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Abstract

This work examines the interaction between a heavy quark and its anti-
quark. By combining perturbative and non-perturbative methods, interaction
potentials with an extended range of validity are derived from quantum chromo-
dynamics. Using these potentials the spectra of the quarkonium bound states
are calculated and compared with experimental results. This provides a new
approach for determining the masses of the charm and bottom quark.

Zusammenfassung

In dieser Arbeit wird die Wechselwirkung zwischen einem schweren Quark
und seinem Antiquark untersucht. Durch die Kombination von perturbativen
und nicht-perturbativen Methoden werden Wechselwirkungspotentiale mit ei-
nem erweiterten Gültigkeitsbereich aus der Quantenchromodynamik abgeleitet.
Mit diesen Potentialen werden die Spektren der gebundenen Quarkonium-Zu-
stände berechnet und mit experimentellen Resultaten verglichen. Dadurch er-
gibt sich ein neuer Zugang zur Bestimmung der Massen des Charm- und Bottom-
Quarks.
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1 Introduction

In the last decade large progress has been made in the field of heavy quarko-
nium physics. Several experiments, primarily BaBar at SLAC, Belle at KEK and
CLEO at CESR, contributed to increase the data on quarkonium spectra and
decays enormously. A few conventional charmonium and bottomonium states
were discovered and more than a dozen quarkonium-like states (e.g., X(3872) and
Y(4260)) were found outside the quark model. Effective field theories (EFTs)
have been improved and led to a better understanding of quarkonia. Large
progress was also made in the field of lattice QCD (quantum chromodynamics),
not only due to the constantly increasing computer power.

Since heavy quarkonia are multiscale systems, different sectors of QCD can
be probed. In particular, heavy quarkonia are ideal objects to investigate the
interplay of perturbative and non-perturbative physics.

In this work, perturbative potentials for charmonium and bottomonium are
derived from QCD at different orders in inverse powers of the heavy-quark mass
m. These potentials are constructed such that they are reliable from extremely
small up to intermediate distances. They are matched to potentials derived
within lattice QCD. This matching procedure works well for the leading-order
static potential as well as for the 1/m-potential. The charmonium and bottomo-
nium spectrum is derived at order 1/m with a single free parameter from the
matched potentials. The value of the single parameter can be obtained by com-
paring with the experimental spectra. This allows for an accurate extraction of
the charm and bottom quark mass.

The non-perturbative part of the charmonium spin-spin potential was ob-
tained recently with high accuracy in a new lattice QCD approach. We extend
this lattice potential to short distances by matching it at an intermediate dis-
tance scale to a suitable perturbative potential. One-gluon exchange is, in fact,
sufficient to derive the corresponding perturbative potential if the running of the
QCD coupling αs(q) is included. The hyperfine splittings in the S-wave charmo-
nium states, derived from the matched spin-spin potential, are then compared
with experimental values.

The thesis is organized as follows. In Chapter 2 basic properties of non-
relativistic QCD are introduced and different definitions of the heavy-quark mass
are illustrated. The static potential (i.e., the potential between two infinitely
heavy quarks) is discussed in Chapter 3. An alternative definition of the static
perturbative coordinate-space potential via a restricted Fourier transformation
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is introduced. This enables the matching with the static potential derived in
lattice QCD. Chapter 4 extends the methods applied for the static potential
to the potential at order 1/m. An analysis of the quark-antiquark potential at
order 1/m2, where spin-dependency starts to play a role, is done in Chapter 5. In
Chapter 6 new lattice QCD results for charmonium, derived from Nambu-Bethe-
Salpeter amplitudes through an effective Schrödinger equation, are introduced
and extended to short distances by matching with corresponding perturbative
potentials. Chapter 7 deals with quarkonium spectroscopy and the derivation
of the charm and bottom quark mass. Spectroscopy is discussed for the static
potential, the 1/m-potential and also for the potentials that are based on the new
lattice results. Furthermore, it is shown how to obtain the charm- and bottom-
quark mass in our approach and how to translate it to the modified minimal
subtraction (MS) scheme. The central results of the work are summarized in
Chapter 8. Finally, the Appendix deals with the running of the strong coupling,
it shows how to account for flavor thresholds, and it collects results from one-
gluon exchange.



2 Theories for heavy

quarkonium systems

2.1 Quantum chromodynamics

Quantum chromodynamics (QCD) is the part of the standard model of par-
ticle physics that deals with the strong interaction. It is a Yang-Mills theory
based on the SU(3) group with six Dirac fields (quarks) of different masses. The
charges are usually referred to as color charges and are mediated by exchange
particles called gluons. The QCD Lagrangian reads,

LQCD =
∑

q

ψq(iγ
µDµ −mq)ψq −

1

4
Ga
µνG

aµν , (2.1)

where q = u, d, c, s, t, b, Ga
µν = ∂µA

a
ν−∂νAaµ−gfabcAbµAcν and Dµ = ∂µ+igA

a
µT

a.
The generators T a and the SU(3) structure constants fabc fulfill the relation:

[T a, T b] = ifabc T c . (2.2)

The coupling strength of QCD varies under the renormalization group and
is characterized by the beta function (see Appendix A.1). At very high energies
the interaction between quarks and gluons becomes weak (asymptotic freedom).
QCD has at low energies an intrinsic scale ΛQCD which provides the main con-
tribution to the masses of the hadrons. The quarks are usually divided in light
quarks mu,md,ms ≪ ΛQCD and heavy quarks mc,mb,mt ≫ ΛQCD. The phys-
ical spectrum consists only of color-singlet states. The u, c and t quarks carry
the electric charge +2/3, whereas the d, s and b quarks have the electric charge
−1/3.

2.2 Basic properties of non-relativistic QCD

Heavy quarkonia are systems composed of a heavy quark and its antiquark.
The massm of each quark is much larger than the QCD confinement scale ΛQCD.
The system is non-relativistic and is characterized by the heavy-quark velocity
v ≪ 1. For detailed reports about heavy quarkonium physics see Refs. [1, 2].
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The study of a non-relativistic heavy quark and its antiquark has a long tra-
dition. After the discovery of the J/ψ meson, Appelquist and Politzer showed [3]
that non-relativistic quantum mechanics should be a good approximation to
heavy-quark-antiquark systems. But the observed charmonium and bottomo-
nium spectra turned out to be very different compared to a system like positro-
nium. It was found that perturbation theory fails to describe the long-distance
part of the heavy-quark potential. Potential models emerged: they incorporated
a linear-rising potential and were quite successful. However, they could not be
used for quantitative tests of QCD.

A new approach to describe quarkonia was proposed in Refs. [4, 5] where
QCD is reformulated in terms of an effective non-renormalizable Lagrangian.
The theory is called non-relativistic QCD (NRQCD) and allows to deal with the
UV-divergences that appear in the relativistic corrections to the non-relativistic
Schrödinger equation. However, the original theory of NRQCD is inconsistent
in dimensional regularization and has no consistent power counting in v.

The Lagrangian up to order 1/m2 reads:

LNRQCD = Ψ

{

iγ0D0 +
~D2

2m
+ cF g

~Σ· ~B
2m

+ cD g
γ0( ~D· ~E − ~E · ~D)

8m2

+ icS g
γ0 ~Σ·( ~D× ~E − ~E× ~D)

8m2

}

Ψ

− 1

4
Ga
µνG

aµν +
d2
m2

Ga
µν
~D2Gaµν +

d3
m2

gfabcGa
µνG

b
µαG

c
να

+
dss
m2

ψ†ψ χ†χ+
dsv
m2

(ψ†~σ ψ)·(χ†~σ χ)

+
dvs
m2

ψ†T aψ χ†T aχ+
dvv
m2

(ψ†T a~σ ψ)·(χ†T a~σ χ) , (2.3)

where Ψ = ψ+χ, ~Σ =
(

~σ 0
0 ~σ

)

, D0 = ∂0+igA
a
0T

a, ~D = ~∇−ig ~AaT a, Ei = Ga i0T a,
ψ is the Pauli-spinor field that annihilates the fermion and χ is the Pauli-spinor
field that creates the antifermion. The coefficients cF , cD, cS, d2, d3 can be
found in Ref. [6] and dss, dsv, dvs, dvv in Ref. [7].

The modern approach is to use the framework of effective field theories
(EFTs). One takes advantage of the existing hierarchy of scales and constructs
theories that are simpler than QCD but give equivalent results in the range
of interest. The high-energy scales that are not relevant for the non-relativistic
heavy quarkonium system can be integrated out during the matching procedure.

The EFT potential NRQCD (pNRQCD) [8, 9] is based on a complete sepa-
ration of the modes that fluctuate in the various momentum regions. A strict
expansion in energy and momentum components that are small in a given region
allows for this separation. In pNRQCD, in addition to the hard scale m, also
the soft scale mv is integrated out (see next section). The pNRQCD Lagrangian
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reads (weak-coupling regime):

LpNRQCD = Tr

{

S†

(

i∂0 −
~p 2

m
− V (0)

s − V
(1)
s

m
− V

(2)
s

m2
+ . . .

)

S

+ O†

(

iD0 −
~p 2

m
− V (0)

o + . . .

)

O

}

+ g VATr
{

O† ~r· ~E S + S† ~r· ~EO
}

+ g
VB
2

Tr
{

O† ~r· ~EO+O†O~r· ~E
}

− 1

4
Ga
µνG

aµν , (2.4)

where S and O are the singlet and octet fields, respectively. The functions V are
matching coefficients that depend typically on ~r and also on other parameters
such as m (via logarithms) or the spin. The focus of this work will be on the

singlet potentials V
(0)
s , V

(1)
s and V

(2)
s .

2.3 Scales and regimes in potential NRQCD

Various scales are involved in heavy quarkonium systems: the hard scale m,
the soft scale mv, the ultrasoft scale mv2 and ΛQCD. In NRQCD only the hard
scale is integrated out and only the condition m ≪ mv,mv2,ΛQCD is used. In
pNRQCD the soft scale mv is integrated out in addition. This means that only
the ultrasoft degrees of freedom (with energies ∼ mv2) remain dynamical.

The theory pNRQCD results from a two-step procedure. Starting from QCD,
the off-shell degrees of freedom in the hard region are integrated out at the scale
µ = m. The resulting theory (NRQCD) is then scaled down to µ = mv and the
scale of the momentum transfer (i.e., the soft scale mv) can be integrated out
in such a way that pNRQCD is equivalent to NRQCD up to the required order.

Two situations are possible. So far we have assumed to be in the weak-
coupling regime where the soft scale is much larger than ΛQCD. This means the
scales are ordered in the following way: m≫ mv ≫ mv2 & ΛQCD. Perturbative
matching of NRQCD and pNRQCD is possible and the matching coefficients V
in Eq. (2.4) can be calculated in perturbation theory.

In the second case, the strong-coupling regime, the soft scale is of the order
of ΛQCD (m ≫ mv & ΛQCD ≫ mv2). This implies that the soft scale is non-
perturbative and the matching of NRQCD and pNRQCD cannot be performed
in perturbation theory. The singlet potential (at leading order, at order 1/m
and at order 1/m2) involves non-perturbative parts given in terms of the static
Wilson loop and field-strength insertions in the static Wilson loop. In this
regime of pNRQCD, the evaluation of the potentials require non-perturbative
methods such as lattice QCD.
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2.4 Heavy-quark masses

Like coupling constants, quark masses are no physical observables but pa-
rameters of the Lagrangian. This means that, in principle, any well defined
quark mass can be used as long as it fulfills certain properties such as being
gauge-independent and infrared-finite. In the previous sections, the pole mass
definition was understood. The pole mass is indeed gauge-independent and
infrared-finite [10] but is usually not suitable for the analysis of experimental
data since it generates large perturbative corrections. These artificially large
corrections can be interpreted as an ambiguity of the pole-mass definition of the
order ΛQCD caused by a strong sensitivity to small momenta [11]. The value of
the pole mass is shifted by higher-order corrections and is therefore an order-
dependent quantity. It was found by Beneke [12] and Hoang et al. [13] that the
ambiguity of order ΛQCD is unphysical but the total static energy,

Estatic = 2mpole + V (0)
s , (2.5)

is free of this ambiguity.
The problem of the pole-mass definition can be avoided by using a quark

mass definition that is less sensitive to low momenta and does not contain the
static-quark self-energy in the mass counter term. Such quark masses are called
short-distance masses. For example the well known MS (modified minimal sub-
traction) mass falls into this category.

Several quark-mass definitions exist in the literature for certain situations
where the quark virtuality is small. Historically the first one was the kinetic
mass. It has been proposed in Ref. [14] and is designed for the description of
B mesons. It is constructed as the pole mass minus certain matrix elements
that are defined within heavy-quark effective theory and describe the difference
between the pole mass and the B-meson mass.

The potential-subtracted (PS) mass mPS has been proposed by Beneke in
Ref. [12] and is defined as:

mPS(µPS) = mpole +
1

2

∫

|~q |<µPS

d3~q

(2π)3
Ṽ (0)
s (~q ) , (2.6)

where Ṽ
(0)
s is the static color-singlet potential in momentum space. The PS mass

depends on the scale µPS that serves as a cutoff for the self-energy integration.
We will use this scheme in the subsequent chapters.

Another quark mass, the 1S mass, has been proposed in Ref. [15]. It is
defined as half of the perturbative series for the mass of the 13S1 quarkonium
state. It is scale independent but has in general small perturbative uncertainties.

Finally, the renormalon-subtracted (RS) mass has been proposed in Ref. [16].
It depends on the scale µRS and is defined as the perturbative series where all
non-analytic pole terms from the Borel transform of the pole-MS-mass relation
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at u = 1/2 have been subtracted (see Section 3.2.3). The terms in the relation
between the pole mass and the RS mass are formally known to all orders, but the
numerical value of the coefficients of the series are only approximately known
due to subleading contributions.

For a detailed overview of the different schemes we refer to Ref. [11].





3 The static potential

3.1 Studies within lattice QCD

Lattice QCD works in a discrete Euclidean space-time to evaluate the QCD
path integral numerically. Using Monte Carlo integration, vacuum expectation
values of numerous operators are studied. Systematic errors such as effects due
to the finite lattice spacing are well controlled.

The potential between two static color sources is one of the most precisely
determined quantities in lattice QCD. It is related to the static Wilson loop and
has been studied for many years in the so called quenched approximation. This
approximation neglects vacuum polarization effects that arise from dynamical
fermions. A linear confining potential at distances much larger than one fem-
tometer is observed, since string breaking is forbidden in such a configuration
(see, e.g., [17]). The quenched approximation can be dropped nowadays due to
rapidly increasing computer power.1 A comparison of a quenched static poten-
tial with a potential where two flavors of dynamical Wilson fermions are included
is shown in Fig. 3.1. One finds that the un-quenched data points lie systemati-
cally below their quenched counterparts at short distances, even though it is a
small effect.

In this chapter, we will use the lattice QCD results of Ref. [18] to continue
perturbative results of static charmonium and bottomonium potentials (valid
at short and intermediate distances) to distances up to approximately one fem-
tometer. An extrapolation to the physical pion mass (i.e., to realistic light-quark
masses) has already been performed in Ref. [18]. The authors find the values
e = 0.368+0.020

−0.026 and
√
σ = (0.447+0.022

−0.024) GeV and use a parametrization of the
form:

V (0), lat(r) = −e
r
+ σ r + const . (3.1)

The error of the string tension σ stems mainly from the uncertainty of the
Sommer scale, r0 = 0.50± 0.03 fm.

1The quenched approximation is still used for specific problems. For example for studies
of the mass dependent potentials (see Chapters 4 and 5).
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Figure 3.1: The static potential from lattice QCD (r0 ≈ 0.5 fm).
Comparison between quenched results and un-quenched results (with a
mass parameter value κ = 0.1575). Plot adapted from Ref. [18].

3.2 Definition of the perturbative potential

3.2.1 Momentum-space potential to order N3LO

The perturbative static potential (i.e., the color-singlet potential between two
infinitely heavy quarks) has been derived over the years from QCD with steadily
increasing precision. It can be written in momentum space in the compact form:

Ṽ (0)(|~q |) = −4πCFαs(|~q |)
~q 2

{

1 +
αs(|~q |)
4π

a1 +

(

αs(|~q |)
4π

)2

a2

+

(

αs(|~q |)
4π

)3(

a3 + 8π2C3
A ln

µ2
IR

~q 2

)

+O
(

α4
s

)

}

, (3.2)
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where ~q is the three-momentum transfer. The coefficients a1 and a2 have been
known in analytic form for many years in the MS scheme [19, 20, 21],

a1 =
31

9
CA − 20

9
TFnf , (3.3)

a2 =

(

4343

162
+ 4π2 − π4

4
+

22

3
ζ(3)

)

C2
A −

(

1798

81
+

56

3
ζ(3)

)

CATFnf

−
(

55

3
− 16ζ(3)

)

CFTFnf +

(

20

9
TFnf

)2

, (3.4)

where CF = 4/3, CA = 3, TF = 1/2 for SU(3) and nf is the number of light
quark flavors. At three-loop order, infrared-singular contributions proportional
to ln(µ2

IR
/~q 2) start to play a role (see, e.g., [22]). The accompanying constant

a3 = 64 (209.884(1)− 51.4048nf + 2.9061n2
f − 0.0214n3

f ) (3.5)

has been calculated independently in [23] and [24].

3.2.2 Analytic transformation to coordinate space

In order to transform the potential to coordinate space, αs(|~q |) in Eq. (3.2)
is usually expressed as a powers series expansion in αs(µ) at some fixed scale µ:

αs(q) = αs(µ)

[

1− αs(µ)

4π
β0 ℓ+

(

αs(µ)

4π

)2

(β2
0 ℓ−β1) ℓ

+

(

αs(µ)

4π

)3(

−β3
0 ℓ

2+
5

2
β0β1 ℓ−β2

)

ℓ

+

(

αs(µ)

4π

)4(

β4
0 ℓ

3− 13

3
β2
0β1 ℓ

2+3
(

β0β2+
β2
1

2

)

ℓ−β3
)

ℓ

+O
(

α5
s

)

]

, (3.6)

with ℓ = ln(q2/µ2). This formula is derived in Section A.1 in the Appendix.
The values of the coefficients of the β-function βn are also listed in Section A.1.

A Fourier transform of the momentum-space potential, where αs(|~q |) has
been expanded according to Eq. (3.6), leads to the standard, µ-dependent defi-
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Figure 3.2: Static r-space potential according to Eq. (3.7) using µ=
2 GeV. The choice µ2IR=~q

2 has been adopted at NNNLO.

nition of the coordinate-space static potential,

V (0)(r) = −4αs(µ)

3 r

{

1 +
αs(µ)

4π

[

a1 + 2β0 gµ(r)
]

+

(

αs(µ)

4π

)2
[

a2 + β2
0

(

4g2µ(r)+π
2/3
)

+ 2gµ(r)(2a1β0+β1)
]

+

(

αs(µ)

4π

)3
[

a3 + 16π2C3
A

(

ln(µIRr)+γE

)

+ β3
0

(

8g3µ(r)+2π2gµ(r)+16ζ(3)
)

+ β0
(

12g2µ(r)+π
2
)(

a1β0+5/6 β1
)

+ 2gµ(r)
(

3a2β0+2a1β1+β2
)

]

+O(α4
s)

}

,

(3.7)

where gµ(r) = ln(µr) + γE . The derivation of this r-space potential uses, in
principle, information about αs(|~q |) over the full range in q space. However,
the expansion (3.6) in powers of ln q2 is a good approximation only in a small
neighborhood of the scale µ, as illustrated in Fig. A.1 in the Appendix. Clearly,
the behavior of αs(q) for q > 10 GeV and q < 1 GeV is out of control for such
an expansion.

Fixing µ for instance at 2 GeV, the resulting coordinate-space potential (3.7)
behaves pathologically at r → 0, as shown in Fig. 3.2. This behavior can be
traced to the order-by-order sign changes of Eq. (3.6) for q→∞. Figure 3.3
shows the potential (3.7) resulting from the frequently used ad hoc identification
µ = 1/r which evidently works only at extremely short distances, r < 0.02 fm.

The perturbative potential as defined in Eq. (3.7) does not indicate conver-
gence and is obviously not suitable as a foundation for a reliable potential that
is valid over a large distance space.
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Figure 3.3: Static r-space potential according to Eq. (3.7). Progressive
orders are shown when µ is identified with 1/r. The choice µ2IR=~q

2 has
been adopted at NNNLO.

3.2.3 Renormalon-subtraction scheme

It was realized in Ref. [25] that the static potential suffers from renormalons,
which are singularities in the Borel plane. The Borel transform is defined as,

B[R](u) =
∞
∑

n=0

rn
un

n!
, (3.8)

for a divergent series expansion R ∼ ∑∞
n=0 rnα

n of R. It is found that the
momentum-space potential Ṽ (0)(|~q |) is free of renormalon contributions of order
ΛQCD/|~q |. The leading effect due to renormalons is instead of order Λ2

QCD/~q
2:

Ṽ (0)(|~q |) = −4π CF αs
~q 2

(

1 + . . .+ const×
Λ2

QCD

~q 2
+ . . .

)

. (3.9)

However, the coordinate-space potential V (0)(r) has a pole at u = 1/2 in the
Borel plane that amounts to a r-independent overall constant of order ΛQCD in
V (0)(r):

V (0)(r) = −CF αs
r

(

1 + . . .+ const× ΛQCD r + . . .
)

. (3.10)

It is shown in the Refs. [12, 13] that the sum of V (0)(r) and twice the heavy-quark
pole mass is free of leading renormalon effects. See Ref. [26] for an comprehensive
review of renormalons.

The potential of Eq. (3.7) can be improved by using the renormalon-sub-
traction (RS) scheme [16]. A detailed study and a comparison of the static
perturbative potential with lattice QCD in the RS scheme has been done in
Ref. [27].
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3.2.4 Potential-subtracted scheme

Here we pursue a different strategy for constructing the static potential in
coordinate space. It is based on the potential-subtracted (PS) scheme proposed
by M. Beneke [12] and has been published in Ref. [28]. The r-space potential is
defined through a restricted Fourier transform as

V (0)(r, µf ) =

∫

|~q |>µf

d3q

(2π)3
ei~q·~r Ṽ (0)(|~q |) , (3.11)

where Ṽ (0)(|~q |) is given in Eq. (3.2), but now αs(|~q |) for |~q | > µf is used without
resorting to a power series expansion. The momentum-space cutoff µf is intro-
duced in order to delineate the uncontrolled low-q region from the high-q range
where perturbation theory is considered to be reliable. The potential (3.11)
differs from the “true” static potential,

V (0)(r) = v(0)(µf ) + V (0)(r, µf ) , (3.12)

approximately by a constant,

v(0)(µf ) =

∫

|~q |≤µf

d3q

(2π)3
ei~q·~r Ṽ (0)(|~q |) = 1

2π2

µf
∫

0

dq q2 Ṽ (0)(q) +O(µ2
f r

2) , (3.13)

which encodes non-perturbative low-q behavior that can be absorbed in the
definition of the potential-subtracted (PS) quark mass (see Section 7.1). The
correction of order µ2

f r
2 is negligibly small in the range of interest (r < 0.2 fm).

The potential V (0)(r, µf ) is evaluated numerically using the four-loop renor-
malization group running of the strong coupling αs, see Section A.1 of the Ap-
pendix. For distances r < 0.2 fm, the resulting potential depends only weakly on
µf as shown in Fig. 3.4. At the position r = 0.14 fm the spread of (V (0)− const)
when varying µf between 0.7 GeV and 1.5 GeV is 0.05 GeV. The convergence
behavior of the potential is displayed in Fig. 3.5. Different orders have been
matched at r = 0.01 fm and are then evolved to larger distances. Evidently, the
convergence behavior of the potential V (0)(r, µf ) is satisfactory.

For bottomonium (nf=4 massless flavors), the input value for the renormal-
ization group running of the strong coupling constant is chosen as αs(4.2 GeV) =
0.226 ± 0.003. In the case of charmonium (nf = 3) we use αs(1.25 GeV) =
0.406±0.010 as input in the potential. These values are obtained from αs(mZ=
91.1876 GeV) = 0.1184 ± 0.0007 [29] (for a theory with nf = 5 active quark
flavors) and run down to 4.2 GeV and 1.25 GeV, taking into account flavor
thresholds (see Section A.2 of the Appendix for details).
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Figure 3.4: Static QCD potential (with nf = 3) from the restricted
numerical Fourier transform (3.11). Shown is the NNLO potential for
different values of µf . The curves have been shifted by a constant to
match at small r values.
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Figure 3.5: Static QCD potential (with nf = 3 and µf = 1.0 GeV)
from the restricted numerical Fourier transform (3.11). Different orders
of have been matched at 0.01 fm. The choice µ2IR=~q

2 has been adopted
at NNNLO.

3.3 Matching of potentials from perturbative

and lattice QCD

The perturbative potential (3.11), valid at small and intermediate distances,
can be matched to a potential derived from lattice QCD. We use the lattice
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Figure 3.6: Static QCD potential for nf = 3, based on Eqs. (3.11)
and (3.2), matched at intermediate distances to a potential from lat-
tice QCD [18]. Dashed-dotted curve: simplest extrapolation using
Coulomb-plus-linear r dependence.

results of Ref. [18], as quoted in Section 3.1. The resulting matched static
potential is shown in Fig. 3.6. The matching point (dashed line) is chosen at
r = 0.14 fm. At this position, both the perturbative and the lattice potential
are expected to be reliable. The resulting shape of the potential changes only
marginally under reasonably constrained variations of the matching position.
Requiring that the first derivative of the potential is continuous at the matching
point, we find for the cutoff in Eq. (3.11): µf = 0.908 GeV (bottomonium case)
and µf = 0.930 GeV (charmonium case). The grey band reflects uncertainties
in the Sommer scale r0 = 0.50 ± 0.03 fm (lattice part) and uncertainties in
αs(|~q |) (perturbative part) as given in the previous paragraph. This leads to
a cutoff window: µf = 0.9+0.3

−0.2 GeV (for both bottomonium and charmonium).
The dashed-dotted line in Fig. 3.6 results from a simple Coulomb-plus-linear
extrapolation from the lattice QCD data to short distances. Evidently, our more
sophisticated perturbative QCD extrapolation based on Eqs. (3.11) and (3.2)
differs from that simple form.

For zero flavors one can check the reliability of our construction against accu-
rate (quenched) lattice results [30] (see Fig. 3.7). Since αs cannot be extracted
from experiment for nf = 0, we fit to the lattice points below 0.12 fm. With
a low momentum cutoff µf in the range 0.7–1.5 GeV, we find αs(1.25 GeV) =
0.29 ± 0.01 for the flavorless strong coupling at the scale of the c-quark mass.
The lattice scale r0 = 0.5 fm has been used here. A precision study of the
zero-flavor case in a different approach can be found in Ref. [31].
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Figure 3.7: The static potential for nf =0 flavors compared to lattice
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3.4 Schrödinger equation and wave functions

Wave functions and quarkonium spectra are defined in the static case by the
Schrödinger equation,

[

− 1

m
~∇2 + V (0)(r, µf ) + v(0)(µf )− E

]

ψ(~r ) = 0 . (3.14)

V (0)(r, µf ) is the matched potential either with nf = 3 and µf = 0.930 GeV for
the charmonium case, or with nf = 4 and µf = 0.908 GeV for the bottomonium
case. At this point, the parameter v(0)(µf ) is in both cases an unknown additive
constant.

Equation (3.14) can be solved numerically in order to obtain wave functions
and corresponding eigenvalues. The lowest wave functions for l = 0 and l = 1
are shown in Figs. 3.8 and 3.9. The energy eigenvalues depend on the unknown
constant v(0)(µf ). The value of v(0)(µf ) will be determined by comparing the
model predicted charmonium and bottomonium spectra with the empirical ones
and can then be used to derive the charm and bottom quark masses (see Chap-
ter 7).
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4 Quark-antiquark potential at

order 1/m

4.1 Definition within pNRQCD

In the framework of potential non-relativistic QCD (pNRQCD), the static
potential emerges at leading order, followed by relativistic corrections in powers
of the inverse heavy-quark mass. The QQ potential up to order 1/m is usually
written as

V = V (0)(r) +

(

1

m1

+
1

m2

)

V (1)(r) , (4.1)

where V (1)(r) is the first quark-mass dependent correction of the static potential
V (0)(r). In contrast to the leading order potential, that is known for a long
time and corresponds to the static Wilson loop, the complete non-perturbative
expression for the 1/m term has been derived much later [32]. It is expressed in
terms of chromoelectric field insertions in a Wilson loop:

V (1) = lim
T→∞

(

− g2

4T

∫ T/2

−T/2

dt

∫ T/2

−T/2

dt′ |t− t′|

×
[

〈〈 ~E(t) · ~E(t′)〉〉� − 〈〈 ~E(t)〉〉� · 〈〈 ~E(t′)〉〉�
]

)

. (4.2)

The double angular bracket 〈〈. . .〉〉� ≡ 〈. . .W�〉/〈W�〉 stands for the normalized
average over the gauge fields of the rectangular static Wilson loop

W� ≡ P exp
{

− ig

∮

r×T

dzµAµ(z)
}

. (4.3)

It is stressed in Ref. [32] that V (1) is not unique and can be reshuffled under
certain circumstances via a unitary transformation in 1/m2 and higher terms.
In the following, the convention introduced above is used.

An evaluation of Eq. (4.2) at leading non-vanishing order in αs gives [32]:

Ṽ (1)(|~q |) = −CF CA π
2 α2

s(|~q |)
2 |~q | , (4.4)

with CF = 4/3 and CA = 3. This is in agreement with the result of Refs. [33, 34]
performed in perturbation theory.
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4.2 Results from lattice QCD

Lattice gauge theory is a commonly used tool to simulate observables in low-
energy QCD. It can also be used to investigate the behavior of chromoelectric
and chromomagnetic field operators.

The 1/m potential has been studied on the lattice for the first time in
Ref. [35]. The analysis is based on the non-perturbative expression given in
Eq. (4.2). Statistical and systematic errors are reduced by employing the multi-
level algorithm (see Refs. [36, 37]) for measuring the field strength correlators on
the Polyakov loop correlation function (PLCF). A modification of the method,
used to determine the spin-dependent potentials [38, 39], is applied to extract
the order 1/m potential. The first result [35] has been updated in Ref. [40] and
is shown in Fig. 4.1.
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Figure 4.1: Lattice simulation for the QCD potential at order 1/m in
units of r0 ≈ 0.5 fm. Plot is taken from Ref. [40].

Two different functional forms are used to fit the lattice points: both forms
involve a 1/r2 term to reflect the short-distance perturbative part, but differ in
the parametrization of the long-distance part of the 1/m potential. To reflect
the lattice results at this region, either a linear term or a logarithmic term is
added to the 1/r2 term. One observes that the logarithmic fit form extrapolates
the lattice points better than a linear shape. A logarithmic shape is expected
at long distances at order 1/m from effective string theory [41]. We use the
following fit of lattice results:

V
(1)
fit (r) = − c′

r2
+ d′ ln

( r

r′

)

+ const , (4.5)
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with c′ =2.7 · 10−3 GeV2 fm2, d′ =0.075 GeV2 and an arbitrary length scale r′

that can be absorbed in the overall constant.

4.3 Construction and matching of the potential

The perturbative momentum-space potential Ṽ (1)(|~q |), quoted in Eq. (4.4),
can be transformed to r-space in a similar way as in the static case. A low
momentum cutoff µ′

f is introduced that may differ from µf (the cutoff in the
static case):

V (1)(r, µ′
f ) =

∫

|~q |>µ′
f

d3q

(2π)3
ei~q·~r Ṽ (1)(|~q |) . (4.6)

Evidently, the dependence of V (1) on the cutoff scale µ′
f is again very weak for

distances r < 0.2 fm as shown in Fig. 4.2. The variation of (V (1) − const) when
varying µ′

f between 0.7 GeV and 1.5 GeV is within 0.02 GeV2 at the matching
radius, r = 0.14 fm.
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Figure 4.2: The order 1/m potential V (1)(r, µ′f ) with nf = 3 from the
restricted numerical Fourier transform (4.6), for different cutoffs µ′f .
The curves have been shifted by a constant to match at small r values.

This short distance potential is matched at intermediate distance scales to
the 1/m potential derived within lattice QCD (see previous section). The lat-
tice calculation of V (1) is quenched and subject to renormalization issues. A
15% uncertainty is therefore assumed in the lattice potential, in addition to
the uncertainties in the Sommer scale r0. At short distances a deviation of the
perturbative potential V (1)(r, µ′

f ) from V
(1)
fit of Eq. (4.5) (dashed-dotted line in

Fig. 4.3) is apparent. For the cutoff in Eq. (4.6) with error estimate we find:
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5 Quark-antiquark potential at

order 1/m2

5.1 Complete non-perturbative expression

The color-singlet potential at order 1/m2 between a heavy quark and its
antiquark is often written as:

V (2) =
V (2,0)

m2
1

+
V (0,2)

m2
2

+
V (1,1)

m1m2

, (5.1)

where m1 and m2 denote the masses of the two particles. It is convenient to
split V (2,0) and V (0,2) in a spin-dependent and a spin-independent part:

V (2,0) = V
(2,0)
SD + V

(2,0)
SI , V (0,2) = V

(0,2)
SD + V

(0,2)
SI . (5.2)

The spin-dependent terms can be written as:

V
(2,0)
SD = V

(2,0)
LS (r) ~L1 · ~S1 , (5.3)

and
V

(0,2)
SD = −V (0,2)

LS (r) ~L2 · ~S2 . (5.4)

Note that ~L1 and ~L2 are not the orbital angular momenta of the two heavy
quarks. They are defined as:

~L1 ≡ ~r × ~p1 , ~L2 ≡ ~r × ~p2 , (5.5)

with ~r = ~r1 − ~r2 the relative coordinate vector of the quark and the antiquark.
The spin-independent parts of V (2,0) and V (0,2) can be decomposed as:

V
(2,0)
SI =

1

2

{

~p 2
1 , V

(2,0)

p2 (r)
}

+
V

(2,0)

L2 (r)

r2
~L2
1 + V (2,0)

r (r) , (5.6)

and

V
(0,2)
SI =

1

2

{

~p 2
2 , V

(0,2)

p2 (r)
}

+
V

(0,2)

L2 (r)

r2
~L2
2 + V (0,2)

r (r) . (5.7)

The V (1,1) potential is separated in a similar way in a spin-dependent and a
spin-independent part:

V (1,1) = V
(1,1)
SD + V

(1,1)
SI . (5.8)
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The two terms defined as:

V
(1,1)
SD = V

(1,1)
L1S2

(r) ~L1 · ~S2−V (1,1)
L2S1

(r) ~L2 · ~S1+V
(1,1)

S2 (r) ~S1 · ~S2+V
(1,1)
~S12

(r) ~S12 , (5.9)

where ~S12 ≡ 12(r̂ · ~S1)(r̂ · ~S2)− 4(~S1 · ~S2), and

V
(1,1)
SI = −1

2

{

~p1 · ~p2, V (1,1)

p2 (r)
}

− V
(1,1)

L2 (r)

2r2
(~L1 · ~L2+ ~L2 · ~L1)+V (1,1)

r (r) . (5.10)

Non-perturbative expressions for all potentials introduced above have been
derived in Ref. [42]. They are expressed in terms of Wilson-loop operators, con-

venient for simulations on a discrete space-time lattice. For example, V
(2,0)

p2 (r)
has the form:

V
(2,0)

p2 (r) =
i

2
r̂ir̂j lim

T→∞

∫ T

0

dt t2〈〈g ~Ei
1(t)g

~Ej
1(0)〉〉� , (5.11)

where 〈〈. . .〉〉� is defined as in Section 4.1. See Ref. [42] for the definition of the
other potentials.

5.2 Lattice QCD results

5.2.1 Spin-dependent potentials

The spin-dependent potentials have been studied in lattice QCD simulations
by several groups already in the 1980s and 1990s [43, 44, 45, 46, 47]. However,
it was observed that these potentials suffer from large numerical errors. The
findings indicated that only the spin-orbit potential V ′

1(r) has a long-ranged
non-perturbative content.

The numerical errors could be reduced in more recent lattice studies by using
a new approach [38, 39, 48]. The authors employed the multi-level algorithm
for measuring the field strength correlators, analogous to their studies of the
1/m potential. The results are shown in Figs. 5.1, 5.2 and suggest that, in
addition to V ′

1(r), also V ′
2(r) contains a finite non-perturbative contribution.

There is no indication for a non-perturbative contribution in V3(r) and V4(r).
Note that a sign of the spin-spin potential V4(r) as the one shown in Fig. 5.2,
would imply a mass ordering of hyperfine multiplets opposite to the ordering
observed empirically.

The spin-dependent terms are parametrized in this lattice analysis in terms
of V ′

1(r), V
′
2(r), V3(r) and V4(r). This common parametrization has been intro-
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Figure 5.1: Lattice QCD results for the spin-dependent potentials
V ′
1(r) and V

′
2(r) in units of r0 ≈ 0.5 fm. Plots are taken from Ref. [48].

duced by Eichten and Feinberg in 1981 [49]1:

V
(2)
SD (r) =

(

~S1 ·~L1

m2
1

−
~S2 ·~L2

m2
2

)

(

V (0)′(r)

2r
+
V ′
1(r)

r

)

+

(

~S2 ·~L1

m1m2

−
~S1 ·~L2

m1m2

)

V ′
2(r)

r

+
1

m1m2

(

(~S1 ·r)(~S2 ·r)
r2

−
~S1 ·~S2

3

)

V3(r) +
~S1 ·~S2

3m1m2

V4(r) . (5.12)

V (0)(r) is the static potential and the prime symbol indicates the derivative with

1Note that the potentials V3(r) and V4(r) are exchanged with one another compared to
Ref. [49].
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Figure 5.2: Lattice QCD results for the spin-dependent potentials
V3(r) and V4(r) in units of r0 ≈ 0.5 fm. Plots are taken from Ref. [48].

respect to r. This is an alternative parametrization of the spin-dependent poten-
tial, previously written in terms of V

(2,0)
SD (r), V

(0,2)
SD (r) and V

(1,1)
SD (r) in Eqs. (5.3),

(5.4) and (5.9).
The Gromes relation [50],

V (0)′(r) = V ′
2(r)− V ′

1(r) , (5.13)

is an analytic relation that is derived from Lorentz invariance. It is important to
check whether the lattice results are in agreement with this relation or not. As
shown in Fig. 5.3, for β = 5.85 (corresponding to a coarse lattice spacing with
a ≈ 0.123 fm) a deviation from the Gromes relation about 10%-12% is found.
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One sees a tendency that the deviation decreases for finer lattice spacings. For
β = 6.2 (corresponding to a ≈ 0.068) one finds a small deviation from the
Gromes relation by a few percent.

5.2.2 Spin-independent potentials

In addition to the spin-dependent potentials, the spin-independent potentials
have also been studied in lattice simulations by Y. & M. Koma and H. Wittig [51,
48]. They are decomposed in the potentials Vb(r), Vc(r), Vd(r) and Ve(r) which
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Figure 5.4: Lattice QCD results for the spin-independent potentials
Vb(r) and Vc(r) in units of r0 ≈ 0.5 fm. Plots are taken from Ref. [48].

have been defined as in Refs. [52, 53] and are related to the potentials introduced
in Section 5.1 by:

V
(2,0)

p2 (r) = V
(0,2)

p2 (r) = Vd(r)−
2

3
Ve(r) , V

(2,0)

L2 (r) = V
(0,2)

L2 (r) = Ve(r) ,

V
(1,1)

p2 (r) = −Vb(r) +
2

3
Vc(r) , V

(1,1)

L2 (r) = −Vc(r) . (5.14)

The lattice results, shown in Figs. 5.4 and 5.5, agree to some extent with
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Figure 5.5: Lattice QCD results for the spin-independent potentials
Vd(r) and Ve(r) in units of r0 ≈ 0.5 fm. Plots are taken from Ref. [48].

estimates that have been derived more than 20 years ago [52]:

Vb(r) =
8αs
9 r

− 1

9
σ r , Vc(r) = −2αs

3 r
− 1

6
σ r ,

Vd(r) = −1

9
σ r , Ve(r) = −1

6
σ r , (5.15)

where the constant σ represents the string tension of the static potential. The
long-range behavior of Eq. (5.15) has been estimated by exploiting an idea of
Gromes [50]. The short-range behavior was guessed by neglecting all gluon-
gluon interactions. Equation (5.15) combines the estimate for the two different
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regions. The lattice result for Vb(r) can be reproduced by setting αs ≈ 0.25
and σ ≈ 1.0 GeV/fm, whereas Vc(r) shows better agreement with the lattice
potential if one sets αs ≈ 0.6 and σ ≈ 1.5 GeV/fm. The observed slope of the
long-distance parts of Vd(r) and Ve(r) is reproduced well by σ = 1.5 GeV/fm.

Note that the spin-independent potentials have been investigated in an earlier
lattice study by G. Bali et al. [47], however with large statistical errors.

The lattice results can be checked by non-perturbative relations [52, 53]
which connect linear combinations of Vb(r), Vc(r), Vd(r), Ve(r) to the static
potential. They are often called the BBMP relations:

Vb(r) + 2Vd(r) = −1

2
V (0)(r) +

r

6
V (0)′(r) ,

Vc(r) + 2Ve(r) = −r
2
V (0)′(r) . (5.16)

The authors state in Ref. [51] that the BBMP relations seem to be satisfied, but
they find a small discrepancy at short distances and plan a careful investigation
of this issue in a future publication.

5.3 Spin-dependent potentials in perturbative

QCD

In this section we extend the method used to construct the perturbative
potential at leading order and at order 1/m and apply it to the spin-dependent
potentials at order 1/m2. The starting point is again the q-space potential
derived within pNRQCD. It reads at leading order for equal masses of the two
particles, m = m1 = m2 [54]:

Ṽ
(2)
SD (|~q |) = 4πCF

m2
αs(|~q |)

×
[

1

3
(~S1+~S2)

2−
(

(~q ·~S1)(~q ·~S2)

~q 2
−
~S1 ·~S2

3

)

+
3i

2 ~q 2
(~S1+~S2)·(~p×~q )

]

, (5.17)

where ~p = ~p1 = −~p2. The r-space potential is then again defined via a restricted
Fourier transformation with the low-momentum cutoff µ′′

f :

V
(2)
SD (r, µ′′

f ) =

∫

|~q |>µ′′
f

d3~q

(2π)3
ei~q·~r Ṽ

(2)
SD (|~q |) . (5.18)

This integral cannot be evaluated numerically in this form due to the tensor
structure in Ṽ

(2)
SD (|~q |).
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We define the scalar functions A, B and C, again with a low-momentum
cutoff µ′′

f :

A(r, µ′′
f ) =

∫

|~q |>µ′′
f

d3~q

(2π)3
ei~q·~r

αs(|~q |) (~q · ~r )
i ~q 2

, (5.19)

B(r, µ′′
f ) =

∫

|~q |>µ′′
f

d3~q

(2π)3
ei~q·~r αs(|~q |) , (5.20)

C(r, µ′′
f ) =

∫

|~q |>µ′′
f

d3~q

(2π)3
ei~q·~r

αs(|~q |) (~q · ~r )2
~q 2

. (5.21)

These functions can be handled numerically2 and are illustrated in Fig. 5.6. One
observes significant deviations from corresponding functions where αs has been
set to a constant.

The spin-dependent potential in coordinate space V
(2)
SD (r, µ′′

f ) can now be
expressed in terms of these three scalar functions A, B and C:

V
(2)
SD (r, µ′′

f ) =

∫

|~q |>µ′′
f

d3~q

(2π)3
ei~q·~r Ṽ

(2)
SD (|~q |)

=
4πCF
m2

[

2B
~S1 ·~S2

3
+

(

B

2
− 3C

2r2

)

(

(~S1 ·~r )(~S2 ·~r )
r2

−
~S1 ·~S2

3

)

+
3A

2r2
~L1 ·(~S1+~S2)

]

.

(5.22)

The same structure of spin-dependent terms as in the parametrization by Eichten
and Feinberg (see Eq. (5.12)) appears here. This allows for a comparison with
the lattice QCD potentials.

The coefficient of the spin-orbit term in Eq. (5.12) becomes proportional to
3V ′

2(r) + V ′
1(r) for equal masses and after making use of the Gromes relation.

By comparing it to the spin-orbit term in Eq. (5.22) one finds the following
correspondence:

3V ′
2(r) + V ′

1(r) → 16 πA

r
. (5.23)

A comparable slope over quite a large range, even at distances where perturba-
tion theory is not expected to work, is found (see Fig. 5.7).

By comparing of the coefficients of the tensor and spin-spin term of the two
different parametrizations one finds the correspondences:

V3(r) → 8 π

3

(

B − 3C

r2

)

, (5.24)

V4(r) → 32 πB

3
. (5.25)

2The integral in Eq. (5.20) can be carried out after rewriting it as in Eq. (6.14) in Sec-
tion 6.3.
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Figure 5.8 compares the tensor term from lattice simulations to the one from
our perturbative construction. The agreement is not as good as for the spin-
orbit term. Finally, no agreement is found for the spin-spin term (see Fig. 5.9)
where the lattice QCD result appears to have a sign that contradicts standard
expectations from spectroscopy. We shall return to this issue in the next chapter.
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6 Matching to a new lattice

QCD approach

6.1 Charmonium potentials in full lattice QCD

A new lattice QCD approach to extract the heavy-quark potentials has been
proposed in Ref. [55]. The spin-spin and central potentials at finite quark mass
are obtained from Nambu-Bethe-Salpeter (NBS) amplitudes through an effective
Schrödinger equation. A high precision analysis in “full QCD”, with the focus
on charmonium, has been performed in a subsequent analysis [56]. Tensor and
spin-orbit terms will not be discussed in this chapter. These have so far not
been studied in the new lattice QCD approach employing the NBS amplitudes.

In order to obtain the potentials, the NBS wave function φΓ(~r ) is extracted
in lattice simulations from four-point correlation functions:

φΓ(~r ) =
∑

~x

〈

0
∣

∣Q(~x )ΓQ(~x+~r)
∣

∣QQ; JPC
〉

, (6.1)

where ~r is again the relative coordinate of the two quarks and Γ is any of the
16 Dirac γ matrices. For the vector channel (JPC = 1−−) Γ is chosen as γi, for
the pseudoscalar channel (JPC = 0−+) Γ is chosen as γ5. In the case of S-wave
charmonium states (i.e., without tensor and spin-orbit terms), the stationary
Schrödinger equation for the NBS wave function is reduced to:

(

− ∇2

mQ

+ VC(r) + ~S1 ·~S2 VS(r)

)

φΓ(r) = EΓ φΓ(r) , (6.2)

with a central potential VC(r) and a spin-spin potential VS(r). The spin operator
~S1·~S2 is substituted with 1/4 for the vector channel and with −3/4 for the pseu-
doscalar channel. This allows for a separation of the central, spin-independent
potential and the spin-spin potential through a linear combination:

VC(r) = const +
1

mQ

(

3

4

∇2φV(r)

φV(r)
+

1

4

∇2φPS(r)

φPS(r)

)

, (6.3)

VS(r) = ∆Ehyp +
1

mQ

(∇2φV(r)

φV(r)
− ∇2φPS(r)

φPS(r)

)

, (6.4)
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where ∆Ehyp = MV −MPS denotes the mass deference between the vector and
pseudoscalar states. The kinetic quark mass mQ can be obtained by assuming
that there is no long-range correlation and no (irrelevant) constant term in the
spin-spin potential. From limr→∞ VS(r) = 0 follows:

mQ = lim
r→∞

−1

∆Ehyp

(∇2φV(r)

φV(r)
− ∇2φPS(r)

φPS(r)

)

. (6.5)

The central potential includes charm-quark mass effects to all orders and is
shown in Fig. 6.1. It can be fitted well by the Cornell parametrization,

V lat
C (r) = −A

r
+ σ r + const , (6.6)

with A = 0.813± 0.022 and
√
σ = (0.394± 0.007) GeV.
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Figure 6.1: Spin-independent charmonium potential calculated from
the NBS wave function. For comparison, a phenomenological poten-
tial [57] is shown (solid curve). Plot is taken from Ref. [56].

A repulsive spin-spin potential (see Fig. 6.2) which shifts spin-triplet states
upward and spin-singlet states downward is found in this new lattice approach,
as required for reproducing the experimental charmonium and bottomonium
spectra. The resulting shape of the potential is quite different from a δ-function
potential that one commonly obtains from one-gluon exchange with an effec-
tive coupling strength αs treated as an adjustable parameter. The spin-spin
potential is fitted in Ref. [56] with three different functional forms: i.e., Yukawa,
exponential and Gaussian parametrization. The exponential form provides the
best fit to the lattice data and reads,

V lat
S (r) = α e−βr , (6.7)

with α = (0.825± 0.019) GeV and β = (1.982± 0.024) GeV.
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Figure 6.2: Spin-spin charmonium potential calculated from the NBS
wave function. Different fits curves and a phenomenological poten-
tial [57] (solid curve) are shown. Plot is taken from Ref. [56].

6.2 Central charmonium potential

In this section we consider the perturbative central (spin-independent) char-
monium potential. As before, it as defined in r-space via a restricted Fourier
transformation with a low-momentum cutoff µC :

V pert
C (r, µC) =

∫

q>µC

d3q

(2π)3
ei~q·~r

[

Ṽ (0)(q) +
Ṽ (1)(q)

m/2

]

, (6.8)

with q = |~q |. The static potential Ṽ (0)(q) will be used at two-loop order in
momentum space

Ṽ (0)(q) = −16παs(q)

3q2

[

1 +
αs(q)

4π
a1 +

α2
s(q)

(4π)2
a2

]

, (6.9)

and the 1/m potential at leading order [32]:

Ṽ (1)(q) = −2π2α2
s(q)

q
. (6.10)

The low-momentum region, not accessible in perturbation theory, is excluded in
Eq. (6.8). In contrast to Chapters 3 and 4, a single cutoff value µC is used for
the sum of the static potential and the 1/m potential [58]. Again full four-loop
renormalization-group (RG) running for the strong coupling αs(q), here with
three light flavors, is understood.

The perturbative potential is matched at a suitable distance rm = 0.14 fm
to the spin-independent potential calculated in full lattice QCD (see previous
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dot-dashed line (with error band) shows the static potential from Chap-
ter 3 for comparison, while the dashed line (with error band) shows the
static-plus-1/m potential from Chapter 4. The energy scale is chosen
relative to the potential at r = 0.5 fm for convenience.

section). In the region around rm = 0.14 fm, the perturbative potential and the
lattice potential are both expected to be reliable. The potential changes only
marginally under limited variations of the matching point. Optimal matching
is achieved with a low-momentum cutoff µC = (0.54± 0.02) GeV.

In Fig. 6.3 we compare this matched central potential (solid curve) with the
potential obtained in the Wilson-loop approach using a 1/m expansion. One
observes that the “full” potential differs significantly from the static potential
(dot-dashed line with error band), but it is consistent within errors when the
1/m potential is added to the static potential (dashed line with error band). The
charm-quark mass m relevant for the 1/m potential has been varied in Fig. 6.3
in the range (1.5± 0.2) GeV.

6.3 Spin-spin potential for charmonium

In the following we construct a perturbative spin-spin potential that can be
used to continue the lattice spin-spin potential to short distances. Recall first
the well-known (schematic) spin-spin potential derived from one-gluon exchange
assuming a constant coupling αs:

VS(r) =
32π

9m2
q

αs δ
3(~r ) , (6.11)
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with the quark/antiquark mass mq. This δ-function term is in agreement with
the leading-order spin-spin potential obtained in pNRQCD [59].

It is possible to include the RG running of αs(q) in the construction of the
spin-spin potential (see also Chapter 5). We define the perturbative part of
VS(r) here as:

V pert
S (r, µS) =

32π

9m2

∫

q>µS

d3q

(2π)3
ei~q·~rαs(q) , (6.12)

with a low-momentum cutoff µS. For q > µS the perturbative RG evolution of
αs(q) is supposed to be reliable. The non-perturbative infrared behavior of the
quark and gluon couplings prohibits a controlled low-momentum extension for
q < µS. It is nevertheless useful to examine such an extension for r ≪ 1/µS in
the form

V ir
S =

32π

9m2
αs

∫

q<µS

d3q

(2π)3
ei~q·~r ≃ 16αs

27πm2
µ3
S , (6.13)

with a parameter αs reflecting the average interaction strength in the infrared
region. Note that Eq. (6.13) gives a positive constant proportional to µ3

S to be
added as a correction to V pert

S (r, µS), with αs not known, but expected to be of
O(1).

In order to facilitate the numerical evaluation of the Fourier integral for the
perturbative part, it is useful to rewrite V pert

S (r, µS) in the form

V pert
S (r, µS) = − 16

9m2πr

∂

∂r

∞
∫

µS

dq cos(qr)αs(q) . (6.14)

To be consistent with the lattice QCD analysis, the charm-quark mass m
in the denominator of Eq. (6.14) is identified with mQ = (1.74 ± 0.03) GeV,
the kinetic quark mass that has been determined in Ref. [56]. Discarding the
additive constant V ir

S in the first step, the resulting short distance potential and
its dependence on the cutoff scale µS is shown in Fig. 6.4. The shape is evidently
very different from a Gaussian or a δ-function. Such forms are frequently used
for the spin-spin potential in phenomenological models.

The two components of the spin-spin potential, arising from perturbative
QCD for r ≤ rm and from lattice QCD for r ≥ rm (see Section 6.1), can
be matched at rm = 0.14 fm. When ignoring the additive constant V ir

S this
matching is achieved for µS = (0.43±0.02) GeV. With inclusion of the (variable)
additive constant V ir

S the infrared cutoff µS can be varied over a wide range
almost without any effect on the spin-spin potential. Figure 6.5 shows the
matched potential with an infrared cutoff of µS = (0.75± 0.25) GeV.
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7 Spectroscopy and extraction

of quark masses

7.1 Static potential

7.1.1 Leading-order results for quarkonium spectra

For first orientation we consider the bottomonium and charmonium spectrum
from the leading order QCD potential. The Schrödinger equation with the
matched static potential, derived in Chapter 3, is solved numerically:

[

− 1

m
~∇2 + 2mPS(µf ) + V (0)(r, µf )− E

]

ψ(~r ) = 0 . (7.1)

The heavy-quark mass m appearing in the denominator of the kinetic energy
is not a priori determined. In practice we use values close to the static MS
masses: m = 4.2 GeV for bottomonium and m = 1.25 GeV for charmonium.
Small variations from these values do not have any significant influence on the
results.

The single free parameter in the Schrödinger equation is the potential-sub-
tracted (PS) quark mass mPS(µf ), to be defined in Section 7.1.2. Modifications
of this parameter cause a constant shift of all states. In the case of bottomonium
we fix it by the choice to reproduce the measured Υ(2S) energy and find the
value mPS(µf=0.908 GeV) = 4.78 GeV. The scale µf=0.908 GeV was obtained
in Chapter 3 and will be important for the translation of the PS mass into the
bottom quark mass defined in other schemes.

The resulting bottomonium spectrum, without accounting for any spin ef-
fects, is shown in Fig. 7.1. Most of the measured states are already roughly
reproduced in this first approach. The largest deviations from experiment are
observed for the two lowest states ηb(1S) and Υ(1S). For guidance, also ηb(2S)
has been included. First evidence for this state has been reported recently in
Refs. [60, 61].

In the charmonium case we fit to the hc(1P) energy and find mPS(µf =
0.930 GeV) = 1.39 GeV (see Fig. 7.2).
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7.1.2 Extraction of charm- and bottom-quark masses

The scale-dependent PS mass is defined as [12]:

mPS(µf ) = mpole +
1

2

∫

|~q |<µf

d3q

(2π)3
Ṽ (0)(|~q |) = mpole +

1

4π2

µf
∫

0

dq q2 Ṽ (0)(q) . (7.2)
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This mPS absorbs the unknown additive constant of the potential and is free
from the leading renormalon ambiguity [12, 13].

To convert the PS mass to the mass in the more commonly used MS scheme,
it is necessary to introduce the pole mass mpole as an intermediate step. The
relation between mpole and mPS reads [12]:

mpole = mPS(µf ) +
CF αs(µ)µf

π

{

1 +
αs(µ)

4π

[

a1 − β0

(

ln
µ2
f

µ2
− 2

)]

+

(

αs(µ)

4π

)2[

a2−(2a1β0+β1)

(

ln
µ2
f

µ2
−2

)

+β2
0

(

ln2
µ2
f

µ2
−4 ln

µ2
f

µ2
+8

)]

+O(α3
s)

}

.

(7.3)

The same conventions as in the Section 3.2 and the Appendix A.1 are used.
Note that a renormalization scale µ appears in the coupling. In the following µ
is set equal to the MS mass m ≡ mMS(mMS). This m is not known at that point
and has to be computed iteratively. In a second step the pole mass is converted
to the MS mass [62, 63, 64]:

mpole

m
= 1 +

4

3

(

αs(m)

π

)

+

(

αs(m)

π

)2

(−1.0414nf + 13.4434)

+

(

αs(m)

π

)3

(0.6527n2
f − 26.655nf + 190.595) +O(α4

s) . (7.4)

Note that both relations (7.3) and (7.4), taken individually, show a poorly con-
vergent behavior whereas the relation between mPS(µf ) and m is expected to
be stable. This is in fact confirmed numerically. Using µf = 0.908 GeV (from
Chapter 3) one obtains the value mb = 4.27 GeV for the bottom quark. From
an analogous translation with µf = 0.930 GeV one finds mc = 1.24 GeV for the
charm quark.

However, as shown in Fig. 7.3, the µf dependence of mPS(µf ) (Eq. (7.3))
differs for µf≪m from the µf dependence coming from variations of the cutoff
in the numerical integral (solid line). Instead of matching at µf = 0.908 GeV
it is obviously preferable to use the numerical µf dependence first to translate
mPS(µf ) into mPS(m) and then apply Eqs. (7.3) and (7.4) to translate this value
into the MS scheme. By this method the extraction ofm becomes independent of
the value of µf used in the construction of the potential. This leads to improved
mass values, mb = 4.20 GeV for the bottom quark and mc = 1.23 GeV for the
charm quark in the MS scheme.
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(1) for the determination of mb.

7.2 Analysis at order 1/m

7.2.1 Quarkonium spectroscopy

Given the potential V = V (0)+2V (1)/m up to order 1/m in the heavy-quark
mass, we can examine the resulting bottomonium and charmonium spectra, with
focus on the effects of the 1/m term. The Schrödinger equation at order 1/m,
[

− 1

m
~∇2 + 2mP̂S(µf , µ

′
f ) + V (0)(r, µf ) +

2

m
V (1)(r, µ′

f )− E

]

ψ(~r ) = 0 , (7.5)

is solved with the fixed values for µf and µ
′
f as derived in the construction of the

potentials in the Chapters 3 and 4. The potential-subtracted mass mP̂S(µf , µ
′
f )

at order 1/m, to be defined and discussed in detail in the next subsection, is
the only free parameter. It sets the overall energy scale and will be fixed by
comparison with the measured bottomonium and charmonium spectrum.

Consider now first the bottomonium spectrum below BB threshold1 (see
Fig. 7.4). One option is, as before, to fix mP̂S(µf , µ

′
f ) such that the measured

Υ(2S) energy is reproduced. Alternatively, the center of the χb(1P) triplet could
be used for calibration. These states remain almost unchanged by the 1/m
effects. The more tightly bound ηb(1S) and Υ(1S) states respond, as expected,
more sensitively to the corrections induced by V (1)(r).

1Above the BB threshold the bb potential develops an imaginary part and the present
strategy (including lattice QCD) does not apply.
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Figure 7.4: Bottomonium spectrum in comparison with experiment.
Static plus order 1/m results are shown on the left, with additional
hyperfine effects (h.f.) added phenomenologically using Eq. (7.6).

An additional effective spin-dependent term from one-gluon exchange (see
Appendix A.3),

δVspin =
8παeff

s

9m2
(~σ1 ·~σ2) δ(3)(~r ) +

αeff
s

m2

(

(~σ1 ·~r )(~σ2 ·~r )
r5

− ~σ1 ·~σ2
3 r3

)

+
αeff
s

m2

(~L·~σ1 + ~L·~σ2
r3

)

, (7.6)

with αeff
s = 0.3 can be used to move all states well into their observed positions.

For this purpose we replace the delta function (that is exclusively sensitive to
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the wave function at r = 0) by a Gaussian distribution

δ(3)(~r ) → 1

(
√
π σ)3

e−r
2/σ2

, (7.7)

with σ = 0.03 fm.
As expected, the influence of the 1/m term in the potential is much stronger

for charmonium (see Fig. 7.5) than for bottomonium. For charmonium we choose
the potential-subtracted mass in Eq. (7.5) (reflecting the unknown constants in
V (0) and V (1)) such that the measured hc(1P) energy is reproduced also at
order 1/m. With this choice, however, the V (1) part produces a downward shift
of 127 MeV in the 1S states (ηc(1S) and J/ψ) relative to the static result. This
shift is too large in comparison with the measured ηc and J/ψ energies.
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The 1S states are naturally more sensitive to 1/m corrections than 1P and
2S states because of the leading 1/r2 short-distance behavior of V (1). Hence
the large shift of the 1S energy level at order 1/m does not come unexpectedly.
It is nevertheless evident that, no matter which choice is adopted for adjusting
the unknown constant in V (1), the 1S and 1P states of charmonium cannot be
simultaneously reproduced at order 1/m.

Unlike the situation in bottomonium, corrections of order 1/m2 are large in
charmonium. A manifestation of substantial 1/m2 effects is the relatively large
observed splitting of 117 MeV between ηc(1S) and J/ψ, driven by an effective
coupling strength (αeff

s /m
2 with αeff

s = 0.3 in the phenomenological δVspin of
Eq. (7.6)) that is an order of magnitude larger than for bottomonium.

7.2.2 Extraction of the charm and bottom quark mass

To determine values for the quark masses at order 1/m a redefinition of the
PS mass is required:

mP̂S(µf , µ
′
f ) ≡ mPS(µf )−

1

8m
CFCAα

2
s(m)µ′ 2

f . (7.8)

The 1/m term stems from an analogous calculation as in the static case. The
renormalization scale µ that appears in the coupling has again been identified
with m. We determine mP̂S(µf , µ

′
f ) for the b- and c-quark by fitting to the

empirical Υ(2S) and hc(1P) energies, respectively, and convert these values nu-
merically to mP̂S(m,m). This leads in a second step to the 1/m-improved MS
values mb = 4.18 GeV for the bottom quark and mc = 1.28 GeV for the charm
quark. In Table 7.1 the quark masses in the MS scheme found in our approach
are summarized and compared to values given by the Particle Data Group [65].
We have performed error estimates for the quark masses, reflecting uncertainties
in the potentials (static and order 1/m). Additional uncertainties are included
from our specific choice of matching to the empirical Υ(2S) and hc(1P) energies.
The errors at order 1/m have increased in comparison to those for the static case
since they incorporate in addition the error band from V (1). The error estimates

MS masses [GeV]

Static Static + O(1/m) PDG 2010

Bottom quark 4.20± 0.04 4.18+0.05
−0.04 4.19+0.18

−0.06

Charm quark 1.23± 0.04 1.28+0.07
−0.06 1.27+0.07

−0.09

Table 7.1: Comparison of quark masses obtained in our approach
(leading order plus order 1/m corrections) with the values listed by the
Particle Data Group (PDG) [65]. See text for details concerning error
estimates.
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at order 1/m do not include possible further uncertainties appearing at order
1/m2.

7.3 Implications from new lattice QCD results

7.3.1 Charmonium spectroscopy

Finally, we discuss the charmonium spectrum below the DD threshold that
follows from the matched potentials based on the new lattice QCD results for
charmonium (see Chapter 6). We focus on the 1S and 2S states which are not
influenced by the tensor and spin-orbit interactions. The Schrödinger equation
for these states,

[

−
~∇2

m
+ 2mP̂S(µC) + VC(r) + ~S1 ·~S2 VS(r)− E

]

ψ(~r ) = 0 , (7.9)

involves a single free parametermP̂S(µC), the (µC-dependent) charm-quark mass
in the potential-subtracted (PS) scheme. In order to make the PS scheme ap-
plicable here, we extend it by including the 1/m term2:

mP̂S(µC) = mpole +
1

2

∫

q<µC

d3q

(2π)3

[

Ṽ (0)(q) +
Ṽ (1)(q)

m/2

]

. (7.10)

Replacing the operator ~S1 ·~S2 by its eigenvalues, −3/4 for the spin singlet and
1/4 for the spin triplet, the Schrödinger equation (7.9) is solved numerically. The
spin-spin potential VS(r) can be included in two different ways. In the first case it
is treated in first-order perturbation theory, in the second case it is fully included
in the Schrödinger equation. Due to the singular behavior of VS(r) ∼ r−2.8 for
r → 0 (according to our construction) the wave functions diverge (mildly) in the
latter case for very small values of r. In this case we solve the radial Schrödinger
equation numerically for r > 0.003 fm and convince ourselves that the physical
results are not affected by contributions coming from shorter distances. The
results of the two alternative treatments of the spin-spin potential agree within
12 MeV (see Table 7.2). The calculated mass splittings between singlet and
triplet states are in good agreement with experimental results for both 1S and
2S charmonia.

The single free parameter mP̂S(µC) is chosen such that the spin-weighted
average of the 1S states agrees with its experimental value [65]. For the excited
2S states our approach predicts masses for ηc(2S) and ψ(2S) that are slightly too
large (see Fig. 7.6). However, these states are close to the DD threshold. Going
beyond this threshold requires a complex (energy-dependent) cc potential or an
explicit treatment of coupled channels. While the imaginary part starts at the

2The PS mass m
P̂S

(µ) as defined here is equivalent with m
P̂S

(µ, µ) of the previous section.
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Case 1 Case 2 Experiment [65]

1S mass splitting [MeV] 117± 6 105± 6 116.6± 1.2

2S mass splitting [MeV] 56± 3 46± 3 49± 4

Table 7.2: Predicted mass splittings of charmonium 1S and 2S multi-
plets in comparison with experimental data. Case 1: spin-spin potential
treated in first-order perturbation theory. Case 2: spin-spin potential
fully included in the Schrödinger equation.
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Figure 7.6: Predicted masses of charmonium 1S and 2S states in
comparison with experimental data [65]. The results in the first column
are based on the spin-independent potential only. The effects of the
spin-spin potential, treated in first-order perturbation theory, are added
in the second column.

opening of the DD channel, the corresponding dispersive real part induces an
attractive shift of the 2S states. In second-order perturbation theory this shift
is proportional to the squared cc → DD transition matrix element.

The predicted size of the hyperfine splittings is quite sensitive to the value
of the mass m in the denominator of Eq. (6.14). For example, choosing m =
1.5 GeV instead of the kinetic quark mass mQ = (1.74 ± 0.03) GeV [56] would
give rise to a 1S mass splitting that is about 20% too large. This is in contrast
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to variations of the matching position rm and the infrared cutoff µS, which affect
the hyperfine splittings only marginally.

The spin-spin potential, as constructed in Chapter 6, produces a non vanish-
ing but small splitting between the 1P singlet and triplet states, namely hc(1P)
and χcj(1P), unlike the δ-function spin-spin potential. In first-order perturba-
tion theory the effect amounts to a mass difference of (8.2± 0.5) MeV. The full
inclusion of the spin-spin potential VS(r) in the Schrödinger equation gives rise
to a slightly larger mass splitting of (8.3± 0.5) MeV.

7.3.2 The charm-quark mass

The value of the mass parameter mP̂S(µC), determined in our approach by
fitting to empirical charmonium spectra, can be translated as before into alterna-
tive schemes for quark masses. The PS mass mP̂S(µC) is again first converted to
the pole mass and in a second step mapped onto the MS mass mc ≡ mMS(mMS).
Applying the same method as before, we find for the charm-quark mass in the
MS scheme

mc = (1.21± 0.04) GeV. (7.11)

The error reflects combined uncertainties in the lattice potentials, in the input
value of the strong coupling αs(q), and from the matching to the empirical states.

7.3.3 Extension to bottomonium

Until now, the bottomonium spin-spin potential has not been studied within
the new lattice QCD approach based on NBS amplitudes. An extrapolation of
the spin-spin potential from charmonium to bottomonium can be done by simply
assuming a 1/m2 dependence of the lattice potential and allowing for variations
of the mass parameter m. In the perturbative part of the potential we account
furthermore for a modified running of αs(q) due to four massless flavors and
use as before αs(4.2 GeV) = 0.226 ± 0.003 as an input for bottomonium. The
empirical mass splitting of (69± 3) MeV [65] between ηb(1S) and Υ(1S) can be
reproduced either for a kinetic bottom-quark mass m = 4.7 GeV (with the spin-
spin potential treated in first-order perturbation theory), or with m = 4.3 GeV
(if the spin-spin potential is fully included in the Schrödinger equation).



8 Summary

Improved bottomonium and charmonium potentials have been derived in
this work at leading order (static potential) and at order 1/m by systematically
matching perturbative results to accurate lattice QCD data at an intermedi-
ate distance scale, r = 0.14 fm. By defining the perturbative potentials via a
restricted Fourier transformation this matching has been made possible. The
subthreshold bottomonium spectrum at order 1/m, derived from a Schrödinger
equation, agrees well with the experimental findings. As expected, the 1/m-
effects are far more pronounced for charmonium and higher-order corrections
are needed in order to reproduce the experimental spectrum.

A single constant, the heavy-quark mass in the potential-subtracted scheme,
is adjusted to reproduce the Υ(2S) mass (bottomonium case) and hc(1P) mass
(charmonium case). The value of this mass can be translated to the MS scheme
and agrees well with the c- and b-quark mass listed by the Particle Data Group.

Taking into account the running of αs also at order 1/m2, we constructed
perturbative spin-dependent potentials and found good agreement with lattice
QCD for the spin-orbit and tensor potential.

We found, in addition, that the new central quark-antiquark potential based
on NBS amplitudes (Chapter 6) agrees within errors with the static-plus-1/m
potential from the Chapters 3 and 4. The related matched spin-spin potential
for charmonium produces hyperfine splittings for the S-wave charmonium states
that are in good agreement with experiment. A slightly smaller MS mass for
the charm quark is found in this approach.





Appendix

A.1 The beta function in QCD

The QCD β-function, the function which specifies the scale dependence of
the strong coupling, is defined as

∂αs(µ
2)

∂ lnµ2
= β(αs) = −α

2
s

4π
β0 −

α3
s

(4π)2
β1 −

α4
s

(4π)3
β2 −

α5
s

(4π)4
β3 +O(α6

s) . (A.1)

The coefficients βn have been calculated at four-loop order [66]. They have the
following form for N = 3 colors in the MS-scheme:

β0 = 11− 2

3
nf , (A.2a)

β1 = 102− 38

3
nf , (A.2b)
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2
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18
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54
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50065
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1093

729
n3
f , (A.2d)

where nf is the number of active quark flavors and ζ(s) represents the Riemann
zeta function

ζ(s) ≡
∞
∑

k=1

1

ks
. (A.3)

Only at one-loop order exists an analytical formula for the running of αs. It
is obtained easily from the leading term in Eq. (A.1) and reads:

αs(µ) =
αs(µ0)

1 + β0
4π
αs(µ0) ln

µ2

µ20

. (A.4)

Beyond leading order one can derive an expansion that approximates the running
of αs(µ) to high accuracy. After introducing a(µ) = αs(µ)/π and performing an
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integration one gets:

ln
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Λ2
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∫

π
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a2 +O(a3) + C . (A.5)

The parameter Λ is identical to the scale µ where αs(µ) diverges to infinity. The
conventional definition

C =
β1
β2
0

ln(β0/4) , (A.6)

is used for the arbitrary constant C. An iterative inversion of Eq. (A.5) gives
the four-loop approximation with L = ln(µ2/Λ2):

a(µ) =
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+O(1/L5) , (A.7)

in agreement with the literature [67].

Alternatively, the scale dependence of the strong coupling can be approxi-
mated by a power series expansion about a fixed scale µ0:

αs(µ) = αs(µ0)
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, (A.8)

with ℓ = ln(µ2/µ2
0). This expansion is derived from Eq. (A.7), after eliminating

the parameter Λ. The approximation is only valid around the scale µ0, as shown
in Fig. A.1. This is in contrast to Eq. (A.7), that gives a good approximation
for αs(µ) over many orders of magnitude.
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Figure A.1: Power series expansion of αs(µ) according to Eq. (A.8).
Different orders in αs(µ0) are shown in comparison with the full four-
loop running (thick line). The expansion has been performed at µ0 =
2 GeV and with nf = 4. Note that the sign of αs(q → ∞) changes
order by order.

A.2 Flavor thresholds

The beta function in QCD depends on the number of quark flavors and thus

also the resulting coupling α
(nf )
s (µ). For clearness, the superscript (nf ) is added

to αs in this section. To allow for an accurate definition of the charmonium

and bottomonium potentials, we need to know α
(nf )
s (µ) for nf = 3 (charmonium

case) and nf = 4 (bottomonium case) as precisely as possible.
The running of the strong coupling by itself is obtained from the beta func-

tion (see previous section), but in addition a starting point has to be known for
the different values of nf . For nf = 5 we use (see Ref. [29]),

α(5)
s (mZ=91.1876 GeV) = 0.1184± 0.0007 , (A.9)

an average value that is based on many different measurements of αs and also

on lattice QCD. The connection between α
(nf )
s (µ) for different numbers of quark

flavors can be accomplished by making use of the framework of effective field
theories. One considers an idealized theory of QCD with one heavy-quark flavor
(with mass mh) and nl = nf − 1 massless flavors and constructs an effective
theory with nl flavors. The two theories are matched around the threshold of
the heavy quark. If four-loop running is implemented, a consistent matching
has to be done at three-loop order.

The matching condition up to three-loop order is derived in Ref. [67] and
reads in the MS-scheme for an arbitrary scale µ not to far from the mass of the
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heavy quark mh:

α
(nl)
s (µ)

π
= a− a2

lh
6
+ a3

[

l2h
36

− 19

24
lh +

11

72

]

+ a4
[

− l3h
216

− 131

576
l2h

+
lh

1728
(−6793+281nl) +

564731

124416
− 82043

27648
ζ(3)− 2633

31104
nl

]

+O(a5) ,

(A.10)

where a = α
(nf )
s (µ)/π and lh = 2 ln[µ/mh(mh)].

After using four-loop running to translate α
(5)
s (mZ=91.1876 GeV)=0.1184±

0.0007 to α
(5)
s (4.2 GeV), one finds with Eq. (A.10) for the strong coupling in a

theory with four flavors:

α(4)
s (4.2 GeV) = 0.226± 0.003 . (A.11)

To obtain α
(3)
s (µ), we run this value further down to α

(4)
s (1.25 GeV) (with

nf = 4) and apply Eq. (A.10) a second time. One finds:

α(3)
s (1.25 GeV) = 0.406± 0.010 . (A.12)

This result can be used as an input value for the running of a theory with three
flavors.

A.3 One-gluon exchange

A simple method to account for spin-dependent effects in potential models
is to consider one-gluon exchange, which is analogous to the Breit-Fermi inter-
action in QED. Even though the full QCD potential at order 1/m2 has been
obtained in pNRQCD (see Section 5.1), one-gluon exchange can still be used to
approximate the spin dependency for phenomenological applications. It played
an important role in understanding quarkonium spectroscopy and we include it
for orientation in Section 7.2.

The following color contact interaction, giving rise for example for the split-
ting between J/ψ and ηc(1S), is found in one-gluon exchange:

Vcontact =
32παs
9m2

(~S1 · ~S2) δ
(3)(~r ) . (A.13)

It corresponds to V
(1,1)

S2 (in the language of Section 5.1) taken at leading order
in perturbation theory.

The color tensor interaction, corresponding to V
(1,1)
~S12

(r) at leading order in

perturbation theory,

Vtensor =
4αs
m2

(

(~S1 ·~r )(~S2 ·~r )
r5

−
~S1 ·~S2

3 r3

)

, (A.14)
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contributes to the splitting of the spin-triplet multiplets.
The spin-orbit term is the final spin-dependent interaction found in one-gluon

exchange:

Vspin-orbit =
2αs
m2

(~L·~S1 + ~L·~S2

r3

)

. (A.15)

It arises from a combination of the color-magnetic piece and a relativistic correc-
tion, the Thomas-precession term. The spin-orbit term agrees with the effective-
field-theory result at order 1/m2 when V

(2,0)
LS (r), V

(0,2)
LS (r), V

(1,1)
L1S2

(r) and V
(1,1)
L2S1

(r)
are taken at leading order in perturbation theory.
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