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Abstract—This paper presents a novel electric/electronic (E/E)
architecture simulator that allows the evaluation of design
alternatives during early stages of the automotive development
process. The simulation framework performs a joint power/per-
formance evaluation for different partitionings of functional
chains on a given multi-ECU technical architecture. The high-
level modeling approach results in a short simulation runtime,
which allows many different architectures to be explored. The
simulator provides information about the power consumption,
utilization values and timing information for processing and
communication resources. Furthermore, it is possible to simulate
and evaluate various power management concepts.

I. INTRODUCTION

Due to an increasing customer demand for comfort and
safety, the electric/electronic (E/E) architecture of a modern
vehicle consists of a complex network of up to 70 heteroge-
neous electronic control units (ECUs) [1]]. With every vehicle
generation it is a challenge to integrate new functionalities
into that distributed system because of the steadily rising
complexity. With power consumption considerations also be-
coming a major concern, new modeling and evaluation tools
are necessary. CAD tool support is needed for design space
exploration by a joint power/performance evaluation of design
alternatives in an early stage of the development process.

There exist various approaches to evaluate power and perfor-
mance characteristics for embedded systems. A system-level
framework that supports the evaluation of the power behavior
depending on a power management policy was presented by
Benini et al. [2]. The system-level power model is based on
a power state machine for each resource. A power manager
controls the power state changes according to a specific power
management policy. Bergamaschi et al. [3] extended this
approach by combining it with the spreadsheet-like calculation
approach [4]] and performed a formal analysis of the different
power states the system can be operated in. A symbolic
simulation is used to provide a power design exploration for a
given scenario. Yardi et al. [5] further extended the symbolic
simulation approach into a framework that was able to evaluate
complex systems and dynamic power management policies.

All these approaches focus on the evaluation of the power
properties of a system, but do not provide any information
about the performance. Lee et al. [6] proposed a power

estimation framework at transaction level that is able to jointly
evaluate power and performance. The framework provides a
cycle accurate system level power profile for all executed
functions and reports further statistics, e.g. total cycles and
on-chip bus utilization. This cycle accurate evaluation is
computationally quite intensive and requires accurate software
images, which makes it unsuitable for a power/performance
evaluation in an early stage of a design process.

Nandi et al. [7] presented a formal technique for system
level power and performance analysis by introducing the
Stochastic Automata Networks (SANs) that can be used early
in the design cycle. They do not use simulation for perfor-
mance evaluation, but proposed a completely analytic solution
to evaluate several application-architecture combinations and
identify the one with the best power/performance figures.
Another theoretic approach that does not require architectural-
level simulation was introduced by Munir et al. [8]]. They in-
troduced a queuing theoretic approach for modeling multicore
embedded systems in order to enable a quick evaluation of
performance, area, and power consumption.

The Sesame framework [9] provides high-level modeling
methods and tools for performance evaluation of heteroge-
neous embedded systems at different levels of abstraction.
The application specification is architecture-independent and
can therefore be used for different system architectures. The
Sesame modeling and simulation environment is used in the
Artemis workbench [8] that can be applied for architectural
exploration by co-simulation of application and architecture
models.

This paper applies the power state based approach in a
novel simulation framework for automotive E/E architectures.
The framework can simulate the dynamic behavior of the
vehicle during a specific driving cycle and provide information
about the power consumption, utilization values and timing
information of the IT infrastructure. Furthermore, various
power management techniques can be evaluated. Due to high-
level modeling methods for the functions of a vehicle and the
distributed automotive hardware architecture, a high simula-
tion speed can be achieved. This allows to evaluate design
alternatives, e.g. different mapping of the functions to the
distributed hardware system, in a short period of time.
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II. ELECTRIC/ELECTRONIC ARCHITECTURE MODEL

During the E/E design process, the engineers use a model-
based development where the E/E architecture is described in
different abstraction layers in order to separate the application
models from the underlying hardware. In the following, the
used models for the logical and technical architecture will be
described in more detail.

A. Logical Architecture

In the logical architecture an actor oriented design [10]], [11]
approach is assumed, where the functionality of a vehicle is
abstracted through functional chains. These chains are directed
graphs, where the nodes represent functional blocks and the
edges indicate the communication flow [12] between them.
This abstraction layer is independent from the underlying hard-
ware. Thus, the functional blocks represent logical components
of the application, but do not include details about the actual
implementation. However, the model can be executed and
simulated. The granularity of the functional blocks equals the
smallest schedulable entities.

B. Technical Architecture

For a simulative evaluation, the technical architecture is
modeled as a set of ECUs consisting of different sub-
components. These components can be some computational
units (e.g. microcontrollers, DSPs, dedicated hardware accel-
erators), sensor/actuator interfaces, but also communication
controllers and transceivers. The power consumption of an
ECU is therefore the sum of the power consumptions of the
subcomponents:

Pgcv = Pecu.,,, + PECU.0m + PECU,.. T PECU, .

where PECUCmP’ PECU{:{)M,’ PECUSM, and PECU,,,M, is the
power consumption of the computational units, the commu-
nication units, the sensors and actuators respectively.

We assume that every component has a set of power states
representing the various power saving techniques, e.g. degrad-
ing a component by dynamic frequency and voltage scaling
according to the currently needed application performance or
switching a component to an energy efficient retention mode
when it is temporarily not needed. The power consumption in
each operating mode is further dependent, whether the com-
ponent is idle or busy. Thus, the average power consumption
Py of an subcomponent £ is described as follows:

n
Py = %Zpkz(idle) Xtk (idie) T Ph. (busy) X Tk, (busy)
zZ=0
where Py (iare) and Py_(pusy) is the power consumption of
component k in operating mode z when they system is in idle
and busy mode respectively. ty_(iaie) + ti_(idle) 15 the time
component k was operated in mode z, ¢ is the overall time.
n indicates the total number of operating modes component &
is supporting.
The automotive E/E architecture is a distributed system
interconnected by various communications buses. Each ECU

contains at least one communication transceiver physically
connected to a communication network. It is assumed that the
bus system itself does not consume any power. However, the
power consumption for communication is modeled through
power states in which the transceiver can be operated (e.g.
sending or receiving). Therefore, it is dependent on the number
of ECUs connected to a bus system.

III. SIMULATION FRAMEWORK

The presented framework simulates the execution of func-
tional chains on a specific technical architecture. The simulator
is written in C++ and uses the SystemC library to support the
parallel execution of processing threads.

The configuration of a simulation run is defined in a central
XML file. This file contains all information about the power
and performance attributes of the technical architecture, the
power management concept to be used, the characteristics of
the functions and most important the mapping information of
the functional blocks to the hardware components. Further-
more, a specific driving scenario can be defined indicating the
evolution of sensor values over time.

run:
# receive the message with id=3 and
# stores the value in variable m3_val
# and the datasize in variable m3_size
RECEIVE 3 m3_val m3_size ok3

# receive the message with id=7 and

# stores the value in variable m7_val
# and the datasize in variable m7_size
RECEIVE 7 m7_val m7_size ok7

# checks whether messages were
# received without errors

IF ok3 == 0 END

IF ok7 == 0 END

IF (m3_val > 20) CASE_2

CASE_1:

# Process an instruction mix of

# 800 integer arithmetic,

# 500 floating point operations and

# 200 load/store operations

INSTPRC {800} {500} {200}

GOTO SEND
CASE_2:

# Process an instruction mix of

# 'm7_size x 30’ integer arithmetic,

# 0’ floating point operations and

# 'm7_size x 10’ load/store operations

INSTPRC {m7_size * 30} {0} {m7_size * 10}
SEND:

# send a message with id = 13,

# value = "m7_val + 20,

# datasize = 'm7_size’

SEND 13 {m7_val + 20} {m7_size}
END:

# End of trace

EOT

Listing 1. Example of a Trace Primitive File




The simulator provides information about the utilization and
power consumption of the hardware components. Approxi-
mated execution times and possible deadline misses can also
be identified already in an early design stage. Due to the
abstract model of the E/E architecture, a high simulation speed
can be achieved. The engineer can evaluate many architectures
and partitioning alternatives in a short period of time.

In the following subsections further details of the simulation
environment are described.

A. Trace Primitives

In order to be able to evaluate power-performance char-
acteristics, each functional block is annotated with a trace
primitive file, indicating the communication behavior (e.g.
data to be transfered between two blocks) and computation
complexity. Depending on the available information, the com-
putation complexity can either be indicated by an estimated
instruction mix to be executed or the data amount to be
processed when this block is executed. When modeling new
functional chains, this information is mainly based on expert
knowledge. However, for modeling existing vehicle functions,
information from previous vehicle generations can be reused.

The trace primitive files are based on a simple scripting
language supporting some basic control flow operations. This
is necessary, as the evolution of sensor values over time
may influence the behavior of vehicle functions. Furthermore,
simple arithmetic operations can be evaluated and stored in
variables. An example of a trace primitive file is shown in

listing [T}

<System name="ecu01”>
<Layer name="hw” type="fe”>
<Element name="mc” type="comp”>
<cpi
integer_instructions="1.0"
float_instructions="4.2"
memory_instructions="1.7"
/>
<comp_state id="1"
frequency="800"
throughput="400"
idle_power_consumption="640"
busy_power_consumption="790"
/>
<comp_state id="2"
frequency="500"
throughput="250"
idle_power_consumption="430"
busy_power_consumption="570"

state="1"

state="2"

/>

<init comp_state="1"/>

<logger target=".xlog.log_mc”/>
</Element>

<Element name="can0” type="transceiver”>
</Element>
</Layer>

</System>

Listing 2. Example of the power and performance properties of an ECU.
Frequency is stated in MHz, throughput in kByte/s and power consumption
in mW.

The presented simulation framework can evaluate those
abstract descriptions and determine the execution times and
communication delays.

B. ECU Description

As mentioned above, the power and performance character-
istics for each ECU are described in a central XML file. For
every subcomponent the supported power states are listed. A
power state consists of information about the computing power
of the component in that state and the power consumption
during idle and busy phases.

The performance is described by a throughput value, in-
dicating the maximal data amount the component is able
to process per time unit in a specific power state. This is
applicable for example for sensors and actuators or dedicated
hardware accelerators. Software processing subcomponents
(e.g. microcontrollers, DSPs) are further annotated with the
clock frequency and the average clock cycles per instruction
(CPI) for integer, float and load/store operations.

Thus, depending on the abstraction level in which the com-
putational complexity was modeled in the logical architecture
layer (e.g. estimated instruction mix to be executed or the data
amount to be processed), the presented simulation framework
can estimate the execution time of a functional block based on
a instruction-level evaluation or according to the throughput
of the system.

An example description of the power and performance
values of an ECU is presented in listing [2}

C. Power Management Scheduler

The underlying power management scheduler was presented
by Barthels et. al. [13]. It combines the scheduling of software
and power states in so-called power management plans. Both
functional software blocks as well as power states can be
related with mutual trigger conditions. This can either be a
cyclic trigger, which results in a fixed cycle scheduling that is
common in the automotive domain, or an event-based trigger.
This allows evaluation of different scheduling alternatives.

The concept also introduced a transducing mechanism. It
tracks the functional state of the vehicle and software, and
associates power management plans with functions. With
this model, it is possible to evaluate novel AUTOSAR [14]]
power saving concepts like Partial Networking [15]], [16], or
Pretended Networking [17].

TABLE I
POWER STATES OF THE EVALUATED MICROPROCESSOR
[ CPU Mode H f [MHz] [ P;gie [mW] [ Ppusy [mW] ]

CPU.off 0 0 -
CPU.retention 0 244 -
CPU.model 125 439 502
CPU.mode2 250 495 624
CPU.mode3 500 591 856
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(a) Functional network consisting of 17 functional blocks forming a
network of three functional chains. The numbers at the edges indicate the
data amount to be transmitted between two blocks (in Bytes).

Fig. 1.

IV. SIMULATIVE EVALUATION

A. Test Setup

To verify the approach described above, a subset of an
automotive car architecture is modeled consisting of four
ECUs (see fig. @]) ECU1 and ECU?2 have sensors attached,
ECU3 and ECU4 provide each an interface for an actuator.

We assume all ECUs use the same microprocessor archi-
tecture supporting dynamic frequency and voltage scaling.
Furthermore, an energy efficient CPU.retention mode can
be used in idle phases. The supported power states of the
microprocessors and the corresponding power consumption
values are listed in table [l The microprocessor is assumed
to have a CPI of 1.0, 8.0 and 2.0 for integer operations, float
calculations and load/store instructions respectively.

The sensors and actuators are assumed to consume 1.5 Watt
when idling and 2.4 Watt in busy mode. The throughput of
the sensors is set to 500 kByte/s. Actuators have a throughput
of 250 kByte/s. The average power consumption of the CAN
transceivers when reading from the bus or actively driving
the bus is 30mW and 135.5mW. The CAN bus is assumed to
support bit rates of up to 1 Mbit/s.

Three functional network to be portioned consists of 17
functional blocks forming three functional chains (see fig.
[Ta). We assume that for a vehicle speed greater than 20
km/h, functional chain FC2 is not needed and can be turned
off. Table [lI| indicates the computational properties of the
blocks. For sensor and actuator blocks the data amount to be
processed is listed, the rest of the blocks is described through
an instruction mix of integer, float and load/store instructions.
Furthermore, table [[I| also describes two different mappings of
the functional blocks on the technical architecture.

In order to be able to compare different simulation runs, the
New European Driving Cycle (NEDC) [18] is applied. The
NEDC provides the vehicle speed over time for a time period
of 1180 seconds. This profile should provide an representative
driving behavior in EU countries.
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(b) Technical architecture consisting of 4 ECUs interconnected by a CAN
network.

Exemplary Functional Network and Technical Architecture

Three different power management concepts will be evalu-
ated:

No PM: This concept assumes no power management
at all. The microprocessors are operated at their maximum
clock frequency and do not use any power saving techniques.
Sensors and actuators are never turned off.

Simple PM: This simple power management runs the mi-
croprocessors at their maximum frequency, but switches to
the CPU.retention mode, whenever the component is idling.
Sensors and actuators are never turned off.

Advanced PM: The advanced power management uses the
fact, that functional chain FC2 is not needed when the ve-
hicle speed is greater than 20 km/h. Whenever this situation
occurs, the corresponding functional blocks are not scheduled
anymore. The power management temporarily switches off the
corresponding actuator and reduces the processing power of
the respective microprocessor. For partitionings, where only
functional blocks of FC2 are mapped to that micro controller,
the controller can also be temporarily switched off completely.

TABLE II
COMPUTATIONAL PROPERTIES AND PARTITIONING VARIANTS FOR EACH
FUNCTIONAL BLOCK

Block Data amount Instruction Mix Partitioning
[bytes] (int / float / mem) 1] 2
sensi 200 - ECU1 | ECU1
senss 200 - ECU1 | ECU1
compi - 80k / 0 / 40k ECUI | ECUI
compa - 80k / 0 / 40k ECUI | ECU1
comps - 200k / 300k / 200k || ECUl | ECUlL
compy - 200k / 120k / 140k || ECU3 | ECU3
acty 800 - ECU3 | ECU3
comps - 360k / 150k / 240k || ECU4 | ECU4
compe - 360k / 240k / 300k || ECU4 | ECU4
compry - 360k / 240k / 240k || ECU4 | ECU4
comps - 240k / 600k / 360k || ECU4 | ECU4
compg - 200k / 160k / 160k || ECU4 | ECU4
acta 800 - ECU4 | ECU4
senss 400 - ECU2 | ECU2
compio - 100k / 80k / 80k ECU2 | ECU2
compii - 60k / 140k / 100k ECU2 | ECU4
compi2 - 160k / 40k / 80k ECU2 | ECU4




TABLE III
MAXIMUM CLOCK FREQUENCY OF THE MICRO CONTROLLERS

[ [ ECU1 | ECU2 | ECU3 | ECU4 |
Configuration 1 250MHz | 250MHz | 125MHz | 500MHz
Configuration 2 || 250MHz | 250MHz | 125MHz | 500MHz
Configuration 3 250MHz | 125MHz | 125MHz | 500MHz

TABLE IV

UTILIZATION OF MICRO CONTROLLERS

[ COU [ Configuration 1 | Configuration 2 | Configuration 3 |
CPU.1 66.4 % 66.4 % 66.4 %
CPU.2 58.4 % 18.0 % 36.0 %
CPU.3 57.6 % 57.6 % 57.6 %
CPU4 76.2 % 96.4 % 96.4 %

We evaluated three different system configurations, where
function block mappings and properties of the technical archi-
tecture differed:

Configuration I: The first configuration assumes a function
mapping according to the first partitioning variant.

Configuration 2: In the second configuration the mapping
of compi; and comp; s is changed from ECU2 to ECU4 (see
partitioning variant 2).

Configuration 3: In the third configuration the partitioning
variant 2 is assumed, but the maximum clock frequency of
the microprocessor of ECU2 is decreased to 125Mhz. This
should represent a change to the technical architecture to
reduce monetary costs by using less expensive hardware.

Table [T summarizes the maximum clock frequencies of the
micro controllers that where used in the different configura-
tions.

B. Simulation Results

Each configuration was analyzed by applying the different
power management concepts and simulating the power con-
sumption of the system.

Figure [3] shows the power consumption values of the system
for the three configurations. The power consumption of the
computational units can be reduced roughly by 12-15% when
the simple power management concept is used. The advanced
power management can achieve power savings of up to 30%
in relation to a system without any power management.

The repartitioning of compi; and comp,2 does not have a
significant impact on the power consumption when no power
management is used. However, when the advanced power
management is used, the micro controller of ECU4 can not be
turned off anymore for a velocity greater than 20 km/h. This
results in higher overall power consumption for computation.
The repartitioning also affects the power consumption for
computation, since more data needs to be transfered over the
external bus system.

When comparing the power consumption values of con-
figuration 2 and configuration 3, it is noticeable that the
usage of the less expensive micro controller for ECU4 in
configuration 3 (reduction of the maximum clock frequency)
is more advantageous energy-wise only for the case when no

T
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Time [s]
Fig. 2. Power Consumption over Time.

power management is applied. When the simple or advanced
power management techniques are used, configuration 2 is
more energy efficient. This indicates that it is better to finish
a computation as soon as possible and keep the system in an
energy efficient idle state as long as possible.

Figure [2] illustrates the switching of power states for ECU4
in configuration3. In the New European Driving Cycle the
vehicle speed exceeds after 57 seconds the barrier of 20km/h
for the first time. The functional blocks contained in FC2
are not schedule anymore. Thus, the power management can
reduce the processing power and decrease the maximum
clock frequency from 500MHz to 125MHz. Whenever the
component is idling, the micro controller is switch to the
energy efficient CPU.retention mode.

Table shows the utilization values of the system for all
three configurations.

The simulative evaluation was performed on a standard
desktop computing environment (Core 2 Duo E8500, 2x3.16
GHz, 4GB RAM). The framework needs roughly 63 seconds
to evaluate one scenario.

V. CONCLUSION

This paper presents a simulation framework for the eval-
uation of E/E architecture design alternatives already in an
early stage of the development process. It is shown, that
the framework can simulate the dynamic behavior of the
vehicle during a specific driving cycle and provide information
about the power consumption, utilization values and timing
information of the IT infrastructure. This can be done already
in early design stages without having the final software imple-
mentation of the functional chains. Due to high-level modeling
methods for the functions of a vehicle and the distributed
automotive hardware architecture, a high simulation speed can
be achieved.

Future work is to investigate on more sophisticated power
consumption models and validate the simulated results in a
real hardware test bench.
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