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Abstract  

A probabilistic model for estimating tunnel excavation time is learnt with data from past 

tunnel projects. The model is based on the Dynamic Bayesian Network technique. The 

model inputs are determined through an analysis of data from three tunnels built by 

means of the conventional tunneling method. The data motivate the development of a 

novel probability distribution to describe the excavation performance. In addition, the 

probability of construction failure events and the delay caused by such failures are 

estimated using databases available in the literature. The model is applied to a case study, 

in which it is demonstrated how observations from the tunnel construction process can be 

included to continuously update the prediction of excavation time. 
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1 Introduction 

Duration and cost of construction are key factors in decision making during the planning 

and design phase of a tunnel project. At present, construction time and cost are 

commonly assessed on a deterministic basis. The deterministic approach, however, does 

not appropriately reflect the uncertain reality. Systematic underestimation of construction 

costs related to infrastructure projects has been documented, for example in Flyvbjerg et 

al. (2004). Major losses and delays in tunnel construction projects have been reported by 

insurers (e.g. IMIA, 2006). The need for analyzing the uncertainty and risks of tunnel 

construction has been recognized by the tunneling community (see e.g. Lombardi 2001; 

Eskesen et al. 2004; Reilly 2005; ITIG 2006).  

As shown in Isaksson and Stille (2005), the uncertainty in construction time and cost 

estimates results from the common variability of the construction performance and from 

the occurrence of extraordinary events (also denoted here as failures of the construction 

process) such as tunnel collapses. Risks resulting from construction failures are 

commonly analyzed separately using techniques such as fault tree or event tree analysis, 

decision trees or risk matrices (Benardos and Kaliampakos, 2004; Shahriar et al., 2008; 

Hong et al., 2009; Aliahmadi et al., 2011; Jurado et al., 2012). In Špačková (2012),  

tunnel construction failures are modeled by means of a Poisson process. Sousa and 

Einstein (2012) present a Dynamic Bayesian Networks (DBN) model, which estimates 

the expected utility as a sum of the expected costs and the risk of a tunnel collapse. The 

full probability distribution of the construction costs, however, is not assessed.  

Some models allow one to probabilistically estimate the time or costs without taking into 

account the occurrence of extraordinary events. They typically use Monte Carlo (MC) 

simulation – see e.g. Ruwanpura and Ariaratnam (2007), Chung et al. (2006), Min (2008). 

Full probabilistic estimates of tunnel construction time or costs, taking into account both 

the common variability and the risk of extraordinary events, are presented in Isaksson and 

Stille (2005), Grasso et al. (2006) and Špačková and Straub (2012). 

The probabilistic model inputs are mostly based on expert assessments. The description 

of geotechnical conditions is based on geological investigations, and the estimates of 

average advance rates and construction costs can be supported by simulations of the 

construction processes and by collected data (e.g. Kim and Bruland 2009; Burbaum et al. 
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2005). However, little information is available on the random variability of the 

construction performance and on the failure rate. The available studies, e.g. those 

analyzing the Tunnel Boring Machine (TBM) penetration rate (Alvarez Grima et al., 

2000; Sapigni M. et al., 2002; Chung et al., 2006), only capture a part of the uncertainty.  

To the authors’ knowledge, Flyvbjerg and COWI (2004) present the first study that 

quantifies the overall uncertainty in construction cost estimates based on an analysis of 

data from previous projects. However, since they assess only the cost overrun, the study 

is helpful for describing the present practice, but the results are not suitable for a  

probabilistic prediction of construction costs of future projects.  

This paper aims to provide a framework for probabilistic prediction of tunnel 

construction time and presents a methodology for statistical analysis of data to determine 

the inputs for the probabilistic models. The data and the application example presented in 

this paper are limited to the conventional tunneling method, which is defined by ITA 

(2009) as “construction of underground openings of any shape with a cyclic construction 

process of: (1) excavation, by using the drill and blast methods or mechanical excavators 

except any full face TBM, (2) mucking and (3) placement of the primary support 

elements, such as steel ribs, rock bolts or sprayed concrete”. Our approach might be 

extended to the modeling of mechanized tunneling with use of TBM.  

A DBN model introduced in Špačková and Straub (2012) for the prediction of tunnel 

construction time is presented in Section 2. The DBN model serves as a basis for the 

analysis of the data presented in Section 3. This model facilitates the definition of the 

variables in the construction process model and their inter-dependencies. The model 

allows for efficient updating of the predictions based on observed geotechnical conditions 

and construction performance once construction has started; this facilitates the systematic, 

quantitative adaptation of the model estimates in real-time during the construction. The 

model takes into account both the common variability of construction process and the 

occurrence of extraordinary events. Additionally, it allows for modeling stochastic 

dependencies caused by common factors that systematically influence the construction 

process (such as human and organizational factors). The influence of stochastic 

dependencies on probabilistic estimates of construction time and costs has been discussed 

for example in Yang (2007) and Moret and Einstein (2011).  
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A statistical approach to determining the probability distribution of unit time (time spent 

on excavating a segment of the tunnel with a given unit length, inverse of the advance 

rate) is presented in Section 3.1. The unit costs and activity durations (advance rates) are 

commonly modeled using uniform, triangular or beta distribution (Min, 2003; van Dorp, 

2005; Yang, 2007; Said et al., 2009). Triangular and uniform distributions are especially 

popular, because experts feel generally comfortable in assessing upper and lower bounds 

and the mean/mode of random variables. Studies analyzing data from construction 

projects, however, show that other probabilistic models, such as the lognormal or Weibull 

distribution, are often more suitable (Chou, 2011). In this paper we suggest utilizing a 

combined probability distribution, which allows us to better represent the construction 

process influenced by different effects (normal performance and small disturbances). 

Data on excavation performance from three tunnels constructed in the Czech Republic 

are used. The influence of geotechnical conditions, tunnel geometry and construction 

method is examined. Furthermore, the correlation of the unit time along the tunnel axis is 

analyzed. 

Section 3.2 presents a statistical approach to estimate failure rates and assess the 

probability distribution of delay caused by a failure.  

Finally, the probabilistic estimation of the excavation time is shown in Section 4, using 

an example of one of the Czech tunnels. First, a prior estimate of the excavation time, 

which would be done in the planning phase of the project, is shown. Second, the prior 

prediction is updated with the excavation time observed during construction of the tunnel.  

2 Generic probabilistic model of tunnel construction process 

Construction of tunnels (as well as construction of other linear infrastructure projects) is a 

chain of repetitive activities whose order is in most cases pre-defined. It follows that 

there is negligible uncertainty in the determination of the critical path. From a modeling 

point of view, this is a significant advantage over the modeling of the construction 

process for other types of construction projects (Ökmen and Öztaş, 2008). 

During the excavation, the tunnel construction process is adapted to the actual conditions 

encountered. The selected tunnel construction method (excavation technology, support 
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pattern) and the corresponding speed and costs of construction depend primarily on the 

following factors: 

- geological conditions (e.g. mechanical properties, frequency and orientation of 

discontinuities); 

- hydrological conditions; 

- frequency of changes of the geological and hydrological conditions - 

(in)homogeneity of the environment; 

- cross-section area of the tunnel; 

- inclination of the tunnel; 

- depth of the tunnel/height of overburden; 

- affected structures and systems (requirements on maximal deformations, 

protection of water systems and environment, operational constraints). 

The real construction performance is furthermore highly dependent on the planning and 

design of the tunnel and on the construction management and control.  

The construction process is associated with many uncertainties and risks: (1) geotechnical 

uncertainties, resulting from limited knowledge and natural variability of the geotechnical 

conditions in the vicinity of the tunnel, (2) uncertainties in construction performance, 

which are associated with planning, organization and management of the construction 

process and variability of advance rate and construction costs, (3) risk of extraordinary 

events, i.e. events with low probability but potentially huge consequences such as tunnel 

collapse, fire or legal obstructions threatening the project.  

All these uncertainties and risks should be taken into account when the construction costs 

or time are estimated. For this purpose, a DBN model is developed. The DBN is a special 

type of Bayesian Network (BN), which is suitable for modeling of stochastic processes. 

A brief introduction to BNs is provided in Appendix 1.  

A generic probabilistic model of construction process is represented by the DBN shown 

in Figure 1. This generic model shows the basic principles and elements of modeling of 

the construction process. In a specific model, the geotechnical conditions, !" , 

construction performance, !", as well as extraordinary events, !!, should be described 

in more detail by sets of random variables reflecting the tunnel specifics. An example of a 
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specific DBN is shown later in the application example (Figure 10). The selection of the 

appropriate set of variables depends on local geological conditions, type of technology to 

be used, routines and experience of the owner, designer and contractor and on 

information available at the time of the estimate, i.e. on the project phase. The levels of 

detail in the (uncertainty) modeling of the various aspects of the process should be 

balanced. For example, a detailed model of geotechnical conditions is not necessarily 

beneficial for the time/cost prediction if it is not accompanied by a detailed model of the 

associated construction performance.  

 

 Figure 1.  Generic DBN model for tunnel construction process. Detailed modeling of individual 
nodes is discussed in Secs. 2.1-2.3. 

Each slice of the DBN in Figure 1 represents a tunnel segment of length Δ!. In the 

following, the segment length Δ! is equal for all slices. The !th slice of the DBN thus 

represents a tunnel segment between position ! − 1 Δ!  and !Δ! . All variables are 

modeled as constant within a segment, i.e. the model implies that the geotechnical 

conditions and construction performance do not change within a segment.  
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2.1 Geotechnical uncertainties 

Here, uncertainty of geological and hydrological conditions is considered. For modeling 

purposes, the area of the tunnel is first divided into zones, in which the ground has 

homogeneous geotechnical properties. I.e. the properties are modeled as constant within 

this zone (as later shown in the application example in Section 4) or as a homogeneous 

stochastic process (as shown in Einstein, 1996 and in Špačková and Straub, 2012). The 

location of the zone boundaries is also modeled as uncertain.  

The geotechnical conditions can be modeled at different levels of detailing: The selected 

variables can either represent individual properties of the ground (e.g. lithology, 

discontinuities, water content, presence of boulders) or they can correspond to a chosen 

geotechnical classification system such as RMR, Q-system or other project specific 

classification. For more details on geotechnical classification we refer to Bieniawski 

(1989) and Singh and Goel (1999).  

A summarizing variable, denoted as ground class, is conditional on the other variables 

used for representing geotechnical conditions. The ground class has direct 

correspondence to the utilized technology of excavation, i.e. it should reflect all the 

geotechnical and hydrological conditions that influence the choice of construction 

method as discussed at the beginning of Section 2.  

2.2 Uncertainties in construction performance 

Uncertainty in the performance of tunnel construction is modeled by variables 

representing the tunnel geometry, construction method, human factor and unit time.  

Geometry is a variable modelling the varying cross-section of the tunnel (e.g. typical 

cross-section vs. extended cross-section for emergency parking places). The variable can 

also be used to model inclination of the tunnel, special requirements on the excavation at 

the beginning and at the end of the tunnel or in the vicinity of other structures. The 

variable is deterministic if the tunnel design is final and no changes are expected. 

The variable construction method represents the excavation technology, round length and 

support pattern. The construction method is selected based on the ground class and tunnel 
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geometry. The construction method is in most cases defined deterministically for given 

ground class and geometry.  

The variable human factor represents common factors, which systematically influence 

the construction process and thus introduce stochastic dependencies among the 

performance in each segment of the tunnel. These can be the quality of design and 

planning, the organization of construction works or other external influences not included 

in other model variables. The variable human factor can also be interpreted as the 

epistemic uncertainty, i.e. the uncertainty in selecting an appropriate probabilistic model 

(probability distribution) of unit time and failure rate, similar to the approach described in 

Cheung and Beck (2010) or Der Kiureghian and Ditlevsen (2009). To give an example, 

the selection of a less experienced construction company or a suboptimal technology of 

the excavation is likely to lead to slower and more variable excavation process in many 

or all segments of the tunnel. The quality of the construction company and the 

appropriateness of the technology are uncertain in the planning phase. The uncertainty in 

these common factors and the resulting uncertainty of the probabilistic model of unit time 

increase the uncertainty in the estimates of total construction time. 

The human factor is supposed to be in the same state throughout the entire tunnel 

construction. This simple model reflects the fact that the influence of the common factors 

cannot be directly measured and can only be deduced from the average performance over 

long sections of the tunnel excavation. After the construction starts, the human factor can 

be updated based on observed performance. 

The unit time ! represents the time spent for excavating a segment of the tunnel with a 

unit length Δ! excluding the extraordinary events. It corresponds to the inverse of the 

commonly used advance rate !. The unit time is dependent on the construction method 

and on the human factor. The probabilistic distribution of unit time can be assessed by 

experts, but preferably it should be based on analysis of data from other excavated 

tunnels as discussed in Section 3.1. A description of the unit time and advance rate 

modeled as a random process is presented in Appendix 2.  
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2.3 Extraordinary events (construction failures) 

Extraordinary events are defined as events that cause a delay longer than a threshold 

value (here selected equal to 15 days). Extraordinary events can represent cave-in 

collapses, tunnel flooding or severe legislative or public obstructions. These events can 

be interpreted as a failure of the construction process; we therefore use the terms 

extraordinary event and construction failure synonymously.  

The probability of failure is dependent on the ground class and the human factor. It is 

calculated from the failure rate, i.e. the number of failures per unit length of the tunnel. 

The assessment of the failure rate is discussed in Section 3.2.2.  

2.4 Selection of the segment length 

Through the selection of the segment length Δ! represented by one slice of the DBN, 

assumptions on dependency of the variables along the tunnel axis are made. We assume 

that the changes of conditions can only occur between segments, i.e. the conditions are 

fully dependent within each segment.  

For the modeling of geotechnical conditions, the finer the spatial discretization (i.e. the 

smaller Δ! ), the more precise is the model of the random changes of geology. 

Analogously, when modeling extraordinary events, we assume that only one failure can 

occur within each segment. The length of the segment Δ! must be selected short enough 

to justify this assumption.  

On the other hand, when modeling the unit time and costs we assume that for a given 

ground class !! and human factor !!, the unit time/costs in different segments become 

independent. As will be shown in Section 3.1, this assumption is not valid if the segment 

length Δ! is too small. Moreover, a finer spatial discretization is more computationally 

demanding.  

Under these contradicting objectives, the optimum choice seems to be the minimal Δ! for 

which the assumption of independency of unit time and costs in different segments is 

justified. Moreover, if conventional tunneling is used, Δ! should not be selected shorter 

than the typical excavation cycle length, because the geotechnical conditions and 

construction performance are observed as an average for each cycle (Špačková and 
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Straub, 2011). In the application presented in Section 4, the segment length Δ! = 5  m is 

used. The suitability of this choice is confirmed in Section 3. 

2.5 Evaluation of the DBN 

Evaluation of the DBN corresponds to calculating the marginal probability distributions 

of selected variables, in particular of the total construction time/costs. When new 

observations are available, e.g. from geological investigations or from the construction 

process itself, these calculations are performed conditionally on the observations. The 

choice of the inference algorithms for the evaluation of the DBN should depend on the 

complexity of the DBN, the type of random variables in the DBN (continuous, discrete), 

the required speed of the inference calculations and the required accuracy.  

A comprehensive overview of inference algorithms is given for example in Murphy 

(2002). In general, every DBN can be evaluated by Monte Carlo (MC) simulation, as 

long as no or only limited Bayesian updating is considered (i.e., when no project-specific 

observations of the performance are included).  In principle, advanced MC methods, such 

as Markov Chain Monte Carlo (MCMC) can overcome this limitation. Alternatively, for 

DBNs with discrete random variables, several exact algorithms exist. A modified Frontier 

algorithm, which is efficient for the evaluation of the proposed DBN is presented in 

Špačková and Straub (2012). This algorithm also allows one to efficiently update the 

model with the observed performance. It is implemented in the application presented in 

Section 4. 

3 Learning about construction performance from data 

It is proposed to categorize the performance of the excavation process in three classes: 

(1) Normal performance, where the excavation round is commonly finished within one 

day; (2) small disturbances of the process associated with delays in the order of a few 

days; (3) extraordinary events, corresponding to cases when the excavation stopped for 

longer than 15 days.  
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For completed and ongoing projects, the statistics of normal performance (1) and small 

disturbances (2) can be assessed from the observed excavation performance. Such 

analyses are presented in Section 3.1. For extraordinary events, statistical analysis is 

meaningful only if it is based on a larger dataset including a large number of tunnel 

projects, as presented in Section 3.2.  

3.1 Unit time 

The unit time ! is the time spent on excavating a segment of the tunnel with a given unit 

length Δ! under normal performance and small disturbances. A detailed discussion of the 

statistical properties of the unit time is given in Appendix 2. In this section, a statistical 

approach to determining the probability distribution of the unit time ! is presented and 

illustrated using data from three tunnels.  

3.1.1 Data 

Data on the construction progress from three tunnels built in the Czech Republic were 

collected for this analysis. The basic information on the tunnels is summarized in table 

Table 1. The sequencing of the tunnel heading used in analyzed tunnels is depicted in 

Figure 1. 
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Table 1. Basic information on analyzed tunnels. 

 

 

Figure 2.  Scheme of the excavation sequencing in the analyzed tunnels. The analyzed (leading) 
heading is number 1.  
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vertical sequencing

1

5
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Tunnel TUN1 TUN2 TUN3 

Type  City road tunnel with 2 
(partly 3) lanes in each 

tube 

City road tunnel with 2 
lanes in each tube 

Access and 
technological tunnel for 
construction of metro 

No. of tubes 2 2 1 

Length of mined 
sections 

2231+2224 m 1060 + 1053 m 491 m 

Data available from 
length 

1843+1543 m 661 + 980 m 480 m 

Technology of 
excavation Conventional (NATM) Conventional (NATM) Conventional (NATM) 

Excavation sequencing Horizontal, partly vertical 
sequencing (see Figure 

2) 

Vertical sequencing (see 
Figure 2) 

Full face (see Figure 
2) 

Cross section area of 
the tunnel tube 

124 /174 m2 125 m2 37/43/46 m2 

Cross section area of 
the analyzed heading 

~60 /~85 m2 

~30 /~42 m2 for vertical 
sequencing 

13 m2 37/43/46 m2 

Number of 
extraordinary events 

2+2 1+1 0 
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The tunnel TUN1 is one of the longest mined tunnels in the Czech Republic. It is built in 

a city and passes under a river and a railway line. The tunnel was driven through 

Ordovician rocks comprising of sandy and clayey shales, fine-grained quartzite and 

quartzose sandstone. The rock was hard to weakly weathered, and strongly tectonically 

affected with many fault zones. In some locations, the rock overburden was critically low 

(only 1.5 m).  The tunnel was mostly driven with crown-bench-invert pattern, in some 

sections a finer sequencing was used (see Figure 2). The maximal inflows of water were 

about 120 liters per second. Before excavation of the main tunnels, an exploration tunnel 

was built in the location of one of the future tubes.  

The mining of the final tunnel proceeded from one portal. Two cave-in collapses 

occurred within a short section of one of the tubes. The second collapse stopped the 

works also on the other tube. The accidents resulted in a total delay of approximately one 

year. In the most critical section of the tunnel with minimal height of rock overburden, 

high inflow of water and blocky jointed rock, the round length was reduced to 0.8 m and 

forepoling was used to improve the stability of the system. After the collapses occurred, 

jet grounting from the surface and chemical grouting was applied and additional 

monitoring was prescribed. 

The tunnel TUN2 was built under a densely developed area. It was driven through 

homogenous geotechnical environment consisting of Neogene clays covered by 

anthropogenic fills. The clays are stiff and locally hard. They are highly plastic and, in 

combination with water, extremely squeezing. The total overburden ranged from 6 to 21 

m, a minimum thickness of the clay layer of 2-3 m above the tunnel crown was ensured 

in all positions of the tunnel.  

The mining of the tunnel proceeded from one portal, just a short section at the other end 

of the tunnel was excavated in the opposite direction. To minimize the surface 

deformation, partial excavation with side drifts was used in the whole tunnel (see Figure 

2). Minimal distance between each heading was prescribed to be 6 m. The round length 

in each of the cells was 1 m. Auxiliary measures, such as a pipe umbrella, were used. In 

the analyzed sections of the tunnel, two extraordinary events occurred which stopped the 

construction of the main tunnel heading for 17 and 31 days, respectively.  
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The last analyzed tunnel, TUN3 with a total length of 480 m, was built within a metro 

line extension project. The tunnel was mined in homogeneous sandstones and claystones 

under the water table. The length of excavation cycles varied from 1 to 2 m depending on 

the geotechnical conditions. No unexpected events occurred during the excavation.  

In all three tunnels, inspections of geotechnical conditions at the tunnel heading and 

controls of construction performance were made regularly, commonly at the end of each 

round. From these records we obtained the following data: 

- Date of the inspection  

- Position of the main tunnel heading at this time 

- Classification of the geotechnical conditions in the vicinity of the tunnel heading 

in ground classes, which serve as the basis for selecting the construction method 

(support pattern) and for pricing and progress payments. A brief characterization 

of ground classes used in the Czech Republic and their representation in the 

studied tunnels is summarized in Table 2. A comparison of the classification 

methods used in the Czech Republic with the broadly known RMR and Q-system 

can be found in Barták and Makásek (2011) and (Špačková, 2012).  

- Short descriptions of extraordinary events, when the excavation was stopped for 

more than 15 days. 
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Table 2. Characterization of ground classes (NATM technological classes)  and their share in the 
analyzed tunnels. 

Gro
und 
class 

Characterization of ground classes  Length of sections belonging to the class 

TUN1 TUN2 TUN3 

Stability  Round 
length 

Sequencing; primary 
support 

1st tube 2nd tube  1st tube 2nd tube   

1 > 2 
weeks 

Unlimited Not needed 0  0  0  0  0  

2 2 days     
- 2 weeks 

>2.5m Horizontal seq.; bolts + 
50-100 mm shotcrete  

0  0  0  0  0  

3 2 hours   
- 2 days 

1.5-2.5 m Horizontal seq.; bolts, 
shotcrete + mesh 

808 m      
44% 

706 m 
46% 

0 0 156 m 
33% 

4 < 2 hours 1-1.5 m Horizontal ev. Vertical 
seq.; girders, ribs, 

shotcrete + auxiliary; 
closure of support ring 

618 m      
33% 

230 m 
22% 

596 m  
90% 

843 m 
86% 

289 m 
60% 

5 unstable 
ground 

<1 m Horizontal an vertical 
seq.; girders, ribs, 

shotcrete + auxilary; 
closure of support ring 

417 m      
23% 

497 m 
32% 

65 m    
10% 

137 m 
14% 

35 m     
7% 

 

Only the progress of the main tunnel heading (denoted as 1 in Figure 2) is studied 

because it has decisive influence on the overall excavation performance. As an example, 

the excavation progress in tube 1 of TUN1 is depicted in Figure 3. The two extraordinary 

events can be clearly identified in the chart. 
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Figure 3. Excavation progress in the 1st tube of the tunnel TUN1. 

3.1.2 Statistical estimation 

For the statistical analysis, we follow the modeling framework provided by the DBN. 

Therein, unit time !  is the time for excavation of a segment with length Δ! . It is 

dependent on the construction method (i.e. on combination of ground class and geometry). 

For a given construction method, the unit time is a stationary random process (see also 

Appendix 2).  

Following the DBN model framework, the unit time is furthermore dependent on the 

human factor. It is recalled that the human factor characterizes the deviation of the actual 

performance from the estimated performance. In the DBN model, the human factor is 

assumed to be constant throughout the whole tunnel. Based on the data alone, i.e. without 

knowledge of the original estimate, it is not possible to determine the human factor. 

Therefore, the dependence on human factor is not explicitly included in the data analysis. 

In the analysis, a segment length Δ! = 5  m was selected. Because the records were not 

made at the boundaries of the segments, the unit time observed in the !th segment of the 

tunnel, denoted as !!, was calculated by a linear interpolation of the observed data as 

illustrated in Figure 4. 
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Figure 4. Determining the observed unit times !! from the data with linear interpolation. 

The variability of the observed unit time !! per 5 m in different locations along the 1st 

tube of the tunnel TUN1, after excluding the extraordinary events, is depicted in Figure 5. 

 

Figure 5. Observed unit time !! per 5 m at different positions of the tube 1 of tunnel TUN1 after 
excluding the extraordinary events. 
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From the data one cannot clearly distinguish between the normal performance and small 

disturbances. If this was possible, we could calculate the probability ! as the share of 

normal performance on the whole sample and fit common probabilistic models, !!! !  

and !!! ! , to the classified data. To avoid this manual classification, we use a 

probabilistic approach and we fit directly the combined probabilistic model following Eq. 

(1): 

!! !;!, !,!,!, ! = ! ∗ !!! !; !,! + 1− ! ∗ !!! !;!, ! , (2)    

where  !!! !; !,!  is here modeled as a lognormal PDF with parameters !,!  and 

!!! !;!, !  as a beta PDF with parameters !, ! , bounded from 0 to 15 days. The 

parameters !, !,!,!, !  are estimated by means of the maximum likelihood method 

(Benjamin and Cornell, 1970).  

The lognormal and beta distribution are commonly used in the literature for representing 

uncertainties in construction time and costs (Chou, 2011). The left bounded lognormal 

distribution describes well the normal performance, which has mean close to zero, 

relatively small variance and is slightly skewed. The beta distribution is suitable for the 

small disturbances, which have much higher variance and following the definition in our 

model framework are bounded between 0 and 15 days. However, the model of Eq. (2) is 

also valid with other distribution types for !!! and !!!. 

Example PFDs and CDFs for tunnel TUN1 and ground class 5 are shown in Figure 6.  
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Figure 6. Fitted PDFs and CDFs of unit time ! per 5 m for tunnel TUN1, ground class 5, for 
different sequencing of the tunnel heading.  

The means and coefficients of variation (c.o.v.) of the unit time !  for particular 

construction methods calculated directly from data are summarized in the first part of 

Table 3. The second and third part of Table 3 show the means and c.o.v. of the two 

components of the unit time: the normal performance described by !!! !; !,!  and small 

disturbances described by !!! !;!, ! . These values are determined from the fitted 

distributions. The fourth part of the table shows the probability ! of normal performance 

and the last part of the table summarizes the number of tunnel segments with length 

Δ! = 5!, where the construction method was used (i.e. the sample size). 
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Table 3. Fitted probability model of unit time ! per 5 m of the tunnel tube in [days]  - summary of 
mean values and coefficients of variation (in parentheses) for different ground classes, cross-
section areas and excavation sequencing.  

 Tunnel  TUN1  TUN2  TUN3  
 Sequencing Horizontal Vertical Horizontal Vertical Full face 

 
      Area 
Ground          
class 

~60 m2 ~30 m2 ~85 m2 13 m2 37 m2 43 m2 46 m2 

Both 
component
s 

3 1.4 (0.5) 1.9 (1.1) 1.9 (1.1) - 1.5 (0.4) 1.9 (0.5) 0.9 (0.1) 
4 1.4 (0.5) 2.0 (1.2) 2.0 (0.2) 3.2 (0.6) 1.6 (0.1) 2.4 (1) 2.1 (0.7) 
5 2.6 (0.5) 3.5 (0.5) - 3.7 (0.5) 2.1 (0.3) - 3.0 (1.0) 

Normal 
perform. 
!!! !; !,!  

3 1.2 (0.2) 1.5 (0.2) 1.5 (0.2) - 1.4 (0.3) 1.4 (0.1) 1.0 (0.2) 
4 1.3 (0.2) 1.5 (0.2) 2.0 (0.2) 2.9 (0.6) 1.6 (0.1) 1.6 (0.1) 1.5 (0.2) 
5 2.3 (0.3) 3.3 (0.4) - 3.1 (0.3) 1.6 (0.0) - 1.2 (0.1) 

Small 
disturbanc
es 
!!! !; !, !  

3 3.2 (0.6) 11.3 (0.1) 12.3 (0.1) N/A 3.2 (0.3) 3.5 (0.3) 1.0 (0.6) 
4 3.2 (0.5) 12.0 (0.4) 2.3 (0.4) 4.3 (0.25) 1.8 (0.1) 7.5 (0.5) 5.2 (0.2) 
5 5.8 (0.3) 6.8 (0.4) - 8.1 (0.2) 2.7 (0.0) - 8.3 (0.2) 

Prob. of 
normal 
perf. (!) 

3 0.93 0.95 0.95 N/A 0.93 0.75 0.95 
4 0.95 0.95 0.95 0.79 0.95 0.87 0.83 
5 0.93 0.95 - 0.87 0.55 N/A 0.75 

Sample 
size 

3 245 28 28 0 19 4 8 
4 138 45 9 286 3 47 6 
5 88 95 0 41 4 0 4 

 

The performance of the excavation in TUN1 and TUN3 is relatively similar. Even if the 

total cross-section area of the two tunnels is different, the leading tunnel heading allows 

utilization of high-performance machinery and the geotechnical conditions are similar. A 

difference can be observed in the excavation of TUN2, where the progress is significantly 

slower (i.e. the mean unit time is higher). TUN2 is excavated in difficult geotechnical 

conditions requiring complicated excavation sequencing and support measures. The 

leading tunnel heading has a cross-sectional area of only 13 m2, the utilized machinery is 

therefore less efficient and the installation of support measures is demanding.   

The c.o.v. for the normal performance is in most cases in the range of 0.1 – 0.3. A higher 

c.o.v. can be observed in TUN2 and in case of vertical sequencing in TUN1. This 

indicates that for demanding excavation technologies, the variability of the performance 

is increased.  
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Excluding the cases for which the sample size is insufficient, we can conclude that the 

probability of normal performance, as expressed by the parameter !, is in the order of 0.8 

to 0.95.  

The data basis is not sufficient for reliably estimating the parameters of !!!. Nevertheless, 

the analysis shows that the small disturbances can explain the difference between the 

c.o.v. of the observed unit time and the c.o.v. of the normal performance. The latter is the 

value that most experts would estimate; these value underestimates the real construction 

time by more than

3.1.3 Correlation analysis 

In addition to assessing the marginal distribution of unit time, it is necessary to analyze 

the correlation of construction performance among different locations. For this analysis, 

samples of the unit time per 1 m of tunnel tube, denoted as !!!, are obtained using the 

procedure illustrated in Figure 4. The sample coefficient of correlation of the unit time 

!!! for two segments at a distance ! is calculated as: 

! τ =

1
!!

(!!!,! −!!!!)(!!!,!!! −!!!!)
!!
!!!

!!!!
!  

(3)    

where !!!! and !!!! are the sample mean and standard deviation of !!!, !!!,! is the 

unit time observed at position ! and !!!,!!! is the unit time observed at position ! + !. !! 
is the number of observations of pairs !!!,! and !!!,!!!: !! = ! − !, with ! being the 

length of the tunnel tube excavated with a given construction method. 

A power-exponential function is fitted to the coefficients of correlation calculated for 

different distances ! using Eq. (3). The function is: 

!! ! = exp  (−!!!) (4)    

where ! and ! are the parameters to be fitted. !!(!) is a correlation function (Vanmarcke, 

1983). Other correlation functions were investigated, but the power-exponential function 

was found to best describe the data from the analyzed tunnels.   
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Figure 7 depicts the observed correlation functions for unit time in ground class 4 

estimated from the data. 

 

Figure 7. Correlation function !!(!) of unit time for ground class 4 in different tunnels. The 
function represents the correlation of unit time at two locations in the tunnel with distance  !. The 
numbers in parentheses show the scale of fluctuation, !. 

As evident from Figure 7, the coefficient of correlation approaches zero already for 

! ≅ 5!, indicating that the unit times observed at a distance of more than 5 m are 

uncorrelated for a given ground class. To objectively evaluate the distance at which the 

unit time becomes uncorrelated, the scale of fluctuation is calculated:  

! = 2 !! ! !"
!

!
 

(5)  
        . 

The scale of fluctuation is used instead of the more common correlation length, because 

unlike the latter its definition is independent of the utilized correlation function 

(Vanmarcke, 1983). The observed scales of fluctuation for different tunnels and ground 

classes are summarized in Table 4. 
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Table 4. Scale of fluctuation of unit time,  !, for different tunnels and ground classes. 

Tunnel TUN1 TUN2 TUN3 

Tube tube 1 tube 2 tube 1 tube 2  

Ground class Scale of fluctuation, !,  in [m] 

3 3.7 3.3 - - 2.4 
4 4.0 2.0 1.7 2.0 2.2 
5 3.7 5.2 1.7 1.9 2.0 

All classes 43.5 30.9 1.6 1.9 2.3 

 

When analyzing the data from all ground classes jointly, large scale of fluctuation would 

be expected: the tunnel segments which are nearby are more likely to belong to the same 

ground class and thus to have correlated unit time. This effect can, however, only be 

observed in TUN1, because in case of TUN2 and TUN3 the performances in different 

ground classes exhibit smaller differences, as can be observed in Table 3. 

With known correlation function, it is possible to assess the mean and standard deviation 

of the unit time for any segment length Δ! , following the procedure described in 

Appendix 2, Eqs. (20) and (21). As an example, the mean and standard deviation of ! 

(corresponding to a segment length Δ! = 5  m) are determined from the mean and 

standard deviation of !!! through the following relationships: 

!! = 5 ∗!!!! (6)   

!! = 5!!!!
! 5
! 1  

(7)   

where ! .  is the so-called variance function (Vanmarcke, 1983) described in Eq. (22), 

which depends on the fitted correlation function !! ! . Alternatively, the variance 

function can be approximated using the observed correlation !(!) for discrete values of 

! = 1  m, 2  m,… according to Eq. (3) by 
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! !" =
1
!"! !( ! − ! )

!"

!!!

!"

!!!

 
(8)   

To demonstrate the validity of the above relations, we compare the sample means and 

standard deviations of unit time per 5 m, !! and !!, obtained directly from data, with the 

means and standard deviations calculated from !!!! and !!!! using Eq. (6)  and Eq. (7). 

This comparison is given in Table 5 for the tube 1 of tunnel TUN1.  

Table 5. Means and standard deviations of unit time in tube 1 of TUN1, in [days] - comparison of 
values obtained from data and calculated using Eq. (6) and Eq. (7). 

 Unit time per 1m 
From data 

Unit time per 5m 
Calculated 

Unit time per 5m 
From data 

Ground class !!!!  !!!!  !!  !!  !! !!  

3 0.28 0.31 1.4 1.1 1.4 1.1 
4 0.30 0.28 1.5 1.1 1.5 1.0 
5 0.64 0.63 3.2 1.9 3.2 1.8 

All classes 0.37 0.42 1.8 1.5 1.8 1.5 

3.2 Extraordinary events 

Extraordinary events (failures) are events that stop the excavation works for more than 15 

days. In this section, we present the estimation of the failure rate and the probability 

distribution of the delay !! due to a failure based on historic data.  

3.2.1 Delay caused by a failure 

Project delays resulting from failures of the tunnel construction process are analyzed by 

Sousa (2010), using data from sixty-four failures for which such information was 

available. These delays are summarized in Figure 8. Only one case of a delay shorter than 

2 months is reported in the database. It is likely that events leading to short delays were 

not reported by the questioned experts and were not stated in the available sources. To fit 

the distribution of the delay caused by one failure, !!, we therefore assume that data on 

events causing a delay in the range of 15-60 days are missing. Furthermore, we assume 

that these events are frequent and that a shifted exponential distribution is therefore 
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suitable to describe the delay !!. The applied shifted exponential distribution is described 

by its CDF 

!! !; ! = 1− exp −! ! − 15 , (9)         . 

where ! is the parameter of the exponential distribution and ! is the delay in days. The 

observed delays from Sousa (2010) are provided as a histogram with thirteen intervals, 

!! = (15, 60 , !! = (60, 120 , !! = (120, 180 ,… , !!" = (720,∞) , shown in Figure 8. 

The lower limits of the intervals are denoted as !!! ,!!! ,… ,!!"! ; the number of 

observations in the intervals are denoted as !!, !!,… . , !!"  . Because data from the first 

interval are missing, !! is unknown. To fit the probability distribution, the maximum 

likelihood method is applied to estimate the two unknown parameters: the parameter of 

the exponential distribution, !, and the total number of delays, which is the sum of 

observations and missing records, !!"!#$= !!!!!"
!!! . The likelihood function is formulated 

using the binomial distribution as follows: 

! !,!!"!#$ !!,… . , !!" =
!!"!#$
!!

!!!"

!!!
!!!! 1− !! !!"#!!! 

(10)  

where !! is the probability of a sample falling into the !th interval, which is determined 

from the exponential CDF of Eq. (9) as 

!! =   !! !!!!! ; ! − !!(!!!; !) (11)         . 

The resulting fitted distribution of !!  is depicted in Figure 8, together with the 

normalized data from Sousa (2010).  The maximum likelihood estimates are γ =
0.0062  day!! and !!"!#$ = 83. The missing data from the first interval !! = (15, 60  

therefore represent 24% of the cases. The mean and standard deviation of !! are 175 

days and 160 days, respectively. 
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Figure 8. Distribution of delay, !!, caused by one failure -  data collected in Sousa (2010) and 
fitted shifted exponential distribution.  

3.2.2 Failure rate 

The failure rate λ!!|!!,!! is defined as the number of failures (extraordinary events) per 

unit length of the tunnel tube. In the presented probabilistic model, it is defined 

conditionally on ground class !! and human factor !!. Three different approaches are 

available for estimating the failure rate: expert judgment, reliability analysis or a 

statistical approach using data from constructed tunnels. Each of the approaches has its 

strengths and weaknesses. Ideally, multiple approaches should be employed and results 

should be compared and critically examined.  

Expert estimations of probabilities of rare events are often unreliable (Kahneman and 

Tversky, 2000; Lin and Bier, 2008; Goodwin and Wright, 2010). They can be strongly 

biased by recent experiences of the expert. Such estimates should therefore be supported 

by other types of analyses and/or statistical data.  

Reliability analysis of tunnel excavation processes is a complex task and, at present, is 

possible only with strong simplifications. Compared to the analysis of a completed 

structure, the analysis of a tunnel excavation process must take into account additional 

uncertainties connected to the construction process. One needs not only to analyze the 

reliability of the final tunnel, but also the reliability of each of the interim states of the 

process (different levels of support, different phases of excavation). Additionally, 

uncertainties resulting from the influence of human and organizational factors, which are 
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of crucial importance during the construction process, are not included in common 

reliability analysis (Blockley, 1999).  

To determine the failure rate λ!!|!!,!! based on data, one must know the total number of 

failure events and the total length of excavated tunnels, ideally separately for individual 

ground classes. In this study, a rough estimate of λ!!|!!,!! based on global data is made 

and compared with estimates using data from the Czech Republic. Because no 

information is available on the geological conditions and other features of the included 

tunnels, only the unconditional failure rate !! is estimated. The most comprehensive 

database known to the authors is presented in Sousa (2010); other databases considered 

are HSE (2006), Seidenfuss (2006) and Stallmann (2005). 

According to HSE (2006), tunnels with a total length of 8750 km were constructed in the 

years 1999-2004 worldwide, as summarized in Table 6. These data were collected from 

freely accessible websites; their accuracy is limited and their completeness cannot be 

verified. For this reason, the data reported for the Czech Republic by HSE (2006) is 

compared with detailed information from Barták (2007) and our own databases 

(Špačková, 2012). HSE (2006) reports construction of 29 tunnels with a total length of 

59.6 km in the Czech Republic in the years 1999-2004. This number overestimates the 

length of constructed tunnel by 15% if parallel tunnel tubes are considered as separate 

tunnels and by 35% if parallel tubes are considered as one tunnel. Additionally, 

approximately 15% of the tunnels in the Czech republic are excavated by the cut&cover 

method. Assuming that these shares apply also to the data in other countries, we reduce 

the total length of tunnels reported in HSE (2006) to estimate the total length of mined 

tunnels. The resulting estimates are shown in Table 6. 

It is likely that many extraordinary events are missing in the available databases, because 

these include mainly major collapses reported by media or remembered by the 

interviewed experts. As evident from Section 3.2.1, at least 24 % of extraordinary events 

can be considered as missing. The reported number of failures is therefore increased 

accordingly. The resulting estimates are shown in Table 6. These represent a lower bound, 

since more failures are likely to be missing in the databases. For example, failures from 

the Czech Republic, which are discussed below, are not included in any of the considered 

databases. Certainly there are more countries that are not included in the databases 
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because of isolation of the local construction markets and language barriers. The 

estimated failure rate !! reported in Table 6 is determined by dividing the estimated 

number of collapses with the estimated length of mined tunnels and is also a lower bound. 

 
Table 6. Global data for assessment of failure rate, !!, from the years 1999-2004; using sources: 
HSE (2006), Seidenfuss (2006),  Stallmann (2005) and (Sousa, 2010). 

Type of tunnel Total length of 
constructed tunnels 

(HSE, 2006)  

Total length 
of mined 
tunnels 

(estimate) 

Number of 
collapses  
(reported) 

Number of 
collapses  

(estimated lower 
bound) 

!!  
(estimated lower 

bound) 

Road ~ 2000 km 1320 km 13  17 0.013  km!!  

Rail ~ 4200 km  2770 km 25  33 0.012  km!!  

Water/sewerage ~ 2100 km 1390 km 9  12 0.009  km!!  

Other ~ 450 km  300 km 1  1 0.003  km!!  

Total 8750 km   5750 km 48   63 0.011  km!!  

 

Approximately 60 km of mined tunnels (incl. utility tunnels) have been constructed in the 

Czech Republic since 1990. In case of tunnels with several tubes, only the longest tube is 

considered, because in case of a tunnel collapse or other severe problems, construction of 

both tubes is likely to be stopped even if the collapse is considered as one failure. Since 

1990, 14 severe collapses have been reported. The failure rate can be thus estimated as 

0.23  km!!. Assuming that around 24 % of cases were not reported, the failure rate rises 

to 0.31  km!!. This failure rate is almost 30 times higher than the failure rate computed 

from the global data. 

A similar observation is made by Srb (2011), who compares the number of collapses and 

excavated tunnel lengths in the Czech Republic and Austria. The study reports 10 

collapses in 35 km of road and railway tunnels in the Czech republic resulting in a failure 

rate of 0.29  km!! and 8 collapses in 315 km of road and railway tunnels in Austria 

resulting in a failure rate of 0.023  km!!.  
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The presented estimates show a huge spread and can only serve as a basis orientation for 

critical expert estimation.  

4 Application example 

The application of the DBN model is presented on the example of tunnel TUN3. First, an 

estimate of the total excavation time is carried out as would be done during the planning 

phase of the project. Second, this prediction is updated with the observed excavation time, 

i.e. with the data presented in Section 3.1. A scheme of the modeled tunnel is shown in 

Figure 9.  

 

Figure 9. Scheme of the modeled tunnel TUN3. The predicted zone borders are modeled by 
triangular distributions.  

The DBN used for prediction of the excavation time is depicted in Figure 10. The 

variables are summarized in the Table 7. Each slice of the DBN represents a tunnel 

segment with length !! = 5!. i.e. the DBN has 96 slices in total. 
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Figure 10. DBN model for prediction of total excavation time of the tunnel TUN3.  

Table 7. Summary of variables of the DBN model for the prediction of the total excavation time of 
the tunnel TUN3.  
Id. Variable Type States of the variable  
Z Zone Random/ Discrete 1,2,…,7 
G Ground class Random/Discrete 3,4,5 
H Human factor Random/Discrete  Favourable, neutral, unfavourable 
E Geometry Determ./Discrete 37 m2, 43 m2, 46 m2 
M Construction 

method 
Random/Discrete 3-37, 3-43, 3-46, 4-37, 4-43, 4-46, 5-37, 5-43, 5-46, 

T Unit time Random/ Discretized 0, !!"#, 2!!"#, …, 14.5 [days] * 
F Failure mode Random/Discrete Failure, No failure 
NF Number of 

failures 
Random/Discrete 0,1,2,3,>4 

Tcum Cumulative 
time 

Random/Discretized 0, !!"#, 2!!"#, …, 1392** [days] 

Textra Delays caused 
by failures 

Random/ Discretized 15, !!"#, 2!!"#, …, !!"#$%,!!.!
 [days] *** 

Ttot Total time Random/ Discretized 0, !!"#, 2!!"#, …, (1392 + !!"#$%,!!.! )[days] 
*!!"# is the discretization interval of time variables, !!"# = 0.5  !"#,   

**upper bound of cumulative time = 96 x 14.5= (number of segments) x (upper bound of unit time) 

*** !!"#$%,!!.! is the 99.9 percentile of Textra 

4.1 Prediction of the tunnel excavation time in the planning phase 

The tunnel is divided into 7 zones represented by the variable !!. The positions of 

boundaries between the zones are uncertain in the planning phase of the project. It is 

represented by triangular distributions, which can be given by expert estimate based on 

the geological survey. For a given zone, the ground class !! is defined deterministically, 
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i.e. in each zone either ground class 3, 4 or 5 is to be expected. The height of overburden 

is considered directly through the variable !!, it is not modeled by a separate variable in 

the DBN.  

The geometry !!  represents the cross-section area of the tunnel tube and is defined 

deterministically for each tunnel segment. No information is available on changes of the 

inclination of the tunnel, which varied up to 15°, and on the special tunnel support 

applied in the vicinity of existing structures. These parameters are thus not considered in 

this case study. 

 The construction method !! represents the excavation technology and support pattern 

used in segment !. Nine construction methods are defined conditionally on ground class 

!! and geometry !!. For example, construction method “3-37” is a method to be used in 

ground class 3 if the tunnel tube has a cross-section area of 37 m2. For all excavation 

methods, the full-face excavation is used. The primary support consists of rock bolts, 20 

cm of shotcrete, two layers of meshes and lattice girders. Some characteristics of the 

construction methods (average round length and length and number of bolts) are 

summarized in Table 8.  

The human factor !!  can be in one of three states: “unfavourable, “neutral” and 

“favourable”. A-priori, each of the states is assigned the same probability. 

The unit time, !!, is defined conditionally on construction method !! and human factor 

!!. The conditional PDFs of unit time are described by the combined distribution of Eq. 

(2). The parameters of the distributions are assessed by the authors, the parameters of unit 

time for !! = "!"#$%&'" are summarized in Table 8.  For !! = "!"#$%&"'()", the mean 

and standard deviations are reduced by 10%, for !! = "!"#$%&!'$()*"  they are 

increased by 10%.  
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Table 8. Parameters of the conditional probability distribution of unit time !! for different 
construction methods !! and for human factor !! = "!"#$%&'". !! is the unit time for normal 
performance, !! is the unit time for small disturbances,  ! is the  probability of normal 
performance. 

Construction 
method !!  

Average 
round 
length  
[m] 

Bolts: 
Length [m]/ 
number per 
round  

! Mean  

of !! 

St.dev.  

of !!  

Mean  

of !! 

St.dev.  

of !!  

3-37 1.6 3/ 4 0.95 1.20 0.24 4.00 2.00 

3-43 1.6 3/ 4  0.95 1.25 0.25 4.00 2.00 

3-46 1.7 3/ 4-12 0.95 1.25 0.25 4.00 2.00 

4-37 1.5 4/ 6-7  0.90 1.70 0.34 6.00 3.00 

4-43 1.5 3/ 4-7  0.90 1.80 0.36 6.00 3.00 

4-46 1.3 3-4/ 4-7 0.90 1.80 0.36 6.00 3.00 

5-37 1.0 4/ 6-7 0.85 1.80 0.38 8.00 4.00 

5-43 - - - - - - - 

5-46 
1.2 4/ 10 0.85 1.90 0.38 8.00 4.00 

 

An example PDF of unit time for construction method 4-43 and !! = "!"#$%&'" is 

depicted in Figure 11. 

 

Figure 11. PDF of unit time per 5 m for construction method 4-43, !! = "!"#$%&'". 
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The probability of variable !! being in state “failure” is determined on the basis of the 

failure rate analyzed in Section 3.2.2. The data analysis results in a broad interval of 

failure rate estimates; the values utilized for this case study (summarized in Table 9) are 

selected close to the lower bound of this interval, because TUN3 has smaller cross-

section area and is constructed in relatively favorable geotechnical conditions. However, 

in real projects, a more thorough determination of the failure rate is recommendable, 

combining data analysis with expert knowledge and reliability analysis.  

The probability distribution of a delay caused by one extraordinary event is the one 

estimated in Section 3.2.1 and shown in Figure 8.  

Table 9. Failure rate in [km-1] for different ground classes !! and human factors !!. 

 !! = "!"#$%. " !! = "!"#$%&'" !! = "!"#$%&. " 

!! = 3 0.040 0.020 0.010 

!! = 4 0.060 0.030 0.015 

!! = 5 0.090 0.045 0.023 

 

The estimated progress of the tunnel excavation without consideration of extraordinary 

events, the cumulative time !!"#,!  for all segments, is depicted in Figure 12. The 

uncertainty in the prediction is illustrated by the lines depicting the 5th, 25th, 50th, 75th 

and 95th percentiles of the cumulative time at each position of the tunnel.  

 

Figure 12. Estimated excavation progress for the 480 m long tunnel TUN3 – prior prediction in 
the planning phase. 
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The estimated probability distributions of cumulative time !!"#,! and total time !!"!,! for 

the whole tunnel, i.e. for ! = 96,  are depicted in Figure 13. The estimated mean total 

excavation time equals 197 days, the estimated standard deviation is 38 days. 

 

Figure 13. Prediction of construction time made during the whole tunnel TUN3. Probability 
distribution of cumulative time !!"#, which excludes extraordinary events, and total time 
!!"!,which includes extraordinary events. (a) Probability density functions; (b) exceedance 
probability.   
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and failure rate is not included. The last row of the table is computed with a failure rate 

that is 5 times higher than the one presented in Table 9. 

Table 10. Sensitivity analysis of estimated total time, !!"!. 

Human factor !! Failure rate Mean St.dev. !. !. !. 

Uncertain Acc. to Table 9 197 days 38 days 19% 

!! = "!"#$%&!'$()*"  Acc. to Table 9 218 days 43 days 20% 

!! = "!"#$%&'"  Acc. to Table 9 197 days 32 days 16% 

!! = "!"#$%&"'()"  Acc. to Table 9 177 days 24 days 14% 

Uncertain 5x higher 209 days 73 days 35% 

4.3 Updating of the prediction with observed performance 

The prediction of total excavation time can be updated in real-time with the excavation 

performance observed during the construction. For example, in the following the 

preliminary prediction is updated with the data observed during the excavation of the first 

150 m of the tunnel TUN3. Observed variables are: the zone !!, the cumulative time 

!!"#,! and the number of failures !!,!.  

The observed boundaries of the zones are shown in Figure 9. No failures occur in the 150 

long section and the cumulative time for excavating the section is 45 days, where the first 

zone is excavated in 9 days and the second zone in 5 days. The observed progress of the 

entire tunnel construction is shown in Figure 14, together with the mode of the a-priori 

prediction. 
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Figure 14. Predicted and observed cumulative time !!"# in tunnel TUN3. 

Two types of updating are carried out: (1) Bayesian updating of the probability 

distribution of human factor !! as described in Špačková and Straub (2012). (2) Bayesian 

updating of the conditional probability distribution of unit time !(!!|!! , ℎ!) by means of 

fractional updating (Jensen and Nielsen, 2007) as described in Špačková (2012).  

The estimated progress of the tunnel excavation updated with observations from the first 

150 m is depicted in Figure 15. 

 

Figure 15. Estimated excavation progress for the  tunnel TUN3; updated prediction based on the 
performance observed in the first 150 m of the tunnel. 
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Figure 16. The total time !!"! for tunnel the whole tunnel TUN3; original prediction and updated 
prediction based on the observed performance in the first 150 m of the tunnel. 

Next, we demonstrate Bayesian updating of the estimate of the total time over the course 
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distribution of the total time !!"! is computed, similar to the one shown in Figure 16. 

These updated distributions are shown in Figure 17 in a form of a contour plot. It can be 

observed that – on average – the uncertainty is reduced as the construction proceeds. 

 

Figure 17. Contour plot of the distribution (PDF) of total time !!"! for the entire tunnel TUN3 
updated with observations from the excavated tunnel section, as a function of the construction 
progress. 
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The jumps in the updated predictions in Figure 17 are caused by small disturbances 

observed during the construction process. The largest jump in the prediction can be 

observed after excavation of 280 m of the tunnel, where the excavation stopped for 13 

days. If a delay is observed, the mean predicted total time increases suddenly. 

Additionally, the standard deviation of the prediction can increase after observing a delay, 

because the conditional probability of unit time !(!!|!! , ℎ!)  is updated and the 

probability of small disturbances increases and because the uncertainty in the human 

factor may increase. 

The trends of the updated distribution of !!"! in Figure 17 are related to the updated 

distribution of the human factor !!, which is shown in Figure 18. It is recalled that !! 
takes the same value throughout the entire construction. However, its probability 

distribution changes throughout the construction as it is continuously updated with the 

observed performance. Note the correspondence between Figure 14 and Figure 18: When 

the excavation proceeds faster than originally predicted, i.e. where the increment of the 

cumulative time in most segments is smaller then the predicted one (e.g. in the last 200 m 

of the tunnel), the probability of a favorable human factor increases. Conversely, when 

the excavation proceeds slower, the probability of a favorable human factor decreases. 

The increased probability of an unfavorable human factor indicated in the early phases of 

the construction is caused by a slightly slower performance in the first segments of the 

tunnel. 

 

Figure 18. Updating of the variable human factor based on observed performance for tunnel 
TUN3, as a function of the construction progress. 
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5 Discussion  

The analysis of data from the excavation of three tunnels presented in Section 3.1 

confirmed the assumption that three different phenomena can be distinguished in the 

construction process: (a) normal performance and (b) small disturbances of the 

construction process, which are both modeled within the variable unit time in the DBN 

model, and (c) extraordinary events or failures, which are modeled separately.  

The analysis of tunnel performance from data of past projects must be performed 

separately for different utilized construction methods (excavation technology and support 

pattern). In the presented model framework, the construction method is defined through 

the ground class and tunnel geometry. Because in tunneling practice the definition of 

ground classes depends on the project-specific geotechnical classification system, they 

are not directly comparable among different projects. As a consequence, also the data are 

not directly transferable and a purely statistical approach to learning model parameters 

for prediction purposes is not feasible. The statistical analysis must be accompanied by a 

geological evaluation, which links the different classification systems.  

To cover the many possible tunneling conditions, a large database of constructed tunnels 

would be needed. Therefore, the data presented in this paper cannot serve as a general 

database for probabilistic modeling of excavation performance in future tunnels. Section 

3.1 of this paper however makes the following general contributions: (1) It presents a 

methodology for statistical analysis of tunnel performance data, which is broadly 

applicable. (2) It suggests a combined probability distribution (see Eq. (2)) for the unit 

time, which allows one to distinguish the normal performance from the small 

disturbances on a probabilistic basis without using expert judgment. These two types of 

uncertainties can thus be studied separately. (3) The obtained coefficients of variations 

and other parameters of the proposed combined distribution can serve as a basis for 

expert assessments used in future probabilistic models. The results in Section 3.1 show 

that small disturbances significantly influence the probability distribution of the unit time. 

When the estimates of the distribution of advance rates resp. unit time are made by 

experts, only the normal performance is modeled and the effect of small disturbances is 

commonly neglected. To assess the distribution of unit time realistically, the expert 

estimate should be combined with data: The experts assess the mean (mode) of the 
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normal performance, which is strongly dependent on the individual conditions of the 

modeled tunnel; the variance of the normal performance and the probability distribution 

of small disturbances is assessed based on data from other tunnels.  

The modeling of the extraordinary events during the construction process is arguably the 

most critical part in the probabilistic estimation of tunneling performance. The significant 

influence of the selected failure rate on the predicted excavation time is shown in Table 

10. The failure rate has not been studied systematically in the past and cannot be assessed 

reliably from the available data, as discussed in Section 3.2. At present, available 

databases collect detailed information on selected observed extraordinary events. 

However, for the purpose of estimating failure rates, records of all extraordinary events 

within a clearly defined sample of tunnels would be needed. Such a sample could e.g. be 

all tunnels of a certain type in a specific region and time period. Ideally, additional 

information on geotechnical conditions and construction method should also be available 

in such a database. When modeling a specific tunnel construction, the statistical estimate 

of the failure rate should be accompanied by expert estimates and/or structural reliability 

analysis.  

The utilization of the resulting statistical models for the probabilistic prediction of tunnel 

construction time using a DBN model is illustrated in the application example of Section 

4. For the prior prediction during the design phase, the parameters of the DBN model are 

determined by expert assessments informed by the available data. During the construction, 

the prior prediction is updated using observed performance data. A significant part of the 

prior uncertainty is due to the epistemic uncertainty represented by the random variable 

human factor, which represents the deviation of the actual performance from the mean 

predicted performance. In the present model, this human factor is assumed to take on one 

value during the entire construction. The results of the case study indicate that a more 

refined model, which allows for different values of the human factor for different 

construction methods, might be more accurate. In spite of this, the results of Figure 17 

show that the proposed model enables learning during the construction process. 

The presented DBN model neglects additional time needed when changing construction 

methods and the influence of this additional time on the decisions about the changes. This 

omission is not critical in the presented application, because ground classes and the 
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corresponding construction methods do not change frequently. However, this factor 

should be included in the future, e.g. following the approach presented by Sousa and 

Einstein (2012). The presented DBN model can be adjusted for modeling other processes 

than tunnel excavation, e.g. construction of tunnel lining or other linear construction 

processes. Additionally, construction costs can be included in the model by adding the 

corresponding variables to the DBN. When modeling construction costs, it is necessary to 

account for the dependency of some costs (e.g. labor costs, machinery costs) on 

construction time. However, research on cost models is hindered by the sensitivity of cost 

information and by the intricate system of cost monitoring and control. 

6 Conclusion 

A probabilistic model for estimation of tunnel construction time has been presented. The 

model takes into account the uncertainties in geotechnical conditions, excavation 

performance, and the risk of extraordinary events such as cave-in collapses. Additionally, 

it considers common factors (e.g. quality of planning, organization of the construction 

work), which systematically influence construction performance, and the epistemic 

uncertainty, i.e. the uncertainty in the expected construction progress due to incomplete 

knowledge in the planning phase. The model allows for efficient updating of the 

predictions based on observed excavation performance, as demonstrated by a case study 

of a 480 m long tunnel excavated by means of a conventional tunneling method.  

To obtain realistic estimates, the model inputs should ideally be assessed using data from 

tunnels constructed in the past. A methodology for statistical analysis of excavation 

performance data is shown in this paper using records from three tunnels built using a 

conventional tunneling method. The results show that three types of effects can be 

observed in the construction performance: (1) normal performance, (2) small 

disturbances of the construction process, (3) extraordinary events. All of these 

phenomena have a significant impact on the construction time estimate. The probabilistic 

model inputs should thus combine the expert knowledge, which allows one to take into 

account the specifics of the modeled tunnel, with statistical analysis of data from tunnels 

constructed in the past, which realistically quantifies the variability of the construction 

performance, especially the effects of small disturbances and extraordinary events. 
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APPENDIX 1: Introduction to Bayesian networks. 

Bayesian networks (BNs) are graphical models representing a set of random variables. 

The variables are represented by nodes of the BN, the links stand for the stochastic 

dependencies between the variables. The BN concept is in the following introduced 

through the example given in Figure 19. 

 

Figure 19. Sample Bayesian network (BN). The tables show the conditional probability table 
(CPT) of time given geology, the marginal probability mass function (PMF) of geology and the 
resulting marginal PMF of time. 

The BN contains three random variables: Geology !, time for excavation of a tunnel 

segment ! and costs of excavation of a tunnel segment !. 

In this simplified example, Geology ! can be in one of two states “good” or “poor” with 

probabilities Pr ! = "good" = 0.6 and Pr ! = "poor" = 0.4. Excavation time ! can 

be in one of three states and it is defined conditionally on the geology. For example the 

probability Pr ! = 0.2|! = "good" = 0.6 represents the conditional probability of time 

being 0.2 days on the condition that the geology is good.  The variable cost ! is defined 

conditionally on both geology ! and time !. 

The whole DBN is fully described by the joint probability mass function (PMF), which is 

computed using the chain rule: 

! !, !, ! = ! ! ! ! ! !(!|!, !) (12)   
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where the ! !  is the PMF of ! , ! !|!  is the conditional PMF of !  given !  and 

!(!|!, !) is the conditional PMF of ! given ! and !. The notation used here applies to 

discrete random variables, which is the case for the model proposed in this paper. We use 

! !  as the short notation for !! !  and similarly !(!|!) for !!|!(!|!). The conditional 

probabilities defining the BN are organized in so-called conditional probability tables 

(CPTs); an example of the CPT of time !, !(!|!), is shown in Figure 19. The geology ! 

is specified unconditionally by its PMF (!) , as it has no parent variable. 

Commonly we are interested in the marginal probability distribution of selected variables. 

For example, the marginal distribution of time !, !(!), which is also shown in Figure 19, 

can be calculated as follows:  

! ! = ! !, !, !
!!

= ! ! ! ! ! ! ! !, !
!!

 

= ! ! ! ! ! ! ! !, !
!!

= ! ! ! ! !
!

 

(13)   

For the specific example of Figure 19, this can be written explicitly as 

Pr ! = 0.2 = Pr ! = 0.2|! = "good" ∗Pr ! = "good" + Pr ! = 0.2|! =
"poor" ∗Pr ! = "poor" = 0.6 ∗ 0.6+ 0 ∗ 0.4 = 0.36, 

where Pr ! = 0.2  is the probability of excavation time being in state 0.2. The 

probability of time ! being in other states is calculated accordingly.  

The graphical nature of the BN is useful for representing and communicating the 

assumptions made in probabilistic models. Additionally, well-developed procedures for 

updating the BNs with additional information exist. The possibility to update the 

predictions is one of the main advantages of the BN models over MC simulation, where 

this possibility is limited. The reader interested in a more thorough introduction to BN is 

referred to Jensen and Nielsen (2007). Applications of BNs in engineering are presented 

for example in Straub and Der Kiureghian (2010), Bensi et al. (2011), Faber et al. (2012) 

or Codetta-Raiteri et al. (2012).  
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APPENDIX 2: Advance rate and unit time as random processes  

The unit time ! and the advance rate ! can be regarded as random processes. We first 

discuss the advance rate that is commonly used in tunneling practice. The advance rate is 

defined as 

! ! =
!" !
!"  

(14)   

where !(!) is the location of the tunnel heading at time !. In practice, !(!) can be 

measured only at discrete points in time. If measurements are made every Δ!, the 

corresponding advance rate is calculated as 

!!!(!) =
! ! − !(! − Δ!)

Δ!  
(15)   

! and !!! are related by: 

!!!(!) =
1
Δ! ! ! !"

!

!!!!

 
(16)   

If the tunnel advance rate is a homogenous process, then ! and !!! will be the same in 

the mean. However, the variance of !!! differs from that of ! and is (Vanmarcke, 1983): 

!!!!
! = Var

1
Δ! ! ! !"

!!

!

 

= !!! ∙
2
Δ! 1−

!
Δ! !! ! !"

!!

!

 

= !!! ∙ ! Δ!  

(17)   

where !!! is the variance and !! is the correlation function of the random process !(!). 
! Δ! = !

!!
1− !

!!
!! ! !"

!!
!  is the so-called variance function of the random process, 

which depends on the correlation function. For the special case of an uncorrelated process 
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! Δ! = 0; for a fully correlated process ! Δ! = 1. In other cases, the variance function 

decreases with increasing Δ!. 

The square root of the variance function is a reduction factor, which is applied to reduce 

the standard deviation corresponding to a fully correlated process, similar to the approach 

presented in Isaksson and Stille (2005). The standard deviation for the advance rate 

measured over any time Δ! can be determined by  

!!!! = σ!!"#
! !"
! !!!"#

 
(18)     

where σ!!"# is the standard deviation of the advance rate measured over a reference time 

!!!"#.    

Eq. (16) and Eq. (17) give rise to the averaging effect: The variance of !!! becomes 

smaller as Δ! increases. This must be accounted for when estimating the advance rate 

from observations. However, in practice this effect is often neglected when advance rates 

are estimated by experts, which can lead to significant under- or overestimation of the 

uncertainty. 

In the DBN model, unit time ! is utilized instead of the advance rate. It is defined as 

!! = ! !! − !(!! − Δ!) (19)   

where !(!) is the time the tunnel heading passes the position ! and Δ! is the length of a 

tunnel segment. 

For a homogenous process, the mean !! of unit time increases linearly with Δ!:  

!! =
!"
!!!"#

!!!"# 
(20)   

where !!!"# is the mean of the unit time !!"# for a reference length Δ!!"#. 

The standard deviation of the !! is also a function of Δ!. In analogy to Eq. (18) it can be 

expressed as a function of the standard deviation σ!!"#  of the unit time !!"#  for a 

reference length Δ!!"#, as follows: 
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!! =
!"
!!!"#

σ!!"#
! !"
! !!!"#

 
(21)     

where the variance function is: 

! !" =
2
Δ! 1−

!
Δ! !! ! !"

!!

!

 
(22)     

and !! is the correlation function of the unit time. Example correlation functions of unit 

time obtained from data are presented in Section 3.1.3. 
 


