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Abstract: Sound source localization algorithms determine the physical
position of a sound source in respect to a listener. For practical applica-
tions, a localization algorithm design has to take into account real world
conditions like multiple active sources, reverberation, and noise. The appli-
cation can impose additional constraints on the algorithm, e.g., a require-
ment for low latency. This work defines the most important constraints for
practical applications, introduces an algorithm, which tries to fulfill all
requirements as good as possible, and compares it to state-of-the-art sound
source localization approaches.
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1. Introduction

Hearing is an important ability of human beings, animals, and even technical systems.
Even though humans rely heavily on their visual system, many events (e.g., the ringing
of a doorbell) are purely acoustical in nature and cannot be detected by any other
sense. In many cases, it is important to not only detect an acoustical event but also to
know the location of the sound source. This may help to react to events that are not
within the field of view of the observer. We are investigating algorithms, which localize
multiple human speakers in a communication scenario. This localization step serves as
a pre-processor for speech separation in a variety of applications like intelligent robotic
systems or hearing aids. The scenario is subject to different constraints, which have to
be handled by the localization algorithm.

One constraint is the physical size of the localization system, and in this work,
we focus on lightweight mobile systems. In natural environments, rarely is only one
source active, and a localization algorithm should therefore be able to localize multiple
sources simultaneously. Additionally, the localization accuracy of an algorithm must
not deteriorate significantly with reverberation because sound reflections and noise will
be present at each microphone in realistic environments. Another constraint in many
applications is that sound is processed in real time as it arrives, and therefore the com-
putational complexity of an algorithm has to be low. Often a low latency is more im-
portant than this on-line processing capability because localization results are required
immediately after a sound event occurs.

2. The compass algorithm

We developed COMPaSS (loCalization Of MultiPle Sound Sources) with all discussed
constraints in mind, especially its usability in real environments and low latency. To
enable a small physical size of the localization system, we chose a binaural approach
where the hardware consists of only two microphones and two reflectors, which serve
the same purpose as the pinnae of animals or humans. The reflectors have direction de-
pendent transfer functions (TFs), which the algorithm uses to localize sources. The
transfer functions have to be known a priori and are stored in a database of Nh
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direction dependent filters hi;g; i 2 1; 2½ �; g 2 1; :::;Nh½ � where i denotes the microphone
index and g denotes the TF index in the database. All source positions lie on a spatial
sampling grid, and every index g is associated with one particular source direction.

2.1 Cross-correlation of the observations

COMPaSS assumes a realistic mixing model where each of the N active sound sources
sn; n 2 1; :::;N½ � is filtered with the filter pair hi;g; i 2 1; 2½ �; g 2 1; :::;Nh½ � corresponding
to the direction g of the sound source. We define the operator p : 1; :::;Nf g
! 1; :::;Nhf g; n 7!p nð Þ, which maps a sound source index to the corresponding TF index
defined by the sound source positions of an observed sound scene. The observations
x1 tð Þ and x2 tð Þ for the left and right microphone are then given by

xi tð Þ ¼
XN

n¼1

sn tð Þ � hi;p nð Þ; i 2 1; 2½ � (1)

where (*) denotes the convolution operator. Localization of sound sources is equivalent
to the identification of the active filters in Eq. (1).

In the presence of only one source, the correct filter pair can be identified by
inverse filtering or by a cross-convolution step.1 This step convolves the observations
with each filter pair from the database, yielding y1;g tð Þ ¼ x1 tð Þ � h2;g and
y2;g tð Þ ¼ x2 tð Þ � h1;g. The filter index g0 indicating the correct position is retrieved by
maximizing correlation between the cross-convolved signals

g0 ¼ arg max
g

y1;g tð Þ � y2;g tð Þ; (2)

where (*) denotes the cross-correlation operator. For more details, refer to
MacDonald.1

COMPaSS extends the cross-convolution approach to multiple active sources.
To this end COMPaSS assumes that the sound sources are sparse in some transform
domain. Such sparsity assumptions have successfully been employed for techniques like
underdetermined blind source separation.2 In the presence of multiple sparse sources,
the term W-disjoint orthogonality describes the fact that sparse signals can have dis-
joint sets of Fourier transform supports.3

If the source signals are W-disjoint in short time Fourier transform (STFT)
domain, then at each time-frequency point there will be only one source active in the
cross-convolved signals yi;g tð Þ. Exploiting this fact, COMPaSS estimates for every pos-
sible filter the probability that it influenced the observations. The signals yi;g tð Þ are cut
into Nk overlapping frames of length L¼ 64 ms with a shift of L/2 and each frame is
stored as a vector yi;g;k, where the subscript k indicates the frame number.

2.2 Similarity measurement

In the next step, the similarity between each pair of frames yi;g;k; i 2 1; 2½ � has to be cal-
culated. For clarity, we will omit the g and k subscripts in this section.

COMPaSS transforms each frame into the STFT domain by subdividing it
into Ns smaller overlapping frames. The subframes are transformed with an Nf-point
discrete Fourier transform and stored as columns of the matrix Yi 2 C

Nf�Ns . Each
entry Yi(f, l) of the matrix is the Fourier support of the fth frequency bin of the lth
subframe.

Let ci;f denote the fth row of Yi. The similarity value c(f) is then calculated by

c fð Þ ¼
c1;f � cH

2;f
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which measures the linear dependence between two corresponding frequency bins over
time. All entries of the vector c are in the interval [0,1] where a higher value indicates
higher similarity at the corresponding frequency.

2.3 Filter scoring and extraction

COMPaSS stores the similarity values for each g and k of the K last frames as columns
of the similarity matrix Cg 2 RNf�K . The entry Cg f ; kð Þ is the similarity value
achieved by filter pair hi;g for the kth frame at the fth frequency bin.

Using a winner-takes-it-all approach COMPaSS obtains the indices of the fil-
ters yielding the highest similarity values at one time-frequency point and stores them
in the matrix P 2NNf�K with

P f ; kð Þ ¼ arg max
g

Cg f ; kð Þ: (4)

Let Bg 2NNf�K be a binary matrix indicating if filter g has the highest similarity in a
specific bin and be obtained by

Bg f ; kð Þ ¼ 1 ifP f ; kð Þ ¼ g
0 otherwise

:

�
(5)

How much a time-frequency bin contributes to the final score of each filter is signal de-
pendent. Chisaki et al.4 suggest to give more importance to bins with higher signal
energy because a higher SNR can be expected for those. COMPaSS uses a similar
weighting of the frequency bins based on signal energy and the achieved similarity val-
ues. The filter- and signal-dependent weighting matrices Ag 2 RNf�K are defined as

Ag f ; kð Þ ¼ X1 f ; kð Þj j þ X2 f ; kð Þj j
2

� �a

� Cg f ; kð Þ
� �b

; (6)

where Xi is the STFT representation of the observations xi tð Þ. The parameters a and b
set the influence of the signal energy and the similarity value on the final weight Ag.
The choice of a¼ 1 and b¼ 1 achieves good results in our experiments. If the signal
energies of two active sources differ significantly, the influence of the energy term
should be lowered with the parameter a. Finally, COMPaSS calculates the weighted
histogram p 2 RNh , the entries of which

p gð Þ ¼ tr Bg � AT
g

	 

(7)

are proportional to the probability that a filter pair was active in the observations. The
final stage of the localization algorithm extracts the most likely positions from the his-
togram iteratively. The histogram is modified in each iteration and is initialized to
p1¼ p. The location of the nth source is extracted with

~gn ¼ arg max
g

pn gð Þ; (8)

where ~gn denotes the index of the corresponding transfer function. Let the operator
D(g1, g2) calculate the distance between the two source locations corresponding to g1
and g2. The histogram is then updated using the following rule

pn gð Þ ¼ pn�1 gð Þ if D ~gn�1; gð Þ > dmin

0 otherwise

�
; (9)

where dmin enforces a minimal distance between two localized sources. By updating the
histogram, the algorithm ensures that each location is extracted only once and sources
with lower signal energy are not obscured.
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3. Comparison

We compared COMPaSS to other state-of-the-art techniques which try to solve similar
problems.

3.1 Compared algorithms

The first technique is sound source localization based on the self-splitting competitive
learning (CSSCL) clustering technique.5 This binaural technique was developed for
robotic hearing systems, and according to Keyrouz et al.,5 it has a lower complexity
than comparable microphone array approaches. The technique was extended6 to sup-
port more than two active sources.

The frequency domain binaural model (FDBM) localizes and separates sour-
ces exploiting interaural phase difference and interaural level difference in frequency
domain. It was developed especially for speech sources and has been used as a front
end for a speech recognition system.7 Chisaki et al.4 showed that FDBM is capable to
localize two concurrent sound sources in azimuthal and elevation direction with high
accuracy.

The third algorithm we compared is based on a combination of a steered
response power beamformer using the phase transform and a particle filter
(SRP-PHAT-PF)8 and was designed explicitly for mobile robots. The particle filter
approach solves the problem of assigning a localization result to the sources that are
being observed and is also able to track moving sources. The system was tested in the
presence of noise and reverberation and can run on-line on robot hardware.

3.2 Recordings and simulations

To compare the algorithms, we recorded a number of different sound scenes in an
office room with dimensions 5.10 m� 3.49 m� 3.09 m (L�W�H) and a reverberation
time RT60 of 0.64 s.

In this environment, we use a Knowles Electronic Manikin for Acoustic
Research (KEMAR) and an array of eight microphones to record the test data. The
microphones are arranged in the corners of a free standing cube with an edge length of
20 cm. Each sound scene is presented through loudspeakers to ensure invariant condi-
tions. Due to spatial constraints, source locations were restricted to a semicircle. To
cover more interesting sound scenarios, we used two different KEMAR orientations in
the room. The setup of the experiments can be seen in Fig. 1.

For both KEMAR orientations, the TF database is measured at three eleva-
tions and 19 azimuths. The elevation planes are at �10�, 0�, and 10�. We recorded a
total number of 945 sound scenes with a combined length of �1.3 h in the
experiments.

In addition to the recordings, we also created exactly the same sound scenes
with a simulator, which convolves the source signals with measured TFs according to
Eq. (1). One interesting evaluation result will be the direct comparison between a
recorded sound scene and its simulation.

Fig. 1. (Color online) Top view of the experiment setup. The KEMAR’s TFs are measured at three elevations
and 19 azimuths on a circle with radius 1.3 m with a spatial grid resolution of 10�. Recorded scenarios consist of
up to three active sources at different positions and all recordings are created with two KEMAR orientations
and the microphone array.
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3.3 Evaluation

Figure 2 shows the estimated angles of each compared algorithm over time for one
three-source scenario. COMPaSS estimates the source positions almost 100% correctly.
CSSCL misdetects a source at 0� instead of finding the real source at 40�. It is interest-
ing to note that CSSCL does not return localization results for each frame but by
design uses all 155 frames to calculate one result. The results of FDBM look much
noisier than those of the other algorithms, but the estimated positions form visible
clusters at the real source locations. SRP-PHAT-PF does not return any results until
the 50th frame, which corresponds to an internal latency of �1.5 s caused by the parti-
cle filter. In contrast to the previous algorithms its results are continuous on the azi-
muth scale.

To evaluate the different localization algorithms, we use the localization suc-
cess rate as a measure for the quality of the results. As we are using speech signals,
our sources are not active in every frame, and we only evaluate the frames where the
signal energy is above a threshold. The success rates are shown in Table 1. The col-
umns denoted “exact” show the percentage of exact localizations. For the TF-based
algorithms (COMPaSS, CSSCL, and FDBM), this is the number of correctly localized
frames over the number of active frames. Due to the 10� spatial grid point distance,
this measure has an implicit error tolerance of 65�. The results of SRP-PHAT-PF are
continuous, and therefore we consider them correct if they also lie within 65� of the
true position. The columns denoted “tolerance” show the localization success rate
within a 615� range. Additionally, the mean angular error (MAE) is given.

In the simulations, the TF-based algorithms show good numbers in the single
source case and their performance drops as sources are added. In the three source case,
COMPaSS loses only 3 percentage points, while CSSCL and FDBM lose over 25 per-
centage points. SRP-PHAT-PF has a lower exact accuracy than the TF-based algo-
rithms, but its accuracy in the tolerance region is comparable. In the three source case, it
surpasses FDBM and CSSCL. In the three source case, COMPaSS and the microphone
array make only small mean angular errors (MAEs) of 	 3� and �7�, respectively.
CSSCL and FDBM have an MAE of 20.28� and 28.93�, and therefore, estimated source
positions will on average deviate significantly from the actual source locations.

The differences between the simulations and the real recordings are the pres-
ence of noise and possible deviations of the measured TFs. These deviations may arise
due to changes in air pressure and room temperature and the finite length of the meas-
ured TFs. COMPaSS and SRP-PHAT-PF prove to be robust toward real conditions
as their performance is not affected drastically. The accuracy of CSSCL and FDBM,
however, disappoints in the real environment compared to the promising numbers in
the simulations. In summary, COMPaSS and SRP-PHAT-PF are suitable candidates

Fig. 2. (Color online) Each plot shows the detected azimuth angles of the three active sources at every time
instance. The thin lines indicate the actual source position (�40�, �20�, and 40�) and the markers depict the re-
spective algorithm’s estimation.
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for practical use in real environments. Both show a high localization accuracy in the
tolerance region paired with a small MAE. COMPaSS has an advantage of �10 per-
centage points in the tolerance region, and SRP-PHAT-PF has a slightly better MAE
in the three-source case. If exact localization results are required, COMPaSS is the bet-
ter choice as its accuracy is significantly higher in all cases.

4. Conclusions

In this paper, we presented COMPaSS, a low-complexity, low-latency multiple sound
source localization technique for real environments. We compared it to three state of
the art techniques that try to solve the same problem. COMPaSS is a TF-based
approach and exploits the sparsity of sound sources. Our implementations of all four
algorithms can process data on-line. COMPaSS and FDBM can calculate localization
results for the very first frame, while SRP-PHAT-PF requires more sound information
to produce reliable results. CSSCL is designed to process larger blocks of sound data
and has the highest latency of all four algorithms. In a real world scenario with multi-
ple sources, COMPaSS achieves the highest accuracy followed by SRP-PHAT-PF.
CSSCL and FDBM perform significantly worse under these conditions.
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