
 
1 INTRODUCTION  

Tunnel projects are prone to escalations of construction costs and duration. On average, final construction 
costs of tunnel and bridge construction projects are 34% above original estimates, and there has been no 
improvement over the past seventy years (Flyvbjerg et al. 2004). New techniques, which would improve 
the accuracy of these estimates and which would enable a systematic learning from past projects, are 
therefore needed.  

Construction costs and duration are usually estimated by means of expert judgements. While these are 
irreplaceable, they should be underpinned by objective models, which enable a better quantification of the 
uncertainties associated with these predictions. Existing probabilistic models for tunnel projects are 
mostly based on Monte Carlo (MC) simulation of the construction process (Min et al. 2008, Chung et al. 
2006, Ruwanpura & Ariaratnam 2007). Other models use Bayesian networks (Sousa 2010), artificial neu-
ral networks (Benardos & Kaliampakos 2004) or analytical solutions (Isaksson & Stille 2005). The mod-
els are mostly able to describe in detail the uncertainties in the prediction of geotechnical conditions and 
common variations of performance rates or unit costs, but in general they fail to consider the impact of 
other factors. These include extraordinary events (e.g. cave-in collapse, fires, flooding) as well as human 
and organizational factors. In particular the latter lead to a significant increase in the uncertainty of the fi-
nal project cost and duration and should be included in a realistic model.  

The proposed probabilistic model of tunnel projects aims to overcome the above-mentioned gaps. It 
utilizes dynamic Bayesian networks (DBNs) to model the process of tunnel construction, particularly the 
time needed to execute the excavation with regard to uncertain geotechnical conditions, varying unit time 
and quality of design and construction. In contrast to the DBNs models presented in Sousa (2010), the 
proposed model includes the full probability distributions of random variables such as unit time and cu-
mulative (total) time even if it discretizes them.  

The suggested model is applied to a case study which was taken from Min (2003). In the original 
work, the Decision Aids for Tunnelling (DAT) tool based on MC simulation was used for probabilistic 
assessment of construction time and costs. The DAT model has been developed since the 80s, and has 
been applied to a number of projects. In the case study described in this paper, the same assumptions as in 
the original model are first utilized in order to verify the results of the DBN model. In the second step, 
additional aspects (such as the influence of the human factor, adjustments of the unit time distributions, 
variable length of excavation cycles) are included in the DBN model and their effect on the final estimate 
is described within a sensitivity analysis. 
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2 BRIEF INTRODUCTION TO BAYESIAN NETWORKS 

Bayesian networks (BNs) are directed acyclic graphical models that represent the joint probability distri-
bution of a set of random variables. The nodes of the BN are random variables, while the directed links 
between them characterize their dependencies. Because of their graphical nature, BNs can be highly effi-
cient for modelling and communicating complex models involving large numbers of random variables. 
BN have recently found a number of applications in engineering (Faber et al. 2002, Friis-Hansen 2004, 
Grêt-Regamey & Straub 2006, Langseth & Portinale 2007, Straub 2009). Detailed introductions to BN 
can be found in (Jensen & Nielsen 2007). 

An example of a BN is depicted in Figure 1a. Here, the random variables are geology (�), construction 
time (�) and cost (�) and the causal dependence between them is represented by the links in the BN. In 
BN terminology, � is called a parent of � and �, whereas � is called a child of � and �. Each node is de-
scribed by its probability distribution conditional on its parents. As an example, the distribution of con-
struction time � is described conditional on the geology �; this conditional distribution is denoted as 
�(�|	). Applying the chain rule, the joint probability distribution of this BN is obtained as  

�(	, �, �) = �(	)�(�|	)�(�|�, 	) .             (1) 

In general, for any BN it holds that the joint probability distribution of the whole network is defined as 
the product of the conditional probabilities of all the nodes given their parents. In this way, the BN effi-
ciently decomposes the joint probability distribution into local (conditional) probability distributions.  

Stochastic processes describing the development of a system in time or space can be modelled by Dy-
namic Bayesian Networks (DBNs), an example of which is shown in Figure 1b. The 
th slice of the DBN 
represents the state of the system in time/position 
, here consisting of the two random variables �� and ��. 
The joint probability of �� and �� is obtained as 

�(	�, ��) = ∑ �(	���)�(	�|	���)�(��|	�)���� , (2) 

where �(	���) is the marginal probability distribution of random variable ���� describing the geology in 
slice (
 − 1), �(	�|	���) is conditional probability describing changes of geology between neighbouring 
slices of the DBN and �(��|	�) is the conditional probability describing the construction time for given 
geological conditions.  

 
Figure 1. Example of (a) Bayesian network (BN), (b) dynamic Bayesian Network (DBN) 

The graphical structure of the BN contains information on conditional independence of random variables 
in the network. In particular, once the state of variable �� in the DBN of Figure 1b is known, the left and 
the right part of the network become statistically independent. More generally, if a DBN includes only 
links between neighbouring slices, it represents a Markov process. The basic feature of the Markov proc-
ess is its single-step memory: once the state of the system at position or time 
 is known, the history of the 
process before position/time 
 can be neglected for making predictions about the future. The Markov as-
sumption is commonly made in modelling tunnel excavation processes. 

The goal of the DBN model is the computation of marginal probability distributions of selected ran-
dom variables. In the context of the tunnel excavation, the interest is e.g. in computing the distribution of 
the total excavation time. A variety of algorithms exist for such computations. In the application pre-
sented in this paper, we use exact algorithms that require all random variables to be discrete. Details on 
exact algorithms for evaluating DBN can be found in (Murphy 2002). 

3 MODELLING TUNNEL EXCAVATION PROCESS USING BAYESIAN NETWORKS 

In the following, we present a BN model of the tunnel excavation process for a specific tunnel that was 
previously investigated by other researchers. This application facilitates the validation of the BN model, 
while it is sufficiently general to draw conclusions on the applicability of the model and to investigate the 
influence of the model assumptions. 



3.1 Tunnel specifics 

The Suncheon-Dolsan road tunnel is located in the south of South Korea between the towns Suncheon 
and Dolsan. The project and its modelling were described in Min (2003), Min et al. (2003), Min et al. 
(2005) and Min et al. (2008). The tunnel consists of two tubes with length of 1.9 km, of which we con-
sider only one tube. The tunnel was constructed from both tunnel ends, the respective sections are de-
noted as section A (of length 610m) and section B (of length 1290m). In this paper, only results for sec-
tion A are presented. The geometry and geotechnical zones as taken from Min (2003) are shown in Figure 
2. The NATM with drill and blast technology was applied for excavation. Geological conditions in the 
area are good, consisting mostly of Micrographic Granite and Diorite. Based on the available investiga-
tions (borehole drilling, electrical resistivity survey and seismic exploration), five rock classes were de-
fined by means of three parameters (RMR, Resistivity and Q-value) for modelling purposes.  

 

 
 Figure 2. Scheme of the modelled tunnel  

3.2 Bayesian network model of tunnel excavation process 

A DBN model is developed to represent the various uncertain factors influencing the tunnel excavation 
process. Each slice in the DBN consists of random variables describing the uncertain geotechnical condi-
tions and construction process variables in a tunnel segment of length Δ�. The 
th slice represents a tunnel 
segment from position (
 − 1)Δ� to position 
Δ� along the tunnel axis. Within one slice, all random vari-
ables are modelled as constant, i.e. the states of the variables are fixed over the interval Δ�. For this rea-
son, Δ� must be chosen in order to best represent the real excavation process, as discussed in Section 3.6. 

Two alternative DBN models are shown in Figure 3. The variables of the models are described in Ta-
ble 1. DBN (a) corresponds to the DAT model originally used in Min (2003). It should be remembered 
that the DAT does not use BN, yet every probabilistic model can be interpreted as a BN. DBN (b) dis-
plays an enhanced model, including additional variables and dependences in the construction process. 
Both DBN models are discrete-space Markov chain models. They are inhomogeneous, i.e. the conditional 
probability distributions of the variables are varying along the tunnel axis. Both DBN models are intro-
duced in detail in the following sections. 

 

 
Figure 3. DBN for tunnel excavation: (a) Model with original assumptions. (b) Extended model. (The variables are explained 
in Table 1.) 



 
Table 1. Overview of DBN model variables 
Id. Variable Type States of discrete/ type of continuous distribution 
R Rock class Random/Discrete I, II, III, IV, V  
O Overburden Determ./Discrete Low, Medium, High 
G Ground class Random/Discrete L-I, L-II, L -III, L -IV, L-V, M-I, M-II, M-III, M -IV, M-V, 

H-I, H-II, H-III, H-IV, H-V 
E Geometry Determ./Discrete 1 (begin/end), 2 (typical), 4 (chem.plant) , 5 (EPP) 
M Construction 

method 
Random/Discrete P.1, P.2, P.3, P.4, P.5, P.6,P.2-1,P.2-2,P.2-3,P.EPP 

T Unit time Random/Cont. Triangular  
Q Quality Random/Discrete Poor, good, excellent 
Z Zone Random/ Discrete 1,2,…,17 

3.3 DBN model of geotechnical conditions 

The geotechnical conditions within a slice 
 of the tunnel are described by the random variables rock class 
��, height of the overburden ��, ground class �� and, in the extended model, zone ��. For modelling the 
rock class ��, the tunnel is first divided into zones within which the rock class can be modelled by the 
same conditional probability distribution. (In statistical terminology, rock class is a homogenous process 
within a zone.)  

As evident from Figure 3, the spatial variability of rock class along the tunnel axis is modelled as a 
Markov process in both DBN models. The suitability of Markov processes for modelling of geotechnical 
parameters (including rock class, degree of jointing) along the tunnel axis was shown already in Chan 
(1981). Since then, the DAT model is based on continuous Markov process models. In the DBN model, 
the Markov process is discretized into a Markov chain (i.e. transformed to a discrete space represented by 
slices of the DBN). The rock class of each slice is described by a conditional probability table (transition 
probabilities), an example of which is given in Table 2. These conditional probabilities are derived from 
the parameters of the continuous Markov process reported in Min (2003), assuming that changes in rock 
class occur as a Poisson process, in accordance with Chan (1981).  

 
Table 2. Conditional probability table for Markov model of rock classes in zone 1, for a DBN slice with length of Δ� = 4m.  
  Ri-1 
Ri                                                 I II  III  IV V 
I 0.1353 0.2149 0.2149 1 1 
II  0.5707 0.3679 0.4172 0 0 
III  0.2940 0.4172 0.3679 0 0 
IV 0 0 0 0 0 
V 0 0 0 0 0 
 
In the enhanced DBN, the locations of borders of zones with statistically homogeneous rock class condi-
tions are modelled as random by introducing the random variable ��. Let Pr(�� = ") denote the probabil-
ity that the ith slice of the DBN is part of zone k and Pr(���� = ") the probability that the (i-1)th slice lies 
in zone k. Furthermore, let #$%(&) be the known cumulative probability distribution function (CDF) of 
the location of the border between zones k and k+1. Assuming that probability distributions of zone bor-
ders are non-overlapping, the probability of the ith slice being in zone k can be determined as  

Pr(�� = ") = 1 − #$% '
Δ� − Δl
2 * (3) 

The corresponding conditional probabilities are 

Pr(�� = "|���� = ") = Pr(�� = ")
Pr(���� = ") 

(4) 

Pr(�� = " + 1|���� = ") = 1 − Pr(�� = ")
Pr(���� = ") 

(5) 

Pr(�� = " + 1|���� = " + 1) = 1  (6) 



The height of overburden �� is modelled deterministically. The ground class �� is defined deterministi-
cally for given �� and ��. As evident from Table 1, each �� corresponds to a specific combination of �� 
and ��.  

3.4 DBN model of construction performance 

Construction performance in a slice 
 of the tunnel is described by the variables cross section geometry 
,�, construction method -�, excavation time ��, and, in the extended model, design/construction quality 
.�.   

The deterministic variable geometry ,� enables the variations of the cross section to be distinguished 
along the tunnel (e.g. typical cross section vs. extended cross section for emergency parking places EPP). 
It is also used to consider the special requirements for the construction process at the beginning/end of the 
tunnel and in the area where the tunnel passes underneath an existing chemical plant. 

The applied construction method -� describes the excavation type and the related support pattern and 
is determined conditional on the ground class �� and tunnel geometry ,�. The modelling of -� is taken 
from Min (2003), where the details of the different construction methods are described.   

For every construction method -�, the excavation time �� is defined by a probability distribution 
#(��|/�). For representation in the DBN, the continuous distribution is discretized as described in Straub 
(2009). By not including a direct link between -��� and -�, the model assumes full flexibility in chang-
ing construction methods from one slice to the next. In addition, it is assumed that changes of construc-
tion patterns are not connected with additional switch-over time. This neglects the fact that changes in the 
excavation technology and the support structure can be demanding with respect to both time and costs 
(Sousa 2010). 

 In the extended model, the excavation time �� is furthermore dependent on the design/construction 
quality .�. This additional variable represents the uncertain quality of design and construction works, 
which introduces dependence among the performance in each slice of the tunnel. The quality .� is in one 
of the three states “poor”, “good” or “excellent” throughout the entire tunnel construction, i.e. the variable 
is fully dependent from one slice to the next and the conditional probability matrix �(0�|0���) in each 
slice is thus the 3x3 identity matrix. This simple model reflects the fact that the quality of a tunnel project 
cannot be directly measured and can only be deduced from the average performance over long sections of 
the tunnel project (Špačková et al. 2010). The quality influences the conditional distribution of the exca-
vation time ��: the better the construction quality, the lower the variability of ��. For each state of .� and 
construction method -�  , a different distribution #(��|/�, 0�) is defined for the excavation time ��. 

3.5 Calculation of the distribution of the total excavation time in the DBN 

In the application presented in this paper, the main output is the estimate of the total excavation time. In 
the DBN model, this is obtained by introducing the cumulative time �123,� in each slice, defined as 
�123,� = �123,��� + ��. �123,�  represents the time needed for excavation of the tunnel from the beginning 
to location 
Δ�. Because exact inference algorithms are used for evaluating the DBN, in particular the 
Frontier Algorithm (Murphy 2002), both �� and �123,� must be discretized. Due to the required fine dis-
cretization of �123,�, and associated large number of states, the definition of the conditional probability 
table of �123,� becomes impracticable. For this reason, the frontier algorithm was modified using a convo-
lution function that allows defining the conditional probability table to be avoided. The new algorithm is 
computationally efficient (computations shown here take in the order of 20 - 180 seconds on a standard 
computer). 

3.6 Influence of slice length in the DBN model 

By choosing a slice length Δ� in the DBN model, we make implicit assumptions about dependences 
among the variables along the tunnel. In the model, changes of conditions can only occur between slices. 
Therefore, Δ� must be sufficiently small to capture the variability of geotechnical conditions along the 
tunnel axis, in particular the rock class ��. This can be assessed by the probability that a change of �� oc-
curs within one slice. Using the Poisson assumption, this probability is Pr(�ℎ56	7) = 1 − exp (−Δ�/�<) 
where �< is the mean length of a particular rock class along the tunnel axis. For the Dolsan tunnel, �< is in 
the range 1.5m – 43m. As a rule of thumb, a value of Δ� ≤ �< provides reasonable accuracy for modelling 
changes in the geotechnical conditions along the tunnel. This requirement must be considered along with 
other criteria. 



Because the model assumes that the construction method in slice 
 is determined purely based on the 
geotechnical conditions (ground class ��) and the cross section geometry ,�, it implies full flexibility in 
changing construction methods between slices. In reality, construction methods are only changed between 
excavation cycles. Therefore, for the model to be realistic, the slice length should not be shorter than the 
length of the excavation cycles. Unless otherwise specified, the calculations in this paper are based on 
Δ� = 4m.  

The conditional distribution used to specify the variables in the DBN must be adjusted for the slice 
length. In particular, the conditional probability table of �� (as shown exemplarily in Table 2) must be 
calculated specifically for a given value of Δ� using the Poisson assumption. Furthermore, the excavation 
time �� depends directly on Δ�. If the mean and variance of the time �>?@ for a reference length Δ�>?@ are 
known, then the mean and variance of �� are  

EB��C = Δ�/Δ�>?@ED�>?@E , (7) 

VarB��C = Δ�/Δ�>?@VarD�>?@E . (8) 

It is assumed that the probability distribution of  �>?@is a triangular distribution. However, the choice of 
the distribution type has a little effect on the final results, due to the fact that the cumulative time is ob-
tained as the sum of a larger number of  �>?@’s. 

4 NUMERICAL INVESTIGATIONS 

4.1 Original model - DBN in Figure 3a 

To validate the DBN model, the DBN in Figure 3a is constructed with the same assumptions as used in 
the DAT model presented in Min (2003). The resulting DBN is then applied to compute the total excava-
tion time �HIH for the Dolsan A tunnel. Unlike in Min (2003), the delay between excavation of heading 
and bench was not considered in the DBN as it has little impact on total construction time and the excava-
tion of the tunnel portal was not modelled because necessary data were not available. Even with these dif-
ferences, the calculated mean value of �HIH is within 3% of the value given in Min (2003) and the standard 
deviation of �HIH is within 10% of the value given in Min (2003), as seen from Table 3. 

The results presented in Min (2003) are based on an inconsistent definition of the probability distribu-
tions of the advance rates (it ignores the fact that the advance rate is defined as an average over certain 
lengths and that the variance of this average advance rate thus depends on the corresponding length of the 
tunnel). To overcome this inconsistency, the results presented in the following use the assumption that the 
variances of the advance rates given in Min (2003) are valid for 10m of tunnel excavation. With this as-
sumption, the resulting �HIH is as given in Table 4. It can be observed that the variance of �HIH decreases 
compared to the results with the original definitions, where the given distributions of average advance 
rates are applied to sections that have lengths 10m – 120m.  

 
Table 3. Comparison of results from DAT and DBN model 
(using the original assumptions of DAT) 

Table 4. Comparison of results from MC simulation and 
DBN model (using the modified assumptions of DAT) 

Simulation type 
DOLSAN A 

Total constr. time (days) 
Mean St.dev. 

DAT acc. to (Min 2003) 195 3.39 
MC – discrete space 191 3.17 
DBN 191 3.06 
 

Simulation type 
DOLSAN A 

Total excavation time (days) 
Mean St.dev. 

MC – discrete space 190 1.66 
DBN 190 1.64 
 

4.2 Extended model - DBN in Figure 3b 

In the extended DBN shown in Figure 3b, variables .� describing the design/construction quality and 
variables �� describing the uncertainty in the position of zone borders are introduced. The probability of 
different quality classes were assigned based on engineering judgement as Pr(. = 7&�7��76�) = 0.1, 
Pr(. = 	LLM) = 0.6 and Pr(. = �LLO) = 0.3. The probability distributions of the excavation times �� 
are now defined conditional on the quality; for projects with excellent quality, the distributions from the 
DAT model used above are applied. For projects with good and poor quality, distributions with higher 
variances are used. These models are based on data from a tunnel project in Czech Republic, which also 
used NATM, indicating that the variances of �� are considerably higher than those given in Min (2003). 



(It is pointed out that the available data does not allow a representative statistic, but the observations cor-
respond with general experience on tunnel projects in the Czech Republic.) The conditional distributions 
of �<?@, from which the distributions of �� are calculated (see Par. 3.6), are shown exemplarily for a par-
ticular construction method in Figure 4. The calculations were performed under two different assump-
tions: (a) the mean value of the excavation times �� is not dependent on the quality and is as in Min 
(2003) and (b) the mean value of the excavation times �� is increased by a factor of 1.07 in the case of 
good quality and by a factor of 1.15 in the case of poor quality.  

The comparison of the total excavation time �HIH for the Dolsan A tunnel with 610m length as calcu-
lated by means of the DBN model with the original assumptions and the extended DBN model is dis-
played in Figure 5. The variance of the �HIH is significantly higher with the extended model, in particular 
when including a dependence of the mean excavation time on the quality (case b), and is likely to more 
represent realistically the true uncertainties in the predictions of the tunnel construction process. The in-
fluence of the main assumptions in the extended DBN model is further studied in a sensitivity analysis.  

 

 
Figure 4. Excavation time distributions for construction  
method 4 under assumption (a) - same means for all qualities. 

Figure 5. PDF of total time for excavation of Dolsan A 
tunnel – comparison of models.  

4.3 Sensitivity analysis 

Figure 6 displays the results of the sensitivity analysis performed with the extended DBN model (a). In 
Figure 6a, the influence of the spatial discretization is shown. With increasing slice length Δ�, the vari-
ance of �HIH slightly increases. This is due to the assumption that the construction method can be freely 
selected for each slice. With the choice of a large Δ�, a limited flexibility of the construction technology is 
assumed, which leads to a higher variance of �HIH. Figure 6b shows the influence of including the de-
sign/construction quality .� in the model. If .� is known to be excellent, the variance of �HIH is smaller 
than in the case of unknown .�. Finally, Figure 6c illustrates the effect of including the variables ��, 
which allow the position of the geotechnical zones to be modelled as random, in the DBN model. For this 
application, it is found that the consideration of this randomness has a negligible effect on the estimate of  
�HIH. However, this effect might be larger if the excavation times �� would vary more strongly between 
different construction methods. 

 

 
Figure 6. Results of the sensitivity analysis.  

5 CONCLUDING REMARKS 

A novel model for tunnel excavation processes based on Dynamic Bayesian Networks (DBN) was intro-
duced in this paper. The main new feature of this model is that it explicitly includes the quality of the de-
sign and construction process. Because the quality is expected to be similar over the entire process, the 
uncertainty in the quality leads to an increased uncertainty (variance) of the estimate of the total construc-



tion time, which appears to reflect more realistically the actual uncertainties in tunnel projects. While it is 
not included in this paper, the modelling of the excavation cost can be performed analogically. 

The main inputs to the DBN model, like to any other model of tunnel construction process, are the 
probability distributions of the excavation times (advance rates) for given construction methods and the 
geological conditions. When determining these probability distributions, due attention must be paid to the 
definition of these variables, since their variance is a direct function of the reference length (i.e. the length 
over which the advance rates are averaged). In our experience, estimates of the variances made by experts 
are not generally reliable (unlike estimates of the mean excavation times). Therefore, a next step will be 
to obtain more realistic estimates of these variances based on data from past tunnel projects. 

The DBN model will be further developed along several lines. On the one hand, additional factors will 
be included in the model for assessing the full project risks. These include the switch-over time and cost 
as well as extraordinary events (e.g. cave-in collapses). On the other hand, the automatic updating of the 
model with observations made during the geological investigations and during the tunnel construction 
process will be facilitated. To this end, the algorithms for evaluating the DBN are currently further devel-
oped.   
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