
1 INTRODUCTION 

Let   denote the basic random variable space of dimension  , which models the system varia-
bles that are expected to present an uncertain behavior. Assuming the usual case, where the 
probabilistic description of   comes in terms of marginal distributions and correlations, we can 
adopt the Nataf model (Gaussian copula) for the joint distribution of   and then define a map-
ping        to a transformed space   consisting of   independent standard normal random 
variables (Der Kiureghian & Liu 1986). In the case where the joint distribution of   is known, 
then the transformation        can be performed in a straightforward fashion (Hohenbichler 
& Rackwitz 1981). Let      be the failure domain in the  -space, such that     defines 
the event of unsatisfactory performance of the system. The probability of failure can then be ex-
pressed as follows: 

        ∫        
   

 ∫             
    

 (1) 

where       ∏      
 
    and      is the standard normal PDF. The function       is the in-

dicator function:         if     and         otherwise. 
The evaluation of the probability of failure is not a trivial task, especially when the perfor-

mance of the system for a realization of the random variables is obtained through a computa-
tionally demanding model evaluation. The Monte Carlo method is a robust technique that is able 
to handle any model, independent of its complexity. In this method, the probability of failure is 
estimated by the sample mean of the indicator function: 

    ̂  
 

 
∑       

 

   
 (2) 

Assessment of MCMC algorithms for subset simulation 

I. Papaioannou, K. Zwirglmaier & D. Straub 

Engineering Risk Analysis Group, Technische Universität München, Germany 
iason.papaioannou@tum.de 

ABSTRACT: The subset simulation is an adaptive simulation method that efficiently solves 
structural reliability problems with a large number of random variables. The method includes 
sampling from conditional distributions, which is achieved through Markov Chain Monte Carlo 
(MCMC) algorithms. This paper investigates the performance of different MCMC algorithms 
for subset simulation. It is found that most of the MCMC algorithms proposed in the literature, 
based on the Metropolis-Hastings (M-H) sampler, do not present significant improvements over 
the component-wise M-H algorithm originally proposed for subset simulation in [Au & Beck, 
Prob Eng Mech, 16(4): 263-277, 2001]. Based on these findings, a novel approach for MCMC 
sampling in the standard normal space is introduced, which has the benefit of simplicity. More-
over, it is shown that an optimal scaling of either this new approach or the component-wise M-
H algorithm can improve the accuracy of the original algorithm, without the need for additional 
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where              are independent and identically distributed samples of the joint PDF 
     . Equation 2 gives an unbiased estimate of   . The coefficient of variation of the estimate 
reads: 

  ̂ 
 √

    

   
 (3) 

As shown in Equation 3, the coefficient of variation, which serves as a measure of accuracy of 
the estimate, does not depend on the dimension  . Hence, the efficiency of the Monte Carlo 
method does not depend on the number of random variables. However, for small values of   , a 
large number of samples   is required to achieve a sufficiently small   ̂ 

.  
In order to overcome the inefficiency of the Monte Carlo method in estimating small failure 

probabilities, while maintaining its independency on the number of random variables  , a num-
ber of advanced simulation methods have been developed, including the subset simulation (Au 
& Beck 2001), the spherical subset simulation (Katafygiotis & Cheung 2007) and the asymptot-
ic sampling method (Bucher 2009). Here, we focus on the subset simulation. This method ex-
presses    as a product of conditional probabilities that are significantly larger than   . These 
conditional probabilities are then estimated by application of Markov Chain Monte Carlo 
(MCMC) sampling.  

This paper discusses different MCMC algorithms that have been proposed for subset simula-
tion. Moreover, a new approach is presented for MCMC in the  -space. In Section 2, the subset 
simulation is described. Section 3 reviews the considered MCMC methods and evaluates their 
performance. 

2 SUBSET SIMULATION 

The subset simulation is an adaptive Monte Carlo method proposed by Au & Beck (2001) for 
the estimation of small failure probabilities in high dimensional problems. The idea behind sub-
set simulation is to express the failure domain   as the intersection of   larger intermediate 
failure domains: 

  ⋂   

 

   
 (4) 

where             , hence the name “subset simulation”. The probability of failure 
is then estimated as a product of conditional probabilities: 

         (⋂   

 

   
)       ∏           

 

   
 (5) 

An appropriate selection of the intermediate failure domains can lead to large conditional prob-
abilities. That is, the original problem of evaluating a small failure probability reduces to a se-
quence of   intermediate problems that correspond to the estimation of larger probabilities.  

The probability       can be computed by application of crude Monte Carlo simulation 
through sampling of      . For estimating the probabilities   (  |    )         , we need 
to generate samples of the conditional PDFs    (      )         , where: 

  (      )  
          

   

 (    )
 (6) 

A direct sampling of   (      ) by application of the acceptance-rejection method is ineffi-
cient, especially as the domain      approaches the actual failure domain. However, MCMC 
techniques can be applied for sampling   (      ). MCMC methods produce samples of a tar-
get distribution, by constructing a Markov chain that has the target distribution as its stationary 
distribution (Rubinstein & Kroese 2007). The derived samples will be distributed according to 
  (      ), however they will not be independent. 



We now need to specify the intermediate failure domains               . Let      de-
note a limit-state function with negative values defining the failure event, i.e.      
          . Without loss of generality, we assume that the function      can express any 
type of system failure in the  -space. The intermediate failure domain    can then be defined as 
                 , where            . The values of                can 
be chosen adaptively, so that the estimates of the conditional probabilities correspond to a cho-
sen value   , e.g.       . This is achieved by successively sampling each conditional PDF 
  (      ) and setting    equal to the            -th largest value among the samples 
               . This procedure is repeated until the actual failure domain    is reached, 
for which the threshold      is given. We can then obtain an estimate of the failure probabil-
ity as follows: 

    ̂    
    ̂          (7) 

The estimate  ̂          of the conditional probability is as follows: 

 ̂          
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where              are samples of           . It should be noted that the estimator  ̂  in 
Equation 7 is biased for a finite  , due to the correlation between the estimates of the condition-
al probabilities, but it is asymptotically unbiased (Au & Beck 2001).  

3 MCMC ALGORITHMS FOR SUBSET SIMULATION 

As discussed in Section 2, the subset simulation applies MCMC sampling to simulate each con-
ditional PDF   (      ). In this section, first the general principle of MCMC sampling for sub-
set simulation is summarized, followed by a review of different proposed and new methods.  

Let us define a stationary discrete-time vector random process          with marginal PDF 
  (      ), which possesses the Markov property. That is, the random vector at position   is 
distributed according to a conditional PDF given the outcome of the random vector at position 
   . This conditional PDF is termed transition PDF and is denoted by         , where   ,    
are subsequent states of the chain. The transition PDF satisfies the following condition: 

          (       )            (       ) (9) 

The above is termed reversibility condition and it is an essential property of the Markov process 
  , since it ensures that the stationary PDF of the process is   (      ). 

MCMC methods produce samples of a distribution by simulating states of a stationary Mar-
kov process whose marginal distribution is the desired distribution. This can be achieved by 
simulating every new state of the process from a transition PDF          that satisfies the re-
versibility condition. Starting from a state that may or may not be distributed according to the 
target distribution, the Markov chain will asymptotically converge to the target (stationary) dis-
tribution (Rubinstein & Kroese 2007). The transient period that is required until the Markov 
chain reaches its stationary state is termed burn-in period. Moreover, the generated samples will 
be correlated according to the correlation of the Markov process which will depend on the par-
ticular choice of         .  

In the context of subset simulation, MCMC sampling is applied at subset   to sample 
  (      ) through simulating states of a Markov chain using as starting point (or ‘seed’) each 
sample               that fell in      at subset    . Since all the samples    are distrib-
uted according to   (      ), all states of the Markov chains will be distributed according to 
the target distribution   (      ). Hence, the Markov chains do not require a burn-in period to 
reach their stationary states. The coefficient of variation of the estimate of each conditional 
probability  ̂   ̂          can be estimated in terms of the sample variance of the stationary 
process    

     (Au & Beck 2001): 



  ̂ 
 √

    

   
(    ) (10) 

where  

    ∑ (  
   

 
)     

   ⁄   

   
 (11) 

where    is the number of seeds,    ⁄  is the length of each chain and       is the auto-
correlation coefficient of the sequence     

                .       can be estimated from 
the samples. The estimator of Equation 10 assumes that the different chains are uncorrelated 
through the indicator function, i.e. possible dependence between the different seeds is neglected. 
Equation 10 indicates that the efficiency of the subset simulation decreases if the chain correla-
tion increases. A decreased chain correlation implies that the chain explores its state space fast-
er. This motivates the introduction of a new measure of the efficiency of the estimator  ̂ , based 
on the expected Euclidean distance between two successive samples, say    and   : 
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where     is the  -th coordinate of   .    can be viewed as the average velocity of the different 
chains. A maximum    will give a minimum chain dependence and hence a minimum coeffi-
cient of variation   ̂ 

.  
In the following, we assess the efficiency of different MCMC algorithms for subset simula-

tion. 

3.1 Metropolis-Hastings algorithm 

The Metropolis-Hastings (M-H) algorithm (Metropolis et al. 1953, Hastings 1970) is the most 
widely used MCMC method for sampling from distributions that are difficult to sample from di-
rectly. Consider a  -dimensional proposal PDF         that depends on the current state of the 
chain. The transition from the state    to the next state    is described by the following steps: 

1. Generate a candidate  . 
1.a. Generate a pre-candidate   by sampling from from the PDF         
1.b. Accept or reject   

  {
        ro          
                 ro            

 (13) 

where 

           {  
             

              
} (14) 

2. If   was rejected set      . Else, accept or reject   

   {
              

               
 (15) 

It can be shown that the transition PDF that results from the above procedure will satisfy Equa-
tion 9 independent of the choice of the proposal PDF         (Hastings 1970). If the proposal 
PDF has the symmetry property, i.e.              , the algorithm reduces to the original 
Metropolis sampler (Metropolis et al. 1953).  

As discussed in (Au & Beck 2001), the M-H algorithm becomes inefficient for high dimen-
sional problems. This is due to the fact that the probability that the pre-candidate is rejected in 
step 1 increases rapidly with increasing number of dimensions  . This will lead to many repeat-
ed samples and hence to an increased correlation of the Markov chain. This is illustrated in Fig-



ure 1, where the acceptance rate of the pre-candidate state of the M-H algorithm is plotted 
against the random dimension  .  

 

 

Figure 1: Acceptance rate of the original M-H algorithm applied to sampling from the independent stand-
ard normal distribution, as a function of the number of random variables  . 

3.2 Component-wise M-H 

The component-wise M-H algorithm was proposed by Au & Beck (2001) for sampling from 
high dimensional conditional distributions. The method requires that the random variable space 
be independent, however independence is achieved by the transformation of the original random 
variable space to the  -space. The method differs from the original M-H algorithm in the gener-
ation of the candidate state. That is, instead of using a  -dimensional proposal PDF, each coor-
dinate    of the candidate state is generated from a one-dimensional proposal PDF          that 
depends on the  -th coordinate     of the current state. The algorithm is summarized as follows: 

1. Generate a candidate            . For each         
1.a. Generate a pre-candidate    from the PDF          
1.b. Accept or reject    

   {
         ro            
                  ro              

 (16) 

where 

             {  
               

                
} (17) 

2. Accept or reject  : apply Equation 15. 

Due to the independence of the random vector  , the component-wise M-H algorithm satisfies 
the reversibility condition independent of the choice of the one-dimensional proposal PDF. Au 
& Beck (2001) suggest to choose          as the uniform PDF centered at     with width of 2, 
i.e. twice the standard deviation at the  -space – the optimal choice of the spread of the pro-
posal PDF is discussed in Section 3.7. Moreover, due to the component-wise generation of the 
candidate state, the probability of repeated candidates decreases fast with increasing number of 
random variables  . Hence, the method is suitable for application to high-dimensional prob-
lems.  

3.3 M-H with repeated generation of pre-candidate states 

A different approach for reducing the correlation of the samples was proposed by Santoso et al. 
(2011). In this method, the candidate state is generated through a repeated generation of pre-
candidate samples until acceptance of the pre-candidate is achieved. Hence, the algorithm 
avoids the generation of repeated candidates, thus reducing the chain correlation, as compared 
to the original M-H algorithm. The update of the Markov chain is as follows: 
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1. Generate a candidate  . 
1.a. Generate a pre-candidate   from the PDF         
1.b. Accept or reject   

  {
        ro          
                 ro            

 (18) 

where 

           {  
             

              
} (19) 

1.c. If   is rejected go to 1.a. 
2. Accept or reject  : apply Equation 15. 

This approach is based on the M-H with delayed rejection (Tierney & Mira 1999), however in 
the latter method the acceptance probability of the pre-candidate sample is updated in each re-
generation in order to ensure the satisfaction of the reversibility condition.  

The method does not allow for an analytical expression of the transition PDF. Santoso et al. 
(2011) evaluated the transition PDF numerically for a one-dimensional truncated normal distri-
bution using a uniform proposal PDF and showed that the reversibility condition is approxi-
mately satisfied. However, it turns out that the stationary distribution of the chain will differ 
from the target distribution. This is illustrated in Figure 2, where the CDF of the one-
dimensional truncated normal distribution with different normalizing constants is compared to 
the empirical CDF from     samples. 
 

(a) 

 

(b) 

 
Figure 2: Empirical CDF of the M-H with repeated generation of pre-candidate states against target CDF 
of the Markov chain for the one-dimensional truncated normal distribution with probability normalizing 
constant (a)      and (b)     .  

The fact that the target distribution is different from the stationary distribution of the chain may 
lead to biased probability estimates. Consider a reliability problem modeled by the following 
linear limit-state function at the  -space: 

      
 

√ 
∑   

 

   
   (20) 

The probability of failure for this function is      , where      is the standard normal CDF. 
For a chosen conditional probability   , the failure probability at each subset level   is   

 
. 

Hence, the threshold    at the corresponding subset level is         (  
 
). Figure 3 shows 

the relative bias for subset levels     and    , i.e. the difference between the true probabil-
ity    and the estimate  ̂  averaged over 500 independent subset simulation runs and divided by 
  , for        and 500 samples per subset level. It is shown that the probability estimate is 
slightly biased and the bias tends to increase with increasing subset level, corresponding to a de-
creasing failure probability. On the other hand, the component-wise M-H gives a nearly unbi-
ased estimate, since the produced samples follow the target distribution of the Markov chain. 
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(a) 

 

(b) 

 

Figure 3: Relative bias of the estimator  ̂  from 500 independent simulation runs with the M-H with re-
peated generation of pre-candidate states and the component-wise M-H at subset level (a)     and (b) 
   . 

3.4 Component-wise M-H with delayed rejection at the first acceptance level 

As discussed in Section 3.3, a repeated generation of pre-candidate states requires that the ac-
ceptance probability is adapted to account for the fact that the sample was rejected, in order to 
model the target distribution exactly. This procedure is called delayed rejection and was devel-
oped by Tierney & Mira (1999) for application to Bayesian statistics. Miao & Ghosn (2011) ap-
plied this approach in combination with the component-wise M-H algorithm leading to the fol-
lowing updating procedure:  

1. Generate a candidate            . For each         
1.a. Generate a pre-candidate     from the PDF           
1.b. Accept or reject     

   {
          ro              
                  ro                

 (21) 

where 

               {  
                  

                  
} (22) 

1.c. If     was rejected, generate     from                
1.d. Accept or reject     

   {
          ro                  
                  ro                    

 (23) 

where 

                   {  
                                                

                                                
} (24) 

2. Accept or reject  : apply Equation 15. 

The algorithm allows for the second proposal PDF to depend not only on the current state of the 
chain but also on the rejected pre-candidate. It can be shown that the method satisfies the revers-
ibility condition independent of the choices of the two proposal PDFs. The method will reduce 
the chain correlation, since fewer repeated pre-candidates will occur, however its benefit is lim-
ited to low-dimensional problems. For high-dimensional problems, the acceptance rate is high 
already for the first pre-candidate. 
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3.5 Simulation of conditional samples in  -Space 

In the first step of the M-H algorithm for subset simulation, one is sampling a candidate   from 
the joint Gaussian PDF      , conditional on the previous sample   . One is free to assume that  
  and    are jointly Gaussian with correlation coefficient  . Hence, the PDF of   will be the 
conditional normal distribution with mean value     and covariance matrix        , where   
is the unit diagonal matrix. It is possible to directly sample from this distribution, thus avoiding 
the generation of repeated candidates through rejection of pre-candidate states. This leads to the 
following updating scheme: 

1. Generate a candidate            . For each         
    Generate    from the normal distribution with mean      and standard deviation √     
2. Accept or reject  : apply Equation 15. 

It is trivial to see that the transition PDF between    and    satisfies the reversibility condition. 
Since we eventually sample from the conditional normal distribution   (      ), a small corre-
lation between the actual and the candidate state does not imply a small correlation of the final 
samples. This is due to the fact that a very small   will lead to many rejected samples. On the 
other hand, a large   will increase the acceptance rate but will lead to a larger correlation of the 
resulting samples. Section 3.7 comments on the optimal choice of  . 

Besides its simplicity, the advantage of this approach lies with the fact that the candidate state 
is always accepted, without compromising the stationary distribution of the chain. Figure 4 
compares the coefficient of variation of the probability estimate obtained by the algorithms de-
scribed in Sections 3.2-3.5 for the limit-state function of Equation 20 in terms of the number of 
random variables  . For the component-wise M-H and the M-H with repeated generation of pre-
candidates, the proposal PDF is chosen as the uniform PDF with width 2. The same PDF is cho-
sen for both proposal PDFs for the component-wise M-H with delayed rejection. For the condi-
tional sampling method, the correlation was chosen as 0.8. It is shown that the methods have 
similar performance for     , while the conditional sampling algorithm performs better than 
the other methods in low dimensional problems. However, it should be noted that the algorithms 
with lower acceptance rate of the pre-candidate have the advantage that fewer limit-state func-
tion evaluations are required.  

 
(a) 

 

(b) 

 

Figure 4: Coefficient of variation   of the probability estimates evaluated from 500 independent subset 
simulation runs by the algorithms presented in Sections 3.2-3.5 at subset level (a)     and (b)    . 

3.6 Component-wise M-H with delayed rejection at the second acceptance level 

The algorithms considered until now focus on the generation of the candidate state, i.e. they 
share the same second acceptance step. Therefore, they do not involve additional limit-state 
function evaluations. Zuev & Katafygiotis (2011) applied the delayed rejection concept at the 
second acceptance level, i.e. after the limit-state function has been evaluated to check whether 
the candidate state lies in     . If the candidate state is rejected, the accepted coordinates of the 
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pre-candidate state are re-sampled from a different one-dimensional proposal PDF and accepted 
or rejected with a suitably computed probability. The updating procedure reads: 

1. Generate a candidate            . For each         
1.a. Generate a pre-candidate     from the PDF           
1.b. Accept or reject     

   {
          ro              
                  ro                

 (25) 

where 

               {  
                  

                  
} (26) 

2. Accept or reject  : apply Equation 15. 
3. If   was rejected. For each        , if     was accepted 

3.a. Generate a new pre-candidate     from the PDF               
3.b. Accept or reject     

   {
          ro                  
                  ro                    

 (27) 

where 

                   {  
                                            

                                            
} (28) 

4. Accept or reject  : apply Equation 15. 

Zuev & Katafygiotis (2011) showed that the algorithm satisfies the reversibility condition. The 
method reduces the chain correlation, since the acceptance probability of the candidate state in-
creases. Moreover, its efficiency is independent of the random dimension. However, the method 
requires additional limit-state function evaluations, as compared to all the previous approaches. 

In Figure 5, the performance of the algorithm for the limit-state function of Equation 20 with 
      is compared to the one of the component-wise M-H. The proposal PDF is chosen as 
the uniform PDF with width of 2 for both levels. The conditional probability is chosen as 
      , while the number of samples   at each level for the component-wise M-H is chosen 
such that the two algorithms result in the same limit-state function evaluations, starting with 
      for the algorithm with delayed rejection. The coefficient of variation of the probability 
estimates is evaluated from     independent simulation runs. It is shown that the gain in effi-
ciency is rather small, which agrees with the findings in (Zuev & Katafygiotis 2011). However, 
the authors show that a larger gain in efficiency might be achieved by choosing a different pro-
posal PDF in the second level. 

 
Figure 5: Coefficient of variation of the probability estimates by the component-wise M-H and the com-
ponent wise M-H with delayed rejection at second acceptance level with the same LSF evaluations. 

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

2 3 4 5

δ

 

subset level j 

Component wise M-H with
delayed rejection at 2nd level

Component-Wise M-H



3.7 Adaptive MCMC with optimal scaling 

It is shown above that the component-wise M-H and the conditional sampling method have sim-
ilar performance in high dimensions. Also, it is discussed that the performance of the condition-
al sampling method depends on the choice of the correlation   between the actual and the can-
didate state. Similarly, the performance of the component-wise M-H depends on the variance of 
the proposal PDF. A large variance (resp. small  ) will lead to many rejected candidates and a 
small variance (resp. large  ) to a high correlation between states. Zuev et al. (2011) conjec-
tured that an optimal variance of the proposal PDF at each subset level will give the minimum 
   in Equation 11 and hence the minimum coefficient of variation of the conditional probability 
estimates. In their study, they varied the variance of the proposal PDF and evaluated    and the 
second level acceptance rate of the algorithm. This led to the observation that    is rather flat at 
the optimal acceptance rate, which lies in the interval          .  

Here, we perform a similar study by varying the variance of the proposal PDF of the compo-
nent-wise M-H algorithm and the parameter   of the conditional sampling method. Moreover, 
we measure the performance of the methods in terms of the average velocity of the chains   , 
defined in Equation 12. The curves obtained for the limit-state of Equation 20 at the subset lev-
els     and     are shown in Figure 6. The results for the two algorithms agree with the 
ones in (Zuev et al. 2011). That is, the performance of the two algorithms can be optimized if 
the acceptance rate is kept between     and    . This can be achieved by a scaling of the param-
eter of each algorithm after the simulation of each chain. If the acceptance rate of the chain is 
smaller than     then the variance of the proposal PDF is decreased (resp. the correlation pa-
rameter   is increased) and if it is larger than     the variance is increased (resp.   is decreased). 
Figure 7 shows the coefficient of variation of the probability estimates obtained from this adap-
tive procedure with the two considered algorithms for the limit-state function of Equation 20 
with      . The results are compared with the original version of the algorithms with a uni-
form proposal PDF with width 2 for the component-wise M-H algorithm and a correlation pa-
rameter       for the conditional sampling method. It is shown that the adaptive approaches 
give a smaller coefficient of variation at all subset levels. 

 
(a) 

 

(b) 

 
Figure 6: Chain velocity in terms of the second level acceptance rate for the component-wise M-H and the 
conditional sampling method at subset level (a)     and (b)    . 

4 CONCLUSION 

This paper reviewed existing MCMC methods for subset simulation and proposed a new meth-
od that is based on sampling from a conditional normal distribution. The new approach is sim-
pler and performs better than the other methods in low dimensional problems, since it accepts 
all candidate states of the Markov chain, without compromising the target distribution of the 
chain. In high-dimensional problems, the new method, together with all other algorithms that 
increase the first level acceptance rate, has a similar performance as the component-wise M-H 
algorithm, which was originally proposed for subset simulation. The component-wise M-H with 
delayed rejection at the second acceptance level provides better estimates at the expense of addi-

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0 0.2 0.4 0.6 0.8 1

λj 

acceptance rate 

Component-Wise M-H

Conditional sampling

0

0.05

0.1

0.15

0.2

0.25

0 0.2 0.4 0.6 0.8 1

λj 

acceptance rate 

Component-Wise M-H

Conditional sampling



tional limit-state function evaluations. Finally, an adaptive procedure that adjusts the parameter 
of either the component-wise M-H or the conditional sampling method based on the chain ac-
ceptance rate provides better estimates without the need for further limit-state function evalua-
tions. 

(a) 

 

(b) 

 

Figure 7: Coefficient of variation of the probability estimates by the (a) component-wise M-H and the (b) 
conditional sampling method and their optimal scaling variants. 
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