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1. Introduction

Autonomous systems that are able to change their behavior in response to unan-
ticipated events during operation are of great research interest at present and
for the next decades. In recent years the capabilities of such systems and their
domains of application have expanded significantly with first successes in both
civilian and military applications. Although the technology still is in its fledgling
stage one can say that it holds an immense potential for enabling entirely new
functionalities in environments where direct human control is not physically pos-
sible. While autonomous systems may vary widely in their capabilities, purposes
and levels of autonomy [1, 2, 3, 4], they all require the basic ability of navigation.
Consequently, self localization represents one of the essential key-technologies
to put autonomous systems into practice.

While satellite based localization technologies like the Global Positioning Sys-
tem (GPS) work well with an accuracy that is sufficient for most outdoor ap-
plications, the GPS signal is too weak to penetrate most buildings so that GPS
based indoor localization persists intractable for a lot of applications with re-
gard to accuracy, availability and reliability. At present a lot of effort is made in
developing alternative techniques to expand the range of service from outdoor to
indoor. To achieve fast deployment there is also a strong tendency towards self
adjusting systems that simultaneously localize and map the environment at the
same time. Within indoor environment however, reliable sources of information
are rare.

Motivated by an ill-posed range only localization and mapping problem based
on a sparse amount of data, this thesis presents an approach to fill the informa-
tion gap in form of a novel dynamic model for arbitrary robot movement. The
proposed model design is based on scientific insights from the fields of stochastic
processes and kernel regression. The model can be seamless incorporated into
the usual localization framework and substitute or support control information.
This is demonstrated for the problem at hand. However, the final methodol-
ogy is generic enough to be applied on a wide range of ill-posed localization
problems.

The thesis is organized as follows. Chapter 2 starts by introducing general ap-
proaches to localization problems and sets the basement for the main insights
of the following chapters. Chapter 3 focuses on the range based localization and
mapping problem that is going to be solved within this thesis. The definition of
the problem and an overview of state-of-the-art approaches reveals the need for
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8 1. Introduction

additional scientific work and motivates this thesis. Chapter 4 thoroughly de-
rives the framework of kernel regression with respect to the tackled localization
problem. As a consequence the space of possible solutions is represented by a
function space called Reproducing Kernel Hilbert Space (RKHS). The solution
to the ill-posed problem is then achieved by balancing data compliance and
smoothness property with respect to the norm defined within the RKHS. As
the design of the kernel function has a major impact on the quality of the solu-
tion this topic marks the main part of this chapter. Chapter 5 reveals practical
aspects of the proposed method. Two procedures are presented that make the
approach useable for real life applications. An offline procedure that allows to
obtain an initial solution to the problem and an online procedure for continuous
estimation in real time. Chapter 6 presents results based on multiple synthetic
and real life tests. The thesis closes in Chapter 7 with a final discussion.



2. Localization principles

This chapter presents a generic view on localization problems with a focus on
problems and approaches that can be related to the problem of range only lo-
calization and mapping tackled in this thesis. The concepts and the notation
introduced in this chapter is referenced thereinafter. It introduces absolute, rel-
ative and hybrid navigation methodologies and their technologies. This chapter
allows to classify the localization problem that motivates this thesis.

2.1. Formulation as state observer

The ultimate goal of localization in general is to determine a position or pose
of an object in relation to some relative or absolute coordinate system. As a
common standard the localization problem can be mathematically formulated
in form of a time invariant dynamic system [5, 6]

ṡ = f(s,u) (2.1)

z = h(s,u). (2.2)

Adopted to localization problems Eq. (2.1) comprises the equations of motion
for the object in form of a differential equation. Here s denotes the state vector
of the dynamic model that also covers the information on the desired pose of
the object. u consists of all control variables that influence the system in a
projected way like a steering parameter for a vehicle or also in an unintentional
way like crosswinds for an airplane. Eq. (2.2) denotes the observation model
with z as the observation vector. Observations may be absolute coordinates
that arrive periodically like a fully processed position update or only consist of
fractional information like range information to an object of known position.
The explicit formulation of a localization problem as a system strongly depends
on the available data. Without any information on the control data u only the
observation model can be used for localization. This is practiced for example
by using a third party system in a car that only has Global Positioning System
(GPS) data for disposal. In contrast, build-in systems for cars often make use
of additional information like the steering angle and car velocity to improve the
accuracy. Although in most cases the information on control data can greatly
improve the localization process, this information can be quite costly to acquire
and to process.

9



10 2. Localization principles

For most real world applications, the data can not be obtained continuously
but only discrete. Therefore, Eq. (2.1)) and (Eq. (2.2) are mostly used in their
discrete formulations

si+1 = f(si,ui) (2.3)

zi+1 = h(si,ui). (2.4)

The discrete representation is used throughout the thesis. In general, localization
methods can be roughly divided into the following three groups:

• Absolute localization methods that solve Eq. (2.4).

• Relative localization methods that solve Eq. (2.3).

• Hybrid localization methods that combine absolute and relative localiza-
tion.

All three localization methods are summarized in the following section.

2.2. Absolute localization

In order to determine a position by using Eq. (2.4), one or multiple observa-
tions with respect to some coordinate system are required. Therefore, absolute
navigation techniques often require specific infrastructure or presume a priori
knowledge on the environment. Because this is strongly related with the used
technologies Sec. 2.2.1 gives a short introduction of the most relevant ones. Sec.
2.2.2 focuses on range based localization as this thesis is motivated by a range
based localization and mapping problem. Theoretical bounds on the accuracy
for standard range based localization problems are given in Sec. 2.2.3.

2.2.1. Technologies

This section briefly introduces a taxonomy, the relvant signal metrics and a
short overview of sensor accuracy for absolute positioning.

Taxonomy

In [7] the following taxonomy of absolute localization techniques is proposed.
Three general categories are distinguished.

• Proximity based methods,

• Fingerprinting and

• Triangulation.



2.2. Absolute localization 11

As the wording suggests, proximity techniques use proximity information to
localize an object of unknown position. If a signal is received at several known
locations, it is possible to intersect the coverage areas of that signal to determine
a containing location area. Typical sensors used for this kind of localization are
Infrared Sensors (IR) that use short range transmission of modulated IR light to
transmit the identity of a mobile device to a fixed receiver in a particular known
location. A receiver is typically placed in every location in which a mobile device
might be found. Another example of proximity sensors are Radio-Frequency
IDentification (RFID) tags applied to or incorporated into a product, animal,
or person for the purpose of identification and tracking by using radio waves.
Some tags can be read from several meters away and beyond the line of sight
of the reader.

Fingerprinting is a technique that examines a scene such as a room from a
certain vantage point and searches for unique features (fingerprints) that allows
to localize the object. Quite often, indoor positioning systems utilize the location
fingerprinting method by comparing signal strengths from all access points to
entries in a table that was generated offline. The closest entry in the table is
the most probable location of the user. The higher the resolution of the map,
the better the accuracy of the result. This method can be found for various
localization systems in the Wireless Local Area Network (WLAN) area, as for
example in [8, 9, 10]. One big advantage of this method is that it is not model-
based and thus can be used where disturbances generated through geometric
constraints anticipate the use of triangulation for instance. The disadvantage is
the static setup and relatively high investment by the need to generate a map.

As already mentioned the third method is triangulation. The method de-
rives its name from the trigonometric calculations that have to be performed
in order to get a solution. A typical source of information for triangulation are
cell-networks with active beacons. A set of beacons at known positions are gath-
ering geometrical information from a target of unknown position. By resolving
Eq. (2.4) it is possible to determine the position of the target. Probably the
most prominent occurrence of this kind is the Global Positioning System (GPS)
which is a Global Navigation Satellite System (GNNS). Originally developed by
the United States Department of Defense it is today also used by civilians for
navigation purposes. It uses a constellation of between 24 and 32 satellites in
medium earth orbit that transmit precise radiowave signals which allow GPS
receivers to determine their current location, the time, and their velocity. For
cell-network localization the typical signal metrices can be typically divided into
four groups [7].

• Angle Of Arrival (AOA): measures direction in form of angles

• Received Signal Strength (RSS): measures ranges based on received signal
strengths
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• Time Of Arrival (TOA): measures ranges based on signal propagation
delay

• Time Difference Of Arrival (TDOA): measures range differences based on
signal propagation delay

Depending on the field of application, all metrics can be found in practice. AOA
combined with TDOA for example is used for the Ultra Wide Band (UWB)
based localization system from Ubisense [11]. GPS for example is based on an
augmented form of TOA. Instead of using true range measurements, GPS is
based on so called pseudoranges that also incorporate clock errors [12]. RSS
is often utilized for indoor localization systems based on WLAN [13, 14]. The
biggest problem for active cell network localization is the problem of finding an
accurate model for the signal propagation. Multipath effects and damping of
the signal energy through walls and other materials often renders the problem
infeasible for a lot of applications. For the following sections, trilateration is the
relevant technique.

Accuracy

In an outdoor environment, GPS works extremely well with an accuracy that is
sufficient for most outdoor applications. Unfortunately, the signal from the GPS
satellites is too weak to penetrate most buildings, making indoor GPS localiza-
tion almost impossible. Likewise the requirements for indoor localization are
much more restrictive for precise localization of autonomous vehicles. Therefore
a lot of alternative technologies for indoor localization have been envisioned.

The chart in Fig. 2.1, adopted from [15], shows different sensor technologies
used for localization. They are classified by achievable accuracy and degree of
development.

2.2.2. Range based localization

After introducing the technologies for absolute localization this section focuses
on the special case of range based localization. The issue of technical imple-
mentation and how to obtain such measures is not broached further. As seen in
the former section a lot of cell network based localization systems rely on range
information.

Definition

For a scenario with k fixed beacons, let

x ,

[
x1

x2

x3

]

∈ R
3



2.2. Absolute localization 13

10−2 10−1 100 101 102

accur. in m

deployment

low

(research)

medium

(customer)

high

(consumer)

Ultra-
sonic

UWB Vision

RFID Bluetooth

WiFi

IR

TV

HSGPS

Mobile

Pseudolites

Figure 2.1.: Indoor localization accuracy

denote the seeked position of the target and

pj ,

[
p1,j

p2,j

p3,j

]

∈ R
3
, 1 ≤ j ≤ k

known positions of the beacons. Let further r1, ..., rn denote all available range
measurements for the localization process. To cover multiple range measure-
ments to the same beacons the map

a : {1, ..., n} → {1, ..., k}, i 7→ ai

is introduced that covers the data to measurement association such that the
range measurement can be modeled as

ri , ||x− pai
|| + ηi, 1 ≤ i ≤ n. (2.5)

This way, the measurement with index i is associated to the according beacon
by ai ∈ {1, ..., k} that allows a unique identification. In Eq. (2.5) ηi denotes an
additive noise that corrupts the measurement. It is further assumed that the
noise is mutually independent

p(ηi, ηj) = p(ηi) · p(ηj) , ∀i 6= j. (2.6)

With these prerequisites the goal is to estimate the targets position x using the
measurements ri to beacons at the positions pai

. Fig. 2.2 illustrates the setup
for this typical scenario.



14 2. Localization principles

p1

p2

p3p4

p5
r1

r2

r3r4

r5
x

Figure 2.2.: Beacons at positions pj ∈ R
3 and target at position x ∈ R

3

Methods for range based localization

In order to estimate x several methods have been proposed so far. If the noise
ηi remains small a common approach called trilateration can be applied. This
method offers a direct formula for exactly three measures to three beacons [16].
Ambiguities in the method are dealt with additional information like another
distance measure or the knowledge that the targets position has a positive z
coordinate.

Multilateration is a straightforward method based on range difference mea-
surements to a pre-selected but arbitrary reference point [17]. Because one mea-
surement becomes the the reference, n−1 linear equations result for n available
measurements. The choice of the reference measurement may greatly influence
the result.

A more typical method is to determine the Maximum Likelihood (ML) esti-
mator for the position of the target x.

Let

r
〈n〉

, {r1, ..., rn}

be the set of n range measurements,

a
〈n〉

, {a1, ..., an}

the set of all data associations and

p
〈k〉

, {p1, ..., pk}
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the set of k beacon positions. The ML-estimator determines the parameter vec-
tor x which is most likely to have caused the measurements, i.e.

[x]ML = arg max
x

p
(
r

〈n〉|x, p〈k〉
, a

〈n〉
)
.

As the measurement error is assumed to be mutually independent a change in
random variables gives way to the simplification

[x]ML = arg max
x

n∏

i=1

p(ηi) (2.7)

because
pRi

(
ri|x,pai

, ai

)
= pEi

(ηi) 1.

For normally distributed noise

p(ηi) ,
1√

2πσi

e
−

(||x−pai
||−ri)2

2σ2
i , 1 ≤ i ≤ n (2.8)

the negative log-likelihood becomes

ℓ(x) , − log(p
(
r

〈n〉|x,p〈k〉
, a

〈n〉
)
) =

=
1
2

n∑

i=1

log(2πσ2
i ) +

1
2

n∑

i=1

1
σ2

i

(||x− pai
|| − ri)

2
.

(2.9)

The first term of Eq. (2.9) is a constant, therefore it is straightforward to show
that the ML-estimator is the minimizer of

x̌ = [x]ML = arg min
x

n∑

i=1

∆ri(x)2

σ2
i

,

with the definition
∆ri(x) , ||x− pai

|| − ri.

A standard approach for this non linear least squares problem is the Gauss-
Newton algorithm that is briefly described in this context [18, p. 834]. For the
unconstrained minimization problem, each component of the gradient has to be
zero at the optimum

∇ℓ(x̌) = 0, (2.10)

1The change in random variables here is marked by the subscripts Ri for a random variable
for the range ri and Ei for a random variable for the error ηi. For convenience this
notation is neglected when the definition of the respective random is clear from the
context.
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with x̌ denoting the optimal vector. Deriving the Jacobian J by

Ji1 =
∂∆ri(x)
∂x

=
x1 − p1,ai

||x− pai
||

Ji2 =
∂∆ri(x)
∂y

=
x2 − p2,ai

||x− pai
||

Ji3 =
∂∆ri(x)
∂z

=
x3 − p3,ai

||x− pai
|| ,

with 1 ≤ i ≤ n and defining a diagonal weighting matrix W with the elements

Wii ,
1
σ2

i

,

the gradient writes as
∇ℓ(x) = J

T
W∆r(x), (2.11)

with the definition
∆r(x) , (∆r1(x), ..., ∆rn(x))T

. (2.12)

The Taylor series expansion of Eq. (2.12) to the first order equations yields

∆r(x̌) ≈ ∆r(x) + J(x̌− x). (2.13)

With Eq. (2.10) and Eq. (2.13) Eq. (2.11) becomes

∇ℓ(x̌) = 0 ≈ J
T
W∆r(x) + J

T
WJ(x̌− x).

As long as JTWJ is invertible x̌ can be approximated through

x̌ ≈ Φ(x) , x− (JT
WJ)−1

J
T
W∆r(x) (2.14)

and due to
J

T
W∆r(x̌) = 0

it is necessary that
x̌ = Φ(x̌).

The problem can be interpreted of finding a fixed point for Φ(x). If Φ : R3 → R
3

is a contraction mapping with the property that there is some real number
0 < λ < 1, called the Lipschitz constant, such that for all x1 ∈ R

3 and x2 ∈ R
3

||Φ(x1) − Φ(x2)|| ≤ λ||x1 − x2||

the Banach fixed point theorem states that the iterated function sequence

x, Φ(x), Φ(Φ(x)), Φ(Φ(Φ(x))), ...
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converges to the fixed point x̌ [18, p. 562]. x̌ can be therefore calculated by
iteratively evaluating Φ and starting with an initial guess x1,

xi+1 = Φ(xi).

Multiple stopping criteria for the iteration procedure can be defined. One com-
monly used criteria is to iterate until the square root of the residual becomes
very small

||xi+1 − xi|| < ǫ.

Although the rate of convergence of the Gauss-Newton algorithm can approach
a quadratic fashion, the algorithm may converge slowly or not at all if the ini-
tial guess is far from the minimum or the matrix JTWJ is ill-conditioned [19].
There also exist more refined procedures concerning convergence and stabil-
ity like Hartley’s Modification and the Levenberg-Marquardt algorithm [20, 21].
Nevertheless, for all these methods a good starting value x1 has to be chosen.
While the solution to trilateration for 3 out of the k beacons delivers an accu-
rate staring value, there exists an even faster method called Min-Max algorithm
that takes all measurements into consideration. The Min-Max method presented
by Langendoen et al. [17] and Savvides et al. [22] offers significantly less
computational burden than multilateration.

2.2.3. Theoretical bounds on the accuracy

All methods can only estimate the true position because the range measurements
usually are corrupted by measurement errors. In order to investigate the quality
of these estimators it is essential to deal with the so called Cramér Rao bound.

The Cramér Rao lower bound

Harald Cramér and Calyampudi Radhakrishna Rao derived a lower bound on
the variance of estimators of a deterministic parameter[23, 24]. The bound is
also known as the information inequality.
Let T (z) represent an unbiased estimate for the unknown parameter vector x
based on observations covered by the random vector z , [z1 · · · zn]T under the
joint Probability Density Function (PDF) denoted by p(z|x). Then

Var[T (z)] ≥ E
[

(
∂

∂x
log p(z|x))(

∂

∂x
log p(z|x))T

]−1

, (2.15)

provided the following regularity conditions are satisfied:

∂

∂x

∫

p(z|x) dz =

∫
∂p(z|x)
∂x

dz = 0
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∂

∂x

∫

T (z)p(z|x) dz =

∫

T (z)
∂p(z|x)
∂x

dz.

Here, the integrals represent n-fold integration [25]. The denominator of Eq.
(2.15) is also called the Fisher Information

I(x) = E

[(
∂

∂x
log p(z|x)

) (
∂

∂x
log p(z|x)

)T
]

.

Application of the Cramér Rao bound to range based localization

For range based localization problem the Cramér Rao bound can be applied as
follows. The gradient of the likelihood function from Eq. (2.11) can be reused
to express the Fisher Information for the range based problem

I(x) = E
[
∇ℓ(x) (∇ℓ(x))T

]
.

With the same definitions for J , W and ∆r(x) the Fisher Information matrix
becomes

I(x) = E
[
J

T
W∆r(x)∆r(x)T

WJ
]

= J
T
WE

[
∆r(x)∆r(x)T

]
WJ .

Due to
E[∆ri(x)∆rj(x)] = E[∆ri(x)] E[∆rj(x)] = 0 i 6= j

and
E

[
∆ri(x)2

]
= σ

2
i

the Fisher information matrix can be finally determined to

I(x) = J
T
WW

−1
WJ = J

T
WJ .

Thus any estimator x̌ = T (r〈n〉) of the range based localization problem of the
kind introduced in Sec. 2.2.2 has a covariance with the following property

v
T

[
Var[x̌] − (JT

WJ)−1
]
v ≥ 0 ∀v ∈ R

3
. (2.16)

By applying Eq. (2.14), Var[x̌] = Var[Φ(x̌)] = (JTWJ)−1 which equals the
Cramér Rao Lower Bound (CRLB). This approach can therefore be considered
optimal in the sense of variance minimization under the conditions from Eq.
(2.8) and Eq. (2.6) stipulated in section Sec. 2.2.2.

By Eq. (2.16), the accuracy of the estimator is mainly influenced by two
effects. The first is described by the noise matrix W for the measurements.
The possible accuracy dilutes for greater variances in range errors as depicted
schematically in Fig. 2.3
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p1
p2

r1 r2

σ1 σ2

Figure 2.3.: Dilution of precision for range based localization systems

The Geometric Dilution of Precision

The second effect deals with the influence of the geometry. For evaluating ge-
ometries for range based localization systems an approach called Geometric
Dilution Of Precision (GDOP) is widely spread in the community of GNNS
localization [26]. By assuming equal variances σi = σ for all measurements the
range errors and geometric influences can be separated. Consequently,

Var[x̌] =

[
σ2

x σxy σxz

σyx σ2
y σyz

σzx σzy σ2
z

]

≥ σ
2 · (JT

J)−1
.

With the definition
[

d2
x dxy dxz

dyx d2
y dyz

dzx dzy d2
z

]

, (JT
J)−1

,

the concept of dilution of precision can be transferred for pure range based
tracking applications. The DOP factors can be divided in Positional Dilution
of Precision (PDOP), Horizontal Dilution of Precision (HDOP) and Vertical
Dilution Of Precision (VDOP). These values are defined through

PDOP ,
√

d2
x + d2

y + d2
z

HDOP ,
√

d2
x + d2

y

VDOP , dz.
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With these definitions the position dependent estimate for minimum variance
on the estimator can then be determined by

σP (x) = σ · PDOP(x)

σH(x) = σ · HDOP(x)

σV (x) = σ · VDOP(x).

Exemplary, the DOP values were determined for a simple set up consisting of 8
fixed beacons at the positions specified in Tab. 2.1.

Node 1 2 3 4 5 6 7 8
px 0 20 20 0 0 20 20 0
py 0 0 10 10 0 0 10 10
pz 0 0 0 0 6 6 6 6

Table 2.1.: Beacon positions

In this setup all positions for x lie on a plane with z-coordinate z = 0.
Moreover, it is assumed that there is exactly one range measurement available
from each beacon. Fig. 2.4 illustrates the horizontal, vertical and positional
DOP for this layout.

The geometry of the beacons is shown in the first picture drawn as a box with
the beacon positions in the corners. For this setup, the achievable minimum
variance strongly variates by the influence of the geometrical setup. Accurate
position estimation in this layout is only possible within close range to the
beacons. Furthermore, the vertical dilution of precision dominates the final error.
This is due to the fact that the expansion of the geometry is much weaker effused
in z-direction than in x- and y-direction.
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Figure 2.4.: Dilution of precision in x- and y-direction for z = 0
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2.3. Relative localization

Relative localization is also commonly known as dead reckoning. With the for-
mulations of Sec. 2.1 the basic idea of dead reckoning is to start with a known
state s1 and iteratively evolve the state over time by solving Eq. (2.3).

2.3.1. Basic concepts

Historically, this kind of navigation was developed for marine navigation where
the navigator used his knowledge about course and speed to develop an estima-
tion for the actual position. Fig. 2.5 shows an old instrument for measuring the
speed of the ship [27].

Figure 2.5.: Log line for measuring speed in knots

It consisted of a flat piece of wood, the so called log, which was weighted at
the bottom to enable it to float upright in the water. A long rope was attached
to the log, the so called log line that was wound on a spool so that it could be
reeled out after the log was thrown into the water at the rear of the ship. The
friction of the water held the log in place as the ship sailed away from it. On
the log line, knots were tied at intervals of 7 fathoms which equates to about
12.8 meters. As the ship sailed away from the log, the sailors taking the reading
would count the number of knots that passed over the rail in a period of half-a-
minute that gave them their approximate speed in knots. From a mathematical
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point of view, dead reckoning can be seen as a numeric integration of Eq. (2.3)
over time by using control information. Since this technique tends to drift over
time, updates of the real position are needed once and a while.

2.3.2. Inertial navigation

An exceptional position in this context is surely been taken by Inertial Nav-
igation Systems (INS). These systems combine a sensor class called Inertial
Measurement Unit (IMU) that measure accelerations and turn rates with an
integration algorithm. Probably the greatest challenge for inertial navigation
is based on the so called equivalence principle. It states the "complete physi-
cal equivalence of a gravitational field and a corresponding acceleration of the
reference system" (Einstein 1907). The gravitational force of the earth g(x)
which is a function of the position and accelerations with respect to a prede-
fined coordinate system can therefore not be distinguished. Depending on the
reference frame, gravitational and Coriolis effects on earth have to be taken care
of. However, the importance of inertial navigation is justified by the unique pro-
prioceptive character. An INS works without infrastructure, can’t be jammed,
and has a unique behavior concerning errors. Inertial navigation systems can be
roughly subdivided into two classes.

Gimbaled systems

In gimbaled systems three linear accelerometers are placed on a gimbaled gyro
stabilized platform. The gimbals are a set of three rings, each with a pair of
bearings initially at right angles as depicted in Fig. 2.6.

gyro stab. platf.

φ θ

ψ

+ ++

g(i)

G{x(i)}
x(i)

x(i)ẋ(i)a(i)
f (i)

x
(i)
0ẋ

(i)
0

1
m

1
s

1
s

H{f (i), ẋ
(i)
0 ,x

(i)
0 }

Figure 2.6.: Gimbal platform and integration scheme

This way the target may twist about any rotational axis while the platform
keeps the same orientation with respect to an inertial frame (i-frame) which is
stationary with respect to the fixed stars. Within this frame, the specific time
dependent force f (i) , f (i)(t) only has to be corrected by the gravitational force
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vector g(x(i)) that is dependent on the actual position of the accelerometers
x(i) , x(i)(t) before they directly can be integrated two times to obtain the
actual location x(i). The integration scheme is illustrated in Fig. 2.6 in form of
a block diagram after performing a Laplace transformation.

The required starting position and the starting velocity is denoted by x(i)
0

respectively ẋ
(i)
0 . Applied on the framework of a dynamic system, the state

vector of such an integration then takes the form

s(t) =

[
x(i)(t)
ẋ(i)(t)

]

. (2.17)

For local geographic frames, like reference coordinate systems on the earth that
are in movement due to earth rotation much more effort has to be taken [28].
One of the main disadvantages of the gimbaled scheme is that it usually uses
many expensive precision mechanical parts that are moving, can wear out or
jam and is vulnerable to the so called gimbal lock.

Strapdown systems

The second class of inertial system are strapdown systems. As the name already
suggests, the system is strapped to the target as illustrated in Fig. 2.7.
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Figure 2.7.: Strapdown system and inertial frame

This reduces the cost, eliminates the gimbal lock, removes the need for some
calibrations and increases the reliability by eliminating some of the moving
parts. Instead of a gimbal, angular rate sensors called rate gyros measure the
angular velocity of the targets changes in the body fixed frame (b-frame) that
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moves along with the target as depicted in Fig. 2.7. Here f (b) denotes the
specific force measured by the accelerometers in a body fixed axis set and x(i) =
[
x(i) y(i) z(i)

]T
the actual position of the target in the i-frame as depicted in

Fig. 2.7. Following the common denotation in the field of aviation (DIN 9300-2)
[29] the orientation Θ(i) = [φ θ ψ]T is defined as the orientation of the object
with respective to the i-frame [28]. The angles φ, θ and ψ are also known as
roll, pitch and yaw and denote a rotation around the x-, y- and z-axis. The
connection between the inertial and the body fixed frame can be described by
the following orthogonal matrix

R
b
i =

[
1 0 0
0 cosφ sinφ
0 − sinφ cosφ

]

︸ ︷︷ ︸

Rx

[
cos θ 0 − sin θ

0 1 0
sin θ 0 cos θ

]

︸ ︷︷ ︸

Ry

[
cosψ sinψ 0

− sinψ cosψ 0
0 0 1

]

︸ ︷︷ ︸

Rz

.

With Rb
i , the specific force vector measured by the accelerometers f (b) can be

transformed to the inertial system

f
(i) = R

i
b · f (b) = (Rb

i )T · f (b)
. (2.18)

The actual orientation vector Θ(i), needed to generate the orientation matrix
Rb

i , is unknown and has to be evolved by the rate gyros.
Let

ω
(b)
ib =

[
ω

(b)
x ω

(b)
y ω

(b)
z

]T

denote the measured turn rate with respect to the i-frame in the b-frame. With
an initial estimate for Θ(i)

0 the orientation matrix Ri
b can be evolved by applying

the following differential matrix equation

Ṙi
b = R

i
b ·Ωb

ib. (2.19)

Ωb
ib denotes the skew symmetric matrix

Ω
b
ib =





0 −ω(b)
z ω

(b)
y

ω
(b)
z 0 −ω(b)

x

−ω(b)
y ω

(b)
x 0



 .

Depending on the representation of the orientation as Euler Angles or quater-
nions, different evolving schemes for solving Eq. (2.19) can be derived. O. J.

Woodman proposes to use the matrix exponential [30]

R
i
b(t) = R

i
b(0) · exp(

t∫

0

Ω
b
ib(t)dt). (2.20)
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Using the rectangle method for integration,

B , Ω
b
ibδt ≈

t∫

0

Ω
b
ib(t)dt (2.21)

and defining σ , |ωb
ib|δt one can find the following update equation for the

orientation matrix

R
i
b(t+ δt) = R

i
b(t)(I +

sin(σ)
σ

B +
1 − cos(σ)

σ2
B

2) (2.22)

by substituting Eq. (2.21) into Eq. (2.20) and performing the Taylor expansion
of the exponential term.

As depicted in Fig. 2.8, two consecutive integrations are needed for strapdown
integration.

x(i)
f (i)

f (b)

x
(i)
0ẋ

(i)
0

Θ
(i)
0

ωb
ib

Ri
b

H{f (i), ẋ
(i)
0 ,x

(i)
0 }T{f (b),Ri

b}

A{ω(b)
ib }

Figure 2.8.: Integration scheme for strapdown systems

Here T{f (b),Ri
b} covers the transformation of Eq. (2.18) and A{ωb

ib} the in-

tegration of the orientation matrix as shown in Eq. (2.22). H{f (i), ẋ
(i)
0 ,x

(i)
0 }

denotes the same integration process developed for gimbaled systems as illus-
trated in Fig. 2.6. The state for strapdown integration consists of the position,
velocity and orientation such that

s(t) =





x(i)(t)
ẋ(i)(t)
Θ(i)(t)



 . (2.23)

As before, for local geographic frames like reference coordinate systems on earth
a more sophisticated integration scheme is necessary.
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Gyro technology

Strapdown integration requires three consecutive integrations as depicted in Fig.
2.8. As the integration starts with the angular rates a bias and general errors
within the angular rate sensors transform into a positional error with O(t3).
The limiting factor for strapdown systems thus is the quality of the gyros.

Basically there are two main principles for measuring angular rates. The first
one is based on an optical feature called Sagnac effect [31, 32] that measures
interferences of light beams. Two light beams are fed into opposing paths. Once
the sensor is undergoing rotation then the beam travelling in the direction of
rotation experiences a longer path to the exit than the other beam travelling
against the rotation. When the beams exit they are combined again and interfere
due to the phase shift caused by the rotation. The main types of this kind
are Ring Laser Gyro’s (RLG) and Interferometric Fibre-Optic Gyro’s (IFOG).
As this technology is quite elaborate the price tag for this kind of sensors is
comparatively high.

The second principle is based on the Coriolis effect [33, 34] on vibrating
masses. Both measuring principles are sketched in Fig. 2.9.

ex

ey

ez

tuning fork

coriolis force

incitement

Figure 2.9.: Original sketch from Georges Sagnac and tuning fork

Within the picture a tuning fork vibrating gyro is artificially incited in y-
direction. Every rotation around the z-axis causes a Coriolis force that can be
measured in x-direction.

Conclusions

For strapdown systems the angular rates have to be integrated first to obtain
the targets attitude before the integration process of the accelerometers can take
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begin. Because of this additional error source, strapdown systems are considered
to cause an inherently higher error compared to gimbaled systems. The largest
error source for strapdown systems are bias instabilities that are measured in
[

◦
h

] and scale factor stability which is usually measured in parts per million
(ppm) of the sensed inertial quantity. Fig. 2.10, taken from [35], gives a rough
overview of gyro errors of assorted technologies and a rough estimate on the
price in dollars for the corresponding accuracy.
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Figure 2.10.: Bias stability and scale factor stability of assorted technologies

Assumed a gyro within the price class of about 10000$ and a bias instability
of b = 0.1

◦
h

is applied. Then the error caused in the angle after the time t of
integration is ǫφ = b·t. Consequently, a wrong compensation of the gravitational
force g causes an error in the accelerations of about ǫa ≈ g · sin(ǫφ) ≈ g · b · t.
This causes a positional error after two further integrations of about

ǫx ≈ g · b · t
3

6
.

After 5 minutes of strapdown integration the estimated position error is about
20 meters. By inspecting Fig. 2.10, this accuracy can not yet be achieved by the
relatively cheap Micro-Electro-Mechanical Systems (MEMS)-gyros that base on
the principle of vibrating masses. For most indoor applications this scenario
seems to be infeasible. However, their popularity bases on a lot of other prof-
itable properties like small size and price tag [30]. Some authors expect these
sensors to replace many of the current optical systems in near future [35].
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2.4. Hybrid navigation and sensor data fusion

For relative navigation an initial solution s0 at time t0 is required. In practice, a
starting solution may be hard to obtain. Furthermore, relative navigation causes
small errors for small time intervals and great errors for large time intervals.
In contrast, most absolute navigation systems comprehend a source of constant
error as already introduced for range based localization systems in Sec. 2.2.3.
A combination of absolute navigation methods with relative navigation meth-
ods therefore is straightforward. This is especially true for inertial navigation
systems.

2.4.1. Prerequisites and Notation

To use relative navigation techniques an appropriate state vector description is
needed that represents the dynamic model from Eq. (2.3). For inertial navigation
systems two different state vectors, Eq. (2.17) for gimbaled systems and Eq.
(2.23) for strapdown systems, were introduced. To keep the notation as simple
as possible, let si , s(ti) denote an appropriate state vector of the target at
time ti. The estimated position xi , x(ti) can finally be reconstructed from the
state vector.

Let
s

〈n〉
, {s1, ..., sn}, si , s(ti)

be the set of all state vectors attained so far and analogously

u
〈n〉

, {u2, ...,un}, ui , u(ti)

be the set of all control vectors. In the case of INS systems, u〈n〉 consist of
accelerations and turn rates. Furthermore let

z
〈n〉

, {z1, ..., zn}, zi , z(ti)

denote the set of all observations. Note, in the case of range based localization
z〈n〉 consists of range measurements. For simplicity it is assumed that the state,
the controls and the observations are synchronized. This implies that at each
time step ti with the state si there is exactly one control vector ui and one
observation zi available. As addressed before, in any realistic scenario neither
the control data nor the observation can be processed without errors. Sensor
errors or inadequate modeling lead to a stochastic element in evaluating the
dynamic model Eq. (2.3) and the observation model Eq. (2.4). Due to this, the
sequence of the state variables evolving over time s〈n〉 can also be interpreted
as a stochastic process. This interpretation plays a crucial role in the following
chapters.
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2.4.2. Bayes filter derivation

In this section, all available information in form of controls u〈n〉 and observa-
tions z〈n〉 are fused to obtain a navigation solution. To this end, consider the
Maximum A Posteriori (MAP) estimator for the state vector at time step tn
which formally reads

[sn]MAP = arg max
sn

p
(
sn|z〈n〉

,u
〈n〉

)
. (2.24)

Applying Bayes rule the probability density function from Eq. (2.24) becomes
[18, p. 694]

p
(
sn|z〈n〉

,u
〈n〉

)
=

p
(
zn|sn, z

〈n−1〉,u〈n〉
)

p
(
sn|z〈n−1〉,u〈n〉

)

p(zn|z〈n−1〉,u〈n〉)
. (2.25)

As the denominator of Eq. (2.25) is independent on s〈n〉 it can be treated as a
normalizing constant

η
−1
n , p

(
zn|z〈n−1〉

,u
〈n〉

)
.

Usually it can be assumed that the actual observation is only dependent on the
actual state and control such that

p
(
zn|sn, z

〈n−1〉
,u

〈n〉
)

= p(zn|sn,un) .

The sequence of states can be interpreted as a stochastic process. Assumed, this
process fulfills the Markov condition which reads as

p
(
sn|sn−1, z

〈n−1〉
,u

〈n〉
)

= p(sn|sn−1,un) , (2.26)

the Chapman-Kolmogorov equation [25] for

p
(
sn|z〈n−1〉

,u
〈n〉

)
=

∫

p
(
sn|sn−1, z

〈n−1〉
,u

〈n〉
)

p
(
sn−1|z〈n−1〉

,u
〈n−1〉

)
dsn−1

becomes

p
(
sn|z〈n−1〉

,u
〈n〉

)
=

∫

p(sn|sn−1,un) p
(
sn−1|z〈n−1〉

,u
〈n−1〉

)
dsn−1.

This simplifies the posterior probability density function from Eq. (2.24) to

p
(
sn|z〈n〉

,u
〈n〉

)
=

η
−1
n · p(zn|sn,un)

∫

p(sn|sn−1,un) p
(
sn−1|z〈n−1〉

,u
〈n−1〉

)
dsn−1.

(2.27)

This is an update equation for the maximum a posteriori estimator. The compo-
nents needed are the former probability density function p

(
sn−1|z〈n−1〉,u〈n−1〉

)
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for the previous state, a probability density function that describes the probabil-
ity for the state change from sn−1 to sn by known actual controls p(sn|sn−1,un)
and a probability density function for the probability of observing zn with a
known state sn namely p(zn|sn). By the assumption of the Markov condition
from Eq. (2.26) and knowing the node positions p1, p2, the complete process can
be visualized by a Dynamic Bayes Network as depicted in Fig. 2.11 [36]. This
network represents the probabilistic relationships between all random variables
and their conditional independencies via a directed acyclic graph. Unknown
quantities are marked by dotted lines.

...s1 s2 s3 sn

z1

z2

z3

zn

u2 u3 un

p1

p2

Figure 2.11.: Integrated navigation as a dynamic Bayesian network

Unfortunately, the update Eq. (2.27) cannot be evaluated in a closed form.
The implementation of a solution would require the storage of the probability
density functions which only may be representable by an infinity number of
parameters.

2.4.3. Suboptimal filters

Sec. 2.1 formulates the navigation problem as a dynamic system. Most iterative
solutions to the Bayesian update equation Eq. (2.27) assume that such a formu-
lation is available. Enhanced by additive noise νn that is modeling uncertainties
in the dynamic model and ηn, modeling the noise of the observation, the system
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can be written as

sn = fn−1(sn−1,un) + νn (2.28)

zn = hn(sn,un) + ηn. (2.29)

In analogy, the probability density p(zn|sn,un) can be obtained from the ob-
servation model described by Eq. (2.29). In many cases such a model is available
in the specification of the respective sensor.

Once such a state space representation of the problem is known, the Bayesian
update equation may be approximately evaluated by the Extended Kalman Fil-
ter (EKF). This approach is widely known and can be found in many books
[37, 38, 28, 39, 20, 40]. The basic idea of the EKF is to model all of the required
probability density functions from the Bayesian update equation by Gaussian
probability density functions

s1 ∼ N (µs1
, σ2

s1
)

νi ∼ N (0, σ2
νi

)
ηi ∼ N (0, σ2

ηi
),

such that the whole estimation process can be performed by matrix-matrix and
matrix-vector multiplications. For linear models in Eq. (2.28) and Eq. (2.29)
as well as normally distributed random variables νn and ηn, this approach can
be shown to be optimal. However, as non-linear transformations of normally
distributed random variables, as described by the state space representation
at hand, do not have to remain normally distributed, the EKF additionally
requires to linearize the system model and the observation model for inference
of the covariance matrix. Nevertheless, this is the most applied approach for
hybrid navigation and sensor data fusion because of its simplicity.

It is worth to note that there exist more refined methods that mainly differ
in the treatment of the non linearities. A filter that is using the unscented
transform for covariance update is referred to as the Unscented Kalman Filter
(UKF) [41, 42]. As the EKF, the UKF models all random variables by Gaussian
distributions. But unlike the EKF, the UKF does not linearize fn−1(sn−1,un)
and hn(sn,un) for covariance update. Instead, it directly uses Eq. (2.28) and
Eq. (2.29) to approximate the posterior p(sn|zn) by a Gaussian probability
density using a set of deterministically chosen sample points. When propagated
through a nonlinear transform, the sample points capture the true mean and
covariance up to the second order of non-linearity with errors introduced in the
third and higher orders [39].

A completely different procedure is performed by the Particle Filter (PF)
[43, 44]. This method dates back to the 1950s and since then was continuously
explored sporadically during the 1960s and 1970s [39]. The reason for the ac-
tual attraction of the PF within the navigation community is the advanced
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computational power available today. The basic idea of the particle filter is Se-
quential Monte Carlo (SMC) estimation [43, 39] of probability densities. Within
this technique a set of random samples with associated weights represent the
probability densities. The associated weights are obtained by a technique called
importance sampling [43, 39]. As every particle is propagated separately by
the dynamic and the observation model, the more particles used for the filter,
the higher the computational burden. However, this representation avoids the
quadratic growth of elements within the covariance matrix for the EKF or UKF
when the state vector becomes very big. Therefore, this filter can be advanta-
geous for problems where the random variables can not be properly represented
by Gaussian distributions or where the state vector becomes very big. For an
increasing number of samples this method can be shown to converge to the true
solution of Eq. (2.27) [39].





3. Motivation and problem definition

Based on the problem class of range based localization an augmented problem
class is introduced in this chapter that motivates this thesis. A mobile target,
unknown beacon positions and unsynchronized range measurements render this
problem to be ill-conditioned.

Sec. 3.1 introduces the problem. It is shown, that the non linear least squares
estimator from Sec. 2.2.2 cannot be successfully applied. This section reveals
the basic problem with the new setting.

Sec. 3.2 presents related work and emphasizes the need for more research
work.

3.1. Range only localization and mapping

The problem class presented here is referred to as Range Only Localization And
Mapping (ROLAM) problem throughout this thesis.

3.1.1. Definition of the ROLAM problem

A set of k anchor nodes at the positions pj ∈ R
3 with 1 ≤ j ≤ k form the

infrastructure. Within the network range a vehicle moves along the trajectory

x : R → R
3
, t 7→ x(t) =

[
x1(t)
x2(t)
x3(t)

]

and gathers range measurements ri ∈ R at random time instants t1 ≤ ... ≤ tn
to randomly chosen static beacons. To identify the specific beacons the mea-
surements correspond to the map

a : {1, ..., n} → {1, ..., k}, i 7→ ai,

from Sec. 2.2.2 is utilized such that

ri , ||xi − pai
|| + ηi (3.1)

with the abbreviation xi , x(ti). In practice, measurements are erroneous.
This is modeled by the additive measurement noise ηi ∈ R. Furthermore, the
random ηi variable is supposed to be mutually independent and the probability

35
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density function p(ηi) is assumed to be known. With these notions the ROLAM
problem can be defined as follows:

Definition 1. (ROLAM) Let r〈n〉 = {r1, ..., rn} be a set of range observations
measured at times t〈n〉 = {t1, ..., tn} and a〈n〉 = {a1, ..., an} be the set of the
respective data associations. Then the ROLAM-Problem is defined to determine
the landmark positions p〈k〉 = {p1, ..., pk} while simultaneously tracking the path
x(t) of the vehicle.

Fig. 3.1 depicts the problem as a function block. The input is a set of range
measurements with timestamp and data association and the output is an esti-
mate for the trajectory and the node positions.

r〈n〉, a〈n〉, t〈n〉 x(t),p〈k〉

Estimation procedure

Figure 3.1.: Block representation of the ROLAM estimation problem

3.1.2. Definition of a Coordinate system

As the problem definition does not induce a coordinate system, there is an ad-
ditional degree of freedom within this problem definition. Apparently, the whole
scenario can be translated or rotated to any place and any orientation without
changing the observations. Thus the degree of freedom is 6. Nevertheless, a so-
lution with respect to a self defined local coordinate system can be obtained.
One way to do so is sketched in Fig. 3.2.

p1

p2

p3

ex

ey

ez

Figure 3.2.: Definition of a coordinate system for the ROLAM problem
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If not all anchor nodes are collinear, the following right hand coordinate
system can be defined. Without loss of generality it is assumed that the anchor
nodes are enumerated in such a way that the first three nodes are not collinear.
Then the origin of the new coordinate system can be chosen in such a way that
the position of the first anchor node becomes the origin. The second anchor node
lies on the x-axis of the new coordinate system and anchor node 3 on the first
quadrant of the xy-plane. The z-axis is defined such that the coordinate system
becomes an orthogonal right hand coordinate system. Once a global reference
position and orientation is known the local solution can be translated from the
local to the global coordinate system.

3.1.3. The ROLAM problem is ill-posed

The full Cartesian relationship between two positions x(ti) and x(ti+1) is not
observable when only ranges ri and ri+1 are given. Moreover, without the knowl-
edge on the beacon positions p〈k〉 the problem can be considered to be ill-posed.

This is reflected by applying a ML estimator for the set of discrete position
x〈n〉 , {x(t1), ...,x(tn)} of the mobile node and the positions of the static
beacons p〈k〉.

[
x

〈n〉
,p

〈k〉
]

MAP
= arg max

x〈n〉,p〈k〉
p

(
x

〈n〉
, p

〈k〉|r〈n〉
, a

〈n〉
)
.

Applying Bayes Rule yields

p
(
x

〈n〉
,p

〈k〉|r〈n〉
, a

〈n〉
)

= p
(
r

〈n〉|x〈n〉
,p

〈k〉
, a

〈n〉
) p

(
x〈n〉,p〈k〉|a〈n〉

)

p(r〈n〉|a〈n〉)
. (3.2)

The denominator of Eq. (3.2) p
(
r〈n〉|a〈n〉

)
can be considered as normalizing

constant as it does not depend on x〈n〉 and p〈k〉. Furthermore, the formulation
for the ROLAM problem (see Def. 1) does not give any information on the prior
probability p

(
x〈n〉,p〈k〉|a〈n〉

)
. Removing these two terms and maximizing the

remaining propability density function results in the ML Estimator

[
x

〈n〉
,p

〈k〉
]

ML
= arg max

x〈n〉,p〈k〉
p

(
r

〈n〉|x〈n〉
,p

〈k〉
, a

〈n〉
)
.

The measurement error is assumed to be mutually independent. With Eq. (2.7)
a change in random variables gives way to the simplification

[
x

〈n〉
, p

〈k〉
]

ML
= arg max

x〈n〉,p〈k〉

n∏

i=1

p(ηi).
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In analogy to Eq. (2.9), for normally distributed noise

p(ηi) =
1√

2πσi

e
−

(||xi−pai
||−ri)2

2σ2
i , 1 ≤ i ≤ n, (3.3)

the negative log-likelihood becomes

ℓ
(
x

〈n〉
,p

〈k〉
)
,

1
2

n∑

i=1

1
σ2

i

(||xi − pai
|| − ri)

2 +
1
2

n∑

i=1

log(2πσ2
i ).

Therefore, the ML-estimator reads

[
x

〈n〉
,p

〈k〉
]

ML
= arg min

xn,pk

n∑

i=1

1
σ2

i

(||xi − pai
|| − ri)

2
. (3.4)

This is almost identical to the non linear least squares approach from Sec. 2.2.2
that was optimal with respect to variance minimization. But minimization of
Eq. (3.4) does not yield a unique solution for the ROLAM-problem. For any set
of measurements r〈n〉, a〈n〉, there is an infinite number of beacon positions p〈k〉

and vehicle positions x〈n〉 such that

n∑

i=1

1
σ2

i

(||xi − pai
|| − ri)

2 = 0.

For every new measurement ri the position xi has to be estimated and thus adds
3 more unknowns compared to one additional known variable. Furthermore, the
positions of the beacons p〈k〉 are unknown and form another set of unknown pa-
rameters. Fig. 3.3 illustrates two different solutions that exactly comply to the
same dataset for a two-dimensional ROLAM-problem. In order to find an accu-
rate estimate for the unknown parameters x〈n〉 and p〈k〉 additional constraints
are needed.

3.2. State of the art

This section classifies the ROLAM problem and discusses the applicability of
existing methods. The ROLAM problem is situated between the problem of
simultaneous localization and mapping and the problem of localization in self
adjusting cell networks.
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Figure 3.3.: Two optimal solutions to one data set

3.2.1. Simultaneous localization and mapping

When dealing with hybrid navigation techniques as described in Sec. 2.4 the
update measurements zi require knowledge on the infrastructure. For the case
of range measurements, the beacon positions p〈k〉 usually have to be known. A
problem class that describes problems with unknown beacon positions is com-
monly known as Simultaneous Localization And Mapping (SLAM) [45]. Within
this approach, unknown landmarks are spotted, identified and localized relative
to the mobile unit. During this process a map of the environment is generated
and the mobile unit is localized within the map at the same time. The main
difference to classic hybrid localization systems is the unavailability of infras-
tructural information. In general the same assumptions are made as in Sec.
2.4.2. Consequently the problem can be described as a Dynamic Bayes Network
as depicted in Fig. 3.4.

The dotted lines indicate unknown quantities. As before, the declared goal is
to obtain the maximum a posteriori estimator

[
s

〈n〉
,p

〈k〉
]

MAP
= arg max

s〈n〉,p〈k〉
p

(
s

〈n〉
,p

〈k〉|z〈n〉
,u

〈n〉
, a

〈n〉
)

for the unknown variables. Here, the set of positions x〈n〉 was replaced with
the more generic denotation s〈n〉 to cover the dynamic state of the mobile unit.
The general formulation for the SLAM problem even assumes that the sensor
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...s1 s2 s3 sn

z1

z2

z3

zn

u2 u3 un

p1

p2

Figure 3.4.: SLAM as a dynamic Bayesian network

to data associations a〈n〉 are unknown. This is not the case for the ROLAM
problem as formulated in Def. 1.

After performing the same transformations as in Sec. 2.4.2 one finally obtains
the update equation [46]

p
(
sn,p

〈k〉|z〈n〉
,u

〈n〉
, a

〈n〉
)

= p
(
zn|sn, p

〈k〉
, a

〈n〉
)

·

·
∫

p(sn|sn−1,un) p
(
s

〈n−1〉|z〈n−1〉
,u

〈n−1〉
, a

〈n−1〉
)

dsn−1.
(3.5)

With this augmented number of unknowns, the same approaches as for classic
hybrid navigation can be used.

History and state of development

A seminal work in SLAM was the research of R.C. Smith and P. Cheeseman

[45], that developed the theoretic foundations of this problem. In their work,
the test scenario comprises a robot that observes features of unknown positions.
To work with these unknowns the authors introduce a representation for spatial
information of the beacon positions they call the stochastic map. As the robot
is aware of his own control, it is able to develop a relative estimate of its own
position. Furthermore, the probability density functions representing the tar-
gets position and the beacon positions are assumed to be normal. Under these
conditions the paper shows that the estimate for the landmarks are necessarily
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correlated with each other. To merge the approximate transformations between
target and beacon position over time, R.C. Smith and P. Cheeseman [47]
propose an Extended Kalman Filter EKF and fuse the observations with the
relative positioning of the robot. This way, the beacons can be localized in form
of the stochastic map. One of the first implementations using this approach
was already realized in 1989 by Moutarlier and Chatila [48]. Further pi-
oneering work in this field was conducted by the research group of Hugh F.

Durrant-Whyte in the early 1990’s [49, 50] who showed for the first time
that the stochastic map converges monotonically to a relative map with zero
uncertainty. The authors use an EKF with an enhanced state vector consisting
of robot position and landmark position which was the dominant approach to
the SLAM problem at that time. The authors further point out the increased
complexity of the algorithm compared to classical hybrid navigation. As the
state variable comprises of the targets state and the unknown feature positions,
the number of elements of the covariance matrix grows quadratically with an
increasing number of landmarks. Leonhard and Durrant-Whyte propose to
reduce the filter to a series of decoupled beacon to vehicle filters as described in
[49]. The latest and probably one of the most promising derivates of SLAM algo-
rithms so far, is based on the work of Montemerlo and Thrun [51] omitting
the former mentioned drawbacks. In the case of their FastSLAM algorithm, the
authors propose a particle filter to estimate the trajectory and multiple EKF’s
to estimate the beacon positions [51]. This is achieved by a factored posterior
representation

p
(
s

〈n〉
,p

〈k〉|z〈n〉
,u

〈n〉
, a

〈n〉
)

=

= p
(
s

〈n〉|z〈n〉
,u

〈n〉
, a

〈n〉
)

︸ ︷︷ ︸

path posterior

k∏

j=1

p
(
pj |s〈n〉

, z
〈n〉
,u

〈n〉
, a

〈n〉
)

︸ ︷︷ ︸

landmark estimators

as presented in their paper.
Assumed, the observation zi covers position information between si and pai

by using stereo cameras this approach is already approved to perform well with
log(n) complexity for the upper sketched SLAM problem. SLAM with fragmen-
tary information though is a vibrant field of research at the moment. Täubig

and Schröder adress the problem of fusing direction information offered by
a monocular camera with control data of the target [52]. In their paper the
authors propose an extended version of the FastSLAM algorithm to solve the
problem in realtime. However, the authors also identify the initialization as the
crucial point of their implemention. One of the most recent developments within
this field was proposed in 2007 by Davison et al. [53]. In this paper, an al-
gorithm called MonoSLAM is introduced that only uses information gathered
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from a monocular camera. One of the key features is a constant velocity and
constant angular velocity motion model for smooth camera movement replacing
the control information. Of course such a model imposes a certain smoothness
of the camera movement which can be guaranteed for most applications.

Adaptability to the ROLAM problem

As the beacons and their unknown positions p〈k〉 can be considered to be an
abstract map, the ROLAM problem can be interpreted as a SLAM problem. In
some way, the ROLAM problem can be considered to be easier to solve than
the classical SLAM problem as the data associations a〈n〉 are assumed to be
known within the problem definition. The ROLAM problem, as it was intro-
duced in Sec. 3.1, does not include the correspondence problem. Nevertheless,
the sparse amount of information makes the problem hard to handle. Recall the
characteristics of the ROLAM problem:

• No control data u〈n〉 is available.

• The measurements r〈n〉 contain only range information instead of full rel-
ative position.

• The measurements are not aligned in time: ti 6= ti+1.

A straightforward implementation of an existing method is therefore not possi-
ble.

3.2.2. Self adjusting cell networks

Another field of work related to the ROLAM problem is the field of self cali-
brating cell networks. Usually, such networks use information based on ranges
(RSS,TOA) or range differences (TDOA) to calculated the geometry of the net-
work. The authors of [54, 55, 56] and [57] for example propose solutions to the
problem of geometry estimation of a cell network based on range data. These
methods solve the mapping problem for a static scenario with pairwise range
distance information available in between the beacons. As the ROLAM problem
only offers range measurements to the target, these methods are not applicable.

Grabowski and Khosla investigate a dynamic scenario with a set of small
robots that pairwise measure ranges to other robots [58]. At each timestep all
measures are assumed to be synchronized. To improve the accuracy concerning
the geometrical setup and outlier detection the authors use a simple statistical
motion model based on control information for rotation and translation. Once
a measurement seems to be implausible with regard to the mobility constraints
of the mobile unit it is discarded. Although this method is not applicable to the
ROLAM problem attention can be drawn to the motion model.
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Similar to the ROLAM problem, some authors propose moving targets for
network calibration. In [59], Galstyan et al. present two solutions using a
mobile unit to calibrate a sensor network. The first scenario assumes a moving
beacon with known position that measures ranges to the static beacons. In the
second scenario the position of the moving target is unknown but the author
emphasizes that, as long as there are enough nodes of known positions in the
vicinity of a given node, the target can be localized and this information can be
used to impose new constraints on the position of the target. Within the RO-
LAM problem these constraints are not met. In [60], Cevher and McClellan

propose an EKF that estimates the position of a moving target and at the same
time the geometry of the static cell network. In contrast to the ROLAM prob-
lem, the input consists of direction information in the form of AOA. Moreover,
to obtain a feasible solution, a target with constant velocity is assumed which
is not applicable to ROLAM.

The closest match to the ROLAM problem poses the work from Newman

and Leonard [61]. Here an autonomous underwater vehicle is equipped with
acoustic transceivers that measure ranges by TOA between vehicle and small
subsea transponders of unknown position. These measurements are not assumed
to be synchronized. The authors further presume a certain depth of the vehi-
cle so that the problem can be considered to be two-dimensional. To obtain
a unique solution, the authors propose a simple trajectory model of constant
velocity. After discretization this leads to a trivial linear relationship between
three consecutive poses of the form xi−1 − 2xi + xi+1 = 0. As a result, an
equation system is presented that consists of the trajectory model as well as the
measurement model that has to be solved in whole. Following Olson, Leonard

and Teller [62], this approach suffers from "significant convergence problems".
They propose an alternative method that works in two steps. At first an initial
estimate on the beacon positions is obtained by finding pairwise intersections of
a set of measurements. Within the approach, the association of the appropriate
measurements is established by the vehicle’s dead-reckoned position. Each of
these intersections is gathered in an accumulator that is represented by a grid
chosen in such a way that it matches the total uncertainty in the solution. The
second step incorporates an EKF that uses the previously found solution as ini-
tialization. The incorporated motion model assumes no movement in between
timesteps. As for the ROLAM problem, no initial estimate can be found without
any additional information of the vehicles movement.

An exact division of all available methods into SLAM and self adjusting net-
works can not be performed. The following method, called LaSLAT can be
positioned in between both methods and is close to what is needed to solve the
ROLAM problem. Therefore the next section is dedicated to this method.
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3.2.3. LaSLAT

In [63] Taylor et al. propose an algorithm that solves a special variant of the
ROLAM problem the authors call the Simultaneous Localization And Tracking
(SLAT) problem. In contrast to the ROLAM problem the range measurements
are assumed to be synchronized in time. The presented algorithm is a Bayesian
filter that provides estimates for both, the target location and the beacon posi-
tions as well as their uncertainties in form of covariance matrices. As the method
extensively uses Laplaces method to approximate occurring covariance matrices
the algorithm is named LaSLAT. This algorithm is sketched in more detail.

The approach

Let qi=[pi θi]T represent unknown parameters from a beacon with index i.
pi ∈ R

3 denotes the beacon position and θi ∈ R a calibration parameter denoting
a constant bias for the range measurements. The vector q , [qT

1 · · · qT
k ]T

denotes the whole set of parameters for all sensors. Let furthermore xi = x(ti)
denote the position of the moving target at time ti. The range measurements
are assumed to be corrupted by additive zero mean Gaussian noise such that

ri = ||xi − pai
|| + θai + ηi, ηi ∼ N (0, σ2), (3.6)

with ηi denoting the noise. Moreover, ri and ai denote the range measurement
at the time ti and the measurement to data association, respectively. To increase
the convergence speed, the authors propose to divide the sequence of the target
positions xi into batches, each of them containing a subsequence of m positions.
Let

I
j : N → N, i 7→ i+ (j − 1)m, I

j
i , I

j(i),

denote a map used for indexing with j ≥ 1. Then

yn ,
[
x

T
In

1
· · · x

T
In

m

]T

denotes the vector of the n th batch and

zn ,
[
r

T
In

1
· · · r

T
In

m

]T

the vector of the respective measurements. Moreover let

z
〈n〉

, {z1, ..., zn}

denote the set of all measurement batches until batch n. Then, the goal of
LaSLAT is to iteratively compute the posterior density for new batches, given
by

p
(
yn, q|z〈n〉

)
∝ p(zn|yn, q) p

(
yn, q|z〈n−1〉

)
. (3.7)
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Eq. (3.7) can be obtained by applying Bayes Rule. This equation resembles to
the SLAM formulation introduced in Sec. 3.2.1 and could be treated in the same
way. Nevertheless, the authors emphasize that an iterative approach in form
of an EKF for solving this equation may be inaccurate as the measurement
model from Eq. (3.6) is not linear. Instead of using the update step of the
EKF, LaSLAT approximates the true posterior p

(
yn, q|z〈n〉

)
with a Gaussian

distribution q(yn, q|z〈n〉) obtained from an optimization step that incorporates
a Newton-Raphson optimization algorithm. The mean of q(yn, q|z〈n〉) is the
minimum of the optimization problem at step n that writes as

[
y

T
n q

T
]T

= arg min
yn,q

(q − q̄)T
Ω̄(q − q̄)+

+
1
σ2

In
m∑

i=In
1

(||xi − pai
|| + θai − ri)

2
,

(3.8)

with the estimated prior distribution parameterized by

q̄ = E
[
q|z〈n−1〉

]
, and Ω̄ = Cov−1

[
q|z〈n−1〉

]
.

The covariance matrix of the distribution is obtained by Laplace’s method as
described in Sec. 5.1.2. The first term of Eq. (3.8) represents the negative log-
arithm of p

(
yn, q|z〈n−1〉

)
and the second term of p(zn|yn, q). The predic-

tions q̄ and Ω̄ are obtained by marginalizing out yn−1 from the former result

q(yn−1, qn−1|z〈n−1〉) for the previous batch. With

Cov−1
[[
y

T
n−1 q

T
n−1

]T
∣
∣
∣ z

〈n−1〉
]

=

[
Ωyn−1

Ωyn−1qn−1

Ωqn−1yn−1
Ωqn−1

]

the predictions become

q̄ = qn−1 and Ω̄ = Ωqn−1
−Ωyn−1qn−1

Ω
−1
yn−1

Ωqn−1yn−1
.

As can be seen by Eq. (3.8), the authors do not propose a dynamic model or
prior knowledge on the targets position within LaSLAT. However, they propose
a way to extend the existing framework to incorporate prior knowledge on the
movement. Without any prior knowledge, the initial probability density q(y0, q)
is initialized by using a diagonal covariance matrix with great diagonal elements.
No further comment on initializing the mean is made.

The presented results for LaSLAT were obtained by using the Cricket ranging
system [64]. Without batching, the standard EKF applied on Eq. (3.7) is the
fastest of all tested algorithms. However, the results show the advantage of the
optimization step compared to a standard EKF by an increased rate of conver-
gence, even for the LaSLAT implementation with a batch size of one. Moreover,
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the results show that an increased batch size greatly improves the speed of con-
vergence. The size of the batch also influences the clock cycle obtaining actual
results. For every new step, the algorithm has to wait for a new batch of mea-
surements before starting the iteration step. Concerning the quality, the best
result for this approach is achieved by treating all available measurements as
one single batch. Without any knowledge on q(y0, q), the minimization problem
from Eq. (3.8) becomes a least squares problem. If one applies LaSLAT on the
ROLAM problem by ignoring the bias parameters θi and introducing a variable
variance σi for the measurements, one ends up with the ML estimator already
introduced in Sec. 3.1.3. This shows that LaSLAT can not be applied on the
ROLAM problem without preprocessing the data. LaSLAT requires a greater
number of measurements than the number of unknowns in every optimization
step.

Alignment in time domain

For the ML estimator from Eq. (3.4) and LaSLAT feasibility can be assured by
an alignment of the range data in time domain. Note, this can be interpreted
as a simple path model that only allows a change in position at a few discrete
time instances.

Let
T

〈l〉
, {T1, ..., Tl}, Ti+1 − Ti = ∆T, l ≤ n (3.9)

denote a discrete time domain and

X
〈l〉

, {X1, ...,X l}

a corresponding alignment for all attained positions. The alignments of t〈n〉 and
x〈n〉 to a new set of time instances and acquired positions

ť
〈n〉 = {ť1, ..., ťn}, x̌

〈n〉 = {x̌1, ..., x̌n}

can then be performed by

ťi = arg min
τ∈T 〈l〉

|ti − τ | 1 ≤ i ≤ n.

Performing this, a map

s : {1, ..., n} → {1, ..., l} i 7→ j

can be constructed such that

ťi = Ts(i) x̌i = Xs(i).

With this modification of the data, the ML-estimator from Sec. 3.1.3 results in
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...t1 tn

T1 T2 T3 T4 T5 T6

Figure 3.5.: Alignment map for l , 6 from tn to T l

[
x

〈n〉
,p

〈k〉
]

ML
= argmin

x̌n,pk

1
n

n∑

i=1

(||x̌i − pai
|| − ri)

2
, x̌i ∈ X〈l〉

. (3.10)

Apparently, this procedure greatly reduces the number of unknown variables as
x̌i = x̌j for s(i) = s(j) but still remains a problem of the same class. However,
a unique solution can only be assured if the number of unknown parameters is
smaller than the number of measurements.

3l + 3k − 6 ≤ n. (3.11)

Furthermore, at least four available range measurements must be associated to
each timestep Ti, 1 ≤ i ≤ l to uniquely define the appropriate position Xi.

A small l therefore increases the chance to obtain a unique solution. However,
the result becomes more grainy because of the alignment error. If l is chosen
too large, measurement errors strongly influence the solution and render a noisy
result until the point where Eq. (3.11) gets infringed.

3.2.4. Conclusions

The ROLAM problem as defined in this thesis is an ill-posed problem and
therefore can not be resolved without additional assumptions. It can be clas-
sified as a special occurrence of a SLAM problem. By the cell based setup
for ROLAM there is also a strong overlap of ROLAM with self adjusting cell-
networks. However, existing algorithms for SLAM or self adjusting cell networks
cannot be applied directly due to the sparse amount of information within the
ROLAM problem. Only very few methods deal with ill-posed localization prob-
lems. Within these methods very basic dynamic models that are customized for
the particular application are implemented.

Motivated by the ill-posed ROLAM problem this thesis contributes with a
novel and generic dynamic model for ill-posed localization problems. This model
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allows to compensate missing information for localization problems and to quan-
tify a minimal amount of data required for the specific application.
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This chapter establishes a generic dynamic model to solve ill-posed localization
problems. As it is impossible to get something for nothing, the popular adage
"There Ain’t No Such Thing As A Free Lunch" from a science fiction novel [65]
also holds for ill-posed localization problems. Without inserting additional in-
formation into an infeasible problem formulation and thus changing the problem
at hand, it stays infeasible.

The basic idea in this thesis is to represent the unknown trajectories as a
member of a vector space of functions and then to restrict the search space to
compact sets. This technique is strongly related to Tikhonov regularization in-
troduced by Tikhonov and Arsenin in 1977 [66]. The particular regularization
technique of Kernel Regression is proposed to deal with the ROLAM problem.
Within this technique the solution is embedded within a complete function
space called Reproducing Kernel Hilbert Space (RKHS). Kernel Regression and
the RKHS is introduced in Sec. 4.1.

For good performance the artificially inserted information needs to reflect
the true situation. Within kernel regression the restriction is performed by a
penalty term in form of a vector space norm of the RKHS that balances data
compliance and smoothness. The critical design element of the penalty term is
given by the form of the kernel function that spans the RKHS. The design of the
kernel function for localization problems is addressed in Sec. 4.2. First, a physical
motivated model allows to design a Stochastic Process that reflects the problem
at hand. Then, the realizations of the stochastic process are embedded within a
RKHS. From this perspective it is shown that solving the resulting minimization
problem can also be interpreted as maximum a posteriori estimation.

The minimization problem for the ROLAM problem is explicitly formulated
in Sec. 4.3.

Sec. 4.4 clarifies under which conditions kernel regression can be successful
adapted to ill-posed localization problems. The more restrictive the solution
space the more solutions are filtered out and the more stable the approach.
On the other hand reasonable solutions should not be excluded from the set
of possible solutions. Thus, the kernel design plays a major role within this
chapter.

49
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4.1. Kernel regression

In statistics, regression analysis is a technique to investigate relationships be-
tween variables. During the regression procedure the investigator gathers obser-
vations on some underlying parameters of interest and employs a fit to estimate
the effect of the data on the parameters. Most commonly, the estimate consists
of a conditional expectation of the unknown parameters given some erroneous
data.

Let
f : T → F, t 7→ f(t, θ)

denote the regression function that is defined by a finite parameter vector θ ∈ Θ.
Let’s further assume the availability of n observations zi ∈ Z, 1 ≤ i ≤ n that
are connected to f(t, θ) via an observation model. Then, the optimal parameter
vector is obtained by minimizing a rating functional of the form

θopt = arg min
θ∈Θ

R(f(t, θ), z1, ..., zn).

Therefore, two design aspects can be considered as the key features of accurate
regression methods:

1. An appropriate parameter set Θ that defines the solution space.

2. An adequate rating function R(f(t, θ), z1, ..., zn) that describes the under-
lying relationship of the variables.

4.1.1. Empirical risk minimization and consistency

For kernel regression, the rating functional can be motivated by the concept of
Expected Risk Minimization [67, p. 66].

Let Θ be an appropriate parameter set such that f(t, θ) is well defined for
any t ∈ T and θ ∈ Θ. The solution space is denoted by

F = {f(., θ) : θ ∈ Θ} .

In analogy to Chapter 2 let

h : F → Z, f(t, θ) 7→ z

denote a known observation model that describes the connection of observations
and parameters.

Definition 2. (Loss Function)
Denote by (t, z, z̄) ∈ T×Z×Z the triplet consisting of a pattern t, an observation
z and a prediction z̄ = h(f(t, θ)). Then the map c : T × Z × Z → [0,∞) with the
property c(t, z, z) = 0 for all t ∈ T and z ∈ Z is called a loss function.
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By definition, the loss function describes the quality of the fit of an element of
f ∈ F with respect to one available observation. While a perfect fit is designed
to cause no loss, the loss is increasing for a bad fit.

The concept of expected risk minimization is to minimize the functional

Rexp[f ] , E[c(t, z, z̄)] =

∫

Z

∫

T

c(t, z, z̄)p(t, z) dtdz, z̄ , h(f(t, θ)), (4.1)

with respect to θ ∈ Θ which is called the expected risk. Here, p(t, z) can be
thought of the probability of the observation z at time t. In general, this density
function is unknown. Instead, a finite number of observations z1, ..., zn can give
a hint of the real density function. p(t, z) is therefore often replaced by the
empirical density

pemp (t, z) ,
1
n

n∑

i=1

δti(t)δzi(z)

with δa(t) , δ(a − t) and δ as the Dirac delta distribution [18, p. 591]. Fig.
4.1 sketches the true probability density of the observations and some discrete
samples.

z

t

zi

ti

p(t, z)

Figure 4.1.: Probability density for the observation and samples
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Inserted into Eq. (4.1) this replacement leads to the rating functional

Remp[f ] ,

∫

Z

∫

T

c(t, z, z̄)pemp (t, z) dtdz =
1
n

n∑

i=1

c(ti, zi, z̄i) (4.2)

also called the empirical risk. Consequently, minimization of Eq. (4.2) is called
empirical risk minimization. In many cases, the loss function is designed to
result in a maximum likelihood estimator.

For example let zi denote the observation at time ti that is subject to additive
and i.i.d. Gaussian noise

zi = f(ti, θ) + ηi, p(zi|θ, ti) = N (f(ti, θ), σ2
i ).

Then, the negative log-likelihood becomes

ℓ(θ) = − ln
n∏

i=1

p(zi|θ, ti) =
n∑

i=1

(
(zi − f(ti, θ))2

2σ2
i

− ln
1√

2πσi

)

.

Let now

c(ti, zi, z̄i) ,
(zi − z̄i)2

σ2
i

define a cost function. Then minimizing the sum of all cost functions

[θ]ML = arg min
θ∈Θ

n∑

i=1

c(ti, zi, z̄i) = arg min
θ∈Θ

Remp[f ]

results in the ML estimator.
From this perspective, the ML estimator from Eq. (3.4) can be interpreted as

a minimizer for the empirical risk. With this notion it is possible to use results
from the literature that clarify when minimization of the empirical risk Eq.
(4.2) can be successful. In 1998 Vapnik and Chervonenkis, one of the main
contributors to the theory of Support Vector Machines (SVN), stated that the
basic concept is to assure consistency.

Theorem 1 (Vapnik & Chervonenkis [68] ). One-sided uniform convergence in
probability,

lim
n→∞

P{sup
f∈F

(|R[f ] −Remp[f ]|) > ǫ} = 0

for all ǫ > 0, is a necessary and sufficient condition for nontrivial consistency
of empirical risk minimization.
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For consistency, the difference between the empirical risk and the expected
risk has to converge to zero in probability as the number of samples is increased.
As mentioned before, there is a connection between the capacity of the solution
space F and consistency. If the function space is very capacious then there is a
higher risk of choosing an infeasible solution. In fact there is more than one loose
bound available in the literature stating the latter [68, 69, 70]. All these methods
differ in the way they measure capacity. The problem formulation from Eq. (3.4)
did not assure consistency because the solution space was too capacious.

4.1.2. Reproducing Kernel Hilbert Spaces

A popular way to reduce the solution space is the assumption of linearity which
is covered by linear regression techniques. Although such a model could be
directly applied to the ROLAM problem it is clear that a linear movement only
is not representative enough for most cases. Without the concrete knowledge of
an appropriate solution space modelled by the space of parameters Θ one has to
deal with contradictory goals. A small number of parameters makes the problem
behave well conditioned but also restricts the diversity of the solution space as
for the linear case. With an increasing number of a priori unknown parameters
θ ∈ Θ the probability increases that the desired solution can be represented
by the parameters. A great amount of parameters may however lead to a very
bad conditioned problem that might be very hard or even impossible to solve.
Underfitting and overfitting are the terms describing this dilemma within the
machine learning community.

Definition of the RKHS

For kernel regression, the solution space is always represented by a reproducing
kernel Hilbert space. As the name of the method presumes, kernel regression is
based on a certain function class called kernel functions. These functions corre-
spond to an inner product in some feature space H. The following statements
remain unproven within this thesis but can be found in the book of Schölkopf

and Smola [67].
Let φ denote a map

φ : T → H, t 7→ φ(t), (4.3)

from a compact subspace T ⊂ R to an inner product space H, also called the
feature space. Then the kernel function can be defined via the inner product
defined within H

k(t, t′) ,
〈
φ(t), φ(t′)

〉

.
(4.4)

By defining different maps, multiple kernel functions can be derived. Thus, by
using the kernel function, the inner product of a possibly high dimensional
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feature space can be evaluated without explicitly performing the feature map
itself. In fact, there are approaches that completely base on inner products. For
these methods the kernel function is relevant while the explicit knowledge of the
feature map is unessential. But how to design a kernel function without dealing
with the map from Eq. (4.3)? Moreover, which functions allow a representation
of the form Eq. (4.4)?

Definition 3. (Gram Matrix)
Given a function k : T2 → R and patterns t1, ..., tn ∈ T, the n × n matrix K
with elements

[K]ij , k(ti, tj)

is called the Gram matrix (or kernel matrix) of k with respect to t1, ..., tn.

The function k is called positive definite if and only if for any sampling
t1, ..., tn all eigenvalues of the corresponding Gram matrix are positive. Basi-
cally, it is the class of positive definite functions that allow a representation as
in Eq. (4.4). Originally revealed in 1909 by the British mathematician James
Mercer, the so called Mercer’s theorem even allows to explicitly construct the
map from Eq. (4.3) for any positive definite function [71, p. 230]. For simplicity
an explicit construction of the RKHS is taken from [67, p. 32].

Let φ denote the map depicted in Fig. 4.2.

T H
k(t, ti)

tt titi

7→

φ : T → H

Figure 4.2.: The kernel map

Furthermore let t1, ..., tn and t′1, ..., t
′
m be sample times and

f(t) =

n∑

i=1

αik(t, ti), g(t) =

m∑

j=1

βjk(t, t′j) (4.5)

be two elements of a function space H that is spanned by a positive definite k.
With an inner product that is defined by

〈f, g〉H ,

n∑

i=1

m∑

j=1

αiβjk(ti, tj).
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this becomes a pre-Hilbert space with the characteristic

〈f, k(., t)〉H = f(t) (4.6)

that is called reproducing property of the kernel function. The proof of Eq.
(4.6) is trivial and can be obtained by evaluation. In particular, this definition
constructs a space where Eq. (4.4)

〈
k(., t), k(., t′)

〉

H
= k(t′, t) = k(t, t′) =

〈
φ(t), φ(t′)

〉

H

is fulfilled. For any positive definite kernel k such a mapping can be constructed.
The completion of all elements that can be represented by Eq. (4.5) forms the
Hilbert space H that is also called reproducing Hilbert space.

Definition 4. (Reproducing Kernel Hilbert Space [67, p. 36])
Let T be a nonempty set (often called the index set) and H a Hilbert space
of functions f : T → R. Then H is called a reproducing kernel Hilbert space
endowed with the dot product 〈., .〉H (and the norm ||f ||H :=

√
〈f, f〉H) if there

exists a function k : T × T → R with the following properties.
1. k has the reproducing property 1

〈f, k(., t)〉H = f(t) ∀f ∈ H,

in particular, 〈
k(., t), k(., t′)

〉

H
= k(t, t′).

2. k spans H, i.e. H = span{k(., t)|t ∈ T}, where X denotes the completion of
the set X.

Fig. 4.3 shows an element of a reproducing kernel Hilbert space spanned by
the Gaussian kernel

k(t, t′) , e
− 1

8
(t−t′)2

,

with parameters as defined in Tab. 4.1.

i 1 2 3 4 5

ti 2.0 3.0 4.5 4.1 5.3
αi -0.5 1.6 0.2 0.15 0.31

Table 4.1.: Index set t1, ..., t5 and coefficients α1, ..., α5

1Note that this implies that each f ∈ H is actually a single function whose values at any
t ∈ T are well-defined. In contrast, L

2 Hilbert spaces usually do not have this property.
The elements of these spaces are equivalence classes of functions that disagree only on
sets of measure 0; see footnote 15 in Section B.3 [67].
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Figure 4.3.: Element of a RKHS

Representing all elements of the RKHS

So far, the elements of H were written as a finite sum of weighted kernel func-
tions. However, there are elements in H where this is not possible. A more
generic approach of expressing the elements of H can be found in [72].

Let G be the space of all functions that can be constructed by

G ,






f(t) ,

∫

T

k(t, τ )α(τ )dτ






. (4.7)

Then G is dense in H if α ∈ L1(T, dτ ) ∪ MD. Here, L1(T, dτ ) denotes the space
space of integrable functions,

L
1(T) =






α : T → R :

∫

T

|α(τ )|dτ < ∞







and MD the space of discrete measures

MD ,

{

α =
∑

i

ciδti : {ci} ⊂ R, {ti} ⊂ T,
∑

i

|ci| < ∞
}

(4.8)

for a compact set T. δt denotes the Dirac delta supported at t ∈ T in Eq. (4.8).
Note, the sum in Eq. (4.8) may be infinite. With this notation, the norm of a
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function within the RKHS becomes

||f ||2
H =

∫

T

∫

T

k(τ1, τ2)α(τ1)α(τ2)dτ1dτ2. (4.9)

Translation invariant kernels

For the class of translation invariant kernel functions with the property

k(ti, tj) = k
′(ti − tj),

the norm from Eq. (4.9) may also be formulated within the frequency domain.
Let k(ti, tj) denote a translation invariant kernel, then by Eq. (4.7) the element
of the RKHS spanned by k can be expressed by the convolution integral

f(t) ,

∫

T

k(t, τ )α(τ )dτ =

∫

T

k
′(t− τ )α(τ )dτ. (4.10)

Let further

F (ω) , F {f}(ω) =

∞∫

−∞

f(t)e−iωtdt,

K(ω) , F {k′(t)}(ω) and A(ω) , F {α}(ω) denote the Fourier transformations
of f(t), k′(t) and α(t). Then, Eq. (4.10) corresponds to

F (ω) = K(ω) · A(ω)

after transformation into the frequency domain [18, p. 679]. Disregarding the
constant factor 2π, the Fourier transformation is an isometric isomorphism
within the space of square integrable functions [71, p. 171], i.e.

〈f, α〉
L2 ,

∫

T

f(τ )α(τ )dτ =
1

2π

∫

Ω

F (ω)A(ω)dω.

The norm within the RKHS can therefore be written as

||f ||2
H =

∫

T

∫

T

k(τ1, τ2)α(τ1)α(τ2)dτ1dτ2 =
1

2π

∫

Ω

F (ω)F (ω)
K(ω)

dω. (4.11)

In frequency domain, the Fourier transformation of the kernel function displays
the filtering properties of the kernel. If f ∈ H contains frequencies that are only
sparsely contained within the kernel function, the norm of the element becomes
very big. This filtering property of the norm is used to restrict the space of
functions in the following chapters.
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4.1.3. Regularization

For kernel regression, the solution space is always represented by a reproducing
kernel Hilbert space. This space is usually very large and does not define a fixed
set of parameters to optimize. However, the basic idea in kernel regression is to
restrict the search space to a compact set and then apply the following theorem.

Theorem 2. (Operator Inversion Lemma [67, p. 88])
Let X be a compact set and let the map f : X → Y be continuous. Then there
exists an inverse map f−1 : f(X) → X that is also continuous.

Instead of directly choosing a compact subset of H the formulation of the
minimization problem is added by a regularization term Ω[f ] that leads to an
improved conditioning of the problem

Rreg[f ] , Remp[f ] + µΩ[f ]. (4.12)

The resulting functional is called regularized risk functional. This is motivated
by the idea that the regularization term causes consistency by penalizing func-
tions that aren’t smooth. Ω[f ] denotes a term controlling the capacity of the
function space and µ is a modeling parameter balancing the capacity versus
the cost function Remp[f ]. This implies additional information on the solution
since the regularizing term quantifies the non smooth content of the function.
Therefore, the general assumption here is that all possible solutions f(t) exhibit
smoothness.

Recall, the solution space f ∈ H is constructed to be a RKHS. The basic idea
of kernel regression is to express the regularization term Ω[f ] by means of the
norm in the RKHS. If the assumed smoothness property of the problem can
be expressed by means of a norm within the RKHS, then the minimizer of Eq.
(4.12) can be expressed by a finite dimensional vector.

Theorem 3. (Representer Theorem [73])
Denote by Ω : [0,∞) → R a strictly monotonic increasing function, by T a

set, and by c : (T × R
2)n → R ∪ {∞} an arbitrary loss function. Then each

minimizer f ∈ H of the regularized risk

c ((t1, z1, z̄1), ..., (tn, zn, z̄n)) +Ω(||f ||H) (4.13)

admits a representation of the form

f(t) =

n∑

i=1

αik(ti, t).



4.2. Kernel design 59

Although the solution space H is an infinite dimensional space of functions,
a regularizer defined as in Eq. (4.13) allows to reduce the search space to a
finite dimensional parameter space denoted by θ , α = [α1 · · ·αn]T ∈ R

n.
Consequently, the squared norm ||f ||2H can be simplified to

||f ||2H = 〈f, f〉H =

〈
n∑

i=1

αik(ti, .),

n∑

j=1

αjk(tj , .)

〉

H

=

=
n∑

i=1

n∑

j=1

αiαj〈k(ti, .), k(tj , .)〉H = α
T
Kα,

with K denoting the Gramian matrix. With the definition Ω : R → R, ξ 7→ ξ2,
the final parameterized minimization problem then becomes

Rreg[f ] , Remp[f ] + µα
T
Kα. (4.14)

Eq. (4.14) can now be minimized by standard optimization algorithms. However
note, the kernel function has to be chosen properly for good performance.

4.2. Kernel design

The regularizing term µαTKα, respectively the kernel function k(., .), is the
essential design element for kernel regression. Therefore, the filtering property
of the kernel function needs to reflect true information. In this section, a kernel
function is designed with respect to the ROLAM problem.

4.2.1. Physical motivation

Let

x : R → R
3
, t 7→

[
x1(t)
x2(t)
x3(t)

]

denote a three dimensional trajectory describing the movement of the target.
As before the denotation xi = x(ti) is used for simplification.

Any trajectory is a solution of a differential equation

In Chapter 2.1 the localization problem was already formulated in form of a
dynamic system that implies a system of differential equations. A justification
for this can be found in the fact that x is representing a curve describing a
movement. In the general case, the set of differential equations describing the
movement of a complex mechanical system can be found by using Hamilton’s
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principle. [74]. For a single particle modelled as a point mass, the movement
can directly be described by Newton’s law’s of motion

mẍ(t) = fa(t).

In this notation fa(t) ∈ R
3 covers all relevant forces like control forces and

dissipative forces and m ∈ R the mass of the moving node. For the special case
of a moving particle subject to friction

fa(t) , f(t) − βẋ(t)

the dynamic model

mv̇(t) = −βv(t) + f(t), v(t) , ẋ(t) (4.15)

can be obtained. Here f(t) denotes the external driving forces and βv(t) covers
the friction directly proportional to the velocity. Langevin used this equation to
describe the Brownian motion of a particle moving within a fluid [75]. Although
other types of friction exist, this thesis sticks to this model for simplification
as the resulting differential equation can be described by a linear operator. Fol-
lowing this presumption, the external force f(t) is the origin for all possible
motions. As a consequence, the trajectory has to be continuous and differen-
tiable. Eq. (4.15) is a well known studied initial value problem. Provided, the
driving force is known and integrable, the differential equation can be solved.
For simplification let the driving forces be controlled independently in each di-
rection. Note, this corresponds to forces that are directly controlling the target
in the inertial frame. Then, Eq. (4.15) can be decoupled in each dimension and
can be solved separately. This one-dimensional treatment is kept until the end
of this chapter. Reduced to one dimension, Eq. (4.15) becomes

mv̇(t) = −βv(t) + f(t). (4.16)

The corresponding, one-dimensional motion model is depicted in Fig. 4.4. The

x(t)

βẋ(t) f(t)

Figure 4.4.: Simple one-dimensional motion model

solution can be expressed as the sum of the homogeneous solution and a par-
ticular solution

v(t) = v
p(t) + v

h(t).
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The homogeneous solution can be calculated by the roots of the characteristic
polynomial

CP(λ) = mλ+ β,

which results in

v
h(t) = c0 · e−

βt
m , c0 ∈ R.

The particular solution is calculated using a Greens function. Let L be defined
as the linear differential operator

L : V → F , v(t) 7→ f(t) = mv̇(t) + βv(t) (4.17)

mapping from the space of velocities V to the space of forces F . Then the Greens
function can be obtained by applying the Fourier transformation. Rewritten in
frequency domain, Eq. (4.15) becomes

V (ω) =
1

miω + β
F (ω),

with

F (ω) , F {f(t)} and V (ω) , F {v(t)}.

After defining the step function

H(t) ,

{
1, if t ≥ 0

0, if t < 0

the Green’s function gL(t) of L can be explicitly written as

gL(t) =
√

2π · F−1

{
1

miω + β

}

= e
−

βt
m
H(t)
m

.

The particular solution can be obtained by the convolution integral

v
p(t) =

∞∫

−∞

gL(t− τ )f(τ )dτ. (4.18)

Added to the homogeneous solution, the final solution for the differential equa-
tion becomes

v(t) = c0 · e−
βt
m +

∞∫

−∞

gL(t− τ )f(τ )dτ .
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With an initial value for the starting position x0 , x(0) and the starting velocity
v0 , v(0) the trajectory can be obtained by integration of the velocity function

x(t) = x0 +

t∫

0

v(τ )dτ. (4.19)

As mentioned before the trajectory becomes a continuous and differentiable
function.

An unknown force as the driver

From the former paragraph it follows that the trajectory can be uniquely deter-
mined by Eq. (4.19) if the force function f(t) is known and if starting conditions
for x(0) and v(0) are available. Unfortunately, no information on the controlling
forces is available for the problem at hand. However, for all practical applica-
tions, the forces are subject to physical processes and therefore limited in power.

Bounding the power of f(t) is modelled by postulating a Power Spectral Den-
sity (PSD) for the force function. To this end, let f(t) be an element of the
space of square integrable functions,

L
2(R) =






f : R → R :

∞∫

−∞

|f(τ )|2dτ < ∞






.

Then, a Fourier transformation of F (ω) = F {f}(w) and hence the PSD
Sf (ω) = F (ω)F (ω) exists. The typical assumption is, that high frequencies
are less represented than low frequencies. However, this is a matter of design
and may be chosen differently for different applications. Within this thesis the
parameterized model

Sf (ω) , a
2
e

− ω2

b2 (4.20)

is chosen. For more generality, the model parameters a, b ∈ R are introduced.
In Fig. 4.5, the PSD is illustrated for a , 1 and b , 2.

With this limitation for the force functions and with the limitation coming
from the differential Eq. (4.16) the search space for trajectories can be reduced.
Trajectories that come into consideration are solutions to Eq. (4.16) driven by an
unknown force function f(t) with a PSD close to Eq. (4.20). Because the force
function is unknown the whole scenario becomes a system with a stochastic
input. Consequently, the next section deals with the stochastic properties of
forces, velocities and trajectories.
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Figure 4.5.: power spectrum model for f(t) with different parameters

4.2.2. Stochastic approach

The derivations from the former section are now used to construct stochastic
processes for forces, velocities and trajectories such that they exhibit the prop-
erties postulated in Sec. 4.2.1. All processes can be constructed to be Gaussian
processes. This way, the stochastic properties of any sampling vector of the tra-
jectories can be described as a multivariate Gaussian distribution. This serves
as a prior distribution for the localization problem.

Gaussian Processes

Definition 5. A continuous random process y(t, ς) with t ∈ R and ς specifying
the sample space is said to be Gaussian if for every sequence of time instants
t1, ..., tn and n ∈ N, the random variables y(t1), ..., y(tn) are jointly normally
distributed.

By definition, a Gaussian process y(t, ς) is completely specified by its mean
function and covariance function that is denoted as follows

µy(t) = E[y(t, ς)] , (4.21)

ry(ti, tj) = E
[
(y(ti, ς) − µy(ti))(y(tj, ς) − µy(tj))

]
. (4.22)

The probability density function is well defined and can be consistently extended
to an infinite number of variables as stated in the Kolmogorov extension theorem
[76]. Thus, for every sequence of time instants t1, ..., tn the probability density
function of the vector y = [y(t1) · · · y(tn)]T can be explicitly written as

p(y) =
1

(
√

2π)n|Σy|0.5
e

− 1
2

yTΣy
−1y (4.23)

with the covariance matrix [Σy]ij , ry(ti, tj).



64 4. Kernel methods for localization

Definition 6. A continuous random process y(t, ς) is called strict-sense sta-
tionary (SSS) if its statistical properties are invariant to a shift of the origin.
The processes y(t, ς) and y(t+ τ, ς) with τ > 0 then have the same statistics. A
continuous random process y(t, ς) is called wide-sense stationary (WSS) if the
first two moments are invariant to a shift. The processes y(t, ς) and y(t+ τ, ς)
with τ > 0 then have the same mean and covariance.

Note, not all Gaussian processes are stationary. At least, the following remark
is worth a note.

Remark 1. All Gaussian processes that are WSS also are SSS as the whole
statistics is covered through mean and covariance.

Because all processes observed within this thesis are Gaussian processes no
further distinction is made between SSS and WSS. In most cases the processes
are either called stationary or not stationary. For stationary Gaussian processes
the autocorrelation function allows a representation of the form

ry(ti, tj) = r
′
y(ti − tj).

Inference of Gaussian processes

In Sec. 4.2.1 the solution for the trajectory was obtained in two steps. The
velocity vp(t) was calculated by convolving the driving force f(t) with the Greens
function gL(t) and the trajectory xp(t) by integration of vp(t). This is repeated
now for the stochastic processes f(t, ς) and vp(t, ς) to obtain xp(t, ς).

Consider a stochastic process f(t, ς) evolved by applying a linear operator T
on another stochastic process y(t, ς) that only operates on the variable t treating
ς as a parameter

f(t, ς) = T y(t, ς).

Such a system is called deterministic. Furthermore, if the input process is a
Gaussian process the output is also a Gaussian process [77, p. 191]. Note, the
property of stationarity can not be conserved for all kind of linear operators.
However, let T denote a Linear Time Invariant (LTI) system that can explicitly
be written as a convolution

T y , y ∗ g ,

∞∫

−∞

y(t− τ, ς)g(τ )dτ. (4.24)

If the input of such an operator is a stationary Gaussian process then the result-
ing process is a stationary Gaussian process [25, p. 398]. Thus, by starting with
an initial Gaussian process, other Gaussian processes can be constructed by
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applying linear operators of this kind. The expectation of the resulting process
f(t, ς) can be determined as follows:

µf (t) , E[f(t, ς)] = E[T y(t, ς)] = T E[y(t, ς)] = T µy(t)

for a linear operator T [25, p. 398]. The autocorrelation function of the resulting
process can by obtained by the Wiener-Khinchin theorem which states that the
PSD of a WSS process f(t, ς), real or complex, is the Fourier transformation of
its autocorrelation function [37, 25]

Sf (ω) = F
{
r

′
f (t)

}
=

∞∫

−∞

r
′
f (t)e−iωtdt.

With F (ω) , F {f(t, ς)}, Y (ω) , F {y(t, ς)} and G(ω) , F {g(t)}, the convolu-
tion in Eq. (4.24) becomes a product

F (ω) = G(ω) · Y (ω)

in frequency domain. The PSD of the output becomes

Sf (ω) = E
[
F (ω)F (ω)

]
= E

[
G(ω)Y (ω)G(ω)Y (ω)

]
= Sy(ω)G(ω)G(ω)

and therefore
ry(ti, tj) = F

−1
{
Sy(ω)G(ω)G(ω)

}
. (4.25)

Integrability and Continuity of stochastic processes

The trajectory can be evolved from the velocity by integration.

Definition 7. (integrability) [25, p. 428]
A process y(t, ς) is integrable in the mean square sense if the limit

t∫

0

y(τ, ς)dτ = lim
∆ti→0

∑

i

y(ti, ς)∆ti

exists in the mean square sense.

The integrability of the operator can be verified using the following theorem.

Theorem 4. [25, p. 428]
The process y(t, ς) is integrable in the mean square sense if

t∫

0

t∫

0

|ry(t1, t2)|dt1dt2 < ∞

with ry(t1, t2) , E
[
(y(t1, ς) − µy(t1))(y(t2, ς) − µy(t2))

]
denoting the autocor-

relation function of the stochastic process.
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Also, continuity can be defined for stochastic processes.

Definition 8. (continuity) [25, p. 426]
A process y(t, ς) is continuous in the mean square sense if

E
[
(y(t+ ǫ, ς) − y(t, ς))2

] ǫ→0−→ 0

exists in the mean square sense.

This is fulfilled as long as the autocorrelation function of the process is con-
tinuous.

The force process

By the assumptions from Sec. 4.2.1 the target is driven by a force with a PSD
specified by Eq. (4.20). Although the true force is unknown its statistical prop-
erties can be described by a stationary stochastic process. Let n(t, ς) be the
Gaussian white noise process with its statistical properties

µn(t) = 0 (4.26)

rn(ti, tj) =
1
ν
δ(ti − tj) (4.27)

and ν > 0 modeling the "intensity" of the noise.1 Let further T define the linear
operator

T : N → F , n(t, ς) 7→ (n ∗ h)(t, ς) (4.28)

with

h(t) ,
ab

√
ν√

2π
e

− t2b2

2

and "∗" denoting the convolution as defined in Eq. (4.24). Then the output of
the linear operator T is a stochastic process f(t, ς) with the requested PSD from
Eq. (4.20). This procedure, called prewhitening, is depicted in Fig. 4.6 [38].

The PSD of the result can be verified as follows. The operator defined in Eq.
(4.28) is of the form from Eq. (4.24) defined in the former section. Therefore, the
output of such a system is a stationary Gaussian process and fully described by
its expectation and covariance. The expectation of the resulting process f(t, ς)
can be determined to be

µf (t) = E[f(t, ς)] = E[T n(t, ς)] = T E[n(t, ς)] = 0.

1Following [76] (page 21) there does not exist any "reasonable" stationary stochastic process
with continuous paths satisfying Eq. (4.26). Nevertheless it is possible to represent n(t, ς)
as a generalized stochastic process that can be constructed as a probability measure on

a larger space than R
[0,∞).
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replacemen

h(t) f(t, ς)n(t, ς)

Figure 4.6.: Shaping filter with white noise n(t, ς) as input

The covariance and accordingly the autocorrelation function of f(t, ς) needs to
satisfy Eq. (4.25). The postulated PSD in Eq. (4.20) therefore is determined by

rf (ti, tj) = F
−1

{

a
2
e

− ω2

b2

}

= F
−1

{
Sn(ω)H(ω)H(ω)

}

with

H(ω) = F {h(t)} = a
√
νe

− ω2

2b2 .

As Sn(ω) = ν−1, this complies with Eq. (4.25)

a
2
e

− ω2

b2 =
1
ν
H(ω)H(ω).

By close inspection, the design parameters a and
√
ν can be considered to

be reciprocal and as such can be reduced to one parameter. Without loss of
generality, ν is defined as ν , 1 and a is kept as parameter. As the PSD defined
in Eq. (4.20) is square integrable,

∫

Ω

Sf (ω)2dω < ∞,

the inverse Fourier transformation of the PSD is well defined. The autocorrela-
tion function of f(t, ς) then finally becomes

rf (ti, tj) = F
−1

{

a
2
e

− ω2

b2

}

=
a2b

2
√
π
e

−
(ti −tj )2b2

4 .

As the input process n(t, ς) is stationary the output process f(t, ς) is stationary
as well. Moreover, the resulting process is continuous in mean square

E
[
(f(t+ ǫ, ς) − f(t, ς))2

]
= 2rf (0) − 2rf (ǫ)

ǫ→0−→ 0

as the autocorrelation function is continuous and integrable.
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The velocity process

After defining the stochastic process f(t, ς) representing the force, the next step
is to find a solution for the differential Eq. (4.16) with f(t, ς) as the driving force.
By the stochastic input, Eq. (4.16) becomes a Stochastic Differential Equation
(SDE). The solution of this equation is again a stochastic process.

For the special parameterization

a , 1, b
2
,

2
ǫ

with ǫ → 0, (4.29)

which renders the force process to be white Gaussian noise, the SDE becomes the
famous Ornstein-Uhlenbeck equation or also called Langevin equation [76, 75, 38]

dv
p(t, ς) = − β

m
v

p(t, ς) +
1
m
n(t, ς).

The solution for this SDG is a stochastic process called Ornstein-Uhlenbeck
process.

For an arbitrary choice of a and b the statistical properties of the velocity
process can be obtained as follows. The particular solution for the velocity can
be calculated by applying the linear operator L from Eq. (4.17). With f(t, ς) as
an integrable process, Eq. (4.18) can also be written as a convolution

L : F → V, f(t, ς) 7→ (gL ∗ f)(t, ω).

With Eq. (4.28) and the associativity and commutativity property of convolu-
tions

v
p = (gL ∗ h) ∗ n , w ∗ n

a new operator
W : N → V, n(t, ς) 7→ (w ∗ n)(t, ς)

can be defined. The transfer function w becomes1

w , gL ∗ h =
a

2m
e

−
β(2b2tm−β)

2m2b2

(

1 + erf

(
mb2t− β√

2mb

))

with the error function

erf (t) ,
2√
π

t∫

0

e
−τ2

dτ.

The transfer function w(t) is plotted in Fig. 4.7 for a = 1, b = 2, m = 10 and
β = 6. W is a linear operator describing a deterministic system and can be

1The calculations that lead to this results can be found in Sec. A.1.1.
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Figure 4.7.: Influence of the parameters a, b, β and m on w(t)

described by a convolution integral. The resulting stochastic process therefore
is also Gaussian and can be completely described by its mean and covariance.

µvp (t) = E[vp(t, ς)] = E[Wn(t, ς)] = WE[n(t, ς)] = 0.

Analogously to the former section, the autocorrelation function of vp(t, ς) can
be calculated using the Fourier transformation. With

W (ω) = G(ω)H(ω) =
ae

− ω2

2b2

miω + β
, G(ω) , F {gL}, (4.30)

the autocorrelation function becomes

rvp (ti, tj) = F
−1

{
Sn(ω)H(ω)H(ω)G(ω)G(ω)

}
= F

−1

{

a2e
− ω2

b2

m2ω2 + β2

}

that finally results in2

rvp (ti, tj) = c0

(

e
β∆t

m f1(∆t) + e
−β∆t

m f2(∆t)
)

,

2This result was found by using a computer algebra system.
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with

∆t , ti − tj , c0 ,
a2

4βm
e

β2

b2m2

and

f1(∆t) ,
(

1 − erf
(
b∆t

2
+

β

bm

))

, f2(∆t) ,
(

1 + erf
(
b∆t

2
− β

bm

))

.

vp(t, ς) is continuous in mean square as the autocorrelation function is contin-
uous. Furthermore, vp(τ, ς) is integrable for t ∈ [0, T ] with T < ∞ because

t∫

0

t∫

0

|rvp (t1 − t2)|dt1dt2 < ∞.

In Fig. 4.8 the autocorrelation function is plotted for different data sets. A basic
set, drawn in green color with the parameters a = 1, b = 2, β = 6, m = 10 was
slightly modified to show the influence for every single parameter.
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Figure 4.8.: Influence of a, b, β and m on the autocovariance
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It’s worth to note the connection to the former mentioned Ornstein Uhlenbeck
process. For the parameterization proposed in Eq. (4.29), the resulting autocor-
relation function consistently becomes the asymptotic and stationary part of
the autocorrelation function for the Ornstein Uhlenbeck process [25, p. 448]

rOU (ti, tj) =
1

2βm
e

−
∣
∣ β∆t

m

∣
∣
. (4.31)

The trajectory process

Eq. (4.19) shows the dependency of the trajectory on the velocity and the initial
conditions. With the contruction of a stochastic process for the velocities that is
integrable in the mean square sense the trajectory can be written as a stochastic
integral

x(t, ς) = x0 +

t∫

0

c0 · e−
βτ
m dτ +

t∫

0

v
p(τ, ς)dτ.

Disregarding the initial conditions the integral can be described by the linear
operator

I : V → X , v
p(t, ς) 7→

t∫

0

v
p(τ, ς)dτ.

However note, integration is a linear but not a time invariant operation. The
integrated Gaussian process therefore is a non stationary Gaussian process rep-
resenting a trajectory. The mean of the process xp(t, ς) can be obtained by

µxp(t) = E[xp(t, ς)] = E[Ivp(t, ς)] = IE[vp(t, ς)] = 0.

The covariance of the process can be found to be1

rxp (t1, t2) , E[x(t1, ς)x(t2, ς)] =

t1∫

0

t2∫

0

rvp (τ2, τ1)dτ1dτ2 =

=R(t1) +R(t2) −R(t2 − t1)

(4.32)

with the definition

R(t) ,

t∫

0

κ(τ1)dτ1 =

t∫

0

τ1∫

0

r
′
vp (τ2)dτ2dτ1 = R(−t). (4.33)

1The calculations that lead to this results can be found in Sec. A.1.2.
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By Eq. (4.32), rxp(t1, t2) 6= rxp (t1 + µ, t2 + µ) with µ > 0 and thus the process
is not stationary. This can be seen by comparing the covariance functions for
vp(t, ς) and xp(t, ς). For the parameter set a = 1, b = 2, β = 6 and m = 10 these
are plotted in Fig. 4.9.
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Figure 4.9.: Covariance matrices of trajectory and velocity for 0 ≤ t1, t2 ≤ 10

The following plots from Fig. 4.10 show the influence of the single model
parameters on the autocovariance function. Here, only the diagonal elements of
the covariance matrix are plotted. Again, the default parameters are chosen to
be a = 1, b = 2, β = 6 and m = 10.

With this model for a trajectory in form of a Gaussian stochastic process the
probability density function of any sampling sampling vector is well defined and
offers a prior distribution.

4.2.3. Embedding the solution into a RKHS

In Sec. 4.2.2 a probabilistic model for arbitrary sampling vectors of trajectories
was generated. This model allows to distinguish between plausible and implausi-
ble trajectories and thus serves as a prior. In this section an appropriate search
space for trajectories is defined. It turns out that reproducing kernel Hilbert
spaces suit perfectly for this purpose.

A RKHS of velocities

As the objective is to determine a trajectory it is straightforward to search for
a solution space that contains all relevant realizations from xp(t, ς). Because
xp(t, ς) is not stationary and only defined for t ≥ 0 this is very inconvenient.
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Figure 4.10.: Influence of a, b, β and m on the autocovariance

However, if one disregards the initial condition, there exists an one to one map-
ping between trajectories and velocities. Therefore it is equivalent to search
within the space of velocities and then integrate the solution to obtain the tra-
jectory.

Consider the Gaussian process vp(t, ς) as defined in Sec. 4.2.2 with the auto-
correlation function rvp (ti, tj). Then for any sampling t1, ..., tn the covariance
matrix Σvp with [Σvp ]ij = rvp (ti, tj) is positive definite. rvp (ti, tj) can there-
fore be used as a kernel function.

Let

k(ti, tj) , rvp (ti, tj)

define a kernel function and

H = span{k(t, .)|x ∈ T}

denote the reproducing kernel Hilbert space spanned by k. By definition the
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elements of H can be written in the form

v(t) =

∫

T

k(t, τ )α(τ )dτ, v ∈ H, (4.34)

and the inner product within H

〈
v, v

′
〉

H
=

∫

T

∫

T

k(τ1, τ2)α(τ1)α′(τ2)dτ1dτ2, v, v
′ ∈ H.

In particular

||v||2H =

∫

T

∫

T

k(τ1, τ2)α(τ1)α(τ2)dτ1dτ2,

with α,α′ ∈ Λ , L1(T, dτ ) ∪ MD as defined in Sec. 4.1.2.

The connection between the RKHS H and the stochastic process vp(t, ς)

Is the RKHS H covering all realizations of the stochastic process vp(t, ς)? Two
cases have to be distinguished.

Let A : Λ → H denote the operator that performs the mapping from Eq.
(4.34). If A has a finite number of nonzero eigenvalues, then the sample functions
of vp(t, ς) are in H with probability 1. For the case of an infinite number of
nonzero eigenvalues however, the sample functions of vp(t, ς) are not in H with
probability 1 [78]. The basic problem here is that the expected value of the
RKHS norm of a sample function of vp(t, ς) can be shown to be infinite [77].
This is also the case when using the constructed kernel function k from the
former section. However, there is a way to construct a RKHS Hr with kernel
function r that is bigger than H = Hk that contains the sample paths almost
surely.

Theorem 5. [79]
Let k and r be two reproducing kernels. Assume that the reproducing kernel
Hilbert space Hr is separable. A necessary and sufficient condition for the exis-
tence of a Gaussian process with covariance k and mean m ∈ Hr with trajecto-
ries in Hr with probability 1 is that r ≫ k.

In this context ≫ is considered to indicate nuclear dominance. Let’s first
define the dominance of kernel functions.

Definition 9. (dominance of kernel functions) [72]
Given two kernel functions r and k, r dominates k if Hk ⊆ Hr.
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Here, Hk denotes the RKHS spanned by k and accordingly Hr the RKHS
spanned by r. The connection of both spaces can be expressed by a linear
operator.

Theorem 6. [72]
Let r dominate k. Then

||g||Hr
≤ ||g||Hk

, ∀g ∈ Hk,

and there exists a unique linear operator L : Hr → Hr whose range is contained
in Hk, such that

〈f, g〉Hr
= 〈Lf, g〉Hk

, ∀f ∈ Hr,∀g ∈ Hk.

In particular
Lr(., t) = k(., t).

As an operator into Hr, L is bounded, symmetric and positive.
Controversly, let L : Hr → Hr be a positive, continuous, self-adjoint operator

then
k(t, t′) =

〈
Lr(., t), r(., t′)

〉

Hr

defines a reproducing kernel.

L is called the dominance operator of Hr over Hk. This dominance is called
nuclear if L is a trace class operator and denoted by r ≫ k. The trace class
operator assures that the norm of the sample function will be finite. It is easy
to construct a smoothing operator for which a trace may be defined.

Proposition 1. [80, p. 114]
Let g be a continuous function on [a, b]2. Then the integral operator L on
L2([a, b]) defined by

Lf(t) =

b∫

a

g(t, τ )f(τ )dτ (4.35)

is trace class, with

trL =

b∫

a

g(τ, τ )dτ.

Furthermore let

g(ti, tj) , δǫ(ti − tj) =
1√
2πǫ

e
−

(ti−tj )2

2ǫ
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define a continuous function that converges to the Dirac delta distribution for
ǫ → ∞. The operator defined by Eq. (4.35) using g is by definition a trace class
operator. For a small ǫ > 0, this operator does not change the input by a great
margin in the interval [a+ ǫ, b− ǫ] and it turns out that r is almost identical
to k. Therefore, the RKHS spanned by k can be considered to be sufficient to
represent all relevant trajectories for most practical applications.

A normed space of trajectories

After the definition of a search space H for velocities the resulting space of
trajectories,

X =






x|x(t) = x0 +

t∫

0

v(τ )dτ, x0 ∈ R, v ∈ H






, (4.36)

becomes the range of an integral added to an initial condition. In particular for
v ∈ H

x(t) = x0 +

t∫

0

∫

T

k(τ ′
, τ )α(τ )dτdτ ′ = x0 +

∫

T

(κ(τ ) + κ(t− τ ))α(τ )dτ, (4.37)

with

κ(t) ,

t∫

0

k(τ, 0)dτ. (4.38)

To construct a normed space of trajectories the norm from the RKHS H may
be reused such that

||x||2X , ||v||2H. (4.39)

Note, because the initial condition does not occur in Eq. (4.39), (X , ||.||X ) can
only be shown to be a seminormed space. This is reflected by the fact that the
starting position has no influence on the norm.

The norm of H as a measure for the posterior probability

In Sec. 4.2.2 stochastic processes are defined that embed characteristics moti-
vated by physics proposed in Sec. 4.2.1. In Sec. 4.2.3 a reproducing kernel Hilbert
space was proposed that contains all relevant realizations of the stochastic pro-
cess for the velocity. This subsection introduces the norm of the RKHS as a
primer for MAP estimation of the trajectory.
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Let v(t) be an element of H that can be written as a finite sum

v(t) =
n∑

i=1

αik(t, ti), v ∈ H.

At the sampling times t1, ..., tn the evaluation of these elements are written in
the vector such that the sampling from Eq. (4.40) can be described by v ,

[v(t1) · · · v(tn)]T. If this vector is interpreted as a sampling from a realization
of the stochastic process vp(t, ς) then, from Eq. (4.23), it is known that the
probability density function is of the form

p(v) =
1

(
√

2π)n|Σv|0.5
e

− 1
2

vTΣ
−1
v v (4.40)

with Σv as the covariance matrix for this special sampling. By definition the
Gramian matrix [K]ij = k(ti, tj) = rvp (ti, tj) is identical to the covariance
matrix such that K = Σv. Moreover, the sampling of velocities within v can
be described as a matrix vector equation

v = Kα

with the coefficient vector α , [α(t1) · · ·α(tn)]T. As the covariance matrix has
full rank by definition, the negative logarithm of the probability density can be
written as

− ln(p(v)) = − ln
1

(
√

2π)n|K |0.5
+

1
2
α

T
Kα = c0 +

1
2

||v||H

with the constant

c0 , − ln
1

(
√

2π)n|K|0.5
.

In other words, the norm of an element within the RKHS H can be interpreted
as the negative logarithm of the prior distribution. Does this also hold for the
trajectory?

In Sec. 4.23 the covariance function of the process deduced for trajectories
was found to be

rxp(ti, tj) = R(ti) +R(tj) −R(tj − ti).

Let Σx denote the covariance matrix with [Σx]ij = rxp (ti, tj). Then it can be
shown that

v
T
Σ

−1
v v = x

T
Σ

−1
x x,
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for any element v ∈ H with coefficients α1, ..., αn and the corresponding trajec-
tory x obtained by integration. The proof mainly uses two equations

x(t) =

t∫

0

v(τ )dτ and rxp (ti, tj) =

ti∫

0

tj∫

0

k(τ1, τ2)dτ1dτ2.

The full proof can be found in Sec. A.1.3. From this perspective, the seminormed
space X for trajectories becomes a space where the norm is representing a
measure for the prior probability. Thus the norm within X allows to assign
probabilities for any sampling vectors within this space. Note, disregarding the
initial condition in defining a seminorm for X is reflecting the fact that the
probability for any trajectory is independent from the starting position.

4.3. A solution to the ROLAM problem

Until now, all considerations dealt with a motion in a one-dimensional space.
This section establishes a maximum a posteriori estimator for the trajectory
based on the framework developed in Sec. 4.1 and Sec. 4.2.

4.3.1. Steering models

In Sec. 4.2.3 the norm of the RKHS spanned by k was introduced as a quantity
that indicates prior probabilities for sampling vectors of a one-dimensional me-
chanical system. An inducing force was assumed to apply to a predefined PSD
and the trajectory to a differential equation of motion. In practice however, the
true physical layout may not be properly represented by such a model. Imagine
a car that is controlled by a steering wheel, an accelerator pedal and brakes.
When such a model is known it can be used to construct application specific
stochastic processes for the input variables. At this point however, it is worth
to recite the no free lunch theorem again. Although such a proceeding promises
superior results for the application it comes at the cost of flexibility as it is only
applicable for the respective problem. For generality and simplicity, this thesis
sticks to a very general and simple steering model.

The extension to three dimensions is performed by treating three forces inde-
pendently per axis. This corresponds to forces that are directly controlling the
vehicle in an inertial frame. Fig. 4.4 depicts such a steering model.

By construction, the three elements of the trajectory can be treated indepen-
dently. Instead of searching a finite number of positions xi with 1 ≤ i ≤ n as
developed in Sec. 3.1.3 the search space for every dimension of the trajectory
is replaced by the normed space X as defined in Eq. (4.36). Subsequently, the
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x(t)

x1

x2

x3

f
(i)
1 (t)

f
(i)
2 (t)

f
(i)
3 (t)

Figure 4.11.: Simple 3-dimensional steering model

three-dimensional trajectories can be represented by

x(t) = x0 +

t∫

0

v(t)dt (4.41)

with

x(t) ,

[
x1(t)
x2(t)
x3(t)

]

∈ X 3
, x0 ∈ R

3 and v(t) ,

[
v1(t)
v2(t)
v3(t)

]

∈ H3
.

4.3.2. Maximum a posteriori estimation

Let xj = [xj,1 · · ·xj,n]T with j ∈ {1, 2, 3} denote sampling vectors that cover the
targets positions for arbitrary sampling times t1, ..., tn, such that xj,i = xj(ti).

Moreover, let x ,
[
xT

1 xT
2 xT

3

]T
denote the vector that contains all positional

data and p〈k〉 the set of all beacon positions.
The MAP estimator is defined by

[
x,p

〈k〉
]

MAP
= arg max

x,p〈k〉
p

(
x,p

〈k〉|r〈n〉
, a

〈n〉
)
.

By applying Bayes Rule this can be reduced to
[
x,p

〈k〉
]

MAP
= arg max

x,p〈k〉
p

(
r

〈n〉|x,p〈k〉
, a

〈n〉
)

p
(
x,p

〈k〉|a〈n〉
)
.

For most applications, the positions of the beacons can be assumed to be inde-
pendent from the trajectory and the data associations as long as the target is
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within the range of the beacons. Therefore, with ρ > 0 denoting the range of
the beacons,

p
(
x,p

〈k〉|an
)

= p(x)

n∏

i=1

Λ(||x(ti) − pai
||, ρ)

with

Λ(r, ρ) =

{
1, if r ≤ ρ

0, if r > ρ.

For simplification the range is assumed to be large enough such that

p
(
x,p

〈k〉|a〈n〉
)

∝ p(x) .

After taking the negative logarithm and eliminating constant terms, the mini-
mization problem finally writes as

[
x,p

〈k〉
]

MAP
= arg min

x,p〈k〉

[
− ln

(
p

(
r

〈n〉|x,p〈k〉
, a

〈n〉
))

− ln(p(x))
]
.

The first term covers a maximum likelihood estimator and the second term
covers a prior distribution for the trajectories.

The cost function

The cost function is defined in such a way that the minimum of the regularized
risk from Eq. (4.12) becomes the maximum a posteriori estimator.

Let x∗,i , [x1,i x2,i x3,i]
T denote the vector of the targets position at time

ti and ri denote a random variable covering the range measurement at time ti
to the beacon ai at position pai

. Furthermore let p
(
ri|x∗,i,pai

, ai

)
denote the

known probability density function of the independent measurements. With

c(ti, ri, r̄i) , − ln
(
p

(
ri|x∗,i,pai

, ai

))
, r̄i , ||x∗,i − pai

||

the minimum of the empirical risk function

Remp[x] ,
1
n

n∑

i=1

c(ti, ri, r̄i),

as defined in Eq. (4.2), is equal to the minimum of the likelihood function. For
the special case of normally distributed measurement errors

ri ∼ N (||x∗,i − pai
||, σ2

i ),
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the empirical risk becomes

Remp[x] ,
1
n

n∑

i=1

1
σ2

i

(||x∗,i − pai
|| − ri)

2 =

= − ln
(
p

(
r

〈n〉|x,p〈k〉
, a

〈n〉
))

+ c0

(4.42)

with a constant c0 ∈ R. Note, different error distributions for the measurement
error may be covered by different cost functions.

The prior

With the interpretation of xj , j ∈ {1, 2, 3} as a realization of a stochastic
process and the construction of the steering model from the former section the
probability density function can be splitted up such that

p(x) = p(x1,x2,x3) = p(x1) p(x2) p(x3) . (4.43)

Note, the processes representing the positions are stochastic processes with
unknown initial position x0 = [xj,1 x2,1 x3,1]T. Instead, consider xp

j =

[0 xj,2 − xj,1 · · · xj,n − xj,1]T which can be interpreted as a realization of
the process representing the trajectories as defined in Sec. 4.2.2. If the initial
position x0 can be assumed to be equally distributed, then Eq. (4.43) becomes

p(x1,x2,x3) = p(x0) p(xp
1) p(xp

2) p(xp
3) ∝ p(xp

1) p(xp
2) p(xp

3) . (4.44)

In Sec. 4.2.3 the trajectories with the property xj(0) = 0 were embedded into
the seminormed space (X , ||.||X ) such that the negative logarithm of Eq. (4.44)
can be expressed using the norm within X . Choose x1(.), x2(.), x3(.) ∈ X such
that xj(ti) = x

p
j,i, then

− ln(p(x1,x2,x3)) = ||x1(.)||2X + ||x2(.)||2X + ||x3(.)||2X + c1 (4.45)

with c1 as a constant. Note, the independent treatment of the axes becomes
apparent by summing up the norms.

A set of assorted two-dimensional trajectories x1 , [x1,1 x2,1]T ,x2 ,

[x1,2 x2,2]T ,x3 , [x1,3 x2,3]T ∈ X × X starting at x0 , [0 0]T are plot-
ted in Fig. 4.12. The parameters of the kernel function were chosen to be
a = 10.0, b = 1, β = 5 and m = 5. The sum of their norms ||x1||X + ||y1||X ,
||x2||X +||y2||X and ||x3||X +||y3||X are listed within the plot. As a consequence,
p(x1) > p(x2) > p(x3).



82 4. Kernel methods for localization

-8

-6

-4

-2

 0

 2

 4

 6

 8

 10

-20 -15 -10 -5  0  5  10  15  20  25  30

||x1||H = 2.2689

||x2||H = 11.6925

||x3||H = 29.5739

x

y

Figure 4.12.: Three trajectories and their norms

The regularized risk functional

A combination of the prior from Eq. (4.45) and the empirical risk from Eq.
(4.42) delivers the regularized risk functional

Rreg[x,pk] , Remp[x] + µ1||x1(.)||2X + µ2||x2(.)||2X + µ3||x3(.)||2X . (4.46)

Note, the regularizing term is representing a norm. Eq. (4.46) is therefore of the
form from Eq. (4.13) and thus covered by Theorem 3 introduced in Sec. 4.1.3.

Let αj = [αj,1 · · ·αj,n]T, 1 ≤ j ≤ 3 denote the vector of coefficients for the
sampling times t1, ..., tn of the measurements. Then the final representation of
the regularized risk functional becomes

Rreg[x, pk] , Remp[x] + µ1α
T
1Kα1 + µ2α

T
2Kα2 + µ3α

T
3Kα3 (4.47)

with the additional regularization parameters µ1, µ2, µ3 ∈ R. The final opti-
mization problem becomes

[
x,p

k
]

MAP
= arg min

x,pk
Rreg[x,pk]. (4.48)

These regularization parameters can be interpreted as follows. Assumed, the
vectors α1, α2 and α3 minimize the regularized risk as defined in Eq. (4.47) with
Gram matrix K and regularization parameters µ1, µ2 and µ3. Then the coeffi-
cient vectors α̂1 = 1

2
α1, α̂2 = 1

2
α2, α̂3 = 1

2
α3 are minimizing the regularized

risk functional for a different kernel function with K̂ = 2K and regularization
parameters µ̂1 = 2µ1, µ̂2 = 2µ2 and µ̂3 = 2µ3. Thus, scaling the regularization
parameters µ1, µ2 and µ3 has the same scope as scaling the kernel functions by
the design parameter a. Moreover a was already shown to have the same scope
as the model noise ν from Eq. (4.26). Therefore, the regularizing parameters µ1,
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µ2 and µ3 can also be interpreted as a scaling parameters indirectly proportional
to the amplitude of the input model noise. By applying different kernel func-
tions for each dimension these parameters could be replaced by different kernel
parameters a1, a2 and a3. However, for simplicity it can be beneficial to use a
as a single parameter scaling the kernel function and keep the regularization
parameters.

Unfortunately, Eq. (4.48) describes a non convex optimization problem as
illustrated by Fig. 4.13.

p1

p2

p3
p∗

2

r1

r2

r3

r3

r4

r4

r5

r5
r6

r7

Figure 4.13.: Global and local minimum for the same set of range data

Assumed the blue curve from Fig. 4.13 represents the global minimum of
the regularized risk from Eq. (4.48) and the red curve an initial value for a
numerical optimization. As indicated by the sketch, both curves induce exactly
the same value for Remp[x] and by their similarity almost the same values for
the regularizing terms. However, the initial value for p∗

2 greatly differs from
the optimal position p2. By only descending the objective function the optimal
parameter set can not be reached using these initial values. The regularized
risk functional has a local minimum. Although, this phenomenon can also be
observed for the three-dimensional case, the tests performed in the next chapter
show a good convergence behaviour for the investigated scenarios with randomly
chosen initial values. Problems concerning this issue are not investigated further
within this thesis.

4.4. Consistency

So far, a reasonable minimization problem was derived whose solution is a finite
set of parameters αi which represent the solution. Close inspection of Eq. (4.48)
reveals however that the number of unknowns grows with the number of obser-
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vations. Although the new problem formulation with an additional regularizing
term adds information, the number of unknown positions x still equals the num-
ber of the unknown coefficients. The problem can therefore still be considered to
be ill-posed. In Sec. 4.1.1 one sided uniform convergence in probability in The-
orem 1 was introduced as the crucial condition such that a regression method
can be successful. For the ROLAM problem this requires additional conditions
that are addressed in this section. Besides consistency, the results also allows to
quantify when minimization of Eq. (4.48) can be successful.

4.4.1. Definition of the search space V

Consider empirical risk minimization where the solution f̌ is an element of a
finite solution space

f̌ = arg min
f
Remp[f ], f ∈ F , {f1, ..., fm}.

Consistency in the sense of Theorem 1 can then be shown by applying the
Chernoff bound in combination with the Union Bound which is an application
of the law of large numbers [67, p. 130,p. 135].

A finite representation of the solution space

The general idea is therefore to represent the solution space by a finite number
of samples such that the error induced by the sampling remains small.

Definition 10. (ǫ-cover)
Let M and E denote sets such that M ⊂ E. Then an ǫ-cover is defined as a set
of points in E such that the union of all ǫ-balls around these points contains M .

Let H denote the RKHS spanned by the kernel function k and d denote the
metric induced by the values of v1, v2 ∈ H on some data T = [t1, tn] such that

d(v1, v2) , max
t∈T

|v1(t) − v2(t)|.

Assumed, an ǫ-cover for H with m samples exists then H3 and X 3 can be
covered by m3 samples disregarding the initial position of the target. Note, the
metric d is defined in H. This implies the assumption that with an ǫ-cover for
the velocities the space of trajectories can be sufficiently represented. However,
this restriction is not investigated further.

The remainder of this section is dedicated to find an appropriate search space
V and an ǫ-cover for V. The number of samples required to cover V indicates the
capacity of the constructed solution space. In Fig. 4.14 an ǫ-cover is sketched
for the search space V ⊂ H.
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Figure 4.14.: ǫ-cover for the function space V

Restriction on probable velocities

Let T , [t1, tn] denote the region of interest and v ∈ H. Then, following Sec.
4.3.2, the norm ||v||H is intended to restrict the search space in such a way
that a unique solution can be calculated. To this end, the space is reduced to a
subspace of probable velocity functions.

Let
HΛ , {v ∈ H, ||v||H ≤ Λ} ⊆ H (4.49)

denote a ball of radius Λ in H. By the interpretation of any element of H as
a realization of the stochastic process v(t, ς) the ball separates likely velocity
functions within the ball from unlikely velocity functions outside of the ball.
Assumed, the stochastic model that was developed for the velocities is appro-
priate, then the radius Λ can be adjusted in such a way that only very unlikely
velocity functions are not covered by HΛ. For this reason let V = HΛ denote
the search space for the velocities for an appropriate Λ ∈ R.

The basic structure of V can be investigated by applying Eq. (4.11) on the
norm

||v||2H =

∞∫

−∞

V (ω)V (ω)
K(ω)

dω (4.50)

with V (ω) , F {v}(t) and K(ω) , F {k(0, t)}(ω). If v(t) ∈ V contains fre-
quencies with a high amplitude that are sparsely covered in the kernel func-
tion, the norm of the element has a great value. Thus, the elements within
the ball V either are smooth with respect to the kernel function that spans
H or they have a very small amplitude. For the designed kernel in Sec. 4.2
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with a = 1, b = 2, m = 10 and β = 6, three elements v1, v2, v3 ∈ V were
plotted in Fig. 4.15. All elements reside on the surface of the ball with radius
||v1||H = ||v2||H = ||v3||H = Λ , 1.
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Figure 4.15.: Three elements of V with ||vi||H = 1

As mentioned before, the higher the frequency of the signal, the smaller the
amplitude. V can therefore be considered to be limited in bandwith. If one
intends to find an ǫ-cover for V in form of a number of samples, the Nyquist-
Shannon sampling theorem states that the number is dependent on the bandwith
of the signal [81, 82]. The more restrictive the kernel in frequency domain, the
smaller the number of required samples to cover V.

An ǫ-cover for V

The following proposition shows, that there exists an ǫ-cover for V. Restricting
the search space to V allows to reduce the number of parameters from n to
m < n such that the ROLAM problem becomes feasible without introducing an
error larger than ε for almost all time instants within the interval of interest.

Proposition 2. Let t1, ..., tn ∈ [0, T ] be an arbitrary sampling and v =
∑n

i=1
αik(t, ti) ∈ HΛ. For any ε > 0 there exists a finite m, a set of orthonor-

mal basis functions ψ̃1, ..., ψ̃m ∈ H, λ̃1, ..., λ̃m ∈ R+, and parameters ν1, ..., νm,
such that ∣

∣
∣
∣
∣
v(t) −

m∑

j=1

νj

√

λ̃jψ̃j(t)

∣
∣
∣
∣
∣

≤ ε (4.51)
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for almost all t ∈ [0, T ].

Proof. By definition H is spanned by a symmetric real valued Mercer kernel.
Following Mercer’s theorem [67, p. 37], the eigenvalues λ̃i to the corresponding
orthonormal eigenfunction ψ̃i of the operator

(T α)(t) ,

T∫

0

k(t, t′)α(τ )dt′ (4.52)

satisfy
∑∞

i=1
|λ̃i| < ∞. Assuming the kernel function k(t, t′) is continuous, then

T is additionally self adjoined, compact and a trace class operator [83]. Thus,
for any ε̃ there exists a finite m (cf.[83] and [67, p. 38]), such that

∣
∣
∣
∣
∣
k(t, t′) −

m∑

j=1

λ̃jψ̃j(t)ψ̃j(t′)

∣
∣
∣
∣
∣
< ε̃ (4.53)

for almost all t, t′ ∈ [0, T ]. Using the representation for the kernel function
k(t, t′) from Eq. (4.53) and re-sorting yields

v(t) = lim
m→∞

m∑

j=1

√

λ̃jψ̃j(t)

n∑

i=1

αi

√

λ̃jψ̃j(ti)

︸ ︷︷ ︸

νj

(4.54)

=

∞∑

j=1

√

λ̃jψ̃j(t)νj . (4.55)

We insert this result into the LHS of Eq. (4.51) and apply Hölders inequality
to obtain ∣

∣
∣
∣
∣

∞∑

j=m+1

νj

√

λ̃jψ̃j(t)

∣
∣
∣
∣
∣

≤ ||ν||2||φ(t)||2,

with ν ,
[
ν1 ν2 · · ·

]
∈ ℓ2 and

φ(t) ,
[ √

λ̃m+1ψ̃m+1(t)
√

λ̃m+2ψ̃m+2(t) · · ·
]

∈ ℓ
2
.

Due to the definition of νj in Eq. (4.55), we obtain

||ν||22 =
∑∞

j=1

∑n

i=1
αi

√

λ̃jψ̃j(ti)
∑n

i′=1
αi′

√

λ̃jψ̃j(ti′)

=
∑n

i=1

∑n

i′=1
αiαi′

∑∞

j=1
λ̃jψ̃j(ti)ψ̃j(ti′),
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and by applying Mercer’s theorem and the assumption v ∈ HΛ,

||ν||22 =

n∑

i=1

n∑

i′=1

αiαi′k(ti, ti′ )

= α
T
Kα = ||v||2H ≤ Λ

2
.

Eventually, setting ε̃ = εΛ−1 and identifying ||φ(t)||2 with the LHS of Eq. (4.53)
proves the proposition.

This basically means that independent of any sampling and in particular any
number of samplings n, a set of m parameters is enough to represent every
element v within the ball HΛ, with respect to the given accuracy ε. Whenever
m < n, the coefficients for the orthonormal basis can be uniquely determined.
Alternatively, a choice of m < n defines the level of accuracy ε that can be
reached with n measurements. From this perspective the impact of Eq. (4.50)
becomes apparent. The eigenvalues of the operator T from Eq. (4.52) are pe-
nalizing factors for the respective frequencies in v(t) ∈ V. The decay in the
eigenvalues therefore describes the filter properties of the kernel function. The
steeper the eigenvalue decay, the more limited the bandwidth of the operator
T and the less samples and respectively parameters are needed to reconstruct
elements created by T .

4.4.2. Eigenvalues and eigenvectors of the kernel map

The result from the former section was that an ǫ-cover can be found when
regarding the kernel map in frequency domain. Elements with high frequencies
are supposed to have a low impact on the velocity function. With respect to
an ǫ-cover, these elements can be neglected such that V can be represented by
a finite number of samples. Unfortunately, the eigenvalues and eigenfunctions
of T are not easy to obtain. However, the eigenvectors and eigenvalues of the
Gramian matrix K provide a good approximation.

Proposition 3. Let k(t, t′) be a Mercer kernel and Eq. (4.52) define the corre-
sponding integral operator with eigenvalues λ̃j and eigenfunctions ψ̃j . Further-
more, let t1, ..., tn be an i.i.d. sampling within [0, T ] and K the corresponding
Gramian matrix created by k(t, t′).
Then, for n → ∞ the eigenvectors ψj of K converge to scaled discrete sam-

plings of the eigenfunctions ψ̃j , such that ψj ≈
√
T√
n

[
ψ̃j(t1) · · · ψ̃j(tn)

]T
and

λj ≈ n
T
λ̃j. In particular,

√
λj

[
ψj

]

i
≈ λ̃jψ̃j(ti).
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Proof. As k(t, t′) is quadratically integrable, Mercer’s theorem [67, p. 37]
states that there exists orthonormal eigenfunctions ψ̃j(t) ∈ L2(R) associated
with eigenvalues λ̃1 > λ̃2 > · · · and limj→∞ λ̃j = 0 such that k(t, τ ) =
∑∞

j=1
λ̃jψj(t)ψj(τ ), cf. Eq. (4.53).

If k(t, τ )α(τ ) is Riemann-integrable in τ then for i.i.d. sampled t1, ..., tn within
[0, T ] the Monte Carlo (MC) estimate for the integral is known [39] to converge
such that

(T α)(t) ,

T∫

0

k(t, t′)α(t′)dt′ ≈ T

n

n∑

i=1

k(t, ti)α(ti).

For sufficiently large n, a discrete sampling of any eigenfunction ψ̃j(t) with
eigenvalue λ̃j of T and (T ψ̃j)(t) = λ̃jψ̃j(t) yields

T

n

n∑

i=1

k(t, ti)ψ̃j(ti) ≈ λ̃jψ̃j(t). (4.56)

By the discrete sampling t1, ..., tn and introducing the normalization factor γn

on both sides of Eq. (4.56), we obtain

Kψj = λjψj ,

with λj = n
T
λ̃j , ψj = γn

[
ψ̃j(t1) . . . ψ̃j(tn)

]T
and γn such that

||ψj ||2
2

= γ
2
n

n∑

i=1

ψ̃j(ti)
2 ≈ nγ2

n

T
||ψ̃j(τ )||2

L2 =
nγ2

n

T
= 1,

again exploiting the Monte Carlo technique. Resolving for γn yields γn ≈
√
T√
n

.

This concludes the proof.

The eigenvalues λ̃j of the kernel map were plotted in Fig. 4.16 for the param-
eters a = 1, b = 2, m = 10 and β = 6. Variations in the parameters are denoted
within the figure.

The steeper the descent of the eigenvalue decay the less elements are required
for the epsilon cover. However note, the decay is dependent on the kernel pa-
rameters and the size of the region of interest T . For a fixed ǫ an expansion of
T also requires to increase the amount of measurements which is rather clear
from the application.
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Figure 4.16.: Eigenvalue decay of T for different parameters



5. Minimization methods for solving ROLAM

After formulating an applicable minimization problem this chapter introduces
methods for solving ROLAM. The proposed regularized risk functional from Eq.
(4.47) is minimized in two steps.

An initial step is addressed in Sec. 5.1. Data, that was gathered over the
first time period, is used to calculate a solution with the Levenberg-Marquardt
algorithm. The optimization process is executed offline.

Sec. 5.2 introduces a sequential optimization process that incorporate new
data into the solution in real time. The online estimation algorithm uses the
Bayesian update step from Eq. (3.5). To this end, an EKF is proposed that is
initialized by the offline estimate from Sec. 5.1.

5.1. Offline estimation

By the stochastic input in form of range measurements ri two quantities are of
interest for obtaining a solution. The minimum of the regularized risk functional
from Eq. (4.48) and the significance of the result in form of a covariance matrix.
This is backed by the central limit theorem which states that the probability
density function of the mean of a random sampling is normally distributed [18,
p. 714]. The resulting parameters x0 ∈ R

3, α1,α2,α3 ∈ R
n, p1, ..., pk ∈ R

3 are
therefore assumed to be jointly normally distributed.

5.1.1. Levenberg-Marquardt minimization

An adequate approach for minimizing Eq. (4.47) is the Levenberg-Marquardt
algorithm [84, 85, p. 683, p. 47] also known as the damped least-squares method.
This method combines the fast convergence of the Gauss Newton method and
the stability of the steepest descent by balancing both methods by a damping
parameter that is also called Levenberg-Marquardt parameter.

Let
F : RM → R

N
, M < N, θ 7→ (F1(θ) · · ·FN (θ))T

be a multidimensional non linear function. Then the Levenberg-Marquardt
method minimizes

N∑

i=1

F
2
i (θ).

91
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In order to comply with this method, the problem needs to be reformulated. An
appropriate parameterization can be derived by the eigenvalue decomposition
of the Gramian matrix K = UDUT. A change of the base vectors provides a
representation of the trajectory in terms of new coefficients. For scaling reasons,
the eigenvalues are incorporated within the new coefficient vector such that
ν̂j = [ν̂j,1 · · · ν̂j,n]T , D

1
2UTαj , j ∈ {1, 2, 3}. Further reduction to a set of

m < n dominating coefficients with respect to the ǫ-cover from Sec. 4.4.1 delivers
the final dataset. The reduced parameter vector becomes

θ ,
[
x

T
0 p

T
1 · · · p

T
k ν

T
1 ν

T
2 ν

T
3

]T
,

with νj , [ν̂j,1 · · · ν̂j,m]T, Dim(θ) = 3(1 + k +m) and

F (θ) ,












F1(θ)
...

Fn(θ)
Fn+1(θ)

...
Fn+3m(θ)












=











σ−1
1 (||x∗,1 − pa1

|| − r1)
...

σ−1
n (||x∗,n − pan

|| − rn)
ν1

ν2

ν3











.

Note, after the base change the regularizing terms simplify to αjKαj = νT
j νj .

Thus,

Rreg[x,p〈k〉] =

N∑

i=1

F
2
i (θ) (5.1)

and the Levenberg-Marquardt algorithm can be applied to the ROLAM prob-
lem. Note, the Jacobian matrix that is necessary for this method can be obtained
by differentiating Eq. (5.1) analytically or numerically.

5.1.2. Covariances

As the input range data is corrupted by noise, the minimum of Eq. (5.1) only
provides an estimate for the parameter vector θ. The confidence in this estimate
can be expressed in form of a covariance matrix for θ. Such an estimate can be
obtained by Laplace’s method [86].

Laplace’s method

Let p(θ) be a probability density function for the random vector θ that can be
written as

p(θ) , ce
−S(θ)

,
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with S(θ) as a function in the parameter vector θ and a constant c ∈ R. Then
the Taylor series expansion of S(θ) at θ0 yields

S(θ) = S(θ0) + ∇S(θ0)T(θ − θ0) +
1
2

(θ − θ0)T
Hθ0(θ − θ0) +O(θ3),

with Hθ0 as the Hessian matrix of S(θ) evaluated at θ0. Assumed, θ0 is a max-
imum of p(θ) and therefore a minimum of S(θ), respectively. Then ∇S(θ0) = 0

and thus

S(θ) ≈ S(θ0) +
1
2

(θ − θ0)T
Hθ0 (θ − θ0).

Consequently,

p(θ) ≈ c
∗
e

− 1
2

(θ−θ0)THθ0
(θ−θ0) with c

∗
, ce

−S(θ0)
.

This is an approximation for p(θ) in form of a normal distribution. The estimate
for the covariance matrix has the form of the Hessian matrix of S(θ)

Σ
−1
θ ≈ Hθ0 .

By construction of Eq. (4.47), the probability density for the parameter set can
be written as

p(θ) = e
1
2

Rreg[x,p〈k〉]
.

A definition of
2S(θ) , ∆r

T
R

−1
∆r + ν

T
ν (5.2)

with ∆r , [r1 − r̄1 · · · rn − r̄n]T, r̄i , ||x∗,i − pai
|| and the diagonal matrix R,

as well as [R]ii = σ2
i therefore allows a direct appliance of Laplace’s method.

5.2. Online estimation

In Sec. 5.1 the ROLAM problem is solved for a fixed time interval [t1, tn]. How-
ever, for most real world applications the solution is needed in real time. This
section presents a solver for Eq. (4.48) that incorporates new range measure-
ments in real time. With some additional assumptions the Bayesian update
equation from Eq. (3.5) can be applied to the problem. The primary goal for
this section is therefore to incorporate the approach of kernel regression into a
state space description of the system.

5.2.1. Velocity estimation

In the former chapters kernel regression was used to interpolate between the
time instances t1, ..., tn. However, the method can also be used to extrapolate
into the future.
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Bayesian inference

Let vn , [v1 · · · vn]T denote a vector sampled from the stochastic process vp(t, ς)
at time instances tn , [t1 · · · tn]T. By definition, the vector vn is jointly normally
distributed with

E[vn] = 0n

and the covariance matrix

Σvn = K(tn, tn), [K(tn, tn)]ij , k(ti, tj), ti, tj ∈ {t1, ...tn}.

An expanded vector vn+1 ,
[
vT

n vn+1

]T
, also sampled from the same stochas-

tic process at time instances
[
tTn tn+1

]T
, with vn+1 denoting the velocity at

time tn+1 can be treated the same way. The expectation of the expanded vector
is determined by

E[vn+1] = 0n+1,

and the covariance matrix is known to be

Σvn+1 =

[
K(tn, tn) K(tn, tn+1)
K(tn+1, tn) K(tn+1, tn+1)

]

.

If vn is known and vn+1 is unknown, then the probability density function for
vn+1 can be expressed by

p(vn+1|vn) =
p(vn, vn+1)

p(vn)
. (5.3)

Since vn and vn+1 are normally distributed random variables, Eq. (5.3) can be
explicitly evaluated. The expectation becomes

E[vn+1|vn] = K(tn+1, tn)K(tn, tn)−1
vn, (5.4)

and the variance is

Σvn+1 = K(tn+1, tn+1) −K(tn+1, tn)K(tn, tn)−1
K(tn, tn+1). (5.5)

Note, the resulting probability density for the prediction is also Gaussian [77,
p. 15]. Fig. 5.1 shows a velocity vector vn that was sampled from vp(t, ς) at
t1 = 0, t2 = 0.1, ..., t201 = 20 with an autocorrelation defined by the kernel
function with parameters a = 10, b = 2, m = 10 and β = 6. Moreover, the
first half of the sampled data from t1 = 0, ..., t101 = 10, was used to predict
the velocity at t102 = 10 + 0.1, ..., t201 = 20 using Eq. (5.4). The standard
deviation for the prediction was evaluated by Eq. (5.5). The figure shows the
sampled velocity, the prediction and the σ interval for the prediction. Note,
by the knowledge of vn, the expectation of the future velocity does not need
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Figure 5.1.: Prediction of the velocity and standard deviation

to be zero and the covariance is greatly decreased for short-time predictions.
Moreover, when retrieving the parameter vector αn+1 , K−1(tn+1, tn+1)vn+1

this implies

E[αn+1|αn] = 0, (5.6)

which is consistent with Theorem 3. The coefficients are supposed to be nonzero
only when there are measurements available. With Eq. (5.6) the extrapolated
velocity in RKHS therefore has the continuous formulation

E[vn+1|vn] =

n∑

i=1

αik(tn+1, ti), ∀tn+1 ∈ R. (5.7)

5.2.2. Position estimation

Assumed, the velocity function v(t) and an initial value for the position x0 is
well known the trajectory x(t) can be calculated by integrating the velocity

x(t) = x0 +

t∫

0

v(τ )dτ

or alternatively

xn+1 = xn +

tn+1∫

tn

v(τ )dτ
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with xn denoting the position at time tn. Adopting Eq. (5.7) and using Eq.
(4.37) the expectation for the new position xn+1 at tn+1 becomes

E[xn+1|x0,vn] = x0 +

n∑

i=1

αi(κ(ti) + κ(tn+1 − ti)),

with κ(t) defined as in Eq. (4.38). Furthermore, let

κj , [κ(t1) + κ(tj − t1) · · ·κ(tn) + κ(tj − tn)]T , (5.8)

then the estimator for the position at time tn+1 can be written in matrix vector
denotation

E[xn+1|x0, vn] = x0 + κ
T
n+1αn = x0 + κ

T
n+1K(tn, tn)−1

vn

or alternatively

E[xn+1|xn,vn] = xn + (κn+1 − κn)T
K(tn, tn)−1

vn. (5.9)

5.2.3. Dynamic Model for the target

Eq. (5.4) and Eq. (5.9) is now used to build up a discrete linear dynamic model.

State equation

Let vn denote the velocity vector that is essential to predict v−
n+1 , E[vn+1|vn]

and x−
n+1 , E[xn+1|xn,vn]. Moreover let v−

n+1 , E[vn+1|vn] denote the ex-
pected velocity vector extended by vn+1. Then, with Eq. (5.4) and Eq. (5.9) the
dynamic model can be written as linear model

[
x−

n+1

v−
n+1

]

=





1 (κT
n+1 − κT

n )K−1

0 In

0 kT
n+1K

−1





︸ ︷︷ ︸

An+1

[
xn

vn

]

, (5.10)

with K−1 , K(tn, tn)−1 and An+1 as the transition matrix. Note, the result
is a vector of higher dimension than the input.
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Covariance matrix

The covariance matrix for the state vector

W n+1 , E

[[
x−

n+1 − xn+1

v−
n+1 − vn+1

] [
x−

n+1 − xn+1

v−
n+1 − vn+1

]T
]

has only four non zero entries specified by

[W n+1]n+2,n+2 = E
[
(v−

n+1 − vn+1)2
]

= k0 − kT
n+1K

−1
kn+1,

[Wn+1]1,n+2 =E
[
(x−

n+1 − xn+1)(v−
n+1 − vn+1)

]
=

=κ(tn+1 − tn) − kT
n+1K

−1(κn+1 − κn)

and
[W n+1]1,1 =E

[
(x−

n+1 − xn+1)2
]

=

=2R(tn+1 − tn) − (κT
n+1 − κ

T
n)K−1(κn+1 − κn).

with R(t) defined as in Eq.(4.33). The calculations that lead to these results
can be found in Sec. A.1.4.

For simplicity, the regularizing parameter µ was ignored in this section. How-
ever, in Sec. 4.3.2 the scaling parameter was identified to be indirectly propor-
tional to the amplitude of the input model noise. Thus, the influence of µ on
the dynamic model can be modelled by an appropriate scaling of the covariance
matrix Ŵ n+1 = 1

µ
W n+1.

Numerical issues

In the last sections the inverse of the Gramian matrix K was used multiple
times. This is admissible as long as the Fourier transform of the kernel function
is strictly positive. However, from a numerical point of view the inverse of the
Gramian matrix K can be difficult to obtain because most of the eigenvalues
are close to zero. This can be resolved by applying regularization.

Instead of treating the velocity vector vn as an exact quantity vn can also be
interpreted as a measurement of the true velocity vector v̂n that is subject to
very small additive error

vn = v̂n + ǫ, ǫ ∈ R
n

with E[ǫ] = 0 and a covariance matrix E
[
ǫǫT

]
= γI. Consequently, the expec-

tation becomes

E[vn+1|vn] = K(tn+1, tn)(K(tn, tn) + γI)−1
vn, (5.11)
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and the variance

Σvn+1 = K(tn+1, tn+1) −K(tn+1, tn)(K(tn, tn) + γI)−1
K(tn, tn+1). (5.12)

This leads to a better conditioning for inverting K [77, p. 16]. The error im-
plemented by this reformulation can be set by the additional parameter γ that
balances the accepted grade of deviation from the original velocities v̂n.

The Ornstein-Uhlenbeck process

As noted before, the Ornstein-Uhlenbeck process is a special case of the con-
structed velocity process vp(t, ς). Because of its relevance the state equation and
the covariance matrix for this process is introduced in short. The basic assump-
tion for this model is a Gauss Markov process representing the velocity v(t, ς)
with the autocorrelation function [37, p. 95,201-203]

rv(ti, tj) , σ
2
e

−ζ|ti−tj |
. (5.13)

With ζ ,
β

m
and σ2 , 1

2βm
Eq. (5.13) becomes the autocorrelation function from

Eq. (4.31). In analogy to Sec. 5.2.2 the process is integrated and the resulting
dynamic model is described by

[
x−

n+1

v−
n+1

]

=

[
1 1

ζ
(1 − e−ζ∆t)

0 e−ζ∆t

]

︸ ︷︷ ︸

An+1

[
xn

vn

]

, (5.14)

with ∆t , tn+1 − tn. The covariance matrix for the estimate is a 2 × 2 matrix
with the elements

[Wn+1]2,2 = E
[
(v−

n+1 − vn+1)2
]

=

= σ
2(1 − e

−2ζ∆t),

[Wn+1]1,2 = [W n+1]2,1 = E
[
(x−

n+1 − xn+1)(v−
n+1 − vn+1)

]
=

= 2σ2

[
1
ζ

(1 − e
−ζ∆t) − 1

2ζ
(1 − e

−2ζ∆t)

]

,

[Wn+1]1,1 = E
[
(x−

n+1 − xn+1)2
]

=

=
2σ2

ζ

[

∆t− 2
ζ

(1 − e
−ζ∆t) +

1
2ζ

(1 − e
−2ζ∆t)

]

.

Note, this well known model represents a special case of the proposed model
where the limitation in power and bandwith of the force is not implemented.
With regard to the eigenvalue decay from Fig. 4.16, minimization of the reg-
ularized risk functional using the kernel from Eq. (5.13) proves to be poorly
conditioned. A kernel function representing the Ornstein-Uhlenbeck process is
also applied for comparison in Chapter 6 of this thesis.
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5.2.4. Evaluating the Markov property

For evaluating the state equation Eq. (5.10) the entire velocity vector vn ,

[v1 · · · vn]T needs to be properly known. Recursive Bayesian estimation as in-
troduced in Sec. 2.4.2 uses a finite dimensional state space description. For
appliance, the Markov property of the respective process is therefore essential.
For the problem at hand this means that there is a number l ∈ N such that
p(vn+1|vn, ..., v1) = p(vn+1|vn, ..., vn−l+1). Unfortunately, this property can not
be shown for the constructed processes.

vp(t, ς) does not fulfill the Markov property

By construction of vp(t, ς), the probability density p(vn+1|vn) for the estimate
is Gaussian and can be fully described by Eq. (5.11) and Eq. (5.12). Let

w
T
n = [w1 · · ·wn] , K(tn+1, tn)K(tn, tn)−1

denote the update vector for estimating vn+1 such that E[vn+1|vn] = wT
nvn. By

definition, wn only depends on the sampling times t1, ..., tn+1 and the kernel
function. As wn weights the influence of the velocity vector vn on p(vn+1|vn)
it also indicates the Markov property of the underlying process.

Assumed, there is a number l such that wi = 0 for 1 < i ≤ n− l for all pos-
sible samplings t1, ..., tn, then the stochastic process vp(t, ς) fulfills the Markov
condition of order l. By the definition of wn, this coincides with the existence
of coefficients wi ∈ R such that

k(tn+1, t) =
n∑

i=n−l+1

wik(ti, t), ∀t ∈ {t1, ..., tn}.

This can be shown for a special choice of parameters for the kernel function.
Assumed the kernel function becomes the autocorrelation of the Ornstein Uh-
lenbeck process from Eq. (4.31) with

k(t′, t) ,
1

2βm
e

−

∣
∣ β(t′−t)

m

∣
∣

=
1

2βm
e

−
β(t′−t)

m , t
′ ∈ {tn, tn+1},

then

k(tn+1, t) = e
−β(tn+1−tn)

m k(tn, t) = wnk(tn, t).

For the constructed kernel this property can not be shown in general. Fig. 5.2
shows the vector wn for a sampling t1 = 0, t2 = 0.35, ..., t286 = 99.75 and the
kernel function with the parameters a = 10, b = 2, m = 10 and β = 6. In
addition, the influence of the additional parameter γ introduced in Eq. (5.11).
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Figure 5.2.: Cutted update vector wn for different γ

The plot indicates that the influence of past velocities vanishes over time.
This is comprehensible as k(ti, tj) ≈ 0 for great time differences |ti − tj |. Al-
most no correlation is therefore expected between v(ti) and v(tj). Furthermore,
the parameter γ is greatly increasing this effect. This can be explained by the
smoothing effect of the parameter on the high frequent part of the update vector
wn. A cutted version of the update vector w̌T

n , [wn−l+1 · · ·wn]T applied on
a cutted velocity vector v̌T

n , [vn−l+1 · · · vn]T is expected to yield almost the
same result as wn applied on vn.

w̌
T
n v̌n ≈ w

T
nvn = E[vn+1|vn] .

In particular this is true for large γ.

A toy example

Consider a setting with vn = [v1 · · · v286]T sampled from vp(t, ς) at times t1 =
0, t2 = 0.35, ..., t286 = 99.75. It is further assumed that v1, ..., v272 are available
quantities and v273, ..., v286 need to be estimated. The estimation is performed
using Eq. (5.11) with a kernel function defined by the parameters a = 10, b = 2,
m = 10 and β = 6. Fig. 5.3 shows the original sampling vn and the estimates
for different values of the additional parameter γ as indicated in the plot.

Although the update vectors wn for γ = 0 and for γ = 10−8 greatly differ
in value as illustrated in Fig. 5.2 the estimates are almost identical. For an
increasing parameter γ the estimation error increases as expected. The update
vector with γ = 10−8 delivers accurate results for this setup with a greatly
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Figure 5.3.: Estimation for different update vectors

simplified update vector. γ = 10−8 was therefore used for the next plot to
visualize the influence of the parameter l.

To this end, the stochastic process was treated as a Markov process of differ-
ent orders defined by l. The update vector was cutted to a fixed length l and
then used for extrapolation. Fig. 5.4 shows the results for different lengths as
indicated within the plot.

Although disregarding older velocities, the plot shows that for the investigated
case a constant vector length of l = 50 almost delivers the same result as the
uncutted update vector.

Two conclusions can be drawn from these investigations. By the nature of
the process itself it is possible to find a parameter l such that the process
can be treated as a Markov process of order l. Furthermore, the additional
parameter γ leads to a better conditioning of the estimation problem and allows
to decreases the parameter l. With this approximation, the constructed dynamic
model complies with the preconditions stated for Bayesian estimation using the
update equation from Eq. (2.27).

5.2.5. EKF Filtering

The best known approach for resolving the Bayesian update equation is the
EKF that was already mentioned in Sec. 2.4.3. This approach is applied for
online estimation of the ROLAM problem. Note, as the observation model for
ROLAM is not linear EKF filtering can not be considered to be optimal with
respect to the problem. However, for simplicity, more sophisticated methods like
UKF’s or PF’s are not considered within this thesis.
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State vector

The model from Eq. (5.10) only considers one dimension for the target parame-
ters xn and vn. Furthermore, ROLAM also requires to incorporate the unknown
beacon positions p〈k〉 into the state vector. This way, the initial estimate for the
beacon positions can be corrected in real time by measurement updates.

The state vector at timestep n is therefore expanded to three dimensions

sn ,
[
s

T
1,n s

T
2,n s

T
3,n

]T
. (5.15)

For each dimension j the state vector is further expanded by the beacon posi-
tions at timestep n

sj,n ,
[
xj,n v

T
j,n p

T
j,n

]T
, j ∈ {1, 2, 3}.

Within this context, vj,n is denoting the cutted velocity vector with a fixed
length as introduced in Sec. 5.2.4. Moreover, to obtain a unique solution a
proper definition of a coordinate system is required. To this end, the coordinate
system is defined according to Sec. 3.1.2. This implies a predefinition of some
of the beacons coordinates of the form

pj,n , [pj,1+j · · · pj,k]Tn .

Note, by definition of the coordinate system the state vector is of different
dimension for every axis.
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Dynamic model for the beacons

Because the beacons are assumed static a dynamic model of the form

p
−
i = pi ∀1 ≤ i ≤ k

is sufficient for the application. Subsequently, the estimation error from the
model becomes zero for each dimension

E
[
(p−

i − pi)
2
]

= ǫpi , ǫpi , 0. (5.16)

Note, slight movements of the beacons with low dynamics can be incorporated
by using an estimation error ǫpi > 0. Nevertheless, the potential of such an
approach is not be examined here and may be of interest in future investigations.

State equation

Consequently, the transition matrix for each dimension is added by an appro-
priate identity matrix such that

s
−
j,n+1 =

[
An+1 0

0 Ik−j

]

sj,n, Ik−j ∈ R
(k−j)×(k−j)

,

with Ik−j denoting the identity matrix. Expanded to three dimensions the state
equation becomes

s
−
n+1 =










An+1 0 0 0 0 0

0 Ik−1 0 0 0 0

0 0 An+1 0 0 0

0 0 0 Ik−2 0 0

0 0 0 0 An+1 0

0 0 0 0 0 Ik−3










︸ ︷︷ ︸

F n+1

sn + ζn,

with ζn as the noise vector with covariance

Qn+1 =










1
µ1
W n+1 0 0 0 0 0

0 0 0 0 0 0

0 0 1
µ2
W n+1 0 0 0

0 0 0 0 0 0

0 0 0 0 1
µ3
W n+1 0

0 0 0 0 0 0










.

Note, the transition matrix F n+1 and covariance matrixQn+1 can become bulky
for evaluation because of its sheer size. This is especially true when the number
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of beacons of unknown position is increasing during estimation as the number
of elements in both matrices increase quadratically. However, by construction
of the dynamic model, the three dimensions for target estimation can also be
evaluated separately. Although further decoupling of the variables might be
possible, this is not the focus here and therefore not pursued further in this
thesis.

Observation Model

To obtain reasonable results, external information has to be to be incorporated.
Compliant to the formulation as state observer from Eq. (2.2) this is performed
in form of the observation model

ri = h(si) = ||xi − pai
|| + ηi.

ηi denotes the noise of the measurements with the probability density function
p(ηi) = N (ηi; 0, σi). For the covariance update in the EKF a linearization of the
observation model is required. As the observation is of one-dimensional kind,
the gradient

hn+1 , [∇sh(s)] |
s=s

−
n+1

defines the required quantity. Except for the elements

∂h(s)
∂xj,n+1

=
xj,n+1 − pj,an+1

||xn+1 − pan+1
|| ,

∂h(s)
∂pj,an+1

= − xj,n+1 − pj,an+1

||xn+1 − pan+1
||

the gradient is zero valued for all j ∈ {1, 2, 3}.

Filter equations

With these quantities, the EKF filter equations can be directly applied to the
ROLAM problem [39, p. 20].

s
−
n+1 = F n+1sn

C
−
n+1 = Qn+1 + F n+1CnF

T
n+1

sn+1 = s
−
n+1 +Gn+1(rn+1 − h(s−

n+1))

Cn+1 = C
−
n+1 −Gn+1Sn+1G

T
n+1,

where
Sn+1 = h

T
n+1C

−
n+1hn+1 + σn+1

and
Gn+1 = C

−
n+1hn+1S

−1
n+1.

Note, as the state consists of multiple velocities of the past, the past is improved
over time as well.
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Initialization

The EKF requires normally distributed initial values for proper results. The
initialization is performed by an offline algorithm that uses all available data
followed by an EKF that is iteratively incorporating new range measurements.
This two step optimization process using a Levenberg-Marquardt algorithm (LM)
and an Extended Kalman Filter (EKF) is depicted in Fig. 5.5.

r1, ..., rn

a1, ..., an

v∗,1, ..., v∗,n

x∗,n

p1, ..., pk

an+1, rn+1

x∗,n+1

v∗,n+1, ..., v∗,n−l

dp1, ..., dpk

beacon updates

initial est. actual est.

OnlineOffline

LM EKF

Figure 5.5.: Optimization scheme in two steps

Unfortunately, the required number of observations for proper initialization
can not be quoted a priori. This is dependent on the concrete scenario. For
example, a straight movement along a line never leads to a satisfactory initial
solution as it leaves a rotational degree of freedom for the beacon positions
around that line. Consequently, the resulting probability density for the beacon
positions can not be approximated by a normal distribution. However, when
using the EKF this is required. In the worst case, the offline solution has to
be recalculated multiple times until all probability density functions for the
estimated variables can be approximated by a Gaussian density function. The
covariance matrix of the initial estimate for the state vector obtained by Sec.
5.1.2 may give a good hint of when this assumption is fulfilled. The benefit of a
proper initialization is observed in Chapter 6 of this thesis.

5.2.6. Coincidence of solutions

In the former section the EKF for online estimation is designed to approximate
the minimum of the regularized risk. Nevertheless, this section is dedicated
to clarify the relation between the results obtained by the offline and online
approach. Indeed, both solutions coincide approximately.

Immediate and Final Solution

Consider the following simplified scenario. Let x(t) ∈ R denote a trajectory that
has to be estimated in one dimension using n measurements zn , [z1 · · · zn]T at
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times t1, ..., tn. The simplified observation model is zi = h(x(ti)) , x(ti) + ηi.
Within this scenario, the measurements are mutually independent and ηi is
normally distributed such that ηi ∼ N (0, σ2) and E[ηiηj ] = 0, ∀i 6= j. According
to Eq. (4.37) the trajectory can be represented by

x(t) = x0 +

n∑

i=1

αi(κ(ti) + κ(t− ti)),

with κ(t) defined as in Eq. (4.38). Accordingly, the one-dimensional velocity
function becomes

v(t) =

n∑

i=1

αik(t, ti).

The initial value x0 and the coefficient vector α , [α1 · · ·αn]T are obtained by
minimizing the simplified regularized risk functional

Rreg[xn] ,

n∑

i=1

(zi − xi)
2 + µα

T
Kα, (5.17)

with xn , [x1 · · ·xn]T and xi , x(ti). The covariance matrix of the solution is
estimated by the inverse Hessian matrix of S , 1

2
Rreg[x] as described in Sec.

5.1.2.
Let x̌n, v̌n denote the minimum of Eq. (5.17) using all measurements zn and

x̌k, v̌k the minimum using the subset zk , [z1 · · · zm]T with m , 1
2
n only. Fig.

5.6 shows a model calculation using a kernel function with parameters a = 10,
b = 1, m = 10 and β = 6.

-2.5

-2

-1.5

-1

-0.5

 0

 0.5

 1

 0  10  20  30  40  50
t

v
(t

)

v(t)
v̌n

v̌m
-30

-25

-20

-15

-10

-5

 0

 0  10  20  30  40  50
t

x
(t

)

x(t)
x̌n

x̌m

Figure 5.6.: Estimates for v(t) and x(t) using n and m measurements

For clarity, an area of 2σ was plotted by a thinner line for each case. Basi-
cally, both solution do not coincide as they both make use of different data sets.
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However, until a certain timestep tm−l both solutions seem to be almost iden-
tical. tm−l is indicated by a vertical line within the plot. From that point the
solutions drift apart such that at time tm, which is also indicated by a vertical
line, the solutions are not identical any more. This is obvious as for v̌n and x̌n

future data can be used to further improve the estimate. For a better view, Fig.
5.7 depicts the same plot within the area between tm−l and tm.
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Figure 5.7.: Zoomed area of Fig. 5.6

At timestep tm and without knowing the future, the best estimate for the tra-
jectory that can be obtained by kernel regression is indicated by [x̌m]m , [v̌m]m.
This estimate is called immediate solution. After further measurements the es-
timate can be improved when using kernel regression. As the influence of future
data on the past vanishes over time, see also Sec. 5.2.4 on this topic, the solu-
tion converges to a certain point at time tm which is indicated by [x̌n]m , [v̌n]m.
The final estimate for the trajectory at tm using all future data is called final
solution.

The solutions coincide

By design, the EKF introduced in Sec. 5.2.5 iteratively approximates the mini-
mum of the regularized risk functional. In analogy to the simplified problem defi-
nition from Sec. 5.2.6 a version of the EKF for solving the one-dimensional prob-
lem can be derived. According to this, the state vector becomes sn , [xn vn]T

and dynamic model is identical to Eq. (5.10). The observation model can
be described by the linear equation zn = Hsn with H ,

[
1 0T

n

]
with

0n , [0 · · · 0]T.
This simplified EKF was applied to the one-dimensional problem from the

former section. By definition of the state vector, the immediate estimate for the
position, the immediate estimate for the velocity and the final solution for the
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velocity are entries of the state vector. The final solutions for the position can
be retrieved by backward integration starting at the actual position and using
the final solutions for the velocity. Both, the immediate solution as well as the
final solution obtained online by the EKF are plotted in Fig. 5.8. The initial
estimate for the state vector was obtained by offline minimization using the
observations z1, ..., zm as proposed in Sec. 5.2.5. For comparison, the immediate
and final solution obtained by Levenberg Marquardt (LM) minimization was
plotted too.

As expected, the immediate and the final solutions for the EKF coincide
with the solutions that obtained by the LM method. Slight deviations originate
from the approximations mentioned in the former sections and numerical insuffi-
ciency. Unsurprisingly, the final solution is of better quality than the immediate
solution and of lower variance. As a logical consequence, all estimations finally
end at the same estimate for the position at t = tn.
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6. Test results

This chapter summarizes the tests performed within this thesis. For comparison,
two alternative approaches were implemented. The ML estimator in conjunc-
tion with data alignment in time domain as proprosed in Sec. 3.2.3 and the
kernel based approach featured by an alternative kernel function representing
the Ornstein Uhlenbeck process.

Furthermore, the impact of the initialization from Fig. 5.5 on the final result
is investigated. To this end, the proposed EKF from Sec. 5.2 was implemented
for both kernel functions.

While simulations are examined in Sec. 6.1, a real life scenario is investigated
in Sec. 6.2. A scenario with UWB beacons located at unknown positions and a
rover capable of measuring distances to these beacons shows the applicability
of the proposed approach.

6.1. Simulations

This section presents the results for solving the ROLAM problem based on
simulated scenarios.

6.1.1. Test bed

The test bed for the simulations assumes 8 distributed beacon nodes at the
positions indicated by Tab. 6.1.

Node 1 2 3 4 5 6 7 8
p1 0 20 20 0 0 20 20 0
p2 0 0 20 0 20 0 20 20
p3 0 0 0 20 0 20 20 20

Table 6.1.: Beacon positions for simulation

This symmetric geometrical layout allows a good localization accuracy within
the vicinity of the beacon positions. The positional dilution of precision (PDOP)
for this area, as introduced in Sec. 2.2.3, ranges between 0.6 ≤ PDOP ≤ 2.0
when assuming 8 range measurements for each position and well known beacon
positions.

111
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Trajectory generation

The examined trajectories were generated by integrating velocity functions sam-
pled from vp(t, ς). The kernel parameters were chosen to be a , 10, b , 1, β , 6
and m , 10. The sampling times for generating reference trajectories were cho-
sen equidistantly to be τ1 , 0, τ2 , 0.1, ..., τm , 80.

To assure a three dimensional trajectory in the center of the scenario the com-
ponents of the initial value x0 , [x1,0 x2,0 x3,0]T ∈ R

3 were sampled from
the probability densities x1,0 ∼ x2,0 ∼ x3,0 ∼ N (10, 52). For numerical reasons
the coefficients for the trajectory were sampled using the eigenvector decompo-
sition for the Gramian matrix K. Altogether, 100 trajectories were generated
for the tests. Fig. 6.1 illustrates the first sample whose complex geometry can
not be represented by a simple regression model.

x

yzz

x0
p1

x

y
zz

Figure 6.1.: Sampled test trajectory taken from 2 different viewpoints

Observations

To complete the simulated scenario, unsynchronized range measurements from
the beacon positions including the data to measurement associations are re-
quired. It is assumed that the scenario comprises of n range measurements from
k , 8 beacons.

Each entry of the data to measurement association vector a = [a1 · · · an]T

is sampled from the probability distribution P (ai = j) = k−1 for j ∈
{1, 2, 3, 4, 5, 6, 7, 8}. This way every beacon has the same probability to be used
for measurement.
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The times of measurements, combined in the vector t , [t1 · · · tn]T, were
sampled from an equally distributed random variable within the interval [0, 80].

The simulated range measurements were sampled following the postulated
noise model ri , ||xi − pai

|| + ηi introduced in Eq. (3.1). The measurement
noise ηi is sampled from a random variable described by the probability density
function N (0, σ2).

Scenarios

Six different scenarios Sn(σ) are investigated that differ in measurement noise
and number of samples as described in Tab. 6.2.

σ\n 400 200 100
0.25 S400(0.25) S200(0.25) S100(0.25)
0.5 S400(0.5) S200(0.5) S100(0.5)

Table 6.2.: Investigated scenarios for simulation

For n = 100, n = 200 and n = 400 the times for measurement and measure-
ment to data associations were sampled independently.

6.1.2. Offline Estimation

The solutions obtained by kernel regression from Eq. (4.48) are compared to the
ML estimator that uses alignment in time domain. Both methods were applied
on all generated scenarios. The quality of the fit is measured by the positional
Root Mean Square (RMS) error

RMS =

√
√
√
√

n∑

i=1

||xi − x̂i||2
n

(6.1)

with xi denoting the true position and x̂i the estimated position. The sample
times for evaluation within Eq. (6.1) were chosen in accordance to the time of
measurements t1, ..., tn. Because of the alignment in time, the obtained solution
of the ML estimator is not defined at these times instances. To cope with this,
linear interpolation in time was applied to obtain intermediate solutions.

Parameterization

For all simulations, the regularization parameters from Eq. (4.47) were chosen
to be µ1 , µ2 , µ3 , 1. Two different kernel functions were investigated.
The first one, denoted with k(ti, tj) was chosen in accordance to the trajectory
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model, the second kou(ti, tj) in such a way that it almost equals the Ornstein
Uhlenbeck process. The parameters are listed in Tab. 6.3.

param. a b β m

k 10 1 6 10
kou 10 104 6 10

Table 6.3.: Kernel parameters for the investigated kernels

Results for the aligned approach

To apply the ML-estimator on the ROLAM problem using data alignment in
time, the parameter ∆T from Eq. (3.9) needs to be defined. As the optimal
parameter for this quantity is dependent on the number of measurements n,
noise σ and the complexity of the trajectory the minimization problem from
Eq. (3.10) was solved for all scenarios with ∆T ∈ {2, ..., 10}.

Fig. 6.2 shows the mean of the positional RMS error for the trajectory over
all scenarios. For n = 100, no usable results could be achieved. For this reason
these scenarios are left out of the plot. The best alignment parameter found for
n = 100 was ∆T = 10 which caused an RMS error of above 13 for both error
models.
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Figure 6.2.: RMS errors for different alignment parameters ∆T

The standard deviations for the results are presented in Tab. 6.4.
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σ\∆T 2 3 4 5 6 7 8 9 10
S400(0.25) 1.57 1.02 1.76 1.52 1.68 2.62 2.60 2.69 3.73
S400(0.5) 4.63 1.34 1.60 1.62 1.76 2.68 2.51 2.46 3.80
S200(0.25) 8.07 3.55 3.19 4.06 4.72 7.18 5.15 5.44 5.72
S200(0.5) 8.32 7.27 5.79 5.09 5.53 5.67 5.78 6.37 7.15

Table 6.4.: standard deviations of the RMS estimate

As expected, the RMS error for n = 200 is significantly higher than for
n = 400 measurements. Further inspection of Fig. 6.2 delivers ∆T = 5 as the
best parameter for n = 200 for both noise levels. For smaller ∆T the problem
becomes ill conditioned and for an alignment parameter greater than 5 the
discretization error becomes dominant. For n = 400 the alignment parameter
∆T = 3 was found to be optimal for both noise levels.

Aligned vs kernel based approach

For the kernel based approach, all scenarios were solved by minimizing the
regularized risk from Eq. (4.47) applying the LM method. This was performed
for both kernel functions k(ti, tj) and kou(ti.tj). The single RMS errors for both
kernel functions are plotted in full detail in Fig. A.1 and Fig. A.2. The mean of
the RMS errors for the kernel based approach and the aligned approach from
Fig. 6.2 for ∆T = 2 and ∆T = 5 is summarized in Tab. 6.5.

scenario k kou align.
S400(0.25) 0.576 0.600 1.7811
S400(0.5) 1.096 1.161 2.0806
S200(0.25) 1.069 1.126 4.5938
S200(0.5) 1.886 1.910 5.4005
S100(0.25) 2.865 3.616 13.281
S100(0.5) 4.451 5.023 13.646

Table 6.5.: Resulting RMS errors using k, kou and ML estimation

While both of the kernel based approaches significantly perform better, the
difference of the results for k and kou is marginal. Fig. A.3 depicts the solution
using k(ti, tj) on sample 97 within scenario S200(0.25). Fig. A.4 shows the solu-
tion with respect to the ranges. The range measurements, the estimated ranges
and the true ranges are plotted for all 8 beacons. For comparison the solution
using the ML estimator after alignment was plotted in Fig. A.5 and Fig. A.6.

The RMS errors for all methods increase with the noise of the measurements.
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However, Fig. A.1 and Fig. A.2 also reveal other influencing factors on the
quality of the solution.

First of all, the influence of the sampling times becomes visible when com-
paring the similarity of the resulting RMS errors with the solutions for n = 100,
n = 200 and n = 400. Similarities of the RMS errors that occur over all sam-
plings indicate a geometrical feature with the trajectory. For example, Fig. A.7
shows the solution using k(ti, tj) on sample 97 within the scenario S100(0.5).
Again Fig. A.8 shows the solution with respect to the ranges. In consideration
of the amount of data, the result shows a very good performance for this setup.

However, trajectories that do not sufficiently stimulate all 3 degrees of freedom
and trajectories that suffer from a high DOP are poorly conditioned. As an
example for both cases Fig. A.9 and Fig. A.11 show the results for sample 44
and 83 within S100(0.5). Fig. A.10 and Fig. A.12 show the results with respect
to the ranges.

As noted before, there is almost no visual difference between k and kou within
the scenarios with n = 200 and n = 400. This is due to the close relationship
between both methods. However, with regard to the eigenvalue decay from Sec.
4.4.2 this also indicates further potential in reducing the number of measure-
ments when using k(ti, tj). As expected, the difference increases for n = 100.

6.1.3. Initialization impact on the EKF

A two step approach was suggested in Sec. 5.2.5 for solving ROLAM. For sim-
plification, one might consider to apply the online approach only with random
initialization values. However note, the observation model is non linear. There-
fore the linearization performed within the EKF may introduce significant errors
such that an arbitrary initialization may lead to slow convergence or even to
divergence of the EKF (see [87, 88]).

EKF with random initialization

Divergence of the EKF with random initialization was also observed for the
ROLAM problem. The proposed EKF from Sec. 5.2.5 was applied to all samples
of scenario S400(0.25). The parameter l that determines the length of the state
vector was chosen to be l = 50. Each element of the initial state vector s0

for the EKF filter was randomly initialized by a sample according to [s0]i =
N (0, 102), ∀i ∈ {1, ..., 3l + 3k − 6}. The initial covariance matrix C0 was
chosen to be a diagonal matrix with [C0]ii = 100 and [C0]ij = 0, ∀i 6= j. Fig.
6.3 shows the absolute errors of the final position estimate versus the samples.

For none of the samples a satisfactory result could be achieved. While the data
sets for S400(0.25) were sufficient for calculating usable results using an offline
approach the proposed EKF with random initialization did not converge using
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Figure 6.3.: Absolute errors of the final position estimate

the same data. The reason can be found in the non-linearity of the observation
model.

A toy example

Consider a simplified two dimensional scenario as illustrated in Fig. 6.4.
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Figure 6.4.: True probability density and probability density within the EKF

A target with known position at x0 = [0 0]T is standing still and measuring
ranges ri = ||x0 − p|| + ηi with ηi = N (0, 0.52) to a beacon at the position
p = [p1 p2]T = [0 − 1]T. It is assumed, p is a priori unknown and to be
estimated by an EKF. n = 100 range measurements were taken for this test.

The true probability density function for the position of the beacon p(p|r)
using the measurements is rotational invariant around the position of the target.
This is indicated within the plot with mean and standard deviation.

After n = 100 steps of the EKF the estimate is represented by a normal
distribution as indicated in Fig. 6.4 by the estimate p̂ and its covariance ellipse.
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The initial estimate for the beacon position was chosen to be p0 = [0 1.5]T

and the initial covariance E
[
p2

1

]
= E

[
p2

2

]
= σ2 , 82 and E[p1p2] = 0. The EKF

misleadingly confines the beacons position at y = 1.

A particle filter which is known to be able to deal with non-linearities may
be implemented as a conceptual alternative. However, this was not further in-
vestigated within this thesis.

EKF with initialization using an initial offline solution

The EKF was also applied on scenario S400(0.25) with an initialization as pro-
posed by the two step approach from Sec. 5.2.5. The first half of the data
r1, a1, ..., r200, a200 was used for offline estimation using the LM method. The
second half r201, a201, ..., r400, a400 for the EKF. For comparison, all scenarios
were also solved using the offline approach for all available data.

As mentioned before, the estimates for the beacon positions are the critical
quantity. If the initial estimates can not be treated as a normally distributed
random variables, the EKF can not produce accurate results. For 80 out of 100
samples the initialization resulted in an estimate that was almost identical to
the estimate obtained by offline optimization. For these samples, Tab. 6.6 shows
the mean of the RMS errors for the estimate of the beacon positions.

RMSinit RMSfinal RMSoff RMSdist

1.3717 0.7410 0.6733 0.3318

Table 6.6.: RMS errors of beacon estimates

In the tabular, RMSinit denotes the RMS error for the initial estimate and
RMSfinal for the final estimate using the EKF. RMSoff denotes the RMS error
for the estimate obtained by the LM minimization and RMSdist the RMS dis-
tance between offline estimate and final estimate from the EKF. These values
show how the initial estimates for the beacons were improved by the EKF.

As an example, Fig. A.13 depicts the result for sample 59. The plot shows the
initial and the immediate solution for the two step approach using the EKF and
the true trajectory. Note, while the initial solution for beacons p̃j with 1 ≤ j ≤ k

and trajectory x̃ is shifted with respect to true trajectory the final estimates for
the beacons p̂j and the immediate solution for the trajectory x̂ converge to the
true beacon positions and true trajectory respectively.

Although the observation model is non-linear, the two step approach intro-
duced in Sec. 5.2.5 proves to perform well for the tested scenarios.
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6.2. Real world applications

A real world application based on UWB signals is investigated in this section.
The test environment was part of an European Project funded by the Infor-
mation Society Technologies (IST) programme of the 6th Frame Programme
(FP6) called PULSERS (Pervasive Ultra-wideband Low Spectral Energy Radio
Systems) PHASE 2.

6.2.1. Test bed

The investigated test scenario was part of work package 3b within the PULSERS
project. It comprises of the mobile rover P3AT from the company MobileRobots
and is depicted in Fig. 6.5.

Figure 6.5.: Moving platform used for the test

The robot was additionally equipped with a reference navigation system to
quantize the localization results. Wheel encoders within every wheel combined
with a 2D laser scanner allow absolute positioning of the rover in 2 dimensions
with an error of less than 50mm. To this end, the reference navigation system
requires a 2D map. This was provided for the room pictured in Fig. 6.6.

During the tests, the rover was steered within an area of about 4 × 4 meters.
8 fixed beacons were installed on tripods for UWB positioning at the positions
written in Tab. 6.7.
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Figure 6.6.: Test area

Error model of the observations

For all tests Line Of Sight (LOS) conditions were ensured. However, the hitherto
existing assumption of normally distributed noise for the range measurements
could not be maintained for the real life scenario. Instead, the measurement error
was modelled by an exponential distribution in accordance to measurements
taken from a prototype of an UWB based positioning system.

For all i ∈ {1, ..., n} the error model is described by

p
(
ηi|xi,pai

, ai

)
=

{
1

c0+c1ri
e

−ηi
c0+c1ri ηi ≥ 0

0 ηi < 0,
(6.2)

with ri as the true range, ηi = r̂i − ri as the error of the true and measured
range and c0, c1 ∈ R.

To counter multipath effects within the channel, the UWB beacons feature
a parameter to tune the delay spread. This quantity describes the mean time
delay between reflection and direct signal. Because different settings for the
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Node (j) 1 2 3 4 5 6 7 8
pj,1 -3.415 -7.018 -4.229 -0.704 -0.607 -6.272 -7.090 -0.684
pj,2 3.680 0.530 -2.027 3.472 -0.003 2.769 -1.472 -3.430
pj,3 0.730 0.736 0.736 4.071 0.732 4.056 4.065 4.051

Table 6.7.: UWB beacon positions within the real life scenario

delay spread induce different probability density functions, c0 and c1 are chosen
accordingly. A delay spread of ds = 30ns is modelled by the parameters c0 =
0.119 and c1 = 0.0138. This parameterization marks the worst case scenario. The
best case scenario with a delay spread of ds = 5ns is modelled by c0 = 0.064 and
c1 = 0.0026. The resulting probability densities for both scenarios are depicted
in Fig. 6.7.
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Figure 6.7.: Range dependend error for ds = 30ns (left) and ds = 5ns (right)

Note, at the time of formation of this thesis no real UWB beacons where
available. The reference navigation system was therefore used to feed a simulator
in real time that created range measurements following the error model from
Eq. (6.2) and provided the measurements via the original interface.

Range bias and variance compensation

In order to deal with the assumption normally distributed and bias free range
errors from Eq. (3.3) the range measurements were preprocessed. As Eq. (6.2)
describes an exponential distributed random variable ηi the mean and covari-
ance for the error can directly be quoted with

E[ηi] = c0 + c1ri and Var[ηi] = (c0 + c1ri)
2
. (6.3)
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Unfortunately, these quantities as well as the whole probability density function
for the range errors are dependent on the unknown range. To this end, the
measurements r̂i = ri + ηi are used to build an unbiased estimator for the
ranges such that E[r̄] = r and an unbiased estimator for the variance such that
E

[
σ̄2

]
= E

[
(r̄ − r)2

]
.

The ansatz
E[r̄] = E[d1r̂ + d0] = r (6.4)

is used for the range estimator r̄ and

E
[
σ̄

2
]

= E
[
g2r̂

2 + g1r̂ + g0

]
= E

[
(r̄ − r)2

]
(6.5)

is used for the variance σ̄2. The unknown parameters d1, d0, g2, g1, g0 ∈ R are
calculated by expanding Eq. (6.4), Eq. (6.5) and substituting Eq. (6.3). Equating
the coefficients finally delivers the parameters.

The final estimators become

r̄ =
1

1 + c1
r̂ − c0

1 + c1
(6.6)

and

σ̄
2 =

c2
1

(1 + 2c1 + 2c2
1)(1 + c1)2

r̂
2 +

c0c1

(1 + c1)3(1 + 2c1 + 2c2
1)
r̂+

c2
0

(1 + c1)3
. (6.7)

For the following tests, the estimated ranges and variances were obtained by
preprocessing the range measurements using Eq. (6.6) and Eq. (6.7).

6.2.2. UWB indoor localization

The rover was manually steered multiple times within the plane test area while
gathering range measurements. Predefined by the test setup, all generated tra-
jectories were planar. As a consequence the beacon positions could not be
uniquely determined by the range measurements.

Exemplary, Fig. A.15 shows an obtained result when defining the coordinate
system as in Sec. 3.1.2. Although the trajectory can be identified to be almost
planar, some of the beacon positions are estimated to be above and some to be
below the plane of movement. This is due to that any mirroring of the beacon
positions on that plane would lead to the same range measurements. Because
the coordinate system is defined by the beacon positions the whole scenario
even seems to be rotated. Fig. A.16 still shows a good fit of the estimated on
the measured ranges. However, as the exact beacon positions are unknown the
plane of movement is not properly defined.

To obtain a unique result for the real life tests, further information is incorpo-
rated. To this end, the freely selectable coordinate system is defined in a different
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manner than before. It is assumed that the trajectory is known to be planar
and that the normal vector to plane of movement is defining the z-axis. Second,
all beacon positions are assumed to have positive z-coordinates p3,j ≥ 0 for all
j ∈ {1, ..., k}. Fig. 6.8 illustrates the new definition of the coordinate system.

x

yz

p1

p2

x(t)

z = 0

Figure 6.8.: Definition of the coordinate system for planar trajectories

By definition, the z-axis is orthogonal to the plane defined by the test area
and the test area itself has the coordinate z = 0. As in Sec. 3.1.2 the x and y axis
is defined through the positions of the beacons 1 and 2 with p1 , [0 0 p3,1]T

and p2 , [0 p2,2 p3,2]T.
The two realized trajectories for ds = 30ns and ds = 5ns are plotted in Fig.

6.9 and Fig. 6.10 respectively.
The data rate for the range measures for both cases was 100ms. The robust-

ness of the method was investigated by reducing the number of measurements.
To this end, a fixed number of range measurements is randomly extracted from
the set of all measurements.

Worst case (ds = 30ns)

For the case ds = 30ns the plot in Fig. 6.11 shows the RMS error of the estimated
trajectory when using the kernel based approach with respect to the number of
samples used. The plot also depicts the results obtained by the ML approach
with data alignment for ∆T ∈ {3, 5, 10}. The parameters of the kernel function
were intuitively chosen to be a , 45, b , 0.3, β , 10 and m , 25.

The obtained results show the superiority in quality of the kernel based ap-
proach. For any choice of ∆T and any number of samples the RMS error is
significantly smaller when using the kernel based approach. The ML approach
with alignment shows a bias-variance tradeoff induced by the alignment pa-
rameter. For a sparse amount of range data the estimator using a great ∆T
produces a better estimate than the estimator using a small ∆T . However,
when increasing the number of samples a decreased ∆T produces better results
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Figure 6.9.: Sampled test trajectory taken from 2 different viewpoints
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Figure 6.10.: Sampled test trajectory taken from 2 different viewpoints

as the estimator becomes more and more unbiased. For about n > 800 the RMS
error obtained by ∆T = 3 almost coincides with the RMS error of the kernel
based approach. Note however, for ∆T = 3 the search space becomes very big
and the optimization process very slow. In this example, the optimization time
for the kernel based approach was about 0.0001 of the time required for the ML
approach with ∆T = 3.

Best case (ds = 5ns)

Fig. 6.12 shows the same investigation for the second scenario with a delay
spread of ds = 5ns. In general, the same effects can be observed. Note however
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Figure 6.11.: RMS error versus the number of measurements for ds = 30ns

the significantly lower RMS error.
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Figure 6.12.: RMS error versus the number of measurements for ds = 5ns

The case n = 400 was plotted in three dimensions for two approaches. Fig.
A.17 shows the result using the kernel featured approach and Fig. A.19 using
the ML approach with the alignment parameter ∆T = 10.

Real time estimation

To investigate the capability for online estimation the two step approach as
depicted in Fig. 5.5 was applied for both cases. About 100 initial measurements
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of the data proved to be enough to produce an accurate offline initialization.
For ds = 5ns, Fig. A.21 shows the result in three dimensions. The plot shows
the true trajectory, the true beacon positions, the initial estimate for trajectory
x̃ and beacons p̃j with 1 ≤ j ≤ k as well as the immediate solutions x̂, p̂j

obtained by the EKF. Note the improvement over time for the trajectory and
the beacon estimates.



7. Summary and Outlook

A novel approach for resolving ill-posed localization and mapping problems was
proposed in this thesis.The developed method allows to localize an object with
only unsynchronized range measurements to beacons of unknown positions for
disposal. Having a generic design, the method can be applied to a wide range
of related problems.

Generally, one has to bear in mind that an ill-posed problem can never be
properly solved. This thesis therefore followed a typical principle that can be
quoted as follows:

"If there is a problem you can’t solve, then there is an easier problem
you can solve: find it." - George Polya

Of course, such a procedure can only be crowned with success if the new problem
formulation is well-posed and the solution expresses the desired result.

Summary

For localization problems this was achieved by the extension of the available
information by two additional assumptions.

1. Every movement is originated from a driving force.

2. The driving force is limited in power.

These two constraints are modelled as linear and time invariant dynamic systems
driven by a band limited random force process. The solutions to the resulting
stochastic differential equations were shown to result in a stationary stochastic
process that represents the velocities and a non-stationary stochastic process
that represents the realizable trajectories. This interpretation of the realizable
trajectories and velocities serves as prior information.

To obtain a manageable problem formulation, the solution space for the ve-
locities is embedded within a function space and the trajectories are obtained
by integration. To this end, all relevant realizations of the stochastic process
representing the velocities were shown to be contained in a reproducing kernel
Hilbert space when the associated kernel function equals the autocorrelation
function of that stochastic process. Furthermore, the norm within that Hilbert
space was shown to be a measure for the posterior probability of trajectory
occurrence.

127
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Exploiting the former stochastic interpretation, an a posteriori estimator for
the localization problem was formulated in terms of kernel regression. More-
over, it was shown that consistency of the problem formulation can be assured
when introducing an upper bound on the norm of the reproducing kernel Hilbert
space. For an increasing number of measurements, the minimum of the regular-
ized risk functional therefore converges to a unique solution.

Usually, kernel regression is performed for a fixed amount of training data and
minimization is performed within a batch process. For the localization problem
at hand an adaptive implementation of kernel regression was developed. Ini-
tialized by a solution obtained by a Levenberg-Marquardt minimization, an
extended Kalman filter was derived that minimizes the regularized risk func-
tional continuously in time. The proposed method therefore allows simultaneous
self localization and mapping of the static beacons in realtime after a short ini-
tialization period.

Especially for a sparse amount of data the final tests show the benefits of the
derived model and the proposed kernel design. While an alignment of observa-
tion data in time domain was also shown to be a valid method for resolving
ill-posed localization problems, synthetic and real life tests showed the superi-
ority of the proposed method with respect to accuracy and efficiency.

Outlook

The main contribution of this thesis is to open up kernel regression techniques
for real time localization problems and to embed them into the classical lo-
calization framework. For a lot of ill-posed localization problems unavailable
control information can be compensated by the proposed dynamic model. For
example, simultaneous localization and mapping based on a monocular camera
may greatly gain from a kernel based approach. Also, well-posed problems could
benefit by the additional amount of information and even available control infor-
mation might be featured by the model. In case of available measurements from
an inertial measuring unit, the data can be included as additional observations.

The three dimensional acceleration model presented in this thesis is rather
simple as it implicitly assumes a holomorphic platform that can be accelerated
any time in any direction. However, more sophisticated models for steering may
also be applicable and improve the performance of the regularization approach.
Imagine a stochastic process applied on a steering wheel of a car for instance

Although the proposed optimization methods proved to be sufficient for the
investigated case of range based localization and mapping, more elaborate meth-
ods might be required for other applications. Furthermore, the initialization step
might be superfluous when using alternative approaches for online optimization
like a particle filter.
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A.1. Calculations

The following calulations make use of the error function which is defined as

erf (t) ,
2√
π

t∫

0

e
−τ2

dτ.

Consequently, the derivative of the error function is

d

dt
erf (t) =

√
π

2
e

−t2

,

and the antiderivative of the error function

d

dt

(

t · erf (t) +
1√
π
e

−t2

)

= erf (t) .

A.1.1. Transfer function w(t)

By definition

w(t) , gL ∗ h =

∞∫

−∞

ab√
2π
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the integral simplifies to

ab

m
√

2π
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With the definitions

C1 , e
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2b2m2 and C2 , −mb2t− β√
2bm

,

a substitution of the integrant

ζ , τ
b√
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+ C2,
dζ

dτ
=

b√
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,

and a split up of the integral finally yields
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A.1.2. Covariance function of xp(t, ς)

rxp (t1, t2) , E[x(t1, ς)x(t2, ς)] =

= E
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0

v
p(τ1, ς)dτ1

t2∫

0

v
p(τ2, ς)dτ2



 =
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n(τ1 − s, ς)w(s)dsdτ1
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The change of the order of integration here is grounded on Fubini’s theorem [71,
p. 422]. As rvp (τ2, τ1) = rvp (τ2 − τ1) = rvp (τ1 − τ2) is invariant to a shift in
time
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With the additional definition

F (t) ,
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the integral reduces to
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rvp (τ2, τ1)dτ2 = F (τ1) + F (t2 − τ1).
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Substitution of the second integral and a change in variables delivers

rxp(t1, t2) =

t1∫

0

F (τ1)dτ1 +
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A.1.3. Proof of vTΣ−1
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x x
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using the dirac delta distribution. Then the negative exponent of the probability
density becomes
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Since
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equation (A.1) can be rewritten

∞∫
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0
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As already stated, the covariance function within the process xp(t, ς) is known
to be

kxp (t1, t2) =

t1∫

0

t2∫
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kvp (γ, ξ)dγdξ. (A.3)

Differentiating equation (A.3) delivers
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the insertion into (A.2) finally yields
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A.1.4. Covariance matrix of the state vector

In this section the single elements of the covariance matrix
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Prerequisites

For simplicity let

K , E
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]
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2
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]
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and
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The covariance between velocity process and the trajectory process is obtained
by
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with Eq. (5.8). Consequently
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The covariance for the position process is given by Eq. (4.32)
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with R(t) from Eq. (4.33).
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Covariances

With these quantities, the elements of the covariance matrix can be quoted. The
variance of the estimation error for the actual velocity becomes

[W n+1]n+2,n+2 = E
[
(v−

n+1 − vn+1)2
]

= E
[
(vn+1 − k

T
n+1K

−1
vn)2

]
=

= k0 − k
T
n+1K

−1
kn+1,

(A.4)
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which is identical to Eq. (5.5). By construction of the dynamic model, v−
i −vi = 0

for all 1 ≤ i ≤ n and therefore

[W n+1]i+1,j+1 = E
[
(v−

i − vi)(v
−
j − vj)

]
= 0, ∀1 ≤ j ≤ n+ 1.

For the same reason this also holds for the covariance of the estimation error
for the past velocities and actual position,

[Wn+1]1,j+1 = E
[
(x−

n+1 − xn+1)(v−
j − vj)

]
= 0, ∀1 ≤ j ≤ n.

However, the covariance of the estimation error for the actual velocity and actual
position yields

[W n+1]1,n+2 = E
[
(x−

n+1 − xn+1)(v−
n+1 − vn+1)

]
= E

[
x

−
n+1v

−
n+1

]
−

− E
[
x

−
n+1vn+1

]
− E

[
xn+1v

−
n+1

]
+ E[xn+1vn+1] .

(A.5)

The single terms result in

E
[
x

−
n+1v

−
n+1

]
= E

[(
xn + (κT

n+1 − κ
T
n )K−1

vn

)
k

T
n+1K

−1
vn

]
=

=kT
n+1K

−1E[vnxn] + (κT
n+1 − κT

n )K−1E
[
vnv

T
n

]
K

−1
kn+1 =

=kT
n+1K

−1E[vnxn] + (κT
n+1 − κT

n )K−1
kn+1

E
[
x

−
n+1vn+1

]
= E

[(
xn + (κT

n+1 − κ
T
n )K−1

vn

)
vn+1

]
=

=E[xnvn+1] + (κT
n+1 − κ

T
n)K−1E[vnvn + 1] =

=E[xnvn+1] + (κT
n+1 − κ

T
n)K−1

kn+1

E
[
xn+1v

−
n+1

]
= E

[
xn+1k

T
n+1K

−1
vn

]
= k

T
n+1K

−1E[xn+1vn] .

The covariance is given by

[W n+1]1,n+2 = E[(xn+1 − xn)vn+1] − k
T
n+1K

−1E[vn(xn+1 − xn)] =

= κ(tn+1 − tn) − k
T
n+1K

−1(κn+1 − κn).

The variance of the estimation error for the actual position

E
[
(x−

n+1 − xn+1)2
]

= E
[
(xn+1 − xn − (κT

n+1 − κT
n )K−1

n vn)2
]

=

= E
[
(xn+1 − xn)2

]
− 2(κT

n+1 − κ
T
n)K−1E[(xn+1 − xn)vn)] +

+(κT
n+1 − κT

n )K−1E
[
vnv

T
n

]
K

−1(κn+1 − κn) =

= 2R(tn+1 − tn) − (κT
n+1 − κT

n )K−1(κn+1 − κn).

(A.6)

The matrix Wn+1 has only four non zero entries specified by Eq. (A.4), Eq.
(A.5) and Eq. (A.6).



136 A. Appendix

A.2. Plots

 0
 1
 2
 3
 4
 5
 6
 7

 0  10  20  30  40  50  60  70  80  90  100

rm
s

sample

S400(0.25)
S400(0.5)

 0

 2

 4

 6

 8

 10

 12

 14

 0  10  20  30  40  50  60  70  80  90  100

rm
s

sample

S200(0.25)
S200(0.5)

 0

 5

 10

 15

 20

 0  10  20  30  40  50  60  70  80  90  100

rm
s

sample

S100(0.25)
S100(0.5)

Figure A.1.: rms errors using k
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Figure A.2.: rms errors using kou



138 A. Appendix

x

y
zz

estim.
p̂1

x

y

zz

Figure A.3.: Trajectory 97 and estimation using k(ti, tj) within S200(0.25)
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Figure A.4.: True, estim. and measured ranges for the scenario from Fig. A.3
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Figure A.5.: Trajectory 97 and estimation using an alignment ∆T , 5 within
S200(0.25)



A.2. Plots 141

 16

 18

 20

 22

 24

 26

 28

 30

 0  10  20  30  40  50  60  70  80
t

r1

true
est.

meas.
 0

 5

 10

 15

 20

 25

 0  10  20  30  40  50  60  70  80
t

r2

 10

 12

 14

 16

 18

 20

 22

 0  10  20  30  40  50  60  70  80
t

r3

 16
 18
 20
 22
 24
 26
 28
 30
 32
 34
 36

 0  10  20  30  40  50  60  70  80
t

r4

 14
 16
 18
 20
 22
 24
 26
 28
 30
 32
 34

 0  10  20  30  40  50  60  70  80
t

r5

 10
 12
 14
 16
 18
 20
 22
 24
 26
 28
 30
 32

 0  10  20  30  40  50  60  70  80
t

r6

 10

 15

 20

 25

 30

 35

 0  10  20  30  40  50  60  70  80
t

r7

 10

 15

 20

 25

 30

 35

 40

 0  10  20  30  40  50  60  70  80
t

r8

Figure A.6.: True, estim. and measured ranges for the scenario from Fig. A.5
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Figure A.7.: Trajectory 97 and estimation using k(ti, tj) within S100(0.5)
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Figure A.8.: True, estim. and measured ranges for the scenario from Fig. A.7
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Figure A.9.: Trajectory 44 and estimation using k(ti, tj) within S100(0.5)
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Figure A.10.: True, estim. and measured ranges for the scenario from Fig. A.9
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Figure A.11.: Trajectory 83 and estimation using k(ti, tj) within S100(0.5)



A.2. Plots 147

 16

 18

 20

 22

 24

 26

 28

 30

 0  10  20  30  40  50  60  70  80
t

r1

true
est.

meas.
 16
 18
 20
 22
 24
 26
 28
 30
 32
 34

 0  10  20  30  40  50  60  70  80
t

r2

 15
 20
 25
 30
 35
 40
 45
 50
 55

 0  10  20  30  40  50  60  70  80
t

r3

 5

 10

 15

 20

 25

 30

 35

 0  10  20  30  40  50  60  70  80
t

r4

 20

 25

 30

 35

 40

 45

 50

 0  10  20  30  40  50  60  70  80
t

r5

 10

 15

 20

 25

 30

 35

 0  10  20  30  40  50  60  70  80
t

r6

 15
 20
 25
 30
 35
 40
 45
 50
 55

 0  10  20  30  40  50  60  70  80
t

r7

 15
 20
 25
 30
 35
 40
 45
 50
 55

 0  10  20  30  40  50  60  70  80
t

r8

Figure A.12.: True, estim. and measured ranges for the scenario from Fig. A.11



148 A. Appendix

x̃
x̂
p̃1
p̂1

x

y
z

x

y

z

Figure A.13.: Immediate and initial estimate of the EKF for traj. 59 in
S400(0.25)
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Figure A.14.: True, final estim. and measured ranges for the scenario from Fig.
A.13
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Figure A.15.: Real trajectory for ds = 5ns and estimation using k(ti, tj)
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Figure A.16.: True, estim. and measured ranges for the scenario from Fig. A.15
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Figure A.17.: Real trajectory for ds = 5ns and estimation using k(ti, tj)
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Figure A.18.: True, estim. and measured ranges for the scenario from Fig. A.17
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Figure A.19.: Real trajectory for ds = 5ns and estimation using ∆T = 10
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Figure A.20.: True, estim. and measured ranges for the scenario from Fig. A.19
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Figure A.21.: Immediate and initial estimate of the EKF for the test trajectory
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Figure A.22.: True, final estim. and measured ranges for Fig. A.21
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