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Abstract—We consider the problem of jointly optimizing ran-
dom access and subgraph selection in coded wireless packet net-
works. As opposed to the corresponding scheduling approach, the
problem cannot be formulated as a convex optimization problem
and is thus difficult to solve. We propose a special adaptation of
the branch and bound method which allows for computing the
optimal strategy for small and medium networks. The key tool
for efficiency is a random access specific convex relaxation bound.
We compare these results to both optimal and suboptimal joint
medium access and subgraph selection techniques, to conclude
that there is room for further improvement of suboptimal yet
practical random access schemes.

I. INTRODUCTION

Optimized medium access is a decisive factor for the

efficient operation of wireless networks. When resources are

scarce and have to be shared, transmissions have to be

controlled in order to avoid collisions. In principle there are

two ways to overcome this problem: In a first approach a

scheduler ensures orthogonality between transmissions. While

this method can completely avoid collisions, it has to be

coordinated by either a central entity that knows the global

network state or by a distributed protocol. Therefore, in many

practical systems random access mechanisms similar to slotted

ALOHA are preferred. This approach is easier to implement in

a distributed fashion as each node can decide independently

if it should transmit or not, with the penalty of a nonzero

probability of collisions.

In random access protocols, each transmitting node tries to

adjust its attempt probability to optimize a criterion, such as

maximum end-to-end throughput of a communication session,

which is used in this work. Finding the optimal attempt

probabilities for this problem is not trivial: Low probabilities

cannot provide high throughput while too high probabilities

will cause many collisions.

In the network layer, complementary to medium access,

network coding can achieve higher throughput than routing.

For the special case of a single multicast session, practical cod-

ing schemes are available and implementable in a distributed

fashion [1]. Recent work [2], [3] showed that significant gains

can be achieved by jointly optimizing medium access and

network coding flow assignment. The joint subgraph selection

and scheduling problem can be cast into a linear or convex

optimization problem [3], [4]. However, the joint subgraph

selection and random access problem, already considered in

[5], turns out to be considerably more difficult to characterize.

Unfortunately, it is a nonconvex problem, which, to the best

of our knowledge, cannot be transformed into an equivalent

convex problem, e.g. variable transformations exploiting log-

convexity [6], [7] do not apply in this case, or solved by any

other polynomial time algorithm.

We propose an algorithm that computes the globally optimal

solution for joint random access and subgraph selection. As

the problem is nonconvex, we use an appropriately adapted

branch and bound approach for nonlinear programming [8].

Key tool for this algorithm is the monotonic structure of the

joint optimization problem and the relation of the random

access rate region and parts thereof to scheduling. The latter

is exploited by explicitly parameterizing the convex hull of

the rate regions and its subregions as a convex hull of finitely

many points. At least for small and medium networks, we can

compute the optimal solution and use it as a benchmark for the

performance of random access in coded packet networks. We

quantify the loss of random access w.r.t. scheduling [3] and

show the potential gain for future random access schemes over

the state of the art random access scheme for coded packet

networks [5].

The key contributions of this paper are

• an algorithm that computes the optimal random access

policy and subgraph selection for coded packet networks,

• an extensive comparison of optimal and suboptimal ran-

dom access and scheduling policies,

• and an explicit parameterization of the convex hull of the

random access rate region and its relation to scheduling.

The remainder of this paper is organized as follows: We

formulate the network and interference model in Sec. II. A

formal description of the achievable throughput region is given

in Sec. III. Sec. IV presents the algorithm solving the joint

random access and network coding problem, before we show

simulation results of both optimal and suboptimal techniques

in Sec. V. Sec. VI concludes the paper.



II. NETWORK AND INTERFERENCE MODEL

We consider a wireless packet network with a set of nodes

N corresponding to wireless devices and a neighborhood

relation N : N → 2N associating with each node i a set of

nodes N(i) ⊂ N\{i} that are in transmission range of i,
excluding i. That is, only nodes N(i) may receive packets

or experience interference from i.1 We assume time slotted

communication with fixed length packets and backlogged

queues at all nodes. We consider half-duplex transmission and

secondary interference, i.e., in any time slot each node either

transmits a packet or stays idle; an idle node successfully

receives a packet if and only if it is within communication

range of exactly one transmitting node.

We construct a directed hypergraph (N ,A) such that the

hyperarc set A consists of all pairs (i, J) satisfying i ∈ N and

J ⊂ N(i). At any given time slot, if nodes I ⊂ N transmit

and N\I stay idle, each transmitter i ∈ I injects one packet

into the hyperarc (i, J) ∈ A where J is 2

J = {j ∈ N(i) : j /∈ I ∪ N(I\{i})}. (1)

That is, J contains all neighbors j of i that are idle, j /∈
I , and do not have an interferer in communication range,

j /∈ N(I\{i}). J = ∅ (empty set) implies that the packet

is lost since no neighbor of i can receive. Obviously, the

active hyperarc (i, J) depends only on the decision of the

neighbors of nodes in N(i), that is the two-hop neighbor-

hood of i. For ease of notation we define a characteristic

function ciJ : 2N → {0, 1} for each hyperarc (i, J) such that

ciJ (I) = 1 if I injects a packet into (i, J) and ciJ (I) = 0
otherwise.

We model packet injection and reception over time by

counting processes that have finite time averages. Let yi denote

the rate at which node i injects packets into the network and

ziJ the rate at which node i injects packets into hyperarc

(i, J) with yi =
∑

J⊂N(i) ziJ . For ease of notation we define

vectors y = (yi)i∈N and z = (ziJ )(i,J)∈A. Packet injection

rates are bounded by 0 ≤ yi ≤ 1, where yi = 1 means i
transmits a packet in every time slot and yi = 0 means i
is always idle. Packets injected into any hyperarc (i, J) are

subject to erasures,3 i.e., with some probability a subset of

nodes K ⊂ J successfully receives a packet whereas nodes in

J\K cannot recover it. Let ziJK be the rate at which packets

injected into (i, J) are received by all nodes in K ⊂ J ,
but not received by any node in J\K , K possibly being

the empty set, with ziJ =
∑

K⊂J ziJK . The distribution of

erasures is implicitly modeled by the probability distribution

piJK = ziJK

ziJ
, namely, the probability that a packet injected

into (i, J) is received exactly by all nodes K ⊂ J . We further

introduce biJK =
∑

L⊂J:L∩K 6=∅ piJL, i.e., the probability that

1The network model would be easily extended by considering separate
neighborhood relations for transmission, reception, and interference. However,
we use the simplified model to keep notation as clear as possible.

2We define N(K) =
S

j∈K N(j) for any K ⊂ N .
3Erasures model impairments of wireless transmission other than interfer-

ence and half-duplex devices, e.g. fading, and affect only idle nodes that are
free of interference.
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Figure 1. Example network with 4 nodes

Table I
INJECTION INTO HYPERARCS FOR EXAMPLE NETWORK

Transmitter set I Injected Hyperarcs (i, J)
{1} (1, {2, 3})
{2} (2, {3, 4})
{3} (3, {4})
{1,2} (1, ∅), (2, {4})
{1,3} (1, {2}), (3, {4})
{2,3} (2, ∅), (3, ∅)
{1,2,3} (1, ∅), (2, ∅), (3, ∅)

a packet injected into (i, J) is received by at least one node

in K . Based on these definitions many probabilistic erasure

models can be considered, including statistical dependencies.

The injection rates y and z are governed by the mechanism

which the nodes use to access the wireless medium. For slotted

packet networks the most relevant mechanisms are scheduling

and random access, which are described by their respective

feasible hyperarc injection rate regions Zs and Zra.

In scheduled networks for each time slot all nodes agree

on a policy, namely, a subset of hyperarcs where packets

are injected, either using a central entity or a distributed

coordination scheme. Optimal scheduling for coded packet

networks has been studied in [3] using a conflict graph model

to derive the feasible injection rate region Zs.

For random access in each time slot each node decides

independently whether it transmits or stays idle. The average

injection rate yi equals the probability of transmission. For

each hyperarc (i, J) the hyperarc injection rate ziJ is a

function of all nodes’ packet injection rates y given by

ziJ (y) =
∑

I⊂N

ciJ(I)
∏

j∈I

yj

∏

j∈N\I

(1 − yj), (2)

i.e., the expected value of ciJ(I) w.r.t. the probability distribu-
tion on the joint node states. We define the feasible injection

rate region of random access Zra as the set of all z satisfying

(2). Note that Zra is nonconvex in general.

Example: Consider the 4-node network depicted in Fig. 1

with source 1 multicasting information to destinations 3 and

4. The hyperacrs in Fig. 1 indicate the neighborhood relations

in the network; node 4 is assumed to be always idle. Table I

gives the relation which hyperarcs are injected for all possible

transmitter sets. For example the hyperarc injection rates of

node 2 are given by

z2∅ = y1y2y3 + (1 − y1)y2y3,

z2{3} = 0,

z2{4} = y1y2(1 − y3),

z2{34} = (1 − y1)y2(1 − y3).

(3)



Contrary to random access for routing [9], injection rates ziJ

of some hyperarcs (i, J) may increase with transmissions of

interfering nodes, whereas injection rates into other hyperarcs

decrease. In addition with the sum over multiple injecting

transmitter sets I ⊂ N , it implies that logarithmic transforma-

tions similar to [6] of (2) do not result in a convex formulation

of the random access injection rates.

Also note that z2∅, namely the rate at which packets trans-

mitted by node 2 are completely lost, is nonzero in general.

However, only transmissions of node 3 can cause a total packet

loss. This shows both the loss w.r.t. scheduling, which is free

of total packet losses due to collisions, and the gain over

random access in routed networks, where each packet has to

be delivered to a specific node and a packet is totally lost if

collision at this node occurs, although other nodes may have

received the packet.

III. ACHIEVABLE END-TO-END THROUGHPUT

The achievable end-to-end throughput region for a multicast

session using network coding, e.g. random linear network

coding, is characterized in [3], [4]. The authors in [4] have

shown that subgraph selection and network code construction

are separable if only intra-session coding is considered.4 For

a single multicast session, with source s ∈ N and terminals

T ⊂ N , throughput of rate r is achievable given a fixed

injection rate vector z if there exist flows x
(t)
ij such that the

following linear constraints are satisfied, cf. [3]:

r ≥ 0, x
(t)
ij ≥ 0, ∀i ∈ N , j ∈ N(i), t ∈ T, (4)

∑

j∈N(i)

x
(t)
ij −

∑

j:i∈N(j)

x
(t)
ji =











r, if i = s,

−r, if i = t,

0, otherwise,

(5)

∀i ∈ N , t ∈ T,
∑

j∈K

x
(t)
ij ≤

∑

J⊂N(i)

ziJbiJK , ∀i ∈ N , K ⊂ N(i), t ∈ T.

(6)

The maximal achievable throughput for any fixed z is given

by

R(z) = max
r,x

(t)
ij

r s. t. (4), (5), (6). (7)

The maximum throughput for scheduling [3] and random

access is obtained by maximizing R(z) w.r.t. all feasible hy-

perarc injection rates Zs and Zra, respectively. The scheduling

region is defined as the convex hull of the incidence vectors

of all conflicting-free hyperarc schedules.

Example: Consider again of the network depicted in Fig. 1.

At node 2 the flow constraint (5) for terminal 4 is given by

x
(4)
23 + x

(4)
24 − x

(4)
12 = 0 (8)

4If inter-session network coding is not considered, the problem formulation
can be readily extended to multiple separate multicast sessions.

and the capacity constraints (6) are given by

x
(4)
23 ≤ z2{3}b2{3}{3} + z2{34}b2{34}{3},

x
(4)
24 ≤ z2{4}b2{4}{4} + z2{34}b2{34}{4},

x
(4)
23 + x

(4)
24 ≤ z2{3}b2{3}{34} + z2{4}b2{4}{34}

+ z2{34}b2{34}{34}.

(9)

Note that the constraint corresponding to K = ∅ is redundant

and therefore omitted. The flow constraint basically states that

the amount of information that enters a node needs to leave the

node, except for sources and terminals. Because of network

coding, any packet can serve multiple flows for multiple

destinations. The capacity constraint bounds the amount of

information that is transmitted from a node i (example i = 2)
to any subset of its neighbors. That is, the average amount

of information from i to K ⊂ N(i) intended for any terminal

t ∈ T , LHS of (6) and (9), may not exceed the average amount

of packets that reaches at least one node in K , RHS of (6)

and (9). The latter corresponds to the value of the cut in the

subset {i} ∪ N(i) that separates {i} ∪ (N(i)\K) from K .

Using the hyperarc injection rates of random access (3) in

the capacity constraint (9) yields

x
(4)
23 ≤ (1 − y1)y2(1 − y3)b2{34}{3},

x
(4)
24 ≤ y2(1 − y3)

(

y1b2{4}{4} + (1 − y1)b2{34}{4}

)

,

x
(4)
23 + x

(4)
24 ≤ y2(1 − y3)

(

y1b2{4}{34} + (1 − y1)b2{34}{34}

)

.
(10)

Eq. (8) and (10) for all nodes and terminals constitute the

achievable throughput region with random access for the

example network.

A. Convex Hull of the Injection Rate Region of Random Access

For routed packet networks the inefficiency of random

access w.r.t. scheduling is well-known. The random access

link throughput region is generally strictly contained in the

scheduling region, but its convex hull coincides with the

scheduling region for single carrier networks. We derive a sim-

ilar characterization for coded packet networks in this section,

which is also essential for our random access algorithm, cf.

Sec. IV.

Define a box M = [a, b] = {y ∈ R
|N | : a ≤ y ≤ b} for

any 0 ≤ a ≤ b ≤ 1 and its vertex set vert(M) = {y ∈ R
|N | :

yi ∈ {ai, bi}, ∀i ∈ N}.
Theorem 1: The convex hull convZ(M) of the partial

injection rate region Z(M) = {z(y) : y ∈ M} with z(y)
as defined in (2) is given by

convZ(M) = conv{z(y) : y ∈ vert(M)}, (11)

i.e., the convex hull of a finite set of points.

The theorem is an immediate consequence of the supporting

hyperplane theorem, cf. [10], and the following lemma:

Lemma 1: For any w ∈ R
|A| there exists a vertex ŷ ∈

vert(M) that solves

max
y

wTz(y) s. t. y ∈ M. (12)



Proof: Let y ∈ M = [a, b] be an optimal solution to (12)

that is not a vertex of M , i.e., there exists k with ak < yk < bk.

Using (2) and grouping w.r.t. yk and 1 − yk we get

wTz(y) =

= yk

∑

iJ∈A

wiJ

∑

I⊂N
I∋k

ciJ(I)
∏

j∈I
j 6=k

yj

∏

j∈N\I

(1 − yj) +

+ (1 − yk)
∑

iJ∈A

wiJ

∑

I⊂N
I 6∋k

ciJ (I)
∏

j∈I

yj

∏

j∈N\I
j 6=k

(1 − yj)

= αkyk + βk(1 − yk),

(13)

where αk ≥ 0 and βk ≥ 0 depend on some yi, i ∈ N\{k}, but
not on yk. If αk > βk, then y′ defined by y′

k = bk and y′
i =

yi, i ∈ N\{k}, satisfies wTz(y′) > wTz(y) contradicting

the optimality of y. A similar contradiction occurs for αk <
βk. If αk = βk, then wTz(y′) = wTz(y) is also optimal.

Successive application of this argument to all k where ak <
yk < bk yields the result.

Theorem 1 implies that using the convex hull of the entire

random access rate region Zra = Z([0,1]) is essentially

equivalent to scheduling with the restriction that only hy-

perarcs satisfying (1) can be activated. This may allow for

new efficient solution approaches to the scheduling problem

[3] using the random access parameterization for scheduling.

Additionally, further heuristic approaches to the scheduling

problem using convZra with Lagrangian duality instead of

the explicit conflict graph formulation [11] can be developed.

However, both applications are beyond the scope of this work.

Nevertheless, Theorem 1 also provides an upper bound

on the end-to-end throughput with random access for all

probability assignments y ∈ M for any box M ⊂ [0,1]. This
upper bound can be used in our global optimization algorithm

for random access.

IV. MONOTONIC OPTIMIZATION APPROACH TO MAXIMUM

THROUGHPUT RANDOM ACCESS

We propose a solution to the maximum throughput problem

with random access given by

max
y

R(z(y)) s. t. y ∈ [0,1]. (14)

The objective function includes the maximization of x
(t)
ij and

r subject to linear constraints (4)–(6) and the polynomial

expressions of the hyperarc injection rates z in terms of y. To

the best of our knowledge there is no way to incorporate these

polynomials in a convex manner. Incidentally, the maximal

throughput problem w.r.t. flows and attempt probabilities is

in general a signomial program [12] that is not a geometric

program. Since signomial problems are generally NP hard,

we conjecture that there is no polynomial time algorithm,

including standard and distributed nonlinear programming

algorithms, that finds the global optimum of the maximum

throughput problem with random access (14).

Despite lack of convexity, we can exploit that (14) is

partially monotonic, namely, R(z) is increasing in z and

ziJ(y) can be expressed as difference of monotone (d.m.)

functions5 of y. Since there is no analytic expression for

R(z(y)), conversion of R(z(y)) into a d.m. function of y is

intractable. Furthermore, reformulation as a d.m. function and

application of the polyblock algorithm for monotonic problems

[13] seems not efficient as this aggregates the detailed d.m.

structure of |A| polynomial constraints (2) into a single d.m.

function, which may lead to poor numerical performance as

compared to other d.m. branch and bound mechanisms [14].

A. Branch and Bound Mechanism on Packet Injection Rates

We use a rectangular branch and bound procedure on the

nonconvex variables y of the maximum throughput prob-

lem with monotonic and problem specific convex relaxation

bounds. Feasible solutions for the injection rates are contained

in the unit hypercube [0,1] ⊂ R
|N |. For notational simplicity

we define f(y) = R(z(y)).
Branch and bound is a generic method for global nonconvex

optimization, e.g. integer programming, concave minimization

[8], and monotonic optimization [14]. It basically consists of

relaxing the feasible set,6 subdividing the relaxed feasible set,

and bounding the optimal function value over each part. Parts

where the optimum cannot be located are discarded and some

other parts are chosen for further refinement of the subdivision

and the bounds.

Since the maximal throughput problem (14) is a d.m.

optimization problem over a box region, a rectangular branch

and bound procedure can be defined. That is, the feasible

region [0,1] is partitioned into a finite number of boxes.

For each box M an upper bound fu(M) on the objective

function f such that fu(M) ≥ max{f(y) : y ∈ M} is

computed, cf. Sec. IV-B and Sec. IV-C. The box with the

largest bound is then partitioned into two new boxes using

rectangular bisection, namely, it is cut into two equally large

boxes along its longest side.

Given the initial set of boxes M0 = {[0,1]} and a feasible

solution y0 = 0, at each iteration k perform the following

operations:

Step 1 Find Mk = argmax{fu(M) : M ∈ Mk−1} and

update upper bound fk
u = fu(M

k).
Step 2 Take some feasible point yk ∈ Mk and update lower

bound fk = max(fk−1, f(yk)).
Step 3 Subdivide Mk into two boxes Mk

1 and Mk
2 by

rectangular bisection.

Step 4 Update relevant boxes according to Mk = {M ∈
{Mk

1 , Mk
2 } ∪Mk−1\{Mk} : fu(M) ≥ fk}.

Convergence in the sense fk
u − fk → 0 is guaranteed

provided that the upper bound is consistent [14], i.e., for any

nested sequence of boxes Mi that shrinks to a singleton y,

fu(Mi) → f(y) as i → ∞.

5A function f is d.m. if it can be expressed as the difference of two
increasing functions.

6For the random access problem the feasible set of y is the unit hypercube,
which is sufficiently simple. Therefore, relaxation is not necessary.



B. Monotonic Throughput Upper Bound

Given a box M = [a, b] ⊂ [0,1] we observe that

zdmiJ (M) =
∑

I⊂N

ciJ (I)
∏

i∈I

bi

∏

i∈N\I

(1 − ai) (15)

is an upper bound on (2) since b ≥ y and 1 − a ≥ 1 − y

for any y ∈ M . That is, we underestimate the probability

of collision at all receivers provided that the packet injection

rates y lie in M . As the maximal throughput R(z) is in-

creasing w.r.t. the hyperarc injection rates z, we conclude that

fdm(M) = R(zdm(M)) ≥ f(y) for all y ∈ M . Consistency

of this bound follows from [14]. fdm(M) can be evaluated by

solving a linear program.

C. Convex Relaxation Upper Bound

Given the same box M = [a, b] ⊂ [0,1] and its vertex set

vert(M), we consider the convex hull convZ(M) of all z(y)
as defined in (2) with y ∈ M . Then

fcr(M) = max{R(z) : z ∈ convZ(M)} (16)

is an upper bound on f over M given by a convex optimization

problem. As a consequence of the explicit parametrization of

convZ(M) as convex hull of a finite set of points due to Theo-
rem 1, fcr can be evaluated by solving a single linear program.

In particular, fcr corresponds to the maximal throughput by

using random access with a finite set of probability vectors in

M each for some fraction of time. That is, convex relaxation

corresponds to time sharing or scheduling of random access

probability vectors.

D. Joint Upper Bound

For the algorithm we use a joint upper bound fu(M) =
min(fdm(M), fcr(M)) and evaluate it on Mk

1 and Mk
2 in

Step 4. The convex relaxation bound is typically much tighter

than the monotonic bound, which is essential for the conver-

gence speed of the branch and bound procedure. However,

complexity of evaluating fcr is considerably higher since

the size of the associated linear program increases with the

cardinality of vert(M), which is exponential in the dimension

of M . Therefore, we compute fdm first and check whether

we remove the corresponding block, and only evaluate fcr if
this is not the case. Finally, consistency of the joint bound is

ensured by fdm.

V. NUMERICAL COMPARISON

We compare the algorithm described in Section IV-A to

different joint medium access and subgraph selection tech-

niques: In [3], the authors present the optimal solution to the

joint scheduling and subgraph selection problem. The greedy

scheduling algorithm [11] is based on Lagrangian dual decom-

position where a greedy method is used to solve the maximum

weighted stable set problem. The dual problem is solved by

a subgradient method. A suboptimal, yet practical technique

for random access is presented in [5]. The subgraph selection

problem is decoupled from the medium access problem and

both are iteratively updated for increasing target throughput as
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Figure 2. Maximal throughput rates vs. number of nodes. The number of
neighbors is limited to 5 in this simulation.

5 6 7 8 9 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

 

 

M
ax
im

al
T
h
ro
u
g
h
p
u
t

Number of Nodes

Opt. Sched.
Greedy Sched.
Orth. Sched.
Opt. RA
Heuristic RA

Figure 3. Maximal throughput rates vs. number of nodes. The number of
neighbors is limited to 6 in this simulation.

long as the obtained coding subgraph is feasible with respect

to random access.

We simulate these algorithms on random network topologies

supporting one multicast session with two terminals, where the

source is the leftmost node and the terminals the two rightmost

nodes. Nodes are uniformly scattered over a square with unit

node density. We assume that two nodes are in communication

range if their distance is smaller than the radius of connectivity

dc = 1.8. Transmissions are subject to erasures which are

due to distance attenuation and Rayleigh fading. The SNR

thus depends on the distance d to the transmitter, the path

loss exponent α and the fading coefficient γ, which is the

realization of a unit mean exponentially distributed random

variable. A packet is erased if the SNR is below a certain

threshold β, i.e., γd−α ≤ β. We use α = 2 and β = 0.25. In
the simulations, we assume that erasures of packets at different

receivers are independent, though this is not required by the

model.



Fig. 2 and Fig. 3 show the maximum throughput as a

function of the nodes in the network averaged over 500 random

networks. The maximal number neighbors is restricted to 5

and 6, respectively. We compare optimal scheduling (non-

conflicting simultaneous transmissions), suboptimal greedy

scheduling [11], orthogonal scheduling [4] (one active node

per time slot), optimal random access, and heuristic random

access [5]. Optimal random access performs worse than all

scheduling approaches for small to moderate size networks.

The gap to optimal scheduling increases with the network

size, whereas the gap to orthogonal scheduling decreases.

Interestingly, there is a quite large gap between optimal and

the suboptimal random access algorithm presented in [5].

The results for maximal node degree 5 and 6 are similar.

However, the gap between optimal random access and the

heuristic scheme increases with the maximal node degree and

also optimal random access performance is slightly closer to

optimal scheduling.

VI. CONCLUSIONS

We presented an algorithm that jointly optimizes random

access attempt probabilities and the network coding sub-

graph for coded packet networks, extending similar results

for scheduling [3]. Although we cannot expect to achieve

optimal scheduling performance with random access, we can

quantify the gap due to packet collisions. Nevertheless, sim-

ulation results show that there is some potential for new low

complexity random access techniques to outperform existing

approaches [5].
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