0.051 98 0.403 0.071 45
3.0 0.111 0.112 0.042 96 0.133 0.037 83 0.117 0.027 98 0.140 0.035 65
4.0 0.003 0.004 0.007 95 0.005 0.005 88 0.005 0.006 94 0.006 0.005 83

Estimation at x = 1.5 with bias correction

η = (0.4, 0.2) η = (0.4, 0.6) η = (0.8, 0.2) η = (0.8, 0.6)
y f (x, y) mean rmse cl mean rmse cl mean rmse cl mean rmse cl

−4.0 1.695 1.655 0.286 74 1.657 0.169 75 1.647 0.192 78 1.655 0.117 76
−3.0 2.900 2.884 0.332 78 2.895 0.188 84 2.866 0.233 80 2.870 0.137 79
−2.6 3.746 3.758 0.346 79 3.759 0.201 84 3.736 0.237 83 3.728 0.146 84
−2.2 5.048 5.028 0.430 82 5.023 0.253 80 5.025 0.312 80 5.002 0.204 78
−1.8 7.056 6.897 0.578 75 6.937 0.360 73 6.891 0.434 76 6.913 0.293 71
−1.4 9.951 9.775 0.682 74 9.739 0.439 76 9.782 0.508 78 9.720 0.358 63
−1.0 13.631 13.356 0.741 78 13.333 0.519 70 13.285 0.581 73 13.286 0.446 56
−0.6 17.591 16.995 1.099 70 0.000 17.591 0 17.077 0.838 63 0.000 17.591 0
−0.2 21.087 0.000 21.087 0 — — — 0.000 21.087 0 — — —

0.2 9.776 0.000 9.776 0 — — — 0.000 9.776 0 — — —
0.6 8.331 7.980 0.697 65 0.000 8.331 0 8.128 0.489 67 0.000 8.331 0
1.0 6.049 5.844 0.592 74 5.864 0.373 70 5.900 0.412 75 5.916 0.262 70
1.4 3.743 3.506 0.443 64 3.551 0.315 62 3.583 0.309 65 3.604 0.225 60
1.8 1.974 1.914 0.292 78 1.898 0.190 75 1.920 0.229 75 1.907 0.152 71
2.2 0.887 0.828 0.184 75 0.855 0.121 74 0.849 0.135 79 0.862 0.090 72
2.6 0.340 0.314 0.120 77 0.327 0.073 75 0.323 0.080 81 0.329 0.050 77
3.0 0.111 0.109 0.066 80 0.108 0.048 70 0.106 0.046 78 0.105 0.032 75
4.0 0.003 0.004 0.011 92 0.004 0.006 85 0.005 0.009 88 0.004 0.005 86
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Table 5.9b: Scenario d3 (continued)

Estimation at x = 2.5

η = (0.4, 0.2) η = (0.4, 0.6) η = (0.8, 0.2) η = (0.8, 0.6)
y f (x, y) mean rmse cl mean rmse cl mean rmse cl mean rmse cl

−4.0 3.157 3.101 0.397 93 3.127 0.234 94 2.991 0.309 89 3.000 0.219 80
−3.0 5.219 5.121 0.468 96 5.137 0.289 95 4.925 0.445 83 4.954 0.325 69
−2.6 6.402 6.268 0.547 95 6.318 0.329 95 6.047 0.523 82 6.108 0.370 63
−2.2 7.883 7.701 0.534 97 7.769 0.327 95 7.460 0.557 84 7.539 0.405 72
−1.8 9.748 9.482 0.721 94 9.590 0.391 94 9.270 0.677 77 9.363 0.462 63
−1.4 12.085 11.759 0.718 95 11.837 0.455 93 11.635 0.625 87 11.691 0.475 80
−1.0 14.958 14.623 0.821 97 14.586 0.558 89 14.513 0.698 88 14.516 0.548 74
−0.6 18.396 17.705 1.107 90 26.307 7.925 0 17.663 0.950 74 26.231 7.843 0
−0.2 22.415 213.415 191.005 0 — — — 212.659 190.246 0 — — —

0.2 1.310 153.312 152.006 0 — — — 154.508 153.200 0 — — —
0.6 1.116 1.305 0.299 84 7.993 6.879 0 1.879 0.783 0 8.582 7.467 0
1.0 0.810 0.936 0.231 90 0.939 0.173 80 1.358 0.570 2 1.355 0.553 0
1.4 0.501 0.576 0.175 89 0.592 0.134 79 0.831 0.355 14 0.853 0.359 0
1.8 0.264 0.314 0.120 93 0.326 0.093 80 0.432 0.188 39 0.461 0.203 0
2.2 0.119 0.122 0.062 97 0.147 0.047 92 0.190 0.088 73 0.215 0.101 9
2.6 0.045 0.054 0.046 89 0.060 0.029 89 0.082 0.050 72 0.088 0.047 35
3.0 0.015 0.022 0.031 87 0.024 0.019 88 0.028 0.025 84 0.033 0.022 53
4.0 0.000 0.002 0.009 94 0.001 0.004 93 0.002 0.007 90 0.002 0.004 84

Estimation at x = 2.5 with bias correction

η = (0.4, 0.2) η = (0.4, 0.6) η = (0.8, 0.2) η = (0.8, 0.6)
y f (x, y) mean rmse cl mean rmse cl mean rmse cl mean rmse cl

−4.0 3.157 3.114 0.674 69 3.146 0.377 74 3.150 0.435 73 3.146 0.261 74
−3.0 5.219 5.193 0.739 78 5.165 0.447 77 5.159 0.563 77 5.170 0.318 75
−2.6 6.402 6.315 0.863 74 6.340 0.531 74 6.309 0.610 76 6.356 0.363 76
−2.2 7.883 7.784 0.795 81 7.794 0.528 78 7.750 0.595 83 7.784 0.372 79
−1.8 9.748 9.527 1.101 69 9.601 0.580 79 9.545 0.812 69 9.571 0.464 66
−1.4 12.085 11.763 1.072 83 11.772 0.675 78 11.879 0.810 77 11.829 0.504 77
−1.0 14.958 14.673 1.174 77 14.543 0.774 74 14.681 0.923 74 14.603 0.642 67
−0.6 18.396 17.784 1.548 74 0.000 18.396 0 17.738 1.193 64 0.000 18.396 0
−0.2 22.415 0.000 22.415 0 — — — 0.000 22.415 0 — — —

0.2 1.310 0.000 1.310 0 — — — 0.000 1.310 0 — — —
0.6 1.116 1.121 0.398 70 0.000 1.116 0 1.117 0.290 69 0.000 1.116 0
1.0 0.810 0.805 0.297 80 0.799 0.177 82 0.811 0.264 63 0.799 0.143 63
1.4 0.501 0.474 0.246 78 0.487 0.162 65 0.482 0.214 66 0.484 0.125 66
1.8 0.264 0.281 0.156 79 0.269 0.111 71 0.244 0.147 66 0.247 0.093 64
2.2 0.119 0.096 0.096 91 0.107 0.059 81 0.101 0.081 69 0.104 0.053 68
2.6 0.045 0.052 0.066 88 0.046 0.042 85 0.055 0.054 81 0.043 0.033 68
3.0 0.015 0.025 0.047 82 0.020 0.027 80 0.022 0.031 82 0.018 0.019 83
4.0 0.000 0.002 0.013 96 0.001 0.006 94 0.003 0.012 94 0.002 0.006 86
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Table 5.10: Scenario d2 — The empirical mean (integrated) squared error (columns 4, 6, 8, 10) on
the interval [y1, y2] of the estimator f̂ ∆,η

n (x, ·) for f (x, y) given by eq. (5.1.2) based on 100 samples
(with lag ∆ = 0.01 and up to time n∆ = 2500) is presented. In addition, the standard deviation
(columns 5, 7, 9, 11) of the squared errors are shown.

x = 0 x = 0.75 x = 1.5 x = 2.25
η y1 y2 mse sd mse sd mse sd mse sd

(0.1, 0.4) −3.0 −1.5 0.263 0.129 0.266 0.168 0.743 0.466 2.053 1.200
−1.5 −0.5 8.164 1.405 7.497 1.520 9.463 2.405 12.818 3.771

0.5 1.5 7.900 1.813 7.145 1.454 2.552 0.751 0.207 0.124
1.5 3.0 0.284 0.172 0.469 0.222 0.246 0.123 0.035 0.026

(0.2, 0.4) −3.0 −1.5 0.223 0.094 0.209 0.120 0.604 0.260 1.973 0.874
−1.5 −0.5 8.086 1.123 7.473 1.048 8.951 1.700 12.613 2.850

0.5 1.5 8.179 1.091 7.026 1.054 2.581 0.515 0.150 0.097
1.5 3.0 0.246 0.097 0.421 0.139 0.231 0.083 0.024 0.016

(0.4, 0.2) −3.0 −1.5 0.273 0.091 0.197 0.082 0.640 0.256 2.101 0.746
−1.5 −0.5 8.663 0.895 7.924 0.934 9.948 1.175 14.536 2.077
−0.5 −0.3 2.758 0.406 2.754 0.385 3.466 0.519 4.648 0.757

0.3 0.5 2.624 0.422 1.958 0.294 0.764 0.134 0.748 0.171
0.5 1.5 8.694 1.002 7.433 0.795 2.476 0.398 0.122 0.073
1.5 3.0 0.263 0.100 0.459 0.112 0.234 0.062 0.024 0.013

(0.4, 0.4) −3.0 −1.5 0.225 0.066 0.173 0.073 0.582 0.195 1.857 0.538
−1.5 −0.5 8.169 0.774 7.368 0.784 9.119 1.028 13.020 1.768

0.5 1.5 8.257 0.756 7.113 0.753 2.349 0.356 0.099 0.049
1.5 3.0 0.219 0.082 0.405 0.101 0.199 0.060 0.015 0.010

Table 5.11: Scenario d3 — The empirical mean (integrated) squared error (columns 4, 6, 8, 10) on
the interval [y1, y2] of the estimator f̂ ∆,η

n (x, ·) for f (x, y) given by eq. (5.1.2) based on 100 samples
(with lag ∆ = 0.001 and up to time n∆ = 2500) is presented. In addition, the standard deviation
(columns 5, 7, 9, 11) of the squared errors are shown.

x = 0 x = 0.75 x = 1.5 x = 2.25
η y1 y2 mse sd mse sd mse sd mse sd

(0.1, 0.4) −3.0 −1.5 0.073 0.055 0.103 0.078 0.282 0.207 0.675 0.501
−1.5 −0.5 0.368 0.279 0.415 0.316 0.534 0.473 1.070 0.850

0.5 1.5 0.397 0.340 0.312 0.254 0.222 0.190 0.109 0.089
1.5 3.0 0.078 0.068 0.071 0.077 0.053 0.040 0.028 0.025

(0.2, 0.4) −3.0 −1.5 0.032 0.032 0.059 0.045 0.128 0.082 0.372 0.235
−1.5 −0.5 0.271 0.242 0.262 0.198 0.330 0.254 0.654 0.493

0.5 1.5 0.270 0.207 0.225 0.176 0.137 0.130 0.065 0.065
1.5 3.0 0.035 0.028 0.033 0.029 0.025 0.022 0.015 0.011

(0.4, 0.2) −3.0 −1.5 0.037 0.020 0.054 0.034 0.124 0.062 0.425 0.209
−1.5 −0.5 0.291 0.156 0.239 0.130 0.341 0.210 0.689 0.404
−0.5 −0.3 0.133 0.114 0.116 0.099 0.156 0.168 0.215 0.233

0.3 0.5 0.124 0.111 0.098 0.119 0.031 0.037 0.026 0.032
0.5 1.5 0.247 0.139 0.244 0.148 0.102 0.060 0.077 0.055
1.5 3.0 0.034 0.022 0.034 0.021 0.030 0.020 0.016 0.012

(0.4, 0.4) −3.0 −1.5 0.027 0.021 0.035 0.026 0.067 0.038 0.204 0.151
−1.5 −0.5 0.215 0.136 0.205 0.156 0.273 0.198 0.397 0.305

0.5 1.5 0.241 0.152 0.196 0.130 0.054 0.051 0.039 0.047
1.5 3.0 0.023 0.017 0.015 0.012 0.013 0.010 0.009 0.007
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Figure 5.6: Scenario d2 — Estimation of the Lévy density f (x, y) given by eq. (5.1.2) at x = 0
with η = (0.4, 0.2) (top row), at x = 0 with η = (0.1, 0.4) (middle row), and at x = 2.25
with η = (0.4, 0.4) (bottom row) based on discrete observations with lag ∆ = 0.01 up to time
n∆ = 2500. Left: One typical estimate (grey) is compared to the true Lévy density (black).
The upper and lower bounds of the estimated (pointwise) 95% -confidence intervals given by
eq. (5.1.5) are shown in red. Right: Estimates based on 100 trajectories (grey) are compared to
the true Lévy density (black). The (pointwise) mean of the estimates (red dashed line) and mean
of the upper and lower bounds of the 95% -confidence intervals (red solid lines) are shown.
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Figure 5.7: Scenario d3 — Estimation of the Lévy density f (x, y) given by eq. (5.1.2) at x = 0
with η = (0.4, 0.2) (top row), at x = 0 with η = (0.1, 0.4) (middle row), and at x = 2.25 with
η = (0.4, 0.4) (bottom row) based on discrete observations with lag ∆ = 0.001 up to time
n∆ = 2500. Left: One typical estimate (grey) is compared to the true Lévy density (black).
The upper and lower bounds of the estimated (pointwise) 95% -confidence intervals given by
eq. (5.1.5) are shown in red. Right: Estimates based on 100 trajectories (grey) are compared to
the true Lévy density (black). The (pointwise) mean of the estimates (red dashed line) and mean
of the upper and lower bounds of the 95% -confidence intervals (red solid lines) are shown.
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5.1.2 The infinite activity case

We investigated the performance of the estimator f̂ ∆,η
n (x, y) based on the observation

of the discrete sample X0(ω), X∆(ω), . . . , Xn∆(ω). We chose the parameters of the
process with infinite activity as reported in Table 5.12. The restriction of the Lévy
density to the set [−4, 4]× [−1, 1] for these parameters is presented in Figure 5.8.
We emphasise the singularity on the line y = 0 and that f is not twice continuously
differentiable on the set {−ξ, ξ} ×R, which we indicated by the red dotted lines.
We investigated the scenarios

d4) t4 = 1000 and ∆4 = 0.01, that is 100 000 observations;

d5) t5 = 1000 and ∆5 = 0.0025, that is 400 000 observations;

d6) t6 = 2500 and ∆6 = 0.0025, that is 1 000 000 observations.

We simulated the process with the Euler scheme; as step length, we chose 1/10-th of
the observation time-lag ∆. Given the value Xk∆/10, we simulated a stable increment
with Lévy density y 7→ f (Xk∆/10, y) and a Brownian increment with drift −bXk∆/10

and volatility c. Iteratively, we obtained an approximate sample X0, X∆/10, . . . , Xn∆.
Finally, we only kept every tenth observation.

For one simulated sample of each scenario d4–d6, we present the increments
(X(k−1)∆, ∆n

k X) in Figure 5.9. Our first observation is with regard to the bias correc-
tion. We recall that we use a kernel which is of second-order. Since, for each x, the
true Lévy density is convex as a function in y, on the one hand, we have that the
bias from kernel smoothing is positive. On a neighbourhood of zero, depending on
∆ > 0, on the other hand, our estimator f̂ η,∆

n (x, ·) is always concave by construction.
On this neighbourhood, consequently, the estimated bias correction always has the
wrong sign. In the following, we focus on the uncorrected estimates only.

We compare our estimates f̂ ∆,η
n (x, y) in terms of their functional properties. Just

as in the finite activity case, we observe a significant influence of the bandwidth
choice. In scenario d4, for instance, we observe that η1 > 0.2 (resp., η1 > 0.3) is
necessary to obtain reasonable estimates at x = 0 (resp., at x = 2). On the set
{|y| ≤ η2 + 0.3}, the bias due to discretisation is dominant. At x = 0, we obtain
good estimates on the sets {0.5 ≤ |y| ≤ 1} and {0.75 ≤ |y| ≤ 4} for the bandwidth
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choices η = (0.2, 0.2) and η = (0.4, 0.4), respectively. At x = 2, we obtain good
estimates on the sets {−3.5 < |y| < −0.75} and {0.75 < y < 1.5} for η = (0.4, 0.4).
In scenario d5, where the observation time-lag is one quarter of the time-lag of
scenario d4, first, we observe that the bias due to discretisation is dominant on
the set {|y| ≤ η2 + 0.2}. Apart from the improvement for |y| small, the estimates
in scenario d5 are similar to those of scenario d4. Finally, we observe that, for
scenarios d5 and d6 where the observation time-lag is equal, the set on which the
bias due to discretisation is dominant coincides. Nevertheless, the estimation for
|y| large improves significantly. At x = 0, we obtain very good estimates on the
sets {0.4 < |y| < 3} and {0.6 < |y| < 5} for η = (0.4, 0.2) and η = (0.2, 0.4),
respectively. At x = 2, we obtain very good estimates on the sets {−4 < y < −0.6}
and {0.6 < y < 2} for η = (0.2, 0.4). We present the estimates corresponding to
these observations in Figures 5.10 to 5.12.

In summary, on the one hand, we have seen that larger bandwidths give better
estimates in terms of variability and the degree of smoothing for |y| large. On the
other hand, smaller bandwidths allow for more reasonable estimates closer to zero
than larger ones. Moreover, increasing the number of observations without reducing
the observation time-lag does not give better estimates close to zero.
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Table 5.12: Parameters for the characteristics (B, C, n) given by eqs. (5.1.1) and (5.1.3)

b c ξ α

1 1 3 0.9

Figure 5.8: Contour plot (left) and topographical image plot (right) with legend (far right) of the
restriction of the of the Lévy density (x, y) 7→ f (x, y) given by eq. (5.1.3) with parameters as in
Table 5.12 to the set [−4, 4]× [−1, 1]. The distance of the contour lines and the colour scheme are
in logarithmic scale. The dotted red lines indicate the set {−ξ, ξ} ×R on which f is not twice
continuously differentiable.
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Figure 5.9: Increments (X(k−1)∆, ∆n
k X) of one simulated sample of scenarios d4 (top), d5 (middle),

and d6 (bottom). Left: All increments. Right: Increments on the set [−4, 4]× [−4, 4].
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Figure 5.10: Scenario d4 — Estimation of the Lévy density f (x, y) given by eq. (5.1.3) at x = 0 with
η = (0.2, 0.2) (top row), at x = 0 with η = (0.4, 0.4) (middle row), and at x = 2 with η = (0.4, 0.4)
(bottom row) based on discrete observations with lag ∆ = 0.01 up to time n∆ = 1000. Left:
One typical estimate (grey) is compared to the true Lévy density (black). The upper and lower
bounds of the estimated (pointwise) 95% -confidence intervals given by eq. (5.1.5) are shown
in red. Right: Estimates based on 100 trajectories (grey) are compared to the true Lévy density
(black). The (pointwise) mean of the estimates (red dashed line) and mean of the upper and
lower bounds of the 95% -confidence intervals (red solid lines) are shown.
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Figure 5.11: Scenario d5 — Estimation of the Lévy density f (x, y) given by eq. (5.1.3) at x = 0
with η = (0.2, 0.2) (top row), at x = 0 with η = (0.4, 0.4) (middle row), and at x = 2 with
η = (0.4, 0.4) (bottom row) based on discrete observations with lag ∆ = 0.0025 up to time
n∆ = 1000. Left: One typical estimate (grey) is compared to the true Lévy density (black).
The upper and lower bounds of the estimated (pointwise) 95% -confidence intervals given by
eq. (5.1.5) are shown in red. Right: Estimates based on 100 trajectories (grey) are compared to
the true Lévy density (black). The (pointwise) mean of the estimates (red dashed line) and mean
of the upper and lower bounds of the 95% -confidence intervals (red solid lines) are shown.
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Figure 5.12: Scenario d6 — Estimation of the Lévy density f (x, y) given by eq. (5.1.3) at x = 0
with η = (0.4, 0.2) (top row), at x = 0 with η = (0.2, 0.4) (middle row), and at x = 2 with
η = (0.2, 0.4) (bottom row) based on discrete observations with lag ∆ = 0.0025 up to time
n∆ = 2500. Left: One typical estimate (grey) is compared to the true Lévy density (black).
The upper and lower bounds of the estimated (pointwise) 95% -confidence intervals given by
eq. (5.1.5) are shown in red. Right: Estimates based on 100 trajectories (grey) are compared to
the true Lévy density (black). The (pointwise) mean of the estimates (red dashed line) and mean
of the upper and lower bounds of the 95% -confidence intervals (red solid lines) are shown.
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5.2 Penalised projection estimation of the Lévy density of Lévy

processes

This section is based on Section 4 of Ueltzhöfer and Klüppelberg (2011). The notation
has been adjusted to fit the general notation of this thesis.

We have implemented the penalised projection estimation (PPE) method de-
scribed in Section 2 of Ueltzhöfer and Klüppelberg (2011). Our estimator is based
on piecewise quadratic polynomials: For every m ∈ M = N∗, we denote by Dm the
regular partition of a given domain of estimation D ⊆ R∗ and define the sieve Sm by

Sm :=
{

g ∈ L2(D) : g|C is a quadratic polynomial ∀C ∈ Dm

}
.

We note that the constants defined in Section 3.1 of Ueltzhöfer and Klüppelberg
(2011) satisfy

Dm = 9m/vol(D), D′m = 45m/vol(D), and dm = 3m.

Also, Mn = {1, . . . , bTnvol(D)/9c}. In addition, the penalty constants in eq. (10) of
Ueltzhöfer and Klüppelberg (2011) are set to c1 = 2, c2 = 1, c3 = 0.1, and c4 = 0.5.
Although in practice, the penalty constants could be tuned to give better estimates in
instances where Brownian motion is clearly present, here, we use the same constants
whether Brownian motion is present or not. In doing so, we intend to emphasise the
effect of Brownian motion on the PPE and the asymptotic behaviour of the PPE.

As a comparison, we also implemented the estimation procedure described in
Sections 6 and 7 of Comte and Genon-Catalot (2009, 2011), respectively. We denote
this estimator by SCE, which indicates the sinus cardinal (basis). Moreover, any
notation referring to the latter procedure will be appended by the label SC. Let g∗

denote the Fourier transform of a function g and let ϕ denote the sinus cardinal,
that is, ϕ(x) = sin(πx)/(πx) with ϕ(0) = 1. For msc > 0 the corresponding SC-
projection space is given by Ssc

msc
= {g ∈ L2(R : supp(g∗) ∈ [−πmsc, πmsc])}. The

set {ϕmsc,k : k ∈ Z}, where ϕmsc,k(x) =
√

mscϕ(mscx− k), forms an orthonormal basis
of Ssc

msc
. Note that msc plays the role of a bandwidth and is unrelated to the m of our

method.
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Depending on whether Brownian motion is absent or present, the corresponding
SCEs of x 7→ gsc(x) = x f (x) and x 7→ psc(x) = x3 f (x) are given by

ĝsc
msc

= ∑
k∈Z

âsc
msc,k ϕmsc,k and p̂sc

msc
= ∑

k∈Z
b̂sc

msc,k ϕmsc,k,

respectively, where

âsc
msc,k =

1
Tn

Tn/∆n

∑
j=1

∆n
j Xϕmsc,k(∆

n
j X) and b̂sc

msc,k =
1

Tn

Tn/∆n

∑
j=1

(∆n
j X)3ϕmsc,k(∆

n
j X).

The contrast values for the SCEs are equal to −∑k∈Z(âsc
msc,k)

2 and −∑k∈Z(b̂sc
msc,k)

2,
and the respective penalty functions are defined by

pensc
n (msc) =

κscmsc

T2
n

Tn/∆n

∑
j=1

(∆n
j X)2 and pensc

n (msc) =
κscmsc

T2
n

Tn/∆n

∑
j=1

(∆n
j X)6.

In analogy to Comte and Genon-Catalot (2009, 2011), we truncate the infinite sum
in the definition of ĝsc

msc
and p̂sc

msc
to {k : |k| ≤ 15}. In addition, msc is chosen from

the set {0.1, 0.2, . . . , 10}, and the constant in the penalties is set to κsc = 7.5 if there
is no Brownian motion and κsc = 3 otherwise. As we are interested in the Lévy
density itself, we transform the raw estimates ĝsc

msc
and p̂sc

msc
to f̂ sc

msc
(x) = ĝsc

msc
(x)/x

and f̂ sc
msc

(x) = p̂sc
msc

/x3, respectively, and restrict them to the domain of estimation D
from our method.

We simulated the following univariate models:

(i) a compound Poisson process with intensity 0.5 and exponentially distributed
jumps with mean 1: f (x) = 0.5e−x1{x>0};

(ii) a superposition of (i) and Brownian motion with σ = 0.5;

(iii) a standard gamma process: f (x) = x−1e−x1{x>0};

(iv) a superposition of (iii) and Brownian motion with σ = 0.5;

(v) a superposition of a bilateral gamma process with parameters (α+, β) = (1, 1)
and (α−, β) = (0.7, 1) and Brownian motion with σ = 0.5:
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f (x) = x−1e−x1{x>0} + x−1e0.7x1{x<0}.

Note that the parameters of the processes are taken as in Comte and Genon-Catalot
(2009, 2011). In all cases, we investigated the scenarios

(1) T1 = 2500, ∆1 = 0.05 (50 000 observations), and

(2) T2 = 5000, ∆2 = 0.02 (250 000 observations).

Furthermore, we choose D = [0.05, 10] in cases (i) and (iii), D = [0.25, 10] in cases
(ii) and (iv), and D = [−10,−0.35] ∪ [0.35, 10] in case (v).

As f ∈ C∞(D) in all cases (i–v), by Theorem 3.7 of Ueltzhöfer and Klüppel-
berg (2011), we expect the PPE based on piecewise quadratic polynomials to con-
verge with rate T−6/7. By Theorem 3.1 and Theorem 4.1 of Comte and Genon-
Catalot (2009, 2011), respectively, we expect the SCE to converge with rates (i) T−3/4,
(ii) T−7/8, (iii) T−1/2, and (iv–v) T−5/6 in the respective cases. We give a summary
of the theoretical relative reductions corresponding to doubling T from scenario (1)
to (2) in Table 5.13.

For the cases (ii) and (iv), moreover, we remark the probability for a purely
Brownian increment to be bigger than the lower bound of D (0.25 in these cases)
equals 1.27 % in scenario (1) and 0.02 % in scenario (2). Therefore, we expect signif-
icant distortions of the PPEs caused by Brownian motion in scenario (1), whereas
these effects should remarkably diminish in scenario (2). In case (v), we have
chosen D further away from the origin such that minx∈D|x| = 0.35. The probabil-
ities that a purely Brownian increment falls into D, hence, are reduced to 0.174 %
and 7.43 · 10-5 %, respectively, in comparison to cases (ii) and (iv). Accordingly, we
expect the impact of Brownian motion on the PPEs to be small in either scenario. We
want to emphasise that the SCEs are based on all increments independent of their
sizes. Hence, we do not expect a significant difference for the SCEs between cases
(ii) and (iv) on the one hand, and case (v) on the other hand.

Results are given in Figure 5.13. Columns (a/b) correspond to the PPE, and
columns (c/d) correspond to the SCE. Columns (a/c) show 50 estimated Lévy
densities for scenario (1), and columns (b/d) show 50 estimated Lévy densities for
scenario (2). On the y-axis, we restrict the plotted range to (i) [0, 0.75], (ii) [0, 1.5],
(iii) [0, 20], (iv) [0, 6], and (v) [0, 5]. Near zero, some of the estimates fall out of this
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range and had to be truncated above. Nonetheless, all these cases are explicitly
discussed below. Moreover, for the cases (iii–v) the Lévy densities and their estimates
plotted over D are indistinguishable to the naked eye. However, there are notable
differences over the range D ∩ [−2, 2] which we present here. In addition, for each
scenario, we calculated the empirical MSE, that is, the mean of the empirical squared
error of each estimate (‖ f − f̂ ‖2

L2(D)
; cf. the definition at the beginning of Section 2.3

of Ueltzhöfer and Klüppelberg (2011)), and the mean of the estimated m and msc

selected by penalisation. These are summarised in Table 5.14. In brackets, we give
the standard deviation over 50 samples.

For (i), the pure compound Poisson process, we observe that all four plots exhibit
high quality estimates with small variability. Near zero, the PPE follows the slope of
the true Lévy density closely. The estimated values f̂ n

pen(0.05) range between 0.36
and 0.50, and between 0.31 and 0.39 in scenarios (1) and (2), respectively. The
conclusion that the true Lévy density is bounded (on R∗) becomes obvious. For
the SCE, this is not necessarily the case. The estimated values f̂ sc(0.05) range bet-
ween 0.79 and 1.25 in scenario (1), and between 1.54 and 1.95 in scenario (2). Compare
these values with the true value f (0.05) ≈ 0.48. Note also, the raw estimates ĝsc are,
in general, non-zero at the origin. Without restriction to D, therefore, the SCEs of f
have a pole at zero, whereas f (x)→ 0.5 as x → 0. In contrast, the SCEs are smoother
than the PPEs further away from zero. Moreover, the empirical mean squared errors
of the PPEs and SCEs reduce by 52.6 %, and 95.2 % on average, respectively. For
comparison, we refer to the asymptotic values summarised in Table 5.13.

For (ii), the superposition of (i) and Brownian motion, we observe highly unstable
estimates in columns (a), (c) and (d), and high quality estimates in column (b) only.
The distortions in the former cases are due to Brownian motion. However, in
the latter case, the PPE behaves similar to case (i), where Brownian motion was
absent. In particular, the PPE benefits considerably from the smaller observation
time lag ∆2. For the SCE this is not the case, as all observed increments are taken
into account independent of their sizes. The values f̂ n

pen(0.25) estimated by the PPE
range between 4.47 and 6.01 in scenario (1), and between 0.36 and 0.48 in scenario (2).
In contrast, the values f̂ sc(0.25) estimated by the SCE range between -1.46 and +17.0,
and between -0.50 and +7.95 in scenarios (1) and (2), respectively. The true value
is f (0.25) ≈ 0.39. Note that the raw estimates p̂sc are, in general, non-zero at the
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origin. Unrestricted, thus, the SCEs of f have a pole at zero, whereas f (x) → 0.5
as x → 0. Moreover, the defining property of Lévy densities, that is,∫

(|x|2 ∧ 1) f̂ sc(x)dx < ∞,

is violated.

For (iii), the standard gamma process, we observe that all four plots exhibit high
quality estimates with small variability. The empirical mean squared error of the
PPE is slightly smaller than the corresponding mean squared error of the SCE as the
PPEs follow the slope near zero slightly closer. Further away from zero, though, the
SCEs are smoother than the PPEs. We observe the empirical mean squared errors of
the PPEs and SCEs reduce by 66.1 %, and 57.9 % on average, respectively. Again, we
refer to the asymptotical values summarised in Table 5.13 for comparison.

For (iv), the superposition of (iii) and Brownian motion, similar to (ii) we observe
unstable estimates in columns (a), (c) and (d), and estimates of higher quality in
column (b) only. Once more, we observe distortions in the former cases due to
Brownian motion. However, in the latter case, the PPE behaves very similar to case
(iii), where Brownian motion was absent. The PPE benefits considerably from the
smaller observation time lag ∆2, whereas the SCE does not. The values f̂ n

pen(0.25)
estimated by the PPE range between 7.55 and 9.11 in scenario (1), and between 3.14
and 3.89 in scenario (2). In contrast, the values f̂ sc(0.25) estimated by the SCE range
between 3.50 and 11.6 with mean 8.02 in scenario (1), and between 3.49 and 10.4 with
mean 6.78 in scenario (2). Compare these values to the true value f (0.25) ≈ 3.12.
Note also, the raw estimates p̂sc exhibit, in general, non-zero values at the origin for
both scenarios (1) and (2). Analogously to case (ii), therefore, the unrestricted SCEs
of f violate

∫
(|x|2 ∧ 1) f̂ sc(x)dx < ∞. Furthermore, the empirical mean squared

errors of the PPEs and SCEs reduce by 98.3 %, and 57.9 % on average, respectively.
For comparison, once more, we refer to the asymptotical values in Table 5.13.

For (v), the superposition of a bilateral gamma process and Brownian motion,
we chose D further away from the origin in comparison to cases (ii) and (iv). The
PPE exhibits a reasonable empirical mean squared error in both scenarios (1) and
(2) as compared to case (iii), where Brownian motion was absent. Moreover, the
PPEs are not too large to be plotted and, hence, not truncated. Although one may
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expect estimates like those in case (iv), changing D yields estimates like those in
case (iii). The influence of purely Brownian increments is lowered considerably
in comparison to case (iv). As for the SCE, in scenario (1) the estimated values
f̂ sc(−0.35) and f̂ sc(0.35) range between 3.21 and 6.36, and between -1.87 and +3.25,
respectively. In scenario (2), the SCEs’ corresponding values range between 2.04
and 5.49, and between 1.43 and 4.35, respectively. Compare these values to the true
values f (−0.35) ≈ 2.24 and f (0.35) ≈ 2.01. We note that the SCE does not benefit
significantly from the change of D.

From a statisticians point of view, if Brownian motion is present, the choice
of D appears to be crucial for a given scenario. In cases (ii) and (iv) above, if we
choose a domain of estimation further away from the origin, e. g., D = [0.35, 10], the
distortions observed in scenarios (ii-1) and (iv-1) vanish and the plots look similar to
cases (i-1) and (iii-1), respectively, where Brownian motion was absent. A practicable
method, therefore, is to estimate σ first, e. g., as presented in Mancini (2005). Then,
assuming σ̂ = σ, we determine D such that the probability for purely Brownian
increments to fall into D is very small.

Having said that, there exists another provision despite changing D. Again for
cases (ii) and (iv), we observe that the penalisation criterion chooses on average
m = 43.34 and m = 43.96, respectively, in scenario (1), and m = 3.50 and m = 25.58
on average, respectively, in scenario (2). Although, the optimal m, that is, m?

n,
increases with rate T1/7 in these cases (cf. Proposition 3.5 of Figueroa-López (2009a)),
the estimated m chosen by penalisation, in fact, decreases from scenario (1) to (2).
Obviously, the relatively large amount of purely Brownian increments just above
the threshold of 0.25 causes the penalised contrast to favour large m in scenario
(1). Since we partition the domain equidistantly, only a few increments remain for
each partition cell where a jump of corresponding size occurred. This increases the
variance of our estimator significantly. If we increase the constants c1, . . . , c4 in our
penalty, the influence of Brownian motion is decreased such that smaller m, that is,
coarser partitions, resulting in a smaller empirical mean squared error are chosen.
In summary, not only the right choice of the domain of estimation D but the right
balance between D and the penalty constants c1, . . . , c4 is crucial.
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Table 5.13: Summary of asymptotic rates of convergence (rows 1 and 3) and relative reduction of
the MSE (rows 2 and 4) as T doubles from scenario (1) to (2) for the PPE (rows 1 and 2) and the
SCE (rows 3 and 4) corresponding to the estimation of f for a CPP–Exp(1) with rate 0.5 (column
i), a superposition of (i) and Brownian motion with σ = 0.5 (column ii), a standard gamma
process (column iii), a superposition of (iii) and Brownian motion with σ = 0.5 (column iv),
and a superposition of a bilateral gamma(1, 1; 0.7, 1) process and Brownian motion with σ = 0.5
(column v).

(i) (ii) (iii) (iv) (v)

PPE
Asymptotic rate T−6/7 T−6/7 T−6/7 T−6/7 T−6/7

Rel. reduction (T2 = 2T1) 44.8 % 44.8 % 44.8 % 44.8 % 44.8 %

SCE
Asymptotic rate T−3/4 T−7/8 T−1/2 T−5/6 T−5/6

Rel. reduction (T2 = 2T1) 40.5 % 45.5 % 29.3 % 43.9 % 43.9 %

Table 5.14: Summary of the estimation of f for a CPP–Exp(1) with rate 0.5 (row i), a superposition
of (i) and Brownian motion with σ = 0.5 (row ii), a standard gamma process (row iii), a
superposition of (iii) and Brownian motion with σ = 0.5 (row iv), and a superposition of a
bilateral gamma(1,1;0.7,1) process and Brownian motion with σ = 0.5 (row v) by the PPE based
on piecewise quadratic polynomials and the SCE.

X (Tn, ∆n) mpen
n msc se( f̂ n

pen) se( f̂ sc
msc)

(i) (2500, 0.05) 2.92 (0.34) 0.96 (0.13) 0.876 (0.642) 8.065 (2.599) ×10−3

(5000, 0.02) 2.98 (0.14) 1.87 (0.35) 0.415 (0.209) 0.385 (0.271) ×10−3

(ii) (2500, 0.05) 43.34 (2.73) 0.47 (0.21) 0.752 (0.068) 1.527 (2.178)
(5000, 0.02) 3.50 (0.71) 0.55 (0.25) 0.007 (0.003) 5.397 (5.410) ×10−1

(iii) (2500, 0.05) 59.10 (4.40) 4.82 (0.41) 0.174 (0.052) 0.765 (0.133)
(5000, 0.02) 73.12 (8.68) 5.93 (0.31) 0.059 (0.018) 0.329 (0.053)

(iv) (2500, 0.05) 43.96 (4.54) 0.63 (0.27) 0.885 (0.091) 1.185 (0.747)
(5000, 0.02) 25.58 (5.40) 0.72 (0.24) 0.015 (0.005) 0.674 (0.488)

(v) (2500, 0.05) 26.36 (3.11) 0.29 (0.03) 0.137 (0.057) 5.679 (4.369) ×10−1

(5000, 0.02) 25.56 (3.00) 0.46 (0.23) 0.051 (0.012) 3.733 (2.003) ×10−1

Notes: The empirical mean of the values for m chosen by penalisation, and the empirical MSE
for each pair (Tn, ∆n) are presented. Standard deviations over 50 samples are given within the
brackets. The squared errors and their standard deviations are to be scaled by the factor in the
last column.
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Figure 5.13: Estimation of f for a CPP–Exp(1) with intensity 0.5 (row i), a superposition of (i) and
Brownian motion with σ = 0.5 (BM) (row ii), a standard gamma process (row iii), a superposition
of (iii) and BM (row iv), and a superposition of a bilateral gamma(1, 1; 0.7, 1) process and BM
(row v). We present the true (dashed black) and 50 Lévy densities estimated (dotted red) by the
PPE (columns a/b) and the SCE (column c/d), where (Tn, ∆n) = (2500, 0.05) (columns a/c) and
(Tn, ∆n) = (5000, 0.02) (columns b/d).
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6 Empirical modelling of the intermittency in

atmospheric turbulence

This chapter is based on Ferrazzano and Ueltzhöfer (2012) and is joint work with
Vincenzo Ferrazzano. The individual introduction in Section 6.1 has been edited for
presentational purposes in view of the general introduction of this thesis (Chapter 1).
Cross-references to the material presented in Chapter 2 have been added.

6.1 Introduction

Turbulence is the complex behaviour of a particle in a fluid, under certain conditions,
described by its velocity. Its modelling is a long-standing problem in both physics
and mathematics. The Navier–Stokes equations, the basic equations describing
turbulence, are well-know since the 19th century. Actual comprehension of this
phenomenon, however, is scarce. For an exhaustive account of the turbulence
theory, we refer to the monographs of Frisch (1996) and Pope (2000). Since the
seminal work of Kolmogorov (1941a,b, 1942, 1962), it is commonly accepted that
turbulence can be regarded and analysed as a random phenomenon. In particular,
the velocity of a turbulent flow can be modelled as a spatio-temporal stochastic
process which preserves some statistical structure. The theory developed in a spatio-
temporal setting is reduced to a time-series framework, utilising Taylor’s frozen-field
hypothesis (Pope, 2000, p. 223).

In this chapter, we focus on the modelling of the velocity V = (Vt)t∈R of a
weakly stationary turbulent flow along the main (longitudinal) flow direction at
some fixed point in space. We note that virtually every observed turbulent flow
displays several stylised facts. Experimental investigations highlighted that their
magnitude depends only on a control parameter called the Reynolds number; it is
proportional to the mean flow velocity over the kinematic viscosity. Our paramount
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aim is to advocate a statistical model, which is able to reproduce the following
essential “intermittent” features of flows with a Reynolds number above a critical
threshold, called fully developed turbulent flows: Firstly, the velocity increments display
a distinctive clustering; the phenomenon originally called intermittency. In particular,
the squared increments of turbulent flow velocities are significantly correlated; their
auto-correlation function is positive and slowly decaying. Secondly, the velocity
increments are semi-heavy tailed and display a distinctive scaling: On large time-
scales, on the one hand, the distribution of the increments is approximately Gaussian.
On small time-scales, on the other hand, the distribution develops exponential tails
and is positively skewed. The skewness is given by Kolmogorov’s 4/5-law. This law
is a direct consequence of Navier-Stokes equations; it is one of the few exact and
non-trivial results in turbulence theory.

Barndorff-Nielsen and Schmiegel (2008) proposed a causal continuous-time
moving-average process (cCMA)

Vt = v̄ +

t∫
−∞

gV(t− s)dXs, (6.1.1)

driven by some – for a moment unspecified – normalised random orthogonal
martingale measure dX, as a suitable statistical model for a fully developed turbulent
flow with mean v̄ > 0. In this model, the second-order properties depend only on the
square-integrable moving-average kernel gV ; in particular, the auto-covariance γV

and the (power) spectral density PV have the simple forms

γV(t) =
∞∫

0

gV(s + |t|)gV(s)ds and PV(ω) =
1

2π

∣∣∣FgV(ω)
∣∣∣2,

where Fh(ω) :=
∫

h(s)eiωsds denotes the Fourier transform of h ∈ L2. The driving
noise X, henceforth called the intermittency process, accounts for all higher-order
properties of V. In addition to the work of Barndorff-Nielsen and Schmiegel,
Ferrazzano and Klüppelberg (2012) give a comprehensive study on the dependence
of the moving-average kernel gV on the Reynolds number of the turbulent flow.
Thereupon, we build our intermittency model.
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We advocate that the intermittency process X = (Xt)t∈R is appropriately mod-
elled by a two-sided, time-changed Lévy process

Xt := L∫ t
0 Ysds (6.1.2)

(cf. Section 2.2.3), where L is a purely discontinuous martingale with tempered
stable Lévy measure (see Rosiński, 2007) and Y is itself a positive, ergodic, causal
continuous-time moving average process – independent of L. In detail: We suppose
there exists an 0 < α < 2 and there exist two completely monotone functions
q+, q− : R+ → R+, called the tempering functions, such that the Lévy measure of L is
given by

F(dx) =
q+(x)
x1+α

1{x>0}(x)dx +
q−(|x|)
|x|1+α

1{x<0}(x)dx; (6.1.3)

and we suppose that Y is – again – a cCMA process

Yt =

t∫
−∞

gY(t− s)dZs, (6.1.4a)

where the kernel belongs to the family

gY(t) = gY(t; θ) =

Cσζν−1 exp(−λζ) if 0 < t < ζ,

Cσtν−1 exp(−λt), if t ≥ ζ,
(6.1.4b)

with strictly positive parameters θ = (σ, ν, λ, ζ), and C = Cν,λ,ζ > 0 is a normalising
constant such that

∫
gY(t; θ)2dt = σ2; note that Z remains some unspecified Lévy

subordinator with Var Z1 = 1 such that Y is independent of L, non-negative, and
with finite fourth moment.

Recalling the “intermittent” features which we want to reproduce, we have a
strong motivation for our model: The tempered stable distributions form a class
of infinitely divisible distributions exhibiting the scaling behaviour observed in the
intermittency. This class has been introduced to turbulence modelling by Mantegna
and Stanley (1994) and Novikov (1994). In physics, the corresponding processes are
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known as truncated Lévy flights. Furthermore, since

Cov
[
(Xk∆ − X(k−1)∆)

2, (X(k+j)∆ − X(k+j−1)∆)
2
]
=

Var[L1]
2 Cov

 ∆∫
0

Y(k−1)∆+sds,
∆∫

0

Y(k+j−1)∆+rdr

 (6.1.5)

for every k ∈ Z, j ∈ N and ∆ > 0, our model is, in principle, able to reproduce the
clustering behaviour observed in the intermittency. Ferrazzano and Klüppelberg
(2012), for instance, argues that the squared increments of the intermittency approxi-
mate the instantaneous rate of energy dissipation; that is, a quadratic functional of
the spatial gradient of the three-dimensional velocity vector (Pope, 2000, eq. 5.128).
In turbulence literature, such a proxy is often called surrogate energy dissipation. On a
certain interval of time-lags, called the scaling range, the auto-correlation function of
the true energy dissipation follows a power-law. Its exponent, called the intermittency
exponent, measures the tendency of volatility increments to cluster (see Cleve, Greiner,
Pearson, and Sreenivasan, 2004). The impact of surrogacy is studied, for example,
by Cleve, Greiner, and Sreenivasan (2003). Their model (4) for the auto-covariance
function of the surrogate energy dissipation inspired our parametric family for gY.
The parameter ν in eq. (6.1.4b) is closely related to the intermittency exponent.

To model volatility clustering, time-changed Lévy processes have been introduced
to mathematical finance by Geman, Madan, and Yor (2001) and Carr and Wu (2004).
Likewise, these processes have been introduced to turbulence modelling by Barndorff-
Nielsen, Blæsild, and Schmiegel (2004) and Barndorff-Nielsen and Schmiegel (2004,
2008). Since the processes W ◦

∫ ·
0 Ysds and

∫ ·
0 Y1/2

s dWs are indistinguishable in the
case of a Brownian motion W, the relation to other stochastic volatility models like
the BNS Ornstein–Uhlenbeck (Barndorff-Nielsen and Shephard, 2001, 2002) and the
COGARCH model (Klüppelberg, Lindner, and Maller, 2004) is apparent.

We estimated our model from the so-called Brookhaven data set (Drhuva, 2000)
which consists of measurements taken at the atmospheric boundary layer, about 35m
above the ground. Brockwell et al. (2012) proposed a method to estimate the kernel g
from an observed sample V0(ω), V∆(ω) . . . , Vn∆(ω) of the velocity. Ferrazzano and
Fuchs (2012) extended this method to estimate the increments Xk∆(ω)− X(k−1)∆(ω)

172



6.2 The intermittency model and its estimation

of the intermittency process in addition. Treating these estimated increments as true
observations, we estimated the time-change using a method of moment approach
(see Kallsen and Muhle-Karbe, 2011). Next, we estimated the Lévy density of the
Lévy process L combining the projection estimator of Figueroa-López (2009b, 2011)
and the penalisation method which Ueltzhöfer and Klüppelberg (2011) studied in the
case of a pure Lévy process. Under a constraint on the moments of the time-changed
Lévy process, we also calculated least-squares fits of certain parametric families of
tempered stable Lévy densities to our non-parametric estimate. We minimised an
information criterion to find an optimal choice of parameters. In a simulation study,
we compare a sample of increments from our intermittency model and the data.
The fit of the empirical stationary distribution and the fit of the auto-correlation of
the squared intermittency increments (that is, the clustering of large increments) is
convincing.

We briefly outline this chapter: In Section 6.2 we present our model framework
and its features; also, we describe the statistical methods which we apply for the
estimation of the relevant quantities. In Section 6.3, we perform an empirical study
of the Brookhaven data set. Finally, in Section 6.4, we compare our fitted model and
the data set in a short simulation study.

6.2 The intermittency model and its estimation

In this section, we present our intermittency model from eqs. (6.1.2) to (6.1.4) in a
rigorous manner. We outline its specific features in detail. In addition, we discuss
the statistical methods for its estimation from discrete observations.

6.2.1 Modelling framework

On the filtered probability space (Ω, F , (Gt)t∈R,P), let L = (Lt)t∈R be a two-sided,
real-valued Lévy process without Gaussian part and Lévy measure F given by
eq. (6.1.3). We suppose that E Lt = 0; its characteristic exponent takes the form

logE eitL1 =
∫ (

eitx − 1− itx
)

F(dx)
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and, for n ≥ 2, its cumulants are given by cn := cn[L1] :=
∫

xnF(dx). In addition,
let Y = (Yt)t∈R be the process given by eq. (6.1.4) – independent of L – such that

Tt :=
t∫

0

Ysds is a Gt-stopping time for all t ∈ R.

By Corollaire 10.12 of Jacod (1979) (recall Theorem 2.2.14), the time-changed
Lévy process X = (Xt)t∈R given by eq. (6.1.2) is a purely discontinuous martin-
gale w. r. t. the filtration given by Ft := GTt ; the process has càdlàg sample paths
and X0 = 0. We recall that the integer-valued random measure m on R×R given by

m(ω; dt, dx) := ∑
{s:∆Xs(ω) 6=0}

ε(s,∆Xs(ω))(dt, dx),

is called its jump measure. By Theorems 2.2.9 and 2.2.14, the increments Xt+s − Xt

can be represented as the stochastic integral

Xt+s − Xt =
∫∫

]t,t+s]×R

x(m− n)(dr, dx), (6.2.1)

where n(ω; dt, dx) = Yt(ω)dtF(dx) is the predictable compensator of m. We call X
the intermittency process.

The moments and auto-covariation function of the intermittency increments
and their squares are determined by the cumulants of L and the mean and auto-
covariation function of Y. Since the driving subordinator Z of Y satisfies Var Z1 = 1
by assumption, the auto-covariation function γY : R → R+ of Y is given by the
so-called auto-cross correlation of its moving-average kernel gY; that is

γY(t; θ) := Cov[Y0, Yt] =

∞∫
0

gY(s; θ)gY(|t|+ s; θ)ds. (6.2.2)

For ∆ > 0, we abbreviate γ∆
Y(k; θ) :=

∫ ∆
−∆ |∆− s|γY(k∆ + s; θ)ds. By construction,

we have
EXt = 0 and Var Xt = tc2EY0 for all t ≥ 0.
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For identifiability, we suppose that EY0 = 1; recalling that X is supposed to be
the driving process of the cCMA model of eq. (6.1.1), furthermore, we assume that
the intermittency process is normalised such that c2 = Var X1 = 1. Under this
assumptions, we note that

EX3
t = tc3 and EX4

t = tc4 + 3(γt
Y(0; θ) + t2) (6.2.3)

(see, e. g., Barndorff-Nielsen and Shephard, 2006, Proposition 2). Dividing both
sides of eq. (6.1.5) by Var X2

∆, moreover, we obtain that the auto-correlation ρ∆
X2(k) :=

Corr[(X∆ − X0)
2, (X(k+1)∆ − Xkt)

2] of the squared intermittency increments at
lag k ∈ N∗ is given by

ρ∆
X2(k; θ) =

γ∆
Y(k; θ)

∆c4 + 2∆2 + 3γ∆
Y(0; θ)

(6.2.4)

(see, e. g., Barndorff-Nielsen and Shephard, 2006, Proposition 5).

6.2.2 Estimation from discrete observations

We suppose to observe the intermittency process X on a discrete-time grid with
sampling interval ∆ > 0. In particular for some n ∈ N∗, we observe a realisation of
the increments

∆n
k X := Xk∆ − X(k−1)∆, for k = 1, . . . , n.

The jumps of the process and the time-change are latent.
Firstly, we turn to the estimation of the parameters θ = (σ, ν, λ, ζ) of the kernel gY

given by eq. (6.1.4b). For typographical convenience, set µ4 := EX4
∆. Solving

eq. (6.2.3) for c4 and plugging it into eq. (6.2.4), we obtain

ρ∆
X2(k; θ, µ4) =

γ∆
Y(k; θ)

µ4 − ∆2 , (6.2.5)

where we emphasise the dependence on µ4. We estimate the parameters θ, perform-
ing a least-squares fit of ρ∆

X2(k; θ, µ4) to its empirical version: In particular, let µ̂4

(resp., ρ̂∆
X2) denote the empirical fourth moment of the observed increments ∆n

k X
(resp., the empirical auto-correlation function of the squared increments (∆n

k X)2).
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Then, our estimator of θ is given by

θ̂ := arg min
θ∈R4

+

∑
k∈N∗

∣∣∣ρ̂∆
X2(k)− ρ∆

X2(k; θ, µ̂4)
∣∣∣2 . (6.2.6)

Secondly, we turn to the estimation of the Lévy density of the Lévy process
L. The class of tempered stable Lévy measures, recall eq. (6.1.3), is truly of semi-
parametric nature. By Bernstein (1929), every bounded, completely monotone
function is the Laplace transform of some finite measure Q on R∗+; that is, x 7→∫ ∞

0 e−λxQ(dλ). In literature, parametric estimation of tempered stable Lévy densities
is often based on the assumption that – for known orders p+, p− ∈ N∗ – it belongs
to the 2(p+ + p−) + 1-parametric sub-family

f (x; θp+,p−) =

x−1−α ∑
p+
k=1 c+k exp(−λ+

k x) for x > 0,

|x|−1−α ∑
p−
k=1 c−k exp(−λ−k |x|) for x < 0,

(6.2.7)

where all parameters θp+,p− := (α, (c+k , λ+
k )k=1,...,p+ , (c−k , λ−k )k=1,...,p−) are strictly pos-

itive and, in addition, α < 2. In view of the number of parameters, eq. (6.2.7) is
frequently used for low orders. The issue of order selection is rarely addressed. We
use a two-step approach to circumvent the latter issue: At first, we estimate the
Lévy density employing an adaptive non-parametric method. Then, we calculate the
least-squares fits of the parametric model eq. (6.2.7) to our non-parametric estimate
for orders p+ + p− up to some constant; we normalise our estimates so that the
variance Var X1 of our fitted model is equal to one; and we penalise for deviations
from the third and fourth empirical moments. Last, we minimise an information
criterion to find our optimal choice for p+ and p−.

Various non-parametric estimators for the Lévy density of a Lévy process have
been suggested in literature. Here, we focus on the projection estimator of Figueroa-
López (2009b, 2011) which employs Grenander’s method of sieves. In particular,
let µ be some absolutely continuous Borel measure on R∗, called the reference measure.
We denote the µ-density of the Lévy measure F by fµ; that is, F(dx) = fµ(x)µ(dx).
Moreover, let D ⊂ R∗ be a compact interval not containing zero, called the domain of
estimation. Throughout, we suppose that fµ is µ-square integrable over D. For each
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6.2 The intermittency model and its estimation

m ∈ N∗, let Km := {ym,0, . . . , ym,m} ⊂ D be such that {[ym,k−1, ym,k] : k = 1, . . . , m}
forms a µ-uniform partition of D. Then the space Sm := S(3, Km) of cubical C2-
splines with control points Km is an m + 3-dimensional subspace of L2(D, D , µ). The
minimum contrast estimator f̂ m

µ of fµ w. r. t. the sieve Sm, given by

f̂ m
µ := arg min

h∈Sm

{
− 2

n∆

n

∑
k=1

h(∆n
k X) +

∫
1D(x)h(x)2µ(dx)

}
, (6.2.8)

coincides with the respective projection estimator (cf. Lemma 2.1 of Ueltzhöfer and
Klüppelberg, 2011).

By Figueroa-López (2009b), under some hypothesis on Y, the estimator f̂ m
µ is

consistent for the µ-density fµ of the Lévy measure F if n∆→ ∞, ∆→ 0 fast enough,
and m→ ∞. For some related, pointwise central limit theorem, we refer to Figueroa-
López (2011). For a numerically stable computation of f̂ m

µ , we construct the B-spline
basis Bm := {hm,j : j = 1, . . . , m + 3} of the space Sm, and denote the Gramian matrix
w. r. t. µ by A = (aij)i,j=1,...,m+3; that is,

aij :=
∫
1D(x)hm,i(x)hm,j(x)µ(dx).

Let hm : R → Rm+3 be the mapping with components hm,j. Then the unique
minimiser in eq. (6.2.8) is given by

f̂ m
µ (x) =

m+3

∑
j=1

ĉmjhm,j(x), where ĉm := A−1

(
1

n∆

n

∑
k=1

hm(∆n
k X)

)
.

For each m ∈ N∗, we are given an estimator f̂ m
µ of fµ on D; its associated contrast

value is equal to −(ĉm)
ᵀ
Aĉm. As a data driven sieve selection method, we employ

the penalisation method which Ueltzhöfer and Klüppelberg (2011) studied in the
pure Lévy case. For ζ1 ≥ 1 and ζ2, ζ3, ζ4 > 0, in particular, let pen : N∗ → R be the
penalty function given by

pen(m) := ζ1(n∆)−2 tr
(
(hm(∆n

k X))
ᵀ

k≤n A−1(hm(∆n
k X))k≤n

)
+ ζ2

(
Dm

n∆
∨ D3

m
(n∆)4

)
+ ζ3

(
D′m
n∆
∨ D′3m
(n∆)4

)
+ ζ4

(
m + 3

n∆
∨ (m + 3)3

(n∆)4

)
,
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where

Dm := sup
h∈Sm

supx∈D |h(x)|2∫
D h(x)2µ(dx)

, and D′m := sup
h∈Sm

(
∫

D |h
′(x)|µ(dx))2∫

D h(x)2µ(dx)
. (6.2.9)

Then the estimator f̂ m̂
µ where

m̂ := arg min
m∈N∗

{
− (ĉm)

ᵀ
Aĉm + pen(m)

}
, (6.2.10)

is called the minimum penalised contrast estimator of fµ (w. r. t. the penalty pen).

In practice, we calculate an estimator f̂ m̂+
µ on some domain D+ ⊂ R∗+ and,

separately, an estimator f̂ m̂−
µ on some domain D− ⊂ R∗−. For the Lebesgue density f

of the Lévy measure F, we are thereby given the non-parametric estimate

f̂ (x) = f̂ m̂+
µ (x)µ′(x)1D+(x) + f̂ m̂−

µ (x)µ′(x)1D−(x). (6.2.11)

In general, this estimate is not the restriction of a tempered stable Lévy density to the
domain D+ ∪ D−. For orders p+, p− ∈ N∗ up to a specified order, we calculate the
least-squares fit of the parametric family given by eq. (6.2.7) to our estimate given by
eq. (6.2.11) under the constraint that the variance Var X1 of our fitted model equals
one; and we penalise for deviations of the fitted third and fourth cumulant from the
empirical ones (recall eq. (6.2.3)). In particular, our estimator of θp+,p− is given by

θ̂p+,p− := arg min
{θp+ ,p− :c2(θp+ ,p− )=1}


∫

D+∪D−

| f̂ (x)− f (x; θp+,p−)|2dx

+ ζ

(∣∣∣∣ c3(θp+,p−)∆
µ̂3

− 1
∣∣∣∣+ ∣∣∣∣ c4(θp+,p−)∆

µ̂4 − 3∆2(σ̂2 + 1)
− 1
∣∣∣∣)} ,

(6.2.12)

where

cn(θp+,p−) := Γ(n− α)
p+

∑
k=1

c+k (λ
+
k )

α−n + (−1)nΓ(n− α)
p−

∑
k=1

c−k (λ
−
k )

α−n

denotes the n-th cumulant of L1 corresponding to the Lévy density f ( · ; θp+,p−),
ζ > 0 denotes some penalisation constant, µ̂n denotes the n-th empirical moment of
the observed increments, and σ̂2 belongs to the fitted parameters of the kernel gY.

178



6.3 An empirical study of the Brookhaven wind speed data set

6.3 An empirical study of the Brookhaven wind speed data set

The Brookhaven turbulent wind speed data set consists of n = 20 · 106 measurements
taken at a frequency of 5000 Hz, covering a total time interval of 4000 s (66 min 40 s).
A precise description of the data set is given in Drhuva (2000). We remark that the
data set displays a Taylor’s microscale Reynolds number of approximately 17 000
and is regarded a good representative of fully developed turbulence.

Ferrazzano and Fuchs (2012) proposed a method to estimate the increments
∆n

k X(ω) of the intermittency process from an observed sample V0(ω), . . . , Vn∆(ω)

of the velocity. This method – which, in principle, can be seen as applying an
auto-regressive filter – has been employed to the Brookhaven data set. The filter has
been chosen to involve measurements up to a time-lag of 78.8424 s; consequently,
the estimated increments of the intermittency process cover a total time interval of
65 min 21.1276 s. For the remainder, we treat these estimates as if they were observed
true increments of the intermittency process; henceforth, we refer to them as the
“(intermittency) data”.

We summarise the data in Figure 6.1 at the end of this chapter: At the top,
we plotted the intermittency increments; the clustering of the increments is clearly
observable. At the bottom, we present histograms of the increments Xk∆ − X(k−j)∆

of the intermittency process at time-lags j∆ for j = 1, 1000, 10 000; for comparison,
we also present the densities of a Gaussian random variable scaled to the empirical
variance of the intermittency increments. At small-scale, we observe a heavy-tailed
distribution; at large-scale, we observe an approximately Gaussian distribution.

For the estimation of the parameters θ of the moving-average kernel gY of the
process Y given by eq. (6.1.4), we calculated the empirical auto-correlation func-
tion ρ̂∆

X2 of the squared, observed intermittency increments (∆n
k X)2. We obtain from

Cleve et al. (2004, Table I, data set “a2”) that the surrogacy cutoff time is given by
0.5 ms, that is, 2.5∆; for reasons stemming from physics, thus, we regard ρ̂∆

X2(k)
reliable for k ≥ 3 only. In addition, we observe a significant influence on the
empirical auto-correlation function by non-stationary, large scale effects. For the
estimation, thus, we consider ρ̂∆

X2(k) reliable up to one tenth of the de-correlation
time – the lag p̂ := 26 698 – only as well. We note that the empirical fourth moment
of the increments is given by µ̂4 = 2.166 · 10−6. With these considerations in mind,
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6 Empirical modelling of the intermittency in atmospheric turbulence

in practice, our estimator for the parameters θ (recall eq. (6.2.6)) is given by

θ̂ := arg min
θ∈R4

+

p̂

∑
k=3

∣∣∣ρ̂∆
X2(k)− ρ∆

X2(k; θ, µ̂4)
∣∣∣2 ,

where ρ∆
X2(k; θ, µ̂4) is given by eq. (6.2.5). We remark that no closed-form solution is

known for the auto-correlation γY(·; θ) of Y given by eq. (6.2.2). In practice, hence,
we utilised the convolution theorem, and employed the numerical approximation

(
γY(k∆/100; θ)

)
|k|≤250p̂

≈ D−1
∣∣∣∣D [(gY(k∆/100; θ)

)
k=0,...,500p̂

]∣∣∣∣2 ,

where we sampled gY with a 100-times higher frequency and on a 5-times longer
interval than used afterwards; D denotes the discrete Fourier transform, and | · |2 is
understood component-wise. Our estimate is summarised in Figure 6.2 and Table 6.1.
We present the empirical auto-correlation function ρ̂∆

X2(k) (black points) for the lags
k = 1, . . . , p̂ and compare it to the estimated auto-correlation function ρ∆

X2(k; θ̂, µ̂4)

(red solid line). We observe an excellent fit.

For the non-parametric estimation of the Lévy measure F of the Lévy process
L, we chose µ(dx) = x−4dx as reference measure. The main advantage of this
particular choice over Lebesgue measure is that the µ-density fµ of a tempered stable
Lévy measure F does not have a pole at zero; in particular,

fµ(x) = q+(x)x3−α1{x>0}(x) + q−(|x|)|x|3−α1{x<0}(x).

We employed the minimum penalised contrast method as presented in eqs. (6.2.8)
and (6.2.10) to estimate fµ separately on D+ = [0.015, 0.8] and D− = [−0.8,−0.015];
we chose the end points ±0.8 as there are no observations with absolute value larger
than 0.8 and we chose the end points ±0.015 ≈ ±

√
∆ to exclude an interval with a

radius of about one standard deviation centred at the origin. As penalty coefficients
we chose ζ1 = 2, ζ2 = 1, ζ3 = 0.5 and ζ4 = 0.1. As no closed-form solution is known
for the constants Dm and D′m in eq. (6.2.9), in practice, we replaced their true value
by numerical approximations. In Table 6.2, we summarised the penalised contrast
values (PCV) for the estimators ( f̂ m

µ )m=1,...,5 on D+ and D−.
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We note that a local minimum is attained at m̂+ = 4 and m̂− = 1, respectively.
For the Lebesgue density f of the Lévy measure F of the Lévy process L, we are
given the non-parametric estimate

f̂ (x) := f̂ m̂+
µ (x)x−41D+(x) + f̂ m̂−

µ (x)x−41D−(x);

(recall eq. (6.2.11)). We observe that the non-parametric estimate oscillates around
zero for |x| > 0.3; since no more than 591 observations – that is, 0.003% of the data –
are larger in absolute value than 0.3, for the remainder, we consider our estimate
reliable on the set D = [−0.3,−0.015] ∪ [0.015, 0.3] only.

For all orders p+ + p− ≤ 4, we calculated the penalised least-squares estimator
θ̂p+,p− defined in eq. (6.2.12); we replaced the integral over the set D by the discrete
residual sum of squares given by

RSS(θp+,p−) :=
300

∑
k=15

∣∣∣ f̂ (xk)− f (xk; θp+,p−)
∣∣∣2 + ∣∣∣ f̂ (−xk)− f (−xk; θp+,p−)

∣∣∣2 ,

where xk = k/1000; and chose the penalty constant ζ = 5× 105. To find an optimal
choice for (p+, p−), we also calculated the corrected Akaike’s information criterion

AICc(p+, p−) := N log(RSS(θ̂p+,p−)/N) + 2Kp+,p− +
2Kp+,p−(Kp+,p− + 1)

N − Kp+,p− − 1
,

where Kp+,p− := 2(p+ + p−) + 1 is the number of parameters and N := 572 is the
number of squared residuals evaluated for RSS.

Our results are summarised in Table 6.3. We observe that AICc is minimised
for p+ = 1 and p− = 2. The fitted parameter α̂ = 1.39 indicates that the paths
of our process are of infinite variation. We present the corresponding estimated
density in Figure 6.3. The parametric fit f (x; θ̂1,2) (red solid line) is compared to the
non-parametric estimate f̂ (x) (black points). The estimates are indistinguishable to
the eye.
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6.4 Simulation study

This section is dedicated to a short simulation study. We simulate a sample of
increments ∆n

k X of our fitted intermittency model up to a terminal time of 1000 s
and with a frequency of 5000 Hz. We specify the Lévy subordinator Z and simulate
the moving-average process Y of the time change. Then we simulate the increments
of the time-changed Lévy process Xt = L(

∫ t
0 Ysds) based on the realisation of Y. We

compare our simulated path and the intermittency data.

In our model, the process Y given in eq. (6.1.4) is a causal continuous-time
moving-average. We simulate from it approximating the stochastic integral defining
the cCMA process by a stochastic Riemann sum: For ∆1 > 0, let (Ỹ∆1

t )t∈R be given
by

Ỹ∆1
t :=

bt/∆1c

∑
k=−∞

gY

(
(bt/∆1c − k)∆1; θ̂

) (
Zk∆1 − Z(k−1)∆1

)
; (6.4.1)

then E |Ỹ∆1
t −Yt|2 → 0 as ∆1 → 0 for every t ∈ R. To achieve a good approximation

of Y on some time interval [t1, t2], we simulate from the driving process Z on a much
longer interval [t0, t2] with t0 � t1 and with a smaller time-lag ∆2 � ∆1. Then we
discard the samples on [t0, t1] which are corrupted by numerical errors, and reduce
the sampling frequency of the remainder.

We remark that the Lévy subordinator Z is left unspecified so far apart from
its mean and variance. For this simulation study, we aim for a simple, yet likely
choice for Z. For two reasons, we work with a Gamma process: Subordinators with
infinite activity seem appropriate to us, since turbulent motion requires permanent
injection of energy. And, the Gamma process is a well-understood subordinator
which, moreover, is uniquely specified by its mean and variance.

We chose ∆2 = 10−5. On the interval ] − 200, 1000], we simulated 1.2 · 108

independent and identically Gamma distributed increments Zk∆2 − Z(k−1)∆2
with

mean ∆2/(‖gY(t; θ̂)‖1) and variance ∆2, where ‖gY(t; θ̂)‖1 = 0.1385. To calculate
the convolution in eq. (6.4.1) we truncated the MA-kernel gY at t∗ = 200, where
gY(t∗; θ̂)/gY(0+; θ̂)) < 3.4 · 10−7. We discarded the observations on the interval
]−120, 0] which are corrupted by numerical errors and down-sampled to a time-lag
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of ∆1 = 1/5000. Consequently, we obtained 5 · 106 (approximate) observations Ỹk∆1

on the interval ]0, 1000].
As a time-changed Lévy process, the intermittency process X has independent

increments conditionally on Y. By eq. (6.2.1), moreover, we have

logE
[
eiu(Xt+∆1

−Xt)
∣∣∣Y] = t+∆1∫

t

Ysds
∫ (

eiux − 1− iux
)

f (x; θ̂p+,p−)dx.

For each k, approximating the increment of the time-change by ∆1Ỹk∆1 , we simulated
the increment X(k+1)∆1

− Xk∆1 using the shot-noise representation (5.19) of Rosiński
(2007). All jumps with absolute value larger than 10−6 where simulated exactly; the
small jumps where approximated by a Gaussian random variable of appropriate
variance. Consequently, we obtained a sample of 5 · 106 (approximate) increments
∆n

k X̃ on the interval ]0 s, 1000 s].
We present our simulation result in Figure 6.4. At the top, we plotted the

increments of the intermittency at the sampling frequency of 5000 Hz. In comparison
to the data as presented in Figure 6.1, we observe a convincing similarity. At the
bottom, we compare the simulation and the data in more detail: On the left, we
present a quantile-quantile plot comparing the empirical quantiles of the data (x-axis)
to those of the simulation (y-axis). On the interval [−0.3, 0.3], which carries more
than 99.996% of the data, the fit is excellent. Since the least-square fitting of the
Lévy density has been performed on the domain [−0.3,−0.015] ∪ [0.015, 0.3] only,
we are very satisfied with the fit of the stationary distribution of the intermittency
increments. On the right, we compare the empirical auto-correlation function of
the squared intermittency data (black points) to the empirical auto-correlation of
the square simulated increments (red solid line). Both axes are in logarithmic scale.
Again, their agreement is excellent.
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Figure 6.1: Increments of the intermittency process X. Top: (Estimated) increments Xk∆−X(k−1)∆
of the intermittency process covering a total time interval of 65 min 21.1276 s. Bottom: Histograms
of the intermittency increments at time-lags j∆ for j = 1 (left), j = 1000 (middle) and j = 10 000
(right). The y-axes are in logarithmic scale. The solid grey line represents the Gaussian density
scaled to the empirical variance of the intermittency increments.

Figure 6.2: Comparison of the empirical auto-correlation ρ̂∆
X2 of the squared intermittency

increments (∆n
k X)2 (black points) for lags k = 1, . . . , 26 698 corresponding to a time-lag of 5.3396s

and of the parametric estimate ρ∆
X2(·; θ̂) (red solid line). Both axes are in logarithmic scale. Right:

Least-square estimates of the parameters θ̂ of gY(·; θint).
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Table 6.1: Least-squares estimates of the parameters θ̂ of gY(·; θint)

σ ν λ ζ

3.6017 0.2881 0.0325 1.152 · 10−3

Table 6.2: Penalised contrast values (PCV) for the estimators f̂ m
µ on D+ and D−

m PCV on D+ PCV on D−

1 −1.283414 −1.016977
2 −1.283749 −1.016962
3 −1.283912 −1.016947
4 −1.283924 −1.016933
5 −1.283870 −1.016879

Table 6.3: (Penalised) least squares fitting of the parametric families f (x; θp+ ,p−) in eq. (6.2.7) to
the non-parametric estimate f̂ (x) given by eq. (6.2.11).

p+ ĉ+k λ̂+
k p− ĉ−k λ̂−k α̂ AICc

1 2.542 14.35 1 3.101 24.17 1.314 4361.4

1 0.618 10.33 2 0.740 19.86 1.390 3911.4
16.879 438.58

2 0.177 6.67 1 0.219 17.17 1.487 4059.6
16.156 1031.79

2 63.279 37.81 2 76.977 47.44 0.701 5544.7
782.867 2346.48 4.229 243.94

1 0.012 9.57 3 0.014 19.68 1.411 3937.4
0.001 162.75
0.539 518.30

3 0.180 6.74 1 0.222 17.14 1.487 4062.6
0.000 198.51

15.238 928.82
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Figure 6.3: Comparison of the parametric estimate f (x, θ̂1,2) (red solid line) and the non-
parametric estimate f̂ (x) (black points) on the domain D = {0.15 ≤ |x| ≤ 0.3}.

Figure 6.4: Simulation from the fitted intermittency model. Top: Simulated increments Xk∆ −
X(k−1)∆ of the intermittency process on an interval of length 1000 s. Bottom-Left: Quantile-
quantile plot (black points) of the observed increments ∆n

k X of the data (x-axis) against the
simulated increments (y-axis). The red line indicates the identity diagonal. The fit is excellent
on [−0.3, 0.3] which carries more than 99.996% of the data. Bottom-Right: Comparison of the
empirical auto-correlation ρ̂∆

X2 of the squared intermittency increments (∆n
k X)2 of the data (black

points) for lags k = 1, . . . , 26 698 corresponding to a time-lag of 5.3396 s and of the empirical
auto-correlation of the squared simulated intermittency increments (red solid line).
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