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ABSTRACT

A method for the resolution of the integer ambiguities
of double difference carrier phase measurements is studied
with respect to its integrity.

The method is an enhancement of the Three-Carrier Am-
biguity Resolution (TCAR) method introduced by Forssell,
Neira and Harris in [1] and the Cascade Integer Resolution
(CIR) considered by Jung, Enge and Pervan. The proposed
method is based on a full-geometry approach, i.e. the code
and phase measurements of all satellites are considered as a
set. Decorrelation and rounding steps of the LAMBDA me-
thod are performed successively on the Galileo Super Wi-
de Lane (SWL) and Widelane (WL) carrier combinations
and the E5a carrier. The probability of wrong fixing for the

WL combination L1-E5a is greatly reduced by the a-priori
knowledge of the SWL ambiguity. An optimized choice of
WL combination(−4.121φL1+39.831φE5b−34.800φE5a)
further improves the result by several orders of magnitude
without much affecting the ionospheric delay. The proba-
bility distribution of the baseline error is estimated using
an importance sampling approach. This probability distri-
bution leads to a Galileo like implicit definition of Horizon-
tal and Vertical Protection Levels (XPL) for carrier phase
measurements. The new definition can be used to detect a
wrong fixing at one level, e.g. X=WL, whenever the protec-
tion level at the previous level, SWL in the current example,
is smaller than the smallest baseline error due to a wrong
fixing at the X level.

INTRODUCTION

Carrier phase based positioning requires the resolution
of integer ambiguities. The Least-Squares Ambiguity De-
correlation Adjustment (LAMBDA) has been developed by
Teunissen in [2][3]. Implementation aspects are described
by Jonge and Tiberius in [4]. The method is especially
beneficial for correlated double difference measurements
with a common reference satellite. An integer decorrelation
transformation is applied before the search of integer am-
biguities. The LAMBDA method achieves the highest suc-
cess rates among all methods known to the authors. Casca-
de Integer Resolution (CIR) is an iterative approach whe-
re the integer ambiguities of widelane combinations with
successively reduced wavelengths are estimated. The range
and ionospheric delay as well as ambiguities are commonly
estimated using three GPS frequencies by Jung et al. in [5].
Each range is resolved individually, i.e. satellite redundan-
cy is not taken into account.

A systematic search of all GPS L1-L2 widelane combi-
nations has been performed by Collins in [6] and the refe-
rences therein. The linear combinations are characterized
by noise, ionosphere and multipath amplification/ reducti-
on. For Galileo, three frequency combinations have been
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analysed by Zhang in [7] although the wavelengths of the
considered three frequency combinations do not exceed90
cm. The LAMBDA method is applied to each step of CIR
but the benefits of the various steps of LAMBDA are not
compared. The optimization of linear combinations in [7]
is based on noise figures and does not include the decorre-
lation transformation.

The paper is structured as follows. First, the LAMBDA
algorithm is introduced for Galileo widelane combinations.
Three steps of CIR are considered - the E5a-E5b Super Wi-
delane (SWL), the L1-E5a Widelane (WL) and the elemen-
tary L1, E5b and E5a measurements. In the first CIR step,
the code noise variance has a large impact on the success
rate although the decorrelation transformation might addi-
tionally reduce the probability of wrong rounding by up
to three orders of magnitude. The benefit of SWL a priori
knowledge, decorrelation transformations, search proces-
ses and code knowledge are compared in the second step.
The third step is the most reliable one due to a priori know-
ledge of both SWL and WL integer ambiguities.

In the next section, the WL combination is optimized for
CIR such that the success rate is maximized for worst-case
geometry and a priori SWL knowledge. It is shown that
the probability of wrong WL fixing can be reduced by 15
orders of magnitude. The success rate using the optimized
WL combination is nearly independent of the geometry, i.e.
the price of lower error probabilities for bad geometry is an
increase in error rates for good geometry.

Moreover, the probability distribution of the error of ba-
seline estimation is derived. A mixed multivariate proba-
bility distribution is assumed to include error-prone ambi-
guity fixing. The probabilities of most likely fixing errors
are computed by importance sampling. The decorrelation
transformations are taken into account.

Protection levels are implicitly defined by the probabili-
ty distribution of the error of baseline estimation. Finally,
the SWL protection levels are applied for detection and ex-
clusion of WL biases due to error-prone WL fixing.

APPLICATION OF DECORRELATION TRANS-
FORMATIONS TO WIDELANE COMBINATIONS

Double Difference (DD) measurements eliminate clock
biases and reduce both ionospheric and tropospheric errors
especially for short baselines. Phase measurements from
two frequencies are differenced to obtain a Widelane (WL)
combination. This widelane signal benefits from a wave-
length larger than the elementary ones which simplifies in-
teger ambiguity resolution. However, the use of difference
measurements also implies noise amplification. Cascade
Integer Resolution (CIR) [5] is an iterative approach for
ambiguity resolution with widelane combinations of suc-
cessively reduced wavelengths.

The first step refers to the E5a-E5b SWL combination

which can be decomposed into

[
λSWL · φSWL

ρ

]
=

[
G
G

]
δx +

[
1
0

]
· λSWLNSWL

+
[

εSWL

ερ

]
, (1)

with the wavelengthλSWL = 9.76m, the SWL DD pha-
se measurementsφSWL, the DD code measurementsρ,
the DD geometry matrixG and the DD phase/ code noise
εSWL, ερ. The baselineδx and the SWL DD integer ambi-
guitiesNSWL are the parameters to be estimated.

In the second step, the L1-E5a WL combination (λWL =
0.75m) is considered. In contrast to traditional approaches,
both the SWL and code measurements with the a priori
known SWL ambiguities are taken into account:




λSWL · (φSWL −NSWL)
λWL · φWL

ρ




=




G
G
G


 δx +




0
1
0


 · λWLNWL +




εSWL

εWL

ερ


 .

(2)

In the final step, the E5a, E5b and L1 DD phase and code
measurements are used for fixing the E5a integer ambigui-
ties, i.e.




λE5a · (φE5a)
λE5b · (φE5b −NSWL)
λL1 · (φL1 −NWL)
ρ




=




G
G
G
G


 δx +




λE5a · 1
λE5b · 1
λL1 · 1

0


 ·NE5a +




εE5a

εE5b

εL1

ερ


 .

(3)

Note that the L1 and E5b integer ambiguities can be ex-
pressed as a function of the E5a, WL and SWL integer am-
biguities. The model of the covariance matrix includes both
the correlation due to DD with a common reference stati-
on/ reference satellite and the correlation due to the SWL
and WL dependency on E5a measurements. The covarian-
ce matrix is given by

Σ =
[

Σφ 0
0 Σρ

]
⊗




4 2 2 · · ·
2 4 2
2 2 4
...


 , (4)

where⊗ denotes the Kronecker product [11]. The inter-
frequency correlation covariance matrixΣφ of phase mea-
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surements of Equation (2) can be written as

Σφ = σ2
φ·




(
λSWL
λE5a

)2

+
(

λSWL
λE5b

)2
λWL·λSWL

λ2
E5a

λWL·λSWL
λ2

E5a

(
λWL
λL1

)2

+
(

λWL
λE5a

)2


 .

(5)
No WL combinations are applied to code measurements,
i.e. the code covariance is assumedΣρ = σ2

ρ1. The twofold
correlation of WL DD carrier phase measurements motiva-
tes the use of a decorrelation transformation. The LAMB-
DA algorithm of Teunissen [2] first estimates the float so-
lution (δx̂, N̂) neglecting the integer nature of ambigui-
ties. A decorrelation transformation is applied to the float
ambiguities before a search process is investigated in the
transformed space. Finally, the fixed integer ambiguities
are transformed back into the original domain. The design
of the decorrelation transformationZ is constrained by the
requirement that bothZ and it’s inverse are integer valued.
The second constraint is fulfilled ifdet(Z) = 1. The decor-
relation transformationZ depends only on the covariance
matrix of float ambiguities and is computed by alternating
steps of integer approximated Gaussian eliminations and
ambiguity permutations [4]. The transformed ambiguities
are largely decorrelated and also benefit from a reduced
variance. In the following analysis, the search processS
includes the estimation of the search space volume [3].

For simplicity, the combined phase and code measure-
ments of Equation (1), (2) or (3) are rewritten as

y = Gδx + AN + ε = [A, G]︸ ︷︷ ︸
X

[
N
δx

]

︸ ︷︷ ︸
β

+ε, (6)

with the least-squares float solution

β̂ = (XT Σ−1X)−1XT Σ−1y. (7)

The LAMBDA based estimate of integer ambiguities is gi-
ven by

Ň = (ZT )−1S
(
N̂′

)
= (ZT )−1S

(
ZT T β̂

)
, (8)

with the ambiguity selection matrixT = [1,0] and the
search functionS. The covariance matrix of decorrelated
float ambiguities is given by

ΣN̂ ′ = ZT T
(
XT Σ−1X

)−1

T T Z. (9)

The most simple model of the search process is the roun-
ding of decorrelated ambiguities. The probability of wrong
rounding is given by Verhagen in [9]:

Pw = 1−
Ns−1∏

i=1

∫ +0.5

−0.5

pi(x)dx, (10)

where Ns denotes the number of visible satellites. The
remaining correlation has been neglected andpi(x) ∼

N (
0,ΣN̂ ′(i, i)

)
. In contrast to the decorrelation transfor-

mation, the search process depends itself on the float am-
biguities. The analysis of the benefit of the search process
over simple rounding requires the generation of measure-
ment samples. For low error probabilities, this might beco-
me intractable.

A three frequency Galileo receiver (L1, E5b, E5a) with
5◦ elevation mask and10 km baseline is modeled. The re-
ference station is located in southern Bavaria (48◦ N,11◦

E). The analysis restricts to single epoch measurements for
real-time ambiguity resolution.
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Fig. 1 First step of CIR: Fixing of SWL ambiguities for
worst-case geometry and variable code noise

Fig. 1 shows the probability of wrong SWL fixing as a
function of the phase noise. The benefit of both decorrela-
tion transformation and search process and the impact of
code noise variance on the success rate can be observed.
The code noise limits the success rate, i.e.σρ has a far hig-
her impact on the success rate thanσφ. For σρ = 0.5 m,
the decorrelation transformation reduces the probability of
wrong rounding by up to three orders of magnitude.

The probability of wrong WL fixing for worst-case geo-
metry is visualized in Fig. 2. The benefit of the SWL a prio-
ri knowledge exceeds the benefit of the decorrelation trans-
formation and the search process. The usefulness of decor-
relation/ search increases with lower phase noise variance
and amounts to four orders of magnitude forσφ = 1 mm.
In contrast to the first CIR step, the success rate strongly
depends on the phase noise variance but is rather insensiti-
ve w.r.t. the code noise variance.

Fig. 3 shows the probability of wrong E5a ambiguity fi-
xing for variable phase noise variance. Obviously, the WL
a priori knowledge has a larger benefit than the SWL a
priori knowledge. The decorrelation transformation is twi-
ce as useful as the SWL measurements. Comparing the
three steps of CIR, the conditional probabilities of Fig. 3
are lower than of the previous steps.
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Fig. 2 Second step of CIR: Fixing of WL ambiguities for
worst-case geometry and code noiseσρ = 1m
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OPTIMIZATION OF WIDELANE COMBINATION
FOR CASCADE INTEGER RESOLUTION

The (unit) widelane combination L1-E5a is not the only
possible one. A systematic search for all possible L1-L2

GPS widelanes has been been performed by Collins in [6].
The concept was extended to the 3 Galileo frequencies (L1,
E5b and E5a) by Zhang in [7]. The DD measurements are
linearly combined by weighting coefficientsα, β andγ:

λφ = αλ1φ1 + βλ2φ2 + γλ3φ3

= ρ(α + β + γ) + (αλ1N1 + βλ2N2 + γλ3N3)
−I1(α + βq2

12 + γq2
13) + T (α + β + γ) + ε,

(11)

whereλ denotes the wavelength of the Linear Combination
(LC), ρ the DD range,I1 the DD ionospheric delay on L1,
T the DD tropospheric delay andqij the ratio between fre-
quencyfi andfj . The ionospheric delay is addressed in the
present section, since the amplification of the ionospheric
delay by the combination process must also be considered.
Two restrictions are imposed to the design of weighting co-
efficients: First, the geometry part of the linear combination
should be maintained, i.e.

α + β + γ = 1. (12)

Secondly, the ambiguity of the widelane combination
should be an integer multipleN of a single wavelengthλ:

αλ1N1 + βλ2N2 + γλ3N3 = λN. (13)

This requirement is fulfilled by the following choice:

αλ1

λ

!= i,
βλ2

λ

!= j,
γλ3

λ

!= k, (14)

with the integer coefficientsi, j andk. Once these integer
weights are fixed, Equation (14) determines the weighting
coefficientsα, β andγ. The wavelength of the linear com-
bination is obtained from Equations (12) and (14) as

λ =
1

i
λ1

+ j
λ2

+ k
λ3

=
λ1λ2λ3

iλ2λ3 + jλ1λ3 + kλ1λ2
. (15)

Assumingλ1 < λ2 < λ3, the WL criterion(λ > λ3) for
any set(i, j, k) is given by

λ1λ2 > iλ2λ3 + jλ1λ3 + kλ1λ2 > 0. (16)

For a given pair(i, j), the third parameter is fixed by this
inequality and given by

k = d−(iq13 + jq23)e. (17)

Replacingk in Equation (15) yields:

λ(i, j) =
λ3

iq13 + jq23 + d−(iq13 + jq23)e . (18)

Linear independent combinations require an additional
constraint:

gcd(i, j, k) != 1, (19)

906



wheregcd(·) denotes the greatest common divisor.
The WL combination of the second CIR step is selec-

ted among all linear combinations such that the probability
of wrong rounding (Equation 10) of decorrelated ambigui-
ties is minimized. The optimization refers to the system of
Equations in (2) and worst-case geometry. The covariance
matrix in Equation (5) is adapted to include the correla-
tion between SWL and LC measurements. Tab. 1 shows
the obtained LCs of lowest probability of wrong rounding.
The depicted combinations are characterized by equal suc-
cess rates and are sorted according to the amplification
AI = |α + βq2

12 + γq2
13| of the DD ionospheric delay.

i j k λ AI

-3 38 -34 0.2617 1.46
-3 37 -33 0.2689 1.54
-3 36 -32 0.2765 1.64
-3 35 -31 0.2845 1.74
-3 34 -30 0.2931 1.84
-3 33 -29 0.3021 1.95
-3 32 -28 0.3118 2.07

Table 1 Integer ambiguity coefficients of selected L1, E5b
and E5a linear combinations with wavelengthλ

In Fig. 4, the probability of wrong fixing is compared
between the L1-E5a WL and the optimized LC. The proper
choice of LCs enables a reduction of this probability by 15
orders of magnitude. Moreover, the optimized LC benefits
from a three times lower wavelength (λLC ≈ 26.1cm) than
the unit WL. Note that the amplification of DD ionospheric
delays might slightly reduce the achievable gain of optimi-
zed LC.
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Fig. 5 Second step of CIR: Time dependency of probabili-
ty of wrong fixing for different widelane combinations

The temporal dependency of the probability of wrong
WL fixing with a priori SWL knowledge is shown in Fig.
5. The standard deviations of phase and code noise are as-
sumed to beσφ = 1.5mm andσρ = 1m.

The success rate for fixing LC ambiguities is rather in-
sensitive w.r.t geometry (Fig. 5) in contrast to the unit L1-
E5a WL ambiguities. Consequently, the critical peaks in
the probability of wrong fixing could be eliminated and
the maximum probability of wrong fixing is lowered from
1.8 · 10−3 to 6.0 · 10−16. The price is an increase in the
probability of wrong fixing for good geometry.

ESTIMATION OF PROBABILITY DISTRIBUTION
OF BASELINE ERROR

An integer estimate of rounded decorrelated ambiguities
after back-transformation is given by Equations (8) and (7):

Ň = (ZT )−1S
(
ZT T (XT Σ−1X)−1XT Σ−1y

)

= (ZT )−1
[
ZT T (XT Σ−1X)−1

XT Σ−1(AN + Gδx + ε)
]
, (20)

which can be simplified using the matrix properties

(XT Σ−1X)−1XT Σ−1A =
[

1Ns−1×Ns−1

03×Ns−1

]

(XT Σ−1X)−1XT Σ−1G =
[

0Ns−1×3

13×3

]
, (21)

whereNs denotes the number of visible satellites. Integer
terms are not affected by the rounding[·] and can be sepa-
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rated, i.e.

Ň = (ZT )−1
[
ZT N + ZT T (XΣ−1X)−1XT Σ−1ε

]

= N + (ZT )−1
[
ZT T (XΣ−1X)−1XT Σ−1ε

]
(22)

The least-squares baseline estimate for fixedŇ is determi-
ned from Equation (6), i.e.

δx̂ = (GT Σ−1G)−1GT Σ−1(y −AŇ), (23)

with the baseline errorδx̂− δx:

εδx̂ = (GT Σ−1G)−1GT Σ−1
(
ε−A(ZT )−1

[
ZT T (XT Σ−1T )−1XT Σ−1ε

])
. (24)

The correlated noise vectorε is factorized by the Choleskey
decomposition [11] of the covariance matrix:

ε = Ls with Σ = LLT and s ∼ N (0,1). (25)

The baseline error in local coordinates is given by

εδx̂ = M1s−M2 [M3s] , (26)

with the submatrices

M1 = RL(GT Σ−1G)−1GT Σ−1L

M2 = RL(GT Σ−1G)−1GT Σ−1A(ZT )−1

M3 = ZT T (XT Σ−1X)−1XT Σ−1L, (27)

and the coordinate transformation matrixRL. The evalua-
tion of the probability distribution ofεδx̂ depends on the
probability of roundingM3s to thek-th non-zero vector
ε
(k)

Ň
′ . The determination of this probability requires the cu-

mulative density function (cdf) of a multivariate gaussian
distribution. Unfortunately, no closed form exists for the
cdf of a multivariate gaussian distribution.

Importance Sampling (IS) [10] is suggested for probabi-
lity estimation of rare events. The further analysis restricts
to scaling based IS with scaling factorσIS ≥ 1. Traditional
IS as described in [10] refers to a scalar random variable.
The idea is extended to multi-dimensional IS of correlated
random variables and the probabilityP

(
[M3s] = ε

(k)

Ň
′

)

is approximated byK samples:

P̂
(
[M3s] = ε

(k)

Ň
′

)
=

1
K

K∑

i=1

g(M3s
(i)
∗ ) · f(M3s

(i)
∗ )

f∗(M3s
(i)
∗ )

,

(28)
with

s
(i)
∗ ∼ f∗(s

(i)
∗ ) = N (

0, σ2
IS · 1Ns−1×Ns−1

)
, (29)

and

g(M3s
(i)
∗ ) =

{
1 if [M3s

(i)
∗ ] = ε

(k)

Ň
′

0 else.

f(M3s
(i)
∗ ) =

1
(2π)(Ns−1)/2|M3M

T
3 |1/2

· exp
(
−1

2
(M3s

(i)
∗ )T (M3M

T
3 )−1(M3s

(i)
∗ )

)

f∗(M3s
(i)
∗ ) =

1
(2π)(Ns−1)/2|σ2

ISM3M
T
3 |1/2

· exp
(
−1

2
(M3s

(i)
∗ )T (σ2

ISM3M
T
3 )−1(M3s

(i)
∗ )

)
.

Note that there exists only a single scalar weightw =
f(M3s

(i)
∗ )/f∗(M3s

(i)
∗ ) for each correlated noise vector

M3s
(i)
∗ although the correlation matrixM3 might introdu-

ce considerable differences in the variance of the elements
of M3s

(i)
∗ . Thus, a trade-off for the common scaling factor

σIS is required. Both a too small and a too largeσIS result
in few cases whereg(M3s

(i)
∗ ) = 1. An estimate of the

variance of the IS based probability estimator is derived in
[10]. The multi-dimensional generalization is given by

σ̂2

P (ε
(k)
Ň′ )

=
1
K


 1

K

K∑

i=1

(
g(M3s

(i)
∗ ) · f(M3s

(i)
∗ )

f∗(M3s
(i)
∗ )

)2

−
(

1
K

K∑

i=1

g(M3s
(i)
∗ ) · f(M3s

(i)
∗ )

f∗(M3s
(i)
∗ )

)2



(30)

The k-th integer ambiguity errorε(k)

Ň ′ results in a biased
baseline estimate. The bias is obtained from Equation (26):

µ
(k)
δx̂ = −M2ε

(k)

Ň
′ . (31)

The baseline covariance matrix is conditioned on the fixing
error ε

(k)

Ň ′ . The second term in equation (26) is assumed
deterministic so that the conditional covariance matrix is
given by

Σ
δx̂|

{
[M3s]=ε

(k)
Ň′

} = RL(GT Σ−1G)−1RT
L , (32)

which is independent of the error vectorε
(k)

Ň
′ . The pdf of

the baseline error is modeled by a weighted superposition
of multivariate gaussian distributions:

p(εδx̂) =
∞∑

k=1

P
(
[M3s] = ε

(k)

Ň
′

)
·p

(
ε

δx̂|
{

[M3s]=ε
(k)
Ň′

}
)

,

(33)
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with the conditional probability distribution

p

(
ε

δx̂|
{

[M3s]=ε
(k)
Ň′

}
)

=
1

2π|Σ
δx̂|

{
[M3s]=ε

(k)
Ň′

}|1/2

· exp
(
−1

2
(εδx̂ − µ

(k)
δx̂ )T Σ−1

δx̂|
{

[M3s]=ε
(k)
Ň′

}(εδx̂ − µ
(k)
δx̂ )

)
.

(34)

Fig. 6 and 7 show the probabilitieŝPw(ε(k)

Ň
′) =

P
(
[M3s] = ε

(k)

Ň
′

)
of the most likely biases for worst-case

geometry. The standard deviations of the probability esti-
mates have been computed withK = 106 samples and are
depicted as a function ofσIS.

The estimated standard deviationσ̂Pw is up to two or-
ders below the estimated probabilitŷPw. For ε

(k)

Ň
′ =

[1,−1, 0, 0, 0]T , the optimum scaling factor isσIS = 2 and
the uncertainty ofPw is reduced by one order of magnitu-
de compared to the Monte Carlo (MC) estimate (σIS = 1).
Fig. 7 shows the main benefit of IS as no MC estimate is
available for less likely biases. The IS based probability
estimation is insensitive w.r.t.σIS. Small variations in Fig.
7 are caused by a broad range of weightsw in Equation
(28).
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Fig. 6 Probability estimation of most likely SWL biases
based on Importance Sampling

PROTECTION LEVEL CONCEPT FOR CARRIER
PHASE MEASUREMENTS

The horizontal and vertical protection levels are defined
implicitly by the probability distribution of the baseline er-
ror in local coordinates:

P

(√
ε2

δx̂(1, 1) + ε2
δx̂(2, 2) > HPL

)
!= 10−7 (35)

P (|εδx̂(3, 3)| > V PL) != 10−7. (36)

2 4 6 8 10
10

−15

10
−10

10
−5

10
0

Standard deviation σ
IS

P
ro

ba
bi

lit
y 

of
 m

os
t l

ik
el

y 
bi

as
es

P
w

([1 1 0 0 0])

σ
P

w

([1 1 0 0 0])

P
w

([1 0 0 0 0])

σ
P

w

([1 0 0 0 0])

No Monte Carlo
estimate available

Fig. 7 Probability estimation of most likely SWL biases
based on Importance Sampling

Fig. 8 and 9 show the protection levels as a function of
time for the first CIR step with a priori SWL knowledge.
For simplicity, the correlation between the east and north
component of the baseline error estimate has been neglec-
ted. The VPL exceeds the HPL with a maximum of1.05m.
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Fig. 8 HPL with SWL a priori knowledge and its benefit
for the detection of WL biases

BIAS DETECTION WITH CASCADE AMBIGUITY
RESOLUTION

The horizontal and vertical baseline errors exceed the
SWL protection levels with a probability of10−7. The
SWL measurements might also be used for bias detection
during the WL fixing. The WL biases must fulfill two cri-
terions to be excluded: The biases must be larger than the
SWL protection level and occur with a probability larger
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Fig. 9 VPL with SWL a priori knowledge and its benefit
for the detection of WL biases

than10−7. Fig. 8 shows minimum and maximum horizon-
tal WL biases with a probability of at least10−7. The lower
and upper limits of vertical WL biases are depicted in Fig.
9. All WL biases can be excluded because the minimum
vertical WL bias is always larger than the SWL VPL.

CONCLUSIONS

In this paper, the LAMBDA algorithm is applied to each
step of Cascade Integer Resolution (CIR). The widelane
combination has been optimized such that the probability
of wrong integer fixing is minimized. The probability dis-
tribution of the baseline error including error prone ambi-
guity fixing is estimated using a mixed multi-variate pro-
bability distribution. Decorrelation transformations, search
processes as well as rounding operations are taken into ac-
count. The baseline biases due to error-prone integer fixing
are analysed by importance sampling. A protection level
concept for differential carrier phase measurements is pre-
sented and used for bias detection in CIR.

Future work might concentrate on the development of
carrier phase based Receiver Autonomous Integrity Moni-
toring (RAIM) and the exclusion of faulty satellites. In the
tracking mode analysis, the integer estimate of each satelli-
te is easily verified with the a priori knowledge of all other
integer ambiguities.
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