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Bayesian updating enables one to consistently combine models with observations. In the context 
of structural reliability, it enables computing the conditional probability of system failure given 
measurement or monitoring results. Despite the huge potential for such updating, e.g. in 
geotechnical engineering or in the management of deteriorating structures, the method has seen 
limited applications in engineering practice. To a large extent, this was due to limitations of 
computational algorithms for performing Bayesian updating in the context of structural 
reliability, which have now been partly overcome by recent developments. This paper 
introduces the general concept of Bayesian updating in structural reliability and then 
summarizes a novel method that strongly enhances the versatility and efficiency of algorithms 
for computing the reliability conditional on observations. The method is illustrated by two 
examples. 

Keywords: Bayesian updating, structural reliability, measurements, monitoring, geotechnical 
reliability. 

 
1 Introduction 

With advances in information and sensor technology, increasing amounts of information on 
performances of engineering systems are collected and stored; examples include data on 
deformations and dynamic properties of structural systems, or data on ambient factors 
influencing deterioration. This information should be used to reduce the uncertainty in 
engineering models and, ultimately, to optimize the management of these systems. As an 
example, a smart structure should use sensor information to automatically trigger actions like 
detailed inspections or system shut-downs. Because system predictions typically remain 
uncertain even with new information, such decisions should be made reliability- and risk-based. 
This motivates the use of Bayesian updating in structural reliability, which enables the 
computation of the reliability conditional on new information.    

Bayesian updating in the context of structural reliability has been considered since the 1970s 
(e.g. Tang 1973) and in the 1980s several computational methods were proposed for this purpose 
(Madsen 1987; Schall et al. 1988). However, these methods have limitations with respect to 
accuracy and convergence, which are a main reason for the limited success of these methods in 
practice. Recently, the author has proposed a novel formulation of the Bayesian updating 
problem in structural reliability in (Straub 2011a). As opposed to previous methods, this 
formulation allows the use of any standard structural reliability method to compute the 
conditional probability of failure given any type of information. With this approach, reliability 
updating can now be performed more accurately and efficiently as shown in some follow-up 
publications (Straub 2010; Papaioannou & Straub 2012). This approach is the main topic of this 
paper. 
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Alternative approaches have been developed, which perform Bayesian updating by first 
updating the distribution of the basic random variables of the problem and performing reliability 
analysis with these updated distributions, e.g. in (Papadimitriou et al. 2001). As discussed later 
in this paper, this approach can be difficult to implement in the general case when the posterior 
distribution cannot be modeled (or approximated) by an analytical distribution. This is critical 
for all problems involving more than just a few random variables because numerical higher-
dimensional descriptions of the posterior distribution are computationally (too) expensive. Ching 
and Hsieh (2009) present an alternative method that overcomes the problems associated with 
this high-dimensional description, but conversely has limitations on the number of observations 
that can be considered. A completely different approach is proposed in (Straub & Der 
Kiureghian 2010a,b), where a procedure for combining structural reliability methods with 
Bayesian networks (BN) is developed. The resulting so-called enhanced BN (eBN) is highly 
efficient and versatile for probabilistic updating with any kind of information, but to establish 
these models requires significant efforts. The method has been successfully applied e.g. for 
updating of deterioration models with inspection information (Straub 2009). 

In this contribution, an introduction to Bayesian updating in structural reliability is given. 
This is followed by a presentation of the method developed in (Straub 2011a), and finally two 
example applications are presented; the first application is monitoring of a geotechnical 
construction site, the second is an academic example that illustrated the accuracy, flexibility and 
efficiency of the method. It is demonstrated that the method can be both robust and efficient, 
which are necessary conditions for near-real-time applications of Bayesian updating in structural 
reliability. 

 
2 Bayesian Updating in Structural Reliability 

2.1    Structural reliability 
In structural reliability, the interest is in computing the probability of failure of an engineering 
system or component, which is described by a model whose input is a set of random variables 

, , … , . By means of the model it is possible to divide the outcome space of  into 
a failure and a safe domain. By convention, the failure domain Ω  is defined in terms of 
continuous limit state functions . If there is only a single limit state function, it is 

Ω 0 . (1) 

A classic example is the limit state function , , where  is the capacity and  is the 
load: Failure occurs when , i.e. when , 0. In the general case, Ω  is defined in 
terms of several limit state functions (e.g., Der Kiureghian 2005), corresponding to systems of 
components that are defined by limit state functions. For the purpose of the present paper, the 
formulation in Eq. (1) is sufficiently general; extension to the system application is 
straightforward (Straub 2011a). 

The probability of failure can then be computed by integrating		 , the joint probability 
density function (JPDF) of , over the failure domain: 

Pr d
∈

. (2) 

Structural reliability methods such as FORM, SORM, importance sampling (IS) or subset 
simulation (SuS) have been developed to efficiently compute such integrals (Ditlevsen & 
Madsen 1996, Rackwitz 2001, Der Kiureghian 2005, Melchers 1999, Au & Beck 2001). 
 



Fifth Asian-Pacific Symposium on Structural Reliability and its Applications (5APSSRA) 
 

3 
 

2.2    Bayesian updating of input parameters 
In some instances, measurements on model inputs  are available, which allow to reduce the 
uncertainty in the model. As an example consider a measurement  of material strength . If 
the measurement is exact, the random variable  can be replaced by the deterministic . In the 
general case, however, the measurement will be associated with uncertainty. In this case, the 
measurement can be represented by the likelihood function, which corresponds to the probability 
of making the observation for a given value of : 

∝ Pr |
∝ . (3) 

Here,  is the probability distribution function (PDF) of an additive measurement error . 
(For other types of measurement errors, e.g. multiplicative errors, the second line in Eq. (3) must 
be modified accordingly.) The likelihood function is a well-known concept from classical 
statistics (e.g. Coles 2007).  

Bayesian updating combines the a-priori PDF of , , with the measurement outcome, 
which is represented through the likelihood function . According to Bayes’ rule, the updated 
PDF of , denoted by , is  

∝ . (4) 

The proportionality constant in Eq. (4) can be obtained by normalization, since it must hold that 
′′ d 1, i.e. the proportionality constant  is  

1

d
. (5) 

Bayesian updating of an individual random variable according to Eq. (4) is illustrated in Figure 
1.  

 
Figure 1. Bayesian updating of a random variable  with measurement . 

 
Often several measurements are available, with corresponding likelihood functions 

, , … , . In the common case that measurement errors are independent, the 
measurements can be combined into a single likelihood function  by  

. (6) 
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If measurements are dependent due to common factors in the measurement (e.g. when making 
spatially distributed measurements), the likelihood function is the joint distribution of the 
measurements given the model parameter.   

The above formulas can be extended from the case of a single random variable  to multiple 
random variables , simply by replacing the argument  with . For larger number of random 
variables in , say larger than 5, the integration required for computing the proportionality 
constant  become prohibitive (the integral in Eq. (5) becomes an -fold integral, with  
number of random variables in ). In these cases, an alternative is provided through Markov 
Chain Monte Carlo (MCMC) methods, which allow to generate samples from ′′  without 
knowing  (Gilks et al. 1996). However, it is noted that the joint updating of multiple input 
random variables  is generally impractical in the context of structural reliability, due to 
prohibitively large computational requirements. Simpler and more efficient approaches are 
available, as presented later.   

Once all random variables in  are updated with their respective measurements, structural 
reliability analysis can be performed with the a-posteriori JPDF  as the input. The 
resulting reliability is conditional on the measurements. 

 
2.3    Bayesian updating when measuring structural response or system performance 
In many instances, measurements of the system are available that do not directly correspond to 
the input random variables , but rather to some model output variables . Such an example is 
illustrated in Section 3 of this paper, considering measurements of deformations of a 
geotechnical structure. Generally, any observed response of an engineering system falls in this 
category (deformations, vibrations, stresses) as well as other indicators on the condition state 
(e.g. measurements of chloride concentration in concrete as an indicator of corrosion, Straub 
2011b). 

In the above examples, the observed (measured) quantities  can be described through 
functions of the random variables  as . Obtaining improved estimates of  from 
observations  corresponds to solving an inverse problem, which can be done with the 
Bayesian approach (e.g. Gelman 2004). Let  be additive measurement errors and therefore 

. It follows that the likelihood function for  is 

∝ Pr |
∝ . (7) 

It is, in principle, possible to update the distribution of  by means of this likelihood function 
following Eqs. (4) and (5). However, as pointed out earlier, this approach becomes 
computationally inefficient (or impossible) as the number of random variables  increases. In 
particular, the updated probability distribution of , , will no longer have an analytical 
form and can be described only numerically. Additionally,  cannot be described by the 
product of its marginal distributions, because even if the  are independent a-priori, they will be 
dependent a-posteriori because of the joint likelihood function. It follows that the description of 

 becomes cumbersome for higher dimensions. It is therefore desirable to avoid the explicit 
computation of  . This can be achieved through the methods of structural reliability, as 
summarized in the next section. 
 
2.4   Structural reliability approach to Bayesian updating 
Any set of measurements or observations corresponds to an event, which we here describe by . 
In structural reliability, this observation event can be described by a domain, similarly to the 
failure domain Ω  describing a failure event, as outlined in section 2.1.  
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Each observation can be characterized by a continuous limit state function , where 
, , … ,  are the basic random variables. The information contained in the 

observation is said to be of the inequality type if the corresponding domain can be written as  

Ω 0 , (8) 

and it is said to be of the equality type if it can be written as  

Ω 0 . (9) 

Bayesian updating in the context of structural reliability corresponds to computing the 
conditional probability of failure given the observations Pr | . This can be determined from 
the definition of the conditional probability as: 

Pr | ∩ …∩
Pr ∩
Pr

d∈ ∩

d∈

	. (10) 

This is illustrated in Figure 2 for the case of an observation  of the inequality type. 

 
Figure 2. Illustration of Bayesian updating in structural reliability: Computation of the conditional 

probability of failure given an observation  is performed through Pr | Pr ∩ / Pr ; whereby 
Pr ∩  is obtained from the integral over the area Ω ∩ Ω  and Pr	  is obtained by an integral over 

the area Ω . 
 
If observations are exclusively of the inequality type, Eq. (8), evaluation of the above integrals is 
straightforward using any of the available structural reliability methods (SRM). However, if the 
observation event  is of the equality type, the integrals result in zero, since this event has zero 
probability a-priori. Direct application of SRM is thus not possible in this case. Solutions to 
overcome this problem have been suggested by (Madsen 1987) and the group of Rackwitz (e.g. 
Schall et al. 1988). Madsen’s solution is based on De L'Hôpital’s rule. The solutions of the 
Rackwitz group are based on computing surface integrals, using first- or second order 
approximations of the surfaces 0. These solutions are implemented in the Strurel 
software (Gollwitzer et al. 2006). Both Madsen’s and Rackwitz’ methods are efficient and can 
often represent a sufficiently accurate approximation. However, in cases where FORM/SORM 
solutions are not sufficiently accurate or in which it is difficult to identify the joint design point, 
these methods should not or cannot be used. For this reason, (Straub 2011a) developed a method 
for transforming equality into inequality information, which is summarized in the following 
section.  
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2.5   A transformation for facilitating Bayesian updating 
This section presents a slightly modified summary of the method introduced in (Straub 2011a) 
for transforming Bayesian updating in structural reliability. The method is based on representing 
observations through the likelihood function , Eq. (7). Since any observation can be 
expressed through , the method is applicable independent of whether the information is of 
the equality or inequality type. 

The central idea of the method is the introduction of a limit state function that represents the 
likelihood function. This limit state function is denoted by  and it is of the inequality type, 
Eq. (8). The derivation of  is summarized in the following. Firstly, a random variable  
with uniform distribution in the range 0,1  is introduced, together with a constant  that is 
selected so that 0 1 for all . The following identity holds for any value of : 

Pr
. (11) 

Following Eq. (7), the likelihood function is defined as ∝ Pr | . (In Eq. (7) the 
observation event is .) Let  denote the corresponding proportionality constant. 
By combining with Eq. (11), we obtain: 

Pr | Pr . (12) 

It follows from the total probability theorem that the probability of the information event  is  

Pr Pr | d Pr d . (13) 

The event  can be defined through the limit state function 

, , (14) 

and the corresponding domain Ω , 0 . This has the same form as the domains 
describing inequality information, Eq. (8). Equation (13) can now be rewritten to  

Pr d
, ∈

d d
, ∈

d . (15) 

The second identity follows from 1. Similarly, the probability of ∩  is obtained as 

Pr ∩ Pr | Pr | d

d
, ∈ ∩

d . 
(16) 

The conditional probability of  given  is therefore 
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Pr |
d, ∈ ∩ d

d, ∈ d
. (17) 

Here, the proportionality constant  cancels out. The denominator in Eq. (17) corresponds to a 
component reliability problem, the nominator to a parallel system reliability problem. Since all 
domains are now of the inequality type, both integrals in Eq. (17) can be computed using any 
SRM, including FORM/SORM as well as any sampling method.  

Note that the above solution is directly applicable for several observations ∩ …∩
. Either, a separate limit state function ,  is formulated for each observation , or all 

observations are combined into a single likelihood function following Eq. (6). The latter solution 
is typically simpler and is used in the second example presented below. 

 
3 Examples 

Two examples are presented in the following for illustration. Additional examples can be found 
in (Straub 2011a) on updating fatigue crack growth reliability and in (Straub 2011b) on spatial 
updating of corrosion reliability. 
 
3.1   Updating geotechnical reliability  
This application is originally presented in (Papaioannou & Straub 2012). Consider the 
geotechnical construction site shown in Figure 3. Here, failure is considered to be the event of the 
horizontal deformation of the sheet pile wall at top of the trench  exceeding an allowable 
deformation of 0.1m. The limit state function for failure therefore is 

0.1m , (18) 

where  is obtained as a the solution of a non-linear finite element (FE) computation. The 
random variables  describe the soil properties (specific weight, young’s modulus, friction 
angle) through random fields. Because of this random field representation, the problem has a 
total of 432 random variables. The unconditional probability of failure (without measurement) is 
computed as Pr 0.0014. 

 
Figure 3. Sheet pile wall in sand (from Papaioannou & Straub 2012). 
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Results such as those presented in Figure 5 may serve for defining thresholds on measurement 
results that trigger modifications or revisions of the geotechnical design. They can support the 
traditionally applied observational method in geotechnical engineering by backing it up with a 
quantitative assessment.  
 
3.2   Updating of a Gaussian random process 
This example is included for illustrational purposes, since it has an analytical solution that 
enables demonstrating the accuracy of the proposed method for Bayesian updating in 
combination with importance sampling. In addition, the example shows the applicability of the 
method to problems involving spatially distributed observations and limit state functions.  

Limit states functions are defined at 100 locations along a vector 1; 2;… ; 100 . The 
problem involves only one random vector 1 ; 2 ;… ; 100 , which is modeled as 
stationary Gaussian process with mean 5 and autocovariance function 

Cov X , X Δ exp
Δ
10

. (20) 

The limit state function at all locations  is: 

X X 2, 1,2, … ,100. (21) 

For this simple problem, the design point of the FORM solution is ∗ 2 for all  and the 
unconditional probability of failure is Pr Φ 5 2 0.0013. Here, Φ is the 
standard Normal CDF. Next, we assume that the following measurements  are made at 
locations 10; 20;… ; 90 : 
 

Table 1.  Measurements made of the process  at different locations . 

,  10 20 30 40 50 60 70 80 90 

,  5 3 4 6 5 5 3 3 4 
 
The measurement error ,  is additive with normal distribution with zero mean and standard 
deviation , 0.5. Assuming that the ,  are independent, the limit state function describing 
these observations is obtained following Eq. (14) as: 

 

1

,

, ,

,
. 

(22) 

Since it is necessary to compute the conditional reliability simultaneously at 100 locations, an 
efficient computation method that requires little intervention by the analyst is required. An 
adaptive importance sampling approach is selected. To evaluate the conditional reliability at 
location , an initial sampling density with mean equal to the design point of the limit state 
function at  is chosen. This density is then adapted following a procedure derived from (Bucher 
1988). For further details on the importance sampling solution of the integrals given in Eq. (17), 
the reader is referred to (Straub 2010). 
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The results obtained with 10  and 10  samples are summarized in Figure 6. Since all random 
variables are normal and since all limit state functions describing failure are linear, an exact 
solution can be obtained, which is also given for comparison. It can be observed that the 
sampling error is negligible with 10  samples; with 10  samples, it is sufficiently small for most 
practical purposes. It is pointed out that the solution presented in this paper can be implemented 
for any non-linear non-normal limit state functions with equal accuracy. 

 
Figure 6. Reliability index at locations 1; 2; … ; 100 , conditional on measurements of the process  

at locations 10; 20;… ; 90 . 
 

 
4 Conclusions 

An efficient computational procedure for Bayesian updating of the reliability of engineering 
structures and systems is summarized. Due to its flexibility, the procedure can be combined with 
any existing structural reliability method, to provide optimal computational performance for any 
problem. The examples provided in the paper illustrate the applicability of the procedure for 
Bayesian updating in finite element-based reliability analysis and in problems involving 
spatially distributed observations and failures. 

 
 

References 

Au, S.-K.; Beck, J.L. (2001): Estimation of small failure probabilities in high dimensions by subset 
simulation. In: Probabilistic Engineering Mechanics, 16: 263–277. 

Bucher, C.G. (1988): Adaptive sampling — an iterative fast Monte Carlo procedure. In: Structural Safety, 
5(2): 119–126. 

Ching, J.; Hsieh, Y.-H. (2009): Updating future reliability of nonlinear systems with low dimensional 
monitoring data using short-cut simulation. In: Computers & Structures, 87(13-14): 871–879. 

Coles, S. (2007): An introduction to statistical modeling of extreme values. 4. printing. London: Springer 
(Springer Series in Statistics). 

Der Kiureghian, A. (2005): First- and second-order reliability methods. Chapter 14. In: Nikolaidis, E.; 
Ghiocel, D. M.; Singhal, S. (Hg.): Engineering design reliability handbook. Boca Raton, FL: CRC Press 

0 10 20 30 40 50 60 70 80 90 100
2

3

4

5

6

7

8

9

Location t 

Re
lia

b
ili

ty
 in

d
ex

 
β

 

 

104 samples

exact solution

105 samples



Fifth Asian-Pacific Symposium on Structural Reliability and its Applications (5APSSRA) 
 

11 
 

Ditlevsen, O.; Madsen, H.O. (1996): Structural Reliability Methods: John Wiley & Sons. 
Gelman, A. (2004): Bayesian data analysis. 2. ed. Boca Raton, Fla.: Chapman & Hall. 
Gilks, W.R.; Richardson, S.; Spiegelhalter, D.J. (1996): Markov chain Monte Carlo in practice. 1st. 

London: Chapman & Hall. 
Gollwitzer, S.; Kirchgäßner, B.; Fischer, R.; Rackwitz, R. (2006): PERMAS-RA/STRUREL system of 

programs for probabilistic reliability analysis. In: Structural Safety, 28(1-2): 108–129. 
Madsen, H.O. (1987): Model Updating in Reliability Theory. In: Proc. ICASP 5. Vancouver, Canada . 
Melchers, R.E. (1999): Structural Reliability Analysis and Prediction. 2nd: John Wiley & Sons. 
Papadimitriou, C.; Beck, J.L.; Katafygiotis, L.S. (2001): Updating robust reliability using structural test 

data. In: Probabilistic Engineering Mechanics, 16(2): 103–113. 
Papaioannou, I.; Straub, D. (2012): Reliability updating in geotechnical engineering including spatial 

variability of soil. In: Computers & Geotechnics, in print. 
Rackwitz, R. (2001): Reliability analysis – a review and some perspectives. In: Structural Safety, 23(4): 

365–395. 
Schall, G.; Gollwitzer, S.; Rackwitz, R. (1988): Integration of multinormal densities on surfaces. In: Proc. 

2nd IFIP WG 7.5 Working Conference. London : 235–248. 
Straub, D. (2009): Stochastic Modeling of Deterioration Processes through Dynamic Bayesian Networks. 

In: Journal of Engineering Mechanics, 135(10): 1089–1099. 
Straub, D. (2010): Reliability updating in spatially distributed systems using stochastic simulation. In: 

Straub, D. (Ed.): Reliability and Optimization of Structural Systems. London: CRC Press: 213–220. 
Straub, D. (2011a): Reliability updating with equality information. In: Probabilistic Engineering 

Mechanics, 26(2): 254–258. 
Straub, D. (2011b): Spatial reliability assessment of deteriorating reinforced concrete surfaces with 

inspection data. In: Proc. ICASP 11, Zurich . 
Straub, D.; Der Kiureghian, A. (2010a): Combining Bayesian Networks with Structural Reliability 

Methods: Methodology. In: Journal of Engineering Mechanics, 136(10): 1248–1258. 
Straub, D.; Der Kiureghian, A. (2010b): Combining Bayesian Networks with Structural Reliability 

Methods: Application. In: Journal of Engineering Mechanics, 136(10): 1249–1260. 
Tang, W.H. (1973): Probabilistic Updating of Flaw Information. In: Journal of Testing and Evaluation, 

1(6): 459–467. 
 


