
Modeling Nonfunctional Requirements: A Basis for
dynamic Systems Management ∗

Michael Dinkel
BMW Group Forschung und Technik

80992 München, Germany

Michael.Dinkel@bmw.de

Uwe Baumgarten
Institut für Informatik

Technische Universität München
85748 Garching, Germany

baumgaru@in.tum.de

ABSTRACT
The management of dynamic systems is an upcoming chal-
lenge for software engineers in automotive and other embed-
ded systems. The complexity of current automotive comput-
ing systems is already difficult to handle for car makers and
the expected growth in the area of electronic devices in ve-
hicles will even intensify this situation. This paper presents
a model based approach for enabling automatic configura-
tion of distributed component oriented systems. Nonfunc-
tional requirements and capabilities of software components
and platforms are explicitly modeled and provide for well-
founded statements whether a component is able to execute
on a certain platform or not. With application models and
platform models the validity of a configuration is defined
in this paper. The models even allow reconfigurations based
on information regarding the actual system context like user
behavior, backend or environmental sensor information.

Keywords
Component, Configuration, NFR, Nonfunctional Require-
ment, Capability, System Management, Software Manage-
ment, Application Model, Platform Model

1. INTRODUCTION
In the automobile industry the development of electronic
control units (ECUs) is currently done with multiple sup-
pliers for each new model. The job of the vehicle manufac-
turer is to specify the requirements for each ECU and subse-
quently integrate these black box modules into one system.
Most ECUs are currently static systems and use static op-

∗Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit
or commercial advantage, and that copies bear this notice
and the full citation on the first page. To copy otherwise,
to republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
c©2005 ACM 1-59593-128-7/05/0005...$5.00

erating systems like OSEK. As a result software changes are
difficult to handle and complete ECUs need to be flashed in
order to update a single feature or to fix a single bug. Since
this is an obvious problem the OEMs1 tend toward a plat-
form strategy. AUTOSAR [11] for example is an approach
that aims at modeling the communication dependencies of
software components and to generate the necessary middle-
ware. This is a big step towards an improved handling of
complexity but still results in a statically defined runtime
environment (RTE). Currently modularity is only available
at source code level like done in OSEK with the modules
of applications, operating system, communication layer and
drivers still compiled to one big binary per ECU. In con-
trast to conventional methods AUTOSAR will allow to de-
fine functionality spanning multiple ECUs.
Newer developments introduce runtime platforms and frame-
works like Java/OSGi into vehicles and other embedded sys-
tems. These runtime platforms enable modular software ex-
change which may even happen at runtime. In the future
such platforms will not only be present at the head-unit of an
infotainment system, but also in other more powerful ECUs
like domain controllers. Each of the different platforms is
able to install, update and remove software components at
runtime. This paves the way for more dynamic and more
up-to-date systems in modern vehicles. One issue that gains
more and more importance is the configuration of the vehi-
cle computing systems. Configuration means to determine a
layout that describes which software component will be ex-
ecuted on which platform in the distributed system. While
such systems are currently configured manually once in the
development phase of a new car series we generally avoid
major changes in the configuration later on since the con-
sequences can be hardly predicted. With the upcoming dy-
namics of vehicular software systems a lot of additional use
cases like short life-cycle software and frequent security up-
dates become achievable and necessary. Even new business
models like rental of software are thinkable. In the evolving
scenarios configuration is an essential aspect of software and
system management. With this paper we present a model
based approach for enabling automatic configuration in dy-
namic systems.

The remainder of this paper is organized as follows: in sec-
tion two we will introduce the general approach for con-
figurations and define functional and nonfunctional require-
ments as well as capabilities. Section three presents the meta

1Original Equipment Manufacturer

models for application models and platform models and de-
fines the communication flow between components. In sec-
tion four configurations are addressed. The validity of con-
figurations is defined on the basis of the previously presented
models. Additionally we explain how a dynamic reconfigu-
ration can be based on ratings of criticality and utility. We
present use cases that benefit from the described models in
section five while an overview over related work is given in
section six. Section seven concludes and points out further
work.

2. FUNCTIONAL AND NONFUNCTIONAL
REQUIREMENTS

The configuration of a system defines the mapping of soft-
ware components to nodes or platforms. Our approach for
determining whether a component can be mapped to a cer-
tain platform is based on functional and nonfunctional re-
quirements. In this paper we will focus on the requirements
of components not the requirements of users. Functional
requirements (FRs) define what is necessary for a piece of
software to perform its work. That means a component
needs its data inputs in order to be generally operational.
The functional requirements of a set of components can be
modeled as a data-flow graph that defines which compo-
nent uses whose outputs as input data. The nonfunctional
requirements of a software component define all other re-
quirements like the need for encrypted communication or
redundancy requirements. This is what current approaches
to reconfiguration lack.

2.1 NFRs and Capabilities
In order to carry out a configuration that is mapping a set
of components to a set of platforms, we need to make sure
that, among other things, all nonfunctional requirements of
each component are met by the assigned platform. There-
fore we need to explicitly model the nonfunctional require-
ments. Once the NFRs are modeled we become able to check
the NFRs against a counterpart in order to verify the assign-
ment. As can be seen in figure 1 both NFRs and capabilities
are a special kind of property. Properties offer a name and
a value that can be used to characterize entities.

Capabilities are defined as a subclass of property, so they
offer a name and a value. In addition to that capabilities
may provide further properties that can be used to precisely
specify a capability. In this way we can describe the features
of a capability. This is very useful if we want to specify a
platform that offers a special hardware like a certain sensor
for example and we also need to specify the location of this
sensor. So capabilities enable a detailed description of what
kind of nonfunctional services are offered by an entity.

The base class of nonfunctional requirement (NFR) is con-
ditional property which itself inherits property. As depicted
in figure 1 the conditional property adds a condition to the
property. Such a condition could be ”greater than”, ”less
or equal” and so on. At first a NFR is a conditional prop-
erty, also called primary conditional property, that defines
the concrete needs of an entity. Each NFR may have further
conditional properties in order to accurately characterize the
NFR. With NFRs we can specify for example that an entity
needs at least a certain amount of memory.

Capability ConditionConditionalProperty

Value

Name
Property

NFR

+ optional() : boolean

1

*

1

*

Figure 1: Nonfunctional requirements and Capabil-

ities

3. MODEL-BASED CONFIGURATION
Our approach for creating configurations is based on two
types of models for describing the counterparts that need to
be mapped together in order to produce a working system.
Application models define the software components and their
interactions while it is the job of the platform models to
specify the layout and capabilities of physical nodes and
their network connections.

3.1 Application Model
The models that define the inter operating software compo-
nents are called application models. They define the soft-
ware components and their functional and nonfunctional re-
quirements. The functional requirements are embodied in
the communication relations between the software compo-
nents. They are modeled as a kind of data flow diagram
that defines the routes that data items take from one com-
ponent to the other. Data flow diagrams are a frequently
used means to describe the relations between components in
distributed systems [2]. A representation of nonfunctional
requirements is what lacks in usual data flow diagrams. So in
application models the nonfunctional requirements (NFRs)
are represented as a kind of features of model elements. As
depicted in figure 2 all application model elements may have
nonfunctional requirements as well as capabilities in the way
they have been defined in figure 1. Model elements of the ap-
plication model can either be components, ports, channels,
applications or systems. The model elements are defined in
the following way:

A software component is a unit of decomposition with con-
tractually specified interfaces [10]. The interior of a compo-
nent is not visible or accessible from outside of the compo-
nent. A component uses InPorts and OutPorts to commu-
nicate.

A communication channel connects two or more software
components in an publish/subscribe manner. Channels rep-
resent the flow of information between the software compo-
nents. Components use InPorts and OutPorts to connect to
channels.

ModelElement

ComponentApplication

System

ConditionalProperty

NFR

+ optional() : boolean

Channel

InPort

+ optional() : boolean

OutPort

Port

Property

Capability
Property

1..*1..*

1

*

1 * 11..*

1
*

1

*

Figure 2: The meta model of application models

An application is a set of communicating components that
provide coherent, user-perceivable functionality. Applications
are not necessarily disjoint. That means certain components
may be part of multiple applications.

The system is an aggregation of applications.

3.1.1 Rating model Elements: Criticality and Utility
At runtime when one of the networked nodes fails it may
happen, that the resources available are no longer sufficient
for all the software previously installed in the vehicle sys-
tem. A reconfiguration becomes necessary that configures
the remaining system in a way that the available hardware is
used economically and that the important applications and
components remain functional. Therefore we need a possi-
bility to determine which components are more important
than others and hence have to run in any case. This could
be done by additional properties. Such properties can be
attached to elements of the application model as shown in
figure 2. In literature like [8] a utility value is defined for
certain components, named features. Their utility value is
statically defined and allows to choose a configuration by
maximizing the overall system utility.

We chose a more flexible approach since a static assignment
of importance seems to be too restrictive. We have two
properties, named utility and criticality that address a sim-
ilar but not identical purpose. The value for utility can be
adapted at runtime while criticality is a predefined value by
the car maker and has always higher priority when it comes
to a reconfiguration. Allowing runtime changes on one of
these two values enables the system management to base a
reconfiguration not only on statically defined ratings. But
the current environment and the user behavior and prefer-
ences can also be accounted for a reconfiguration. Among

others the following adaption mechanisms are possible to
change the utility rating of an application model element:

• No adaption: This would result in a static rating that
does not change at runtime.

• Usage statistics: Information about what applications
are used how much would make reconfigurations adapt-
able to the users behavior and preferences so that a
user could still use his personal favorite applications
even in the face of failures.

• Environmental information analysis: Environmental
information like temperature or weather forecast could
be used as input for the utility value. For example
temperature below zero degrees Celsius and a black ice
warning could result in high utility value for a DSC2

component even though it has not been used recently.

3.1.2 Communication style
As defined in figure 2 components use channels for commu-
nication. They send data via OutPorts and receive data via
InPorts. Each port has exactly one channel while a chan-
nel can transport data from multiple InPorts to multiple
OutPorts in M-to-N style. That means if one component
sends data to a channel all other components will receive
the data if they have InPorts to this channel. This kind of
communication has been chosen because of several reasons:

• Data-flow diagrams are often used to specify embedded
systems but the usual 1-to-1 data flow is just a special
form of our M-to-N style.

2Dynamic Stability Control

• Channels serve as indirection mechanism that enables
loose coupling between components since they do not
need to know their communication partners.

• The indirection allows isolated specification of com-
ponents. The communication ability of a component
can be specified by it’s InPorts, OutPorts and the con-
nected channels without involving other components.

• A flexible exchange of components is made possible
by the indirect M-to-N communication. With con-
ventional data flow diagrams a component can only
be exchanged by another component that provides ex-
actly the same data. If the required data is produced
by a different component after a modification of a few
components the complete data flow diagram changes.
Our indirect communication keeps the changes in the
diagram very local and hence eases the handling of
runtime dynamics.

3.1.3 Examples for NFRs
In order to clarify the notion of NFRs let us consider the
different elements of the application model meta model and
their need for nonfunctional specifications.

• Software components have to specify their runtime en-
vironment, like required CPU-performance, main mem-
ory, persistent memory, availability of special hard-
ware.

• Ports are targets of NFRs that define the nonfunc-
tional aspects of input or output of data. OutPorts
may specify the bandwidth, communication charac-
terization (cyclic, event-triggered, streaming...) and
latency (time between sending and actual transmis-
sion).

• Communication channels accumulate the NFRs of the
connected ports. So a channel will need at least the
sum of the bandwidth of all OutPorts sending data
over it. Additionally data encryption may be a NFR
of a channel.

• Applications (sets of components) usually define tar-
gets for non-functional requirements. For example it
makes no sense if only a few components of an ap-
plication are deployed redundantly, but some parts of
the application remain as single point of failure. Each
application in the model can be characterized by non-
functional requirements that count for the whole ap-
plication like for example a certain software integrity
level (SIL) as defined by IEC 61508 [4].

• A system as a whole may also be target of nonfunc-
tional requirements like overall flexibility or other global
NFRs.

All the before mentioned NFRs have one thing in common,
that is that they have to be known in advance in order to
be useful for our approach. This is especially difficult since
worst-case analysis is known to be a hard thing.

ModelElement Property

Capability

NetworkPlatform

1..*

connects

1..*

1 1..*

Figure 3: The meta model of platform models

Platform Network

Infrastructure OS, Drivers, Protocols
Layer Communication
Hardware CPU, Memory, Physical Medium,
Layer Special Hardware Topology

Table 1: Layers of a platform model

3.2 Platform model
Platform models specify the counterpart of application mod-
els which is needed since we want to map software compo-
nents to platforms. Each platform model consists of plat-
forms connected by networks. The meta model of platform
models can be found in figure 3.

Each platform is able to execute software components as
described by an application model. A platform is defined
as a hardware node that runs a certain stack of basic soft-
ware. The basic software is an essential part of a platform
and includes at least a runtime environment and a commu-
nication infrastructure. Furthermore we expect the compo-
nents to ”prepared” for executing on the platforms, which
includes that components with need for certain capabilities
(expressed as NFRs) are able to make use of the provided
capabilities. The terms of platform models are visualized in
table 1 and are used in the following way:

• Platform: A platform contains hardware with some
infrastructural software running on it.

• Network: A network contains the physical medium, a
topology and a stack of protocols. (Topology is part of
network because protocols have to do the routing and
hence have to know about topology.)

The platform-model is needed to give the configuration soft-
ware all necessary information about the capabilities and
topology of our target layout. The hardware layer, com-
posed of hardware and physical network wires, exposes cer-
tain capabilities in terms of CPU performance, memory size

and network throughput. On the one hand the infrastruc-
tural software consumes a certain amount of these capabil-
ities: of course a CPU has more reserves with no software
running by default. On the other hand not all capabili-
ties in the platform-model have their origin in the hardware
layer. The infrastructural layer also provides additional ca-
pabilities like security or reliable communication via certain
network protocols. Also reliability is a NFR that depends
on both, the hardware and the infrastructural software of a
platform.

4. CONFIGURATIONS
Configurations describe the mapping of software compo-
nents to the different platforms in the distributed system.
This is the distribution of the software modules to the net-
worked nodes of the platform model. We can distinguish
two general kinds of configurations:

A valid configuration is a configuration that fulfills all of
the requirements stated in the application model including
both, functional and nonfunctional requirements. There may
be several valid configurations for the same platform model
and application model. A valid configuration has to be com-
plete, which means that all elements of the application model
are mapped to elements of the platform model.

An optimal configuration is a valid configuration that has
been additionally optimized for a specific optimization goal.
Optimization goals may be reduction of network traffic or
reliability and so on. For each optimization goal there is
only one optimal configuration.

4.1 Validity
Before we start to optimize a configuration we have to se-
cure a configuration is valid. Valid means all requirements
of the components in the system are met. In this consider-
ation we take for granted that the functional requirements
are met which can be validated by checking the communica-
tion paths between the assigned components. Even though
functional requirements are a difficult problem in general, at
the current state we assume a communication model that al-
lows for the validation of functional requirements. For future
work we will have to consider appropriate methods for the
verification of functionality, for instance assume/guarantee
reasoning as described in [3].
For the nonfunctional requirements we can decide this be-
cause both nonfunctional requirements and capabilities have
been explicitly modeled. A nonfunctional requirement for
a target is met if the following validity condition (1) holds.
The condition of each NFR and conditional property is noted
as ≻. The condition of an NFR is used to compare the value
an NFR with the value of a capability in case their names
match. So evaluating a condition will either result in true
or false which can be summed up by a logical AND.

Validity condition for one NFR:

V CN = (CV ≻ NV) ∧

n

î=1

(CVi ≻i NVi) (1)

In (1) we have defined the validity condition for one NFR
(V CN), by checking whether the value of the capability

(CV) holds for the value of the NFR (NV) under the spe-
cific condition (≻) as defined by the NFR. We form the log-
ical AND of the primary NFR condition and all its (up to
n) conditional properties characterizing the concrete NFR.
Based on (1) we can move forward and define validity for one
assignment of an application model element to a platform
platform model element.

Validity condition for one assignment:

V CA =
n

î=1

(V CNi
) (2)

The validity condition for the assignment of an application
model element to a platform model element (V CA) is true
if the logical AND of all validity conditions (V CNi

) that be-
long to that application model element is true. With the
validity condition for one assignment defined in (2) we can
have a look at the validity condition for a complete config-
uration.

Validity condition for a configuration:

V CC =
n

î=1

(V CAi
) (3)

∀ ae ∈ AM ∃ pe ∈ PM with ae is-assigned-to pe (4)

For a configuration to be valid it takes more than defined
in (3) that all assignments are valid. Moreover it is re-
quired that all application model elements are assigned to
platform model elements as stated in the completeness con-
straint (4). Here we have application model elements (ae),
platform model elements (pe), the application model (AM)
and the platform model (PM).
At the first glimpse the previous validity conditions may
seem to induce a very pessimistic ressource allocation which
is only appropriate for highly critical applications. In fact
this is only the case for very stringent NFR conditions like
">=". For less critical applications we could think of NFRs
with conditions that result in a more optimimstic assign-
ment of capabilities. Nevertheless the validity conditions
defined above are independent from the conditions of NFRs
and conditional properties. With these validity conditions
we have a means to determine whether a configuration is
valid or not. This can be of great benefit for several use
cases as described in section 5.

4.2 Dynamics of models
The NFR-based modeling is targeted at dynamic systems.
This means software (elements of the application model) can
be added, removed and updated at runtime. Additionally
hardware (elements of the platform model) can be added and
removed. Hence the models themselves and the capabilities
of platforms and networks are subject to change at runtime.
By software components located on a certain platform the
capabilities like cpu_rating and memory of this platform are
generally reduced since the components consume them. The
kind of reduction however depends on the nature of the ca-
pability. Obviously the available memory or bandwidth is
reduced by the exact amount a component uses. On the

other hand the reliability of a network is generally not re-
duced only because there is a little traffic on the network.
So we have to distinguish between different consumption be-
haviors. It is also possible for a software component to add
additional capabilities to a platform since components may
have capabilities on their own. Each time a component that
provides capabilities is located on a certain platform, the
component’s capabilities are accounted to the capabilities
already available at the platform. So the number and values
of capabilities of a platform can grow and shrink during the
life-cycle of a system.

4.3 Optimization
When a mapping of software components to platforms (a
configuration) is performed we can try to realize certain op-
timization goals. The most important goal is usually to be
as cost efficient as possible. Since this is a very general op-
timization goal we define more concrete goals that can be
determined when monetary values are not directly modeled.
A typical optimization goal that aims to cost reduction is
to optimally utilize the available resources. In order to effi-
ciently utilize the available resources we would like to leave
only a minimum of unused computing power and resources
on each platform of the platform model. Another idea is
to keep network communication as local as possible. This
means that it is preferable to locate two communicating soft-
ware components on the same host or same subnet instead
of distributing them further. Every communication channel
via gateways potentially increases the traffic in the gateway
what in the end may lead to the need for more powerful
hardware. So a optimization aim could be to minimize the
number of communication channels that cross networks and
especially gateways. This locality aim can be even increased
when we try to co-locate communicating software compo-
nents at the same node.

5. USE CASES
In this section we will point out a few use cases where the
availability of a system description can result in big benefits.
This is especially true for complex embedded systems where
customers do not primarily see computers but other every-
day equipment like vehicles. In cars we encounter a more
or less unique situation: we have very advanced technology
and users with nearly no IT-understanding. In-car comput-
ing systems consist of a great number of control units that
include very special computing equipment, sensors and ac-
tuators. The ECUs are connected by a number of different
communication systems. All in all we have very high relia-
bility requirements and a back-breaking cost pressure. On
top of this for the future we will experience even more func-
tionality and innovations based on information processing
technology. On the other side from the view of a vehicle
user the complete system is ”just” a car. Users of cars do
not accept abnormal ends of control or entertainment func-
tionality as they would do for personal computers. They
don’t want to bother about computer problems in their car,
they just want it to work. For the area of vehicle applica-
tions there are several use cases all over the life-cycle of a
vehicle that would benefit from the presented way of system
description.

• Initial configuration: In the development phase a con-

figuration management can help the developers of the
automotive system to optimally layout the software
components, to reduce cost and to optimize resource
utilization.

• Update in the field: Software updates in the field are
quite common these days since vehicles have become so
complex that there will always be security updates or
improvements. We can easily check whether an altered
software component is still executable at the previous
platform and have the concrete restrictions for each
component modeled explicitly.

• Installation of individual applications: In the future
customers will want to upgrade their in-car comput-
ing systems. So these systems need to be flexible and
upgradeable both in software and hardware. With
the described models we enable a system to evaluate
whether a new software component can be executed on
the current platforms or whether we need to upgrade
the hardware as well. Also for the removal of certain
software components we faciliate to make statements
whether the system can execute without a certain com-
ponent, or if not, which other components will be af-
fected in what way.

• Update, exchange of hardware: We can easily deter-
mine whether a hardware layout modeled in a plat-
form model is sufficient for certain applications. Also
reconfiguration and optimal use of resources can be
reached.

• Error recovery: For purposes of error recovery we can
use the application model and the criticality, utility
rating to decide which applications should be run in
case of reduced resources. By explicitly modeling the
capabilities and requirements we pave the way for self-
healing systems, that can provide the best configura-
tion for each customer.

6. RELATED WORK
In this section we present related work. Beus-Dukic moti-
vates the need for NFRs [1] in the field of commercial off-
the-shelf components (COTS) and defines NFR’s informally
as the general qualities of a software product.

6.1 Requirements and capabilities
The term requirements is generally used to state the needs
of an entity that have to be fulfilled by another one. Es-
pecially in the field of computer systems this may happen
at different levels. From a development process point of
view one or many real-world problems have to be solved
and hence have requirements that a system has to fulfill. Re-
quirements define the key demands a software system has to
accomplish. These requirements are mostly stated in form
of human readable text, rarely in a mathematical formal
way. At the level of abstraction of interest to us, we con-
sider components and applications to be the entities that
pose requirements. The requirements have to be fulfilled
by platforms and communicating sets of platforms. The
requirements at different levels of abstraction have a differ-
ent degree of freedom. At the component level the range
of possible requirements is more restricted and much more
concrete, compared to the kind of requirements we find at

the beginning of a software development process. The IEEE
Std 1233 IEEE Guide for Developing System Requirements
Specifications [12], defines requirements as:

(a) A condition or capacity needed by a user to solve a
problem or achieve an objective;

(b) A condition or capability that must be met or pos-
sessed by a system or system component, to satisfy a
contract, standard, specification or any other formally
imposed document;

(c) A documented representation of a condition or capa-
bility, as defined in either (a) or (b)

6.1.1 CC/PP
With the Composite Capability/Preference Profiles (CC/PP)
the World Wide Web Consortium (W3C) has issued a rec-
ommendation that describes how to achieve device indepen-
dence for mobile clients. The recommendation [5] consid-
ers capabilities of terminal equipment in order to achieve
an optimal adoption of content for a wide range of devices.
CC/PP is designed to be a XML based format for describing
the capabilities of user agents in order to enable servers to
provide content that is tailored to the capabilities of each de-
vice. The general structure defined by CC/PP is a two level
tree consisting of components and attributes. Attributes
have a name and a predefined set of values. A CC/PP pro-
file contains multiple components and each component may
have multiple attributes. As the name CC/PP indicates
the same mechanism and XML scheme can be used for ca-
pabilities and preferences, both with the aim of delivering
specially tailored content. In contrast to the work presented
in this paper the CC/PP approach only addresses one side
of the challenge: the description of capabilities. The recom-
mendation assumes that servers know about their content
and hence does not provide a description of content require-
ments.

6.1.2 ProcessNFL

In [9] a language for describing nonfunctional aspects of soft-
ware has been designed. ProcessNFL is aimed at the software
development process, to support different levels of abstrac-
tions for NFRs, their relations, conflicts and non-direct im-
plementation nature. The notion of NF-Attributes is used
to describe NFRs in a hierarchical way. NF-Attributes may
either be directly realized by NF-Actions or may be af-
fected by them in either a positive or negative manner.
NF-Properties allow to impose constraints and priorities on
NF-Attributes. Compared to our approach ProcessNFL is
a more general approach that is suitable for different steps
in the software development process. The counterpart of
our NFRs are NF-Attributes which form a qualitative view
on the requirements while NFRs are explicitly designed to
quantitatively state the needs of application model entities.
Each NFR has its counterparts in a certain capability iden-
tified by its name. The NF-Attributes of ProcessNFL can be
either implemented by one NF-Action or if it cannot be di-
rectly implemented there may be multiple NF-Actions that
affect the NF-Action in a positive or negative way. The
overall aim of ProcessNFL is different since our model based
approach with NFRs and Capabilities is specifically aimed
at providing a means for describing software in a dynamic

system and not to provide a general approach for describing
nonfunctional aspects at different levels of abstraction in the
development process.

6.2 Reconfiguration
With the aim of graceful degradation in embedded systems a
team around Philip Koopman has built up a system based on
a software product family approach. In the RoSES project
software components are modeled in a data flow diagram
and so-called features have a statically defined utility value.
The RoSES approach [7] however does not address exact
modeling of requirements and capabilities so far.

6.3 Automobile Software
In the automotive area the AUTOSAR consortium [11] is
working on an open standard for an automotive E/E archi-
tecture. The main aims are to achieve modularity, scalabil-
ity, transferability and re-usability of functions by providing
a common software infrastructure based on standardized in-
terfaces. AUTOSAR defines a standard for component in-
terfaces and is also confronted with the problem of locating
software components on nodes (ECUs). For this purpose
three descriptions are used, namely the ECU resource de-
scription, the software component description and the sys-
tem constraints description. While our approach is targeted
at dynamic systems and will serve as a basis for decision
making at runtime AUTOSAR is completely static and has
to solve the configuration problem only once in the devel-
opment cycle. There definitly is some related work here,
however the AUTOSAR specifications are not available for
public yet.

7. CONCLUSIONS AND FUTURE WORK
With software systems of vehicles and other distributed em-
bedded systems getting more and more complex in develop-
ment and maintenance, this paper provides a model based
approach for enabling automatic software management in
dynamic systems. By modeling nonfunctional requirements
and capabilities we can determine valid configurations and
provide a basis for reconfiguration and the optimization of
configurations. The application model with the notion of
criticality and utility can even help us to determine configu-
rations that are specially adopted to the current context of a
system. Benefits of the presented approach are expected for
updates and changes of hardware and software of a system
in the field and in the area of error recovery.
As the modelling of requirements and capabilities is only
in the beginning, additional points have to be investigated.
One of the major challenges for a prototypical implementa-
tion is the development of a way to measure and describe
the perfomance needs of software components which is of
course platform-dependent. We have to consider this espe-
cially for automotive systems that consist of many different
computing architectures. On the way towards self-healing
and self-organizing there will be further work to be done
in the area of end-to-end real-time requirements and we
will have to examine how well known techniques like rate
monotonic analysis (RMA) [6] can be used in a dynamic
environment. Also the management functionality for recon-
figurations and the optimization of configurations has to be
addressed by further work.

8. REFERENCES
[1] L. Beus-Dukic. Non-functional requirements for

COTS software components. In Proceedings of ICSE
workshop on COTS Software, 2000.

[2] T. DeMarco. Structured analysis and system
specification. Prentice-Hall, 1979.

[3] T. A. Henzinger, M. Minea, and V. Prabhu.
Assume-guarantee reasoning for hierarchical hybrid
systems. In M. D. D. Benedetto and A. L.
Sangiovanni-Vincentelli, editors, Hybrid Systems:
Computation and Control (HSCC), 4th International
Workshop, volume 2034 of LNCS, pages 275–290.
Springer-Verlag GmbH, 2001.

[4] M. Kieviet. Anwendung der IEC 61508 im Automobil.
Elektronik Automotive, 1/2004:49–53, 2004.

[5] G. Klyne, F. Reynolds, C. Woodrow, H. Ohto,
J. Hjelm, M. H. Butler, and L. Tran. Composite
capability/preference profiles (CC/PP): Structure and
vocabularies 1.0. W3C recommendation, W3C.org,
January 2004.

[6] C. L. Liu and J. W. Layland. Scheduling algorithms
for multiprogramming in a hard-real-time
environment. J. ACM, 20(1):46–61, 1973.

[7] W. Nace and P. Koopman. A product family approach
to graceful degradation. In International Workshop on
Distributed and Parallel Systems (DIPES2000),
Oktober 2000.

[8] W. Nace and P. Koopman. A graceful degradation
framework for distributed embedded systems. In
Workshop on Reliability in Embedded Systems (in
conjunction with Symposium on Reliable Distributed
Systems/SRDS-2001), New Orleans, Oktober 2001.

[9] N. S. Rosa, P. R. F. Cunha, and G. R. R. Justo.
ProcessNFL: A language for describing
non-functional properties. In Proceedings of the 35th
Hawaii International Conference on System Sciences.
IEEE - Computer Sciety, 2002.

[10] C. Szyperski, D. Gruntz, and S. Murer. Component
Software - Beyond Object Oriented Programming.
Addison-Wesley, second edition, November 2002.

[11] AUTOSAR development partnership. Automotive
open system architecture. http://www.autosar.org,
2005.

[12] IEEE Standards Organization. IEEE guide for
developing system requirements specifications, 1998.

