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ABSTRACT: A model fo probabilistic assessment excavatiol performanc of tunnel projectis pie-
sented. The model is based on Dynamic Bayesian dlkesw{DBN) and enables to consider the quality of
the design and construction process. It is appbiedh case study, the excavation of a road tunnel by
means of the New Austrian Tunnelling Method. Thiguence of main model parameters and assump-
tions (e.g. quality, distribution of unit time)assessed through a sensitivity analysis.
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1 INTRODUCTION

Tunnel projects are prone to escalations of coastnu costs and duration. On average, final conttbn
costs of tunnel and bridge construction projeces3% above original estimates, and there has been
improvement over the past seventy years (Flyvbgtral. 2004). New techniques, which would improve
the accuracy of these estimates and which woulthlersa systematic learning from past projects, are
therefore needed.

Construction costs and duration are usually eséthby means of expert judgements. While these are
irreplaceable, they should be underpinned by obechodels, which enable a better quantificatiothef
uncertainties associated with these predictiongstifg probabilistic models for tunnel projects are
mostly based on Monte Carlo (MC) simulation of doastruction process (Min et al. 2008, Chung et al.
2006, Ruwanpura & Ariaratnam 2007). Other modets Bayesian networks (Sousa 2010), artificial neu-
ral networks (Benardos & Kaliampakos 2004) or aiiedy solutions (Isaksson & Stille 2005). The mod-
els are mostly able to describe in detail the uag®gres in the prediction of geotechnical condisand
common variations of performance rates or unitgdstt in general they fail to consider the impafct
other factors. These include extraordinary eveats. Cave-in collapse, fires, flooding) as welhasnan
and organizational factors. In particular the lakéad to a significant increase in the uncertaoftthe fi-
nal project cost and duration and should be inaude realistic model.

The proposed probabilistic model of tunnel projesitas to overcome the above-mentioned gaps. It
utilizes dynamic Bayesian networks (DBNs) to matthe! process of tunnel construction, particularky th
time needed to execute the excavation with regatthtertain geotechnical conditions, varying uimnitet
and quality of design and construction. In conttasthe DBNs models presented in Sousa (2010), the
proposed model includes the full probability distiions of random variables such as unit time and ¢
mulative (total) time even if it discretizes them.

The suggested model is applied to a case studyhwhas taken from Min (2003). In the original
work, the Decision Aids for Tunnelling (DAT) tookbed on MC simulation was used for probabilistic
assessment of construction time and costs. The DAdel has been developed since the 80s, and has
been applied to a number of projects. In the casdyslescribed in this paper, the same assumpdiois
the original model are first utilized in order terify the results of the DBN model. In the secoteps
additional aspects (such as the influence of thmamufactor, adjustments of the unit time distribns,
variable length of excavation cycles) are includethe DBN model and their effect on the final ette
is described within a sensitivity analysis.



2 BRIEF INTRODUCTION TO BAYESIAN NETWORKS

Bayesian networks (BNs) are directed acyclic gregdhinodels that represent the joint probabilitytrdis
bution of a set of random variables. The node$iefBN are random variables, while the directeddink
between them characterize their dependencies. Beda#itheir graphical nature, BNs can be highly eff
cient for modelling and communicating complex madelolving large numbers of random variables.
BN have recently found a number of applicationgmgineering (Faber et al. 2002, Friis-Hansen 2004,
Grét-Regamey & Straub 2006, Langseth & Portinale72@®traub 2009). Detailed introductions to BN
can be found in (Jensen & Nielsen 2007).

An example of a BN is depicted in Figure 1la. Héne,random variables are geolo@),(construction
time (") and cost €) and the causal dependence between them is rapedday the links in the BN. In
BN terminology,G is called gparentof T andC, wheread is called achild of G andT. Each node is de-
scribed by its probability distribution conditionaih its parents. As an example, the distributiorcai-
struction timeT is described conditional on the geolo@y this conditional distribution is denoted as
p(t|g)- Applying the chain rule, the joint probabilitystibution of this BN is obtained as

p(g.t,c) = p(gp(tlgp(clt, g) . (1)

In general, for any BN it holds that the joint pabidity distribution of the whole network is defimhes

the product of the conditional probabilities of #le nodes given their parents. In this way, the BN

ciently decomposes the joint probability distrilautinto local (conditional) probability distribuns.
Stochastic processes describing the developmemtsgétem in time or space can be modelled by Dy-

namic Bayesian Networks (DBNs), an example of wigcshown in Figure 1b. Thi¢h slice of the DBN

represents the state of the system in time/positibare consisting of the two random varialffeandT;.

The joint probabilityof G; andT; is obtained as

(g t) = 2g,_, p(9i-)P(gilgi-DP(til g0, 2)

wherep(g,;_,) is the marginal probability distribution of randarariableG;_, describing the geology in
slice(i — 1), p(g;1g:—1) is conditional probability describing changes oblggy between neighbouring
slices of the DBN ang(t;|g;) is the conditional probability describing the cwastion time for given
geological conditions.
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Figure 1. Example of (a) Bayesian network (BN),dhamic Bayesian Network (DBN)

The graphical structure of the BN contains infororaton conditional independence of random variables
in the network. In particular, once the state afalge G; in the DBN of Figure 1b is known, the left and
the right part of the network become statisticatigependent. More generally, if a DBN includes only
links between neighbouring slices, it represent4askov process. The basic feature of the Markowcpro
ess is its single-step memory: once the stateeo$yistem at position or timias known, the history of the
process before position/timiecan be neglected for making predictions aboutfuh&e. The Markov as-
sumption is commonly made in modelling tunnel ext@an processes.

The goal of the DBN model is the computation of givaal probability distributions of selected ran-
dom variables. In the context of the tunnel exdawatthe interest is e.g. in computing the disttidau of
the total excavation time. A variety of algorithragist for such computations. In the application- pre
sented in this paper, we use exact algorithmsrdwutire all random variables to be discrete. Detai
exact algorithms for evaluating DBN can be foun@\turphy 2002).

3 MODELLING TUNNEL EXCAVATION PROCESS USING BAYESIANNETWORKS

In the following, we present a BN model of the tahaxcavation process for a specific tunnel thas wa
previously investigated by other researchers. @pg@ication facilitates the validation of the BN dedb,
while it is sufficiently general to draw conclusgan the applicability of the model and to investegthe
influence of the model assumptions.



3.1 Tunnel specifics

The Suncheon-Dolsan road tunnel is located in thehsof South Korea between the towns Suncheon
and Dolsan. The project and its modelling were diesd in Min (2003), Min et al. (2003), Min et al.
(2005) and Min et al. (2008). The tunnel consistsam tubes with length of 1.9 km, of which we con-
sider only one tube. The tunnel was constructedh fomth tunnel ends, the respective sections are de-
noted as section A (of length 610m) and sectiofBgngth 1290m). In this paper, only results fec-s
tion A are presented. The geometry and geotechnarads as taken from Min (2003) are shown in Figure
2. The NATM with drill and blast technology was &pgd for excavation. Geological conditions in the
area are good, consisting mostly of Micrographiar@@e and Diorite. Based on the available investiga
tions (borehole drilling, electrical resistivity rsey and seismic exploration), five rock classesende-
fined by means of three parameters (RMR, Resigtand Q-value) for modelling purposes.
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Figure 2. Scheme of the modelled tunnel
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3.2 Bayesian network model of tunnel excavation process

A DBN model is developed to represent the variomsedain factors influencing the tunnel excavation
process. Each slice in the DBN consists of randamabiles describing the uncertain geotechnical ieond
tions and construction process variables in a tusegment of lengtiAl. Theith slice represents a tunnel
segment from positioi — 1)Al to positioniAl along the tunnel axis. Within one slice, all ramdeari-
ables are modelled as constant, i.e. the statdgeofariables are fixed over the interwdl For this rea-
son,Al must be chosen in order to best represent theexealation process, as discussed in Section 3.6.

Two alternative DBN models are shown in Figure Be Variables of the models are described in Ta-
ble 1. DBN (a) corresponds to the DAT model orijijnased in Min (2003). It should be remembered
that the DAT does not use BN, yet every probalmlistodel can be interpreted as a BN. DBN (b) dis-
plays an enhanced model, including additional ée®m and dependences in the construction process.
Both DBN models are discrete-space Markov chaingtsod hey are inhomogeneous, i.e. the conditional
probability distributions of the variables are viagyalong the tunnel axis. Both DBN models areantr
duced in detail in the following sections.
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Figure 3. DBN for tunnel excavation: (a) Model wihginal assumptions. (b) Extended model. (Thealdes are explained
in Table 1.)
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Table 1. Overview of DBN model variables

Id. Variable Type States of discrete/ type of continuous distribt

R Rock clas Random/Discret [ ALV, vV

(@] Overburde Determ./Discret Low, Medium, Higt

G Ground clas Random/Discref L-I, L-1I, L-NI, L-IV, L-V, M-I, M-I, M-lll, M-IV, M-V,

H-1, H-Il, H-III, H-IV, H-V

E Geometr' Determ./Discret 1 (begin/end), 2 (typical), 4 (chem.plant) , 5 (B

M Constructior Random/Discret P.1,P.2,P.3,P.4,P5 P.6-1P.;-2,P..-3,P.EPI
methoc

T Unit time Random/Con Triangular

Q Quality Random/Discret Poor, good, excelle

z Zone Random/ Discre 1,2,....1

3.3 DBN model of geotechnical conditions

The geotechnical conditions within a slicef the tunnel are described by the random varsatmek class
R;, height of the overburde®;, ground clas; and, in the extended model, zafie For modelling the
rock classr;, the tunnel is first divided into zones within whithe rock class can be modelled by the
same conditional probability distribution. (In sséital terminology, rock class is a homogenousess
within a zone.)

As evident from Figure 3, the spatial variabilitiyrock class along the tunnel axis is modelled as a
Markov process in both DBN models. The suitabitifyMarkov processes for modelling of geotechnical
parameters (including rock class, degree of jog)tialong the tunnel axis was shown already in Chan
(1981). Since then, the DAT model is based on oaotis Markov process models. In the DBN model,
the Markov process is discretized into a Markovircliee. transformed to a discrete space repreddnte
slices of the DBN). The rock class of each slicdascribed by a conditional probability table (&iion
probabilities), an example of which is given in TeaB. These conditional probabilities are derivemf
the parameters of the continuous Markov processrieg in Min (2003), assuming that changes in rock
class occur as a Poisson process, in accordance€wéan (1981).

Table 2 Conditional probability table for Markov model wfck classes in zone 1, for a DBN slice with lengftiAl = 4m.

Ri1
R; | I 11 v \
| 0.135¢ 0.214¢ 0.214¢ 1 1
Il 05707 0.367¢ 0417z O 0
1 0.294C 0417z 0367¢ O 0
v 0 0 0 0 0
\Y 0 0 0 0 0

In the enhanced DBN, the locations of borders afesowith statistically homogeneous rock class condi
tions are modelled as random by introducing theleamvariableZ;. Let Pr(Z; = k) denote the probabil-
ity that theith slice of the DBN is part of zorkeandPr(Z;_; = k) the probability that tha-{L)th slice lies

in zonek. Furthermore, lefg,(x) be the known cumulative probability distributiaumttion (CDF) of
the location of the border between zokemdk+1. Assuming that probability distributions of zoper-
ders are non-overlapping, the probability of itteslice being in zonk can be determined as

Al
Pr(Z; =k) =1 — Fyy (iAl — 7) 3)

The corresponding conditional probabilities are

P ZL' =k
Pr(Z; = kl|Z;i_y =k) = Pré_—1=l)<) X
Pr(Z; = k) ©)

PriZ;=k+11Z;_1=k)=1————
r(l + Ill ) Pr(Zi_1=k)

Pr(Z;=k+1|Z;_, =k+1) =1 (6)



The height of overburde@; is modelled deterministically. The ground cl#@sss defined deterministi-
cally for givenR; andO;. As evident from Table 1, ea¢h corresponds to a specific combinationRpf
ando;.

3.4 DBN model of construction performance

Construction performance in a slicef the tunnel is described by the variables csesgion geometry
E;, construction method¥/;, excavation timd;, and, in the extended model, design/constructigadity
Q-

The deterministic variable geometky enables the variations of the cross section tdistnguished
along the tunnel (e.g. typical cross section vierked cross section for emergency parking plaéd?) E
It is also used to consider the special requiremfmtthe construction process at the beginningtérie
tunnel and in the area where the tunnel passesnaeté an existing chemical plant.

The applied construction methdf} describes the excavation type and the relatedostppttern and
is determined conditional on the ground cl&ssnd tunnel geometr¥;. The modelling ofV; is taken
from Min (2003), where the details of the differennhstruction methods are described.

For every construction methad;, the excavation timd; is defined by a probability distribution
F(t;|m;). For representation in the DBN, the continuousrithistion is discretized as described in Straub
(2009). By not including a direct link betwe#f_; andM;, the model assumes full flexibility in chang-
ing construction methods from one slice to the nkxeddition, it is assumed that changes of constr
tion patterns are not connected with additionat@wover time. This neglects the fact that changdbke
excavation technology and the support structurebmademanding with respect to both time and costs
(Sousa 2010).

In the extended model, the excavation tifhas furthermore dependent on the design/constmctio
quality Q;. This additional variable represents the uncertpiality of design and construction works,
which introduces dependence among the performaneadh slice of the tunnel. The qual@yis in one
of the three states “poor”, “good” or “excellenktirbughout the entire tunnel construction, i.e.whBable
is fully dependent from one slice to the next anel tonditional probability matrix(g;|q;—,) in each
slice is thus the 3x3 identity matrix. This simpledel reflects the fact that the quality of a turpreject
cannot be directly measured and can only be dedueedthe average performance over long sections of
the tunnel project (Spkova et al. 2010). The quality influences the ctindal distribution of the exca-
vation timeT;: the better the construction quality, the lowes Wariability of7;. For each state @; and
construction method; , a different distributior¥ (t;|m;, q;) is defined for the excavation tinfe

3.5 Calculation of the distribution of the total excéwea time in the DBN

In the application presented in this paper, thennoaitput is the estimate of the total excavatiametin

the DBN model, this is obtained by introducing themulative timeT,,,,; in each slice, defined as
Teumi = Teum,i-1 + Ti- Teum,i represents the time needed for excavation ofuthieel from the beginning

to locationiAl. Because exact inference algorithms are usedvauating the DBN, in particular the
Frontier Algorithm (Murphy 2002), botfi; andT,,,,; must be discretized. Due to the required fine dis-
cretization ofT,,,;, and associated large number of states, the tefinof the conditional probability
table ofT,,,,; becomes impracticable. For this reason, the fomiigorithm was modified using a convo-
lution function that allows defining the conditidr@obability table to be avoided. The new algaritis
computationally efficient (computations shown htke in the order of 20 - 180 seconds on a standard
computer).

3.6 Influence of slice length in the DBN model

By choosing a slice lengthl in the DBN model, we make implicit assumptions abdependences
among the variables along the tunnel. In the madenges of conditions can only occur betweenslice
Therefore,Al must be sufficiently small to capture the varidypibf geotechnical conditions along the
tunnel axis, in particular the rock claBs This can be assessed by the probability thabagd ofR; oc-
curs within one slice. Using the Poisson assumpttaa probability iPr(Change) = 1 — exp (—Al/lR)
wherely is the mean length of a particular rock class glibve tunnel axis. For the Dolsan tunriglis in
the range 1.5m — 43m. As a rule of thumb, a vaful & [, provides reasonable accuracy for modelling
changes in the geotechnical conditions along thedl This requirement must be considered alonlgy wit
other criteria.



Because the model assumes that the constructidmhét slicei is determined purely based on the
geotechnical conditions (ground clags and the cross section geomefty it implies full flexibility in
changing construction methods between slices.dlityeconstruction methods are only changed betwee
excavation cycles. Therefore, for the model todmdistic, the slice length should not be shortantthe
length of the excavation cycles. Unless otherwpgecsied, the calculations in this paper are based
Al = 4m.

The conditional distribution used to specify theiadles in the DBN must be adjusted for the slice
length. In particular, the conditional probabiligble ofR; (as shown exemplarily in Table 2) must be
calculated specifically for a given value &f using the Poisson assumption. Furthermore, thavexion
time T; depends directly onl. If the mean and variance of the tiffig, for a reference lengthl,.., are
known, then the mean and variancd’ oére

E[T;] = Al/AlLofE[Tref] (7)
Var[T;] = Al/Alrerar[Tref] . (8)

It is assumed that the probability distribution 6f,(is a triangular distribution. However, the choide o
the distribution type has a little effect on theali results, due to the fact that the cumulativeetis ob-
tained as the sum of a larger numberTpf,'s.

4 NUMERICAL INVESTIGATIONS

4.1 Original model - DBN in Figure 3a

To validate the DBN model, the DBN in Figure 3acanstructed with the same assumptions as used in
the DAT model presented in Min (2003). The resgltiPBN is then applied to compute the total excava-
tion timeT;,; for the Dolsan A tunnel. Unlike in Min (2003), tldelay between excavation of heading
and bench was not considered in the DBN as itittesimpact on total construction time and the aa:
tion of the tunnel portal was not modelled becanemessary data were not available. Even with tbidse
ferences, the calculated mean valu&,gf is within 3% of the value given in Min (2003) atie standard
deviation ofT;,; is within 10% of the value given in Min (2003), s=en from Table 3.

The results presented in Min (2003) are based anamsistent definition of the probability distui
tions of the advance rates (it ignores the fact tihe advance rate is defined as an average oviirce
lengths and that the variance of this average asveate thus depends on the corresponding lengtieof
tunnel). To overcome this inconsistency, the resulesented in the following use the assumptionthea
variances of the advance rates given in Min (2@08)valid for 10m of tunnel excavation. With ths a
sumption, the resulting,,, is as given in Table 4. It can be observed thatvdriance of’;,; decreases
compared to the results with the original defimgpwhere the given distributions of average adeanc
rates are applied to sections that have lengths-10&0m.

Table 3. Comparison of results from D/ and DBN mode Table 4. Comparison of results from MC simulation &

(using the original assumptions of DAT) DBN model (using the modified assumptions of DAT)
DOLSAN A DOLSAN A
Simulation type Total constrtime (days Simulation type Total excavatiol time (days
Mear St.dev Mear St.dev
DAT acc. to (Min 200z 19t 3.3¢ MC - discrete spac 190 1.6€
MC - discrete pace 191 3.17 DBN 190 1.64
DBN 191 3.0¢

4.2 Extended model - DBN in Figure 3b

In the extended DBN shown in Figure 3b, varialesdescribing the design/construction quality and
variablesZ; describing the uncertainty in the position of ztmeeders are introduced. The probability of
different quality classes were assigned based gmeering judgement aBr(Q = excellent) = 0.1,
Pr(Q = good) = 0.6 andPr(Q = poor) = 0.3. The probability distributions of the excavatiomesT;
are now defined conditional on the quality; for jeads with excellent quality, the distributions rinche
DAT model used above are applied. For projects widbd and poor quality, distributions with higher
variances are used. These models are based ofratata tunnel project in Czech Republic, which also
used NATM, indicating that the variancesTofare considerably higher than those given in MiDO@.



(It is pointed out that the available data doesatiotv a representative statistic, but the obseaatcor-
respond with general experience on tunnel projectse Czech Republic.) The conditional distribngo

of Tges, from which the distributions df; are calculated (see Par. 3.6), are shown exeryplaria par-
ticular construction method in Figure 4. The catioins were performed under two different assump-
tions: (a) the mean value of the excavation tiffiess not dependent on the quality and is as in Min
(2003) and (b) the mean value of the excavatiomsifh is increased by a factor of 1.07 in the case of
good quality and by a factor of 1.15 in the caspaur quality.

The comparison of the total excavation tifyg, for the Dolsan A tunnel with 610m length as calcu-
lated by means of the DBN model with the origingswamptions and the extended DBN model is dis-
played in Figure 5. The variance of thg; is significantly higher with the extended modael particular
when including a dependence of the mean excavétionon the quality (case b), and is likely to more
represent realistically the true uncertaintieshia predictions of the tunnel construction procd$e in-
fluence of the main assumptions in the extended D&Mel is further studied in a sensitivity analysis
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4.3 Sensitivity analysis

Figure 6 displays the results of the sensitivitalgsis performed with the extended DBN model (a). |
Figure 6a, the influence of the spatial discretimais shown. With increasing slice lengilh, the vari-
ance ofT;,; slightly increases. This is due to the assumpitiah the construction method can be freely
selected for each slice. With the choice of a larfe limited flexibility of the construction techrogy is
assumed, which leads to a higher varianc&.gf. Figure 6b shows the influence of including the de
sign/construction quality); in the model. IfQ; is known to be excellent, the varianceTpf, is smaller
than in the case of unknow®. Finally, Figure 6c illustrates the effect of inding the variableg;,
which allow the position of the geotechnical zoteebe modelled as random, in the DBN model. Fa thi
application, it is found that the consideratiortto randomness has a negligible effect on theneséi of
T:o:- However, this effect might be larger if the exaten timesT; would vary more strongly between
different construction methods.
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Figure 6. Results of the sensitivity analysis.

5 CONCLUDING REMARKS

A novel model for tunnel excavation processes base@ynamic Bayesian Networks (DBN) was intro-
duced in this paper. The main new feature of trasl@his that it explicitly includes the quality thfe de-
sign and construction process. Because the gualgxpected to be similar over the entire proctss,
uncertainty in the quality leads to an increaseckeuainty (variance) of the estimate of the totaistruc-



tion time, which appears to reflect more realidlycthe actual uncertainties in tunnel projects. @it is
not included in this paper, the modelling of theasation cost can be performed analogically.

The main inputs to the DBN model, like to any othewdel of tunnel construction process, are the
probability distributions of the excavation timeglyance rates) for given construction methods bhad t
geological conditions. When determining these piodlbg distributions, due attention must be paidie
definition of these variables, since their variargca direct function of the reference length (i length
over which the advance rates are averaged). lexpgrience, estimates of the variances made bytexpe
are not generally reliable (unlike estimates of itiian excavation times). Therefore, a next stepbgil
to obtain more realistic estimates of these vagariiased on data from past tunnel projects.

The DBN model will be further developed along sevénes. On the one hand, additional factors will
be included in the model for assessing the fuljgmtorisks. These include the switch-over time aost
as well as extraordinary events (e.g. cave-in ps#a). On the other hand, the automatic updatirigeof
model with observations made during the geologicaéstigations and during the tunnel construction
process will be facilitated. To this end, the aitjons for evaluating the DBN are currently furtltevel-
oped.
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