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Abstract—For the separation of the signals in the vector broad-
cast channel (BC), some information about the channel state is
necessary at the transmitter. In many cases, this channel state in-
formation (CSI) must be fed back from the receivers to the trans-
mitter.We jointly design the channel estimators and the quantizers
at the receivers together with the precoder at the transmitter based
on a precoder-centric criterion, i.e., the minimization of a mean
square error (MSE) metric appropriate for the precoder design.
This is in contrast to our previous works, where the quantizer de-
sign was based on a CSI MSE metric, i.e., based on the minimiza-
tion of the MSE between the true channel and the channel recov-
ered by the transmitter using a feedback channel. Interestingly,
the estimators resulting from this joint formulation are indepen-
dent of the used codebook. The codebook entries are the employed
precoders. Therefore, each receiver feeds back the index of a set
of precoders and the intersection of the sets gives the appropriate
precoder. Since the quantizers of the different receivers have to
work separately, the metric for the computation of the partition
cells cannot be expressed as a simple squared error depending on
the quantizer output. The proposed system based on a joint opti-
mization clearly outperforms previous designs with separate opti-
mization of feedback and precoding.

Index Terms—Bayesian approach, feedback channel, imperfect
CSI, precoding MSE metric, robust precoding.

I. INTRODUCTION

A MULTI-USER multiple-input single-output (MU-MISO)
system is an appropriate model for the downlink of

a cellular system where it is reasonable to assume that the
transmitter (base station) is equipped with multiple antennas
whereas the receivers (mobile stations) only support a single
antenna in order to reduce size, power consumption, and cost.
As the receivers have no interference suppressing capabilities,
the transmitter is in charge of all tasks related to eliminating
the interuser interference.
The availability of CSI at the transmitter is crucial for the

signal separation in the considered vector BC. In cellular sys-
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tems that use frequency-division duplexing (FDD), the utiliza-
tion of a finite-rate feedback channel is common to send the
CSI estimated at the receiver to the transmitter. The standard
assumption for the design of these limited feedback channels
is to assume that the receivers have a perfect CSI knowledge
(see [1]–[5]). In practice, however, the information about the
channels obtained by the transmitter via limited rate feedback is
always erroneous. Thus, perfect interference suppression with
precoding is impossible. In addition, an information theoretic
approach to the design of limited feedback channels with im-
perfect CSI is difficult due to the fact that the computation of
the mutual information cannot be found in closed form and is
costly to be estimated via simulations (see [6] and [7]). For this
reason, in this work we have resorted to precoding and limited
feedback channel designs based on the minimum MSE crite-
rion. More specifically, we propose to jointly design the CSI es-
timator and quantizer at the receiver together with the precoder
at the transmitter based on a precoder-centric criterion, i.e., the
minimization of an MSEmetric appropriate for the precoder de-
sign [8].
The utilization of such a precoding MSE for the design of

both the precoders and the feedback is motivated as follows. In
[9], it has been demonstrated that a function of the MSE is a
lower bound to the mutual information for Gaussian signaling
and for perfect CSI at receiver. This result has been generalized
in [10], i.e., a lower bound for the mutual information can be
found that is a function of the MSE and that is applicable irre-
spective of the quality of CSI and the modulation format. Thus,
the minimization of the MSE considered in this paper corre-
sponds to the maximization of a lower bound to the mutual in-
formation. Additionally, functions of the MSE constitute upper
bounds for the symbol error rate of QAM symbols (e.g., [11])
and for the bit error rate of QPSK symbols (e.g., [12]). Thus,
the minimization of the MSE can also be interpreted as the min-
imization of an upper bound of error probability.
The proposed limited feedback channel design procedure

works as follows. First, the channel estimator is designed
to minimize the MSE between the transmitted symbols and
the symbols recovered by the users (including the precoder)
averaged over all possible channel realizations, assuming a
given quantizer (see Section IV). Interestingly, the estimators
resulting from this joint optimization are independent of the
used quantizer codebook and are equal to the estimators ob-
tained from CSI MSE metrics.
Next, we design the codebook entries in Section V-A that con-

sist of the precoders to be employed. These precoders are found
by minimizing the precoding MSE conditioned on the fed-back
index. The utilization of white estimates (by dropping the col-
oring with the square root of the respective covariance matrix)
and the restriction to rectangular regions leads to a simple com-
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putation of the conditional means necessary for the precoding
design step. The most difficult part of the proposed scheme is
the design of the partition cells. The cell boundaries are designed
by minimizing the precoding MSE conditioned on the quantizer
input (see Section V-B). We also focus on how to implement bit
allocation in Section V-D and on howwe can solve the problems
related to its computational complexity by means of a heuristic
strategy. Finally, we present the results of some computer sim-
ulations in Section VI that were carried out to illustrate the per-
formance of the proposed limited feedback channel design in
terms of uncoded BER.
Note that each user feeds back the index of a set of pre-

coders and the intersection of the sets performed at the trans-
mitter gives the appropriate precoder to be used during the trans-
mission. Since the quantizers of the different receivers have to
work separately, the metric for the computation of the partition
cells cannot be expressed as a simple squared error depending
on the quantizer output and its computation is quite complex as
shown in this work.
All derivations are based on the assumption of perfect knowl-

edge of the second-order statistics of the noise, the symbols, and
the channels. However, these parameters have to be estimated
and reported to the transmitter in practice, although we will not
deal with this problem in this work. We assume that all random
variables are zero-mean and stationary.
Vectors and matrices are denoted by lower case bold and cap-

ital bold letters, respectively. The identity matrix is de-
noted by and is a -dimensional zero vector. We use

, , , , , , , , , and
for expectation, real and imaginary part of the argument,

trace of a matrix, complex conjugation, transposition, conju-
gate transposition, determinant of a matrix, Euclidean norm, and
Frobenius norm, respectively. The th element of a vector is
.With , we refer to a circularly symmetric com-

plex Gaussian probability density function (PDF) of
with the mean and the covariance matrix

, i.e., and

II. SYSTEM MODEL

Fig. 1 depicts the block diagram of a MU-MISO system with
linear precoding. We assume a transmitter equipped with an-
tennas and single-antenna receivers. Let us denote the in-
formation symbols by , a vector of zero-mean com-
plex-valued modulated signals with unit covariance matrix, i.e.,

. This vector is linearly transformed by the
precoder to obtain the transmit signal .
This signal propagates over the channel to the th re-
ceiver to produce the received signal

(1)

where is the additive white Gaussian noise (AWGN). The
channel is assumed to be time-varying and modeled
by means of a vector of zero-mean complex-valued Gaussian
random variables, i.e., with the channel co-
variance matrix for the th user .
The receiver applies the common receive weight to
get the estimate . Note that the common weight

Fig. 1. System model for MU-MISO linear precoding combining signals from
all users.

Fig. 2. System model for feedback.

is only assumed in the precoder design to allow for a closed
form solution of the precoder (see also the discussion in [13])
and to simplify the presentation. In contrast, every receiver ap-
plies an MMSE optimal receiver weight in the final system (see
Section V-A). As shown in Fig. 1, combining the signals at the
output of the different receivers yields

(2)

where ,
with , and .
We impose the constraint that the average total transmit en-

ergy is upper bounded by , i.e.,

Fig. 2 depicts the block diagram of the estimation and quanti-
zation of the CSI performed at the receivers. The resulting index
representing the set is fed back to the transmitter. We assume
that the centralized transmitter sends a sequence of pilot
symbols from all transmit antennas. The received noisy pilot
symbols are passed through the linear estimator
to obtain the channel estimate

(3)

This channel estimate will be the input to the quantizer
of user . The matrix contains the pilot symbols
and is the noise of the pilot channel to the
th receiver. For simplicity reasons, the feedback channel is as-
sumed to be error-free and without delay. The delay effect is
relatively easy to correct (see [14] and [15]) but at the cost of
unnecessarily complicating our notation.
After estimation, it is necessary to implement some type

of quantization in order to compress all the information sent
through the finite-rate feedback channel. Contrary to the
quantizers used in [14] and [15], where the codebook entries
were white channel coefficients, the codebook entries of the
quantizers proposed in this work are the precoders of Fig. 1,
i.e., the quantized information eventually represents a precoder
and not a CSI.

A. Model for Quantizers

Let us initially assume a genie-aided MU-MISO system
where all the users work in a cooperative way. In this case, it is
possible to carry out a joint quantization:

(4)
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where is the codebook size. Here,
represents the estimated CSI of all users. The selector

function is 1 if the argument lies in the partition cell
, and 0 elsewhere. Each of the codebook entries
is a precoder and is chosen if .

In practice, however, a joint quantization of the estimated CSI
is impossible because receivers do not cooperate and each re-
ceiver has access only to its own CSI . Therefore, the partition
cell must be decomposed into subregions ,
i.e., , where denotes the Cartesian
product defined as

(5)

Here, denotes the total partition cell corresponding to the th
codebook entry and , with , represents the
partition cell of the th codebook entry corresponding to user
. The aim of the th user’s quantizer is to identify the
region in which the CSI lies. The resulting fed-back in-
formation of user , i.e., the output of its quantizer , is
equivalent to a set of indices referring to the precoder rep-
resentation points that best fit to its current channel state. When
collecting the fed-back information from all users, the trans-
mitter finds the index of the final precoder representation point
by intersecting the sets of indices from all users. Therefore, the
selector function of the overall quantizer in (4) is finally defined
as

for
else.

Note that the above intersection gives a set with cardinality one
due to the properties of the Cartesian product used to split
into [see (5)]. This complicated representation
is inevitable since the users are not cooperative and, therefore,
no single user has information about the others. Remember that
the codebook entries are the precoder representation points and
the receive weights and not the CSI.
When restricting to scalar quantization, we can further de-

compose as

i.e., the Cartesian product of the rectangular regions
, with . Remember that is the number of
transmit antennas and is thus the maximum number of scalar co-
efficients sent from user to the transmitter. Let us define each
(complex) rectangular region by means of its corner coor-

dinates , , , and . In other

words, the scalar quantizer for the complex-valued is split
into two real-valued quantizers with the two quantizer indices

and . Thus, when the real and imaginary part of
the th entry of corresponding to the th user’s quan-
tizer lies in the cells and/or , respec-

tively, the conditions and/or

are respectively fulfilled. In

that case, a set or of indices is implicitly

chosen, for which it holds that

(6)

or

(7)

respectively. The information that user feeds back are
the indices and with . To ob-
tain the quantizer output , the quantized results for
the different real and imaginary parts of the entries ,

, i.e., and , should be combined
by simply intersecting the sets , where

:

III. PROPOSED MMSE OPTIMIZATION

In this section, we focus on the optimization of the following
elements pertaining to the limited feedback channel: the channel
estimators and the quantizers , i.e., the
partition cells and the precoders representation points

. We choose as a feasible designing criterion the mini-
mization of the MSE between the transmitted and received sym-
bols, that is,

MSE (8)

where denotes the probability that . Taking into ac-
count that the output signals at the receivers are given by

[see (2)], where is the precoder obtained from
the overall quantizer, i.e., [cf. (4)]
and , we can further elaborate the MSE cost
function as follows:

MSE

(9)

due to and . Note again that we
neglect the delay of the feedback in our system model for the
sake of brevity.
The optimization problem that we have to solve is

MSE

subject to: (10)
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Unfortunately, no closed form expressions can be obtained for
both the estimators and the quantizers of the feedback systems.
Instead, we will follow an alternating optimization approach to
minimize the MSE, because it is possible to obtain closed form
expressions for the minimization of certain quantities while the
other quantities are kept fixed. Indeed, let us start by fixing the
partition regions and the precoder representation points .
It is possible to obtain a closed-form expression for the optimum
estimator and afterwards use the Lloyd algorithm to itera-
tively optimize the partition cells and codebook representation
points of the quantizers of each user.

IV. CHANNEL ESTIMATORS

In this subsection, the channel estimator is optimized for
a given codebook (precoder and receiver weights) and partition
cells. It is apparent from (3) that

Thus, we can write the following alternative parameterization
of the channel estimator

(11)

where the unknown has orthonormal
columns, i.e., . It is easy to verify that this
expression for leads to when we substitute it into

. Note that the transformation of
with leads to an uncorrelated

signal with unit covariance matrix and the additional transfor-
mation with again gives an uncorrelated signal with unit
covariance matrix no matter the choice for . Therefore, the
optimization with respect to can be split into an optimiza-
tion with respect to and a subsequent optimization with
respect to .
Before carrying out the minimization of the MSE

with respect to , let us rewrite the MSE
in terms of an auxiliary matrix defined as

(12)

To this end, let us obtain the conditional moments
and . Taking into account that and are
jointly Gaussian, we have

where is given by [see (3), (11), and (12)]

(13)

Thus, the conditional moments are (e.g., [16])

Clearly, it holds that .
Therefore, taking into account that , we
have

(14)

with [cf. (5)]

Notice that and only depend on the choice of the parti-
tion regions which are assumed to be given in this section.
The obtained results for and
can be substituted into (9). Thus, the MSE for the given

codebook entries and partition cells is ex-
pressed as

MSE

(15)

As mentioned before, thanks to introducing the alternative rep-
resentation of the channel estimator in (11), we can obtain
the optimum channel estimator by finding the basis that min-
imizes the above MSE expression for a fixed , i.e.,

MSE subject to:

where the constraint has been introduced to ensure the subuni-
tarity of . Let us solve this optimization problem
using the Lagrangian multipliers method. The corresponding
Lagrangian function reads as

MSE

where is the Lagrangian multiplier which is Her-
mitian by definition since the constraint is Hermitian. A neces-
sary condition for optimality is that

MSE

From this Karush–Kuhn–Tucker (KKT) condition, we obtain
that [cf. (15)]
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Since the range of the first three summands reachable for row
vectors multiplied from the left is the span of the rows of ,
the space spanned by the rows of must be the same to fulfill
the above condition and thus

(16)

By considering the singular value decomposition (SVD) of a
matrix , where is a square diagonal matrix
and and are unitary or subunitary, it is satisfied that the
range of is equal to the range of [17]. Having in mind this
property and the SVD decomposition of given by

with unitary , diagonal
whose diagonal elements are positive,

and subunitary , we have that
. Thus, we can conclude that the optimal basis is

given by

(17)

to fulfill the condition in (16).
The so far undefined unitary must be chosen to

minimize the precoding MSE in (15). Since ,
the optimal estimator must have the form [cf. (11)]

(18)

where the conventional linear minimum mean square
error (MMSE) estimator is given by

Let us examine in more detail the expression for the optimal
estimator given by (18). Notice that decorrelates the output
of the linear MMSE estimator and forces that its variance
be the identity matrix. Then, some rotation with is applied
that does not change the property of unit covariance and, finally,

the estimate is colored with . This result is quite surprising
and is a consequence of not optimizing the mean squared error

between the true channel and the channel recovered at the trans-
mitter but the precoding MSE [see (10)].
We also see from (18) that the optimal estimator can be

written in closed form except for the covariance matrix and
the unitary matrix . The optimization of these two parts of the
estimator is difficult and cannot be done analytically. However,
they can be moved into the quantizer (as in [14]) by a
proper redefinition of the partition cells . Therefore, we can
set without loss of optimality that

(19)

and proceed to the quantization of this estimator’s output instead
of quantizing the output of the estimator given in (18). Accord-
ingly, the optimal in the parameterization of (11) is

(20)

with the SVD . Additionally, .

A. MSE With Optimal Estimators

The advantage of the approach described above is that now
the optimal estimator is independent of the codebook and the
other estimators. Additionally, notice that the estimator’s output
is Gaussian distributed with unit covariance matrix. Thus,

we rename the estimator’s output as . Due to
the relationship between and [see (20)], we have [cf.
(15)]

and

Having in mind the above results, the conditional moments
from (14) can be rewritten as

(21)

where and are redefined as

(22)

(23)

(24)
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with . Applying
to leads to (23)–(24)

shown at the bottom of the previous page. Notice that is
the MSE error matrix due to the estimation with
and is the error covariance matrix due to the quan-
tization error. The matrix depends
only on the quantizer parameters. Notice that when we assume
perfect channel knowledge at the receiver, i.e., when there are
no errors caused by estimation, , and when there
is no limited rate for the feedback, i.e., no quantization errors,
we have that . Therefore, the regularization
that is introduced due to imperfect CSI at the transmitter is
given by .
Remember that the effect of feedback delay was omitted

when deriving (23) and (24). If we assume a simple Jakes
model, we would have that the correlation between the channel

at slot and , the channel delayed by
slots, is given by

where is the maximum Doppler frequency of the th
user, is the slot rate, and is the zeroth-order Bessel
function of the first kind [18]. The factor in the last equality is
implicitly defined. Notice that the delay can be neglected when
considering a speed value of ( ). However, the
only impact on the previous derivations is that this term must
be included into the expression of in (12) since the input of
the quantizer given by (3) is obtained from outdated channel

vectors and, therefore, [cf. (13)]. Con-
sequently, also is weighted with .
Finally, for the sake of notational brevity, we introduce

(25)

This way, the precodingMSEwhen using the optimal estimators
can be concisely written as

MSE

(26)

In the ensuing section, we assume that the optimal estima-
tors , , are employed, i.e., the precoding
MSE given by (26) has to be minimized when designing the
quantizers. It is interesting to note that the conditional moments
provided by this scheme are equal to the conditional moments
obtained for the joint optimization based on a CSI-metric (see
[14], [15], and [19]).

V. CODEBOOK ENTRIES

A. Codebook Entries: Precoder Representation Points

In this section, we proceed with solving (10) by designing
the codebook entries (precoder representation points) and the
respective receive weights in order to minimize the precoding

MSE of (26) under a transmit power constraint for a given set
of partition cells :

MSE

subject to: (27)

Again, this constrained optimization problem will be solved
using the method of Lagrangian multipliers.
Without destroying optimality, wemake a change of variables

and set . Consequently, the Lagrangian function
reads as

(28)

with the Lagrangian multiplier .
One KKT condition is obtained by deriving with respect to
, which is assumed to be real. Equating this derivative to zero

yields

which leads to . As it is apparent that the

transmit energy constraint is active, that is, ,

we have .
When we set the derivative with respect to to zero, we

obtain the following KKT condition:

(29)

This result, together with the above result for and the transmit
power constraint, leads to the optimal precoder representation
point (codebook entry) corresponding to the th partition cell
given by

(30)

where . Interestingly, this result can be interpreted
as the centroid condition. Note that we use MMSE optimal re-
ceiver weights (different for different receivers) although the
optimization of (27) gives . The MMSE optimal receiver
weights correct the phase and lead to an approximately coherent
detection (see [15] for more details).
Note also that the solution for the precoder representation

points is inherently robust against errors, since the respective
error covariance matrices regularize the pseudo inversion in the
definition of .
Due to the expectations for

[see (22) and (25)], the computation of the precoder is dif-
ficult for a general set of partition cells such as
those obtained when using vector quantization. However, by re-
stricting ourselves to scalar quantization, the integration over
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the rectangular regions can be solved in closed form (see
[14] and [15]). Note that this precoder is basically the same pre-
coder as that based on the CSI MSE metric although the design
considered in this paper is based on the precoding MSE only
(see [14] and [15]). Both linear precoders are robust against er-
rors in CSI by means of regularization terms. Contrary to the
CSI MSE metric, however, where the precoder is based on al-
ready optimized and fixed partition cells that are independent
of the channel statistics,1 the joint design according to the pre-
coding MSE metric shown in this work optimizes the precoder
and the partition cells using the Lloyd algorithm. The Lloyd al-
gorithm switches between the precoder design and the partition
cell computation and converges to locally optimum precoders
and regions since every step reduces the MSE, and the MSE
is lower bounded. Note that both, precoders and partition cells,
must be recomputed as soon as the channel statistics change.
Additionally, note that the obtained estimators in (18) are op-
timal for any codebook and the codebook entries in (30) are op-
timal for given partition cells. In the next subsection, the optimal
partition cells for given codebook entries are derived. This mo-
tivates the alternating optimization of the Lloyd algorithm.

B. Partition Cells

In this subsection, we explain how to optimize the quan-
tizer partition cells. Since the receivers do not cooperate, the
estimates of other users are unknown to the quantizer of user
. Thus, we will design the regions of the th quantizer
in order to minimize the distortion for
given codebook entries , , and according re-
ceive weights , . Motivated by the fact that

, i.e., the quantizer’s inputs are Gaussian and un-
correlated, and that the computation of the precoders is difficult
for vector quantization, we restrict ourselves to scalar quantiza-
tion which implies that the entries of are quantized separately.
In this case, the partition cells and [see (6)

and (7)], that is, their corner coordinates , ,

, and of the scalar quantizers for, respec-

tively, real and imaginary parts of the th entry of , min-
imize the distortions

(31)

and

(32)

respectively. Here, is the number of codebook entries for
the quantizers of and . As a result of computing
these expressions for each , we can obtain the indices
and that minimize these distortions, i.e., the respective

1Neglecting the effect of bit allocation.

partition cells and are optimized. Note that,

given the th quantizer input of user , , we assume that
the other quantizer inputs , with , are unknown and,
therefore, it is necessary to average over all the possible .
Although the other entries with are known to receiver
, also over these quantities is averaged, since scalar quantizers
are used. However, the corresponding cells are given since the
codebook design is centralized at the transmitter and stored at
both the transmitter and all the receivers.
The distortions due to the th codebook entry for both real and

imaginary entries of the input read, respectively, as [cf. (9)]

(33)

and

(34)

where and denotes the th column of
the identity matrix. For and , see (22).

and are the

probabilities of and [see
(6) and (7)], respectively. In addition, the conditional moments

and under the conditions and , denoted
by , , , and , can be found as
follows [cf. (22)]:

(35)

and

(36)

Following the nearest neighbor condition, the partition cells
must be chosen such that for any input the

minimum distortion is picked by the quan-
tizer. Equivalently, for the imaginary part, the partition cells

are chosen such that for any input the quantizer
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TABLE I
CODEBOOK OPTIMIZATION

uses the minimum distortion . Since

and are linear, and and are quadratic
functions of and , respectively, the distortions

and are also quadratic func-
tions. Thus, for the real part of the optimal cell borders

and are simply the roots of the quadratic

polynomial equations

and , respectively.

The two roots that determine both cell borders,

and , must verify .
Again, similarly for the imaginary part of , the re-
gion boundaries are given by the roots of the quadratic
polynomials and

.

C. Codebook Computation

Although the estimators and the quantizers are jointly opti-
mized by minimizing the precoding MSE in (8), the codebook
parameters have to be computed only once since the channel es-
timators are independent of the choice of codebook [see (19)].
For the computation of the codebook parameters, we use the
Lloyd algorithm (see [20] and [21]), i.e., we alternately opti-
mize the precoders by using the centroid condition in (30) and
optimize the partition cells following the nearest neighbor con-
dition as discussed in the previous subsection. Since the MSE
in (26) is reduced in every step and the MSE is non-negative,
this iterative procedure converges.
The Lloyd algorithm is initialized with the quantizers based

on codebooks appropriate for unit variance complex Gaussian
inputs [14]. Therefore, the parameters of these scalar quantizers
can be stored and do not have to be recomputed for varying
channel statistics. As a consequence, the initialization of the
proposed feedback scheme based on the precoding MSE of (26)
is very cheap.
Table I summarizes the overall design procedure for com-

puting the codebook, which is basically a modified version of
the Lloyd algorithm. Note that this new codebook has to be re-
computed each time that the channel statistics change.

D. Bit Allocation

When using scalar quantization (transform coding, [21]) in-
stead of vector quantization, the available bits have to be allo-
cated to the different scalar coefficients. Contrary to the case of
CSI MSE based feedback [14], the distortion function obtained
for the case that the precoders are included in the optimization
given by

MSE

(37)

has a very complicated structure since all the parameters are
mixed together. Thus, it is impossible to separate the influence
relative to each user and each scalar quantizer which makes it
very difficult to find an efficient optimum bit allocation. We can
therefore decide the optimum bit allocation by trying out all the
possible bit allocation combinations and taking as a result the
best one in terms of minimizing the MSE in (37).
The bit allocation optimization is expressed as

MSE

subject to:

with and (38)

where is the matrix that determines the bit allocation corre-
sponding to the coefficients of each user and is the number
of bits available for each user. Notice that only an even number
of bits is used to quantize each coefficient, since both real and
imaginary parts of each coefficientmake use of the same number
of bits. Initially, we use the scalar quantizers (codebook entries
and partition cells) obtained from the CSI metric for a unit-vari-
ance input as in [14].
When the number of bits is low, there are no serious prob-

lems arising from the computational complexity, but the search
for optimum bit allocation becomes infeasible as the number of
bits increases. Therefore, we propose a heuristic solution to the
problem by reducing the number of combinations to be tested
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TABLE II
NUMBER OF BITS ASSIGNED PER USER’S COEFFICIENT FOR PRECODING MSE METRIC

on the MSE. It seems that an uniform distribution over all the
coefficients without implementing rank reduction is the most
likely allocation in the sense of minimizing the MSE. Thus, a
first trial consists of distributing the bits over all the coefficients
as uniformly as possible. On the other hand, it is obvious that
the coefficients with more energy, i.e., the coefficients whose
eigenvalues are larger, have more impact on the final MSE per-
formance and, therefore, we must tend to allocate more bits to
the first coefficients in order to minimize the MSE. Bearing this
fact in mind, successive combinations will move the bits from
the initial bit allocation to the coefficients with larger eigen-
values. Therefore, the MSE of (37) is sequentially computed
by following this ordering for bit allocation so the process is
stopped when, given a certain bit allocation, the MSE is greater
than the previous one in the list. This will be termed heuristic
bit allocation.
To illustrate this idea, let us assume that we have to distribute

8 bits for each user (see Table II). According to the heuristic bit
allocation described above, the chain of possible bit allocations
is given by

Imagine the combination given by gives us less
MSE than . In that case, we have to test the result
when is considered. As long as the new MSE
obtained is less than the previous one, we have to continue with
the search until the last possibility embodied by . If
not, we choose as the optimum bit allocation for our
joint approach based on precoding MSE metric. This heuristic
solution significantly reduces the computational complexity of
the search with negligible loss in performance.

VI. SIMULATION RESULTS

Given the enormous computational complexity due to the cal-
culation of the distortions in Section V-B, we consider a system
with a transmitter equipped with 4 antennas that serves

2 users using QPSK modulation. We use the urban micro
spatial channel model (SCM) described in [22], which is the
most difficult for precoding, out of the three spatial channel
models introduced in [22], because the second and the third
channel eigenvalues have a non-negligible magnitude. The re-
sults for the CSI metric are the mean of 100 channel realizations
with 1000 symbols being transmitted per channel realization.
The number of averaged channel settings or channel covariance
matrices is 10. The training sequence has 16 symbols. In
the figures, the number of bits per user is given in the legends.
Although the optimization of (27) gives the weight , we
use MMSE receive weights instead those weights arising from
the optimization to correct the phase caused by imperfect CSI at
the transmitter and get an approximately coherent detection [14]
and [15].
We implemented three different types of bit allocation. First,

no bit allocation, which tries to spread the bits as uniformly as
possible (in the case that any bits are left over, e.g., with 10
bits for four dimensions, the dimensions corresponding to the
largest get additional bits). Second, rank reduction, which
allocates as evenly as possible the bits to the first dimensions.
And third, the heuristic bit allocation, which tries out different
bit allocations and takes the result of the best one. Remember
that we do not try all the possible combinations but the heuristic
search explained in Section V-D is performed instead. To illus-
trate the different strategies, Table II summarizes the bit alloca-
tion strategies for different number of bits per user.
In Fig. 3, the feedback design based on the CSI MSE dis-

cussed in [14] and [15] is compared to the scheme proposed in
this paper, that minimizes the precodingMSE, for 8 bits fed back
per user. As expected, bit allocation has a considerable impact
on the BER performance and the feedback design based on the
precoding MSE outperforms the CSI MSE feedback.
Though the result that the uncoded BER saturates for high

SNR is disappointing, it cannot be avoided in a system with lim-
ited rate feedback (e.g., eight bits per user in Fig. 3). The satu-
ration of the BER results from the residual interference caused
by the errors in the channel state information delivered to the
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Fig. 3. MU-MISO systemwith robust linear precoding, 4 antennas,
2 users, and 8 bits per user.

Fig. 4. MU-MISO systemwith robust linear precoding, 4 antennas,
2 users with different number of bits per user.

transmitter via limited rate feedback. To circumvent this satu-
ration, a feedback data rate increasing with the SNR would be
necessary (see, e.g., [23]). However, such a setup is impractical.
Similar results were obtained for a higher and lower number

of bits per user, as shown in Fig. 4. Not surprisingly, a higher
number of bits per user improves the BER performance of all
schemes. In addition, it seems that the advantage of the pre-
coding MSE based design compared to the CSI MSE based de-
sign becomes more pronounced for a higher number of bits as
the degrees of freedom increase.
Notice that, independently from the number of bits fed back

per user, rank reduction always shows a loss in performance
with respect to heuristic bit allocation since the information con-
tained on some coefficients is dropped.

VII. CONCLUSION

In this work, we have shown how to obtain the robust pre-
coder parameters, the channel estimators, and the quantizer pa-
rameters in a joint optimization by minimizing the MSE be-
tween the transmitted symbols and the estimated symbols. Inter-
estingly, the channel estimators and precoders obtained with the
metric oriented to the precoder are equal to the estimators and
precoders resulting from the joint optimization based on min-
imizing the MSE between the true and estimated channel pre-
sented in [14] and [15]. However, the crucial part of the scheme
proposed in this work is the design of the partition cells cor-
responding to each user, which are designed by minimizing its
own distortion but averaging over the quantizer inputs for the
other users, since there is no cooperation between users in the
downlink of a multiuser MISO system.
As a result, we get better BER performance with a no increase

of the overhead in the feedback channel. The transmitter per-
forms the intersection of the precoder sets corresponding to the
indices received from all the users to find out the optimal pre-
coder to be used during the transmission. It is important to note
that the codebook entries are now the precoders rather than the
white channel coefficients. Therefore, it is obvious that the de-
sign of the quantizer parameters (i.e., the codebook entries and
the partition cells) becomes the hardest part of this new pre-
coding approach, with the advantage of minimizing the MSE
by including the precoder in the optimization. This improve-
ment is even more significant when the number of fed-back bits
per user is increased, albeit at the cost of higher computational
complexity.
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