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Zusammenfassung

Die Arbeit beschäftigt sich mit kontinuierlichen Transformationsgruppen und deren

Algebren, den Lie Algebren, in der sensorbasierten Robotik. Dabei zeigt sich in einer

Referenzalgebra von Sensorik und Aktorik, dass mit Hilfe eines neuartigen Deskrip-

tors für Aktivierung Mechanismen selektiver Aufmerksamkeit für autonome Robot-

ersysteme modelliert und sogar reflexartige sensormotorische Assoziation abgebildet

werden können. Außerdem erlaubt das Konzept die Integration von Entscheidungen

höherer koordinativer Instanzen in die sensormotorische Verarbeitungskette.

Vorgestellte theoretische Methoden, abgeleitete Algorithmen und Anwendungen wer-

den in zwei Szenarios der Robotik implementiert und diskutiert. Im ersten Szenario

wird prototypisch ein sensorbasiertes System für den Bereich industrielle Automa-

tisierung entwickelt, während im zweiten Szenario Anwendungen im Bereich Mensch-

Maschine Interaktion gezeigt werden.
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Abstract

The thesis discusses continuous transformation groups and their algebras, the Lie

algebras, for sensor-based robotics. Here it is shown in a reference algebra for sensor

and actuator subsystems, that a novel descriptor for activation enables modeling

of selective attention mechanisms for autonomous robotic systems, and eventually

reflexive sensorimotor association. Furthermore the concept allows for integration

of decision-making instances into the reflexive association tool-chain.

Presented theoretical methods, derived algorithms and applications are implemented

and discussed in two robotic scenarios. In the first a prototypical sensor-based

system for industrial automation is developed, while in the second applications in

the field of human-robot interaction are shown.
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Chapter 1

Introduction

Contents
1.1 Contribution . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Scenarios and Demonstrations . . . . . . . . . . . . . . 4

1.3 Structure of the Thesis . . . . . . . . . . . . . . . . . . 4

ROBOTS are common in todays industrial production setups. They accompany

assembly lines all over the world, as they have interesting properties for pro-

duction processes: they never tire, provide high accuracy, and are able to work in

environments not suitable for humans. Still, today’s robots are often limited to very

specific tasks, as programming them accurately often is a non-trivial task and thus

only relatively simple, repetitive tasks are conducted autonomously by robots.

The main reason for this is the lack of capability for intelligent reaction on environ-

mental inputs. The cause is simple: the classical robot has neither means to perceive

its environment nor sufficient “intelligent” routines to react on unforeseen events or

dynamically adjust its behavior with respect to processed input information. Along-

side, many issues arise in typical robotic setups. Humans are forbidden access to

the workspace of robots for security reasons; reconfiguration is expensive and time-

consuming; dynamic environments are difficult to handle; and flexible production

processes cannot be implemented easily, to name but a few.

Therefore, integrating sensory devices for specific tasks gets increasingly popular

in robotics, but computaional cost of extensive input data processing and realtime

reaction requirements prohibit general usage. Nevertheless, the direction goes from

“dumb” industrial machinery1 towards social humanoid robot companions. Thus

this traditionally also requires increasing complexity in the algorithms applied to

control these robots. To handle this complexity recent approaches following the

embodiment paradigm argue, that morphological agent2 constraints can reduce the

computational costs for controlling and increase flexibility of an agent. This is facil-

1In fact these systems are often highly sophisticated considering their level of programmed expert task

knowledge, but rather dumb with respect to their cognitive ability.
2The term “agent” is used according to embodiment terminology, i.e., whenever the distinction between

a technical and biological system shall not be explicitly made.
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1 Introduction

itated with the tight integration of a body with its controller. The body eventually

masters complex behavior by exploiting its morphology through reflexive strate-

gies. Unfortunately, real-world mechanical and industrial robotic setups usually do

not provide for the necessary properties of embodied agents, such as underactuated

muscle-tendon systems with physical feedback mechanisms.

To overcome this from a theoretical, computational perspective, the problem to

be solved is in general inconsistent representation of actuator control and sensory

input data. Fusion and sensorimotor coordination, which are the basis of embodied

intelligence, however mostly require data association on a low level on input and

output channels simultaneously. This thesis therefore introduces a consistent and

elegant mathematical approach for modeling and managing robot manipulation and

sensory perception capabilities based on group theory and Lie algebras.

1.1 Contribution
The theoretical approach proposed in this thesis includes original work on applying

continuous transformation groups and their tangential vector spaces at the identity

group element, the Lie algebras, to sensor-based robotic systems. For such applica-

tions a descriptor structure based on Lie algebras is derived. Means for generating,

combining, and evaluating these descriptors are discussed on a mathematical level.

Then, this work proposes applications of the Lie algebraic activation features to dif-

ferent domains of sensor-based robotics. This includes modules for efficient realtime

manipulator control, sensor data (pre-)processing, and sensorimotor association and

coordination (see Figure 1.1).

• For the manipulator control domain, a realtime path generation system for

freely moving Cartesian targets is developed. It allows for receiving target pose

updates from activation features at any time, while still generating smooth end-

effector paths according to the hardware specifications and motion constraints.

• Thereafter applying the activation features to early processing in the perception

domain is presented. Here, using the Lie algebraic constructs an attention

mechanism is implemented, which includes bottom-up excitation and top-down

feedback, and is similar to the human attention system. It is shown, how this

attention based vision system can be used to dramatically improve performance

on workspace surveillance on the one hand and multiple interaction partner

recognition tasks on the other.

• Finally, in the coordination domain the activation features can be used to real-
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1.1 Contribution

Figure 1.1 Gobal theoretical architecture concept of a sensorimotor coor-

dinated system.

ize direct sensorimotor association as necessary for traditional visual servoing

applications. In addition to that, the activation features allow for seamless inte-

gration of intentional, and therefore high-level cognitive inputs to the reflexive

servoing system on a sensorimotor association level. Unifying the represen-

tation of actuator-, sensor-, and cognitive activation with the Lie algebraic

features, and multi-directional combination and propagation by an association

layer facilitate this capability.

3



1 Introduction

1.2 Scenarios and Demonstrations

The proposed theoretical methods and derived algorithms are implemented in two

real world robotic scenarios. One scenario includes transferring research findings

into an industrial automation prototype, while the other scenario is dedicated to

research on human-robot interaction. Both application scenarios originate from and

correspond to externally funded research projects.

The first scenario is within the SFB 453-T4 project. The transferproject T4 on

“Automated, Robot-Assisted Handling of Limp and De-

formable Objects” within the collaborative research cen-

ter SFB 453 on “High-Fidelity Telepresence and Teleac-

tion” is supported by the German Research Foundation

(DFG). Aiming towards industrial automation, in fact

many aspects of the proposed work are implemented in different applications within

this scenario. For example, the robotics framework for distributed processing, algo-

rithms for detection and tracking of linear structures, task coupling and abstraction,

fault and error recovery, as well as realtime path generation on freely moving targets,

or vision based servoing methods are applied here.

The second scenario is within the JAST project. The Framework Program 6 project

(FP6-003747-IP) on “Joint-Action Science and Technol-

ogy” is supported by the European Union. In this sce-

nario a computer vision and dialog based human-robot

interaction system is built. For example parallelization

on multi-core machines are implemented in a workspace

observation subsystem; or early information processing, activation correspondence

and attention condensation mechanisms with high-level inhibitory feedback are in-

tegrated into a subsystem for interaction partner recognition.

The presented applications in each of the scenarios of sensor-based robotics show

the applicability of proposed theoretical and technical claims and in deed reveal

significant advances to the state of the art in several fields of research. The scenarios

also demonstrate successful integration of the discussed novel concepts with existing

state-of-the-art techniques and systems.

1.3 Structure of the Thesis

The thesis essentially comprises the following four parts.
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1.3 Structure of the Thesis

• Chapter 2

Background and in-depth information on group theory in general and the nec-

essary details on continuous transformation groups and in particular their al-

gebras, the Lie algebras, are provided in Chapter 2. Alongside mathematical

concepts based on Lie groups and algebras with respect to robotic applications

are discussed.

• Chapter 3

This chapter introduces methodology for deriving Lie algebraic features from

activation in the sensor, actuator, and coordination domain. It furthermore

shows how these domains can be unified in an association layer, i.e., how for

example sensory stimuli can be translated into motor output commands and

vice versa. The mathematics necessary for this process are also introduced

here.

• Chapter 4

Applications and algorithmic methods based on differential algebras and Lie

groups for the different domains of sensorimotor robotics are presented in

Chapter 4. Here, useful applications, in particular realtime path generation

for the manipulator domain, attention mechanisms for the perception domain,

and sensorimotor association strategies for reflexive and coordinated behavior

are derived.

• Chapter 5

The final chapter gives details on the two research scenarios, SFB and JAST,

mentioned above and discusses results with respect to experimental applica-

tions. Then it summarizes the contribution and draws a conclusion alongside

showing possible directions for future research in the field.

The appendix finally shows additional details on transformation group representa-

tions for robotics in Appendix A, and gives a short introduction to the software

framework implemented as part of this thesis in Appendix B.
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Chapter 2

Background and Related Work

Contents
2.1 Sensor-Based and Autonomous Systems . . . . . . . . . 7

2.2 Group Theory, Lie Groups and Algebras . . . . . . . . 20

2.3 Lie Theory for Robotics . . . . . . . . . . . . . . . . . . 34

IN Section 2.1 this chapter starts with a coarse introduction to robot percep-

tion and action, as well as to relevant influential theories of (artificial) intelli-

gence based on embodiment and sensorimotor coordination. An introduction to the

mathematic fundamentals of group theory in general and continuous transformation

groups and their algebras in particular follows in Section 2.2. Readers familiar with

the concepts of group theory, embodied cognition theory and models for cognitive

systems may very well continue with Chapter 3 directly and scroll back if necessary.

2.1 Sensor-Based and Autonomous Systems
As [ Noë 2004 ] claim, perception is essentially processing an input data stream

originating from some representation of transformation, as sensors in general receive

stimuli from events caused by transformation of the agent environment, while action

means actively producing a transformation of the environment respectively. On the

lowest level sensorimotor association and coordination, and eventually development

of cognitive abilities on higher levels, may hence in principle be based on processing

transformation. Related models, supporting this claim or explaining development

of cognitive abilities, are discussed in the following.

Current neuroscience research aims at modeling neural processes and give explana-

tions for development of intelligence or at least intelligent behavior. Most theories

agree, that action, perception, and the coupling of both for sensorimotor coordina-

tion is an important, if not the most important prerequisite for this task in biolog-

ical systems. Therefore, because frequently biological agents outperform artificial

ones, biologically inspired models also seem plausible for development of autonomous

robotic systems.

Some influential models for this thesis are thus briefly reviewed in this section. How-
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2 Background and Related Work

ever it has to be emphasized, that this work does not claim to give a new theory

of cognition nor a model of sensorimotor coordination. It is rather to provide an

elegant theoretical, mathematical method which implements sensorimotor associa-

tion in a real-world robotic system, as in general such a system does not provide the

necessary hardware or low-level architecture by default.

The next sections also show relevant related research in the field of robot action,

i.e. motion generation and action abstraction, and perception, where in particular

active approaches and attention mechanisms are reviewed.

2.1.1 Autonomous Systems and Intelligence

In order for a system to act autonomously in its task environment, to some degree,

the system has to show intelligent behavior. First, this means, the system needs to

be able to perceive relevant data from its environment; second, it needs to adapt its

behavior to unforeseen events, i.e., it has to realize that such events occurred and

plan its action accordingly. Towards such autonomy different theoretical models

have evolved over the recent decades. The most influential state-of-the-art ones for

this work are elaborated in the following.

Embodiment

Embodiment theory in essence postulates that an autonomous agent can only be

built and moreover, a system can only develop intelligence, if and only if it has means

to actively interact with its environment. Furthermore, the system needs to have

sensory devices to perceive its interaction [ Brooks 1991, Clark 1997, Anderson

2003 ]. According to [ Pfeifer and Bongard 2005, pp. 100 ], the following basic

design principles then apply for embodied agents.

The three-constituents design principle claims, that one has to consider three essen-

tial constituents for designing an intelligent embodied agent.

1. The ecological niche for the agent has to be defined. The ecological niche

comprises the agents environment, e.g., a factory, a museum, or a supermarket.

2. The desired behavior has to be defined. This states the set of behaviors and

tasks that the system has to perform. Together with its ecological niche this

forms the task environment.

3. The pyhsical design of the agent. The system morphology has to be defined in

accordance to the requirements of its task environment.

The complete-agent principle of embodiment theory claims, that it is often clumsy

8



2.1 Sensor-Based and Autonomous Systems

and counter-productive to decompose the problem of developing intelligent behavior

into its pieces, namely action, perception and cognition. Instead, it is proposed, that

an agent needs to interact autonomously in its task environment (explore it) and

must simultaneously perceive its interaction through sensory devices [ Pfeifer and

Iida 2004 ].

The cheap design principle states that it will be much more cost effective, if an agent

takes advantage of its morphology and its ecological niche. The system then saves

a lot of computing power (cognitive resources) by just exploiting its design and the

properties of its physical environment [ Pfeifer and Gómez 2005 ].

The redundancy principle in embodiment on the one hand requires an agent to

“function on the basis of different physical processes” [ Pfeifer and Bongard 2005,

pp. 113 ]. This means sensor devices have to be designed that perceive the dynamics

of the agent environment based on different properties, e.g., vision (electro-magnetic

waves) and haptics (tactile sensation). On the other hand it states that there has

to be at least a partial overlap on the functionality from those sensors – the same

task could be achieved by using different modalities.

The sensorimotor coordination principle essentially states, that structure in the

sensory stimulation is generated by an agent performing interactions with its envi-

ronment. An agent moving in its environment generates specific structure in the

data stream of its sensory devices. This is also valid vice-versa, where sensory stim-

ulation induces structured interaction in order to master tasks in an environment.

A prominent example for this is walking on uneven ground. In order to master this

task, sensing of the (humanoid) agent’s feet touching the ground enables the agent

to react on the stimuli and walk properly. Sensorimotor coordinated behavior thus

always involves the simultaneous processing and association of input (perception)

and output (action).

A psychological perspective of this principle is discussed in [ O’Regan and Noë

2001 ], where it is proposed that any perception through a sensory device, partic-

ularly in the visual apparatus in biological system is always correlated to actively

causing changes in the stimuli. It is claimed that only by moving our eyes, i.e.

adjusting our field of view and foveating on objects of interest (“active inquiry

and exploration” [ Noë 2004 ]), we are able to actually see objects. This enactive

approach is discussed with respect to object recognition, color perception and in

general experiencing and understanding the environmental structure.

Embodiment’s design principle of ecological balance [ Hara and Pfeifer 2000 ] refers

to a match of complexity within an agent’s design (actuators and sensors) and the

9



2 Background and Related Work

task environment. Given a simple task, it is not necessary to apply sophisticated

manipulators and sensors – this would rather hinder efficient behavior. On the

other hand, the principle states that also there shall be a balance between actuator

and sensor materials and morphology, control and environment [ Pfeifer 2000 ]. If

an agent has complex actuators it is for example also necessary to apply sensors

that may perceive the interaction with the environment caused by these actuators,

as well as the cognitive architecture to process this information [ Ishiguro and

Kawakatsu 2003 ].

Traditionally, hierarchical robot control architectures implement a controller pro-

gram, which calls subroutines for sensation (e.g. retrieval of camera images), then

performs processing on this data, plans actions and finally calls a motor subroutine

for actually moving the actuators. This approach is not only hierarchical, but also

sequential.

The principle of parallel, loosely coupled processes states, that intelligence may only

emerge from systems that break with this traditional approach (see Figure 2.11).

It is claimed, that an embodied intelligent system instead has to implement a sub-

sumption architecture (see Figure 2.2). This means, all processes run in parallel,

even if their output is not currently required on higher levels. and the coupling

of low-level processes via higher-level processes is only loose: coordination of (low-

level) processes is not achieved by complex internal (higher-level) processing, but

emerges from the interaction with the environment.

Figure 2.1 Traditionally, functional modules for robot control are decom-

posed with respect to a sequential processing pipeline.

Finally, the value design principle states an agent needs some kind of a value system

for autonomous learning and self organization [ Pfeifer and Bongard 2005, pp.

137 ].

1Figure 2.1 and Figure 2.2 are reprints from [ Brooks 1986 ].
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2.1 Sensor-Based and Autonomous Systems

Figure 2.2 Subsumption architecture proposes a decomposition based on

tasks and behaviors.

Memory-Prediction and Generative Models

The last section introduced the embodiment model which tries to explain the devel-

opment of intelligence in a natural or an artificial agent. The model reviewed below

on the other side tries to explain the algorithms or processes implementing intelli-

gence instead. Although many generative neural models of intelligence and coupling

of perception and action have been developed and, at least partially, implemented

(see e.g. [ Hinton 2007, Dayan and Abbott 2001 ] for an overview), the most

influential for this thesis is the memory-prediction model from [ Hawkins 2004 ].

The memory-prediction model gives an alternative theory of intelligence (or the

emergence of intelligence), which nevertheless partially overlaps with the embod-

iment theory. However, it is more a model of neural processes in the neocortex,

rather than a theory of creating intelligent behavior for artificial systems. Yet, some

implications of the memory-prediction model seem relevant to this thesis and several

aspects inspire the technical solutions presented later.

The first claim of the memory-prediction model is, that intelligence is not a matter

of computational power. It was found that the operating time scale of biological

neurons is much slower than that of electronic circuits (ca. 10−2 vs. 10−7 sec-

onds). Therefore speed and computational power cannot account for intelligence.

It is rather massively parallel processing and the layered prediction of memorized

structures that makes the biological system efficient.

Findings from neuroanatomy furthermore show, that the physical structure of the

neocortex is columnar [ Mountcastle 1978 ] and in fact relatively uniform all over.

11



2 Background and Related Work

Summary 2.1 – Embodiment

The most relevant implications of embodiment for this thesis are the following.

à Tight coupling of body (morphology), perception and cognition is essential

for development of intelligence. A complete agent has to consider ac-

tion/perception simultaneously – no decomposition is necessary, in fact it

is obstructive.

à “Automatically” finding correlation between action/perception stimuli is es-

sential (sensorimotor coordination).

à Parallel, loosely coupled processes are inherent: in the subsumption ar-

chitecture everything runs in parallel, and only relevant information is prop-

agated, while any other is inhibited.

The memory-prediction model thus claims there is a single, general algorithm op-

erating everywhere in the cortex to enable intelligence (perception, action, plan-

ning and learning). This idea is supported by the sensory substitution experiments

[ Bach-y-Rita 1967 ], where a haptic display device was developed and placed on a

blind subjects tongue to substitute for the visual input (the subjects actually “saw”

objects by feeling pressure on their tongue).

The general algorithm according to the memory-prediction model is based on auto-

associativity and Hebbian learning [ Hebb 1949 ]. Connections and associations are

strengthened, whenever they occur simultaneously. Then, abstraction (“naming”)

correlates to building invariant internal representations of associated inputs pat-

terns. These representations are formed hierarchically during learning. Bottom-up

in the hierarchy, spatial specifity gets lost in favor of an invariant representation,

short time coverage incrementally increases towards larger time coverage, and details

and sensory features become objects (see Figure 2.32).

So the memory first creates a model of the world, i.e. an invariant representation.

Once then sensory input is related to a stored model, it is possible to make con-

tinuous predictions. As long as these predictions (expectations) match the likewise

continuous sensory stimuli, the system is in a consistent state and uses no further

2Figure 2.3 is taken from [ Hawkins 2004, p. 77 ].
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2.1 Sensor-Based and Autonomous Systems

Figure 2.3 Different spatial/time scale and abstraction reference frames.

computational resources. Only if an unexpected stimulus is received, which is not

consistent with the current predicted stimulus, this is propagated upwards in the

hierarchy. Whenever the next layer is able to incorporate this change into its model,

predictions are adapted and the system is in a consistent state again. If this process

fails, the inconsistency is propagated upwards again. Eventually, at the top-level

of the hierarchy it is then decided, whether the inconsistency corresponds to a new

model or the model has to be adjusted globally. The general idea is to delay a

decision on an inconsistency and first wait for higher-level feedback. This correlates

strongly to the subsumption architecture presented earlier, as here as well it is pos-

tulated, that consistent activation is suppressed from higher-levels. This effect has

also been investigated on in biological systems [ Posner and Cohen 1984, Tipper

and Kingstone 2005 ], where it is commonly called inhibition of return.

Before learning, a column in the neocortex can only become active if driven by a

bottom-up stimulus (a layer four cell) [ Hawkins 2004, pp. 101 ]. After learning, the

column can become partially active via memory. When a column becomes active

via top-down feedback, it is anticipating being driven from below. With respect to

generating action in and interaction with the environment, the memory-prediction

model claims the following: action / behavior is a “highly coordinated firing sequence

along layer five cells within the motor cortex” [ Hawkins 2004, pp. 98 ]. This causes

for example muscle contraction. So actuation is not actually planning a command

sequence, but automatically happens by memorizing and predicting a pattern and

subsequently creating sequences of activations in the motor cortex which then (also

in anticipation of further activation) fires the motor commands.

A final claim of the memory-prediction model is that intelligence is not dependent on

13



2 Background and Related Work

the physical material of implementation of the algorithm. Any machine or biological

system providing the architecture to perform the processing steps of the algorithm

eventually develops intelligence. Thus, intelligent machines may evolve in shapes,

appearances, and with interaction skills likely to be very different from the ones of

humans.

Summary 2.2 – Memory-Prediction Model

The most relevant aspects of the memory prediction model for this thesis are

à a uniform (columnar) neural architecture implies a common, general algo-

rithm for development of intelligence,

à building an invariant internal representations of associated inputs patterns

(“naming” things) is the learning part,

à the prediction part is “anticipation” of activation by integration of patterns

with delayed feedback (of recent activation),

à only unexpected, unpredicted input is propagated upwards for learning,

while expected activation is suppressed (“inhibition of return”), and

à anticipated activation can introduce motion by mutual excitation.

2.1.2 Robot Action

Towards controlling a robot for interaction within its environment, several aspects

have to be considered. First, the low-level control of the hardware is essential, which

is mainly a technical problem, i.e., defining controller interfaces, sending motor com-

mands, and the like. Next, the robot motion has to be coordinated somehow. This

usually involves modeling the kinematic structure, computing a trajectory in space,

and applying the control commands according to inverse kinematics. An incremen-

tal approach may then abstract from primitive motion and trajectory planning and

lead towards complex behavior specifications.

14



2.1 Sensor-Based and Autonomous Systems

Motion Generation and Planning

In the field of robot motion generation and (path) planning a vast amount of research

from the last decades is present in literature. An extensive survey of the field is for

example given in [ Latombe 1991 ].

In general, one can distinguish between two classes of systems: holonomic and non-

holonomic systems [ Laumond 1998 ]. First, in non-holonomic systems the actuated

degrees of freedom are not independent. For example, a car only has two means of

actuation, steering and linear motion. Yet, these are not independent, as the car

may only rotate around its axis while also changing the position. Second, holonomic

systems are fully actuated in their configuration space, i.e., given a zero current

velocity, a robotic system can actually move to any pose in its space of reference

directly (the degrees of freedom of the actuator match those of the environment).

Some also attribute underactuated systems to be a separate class [ Choset et al.

2005 ], because their actuators are designed with additional degrees of freedom with

respect to the environment, these systems are also called redundant. In a redundant

system not only one configuration exists to match a desired final destination, but

the number is infinite.

This thesis does not need to explore this field of research in great depth. Instead,

a methodology is derived for efficient path generation in realtime. Generally, we

determine offline and online approaches. Offline methods are especially useful for

repetitive tasks, as the path can be optimized beforehand and then simply be exe-

cuted as often as required. Still, finding a suitable path with these planners may be

a non-trivial task. Common approaches use exploration or exploitation strategies, or

a combination of both (see [ Rickert et al. 2008 ] for an extensive discussion). The

focus of interest with online, i.e. realtime, approaches is slightly different. Here, one

tries to approximate an optimal solution while still offering the flexibility required

for highly dynamic environments. Within these environments new targets and / or

obstacles may be introduced at any time during a movement and the robot is re-

quired to act in realtime upon these new constraints. Movement planning thus has

to consider the current operational and configuration space pose and velocities and

combine these with the target and obstacle information. Common online approaches

use artificial potential fields [ Khatib 1985, Khatib 1987 ] or fluid dynamics [ Mayer

et al. 2007 ].

For robot control, i.e. actuating the robot joints in order to reach a previously com-

puted end-effector pose with a corresponding joint configuration, we determine the

problems of computing forward and inverse kinematics. While forward kinematics
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are relatively easy and efficiently to compute, e.g., using the standard Denavit-

Hartenberg (DH) convention [ Denavit and Hartenberg 1955 ], the problem of

inverse kinematics is a lot more complicated. Here, all approaches, without excep-

tion, face the problem of singularities when having as much as or more than actuator

space degrees of freedom. Still there are several acceptable solutions “on the market”

that suffice every day tasks. Amongst these solutions, in principal three approaches

can be determined. Algebraic and geometric methods try to find a solution to the

inverse kinematics problem by successive inversion of the DH-transforms. Algebraic

methods produce trigonometric non-linear equations to be solved and geometric

methods reduce the large problem to a series of plane geometry problems. These

closed-form approaches are able to find all solutions to the problem, but they may be

inefficient to compute and difficult to evaluate, as a suitable solution has to be found

from the (probably infinite) set of solutions provided. The third category, numerical

approaches, provide a compromise being both efficient to compute and accurately

enough to be useful for real-world scenarios. Here, an approximate solution is derived

from an underlying non-linear optimization problem. A magnitude of algorithms for

such optimization problems have been proposed, including for example Downhill-

Simplex [ Nelder and Mead 1965 ], Levenberg-Marquardt [ Levenberg 1944 ], and

many more in [ Press et al. 2002 ].

The group theory based approach presented here derives a relatively easy solution

for inverse kinematics in a scenario, where the degrees of freedom of the actuator

match those of the environment. This is significant, as it is a closed-form approach

which is still efficient to compute. In combination with a compositional realtime

path planner, the system may in an unconstrained environment, given some cur-

rent state of the system, always produce an infinitesimal increment yielding smooth

reaching towards a possibly dynamic target. In practice, of course, the infinitesimal

increments are discretized with respect to the update interval of the robot hardware

and thus the approach is, strictly speaking, still an approximation. Nevertheless,

motion planning is elegant, as the approach only computes in the tangent space of

the transformation manifold.

Action Abstraction and Complex Behavior

Regarding incremental automation and behavior abstraction, Arkin’s introduction

to the principles, design, and practice of intelligent behavior-based autonomous

robotic systems [ Arkin 1998 ] is one of the first surveys of this robotics field (others

follow, e.g., [ Graves and Czarnecki 2000 ]). Tools and techniques central to the

development of this class of systems are presented there. His work covers the use of
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knowledge and learning in autonomous robots, behavior-based robot architectures,

modular perception, and future trends in robot intelligence. The central idea is, that

complex behavior can be composed from primitive prototypes (or action primitives)

by combining characteristic, distinct sequences of primitives. If for example reaching

for an object and closing the manipulator hand afterwards always occur in sequence,

a “grasp” behavior can be abstracted from that. This abstract behavior can in turn

then eventually be utilized as a primitive for even complexer behavior, instead of

coordinating the sequence of primitives over and over again. A previous attempt to

implement such a system is e.g. discussed in [ Radi et al. 2010 ].

Of course, many others have also contributed significantly to this field of research,

e.g., [ Laaksonen et al. 2010 ] propose an abstraction architecture for embodi-

ment independent sensor-based control of manipulation, [ Eskridge and Hougen

2009 ] propose an evolutionary approach for development of an action controller, or

[ Johnson and Demiris 2005 ] propose hierarchically coupled internal inverse and

forward models for motor abstraction, to name but very few.

A integrative approach to abstraction of actions, while at the same time recogniz-

ing and classifying is presented in numerous publications, e.g., [ Geib et al. 2006,

Wörgötter et al. 2009 ], from the paco+ project3. Here, so called Object-Action-

Complexes are introduced. An object-action-complex is a combined representa-

tion of an object and the potential actions that may be performed on the object

(see [ Krüger et al. 2009 ] for a formal definition). This is due to the notion

that “objects are only objects because of the actions one can execute with them”

[ Giuliani 2011 ].

Summary 2.3 – Robot Action

Robot actuation in principle requires

Ê low-level hardware control, i.e., sending motor commands,

Ë motion coordination, i.e., kinematic modeling and inverse kinematics, and

Ì action abstraction, i.e., hierarchical composition from motion primitives to

trajectories to complex behavior.

3http://paco-plus.org
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2.1.3 Perception and Attention

An essential assumption of this work is, as stated before, that in general percep-

tion is a projection of transformation occurring in the environment into the sensor

space of an agents perception system. This can then be used for generating invari-

ant environment representations, proprioception, and, if associated with actuator

movement, sensorimotor coordination.

Attention

It is vastly argued, that while perceiving sensory stimuli, much of the information

obtained from sensory devices is irrelevant to the current task of an agent. There-

fore, the system has to compute salient data features and filter input accordingly

(e.g., [ James 1890, Broadbent 1958, Kahneman 1973, Lavie et al. 2004 ]). As in

this thesis a selective visual attention mechanism is integrated in the attention layer

in close coupling with the sensor / actuator system, next also some relevant related

research in the field of saliency computation, with particular focus on visual percep-

tion, is reviewed. There are two principle mechanisms involved in how an agent pays

attention: (1) bottom-up attraction, which originates from the sensor / actuator data

directly, and (2) top-down induction, where both reflexive and volitional feedback

mechanisms affect the activation in the attention system.

There have been many approaches to computation of salient bottom-up features in a

static image, e.g. [ Reinagel and Zador 1999 ] show that high contrast regions seem

to attract attention or [ Kadir and Brady 2000 ] report that salient regions can be

computed using multiscale images. [ Gilles 1998 ] on the other hand argues that

local complexity can be a measure of saliency. Also, a learning approach for visual

saliency models has been proposed recently in [ Kienzle et al. 2006 ]. Following

these ideas fundamental attention attractors originating from sensory input can

be either static salient features in a single frame or dynamics in the input data

sequence, i.e., with consideration of temporal properties (see [ Müller and Knoll

2008a, Müller and Knoll 2009a ] for preliminary work and further details).

It is clear, that vision systems providing similar capabilities to the one proposed

here exist. E.g., [ Itti and Koch 2001, Itti et al. 1998 ] implement a visual

attention system utilizing multiscale images to compute a saliency map. In their

system a neural network selects the attended locations for detailed analysis, or,

[ Walther et al. 2002 ] use a static architecture to perform bottom-up attention

based selection and attentional modulation to speed up the recognition process of

their connectionist HMAX system, to name but a few.
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In the differentiation of [ Wright and Ward 2008 ] the visual saliency approaches

mentioned above can best applied to covert systems. Covert attention refers to

mere mental processes, where no physical tuning of the sensor towards a stimulus is

applied. This is opposed to overt attention mechanisms, where the sensors are tuned

towards an attended stimulus physically – as mostly happens in active perception

systems4.

As so far bottom-up effects were discussed, it is also worth considering the (top-

down) theory of inhibition of return, which was shown to be plausible in human

visual psychophysics, e.g., by [ Posner and Cohen 1984, Cohen et al. 2004 ]. Here

it is stated that after attending a certain area in the perceptive space inhibitory top-

down effects apply to decrease activation in this area for some time interval. This

is supposed to be an non-volitional, reflexive effect [ Tipper and Kingstone 2005 ].

Also, volitional, i.e., conscious prediction effects show an influence on attention

[ Newman et al. 2007 ]. This means, to some degree, the agent controls on what

to pay attention to in its input information [ Corbetta 1998 ]. In order to do so,

the agent needs to maintain a higher-level representation of input information (i.e.,

track an object or update an environment model). Tracking an object model by

means of Lie theory (e.g., for compositional hypotheses updates) can in particular

be reviewed from [ Drummond and Cipolla 2002, Drummond and Cipolla 1999b,

Drummond and Cipolla 1999a ]. A more general, extensive survey on model-

based tracking methods in the visual perception domain can on the other hand

be found in [ Lepetit and Fua 2005 ]. This process is closely correlated to the

claim of the memory-prediction model [ Hawkins 2004 ] explained earlier, where

volitional control is induced by prediction (feedback) and in coherence with bottom-

up attraction. Some aspects of this have also been discussed in earlier work, e.g.,

[ Müller and Knoll 2008b ].

Active Perception

Well accepted theories (e.g., [ Noë 2004 ]) consider perception to be an active pro-

cess involving the exploration of the environment properties. With sensorimotor

contingencies [ O’Regan and Noë 2001 ] the framework of the theory explains ex-

perimental findings, such as the inattentional or change blindness. Inspired by this

idea, which is claimed to be biologically plausible, the selective attention approach

can be extended.

Active perception then refers to a mechanism, which involves action in a way that

4Although active perception is of course also possible in a covert manner.
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attention on the one hand guides action (to direct a sensor towards a region of

saliency), on the other hand the action itself reveals attention in the system (e.g.,

[ Balkenius and Hulth 1999, Hommel 2010 ]).

Furthermore, one can view active perception from two different perspectives, again

following the attention classification scheme in [ Wright and Ward 2008 ]. Then,

covert active perception corresponds to mentally, but actively exploring the sensory

input information (without visible action), in contrast to overt active perception,

where attention actually drives a sensor, e.g., causes eye movements in a human(oid).

Interestingly, previous work [ Müller and Knoll 2011 ] has shown, that it is even

possible to use evolutionary mechanisms to tune a covert attention selection system

towards a specific task.

Summary 2.4 – Perception and Attention

The principles of perception considered most relevant for this work include:

Ê Perception is a projection of world transformation into sensor space and

its processing.

Ë Salient features have to be computed to filter the vast amount of input

information from sensors. Selective attention mechanisms propagate ac-

cording to a relevance measure.

Ì Active perception systems provide means to modify sensory stimuli ac-

tively and explore the perceptive space with respect to the agent task.

In the next section the basic mathematical concept for active perception and repre-

sentation of transformation by means of Lie theory, the central claim of this thesis,

is briefly introduced.

2.2 Group Theory, Lie Groups and Algebras
Group theory in mathematics is a powerful tool to describe (symmetry) classes

of elements and their connection to and interaction with each other. Elements in

general can be anything we can possibly think of, be it physical objects, or even

pure virtual ideas – basically any set of things with a common property.
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In the context of this thesis, in particular a special kind of element is elaborated

on: the transformation5. A transformation in mathematical notion is an operator

T which eventually acts on some structure x representing a posture in its reference

space. Applying the operator transforms the structure into another representing

some different posture. Consider for example the three dimensional world as the

space of reference, where any object position and orientation can be represented as

a vector. Applying a transformation operator to that vector may push the object

to some other location and change the orientation in the world.

Now, in mathematics, these operators can be classified by the type of action they

perform on an object. One could for example easily construct a class of transforma-

tions Td, where their common property is, that they push an object left or right

x→ x′ :


x′1
x′2
. . .

x′n

 = Td ◦


x1

x2

. . .

xn

 =


x1 + d

x2

. . .

xn

 . (2.1)

Of course, a group as a class of operators in the mathematical sense has some

more formal properties which are explained in Section 2.2.1 and Section 2.2.2,

but in general a transformation group contains operators with some property in

common. One step further, a transformation group could for example comprise not

only operators shifting left and right, but also for rotating an object, which would

make the group gain a dimension. Then, the most important subsequent insight is,

that the operators are decomposable into their primitive prototypes of interaction,

i.e. in this case the shift and the rotation. The magnitude of a shift or a rotation can

be expressed by a single parameter, a scale s of this primitive prototype Tp. So the

actual operator in the mathematical sense can be written as a function of the scale;

and the elements (transformations) in the group of operators are a composition of

one or more scaled prototypes. Finding these primitive prototypes for a group is

explained in great detail in Section 2.2.3.

Next we find, that in the physical world, we can never push an object to a new

location in an instant, the action of pushing always takes place in a temporal con-

text, i.e. it takes some time to move an object from position a to position b (see

Figure 2.4).

The important finding here is, that a motion represented as a transformation must

5Note that throughout this chapter the matrix representation of transformations is used. Appendix A

elaborates on advantages and disadvantages of this representation and introduces more efficient repre-

sentations with respect to Lie groups and algebras for robotic applications.
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Figure 2.4 The transformation operator as a scaled primitive in a one

dimensional space of reference.

be a function of time. Hence, with respect to Figure 2.4, applying a scale s0,1 and

s1,2 to xt0

(s1,2Tp) ◦ (s0,1Tp) ◦ x0, (2.2)

and applying a scale s0,2 = s1,2 + s0,1

(s0,2Tp) ◦ x0 (2.3)

are the same in the amount they transform an object position (both move an object

x0 → x2), but are still not identical, as they may refer to different time contexts (or

different velocities respectively). Nevertheless, because time itself is continuous, also

the group of transformations must be continuous and is hence called a differential

manifold in mathematics.

Moreover, this on the other hand implies, that we can express a motion from xn to

xn+1 as a sequence of possibly infinitesimal increments acting always on the current

position of the point object. It will be shown, that it is sufficient to consider transfor-

mations that operate only in the vicinity of the current state. A transformation that

maps the current state on itself is called the identity transformation. Section 2.2.4

shows, how one can map from a differential space of scaled transformation primitives

close to zero (which refers to a transformation close to the identity) into the group

of continuous transformations by means of the exponential mapping.

2.2.1 Group Theory

Consider a set of elements of some kind S and an operator ◦ that combines two of

the elements. The (binary) operator ◦ is called the group operator. The operator

and the elements form a group g(S, ◦) in the mathematical sense, if they satisfy all

of the following conditions, called the group axioms :
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Definition 2.1 – Closure Combining an element t0 ∈ S with another t1 ∈ S by

using the group operator ◦ results in an element t2 of the “same kind”, i.e. also

being a member of the group.

t0 ◦ t1 = t2 (2.4)

To form a group the set S must be closed under ◦, or put in a more abstract way, a

mapping f must exist such that f : S×S 7→ S is correct for all t ∈ S. Furthermore,

the mapping f must be associative, that is, it must satisfy Definition 2.2.

Definition 2.2 – Associativity A mapping f being associative means, for any

combination of elements t ∈ S, it does not matter, in which order the group operators

are evaluated:

(t0 ◦ t1) ◦ t2 = t0 ◦ (t1 ◦ t2) (2.5)

This property does not at all state, that operations are commutative. In fact, in

general it is absolutely not guaranteed that the order of elements may be exchanged

without effects.

To be a group, the set S with the operator ◦ must in addition to closure and

associativity have an unique identity element (see Definition 2.3) and an inverse

element t−1 ∈ S for each t ∈ S (see Definition 2.4).

Definition 2.3 – Identity Element The identity element tid is an element that

does not change any other element t ∈ S (maps t onto itself) when combined with

the group operator ◦ (NB. this operation is commutative):

∀t : t ◦ tid = tid ◦ t = t (2.6)

Definition 2.4 – Inverse Element The inverse element t−1 for each t ∈ S is an

element ∈ S such that the change to any other element tn ∈ S, can be reversed:

t0 ◦ t1 = tn ⇒ t0 = t−1
1 ◦ tn (2.7)

Put simple, Definition 2.4 states, that combining an element with its inverse must

result in the identity:

t ◦ t−1 = t−1 ◦ t = tid (2.8)

The above is a general, but rather abstract definition of a group g(S, ◦), that can

be found in most textbooks of mathematics, e.g., [ Selig 2005 ]. For clarification an

(almost trivial) example follows without proof.
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A very simple group is g(Z,+), where the group operator ◦ is + and the set of

elements contains all (signed) integers.

1. The identity is 0 here, as

∀z ∈ Z : z + 0 = 0 + z = z (2.9)

2. The inverse is −z, as

∀z ∈ Z : z + (−z) = 0 (2.10)

3. The order of operator evaluations is arbitrary, as

∀z0, z1, z2 ∈ Z : (z0 + z1) + z2 = z0 + (z1 + z2) (2.11)

4. Combining any element z1 with any other element z2 obviously creates an ele-

ment from within Z (closure), as Z spans an interval ]−∞, . . . ,−1, 0, 1, . . . ,∞[.

This group is actually also commutative, but we do not care about this property

here, as group elements in general do not have to commute.

2.2.2 Lie Groups

Being familiar with a mathematical group in general this section shows, how the

group definitions can be specialized for a Lie group gL(S, ◦), which is sometimes also

called continuous transformation group. Hence, there are two important aspects to

be discussed: first, the concept of a group of transformations and second, the concept

of continuity.

Concerning transformation groups, we have to concretize our definition from the

last section. There, a group was just a set of elements of arbitrary kind, for example

integers above. Now, we require the elements to be transformations. A transforma-

tion is an operator itself, which should not bother to much in this section, but be

kept in mind for discussions below.

Transformations always act on, i.e., “transform”, something. Concerning applica-

tions in robotics or computer vision, we normally want a transformation T to act

on a vector of real numbers v, e.g., a tuple (2D) or triple (3D) of coordinates and

2D or 3D orientation parameters. So a transformation applied to some coordinates

results in some new coordinates6.
6This is not to mix up with the closure axiom from Definition 2.1, as for a group of transformations,

algebraic closure requires a combination of transformations to result in a novel transformation, not a

vector.
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Furthermore, we focus on transformations Tx = T (x) that can be parametrized by

a single real number x. As we will see below, multivariate transformation functions

may be decoupled into several single-parameter transformations for treated robotic

applications.

For example, considering the action of a transformation subject to x on some point

in space, this can be written as

v′ = T (x)v. (2.12)

One important property has to be noted here: the identity transform Tid corresponds

to a parameter x = 0 in all cases contemplated below,

T (0) = Tid. (2.13)

Whether the group axioms hold for a set of transformations (without an extensive

proof), one can easily check.

• Closure

A transformation can be combined with another transformation, the result will

always be a transformation.

• Associativity

It does not matter, in which order transformations are combined binarily, if

only their sequential order is kept.

• Identity Element

An identity element exists by definition, T (0).

• Inverse Element

An inverse transformation can be constructed easily, normally it can be written

T (x)−1 = T (−x).

Continuous transformation groups comprise a set of transformations that satisfy one

additional property: this set is continuous. These groups are today also named Lie

groups after the ingenious Norwegian mathematician Sophus Lie, who first investi-

gated their special properties [ Lie 1872 ].

A transformation is called continuous, if its action on a coordinate / orientation

parameter set can be made infinitesimally small. That is e.g., for a translation, one

can always cut the displacement expressed by a transformation into halves until it

vanishes. A transformation group is continuous, if the function T (x) maps onto

the set of transformations ST smoothly. I.e., whenever x is varied infinitesimally
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x1 = x0 ± ε with ε → 0 and fed into T (x), the result transformation Tx1 describes

an infinitesimal variation of Tx0 . In the linear case this is equivalent to writing:

x ∝ T (x) (2.14)

Summary 2.5 – Lie Groups

Briefly, again the essential properties of a Lie group are:

à The “normal” group axioms: closure, associativity, existence of an iden-

tity element and an inverse element for each group member.

à Lie groups are transformation groups, i.e., all members are transforma-

tions.

à Continuity, which means the group has the properties of a differential

manifold, i.e., for each two transformations we can find another one from

the same Lie group located “in between” the two others.

As a simple example, think of 1D space denoted by a homogeneous vector v =

(v0, 1)T (comprising a single real coordinate v0 ∈ R). Furthermore, consider a

certain translation Tx to be defined by a function

Tx = T (x) =

(
1 x

0 1

)
(2.15)

Here, a translation Tx moves the point’s coordinate by x. We can easily see, that

variations of x are proportional to variations of the transformation Tx, because the

transformation function T (x) is linear:

v′ = Txv =

(
v0 + x

1

)
(2.16)

Thus we can see, that this linear T (x) is continuous and hence differentiable. Here

in fact the derivative
d

dx
T (x) =

(
0 1

0 0

)
(2.17)

is also constant. In general, we can now define a Lie group.
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Definition 2.5 – Lie Group gL(ST , ◦) is a continuous transformation group (a

Lie group), whenever the function T (x) is differentiable, i.e., T (x) : R 7→ ST is a

differential mapping.

Or put another way, whenever the set of transformations ST is a differential man-

ifold then ST , together with the group operator ◦ forms a Lie group. Finally, we

have listed the ingredients of a Lie group gL(ST , ◦) and may now continue with an

introduction to Lie algebras.

2.2.3 Lie Algebras

Informally, we can say, that the Lie algebra A over a Lie group allows for efficient

(locally coherent) construction of elements of a Lie group close to the identity trans-

formation. This means, one can view a Lie algebra element as a general velocity

construct, valid at the identity, from which an increment on the current state can be

created with respect to a sufficiently small time step. This is a multivariate analogon

to the simple f(x) + f ′(x) · δx ≈ f(x + δx) of undergraduate analysis, where f ′(x)

corresponds to a derivative (e.g. a velocity), and which obviously is only valid for

small δx.

Each element of a Lie algebra can be written as a vector of parameters from which

a transformation (an element of the group) can be composed using infinitesimal

primitive prototypes. While Section 2.2.4 describes how this can be done using

the exponential map, this section beforehand shows, how the Lie algebra and corre-

sponding prototypes, also called generators can be derived from a Lie group.

For a moment, consider the Lie group for translations in 2D space. Here, the trans-

formations T act on 2D homogeneous coordinates v = (vx, vy, 1)T with vx, vy ∈ R,

i.e., the x and the y values.

v′ = Tv

Each element of the group T ∈ ST is a parametrized (“scaled”) composition of

transformations from the orthonormal basis of the group, i.e., of translations in

x-direction and/or y-direction

T = Tx(a) · Ty(b), (2.18)

where a and b are the scales in x- and y-direction and the orthonormal basis trans-

formations subject to the single parameter can then in this example be written as a
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function of the parameters a and b as follows:

Tx(a) =

1 0 a

0 1 0

0 0 1

 and Ty(b) =

1 0 0

0 1 b

0 0 1

 (2.19)

So the group elements T ∈ ST can also be written as a multi-variate function of the

parameters

T (a, b) = Tx(a) · Ty(b). (2.20)

But how can we describe all elements of the group close to the identity in general

and efficiently? Here, luckily we can use the differential property of a Lie group.

Thus, if we know the single parameter transformations, of which the group elements

can be composed (w.r.t. the orthonormal basis of the group), we can differentiate

and set the parameter to zero. E.g., for Tx(a) from Equation (2.19) above this

yields

Gx =
∂

∂a
T (a, b)|a=0 =

d

da
Tx(a)|a=0 =

0 0 1

0 0 0

0 0 0

 . (2.21)

Within the scope of Lie systems, this differential Gx is normally called infinitesimal

generator , because it is able to “generate” small transformation in one “direction”

of the orthonormal basis of the group, as we will see below.

For the translation group mentioned above, setting a = 0 does not change any-

thing in the differential of Equation (2.21). But now consider for example the

group of rotation transformations for a 2D point with angle θ around the z-axis in

homogeneous 2D, represented as a 3× 3 matrix:

TR(θ) =

 cos θ sin θ 0

− sin θ cos θ 0

0 0 1

 (2.22)

Following the above approach, the generator GR of the Lie algebra for that trans-

formation group can be expressed as:

GR =
d

dθ
TR(θ)|θ=0 =

− sin θ cos θ 0

− cos θ − sin θ 0

0 0 0

∣∣∣∣
θ=0

=

 0 1 0

−1 0 0

0 0 0

 (2.23)

Here we can see, that setting θ = 0 clearly makes a difference and yields a rather

simple, neat expression for the generator GR. The steps necessary to extract the

infinitesimal generators are summarized in Summary 2.6.
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Summary 2.6 – Infinitesimal Generators

à Consider the a transformation T ∈ ST subject to e.g. two parameters

T (a, b). The (partial) derivative with respect to one “direction” then is:

∂

∂a
T (a, b) =

d

da
Tx(a)

à The infinitesimal generator for transformation subject to a then is the

derivative, evaluated at the identity a = 0:

G =
∂

∂a
T (a, b)|a=0 =

d

da
T (a)|a=0

Definition 2.6 – Lie Algebra A Lie algebra A is a special case of a vector space.

It has a binary operator [·, ·] : A×A 7→ A called the Lie bracket7 [X, Y ] = XY −Y X
following additional constraints, i.e. bilinearity, alternation and the Jacobi identity.

A Lie algebra8 is a vector space where each element has the dimension corresponding

to the number of orthonormal basis transformations (the transformation primitives).

For the above example ST of 2D translations, elements of the Lie algebra A are then

two dimensional vectors s ∈ R2. The entries of a vector s are the scales s that can

be multiplied to the inifinitesimal generators. So, a generator G of the Lie algebra

over the group g(ST , ◦) may be scaled by a parameter s.

For GR defined in Equation (2.23), we can then write a corresponding generator

function GR(s):

GR(s) = sGR =

 0 s 0

−s 0 0

0 0 0

 (2.24)

Considering this, the Lie algebra spans a tangent vector field of the corresponding

Lie group at the identity. This is analogous to multivariate functions, where the

(partial) derivatives also define a tangent vector field at some point, only that the

7Here, the concept of Lie brackets is not explained in greater detail. An understandable definition can

be reviewed for example from [ Selig 2005, pp. 57 ].
8The term Lie algebra, formerly called “infinitesimal group”, was introduced in the 1930’s by Hermann

Weyl in honour of Sophus Lie [ Weyl 1939 ].
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Lie algebra elements span this field merely at the identity transformation.

As an example, we revise the easiest case of one-dimensional space (Section 2.2.2).

The only thing one can do with a coordinate is to increment or decrement the value.

Thus, we again design the continuous transformation function to be T (x) = ( 1 x
0 1 )

with x ∈ R, so T (0) = Tid.

For this group, the Lie algebra A only has one generator GT ,

GT =
d

dx
T (x)|x=0 =

(
0 1

0 0

)
, (2.25)

so in this case, with scaling s, GT (s) = ( 0 s
0 0 ) defines the tangent, as it “knows” the

direction. The Lie algebra A is then defined as a one-dimensional vector space

A = {s|s = (s), s ∈ R} (2.26)

Next, for a more interesting example think of a certain group with three different

basic single-parameter transformations, for example one for each translations in x-

and y-directions and one for rotations about the z-axis in 2D. We have already listed

the three generators (a orthonormal basis of the group) for that in Equation (2.21)

and Equation (2.23):

Gx =

0 0 1

0 0 0

0 0 0

 , Gy =

0 0 0

0 0 1

0 0 0

 , GR =

 0 1 0

−1 0 0

0 0 0

 (2.27)

The elements of the Lie algebra are vectors s ∈ R3 then. Each of the entries of a

vector specifies a parameter for one of the generator functions, e.g.,

Gx(sx) =

0 0 sx

0 0 0

0 0 0

 , Gy(sy) =

0 0 0

0 0 sy
0 0 0

 , GR(sR) =

 0 sR 0

−sR 0 0

0 0 0

 ,

(2.28)

so the algebra can be written as vector space of three scales each,

A = {s|s = (sx, sy, sR)T with sx, sy, sR ∈ R}. (2.29)

In this section it was shown, how the infinitesimal generators from a Lie group

can be obtained, and how the Lie algebra and their elements can be derived (see

Summary 2.7). But how is it possible to obtain an element of the Lie group from

its corresponding element in the Lie algebra? This will be explained in the following

section.
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Summary 2.7 – Lie Algebra

à For each Lie group, we can find a corresponding Lie algebra - a tangent

vector space at the identity element of the group.

à To specify the elements of the Lie algebra, we first have to define the

orthonormal basis transformations of the group and find their (infinitesimal)

generators.

à The corresponding generator functions then apply a scale parameter to

each generator.

à The elements of the Lie algebra are simply vectors of scale parameters for

these generators.

2.2.4 Exponential Mapping

In this section the concept of exponential mapping is introduced. Resuming the

explanations from the last section, where it was shown how to construct the Lie

algebra for a Lie group, here it is investigated, how one can find an element of the

Lie group corresponding to an element in the algebra. As the name “exponential

mapping” already suggests, the approach to map back from the Lie algebra to the

Lie group includes applying the exponential function ex or exp(x).

Although, the exponential function has some other characteristic properties, we do

particularly make use of one to explain the exponential mapping:

ex = lim
n→∞

(
1 +

x

n

)n
(2.30)

As an example, we again examine one-dimensional space from above. As stated

before, the differentiable transformation function T (x) for T ∈ ST and the corre-

sponding generator GT are

T (x) =

(
1 x

0 1

)
and GT =

(
0 1

0 0

)
with Tid =

(
1 0

0 1

)
. (2.31)

Regarding the above and T (0) = Tid, we may infer and immediately check, that a
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translation by x on a vector v = (v0, 1)T can be written as

w =

(
w0

1

)
=

(
v0 + x

1

)
= T (x)v = (Tid + xGT )v. (2.32)

Moreover, now consider, we do not want the whole translation at once, but split it

into n equal parts ∀i, j,∈ n : |xi| = |xj|, maybe because of a velocity constraint,

that only allows for a certain increment per timestep. For translations one after the

other, we can then write

w = T (x)v =

(
1 x

0 1

)
v =

(
1 x

n

0 1

)
· · ·

(
1 x

n

0 1

)
v

= T
(x
n

)n
v =

(
Tid +

x

n
GT

)n
v, (2.33)

where we compose the final translation transformation by applying n parts of T (x
n
)

one after the other, so we see

T (x) =
(
Tid +

x

n
GT

)n
. (2.34)

Interestingly, this looks almost like the definition of the exponential function ex

from Equation (2.30). One aspect left is to verify, that Tid = 1, which is perfectly

legitimate, as we know, that Tidv = 1 · v.

As the last step towards the exponential mapping, we set n→∞ and finally write

down the mapping equation:

T (x) = lim
n→∞

(
Tid +

x

n
GT

)n
= exGT (2.35)

Thus we can derive all elements ST of our one-dimensional Lie group by defining

the generator function GT (x) = xGT and scaling GT systematically

ST =
{
eGT (x)

∣∣∣x ∈ R
}

(2.36)

The approach is analogous for higher dimensional spaces and multiple generators,

so we skip an extensive proof (see e.g. [ Samelson 1990 ]) and only provide the

rough idea here. A caveat within these considerations is, for multiple generators a

property of the exponential function (and in fact a law of exponentiation in R) is

not guaranteed:

exp(x) exp(y) = exp(x+ y). (2.37)
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This relation would only hold if the Lie bracket [·, ·] of the algebraA always evaluated

to zero [A1, A2] = A1A2−A2A1 = 0, i.e. the algebra is commutative9. Nevertheless,

it is possible to chain transformations in the following way.

Think of a certain group with m different basic single-parameter transformations.

In the example from Section 2.2.3 one for each translations in x- and y-directions

and one for rotations about the z-axis in 2D. All elements of that continuous group

(the transformations) can then be composed by

T = Tx · Ty · TR. (2.38)

We then have multiple generators Gi ∈ {G1, . . . , Gm} (with m = 3 for the above).

Therefore, we need an m-dimensional scale vector s ∈ Rm. Next, we apply the scale

vector to the generators and chain the resulting base transformations to generate

the group elements T (s) ∈ ST :

T (s) = T (s1)T (s2) . . . T (sm)

= es1G1es2G2 . . . esmGm (2.39)

With the exponential e(x) = exp(x), we can in general write this compactly as

T (s) =
m∏
i=1

Ti(si) =
m∏
i=1

exp (siGi) . (2.40)

One more property used frequently in this work is additivity in the scales of a specific

generator Gi. It is also given as is without the corresponding proof derived e.g. in

[ Samelson 1990 ], as

exp(s0
iGi) exp(s1

iGi) = exp((s0
i + s1

i )Gi). (2.41)

Here, we do not elaborate on how to compute the exponential on matrices M such

that M = exp(siGi). A multitude of generic approaches for this purpose have

been proposed [ Moler and Van Loan 1978, Moler and Van Loan 2003 ], includ-

ing analytical exponentials for special cases and the matrix exponential as a limit

of powers, a sum of powers, via the Laplace transform, or using the “scaling and

squaring” method [ Lawson 1967, Higham 2004 ] for the more general ones. This is

due to the context of this thesis, where group theory is applied to robotic applica-

tions. In that context, most relevant groups are the special Euclidian group SE(3)

and the special orthogonal group SO(3) introduced later, for which closed forms of

the exponential can be derived [ Govindu 2003, Agrawal 2005 ].

9Details on Lie brackets and (non-)commutative algebra properties are discussed in Section 3.2.2.

33



2 Background and Related Work

Now one can easily see the advantage of a transformation design, such that T (0) =

Tid: a scale si = 0 in the corresponding transformation Ti(si) causes no change on

the result. Hence, especially for the algebra element s0 = (0, . . . , 0)T , we state

T (s0) =
m∏
i=1

exp (0 ·Gi) =
m∏
i=1

exp

0 . . . 0
...

. . .
...

0 . . . 0

 = Tid, (2.42)

i.e., for all zero parameters (the zero element in the Lie algebra) we map to the

identity element in the Lie group, the transformation Tid.

Summary 2.8 – Exponential Mapping

à The exponential map allows for transferring elements of a Lie algebra

close to the identity back into the corresponding Lie group.

à Consider a linear combination of n infinitesimal generators G, the corre-

sponding transformation T would be

T =

m∏
i=1

exp (siGi) with s ∈ Rn.

à The zero algebra element (0, . . . , 0)T maps to the identity transformation

T (0) = Tid.

2.3 Lie Theory for Robotics
Up to this point, 3D transformations as elements of a Lie group, constructing the

corresponding elements in the Lie algebra, as well as mappings between the two

have been explained.

The next sections introduce application of these mathematical structures to serial

mechanical systems and robotics in general. First, Lie algebras and their application

to simple mechanical structures, i.e., revolute joints, are discussed in Section 2.3.1

and Section 2.3.2. Then, as in reality robots comprise more than one joint, it is
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examined, how the results can be extended to advanced robotic systems. Further-

more, Section 2.3.3 elaborates on such a system’s dynamics, i.e., how group theory

can be used to compute velocities and Jacobians elegantly for serial manipulators.

A solution to the important problem of generating smooth paths and trajectories

in realtime for multi-joint serial manipulators is covered in Chapter 4, where also

original work on further generalizing these concepts to perception and sensorimotor

association systems is presented.

2.3.1 Kinematics and Revolute Joints

We live in a three-dimensional world. Postures in 3D space have at least six pa-

rameters, three for position and three for orientation, i.e., six degrees of freedom.

Now the problem of forward kinematics states the problem of finding the pose of a

(serial) robot end-effector, for example of a gripper mounted to the robot in world

coordinates corresponding to some angle configuration of the robot’s joints.

Looking at the design of current robots, we mainly find two different types of joints:

those applying a translation along one axis, called prismatic joints and those apply-

ing a rotation around an axis, called revolute joints. Without further details, e.g., on

Releaux’s lower pairs [ Reuleaux 1875 ], we state that revolute joints are sufficient

to cover the whole scope of motion in 3D space. For example, Figure 2.5 shows,

how a prismatic joint can be substituted with a combination of revolute ones. Thus,

the following paragraphs will focus on elaborations on revolute joints.

Figure 2.5 Simple substitution of a prismatic joint (left) with revolute

joints (right).

Consider a joint angle configuration10 θ = (θ1, θ2, . . . , θn) of a robot at some point in

time. In theory n = 6, i.e., six sequential revolute joints are sufficient to represent

six degrees of freedom as long as they provide a basis of SE(3). However, the

10In literature, mostly the joint angle configuration is denoted by a vector q. In this work however, θ is

used instead to avoid confusion with the quaternion notation for rotations.
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following approach also works for more than six joints. The benefit of a redundant

system with n > 6 would for example be a reduction of singular configurations (see

[ Boudreau and Podhorodeski 2010 ] for a more extensive discussion on the topic).

The most wide-spread, quasi standard approach to compute the end-effector pose

uses the Denavit-Hartenberg (DH) parameter convention [ Denavit and Hartenberg

1955 ]. The convention defines a way to specify the reference frame of a joint jn in

terms of its predecessor jn−1. Details on the Denavit-Hartenberg convention are

beyond the scope of this work and can be reviewed from every ordinary textbook

on robotics.

2.3.2 Lie Algebras for a Joint

As stated before, regarding a robot with revolute joints, in general we need at least

six sequential joints to be able to reach any pose in space11, because every joint only

provides for one degree of freedom. Manipulators with six serial revolute joints are

commonly also called 6R manipulators, e.g., [ Manocha and Canny 1994 ].

In order to utilize the framework of group theory for robotic applications, we must

first investigate a single revolute joint (see Figure 2.6), before we integrate the

approach for multiple sequential joints and derive efficient exponential formulae for

end-effector pose, joint velocities, and so on in the next sections.

Figure 2.6 A revolute joint and its parameters.

Consider a function that specifies motion of an object attached to a single joint, e.g.,

a mechanical gripper. Apart from the constant robot configuration, i.e., the length
11This general statement has some limitations, i.e., the system may be exposed to a singularity if certain

conditions are met. In [ Hollerbach 1985 ] this issue of 6R manipulators is discussed in great detail.
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of the gripper and the position of the joint relative to the world-origin, for example

computed using the Denavit-Hartenberg-Convention [ Denavit and Hartenberg

1955 ], there is only a single parameter to influence the pose of the tool-tip: the

rotation angle θ of the joint.

Comparing this insight to what is derived in Section A.3, i.e., the concept of screw

motions for representing transformations in SE(3), one can immediately see the

parallels. We only need to find screw motion parameters, such that the axis (the

unit vector x of the screw motion) is aligned with the axis of rotation of the joint

and that it passes through the origin of the joint coordinate frame. In other words,

we need to find a Lie algebra element s = (s1, s2, s3, s4, s5, s6) specific to the joint

of our robot, such that

Ts(θ) = exp(θGs) with Gs =
6∑
i=1

siGi. (2.43)

Gs is in general called screw. The vector s of parameters defines a twist [ Ball 1876 ].

As always, the infinitesimal generators Gi form an orthonormal basis of the six-

dimensional vector space se(3). As shown in Appendix A, we can represent these

generators as 4 × 4 matrices. For rotations we thus use the three generators from

Equation (A.42), for translations, we take the generators from Equation (A.41).

Given s is a composition of angular velocity parameters given by x ∈ R3 and linear

velocity parameters y ∈ R3,

s = (x,y) = (x1, x2, x3, y1, y2, y3), (2.44)

we can write the screw Gs, a linear combination of the Gi, compactly as

Gs =
6∑
i=1

siGi =

(
[x]× yT

0 0

)
(2.45)

Finding a such algebra element s ∈ R6 of se(3), i.e., the twist for the first revolute

joint is straightforward, as all constraints known from the robot geometry can be

applied directly.

Given is the joint location and orientation from robot geometry specified by some

transform T , such that the z-axis of the joint coordinate frame is aligned with the

axis of rotation (see Figure 2.6)12.

12Following the Denavit-Hartenberg convention [ Denavit and Hartenberg 1955 ], the z-axis is taken

to be the rotation axis of a joint. In general of course, the approach is analoguous for alignment of the

screw axis with a different joint rotation axis.
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1. The vector of rotation parameters x, i.e., the axis of rotation of the screw

particular to our joint, is easy to obtain. We know, it has to be a unit vector

|x| = 1. Furthermore, we know that the z-axis in the joint coordinate frame

is the axis of rotation of the screw motion. Thus, we can transform a point on

the z-axis of our world frame pworld = (0, 0, 1, 1) of unit length into the joint

frame

(xp, 1)T = TpTworld. (2.46)

To define the unit vector of the screw axis x, we simply subtract the world

coordinate of the joint origin given by (xo, 1)T = T · (0, 0, 0, 1)T from xp

x = xp − xo. (2.47)

2. The translation parameters, i.e. a point on the rotation axis of the screw

motion can be chosen as the origin in joint coordinates (0, 0, 0, 1)T and in

world coordinates as (xo, 1)T = T · (0, 0, 0, 1)T , as stated above. In principle

(i.e. from Equation (A.48)) we know, if we want to describe screw motions

about an axis not passing through the origin, we have to translate the axis (i.e.

a point on the axis) into the origin and translate back afterwards. Thus, the

translational part of the screw motion TS was given in terms of x, θ, p, and a

point on the axis xo as

y =
θp

2π
x+ (I3 −R(θ,x))xo. (2.48)

Luckily, a revolute joint does not apply any translation to the screw motion,

so the pitch p specifying the displacement along the axis x is p = 0. The above

then becomes

y = (I3 −R(θ,x))xo = (I3 − exp(θ[x]×))xo, (2.49)

as derived in Equation (A.46). Finally, we have to get back from SE(3) to

the Lie algebra se(3), so we need to find the differential part corresponding to

the translation part of the above screw motion. Differentiating with respect to

θ, according to the chain rule gives

y =
d

dθ

(
I3 − exp(θ[x]×)

)
xo = −[x]× exp(θ[x]×)xo (2.50)

and evaluating for θ = 0 clearly gives

y = −[x]× exp(03×3)xo = −[x]×I3xo (2.51)

38



2.3 Lie Theory for Robotics

So essentially, we can express the rotation R(θ,x) with its generator [x]×, the

identity I3 vanishes and we are able to simplify to

y = −[x]×xo = xo × x, (2.52)

because the cross-product is anti-commutative.

3. At the end, the screw for out joint can be composed according to Equa-

tion (2.44) and Equation (2.45) from

s = (x,y) = (s1, s2, s3, s4, s5, s6), (2.53)

and we can write it

Gs =
6∑
i=1

siGi =

(
[x]× yT

0 0

)
=


0 −s3 s2 s4

s3 0 −s1 s5

−s2 s1 0 s6

0 0 0 0

 , (2.54)

where exp (Gs) describes the infinitesimal posture variation conducted by the

joint.

Gs is sometimes also called a joint screw for a screw motion TS [ Selig 2005 ].

Concluding this section, we have now derived a formalism to specify any SE(3)-

transformation conducted by a revolute joint by simply applying a single rotation

parameter, i.e. scaling the screw Gs specified by the Lie algebra element s with θ,

and performing the exponential mapping

TS(θ) = exp

(
θ

6∑
i=1

siGi

)
= exp (θGs) . (2.55)

The above holds for the transformation undergone by a point in the coordinate

frame of a revolute joint. Again, the essential finding is what was intuitively ex-

pected from the beginning: given geometric constraints, i.e., the joint position and

orientation coded into s = (x,y), rotating the joint by an angle θ corresponds to

the transformation

TS(θ) = exp


0 −θs3 θs2 θs4

θs3 0 −θs1 θs5

−θs2 θs1 0 θs6

0 0 0 0

 . (2.56)

Due to the differential properties of the mathematical framework, setting θ = 0

results in the identity transformation Tid, i.e., it is only necessary to compute with
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incremental (compositional) θ close to zero. This leads to numerical stability, as

opposed to taking the absolute rotation angle of the revolute joint into account di-

rectly – a major improvement to the classic approach described in [ Denavit and

Hartenberg 1955 ]. Also, as the computation depends merely on the current con-

figuration, it arbitrates from previous configurations and is thus capable to define

the effect of a possible joint angle variation, which is very useful for computation of

Jacobians. This and more obvious advantages considering this method appear when

investigating a sequence of revolute joints, as common in todays industrial robots.

Summary 2.9 – Lie Theory for Revolute Joints

Considering revolute joints, the following terminology applies

à TS refers to a transformation in the Lie group SE(3), the screw motion.

à A Lie algebra element in se(3) denoted by s is called a twist. It is a vector

with six components, where x ∈ R3 refers to the axis of rotation and y ∈ R3

refers to the moment of the displacement from the origin and the axis

s = (x,y) = (x,xo × x).

à Gs is called a motion screw or joint screw. It is composed of the al-

gebra element s and the infinitesimal basis generators of SE(3) given in

EQUATION (A.41) and EQUATION (A.42),

Gs =

6∑
i=1

siGi =

[x]× yT

0 0

 .

à The exponential mapping and a rotation angle θ, the “scale”, relate a twist

s to the corresponding transformation in SE(3)

TS(θ) = exp(θGs).

2.3.3 Compositional Mechanics and Dynamics

Up to this point, the advantage of using the differential parts of a transformation,

i.e., using Lie algebra elements of se(3) instead of using the transformations of SE(3)
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directly have only been touched insufficiently.

As stated at the end of Section 2.3.2, one advantage of using Lie algebras is that it

is not necessary to compute with (sometimes large) absolute values. As the elements

of the Lie group, i.e., the transformations, become the identity whenever the scaling

parameters of the Lie algebra elements (i.e., the screw parameters) are zero, this

leads to numerical stability.

A second significant advantage is, that it simplifies the computation of derivatives

with respect to time, i.e., velocities and robot Jacobians, and third, adopting group

theory to resolve the robot kinematics question can help avoiding singularities.

2.3.4 Serial Manipulators and the Product of Exponentials

Concerning the general equation for the forward kinematic mapping from Equa-

tion (2.43), we can now easily derive the Product-of-Exponentials (PoE) formula,

as it was first published in [ Brockett 1984 ]13

T (θ) =

j∏
i=1

T (θi) =

j∏
i=1

exp (θiGsi) . (2.57)

This is simply a sequence of transformations as derived for a revolute joint in Equa-

tion (2.55). A caveat is that the Gsi are always computed with respect to T (θi−1),

i.e., it is not possible to obtain Gsi directly, if we do not know the pose of the joint

i− 1.

The above Equation (2.57) only applies to arbitrary θ′, whenever the Gsj are

computed according to a current configuration, i.e., the current joint angles θ. In

general though, this is by no means a limitation, as this “home” configuration can

be taken to be whatever suitable for an application. The PoE must always refer to

this basis configuration

T (θ)′ =

[
j∏
i=1

exp (∆θiGsi)

]
T (θ) (2.58)

where ∆θ = θ′i − θi and the joint screws Gsi are computed with respect to T (θ).

In other words, the product of exponentials only acts as an increment T (∆θ) on

a current configuration T (θ). For a serial manipulator with j revolute joints this

13A little remark on the notation within this section: to avoid confusion, indices of joints are written in

subscript, indices of time are written in superscript.
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results in

T (θ)′ = T (∆θ) · T (θ)

= Ts1(∆θ1) Ts2(∆θ2) · · ·Tsj (∆θj) · T (θ)

= exp(∆θ1Gs1) exp(∆θ2Gs2) · · · exp(∆θjGsj ) · T (θ). (2.59)

As an example it is shown, that of course, also following this methodology, not

changing the joint angles (i.e., applying a zero increment ∆θ = θ′ − θ = 0) does

not affect the end-effector pose. Evaluating Equation (2.58) with the infinitesimal

generators Gi of SE(3) and

exp(θGsi) = exp

(
θ

6∑
i=1

siGi

)
(2.60)

from Equation (2.55) evaluates to

T (θ)′ = T (∆θ)T (θ) =

[
j∏
i=1

exp

(
0

6∑
i=1

siGi

)]
T (θ) = Tid · T (θ) = T (θ) (2.61)

as expected.

The Time Dimension

Now we want to consider a sequence of configurations in time starting with an

arbitrary configuration θ0. We are then chaining transformations, i.e. increments

for ∆θt = θt − θt−1

T (θt) =

[
t∏
i=1

T (∆θi)

]
T (θ0). (2.62)

For robotic applications this is a useful result, because we do not explicitly use

absolute values of the joint angles in order to compute the forward kinematics once

we know the home configuration. Instead, ∆θ = 0 ∈ Rn refers to the identity

transformation Tid, which can be altered incrementally by modifications of the joint

angles θi. Briefly, in the following an approach for finding the joint screw Gt
si

for a

specific joint ji at some point in time t is described.

From Section 2.3.2, we know that two points on the rotation axis of the joint are

needed to determine the screw, the origin xo and a point translated one unit on the

axis xp. The parameters of the Lie algebra element s = (x,y) were then given by

x = xp − xo and y = xo × x.

42



2.3 Lie Theory for Robotics

The corresponding screw Gs was hence defined as

Gs =

(
[x]× yT

0 0

)
.

In order to obtain the joint screw, we have to evaluate the above equation Equa-

tion (2.62) with respect to a spatial and a temporal dimension: the index of the

joint j, and the point on the time-line t. In relation to these parameters we define

a Lie algebra element

stj = (xtj,y
t
j), (2.63)

where the axis of rotation xtj and its moment ytj can be calculated utilizing recursive

application of the transform Tj(θ
t) specific to joint j and timestep t,

Tj(θ
t) =

[
j∏
i=1

exp
(
θti − θt−1

i

)
Gt−1
si

]
Tj(θ

t−1)

=

[
t∏

k=1

[
j∏
i=1

exp
(
θki − θk−1

i

)
Gk−1
si

]]
Tj(θ

0). (2.64)

N.b. in a practical implementation, of course the recursion should be avoided by

temporarily storing the transforms Tj(θ
t) and Lie algebra elements sj of a current

timestep, before proceeding with the next modification on the joint angles ∆θt.

Explicitly evaluated for a specific joint j of a serial manipulator and some timestep

t, the screw parameters are finally given as

xj = Tj(θ
t)


0

0

1

1

− Tj(θt)


0

0

0

1

 and yj = Tj(θ
t)


0

0

0

1

× xj . (2.65)

Jacobians the Easy Way

Considering efficient control of a robotic manipulator, it is essential to derive means

for calculating joint velocities and in close relation to that, give the basic formulae

for operational space velocities.

As shown in the previous section, the transformation corresponding to the end-

effector pose, specified by the screws Gsj of each of the joints j of the robot and

based on a home configuration θ = 0 is given by the product-of-exponentials from

above

Tj(θ) =

j∏
i=1

exp (θiGsi) .
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Next, a derivative of the above formula with respect to time has to be calculated in

order to compute the velocity of a point in operational space p = (x, y, z)T(
ṗ

1

)
=

d

dt
T (θ)

(
p

1

)
. (2.66)

The next paragraphs describe an efficient approach to derive this differential d
dt
T (θ).

First, the partial derivative of this formula with respect to one of the angles θi is

given by

∂

∂θi
T (θ) =

∂

∂θi

j∏
i=1

exp (θiGsi) = GsiT (θ) (2.67)

because joint screws Gsj with j 6= i vanish in the derivative. As a joint angle θi is

in general subject to time, i.e. defined by the angular velocity, we can then specify

this partial derivative with respect to t to be

∂

∂θi

dθi
dt
T (θ) = GsiT (θ) · d

dt
θi = GsiT (θ) · θ̇i, (2.68)

and finally the time derivative of the product of exponentials formula, considering

the home position θ0 = 0 = (0, . . . , 0)T and partial derivatives for all joints, can be

written as a sum

d

dt
T (θ)

∣∣∣
θ=θ0

=

j∑
i=1

(
GsiT (θ) · θ̇i

) ∣∣∣∣
θ=θ0

=

j∑
i=1

(
GsiI4θ̇i

)
= θ̇1Gs1 + θ̇2Gs2 + · · ·+ θ̇jGsj . (2.69)

Generalizing this result to any position to become the home position only requires

to change the Gsi to reflect the chosen home position’s joint screws at some point in

time t, as discussed in the last section. Hence, in order to indicate this arbitration,

again the time index t has to be added: Gsi → Gt
si

d

dt
T (θ) = θ̇1G

t
s1 + θ̇2G

t
s2 + · · ·+ θ̇jG

t
sj

(2.70)

This formula is rather simple, and in particular useful, as it provides the means

for relating changes of the joint angles θ with respect to time, i.e., joint angular
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velocities to displacement (translational) velocities of the end-effector, or rather any

point in the reference frame of the end-effector14, given by a position p = (x, y, z)T(
ṗ

1

)
=
(
θ̇1G

t
s1 + θ̇2G

t
s2 + · · ·+ θ̇jG

t
sj

)(p
1

)
(2.71)

However, the above result is only one side of the coin. We can also use this result

to not only specify a change of the position of a rigid body in space, but moreover

to describe the change of orientation simultaneously. This leads to a complete

operational space dynamics formalism.

We have already stated before, that in general a pose needs to be described by at

least six parameters, three for position and three for orientation. Moreover, we have

already defined formalisms to describe these parameters efficiently. The following

uses the matrix representation, i.e., by viewing a pose as a transformation T ∈ SE(3)

defined by a 4× 4 matrix

T =

(
R t

0 1

)
and a representation for changes on that transformation by rotations θ around the

z-axis of any revolute joint

T ′ = ∆T · T with ∆T = exp (θGs) ,

where the Lie algebra element s = (x,y) ∈ R6 unfolds into an angular velocity part

x of the joint rotation and a linear velocity part y such that the screw Gs is specified

Gs =

(
[x]× yT

0 0

)
=


0 −x3 x2 y1

x3 0 −x1 y2

−x2 x1 0 y3

0 0 0 0

 . (2.72)

These definitions can now be used in order to describe the change of a transformation

with respect to time. This can be achieved by giving a formula that relates the

transformation screw parameters, the axis of a rotation x and the moment y, to t.

The result is called a velocity screw. Essentially, we can find the parameters sk(t)

of the velocity screw describing the end-effector, i.e., a Lie algebra element to the

screw motion subject to t, by linear combination of the joint screws.

Considering a robot with j revolute joints in a sequence, the joint screws were then

described by Lie algebra elements ski at some home configuration θk. This home

14Lest to forget it in deed also holds for any of the joint reference frames, not only for the end-effector.
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configuration is arbitrary, so it won’t be needed below. In Equation (2.43) the

joint screws were constructed to be subject to a single “scale” parameter ∆θ each,

an increment on the rotation angle of the joint. With respect to time, these scales

then become θ̇ = ∆θ/t (angular velocities) and the velocity screw of the end-effector

can be specified component-wise

sk(t) = (x,y) =
(
θ̇1s

k
1 + θ̇2s

k
2 + · · ·+ θ̇js

k
j

)
. (2.73)

One can easily see, that the corresponding screw Gsk satisfies

Gsk =
d

dt
T (θk) = θ̇1G

k
s1 + θ̇2G

k
s2 + · · ·+ θ̇jG

k
sj
, (2.74)

so Equation (2.73) is just a different method (and notation) for expressing Equa-

tion (2.70) at some configuration t = k, but it has an advantage: in particular, for

the case of a robot with six sequential revolute joints, we can write the mapping

f : R6 → R6 relating the angular velocities of the joints with the operational space

velocities of the end-effector defined by the velocity screw in a more compact way.

By factoring out θ̇ in the transpose of Equation (2.73) for six joints the result can

be written as

sk(t)T =

(
xT

yT

)
=
(
sk1

T
∣∣∣ sk2T ∣∣∣ sk3T ∣∣∣ sk4T ∣∣∣ sk5T ∣∣∣ sk6T) θ̇T . (2.75)

This compilation of the joint screws si into a quadratic 6×6 matrix defines a matrix

of partial derivatives with respect to the angular velocities

Jk =
(
sk1

T
∣∣∣ sk2T ∣∣∣ sk3T ∣∣∣ sk4T ∣∣∣ sk5T ∣∣∣ sk6T) . (2.76)

This matrix is commonly called the Jacobian15 matrix Jk for some current configura-

tion θk at some timestep t = k. This result expresses how changing the joint angles

θ of the robot at some angular velocity θ̇ affects the pose of the robot’s end-effector

with an operational space velocity (ω refers to angular, v to linear velocity)

ṗ = (ω,v)T = Jkθ̇. (2.77)

For small timesteps ∆t → 0, the velocity screw for the end-effector in Equa-

tion (2.77) can even be used directly to approximate the relation of angle increments

∆θ = θ̇ ·∆t to operational space increments

∆p = ṗ ·∆t = (ω∆t,v∆t)T , (2.78)

15This notation of the Jacobian is based on [ Selig 2005, p. 72 ].
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so

∆p = Jk∆θ. (2.79)

Finally, using the Lie group element corresponding to that increment, which is

actually an element of se(3), the next end-effector pose T (θk+1) after ∆t = tk+1− tk

would be

T (θk+1) = T (∆θ)T (θk)

= exp(G∆p)T (θk)

= exp

(
[ω∆t]× v∆t

0 0

)
T (θk). (2.80)

Of course, Equation (2.79) is only exact for infinitesimally small timesteps, i.e.

the limit ∆t → 0, otherwise it is only an approximation. This corresponds to

the fact, that the Lie algebra se(3) is only a tangent vector space on the manifold

of transformations in SE(3) at the identity. Still, for small ∆θ, i.e., small angle

increments, the solutions are sufficiently accurate, as will be discussed later.

In the next chapter the presented approach for modeling manipulator kinematics on

Lie algebras is extended towards more general sensorimotor applications. Thus, the

algebra elements are embedded into a descriptor and can hence be used for modeling

processes in the perception domain on the one hand and for representing association

of sensor and coordination with actuator data (and vice versa) on the other hand.
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Chapter 3

Activation and the Lie Descriptor
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THE key-idea in this thesis can be summarized in the following rationale: in

an artificial agent, i.e. a robotic system, sensorimotor activation can be rep-

resented using Lie algebraic methods and this representaion unifies and simplifies

computation in the action, perception, and coordination domains on a sensorimotor

level. The unification takes place in the activation association layer (Figure 3.1),

where sensor stimuli, action command feedback, and cognitive processes are brought

together and from which activation is propagated.

In this argument, first, a clarification on the term activation is presented in Sec-

tion 3.1. Then in Section 3.2, Lie algebras are discussed as a means for representing

activation in a sensorimotor context for an artificial agent. Necessary mathematics

for mapping from the environment context into the descriptor space and back are

shown in Section 3.3.

3.1 Activation
While in biological systems the term activation is generally used with respect to

chemo-electrical activity in the neural structures of an agent (electrical activation of

receptors and release of chemicals, the neurotransmitters), in the robotic domain no

equivalent to this definition per se exists. Computer scientists developed a notion

of activation which is used for example in artifical neural networks (ANNs). There

activation is usually represented as a numbered value in one or many neural units.

Whereas this concept is general and does not refer to a specific domain or task, nor

to a dedicated hierachical level in the neural processing architecture, the concept of

activation for sensorimotor systems presented in the following does actually relate

to a domain: the world system, i.e. the task evironment of a situated agent. In this

way it follows the ideas of embodiment theory introduced earlier, claiming that a
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Figure 3.1 In the activation association layer Lie algebraic features are

combined and propagated.

stimulus (i.e. activation) for sensorimotor coordination is in general a projection of

direct interaction with the environment.

Consequently, the level of abstraction an activation on a sensorimotor level refers

to is relatively low. It is in fact directly connected to the sensorimotor coordina-

tion domain and thus includes means for referencing to (“grounding” in) the task

environment. The structure introduced in the next section resembles this finding,

while it implies no restriction on more abstract cognitive processing in higher-level

processes. Thus, it provides for a basis to evaluate the “what” questions on sensory

stimuli in higher levels of abstraction and alongside does not loose the “where” ref-

erence of a stimulus1. The other way round the activation structure presented here

has means to enrich abstract activation with a specific spatial context. This is for

example necessary to generate motion of an actuator through motor commands.

Finally, an activation always appears in a temporal context. While in biological

1Embodied conceptual knowledge theory refers to the “where” reference as a parametrization of a concept,

where the concept itself refers to the “what” information [ Gallese and Lakoff 2005 ]. This is given

for reference and shall not be a matter of discussion in this work.
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systems this aspect is characterized through natural delays on neurotransmission, in

an artificial agent, an activation structure as introduced in this work needs to store

its temporal reference explicitly.

In the proposed software architecture activation evaluation is encapsulated from

the low-level hardware devices (manipulator, sensors) of the robotic system used in

this work as shown in Figure 3.1. Therefore, the central intersection instance of

activation potentials from all modules, i.e. the activation association layer, is also

the module in the robot control architecture, where coordination of behavior and

processing of perceptive input data are unified.

3.2 Lie Algebraic Activation Features

In this section Lie groups and in particular Lie algebras are introduced for a specific

task: representation of activation in sensorimotor systems. The general goal of this

attempt is to integrate sensor and motor effects, as well as coordinative processes

into a common activation reference space. Therefore, a novel activation descriptor is

derived for applications discussed in the following chapter. The most relevant group

in this scenario is SE(3) and its algebra se(3), i.e. the special euclidian group of

three dimensions.

As stated before, in general a descriptor for activation always belongs to a spatial

and a temporal context. Spatial, as it corresponds to a certain pose in the world;

and temporal, as it occurs at a certain time. In order to use activation descriptors

for attention purposes or sensorimotor association the context information has to

be represented programmatically in an adequate data structure.

The time context can be specified with a 2D vector t referring to a time interval

(timestamp and duration, or two timestamps – beginning and end) to which the

activation applies. The spatial context can be represented in an absolute trans-

formation reference system. A concrete pose p to which a descriptor applies can

then be parametrized according to the degrees of freedom in the reference space.

In Appendix A useful reference space representations for robotics are discussed in

greater detail – for example in SE(3) it usually is sufficient to use a 6D motion screw

representation or a decoupled representation comprising a displacement vector and

a rotation quaternion.

In the following an activation descriptor s, attributed with a spatial reference p and

temporal context t, will be referred to as an activation feature. Hence the triple
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uniquely identifying a feature can be written as

F = {s,p, t} , (3.1)

and allows for an efficient mapping between the activation space and the origin of

the feature. The spatio-temporal context p and t will occasionally also be called

uplink of a feature in the following, as it links from the differential Lie algebra (and

an element of this algebra s) to the absolute reference space. Compared to the

direct representation of activation within the sensor or actuator reference space (as

for example the 2D intensity image representation from earlier work [ Müller and

Knoll 2009a ]) this has significant advantages:

1. It is easy to take the temporal context into account, as it is abstracted from the

n-dimensional sensor or actuator space with a consistent 2D vector, as opposed

to representation of time context for all concurrent or non-concurrent features

in the same n-dimensional frame.

2. Features do not have to be represented in an absolute spatial structure (e.g., the

2D plane), but are instead only listed in a sequential one-dimensional buffer.

Many efficient data structures exist for such buffers which allow for useful

operations on the data, for examples for sorting by relevance within priority

queues or ring-buffers, to name but a few.

Apart from the spatio-temporal reference p and t above, it has been implicitly stated,

what actually makes the activation in an activation descriptor: the Lie algebra

element s corresponding to a transformation increment T (s) on a pose p ≡ Tp, such

that

Tp′ = T (s) · Tp. (3.2)

With respect to the introduction on exponential mapping in Section 2.2.4, in par-

ticular a zero-valued activation s = 0, according to Equation (2.42), gives

T (s) =
n∏
i=1

exp(siGi) =
n∏
i=1

exp

0 . . . 0
...

. . .
...

0 . . . 0

 = Tid. (3.3)

For sensorimotor processes this mathematical relationship can be interpreted as

follows: no activation in the system exactly refers to a zero transformation, i.e.

no change in the task environment. A very useful property for applications in the

robotic domain.

The next sections present some more useful properties of the activation features in-

troduced above. From these properties methods are derived for combining features,
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averaging features, and finding the difference and a distance measure between two

features. The latter, i.e. evaluating feature correspondence, is probably the most

relevant for sensorimotor coordination or reflexive mutual excitation, while the for-

mer are important for example for attention mechanisms, visual servoing or active

perception.

3.2.1 Spatio-Temporal Correspondence

This section briefly presents an algorithm for finding spatio-temporally correspond-

ing activation features. As stated above activation features have three components:

the activation or Lie algebra element s, the spatial reference p, and the temporal

context t. Also, it has been mentioned before, that in order to find a activation cor-

respondence between two features, they have to be represented in a common space

of reference. An algorithm for finding spatio-temporal overlaps hence must comprise

the following steps.

1. Represent a stimulus as an activation feature in its local frame of reference,

i.e. in the perceptive field (or fields for multiple sensors) or action space for

the motor domain.

2. According to calibration information, project the activation features into a

common space of reference. In this step adding redundancy when reducing

the dimensionionality or adding uncertainty by extending the dimension of the

reference space may have to be treated carefully.

3. Find the spatio-temporal overlap, i.e. compare the timestamps in t and evalu-

ate the spatial contexts in p, i.e. the pose distance (angular and linear differ-

ences).

In general the order of evaluating the correspondence conditions is irrelevant. How-

ever, the correspondence is subject to two criteria: one for the size of the accepted

time interval overlap, and one for the accepted pose distance (also called the spatio-

temporal patch below). Thus, whether two activation features are considered corre-

sponding depends largely on the choice of these parameters. This choice clearly is

subject to the task to be accomplished.

3.2.2 Combining Features

Once two features are considered belonging to the same spatio-temporal context,

one can work on the activation the feature carries. This activation is represented

in the Lie algebra of the common space, in particular for robotic applications, the
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common space usually is SE(3) and hence the Lie algebra is se(3).

Unfortunately, in general, the law of exponentiation from Equation (2.37) does not

hold in the Lie algebras of non-commutative groups. In particular in the group of

rigid body transformations SE(3) and its algebra se(3), the relation for combining

two algebra elements x and y

x ◦ y = x+ y (3.4)

is not valid, because exp(X) exp(Y ) 6= exp(X + Y ), where X and Y are matrices

X =

(
[ωx]× vx

T

0 0

)
, and Y =

(
[ωy]× vy

T

0 0

)
(3.5)

for elements x ∈ se(3) as vectors x = (ω,v) = (ω1, ω2, ω3, v1, v2, v3) and y respec-

tively. This poses the question on how two activation features can be combined

correctly. To elaborate on this topic a short excursion on group commutators and

Lie brackets is adequate here.

In group theory, the commutator “gives an indication of the extent to which a certain

binary operation fails to be commutative”2. In other words, it is a measure evalu-

ating to zero, whenever the operation is commutative. Formally for a commutative

operation one can write

x ◦ y = y ◦ x, (3.6)

or in matrix notation

XY = Y X (3.7)

respectively. Then the commutator for se(3) is written as a Lie bracket in matrix

notation

[X, Y ] = XY − Y X. (3.8)

In vector notation, after multiplying out this expression, the Lie bracket for se(3),

i.e. the commutator of the algebra on SE(3) can be written

[x,y] = [(wx,vx), (wy,vy)] =



wy,2wx,3 − wx,2wy,3
wx,1wy,3 − wy,1wx,3
wy,1wx,2 − wx,1wy,2

vx,2wy,1 − vy,2wx,1 − vx,3wy,2 + vy,3wx,2
vy,1wx,1 − vx,1wy,1 + vx,3wy,3 − vy,3wx,3
vx,1wy,2 − vy,1wx,2 − vx,2wy,3 + vy,2wx,3



T

,

(3.9)

2From Wikipedia’s article on the topic (http://en.wikipedia.org/wiki/Commutator).
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or simplifying the first three elements

[x,y] =


wx ×wy

vx,2wy,1 − vy,2wx,1 − vx,3wy,2 + vy,3wx,2
vy,1wx,1 − vx,1wy,1 + vx,3wy,3 − vy,3wx,3
vx,1wy,2 − vy,1wx,2 − vx,2wy,3 + vy,2wx,3


T

. (3.10)

Based on this notion, the group operation commutes if the Lie bracket [x,y] = 0 in

the corresponding algebra, i.e. a group is

non-commutative, if ∃x,y : 0 6=
commutative, if ∀x,y : 0 =

}
[x,y] . (3.11)

Clearly, elements of SE(3) do only commute if the rotational parts ωx and ωy are

zero vectors, as the group comprises a semidirect product

SE(3) = R3 n SO(3), (3.12)

where the special orthogonal group SO(3), the group of rotations in three dimen-

sions, is obviously non-commutative.

To answer the question of combining two elements of the Lie algebra se(3) correctly,

one has to map back from the algebra to the group and then map the result forward

into the algebra again. Two elements x and y of the Lie algebra se(3) can then be

combined formally into z with

z = x ◦ y = log(exp(x) exp(y)). (3.13)

The solution to this problem is known as the Baker-Campbell-Hausdorff (BCH)

formula. It was suggested by these three in the late 19th and early 20th century,

while a general, explicit combinatoric solution was given in 1947 by [ Dynkin 1947 ].

With the BCH one writes

z = x ◦ y = BCH(x,y). (3.14)

A solution can be derived from Equation (3.13) by combining the infinite logarith-

mic and exponential series [ Varadarajan 1984 ]. Then, the first view terms of the

likewise infinite BCH-series are given as

BCH(x,y) = x+ y +
1

2
[x,y] +

1

12
[x− y, [x,y]] +O(|(x,y)|4). (3.15)

55



3 Activation and the Lie Descriptor

One can see, that in case the operation commutes (as for example for translations

in SE(3)), the Lie bracket evaluates to [x,y] = 0 and the BCH-series simplifies to

exp(z) = exp(x) exp(y) = exp(BCH(x,y)) = exp(x+ y). (3.16)

Nevertheless, even for se(3) where in general [x,y] 6= 0, the inifinite series in Equa-

tion (3.15) is not of great relevance, as the logarithmic and the exponential map-

pings have a closed form in the context of rigid body transformations and thus the

series needs not to be evaluated thoroughly. The closed forms will be elaborated on

in Section 3.3.1 and Section 3.3.2 below, so at this point, it is only stated, that

Equation (3.14) can be solved efficiently in this domain.

Finally, a correctly combined feature Fxy = Fx ◦ Fy can thus be written as

Fxy = {BCH(sx, sy), p̄, t̄} , (3.17)

where p̄ and t̄ are averaged spatial and temporal contexts respectively.

3.2.3 Feature Distance

One can now imagine a method for measuring the distance between two activations

within activation features. Informally, each feature refers to two actions on the

identity element in the reference space, i.e. a rotation followed by a translation.

In a first attempt, one might think that the norm of the component-wise difference

of the transformation matrices corresponding to the feature activations makes a

suitable measure of distance. Unfortunately, this is not the case, as the result may

not be a member of the transformation group. This is due to the fact, that the

group manifold is not equivalent to its tangential vector space [ Govindu 2003 ].

Operating in the Lie algebra of the group instead gives a better solution for a distance

measure. This distance is commonly called the Riemannian distance. The benefit

is clear: applying the logarithm to a combination of two group elements always

results in an element of the group by definition. The idea is the following. Consider

the “difference” between two transformations Tx and Ty from SE(3),

δT = Ty · T−1
x , (3.18)

which is defined such that it transforms “forward” by Ty and then “backward” by

Tx. Then δT clearly is an element of SE(3) while if Tx and Ty are equal, δT = Tid.

The Frobenius norm of the Lie algebra element corresponding to δT , || log(δT )|| can
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3.3 Activation Propagation

then be used as a distance measure between two features. The Riemannian distance

is thus

d(Tx, Ty) = || log(δT )|| = || log(Ty · T−1
x )||. (3.19)

Using the Lie algebra elements of Tx and Ty, x and y, and the BCH formula from

above, this can be written as

d(Tx, Ty) = ||BCH(y,−x)||. (3.20)

Sometimes (e.g. in [ Fletcher et al. 2003, Govindu 2003 ]) it is claimed, that it is

sufficiently accurate to approximate the Riemannian distance using theBCH(y,−x)

only up to the first order by simply writing

d(Tx, Ty) ≈ || log(Ty)− log(Tx)|| = ||y − x||. (3.21)

Here instead it is argued, that due to the closed form of exponential and logrithmic

mappings on SE(3) and se(3) respectively, in this domain the benefit in terms of

computational costs for the evaluation vanishes almost completely, while the yielded

solution for the distance measure remains precise.

Finally, the distance δF between two activation features Fx and Fy is subject to the

three constituents of a feature, i.e. the activation in the Lie algebra of the reference

space s, the spatial context p and the corresponding time domain t. For most tasks

in sensorimotor robotics, the spatio-temporal correspondence is evaluated first, so

for a distance measure of features only the activation difference is regarded

δF = d(Fx, Fy) ≡ d(Tx, Ty). (3.22)

Nevertheless, for some aplications it is also necessary to weigh this function with a

factor wxy ∈ [0, 1] reflecting the spatio-temporal correlation of the two features

δFw = dw(Fx, Fy) = wxy · ||BCH(y,−x)||. (3.23)

3.3 Activation Propagation

Nothing has yet been said about how an activation feature can be generated from

sensory or motor stimuli, or from high-level intention projection. Neither has been

discussed, how an activation finds its way back into the sensory, motor or high-level

modules, where it is transformed into a manipulator action in case of the motor
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3 Activation and the Lie Descriptor

domain, a perceptive stimulus in case of the sensor domain, or serves as input to

coordinative processes in high-level regions. This process is threefold3.

1. Evaluate a sensor-, motor-, or high-level stimulus and create a domain-specific

activation from the corresponding action in the local space. Methodology is

introduced to generate representations of stimuli in the visual perception do-

main in the corresponding Lie group for a sensor, and analogously for the motor

domain and high-level processes.

2. Generate activation in a common reference space for association and modula-

tion. This task involves mapping of elements in local spaces into the common

reference space subject to calibration information. In this step adding redun-

dancy when reducing the dimensionionality or adding uncertainty by extending

the dimension of the reference space may have to be treated carefully, if local

spaces and the common space differ in their dimensionality.

3. Propagate (“mirror”) the associated activation into other local spaces to af-

fect physical or cognitive processes. This comprises mapping back from the

activation domain into the common reference space, as well as from the com-

mon reference space into the local spaces. Here, it is for example explained

how motion of a manipulator is directly generated from activation in its local

space.

3.3.1 Mapping into the Descriptor Space

It has been stated several times before, that activation can be represented as a

Lie algebra element in a common reference space for sensorimotor robotic appli-

cations. For this purpose, the last sections introduced an activation feature and

derived means for finding corresponding ones, evaluate averages, and computing

combinations.

Nevertheless, it has not been discussed yet, how the features can be explicitly found

in a sensorimotor system. This section thus in particular introduces the mathe-

matical methodology to generate an activation feature from a corresponding trans-

formation in SE(3), as this is the most complex group of local spaces considered

in this work. The common reference space hence also needs not be more complex

than SE(3). This and the next section focus on internal processes in the association

layer.

3In the following, the terminus “local space” always refers to a Lie group in a processing module, i.e., the

blue boxes considering Figure 3.1, while “common reference space” is the Lie group and algebra used

in the activation association layer, i.e. the orange box in the figure.
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3.3 Activation Propagation

In Section 2.2.4 it was explained that the mapping from a Lie group into the Lie

algebra in general is a logarithmic mapping. This refers to the fact, that the Lie

algebra forms a tangent vector space at the identity element of the group mani-

fold. While the log-map may be complex and not unique for certain groups, for

the group of rigid body transformations considered in SE(3), the mapping is rela-

tively simple and even has a closed form [ Agrawal 2005 ]. This allows for efficient

implementation and utilization within the activation feature structure directly.

The following paragraphs hence discuss the closed form of the logarithmic mapping

SE(3) 7→ se(3), i.e. a mapping

T4×4 7→ s = (ω,v) : s ≡

(
[ω]× v

0 0

)
= log(T ) = log

(
R3×3 t

0 1

)
. (3.24)

Incrementally, one can derive for pure translations t, be it in R2 or R3, the logarith-

mic mapping to be the identity map

log(t) = t. (3.25)

Next for SO(2) 7→ so(2), one can derive the log map, such that 2×2 skew-symmetric

matrix elements of so(2) result from z-axis rotation matrices of SO(2) with rotation

about the angle θ. Formally this is

log

(
cos θ − sin θ

sin θ − cos θ

)
=

(
0 −θ
θ 0

)
. (3.26)

The closed form log-mapping in the special orthogonal group SO(3) 7→ so(3), which

relates rotations in 3D represented in 3×3 matrix notation to the Lie algebra element

in so(3), denoted by a vector ω, can be written as

log(R3×3) =
φ

2 sin(φ)
(R3×3 −RT

3×3) ≡ [ω]× (3.27)

where [ω]× is a 3×3 skew-symmetric matrix from a rotation vector ω = (ω1, ω2, ω3)T

[ω]× =

 0 −ω1 ω2

ω1 0 −ω3

−ω2 ω3 0

 . (3.28)

That is, |ω| can be interpreted as the rotation angle, whereas ω̄ = ω
|ω| is the axis of

rotation. Furthermore, in Equation (3.27) φ has to satisfy

sp(R3×3) =
∑
i=0,1,2

ri,i = 1 + 2 cosφ, (3.29)
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so with |φ| < π

φ = cos−1

(
sp(R3×3)− 1

2

)
. (3.30)

Finally, in the closed form log-mapping SE(3) 7→ se(3), where a 4 × 4 matrix

notation is used, one can write the mapping equation as

log

(
R3×3 t

0 1

)
=

(
log(R3×3) At

0 0

)
=

(
[ω]× At

0 0

)
(3.31)

where e.g. [ Agrawal 2005 ] shows, that A can be explicitly written as

A = Tid −
1

2
[ω]× +

2 sin |ω| − |ω|(1 + cos |ω|)
2|ω|2 sin |ω|

[ω]2× . (3.32)

Reading Equation (3.31), one can find the linear activation part in s = (ω,v), this

is

v = At, (3.33)

with A as defined above, while ω can be directly extracted from [ω]× component-

wise.

To conclude, stimulus in a local reference space SE(3), i.e. in the sensor, actuator

or coordination domain, can be represented as an activation feature4 using a Lie

algebra element s ∈ se(3)

F = {s,p, t} = {(ω,v),p, t} . (3.34)

Lest to say constructing a Lie algebra element in se(3) corresponding to a transfor-

mation in SE(3) is not possible for any element of the group, but only close to the

identity transform. This is due to the restriction on |φ| above. With the inverse

mapping, i.e. the closed form of the exponential mapping, explained next it becomes

clearer why this has to be in a π-interval around zero.

3.3.2 Mapping into a Reference Space

As claimed in Section 1.1, the algebraic representation of activation includes defin-

ing a common transformation space based on Lie groups and a description of ac-

tivation in terms of Lie algebra elements for perceived and self-created changes in

the environment. So the crux in the idea is representing activation by means of the

Lie algebra element corresponding to a transformation close to the identity in the

common transformation space (e.g., R3 in Figure 3.2).

4Note that t in Equation (3.34) now specifies the time context, not a translation in SE(3) as above.
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3.3 Activation Propagation

Figure 3.2 Transformations Tp → T ′p are represented by “local offsets”

from Tid; corresponding activation in the Lie algebra s =

(sx, sy, sz)
T can be transferred into a reference space with the

exponential map.

Due to the differential properties of the Lie algebra vector space, information on

the origin of the activation in the world system and also the temporal context to

which it applied are usually lost during projecting into the descriptor space. Thus

the feature needs to carry this information in p and t as explained before.

As an activation feature is extracted from a corresponding transformation, for ex-

ample a rigid body pose increment, reconstructing a transformation in a transfor-

mation group manifold after looping it through the activation association layer must

be possible. This reconstruction in group theory mathematically corresponds to the

exponential mapping as introduced in principle in Section 2.2.4. In the field of sen-

sorimotor robotics, at most an exponential mapping of SE(3) 7→ se(3) is required,

as this corresponds to the group of physically possible transformations (on a rigid

body). The following paragraphs hence discuss this mapping se(3) 7→ SE(3). Here,
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3 Activation and the Lie Descriptor

a closed form of the mapping

s = (ω,v) 7→ T4×4 : T4×4 = exp

(
[ω]× v

0 0

)
(3.35)

can be derived for efficient computation in robotic scenarios. This is in fact the

inverse to the logarithmic map derived in Section 3.3.1.

On pure translations, i.e. the exponential on Lie algebra elements s = (0,v), the

exponential is simply the identity map, as the inverse of an identity map is also an

identity map, so

T (0,v) = exp


0 0 0 v1

0 0 0 v2

0 0 0 v3

0 0 0 0

 =


1 0 0 tx

0 1 0 ty

0 0 1 tz
0 0 0 1

 . (3.36)

Next, the closed form of the exponential map so(3) 7→ SO(3) is well known and

called the Rodriguez -formula. It is essentially a Taylor -expansion of the exponential

series on [ω]×,

R3×3 = exp [ω]× = I +
sin |ω|
|ω|

[ω]× +
1− cos |ω|
|ω|2

[ω]2× . (3.37)

The above result corresponds to a mapping from an axis-angle representation of a

rotation ω, where ω̄ = ω/|ω| is a unit rotation axis and |ω| the angle of the rotation,

to a 3D rotation matrix R3×3.

Now the exponential for SO(3), the special orthogonal group of 3D rotations, and

the exponential on translations in R3 can be utilized to formulate the closed-form

exponential mapping in SE(3) as

exp

(
[ω]× v

0 0

)
=

(
exp [ω]× Āv

0 1

)
. (3.38)

Here (e.g. see [ Agrawal 2005 ]), the explicit form of the correction A on v in the

above equation is given as

Ā = I +
1− cos |ω|
|ω|2

[ω]× +
|ω| − sin |ω|
|ω|3

[ω]2× . (3.39)

Concluding this section, we define the projection of a descriptor into a common

reference transformation space to be the exponential mapping of the Lie algebra
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element in se(3) to a group element of SE(3). Due to the Rodriguez -formula this

is only possible in a closed form for angular components of ω up to |π|, because

otherwise Equation (3.37) would not be unique and thus Equation (3.38) does

not work.

Summary 3.1 – Mapping To and From the Descriptor Space

Mapping into the descriptor space requires

à Represent activation as a transformation in the local space.

à Project activation into the common reference space.

à Create the feature by applying the logarithmic mapping of SE(3).

Mapping from the descriptor space includes

à Apply the exponential mapping of se(3) to reconstruct the transformation

for a feature.

à Project the transformation into local spaces, i.e. actuator, sensor and co-

ordination spaces.

à Produce local representations of the transformation and induce physical

activity based on the feature projection (e.g. motor commands, and cogni-

tive or sensor activity).
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Chapter 4

From Activation to Coordination

Contents
4.1 Robot Motion From Activation . . . . . . . . . . . . . . 65

4.2 Perception and Attention . . . . . . . . . . . . . . . . . 86

4.3 Intention and Coordination . . . . . . . . . . . . . . . . 101

THIS chapter elaborates on how sensor, actuator and coordinative modules in-

teract with the activation association layer in the theoretical framework. This

includes methodology to transfer activation in the motor domain into manipulator

control commands and to generate feedback for the activation layer in Section 4.1.

In the sensor domain it is discussed, how sensori stimuli must be prepared for prop-

agation into the association layer as activation features and how activation feedback

from the layer can be used to inhibit bottom-up stimuli in order to achieve selective

attentional focus (Section 4.2) before visual processing takes place.

In Section 4.3, i.e. corresponding to the coordination domain, first it is explained,

how motor activation and sensor activation can be connected for sensorimotor re-

sponse yielding manipulator motion or sensor stimulus mediation. Furthermore, the

section shows how higher-level intentions can be forwarded into the activation layer

to achieve dedicated manipulation tasks.

Each section contains application examples in real-world robotic problem domains.

These problems are taken from the research scenarios detailed in Chapter 5, i.e., a

human-robot interaction scenario from the JAST project and a industrial automa-

tion scenario from the SFB-T4 project.

4.1 Robot Motion From Activation
Once activity is pushed from the activation association layer into the manipulator

control domain, this has to be interpreted as a robot control command there. In

principle, a new Cartesian target pose is computed from the current pose and the

increment corresponding to the activation and its time-context. Then a path gen-

eration sub-system generates angle configurations for the manipulator in order to

reach for the desired target.
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4 From Activation to Coordination

Typically several constraints have to taken into account in this process. Apart from

“normal” constraints like singularity safety, first, usually the time-context given in

an activation feature is much larger than the update-interval of the manipulator

hardware. Second, as it is likely that new activity is introduced into the system

while a motion is currently conducted, the path generation system must be realtime

reconfigurable. Nevertheless the generated manipulator trajectory must comply with

hardware constraints like velocity limits.

In general in the field of robotics a path is a line in the operational space coordinate

frame of a robot, that moves the end-effector along a curve. For robotic manipulators

only paths make sense, that do not require discontinuous velocity profiles. That

means, the generated path should be differentiable, i.e., is sufficiently smooth with

respect to time.

In the next section a method is presented to solve the problem of generating such a

smooth path with all intermediate poses for a 6R manipulator in order to reach for a

fixed static target pose with its end-effector (Section 4.1.1). This elegant solution

for a classical problem shows the applicability of the compositional approach of group

theory as it was derived in the last sections. Thereafter the compositional approach

is extended further in order to be able to reach for a freely movable target without

violating the smoothness constraint (Section 4.1.2). This can in fact be derived

straight forward from the theoretical considerations before, i.e., the incremental pose

computation.

4.1.1 Moving Towards a Static Target

The problem solved within this section is mainly a problem of continuous interpo-

lation. The basis is the system being in a home configuration, i.e., the end-effector

pose1 is given from the forward kinematics as explained in Section 2.3.3.

Figure 4.1 shows the scenario the approach is applicable to. This scenario is also

sometimes called a point-to-point motion trajectory, as opposed to a path motion,

where intermediate points are specified as well [ Sciavicco and Siciliano 2001 ]. In

the scenario, the home configuration corresponds to some end-effector pose T home

in 3D space2, i.e, an element of the Lie group SE(3) in some representation (see

Appendix A).

1The terms pose and transformation are interchangable with each other in this context, as a pose essen-

tially refers to a transformation applied to the origin. In other words, the transformation specifies the

act of moving while a pose specifies the state after having moved.
2From this section on, the indication of a transformation T (θ) being subject to a joint angle configuration

θ is occasionally omitted for readability of the equations.

66



4.1 Robot Motion From Activation

Figure 4.1 The scenario for compositional trajectory generation with re-

spect to a static, stationary target.

For example, the element could be specified by its homogeneous matrix represen-

tation, a 4 × 4 matrix. The target pose is given by some transformation T target.

Intermediate poses are given relative to each other, in particular this results in a

sequence

T home, T home+1 · · ·T t−1, T t, T t+1 · · ·T target−1, T target.

The problem of obtaining the corresponding joint angle configuration θ for a pose

on the end-effector path T is known as the inverse kinematics problem. Luckily, at

the end of the last section a method has been derived that enables to compute the

change on the end-effector pose subject to a change of the joint angle configuration

∆p = J t∆θ,

which, as stated in Equation (2.80), for ∆t → 0 delivers an arbitrary accurate

approximation of

T (θt+1) = exp(G∆p)T (θt). (4.1)

Now if the current configuration θt is known, as it is usually from the sequence of
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angle increments on the initial values

θt = θ0 +
t∑

k=1

(
∆θk

)
, (4.2)

also the current pose is clear as explicitly derived in Equation (2.64) in the last

section. Thus, the problem reduces to solving the inverse of Equation (2.79) for

each timestep t (
J t
)−1

∆p = ∆θ. (4.3)

This is known as the problem of inverting the Jacobian, which is not covered in

detail in this work. Lest to say there exists a huge amount of literature on the

topic though, elaborating on different methods for computing the matrix inverse (in

under-, over-, and well-constrained systems) and approximations, e.g., the Jacobian

transpose J−1 ≈ JT , pseudoinverse J−1 ≈ (JTJ)−1JT , damped (by λ) least squares

J−1 ≈ JT (JJT + λ2I)−1 methods, and so on and so forth. Refer to e.g., [ Craig

1955, Buss 2009 ] for some basics.

As with the inverse Jacobian the mapping from a pose increment to a corresponding

joint angle increment can be solved for a 6R manipulator3, the general problem

of path generation in its compositional form now is to find that increment ∆T =

exp(G∆p) on the current end-effector pose subject to a desired velocity such that

T t+1 = ∆T · T t. (4.4)

A näıve approach could be the numerical evaluation of the logarithm on ∆T to find

∆p. Unfortunately, this logarithm is not unique and in general involves a lot of

computation, as also the current pose would have to be inverted. The solution using

this approach could be written as follows.

1. Find the scaled generator G∆p from Equation (4.1) by rearrangement, so

G∆p = log
[
(T t)−1 · T t+1

]
. (4.5)

2. Find the corresponding Lie algebra element

∆p = (ω,v)T from G∆p =

(
[ω]× v

0 0

)
. (4.6)

3. Apply the inverse Jacobian to find the joint angle increments

∆θ = J−1∆p. (4.7)

3Although special cases, i.e., singular configurations, have to be taken into account separately.

68



4.1 Robot Motion From Activation

A more efficient approach, as implemented in this work, uses a different method to

find ∆p directly from ∆T without explicitly computing a logarithm. Essentially it

takes advantage of the fact, that the increments ∆T only occur very close to the

identity Tid, as ∆t → 0, and that in the end-effector frame rotations are composed

of rotations about the orthonormal basis vectors, i.e., the coordinate axes4. Thus,

an analytical decomposition of the transformation corresponding to the increment

in the end-effector frame can be applied [ Eberly 2011 ].

Using such an approach for moving the end-effector of a robot towards a static

target, a 3D interpolation with six degrees of freedom has to be calculated. Any

discrete intermediate pose can be computed in terms of its predecessor using the

recursive form as derived in Equation (4.1) in the last section. So in general, the

intermediate poses can also be written as a chain in the compositional form, i.e.

with respect to an arbitrary initial pose T home

T t =

[
t∏

i=home+1

exp(G∆pi)

]
T home. (4.8)

Constant Velocity

Regarding the most trivial case, i.e., moving the end-effector towards a static target

at a constant velocity, the problem reduces to a simple 3D discrete equidistant inter-

polation in SE(3). In particular, satisfying the constant velocity constraint requires

all the angular increments r∆ = ω∆t and linear increments t∆ = v∆t to amount to

the same absolute value

∀i, j ∈ {home, . . . , target} : |ri∆| = |r
j
∆| ∧ |t

i
∆| = |t

j
∆|. (4.9)

Trapezoidal or more complex velocity profiles typically result in varying absolute

values of the increments |t∆| and |r∆| in ∆pi at some points or even all points.

These are also discussed later on in greater detail.

In the following, solutions to the path generation problem are explained using a

decoupled representation of SE(3), as introduced in Section A.1,

TD = 〈r, t〉.

The translational increments of ∆T can thus be given as the absolute difference of

homogeneous coordinates of two consecutive poses. Equivalently, the translation

4Which in a matrix representation would result in a skew-symmetric rotation part of the transformation.
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parameters of a pose given as a 4× 4 matrix T i can be obtained by retrieval of the

last column, i.e.,

t =


tx

ty

tz

1

 =


T0,3

T1,3

T2,3

1

. (4.10)

The rotation increments on the other hand are best computed using the quaternion

representation and distance measures of two consecutive poses for the following rea-

sons: unit quaternions provide an alternative representation for rotations in 3D

space which, compared to Euler angles do not suffer from the gimbal lock, and com-

pared to rotation matrices, are numerically more stable [ Lee 1991, Vicci 2001 ] (a

further mathematical introduction regarding mappings from SO(3) to the 3-sphere

S3, so(3) and R3, i.e., the relation to exponential mappings is discussed in Sec-

tion A.1.4). The derivation of quaternions from rotation matrices, and conversions

to rotation matrices and exponential rotation vectors can for example be reviewed

from [ Grassia 1998 ]. At this point, we only recall, that it requires the extension

of complex numbers to a hypercomplex system with one real and three imaginary

parts,

q = q0 + q1i + q2j + q3k, (4.11)

where i, j, and k are imaginary units satisfying i2 = j2 = k2 = ijk = −1; and q0

is called the scalar part and the triple (q1, q2, q3) is called the vector part of the

quaternion.

This system is a representation of the group S3 for the unit 3-sphere. However,

for efficient computations, we utilize the scalar representation of the quaternion

space R4 with a quaternion specified by four real-valued coefficients (q0, q1, q2, q3).

Fortunately, also the mapping to SO(3) only requires minimal caution and effort.

Only for the reason that S3 is a double cover of the special orthogonal group, one

has to ensure the quaternions to be located on the same hemisphere of S3 (see

Section A.1.4 for details).

In general, the increments ∆T can be infinitesimally small as the transformation

group SE(3) is a differential manifold, i.e., a Lie group, which is a nice property

when it comes to arbitrary accurate interpolation. Nevertheless, as physical robots

can only receive discrete control commands at a hardware specific update interval,

for robot control, the path has to be discretized with respect to that update rate

u of the robot’s realtime interface and the desired operational space velocity. The
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pose increment thus can be written

∆T = 〈r∆, t∆〉 with 〈r∆, t∆〉 = 〈ωu,vu〉. (4.12)

Here, |ω| is the angular and |v| the linear velocity, while u = ∆t corresponds to the

update rate of the robot. Typically, the update rate is specified by the manufacturer,

for example considering a Mitsubishi RV6-S robot the update rate u = 0.00711 s

is given. The operational space velocities are only constrained by the maximum

angular velocities of the joints and amount to about 9.3 m
s

for displacements of the

end-effector of this robot.

Note that, applying the inverse kinematics may result in joint angle velocities greater

than the allowed maximum (e.g. close to a singularity5). In this case, the increment

has to be rescaled according to the exaggerated speed at the cost of a non-constant

velocity profile. In practice, here the best solution would be to keep the desired

operational space velocity well below the maximum, in particular for end-effector

poses close to the workspace boundaries.

As the path is to be computed in a compositional way, i.e., the next T t+1 only

relies on the current T t and the target T target, the approach resolves to computing

the distance between the two and then “scaling” it according to the constraint

from Equation (4.9). This component-wise distance to the target comprises a

combination from the translational distance t∆ and the rotational (i.e. quaternion)

distance q∆. While the translational part can be directly computed as a difference

of homogeneous coordinates

t∆ = ttarget − tt, (4.13)

for the rotation distance, the interpolating quaternion is computed

q∆ = qtargetq
−1
t . (4.14)

The distance in quaternion space is ambiguous as each rotation in SO(3) maps to

antipodes in S3 (the double cover of SO(3) mentioned before). Each orientation thus

has two representations in the unit 3-sphere. Therefore, to ensure to get the rotation

distance components right, first, the sign of the dot product of the quaternions

qt · qtarget is evaluated. Two quaternions are mapped to the same hemisphere in

S3 if their dot product is positive [ Grassia 1998 ]. If this should not be the case,

5Singular configurations can be detected easily by checking the joint screws from which the Jacobian is

generated (see Section 2.3.4), i.e., whenever the joint screws do not form a basis of SE(3) the system

is exposed to a singular configuration.
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one of the quaternions q has to be replaced by its negation −q for all interpolation

equations.

Since a distance measure from the current pose to the target pose has already been

computed, now this measure is used to compute the next pose T t from an increment

∆T and T t−1. For a constant velocity profile, again composing from translational

and rotational parts, we can first write the translational part as follows.

1. After u seconds, according to the desired speed vT = |v| =
√
v2
x + v2

y + v2
z in

m
s
, the end-effector needs to have moved vT ·u units into an arbitrary direction.

2. The translational fraction

cT =
vT · u
|t∆|

(4.15)

then gives the Euclidian distance the end-effector may move within one update

cycle (one update step).

3. As this distance has to be distributed to the three components of the transla-

tion, we simply multiply it with the vector of distances to the target

tδ = cT t∆ =
vT · u
|t∆|

t∆. (4.16)

To work out the rotation increment the quaternion distances as described above are

utilized.

1. After u seconds, according to vR = |ω| =
√
ω2
x + ω2

y + ω2
z , i.e., the desired

angular velocity, the end-effector needs to have rotated vR · u units about an

arbitrary axis.

2. The total rotation increment, i.e., the rotation required to get from the current

orientation of the target orientation, q∆, corresponds to a rotation in axis angle

representation R(θ,x), where x denotes the axis ∈ R3 and θ the angle (see

Section A.1.3). This angle can be retrieved directly from the scalar part q0

of the quaternion q∆ with

θ∆ = 2 · cos−1(q0). (4.17)

This is considered subject to the norm of the desired angular velocity vR. Now,

we can determine the fraction feasible in one update step

cR =
vR · u
|θ∆|

. (4.18)

3. Finally, the quaternion qδ representing the rotation increment can be ob-

tained using Shoemake’s spherical linear interpolation [ Shoemake 1985 ], the
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4.1 Robot Motion From Activation

so-called SLERP

qδ = (q∆)cR , (4.19)

where powers of a (unit) quaternion can be computed efficiently using the ver-

sor -form of the quaternion q = exp(θ∆x) with x = (q1, q2, q3)T . The increment

qδ then is

qδ = cos(cRθ∆) + sin(cRθ∆)q1i + sin(cRθ∆)q2j + sin(cRθ∆)q3k. (4.20)

At last, to find the increment ∆T = δT for the current step according to Equa-

tion (4.4) is straightforward. One only has to consider, that in order to reach both

orientation and position of the target end-effector pose at the same time, the mini-

mum of both fractions cT and cR has to be applied (which eventually leads either to

lower linear or angular velocity than desired - at the benefit of a smoother motion).

So finally ∆T can be given in the decoupled representation with c = min [cR, cT ]

∆T = δT = 〈qδ, tδ〉 = 〈qc∆, c t∆〉. (4.21)

Up to this point an approach for generating motion yielding constant end-effector

velocity in operational space, i.e., the discrete equidistant interpolation in SE(3), has

been presented. In the following sections, an extension to this approach is derived.

This is necessary, because out of a standby configuration with zero speed, physical

robots in general do not allow for application of a constant speed towards arbitrary

directions, as this would require infinite acceleration and most likely damage the

hardware.

Typical approaches therefore apply so-called advanced velocity profiles for generating

a path. The velocity profile for the approach described in this section is called a

constant velocity profile. It can be seen in the uppermost diagram of Figure 4.2.

The diagrams below show advanced approaches: in the center a trapezoidal profile is

depicted and a S -ramped profile as an approximation of a minimum-jerk profile can

be found in the bottom. These profiles result in significantly smoother trajectories

which typically decrease the energy consumption and increase the life-time of a robot

[ de Michieli et al. 2008, Huber et al. 2009 ] – and make the motion look more

natural [ Flash and Hogan 1985 ].

Trapezoidal Velocity

Trapezoidal velocity profiles are named that way, because if one looks at the velocity

value on a time chart, the resulting curve looks like a trapezoid (see Figure 4.2).

Considering the generation of a trapezoidal velocity profile on a motion path, the
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Summary 4.1 – Compositional Constant Velocity Profiles

à Considers the current position and angle configuration, but no history.

à Moves the end-effector towards a target at a constant velocity.

à Does not take care of hardware limits in configuration space.

Ê Compute the interpolating transformation ∆T between the current pose

and the target pose.

Ë Compute the “scaling” factors cT and cR according to the desired angular

and linear velocities and subject to the hardware update rate.

Ì For smooth motions (orientation and translation are completed at the same

time) compute the intermediate pose δT with the minimum of both scaling

factors.

Í Apply the next angle configuration from the pose using inverse kinematics

formula ∆θ = J−1∆p.

linear relation, i.e., direct proportionality, of spatial displacement and time can be

exploited. Characteristically, the acceleration for a trapezoidal velocity profile is

constant (at least within each phase of the motion). This means we can distinguish

three periods for moving along a path.

1. A constant acceleration phase with increasing speed and thus with increasing

absolute pose increments

|rt+1
∆ | > |r

t
∆| ∧ |tt+1

∆ | > |t
t
∆|.

2. The zero acceleration phase (constant speed) with equal absolute pose incre-

ments

|rt+1
∆ | = |r

t
∆| ∧ |tt+1

∆ | = |t
t
∆|.

3. A constant deceleration phase with decreasing speed and decreasing absolute

pose increments

|rt+1
∆ | < |r

t
∆| ∧ |tt+1

∆ | < |t
t
∆|.
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4.1 Robot Motion From Activation

Figure 4.2 Common targeted velocity profiles for path generators. Up-

most: constant velocity profile; center: trapezoidal profile;

bottom: S-ramped profile.

A constant acceleration parameter (velocity gradient) is usually chosen in advance,

it will be called a in this section. Due to the simple relation of speed v, time t, and

distance s, i.e., v = s
t
, a whole set of formulas for application of trapezoidal velocity

profiles in compositional systems can be derive relatively straightforward.

First, we state that it is possible to determine a distance in terms of translation and

rotation from the current pose to the target and using the linear relation between

time and spatial distance, a difference in terms of time from the current point to the

end of the motion. We need to know this, in order to compute the point when to stop

accelerating on the trajectory, as we have reached the desired speed. Furthermore,

we can use this relation to compute precisely when the deceleration phase has to be

started in order to smoothly reach the target at zero speed, which is a differential

equation in SE(3)

f(p) = pt +
d

dt
ptδt, (4.22)

but a linear equation in the differential domain se(3). In the differential domain,

regarding discretized time steps t 7→ t+ 1, we give the equation

|mt(δT , δR)| = |mt−1(δT , δR)|+ αta (4.23)
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4 From Activation to Coordination

with a constant increment a on the pose increment (the acceleration parameter) and

a signum factor α. The factor α is used to distinguish between the three phases and

given by

α =


+1 for acceleration,

0 for constant velocity,

−1 for deceleration.

(4.24)

Within the acceleration period, we can thus write

|mt(δT , δR)| = |mt−1(δT , δR)|+ a. (4.25)

Within the deceleration period on the other hand, the constant a only flips the sign

|mt(δT , δR)| = |mt−1(δT , δR)| − a, (4.26)

while a = 0 within the constant velocity period. Also this means after the desired

velocity v is reached, the increment’s absolute value |mt(δT , δR)| remains constant.

The difficult part is to determine the exact point when to stop acceleration and

maybe even more important, when to start deceleration. Based on Equation (4.8),

i.e., pt =
∑t δpi + phome, utilizing induction yields the equation for the distance st

(in terms of Euclidian distance or absolute angle) traveled by the end-effector after

some discrete time t = nu given in terms of the number of update steps n at an

update rate u

st = s0 + s1 + s2 + . . .+ sn−1 + sn

= v0u+ (v0 + α0a)u+ (v1 + α1a)u+ . . .+ (vn−1 + αna)u. (4.27)

This is still a general form. Yet, considering being within one of the periods of

acceleration, deceleration, or constant velocity, the equation can be simplified to6

st = v0u+ (v0 + 1a)u+ (v0 + 2a)u+ . . .+ (v0 + na)u

= v0u(n+ 1) + au

n∑
i=1

i

= v0u(n+ 1) + au
n(n+ 1)

2

= (v0 +
n

2
a) · u(n+ 1). (4.28)

6Equation (4.28) only shows the derivation for α = +1, i.e., the acceleration period. Deceleration and

constant velocity work analogously, and evaluate to st = (v0 − n
2
a) · u(n + 1) for deceleration and

st = v0nu for constant velocity.
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4.1 Robot Motion From Activation

The above equation holds for both translations (setting v = vT ) and rotations (set-

ting v = vR). Thus, for subsequent equations the notation stT is used to concretize

for translations and stR for rotations respectively.

If at any point while the end-effector is moving on a trajectory the distance measure

st with n = t
u

is evaluated, the signum constraint for distinguishing phases, i.e., for

acceleration, deceleration, or constant velocity, is given for that point as

αt =


+1 for snTu

−1 < vT ∧ snRu
−1 < vR,

−1 for |stT | ≤ |∆T | ∨ |stR| ≤ |θ∆R
|,

0 else,

(4.29)

where in any case v0
T = v0

R = 0 is set for evaluations of st, because the desired speed

at the end (or beginning) of the movement is zero. This simplifies Equation (4.27)

to

stT = aT · u
n(n+ 1)

2

stR = aR · u
n(n+ 1)

2
. (4.30)

For infinitesimally small u→ 0, i.e., the time derivative, this yields an exact solution.

On the other hand, whenever u� 0, the actual movement of the end-effector might

suffer from exaggerated velocities, overshooting, and / or jerking around the target

pose. To avoid this, α can be made a real ∈ [−1, 1] in order to scale the last a before

stopping acceleration or deceleration to yield a smaller increment than evaluated by

the constraint from above.

To apply a trapezoidal velocity profile for path generation, the approach described

in Summary 4.2 is recommended.

Minimum Jerk and S-ramped Profiles

Within the last section, trapezoidal velocity profiles have been shown to work in

compositional systems, as the acceleration and deceleration parameter is a constant

within the velocity domain. In this section, this constant a is made a variable leading

to an even smoother path. The path generator is hence required to produce pose

increments for a path that is differentiable considering second and third order time

derivatives of location, in addition to minimizing the variations of the third order

term.

Neville Hogan showed in 1984, that these trajectories in fact comply with the ones

biological systems generate when they reach for a target. He found evidence for that
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Summary 4.2 – Point-to-Point Motion with Trapzeoidal Velocity Profiles

A step-by-step quick reference to application of the trapezoidal velocity profile is:

Ê Choose a desired maximum speed vmax, which will be the absolute speed

of the end-effector within the constant velocity phase.

Ë Choose an acceleration parameter a according to the update rate of the

robot. Example: if the update rate is u ≈ 0.007 s, as for the Mitsubishi RV6

robots, and vmax shall be reached after 0.7 s, the acceleration parameter

a can be derived from n = tu−1 = 100 and vmax = v0 + na where v0 = 0,

thus

a =
vmax

n
= 0.01 vmax.

Ì Within every cycle during the movement, evaluate the constraints for αt

with the distance measures stT and stR. If one of the constraints changes,

a phase transition occurs.

Í Compute the increment according to |mt(δT , δR)| = |mt−1(δT , δR)| + αta,

which in particular requires rescaling mt−1 within the acceleration and de-

celeration phases.

when observing metabolic energy inputs to antagonistic muscles. From the obser-

vations he concluded that minimizing the third order time derivatives of location

(also called jerk) efficiently minimizes the energy needed to move along a trajectory

[ Hogan 1984 ]. To express the cost C, the formula for the magnitude of third order

variations during a movement with final position at time tf is given by7

C =
1

2

∫ tf

0

(
d3x

dt3

)2

dt (4.31)

This is the sum of squared jerks along the trajectory x0 → xf . [ Flash and Hogan

1985 ] then showed how to model the trajectory generator of the central nervous

system mathematically, i.e., stated that the system has to minimize Equation (4.31)

for a given target position. Flash and Hogan showed, that after minimization the

7The equations in this section adopt the notation of Hogan and Flash. Only at the end of the section the

notation is adjusted in order to transfer the results.
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4.1 Robot Motion From Activation

optimal trajectory, for example for a hand moving towards the final location xf with

zero initial and target velocities and with respect to time, is given by

x(t) = x0 + (x0 − xf )
(

15
t4

d4
− 6

t5

d5
− 10

t3

d3

)
, (4.32)

where d is the desired duration of the movement. After some rearrangement, the

time derivatives of first, second and third order can be written as

ẋ(t) = 30(xf − x0)

(
t2

d3
− 2

t3

d4
+
t4

d5

)
ẍ(t) = 60(xf − x0)

(
t

d3
− 3

t2

d4
+ 2

t3

d5

)
...
x (t) = 60(xf − x0)

(
1

d3
− 6

t

d4
+ 6

t2

d5

)
. (4.33)

In Figure 4.3 one can see that the velocity has its maximum at t = 1
2
d and becomes

zero at t = 0 and t = d. This can be shown using the second and third order time

derivatives. In particular, we find that ẍ(t) has extrema at these points in t ∈ [0, d],

but only
...
x (1

2
d) < 0. So the point of maximum velocity is at t = 1

2
d.

The velocity at some point ẋ(t) can be simplified using the average velocity vav =

(xf − x0)d−1,

v(t) = ẋ(t) =
d

dt
x(t)

= 30(xf − x0)

(
t2

d3
− 2

t3

d4
+
t4

d5

)
= (xf − x0) · 30

t2

d5
(d2 − 2dt+ t2)

=
30(d− t)2t2

d4
vav, (4.34)

and a relation between the maximum velocity and the average velocity can be de-

rived8 by setting t = 1
2
d,

vmax = v(
1

2
d) =

30 · 0.0625 d4

d4
vav = 1.875 vav. (4.35)

Since an expression for the absolute increment on the trajectory for a given point

in time t regarding an update rate u can be given as

v(t+ u) =
δux(t)

u
, (4.36)

8Psychophysical experiments, e.g., [ Pozzo et al. 1998 ], reveal that human reaching movements typ-

ically have a ratio of about 1.75 (apart from whole-body balancing effects), which is the reason why

minimum jerk profiles are believed to best resemble human motions.

79
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Figure 4.3 Red sigmoid: minimum jerk trajectory for moving an end-

effector from a position 0 to 1 in 20 time units; green curve:

velocity profile; blue curve: acceleration profile. If only the

velocity is given, the end-effector position is ambiguous, as it

may be in the acceleration phase t1 or deceleration phase t2 of

the movement.

the compositional form of the trajectory can be written as

x(t+ u) = x(t) + δux(t) = x(t) + v(t+ u)u. (4.37)

The problem is, that using the compositional form, usually the actual value of t is

unknown. Yet, referring to Figure 4.3, there are only two solutions for t if only the

last increment δux(t − u) and thus v(t) are known. This means, for any given v(t)

under the assumption of a fixed duration for the movement d, Equation (4.34) can

be solved

v(t) =
30(d− t)2t2

d4
vav

v(t)d4

30 vav
= (d− t)2t2
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±d2

√
v(t)

30 vav
= (d− t)t

0 = t2 − d t±

√
v(t)

30 vav
d2 (4.38)

yielding four solutions

t1,2 =
d

2
± d

2

√√√√
1− 4

√
v(t)

30 vav
and t3,4 =

d

2
± d

2

√√√√
1 + 4

√
v(t)

30 vav
. (4.39)

Of these four solutions only t1 and t2 evaluate to numbers within the interval [0, d]

of interest, because

max
v(t)

(
4

√
vmax
30 vav

)
= 4 · 0.25 = 1 and min

v(t)

(
4

√
0

30 vav

)
= 0. (4.40)

One of the solutions lies within the acceleration and one within the deceleration

period. Hence, it has to be decided in which phase of the movement the end-effector

currently is. The constraints to be evaluated with this respect are

t =


t1 = d

2
− d

2

√
1− 4

√
v(t)

30 vav
if |xf − x(t)| > 1

2
|xf − x0|,

t2 = d
2

+ d
2

√
1− 4

√
v(t)

30 vav
else,

(4.41)

where t1 to the acceleration period period and t2 corresponds to the deceleration

respectively.

In simple words this means, wherever on the minimum jerk path the end-effector is

at the moment, if the current velocity (from the last increment) and the distance

to the target are known, the next increment can be computed analytically. This

works under the assumption that a single motion always takes the same time d,

which may not be the case when target poses are relocated during the movement

(see Section 4.1.2).

In Hogan’s original Equation (4.32), x0 and xf are scalar values, so x(t) is effectively

a function of distance with respect to time. For trajectory generation in SE(3), i.e.,

3D space with six degrees of freedom, this has to be extended. Luckily, this can

be easily done using the same methodology as in the previous section. Only the

absolute value of the increments have to be set according to the formalism derived

in this section

|mt(δT , δR)| = δux(t) = v(t+ u)u. (4.42)
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Again, v(t) refers to a composition of the linear Cartesian velocity vT (t) and the

angular velocity vR(t). The above thus has to be evaluated twice, once for the linear

displacement δT and once for the angular displacement δR, each of which again is

a vector with three components.

Summary 4.3 – Minimum Jerk Velocity Profiles

Ê Choose desired duration d for the motion.

Ë Choose the maximum for linear and angular velocities. The average ve-

locities are then given by rearranging EQUATION (4.35) to

vav =
1

1.875
vmax.

Ì Beginning at v(t+ u) = v(0 + u), calculate the δux(t) for linear and angular

displacements according to the minimum jerk velocity profile.

Í If t is unknown and thus it is not clear whether the system is in the accel-

eration or deceleration phase, but only the current velocity is known, the

actual corresponding t = t1 ∨ t2 can be computed using EQUATION (4.41)

and the absolute of the next increment can be written as

|mt(δT , δR)| = v(t+ u)u.

Î At each point map the absolute value of the displacements to actual incre-

ments in SE(3) to be applied.

4.1.2 Operational Space Freely Movable Targets

The results from above, i.e., how to compute a straight path when moving to-

wards a stationary target in SE(3), is of great use in classical robotic environments.

However, complex dynamic environment scenarios require a robotic system to be

capable of recomputing a path at any time while preserving sufficient smoothness

during a motion. Obviously applications for such a realtime path generator ca-

pable of changing the heading direction of the end-effector at any instant of time

are manifold. Sensor-based servoing and active perception (moving towards a tar-
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get computed from sensory input data), realtime obstacle avoidance (for mobile or

dynamic environments), or force-torque control are some popular examples.

As mentioned before, realtime modifications on a path have to obey certain rules,

i.e., the resulting curve must satisfy smoothness constraints with respect to pose,

velocity, acceleration, or even higher order terms. Mathematically, this means the

path-curve must be differentiable at least n times, if (n−1)-th order derivative is to

be continuous. Practically speaking, if a path shall be smooth (where path refers to

the curve and orientation variation the end-effector describes in operational space),

its generating function f(t) = pt has to be differentiable at any time. If then also

the velocity profile should be smooth, also d
dt
f(t) must be differentiable, and so on

for acceleration and higher order terms.

For generating a n-th order differentiable path, the system needs to remember n

past poses (a motion history) or the n-th order derivative values at the current

pose. For example revealing a compositional trapezoidal velocity profile is possible,

if the system only stores the last velocity values (first order terms). For a con-

tinuous acceleration profile up to second order terms have to be available, and for

differentiable acceleration profiles third or higher order terms need to be present.

Depending on n, the number of higher order terms considered, the presented ap-

proach ensures that the constant (n + 1)-th order term in worst case flips the sign

at one single update cycle during the movement, while the absolute value of the

increment is preserved. This makes the algorithm applicable to a practical robot

motion generator, as implemented as part of this work.

For simplicity, the realtime path generation system shown in the next paragraphs

considers only up to third order terms. The generated path thus always has a

differential acceleration and velocity profile and yields a so-called S -ramped profile.

This serves as a practical approximation to the minimum jerk profiles for stationary

targets described in the last section.

The general idea of the algorithm comprises a two step update at each robot update

cycle (see Figure 4.4).

1. This first update recomputes the current intermediate target according to the

desired global target. The global target can be modified at any time, by a

higher level control unit (e.g. an obstacle avoidance, or visual servoing system).

2. The second update recomputes the next pose increment according to the cur-

rent and desired n-th order term, which is computed according to the desired

velocity profile.
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Figure 4.4 Realtime path generation algorithm details for a linear motion

in a 2D plane for first order terms only (yielding a constant

velocity profile).

In other words, whenever the desired global target changes, an intermediate target

travels from the current global target towards the new one. The pose increment,

i.e., the next desired end-effector pose is then computed towards this intermediate

instead of to the new global target. The target transition (blue) also uses the same

(n)-th order velocity profile as the actual pose transition (red).

The next sections briefly introduce the approach to incrementally complex scenarios,

i.e., constant, and higher-order continuous and differential velocity profiles.

Constant Velocity

Realtime constant velocity path generation refers to the problem of computing an

increment on the current end-effector pose such that the absolute value of the linear

and angular deltas are constant whenever the robot moves

∀i, j : |v(ti)| = |v(tj)| ∧ |ω(ti)| = |ω(tj)|. (4.43)

As mentioned above, the algorithm ensures this for any velocity increment (constant

velocity refers to n = 1, so first order terms are considered). For a single increment,

at each change of a target the worst case (ε→ 0) is that

v(ti) = lim
ε→0

[−(1− ε)v(ti−1)] = −v(ti−1), (4.44)

i.e., the components of the velocity vector flip their sign. For clarification, the

constant velocity worst case is detailed in Figure 4.5. The worst case occurs,
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whenever the new (intermediate) target requires a immediate backward turn with

respect to heading direction, or a sudden reflection of orientation (or both). The

figure shows the situation for a 2D path (single dimension) only. However, the worst

case of course generalizes to any pair of 3D displacement or 3D rotation dimensions

in SE(3).

Figure 4.5 Worst case scenario for the realtime path generation algo-

rithm: reflection of heading direction and / or desired orien-

tation.

Higher Order Profiles

One can easily infer from the constant velocity case described above, that the algo-

rithm generalizes for higher order velocity profiles, i.e., where continuity or differ-

entiability on higher order terms (acceleration, jerk) are required. Such profiles are

depicted at the bottom of Figure 4.2 and in Figure 4.3. Here, not the velocity may

flip the sign on a reflection, but the n-th order term (acceleration, jerk, etc.) does in-

stead. For example, in the case of a trapezoidal profile, the trapezoid of the velocity

profile in the worst case degenerates to a wedge-like profile, i.e., the constant velocity

period vanishes, as the acceleration flips the sign. In even higher order profiles, this

flipping propagates to higher order derivatives analogously. Thus, the continuity

required from such velocity profiles can still be maintained. The constraint that has

to be satisfied is, that the first update step, i.e., the target transition must obey the

same velocity profile than the desired motion trajectory.

Only the path generation system violates the smoothness constraint, if the desired

velocity profile is n → ∞ times differentiable. In practice though, such profiles are

not applied normally, as they produce high computational costs. As in a realtime

target motion scenario the final motion duration is not known, because the target
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is allowed to move freely and constantly, “smoothed” trapezoidal profiles normally

serve as an approximation to exact high order or minimum jerk profiles. Such

profiles (shown e.g. in Figure 4.2) are sometimes called S -ramped or S -curved

profiles [ Nguyen et al. 2008, Thomas 2003 ].

Here the path generation system, instead of computing an exact period of acceler-

ation and deceleration, where vmax is only reached at a single cycle, introduces a

period of constant vmax, whenever the desired maximum speed is reached, while the

acceleration and deceleration periods are smoothed (S-ramped) according to some

predefined default motion duration (e.g., one second for the system implemented in

this work).

4.1.3 Application: a Low-Level Robot Controller

The low-level control and data acquisition units of the scenario in Section 5.1.1

directly connect to hardware interfaces. In this scenario these hardware interface

comprise the robot’s realtime interface (i.e., the robot controller), the servo gripper

controller board and the camera devices.

The robot control unit receives activation features and interprets them as Cartesian

targets (for debugging purposes also direct joint angle updates are possible) from

the activation layer units and computes a possible path in realtime resulting in a

sequence of angle increments on the current configuration (compositional update)

to reach the target as described in above. Complying with realtime constraints,

the unit is timed (see in particular Section B.1.4) and apart from timing errors,

it emits an error event, as soon as a singular configuration would be reached and

triggers a recovery strategy within the encapsulated path generation unit or stops

the robot in the worst case. Higher-level control units then have to modify the joint

angles in order to recover from the error state. Also the units allows for sharing the

current angle configuration on a data channel for example for visualization of the

robot motion in a simulation environment (see Figure 4.6).

4.2 Perception and Attention

Activation in the perception domain has not yet been covered with respect to con-

tinuous transformation groups. First, Section 4.2.1 a relatively simple perception

system is described that uses bottom-up stimulus and top-down feedback for gen-

eration of activation corresponding to regions of interest in the perceptive field.

Section 4.2.2 shows, how the bottom-up approach can be extended to produce ac-
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Figure 4.6 Schematic overview of the time-constrained robot control unit.

tivation features that can be pushed into the association layer. Then Section 4.2.3

combines preliminary work with the bottom-up approach in order to integrate in-

coming activation feedback into a selective attention mechanism. The remaining

sections discuss applications in two scenarios: recognition and tracking of interac-

tion partners through visual observation and workspace surveillance in an assembly

system.

4.2.1 Preliminary Work

In the case of visual processing and a calibrated setup previous work (e.g., [ Müller

and Knoll 2009a ]) utilizes a 2D intensity image as a space for representing ac-

tivation directly. For the purpose of attention evaluation higher-level environment

knowledge, such as robot end-effector or limp positions, tracked object poses and

others, is projected into the visual field of view. An attention or saliency map is then

computed as a gray-scale activation map in the first place. Second, by addition, this

activation map is merged with the bottom-up regions of attraction, also computed

as a gray-scale activation map. After applying a suitable threshold as a final step

the result is a binary image as shown in Figure 4.7.

This is totally sufficient for attention applications based on calibrated mono camera

vision, but it may not generalize for other, more complex applications based on

activation. Furthermore, in particular where multiple types of sensors have to be

used concurrently with complex actuators, it is certainly not possible to represent

perception and action effects only in the perceptive space. Thus, a more general

representation is needed.
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Figure 4.7 An attention condensation layer represented in the visual field

– a 2D transformation space projection.

4.2.2 Activation from Bottom-Up Stimulus

Traditional computer vision systems, either for surveillance tasks with fixed cameras,

robot vision on mobile platforms or any other kind of visual processing suffer from

an enormous computational complexity. The main reason for this is, that these

traditional systems utilize complete analysis approaches: after acquiring input data

from its camera(s), the system has to process the huge amount of data and analyze

all of it regardless of the significance to the current task or environment. Now, the

basic idea is to apply an attention-based information filter in order to reduce the

amount of input data and only perform further analysis (for example the object

detection algorithm from Section 5.4.1) on the rest. This residual is what we call

the regions of interest (ROIs).

In particular one aspect of an attention-based visual information filter is ideally

suited for use with continuous transformation groups: the concept of dynamic

88



4.2 Perception and Attention

bottom-up attraction introduced in Section 2.1.3. Consider for example an object

moving in the visual field of view. According to neuroscientific findings especially

such moving objects (or uniformly moving clusters) attract attention to subjects.

The idea here is to extract moving features from pairwise consecutive images in

a sequence. For example the Lukas-Kanade feature based optical flow algorithm

[ Lucas and Kanade 1981, Lucas 1984, Bouguet 2000 ] would be suitable for this

task (see Figure 4.8). A such feature is a quadruple

Figure 4.8 Feature based optical flow result: motion field for a moving

object and a mean transformation generator projected back

into the image.

F = {x, y, dx, dy}, (4.45)

where x, y are the coordinates in the image and dx, dy are pixel displacements re-

spectively.

Considering the image plane as the transformation space of reference the features

detected from the algorithm represent a 2D projection of the actual 3D transfor-

mations that occur on voxels in the real world. In this case the transfer to group

theory’s notation is simple, as each feature directly contains the scale values sx = dx

and sy = dy for the generators according to Equation (2.21)

dx = exp (sx ·Gx) = exp(sx ·

0 0 1

0 0 0

0 0 0

), (4.46)
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and for dy analogously, in the Lie group for 2D translations represented as R2. The

algebra elements then are

s = (sx, sy)
T . (4.47)

So regions of uniform motion (regions of interest) can be found simply by evaluating

∀i, j ∈ n : w×(si × sj) + w−|si − sj| ≈ 0, (4.48)

on any n features in a local neighborhood within the input image. This weighted

sum condition works, because the cross-product si × sj evaluates to zero in the

“best” case of optical flow features pointing to the same direction and respectively

also the absolute value of the difference vector of each two features becomes zero if

they have the same length. In practice, because of noise the direction weight w×
would typically be greater than the displacement weight, while w×+w− = 1 always

has to be satisfied.

In Figure 4.9 two more examples, this time on deformable linear structures, are

shown. The region of interest extracted with the algorithm is indicated with a red

outline. Furthermore, in the figure arrows of the same color refer to activation

features that correspond significantly (by activation of Lie algebra elements and

spatio-temporal context). Note that the region building process also takes the posi-

tion information into account. It also finds a common region of interest by merging,

where spatially overlapping intermediate regions occur. Intermediate regions are not

explicitly shown in the figure, but one can easily infer their outline, as they would

be regions only comprising features of the same color.

According to [ Drummond and Cipolla 2000 ], motion of a 2D planar region can

be correlated to activation, i.e. a Lie algebra element of se(3) by projection from

the general affine group of transformations of two dimensions GA(2) subject to the

image plane under the assumption of weak perspective transformation (otherwise

P (2) needed to be used to model strong perspective distortions). However, as the

regions have a non-rigid area boundary, in the current system a calibrated setup is

needed for creating activation features for the association layer. Furthermore, on

a mono-camera setup the feature lacks at least one dimension, as the observable

activation is at most a projection of a transformation in SE(3). Nevertheless, this

is not in general a constraint, as features originating from different sensors can be

combined in the association layer.
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Figure 4.9 Linear deformable structures moving within the visual field.

The red outline indicates the ROI. The algorithm clusters

overlapping intermediate regions (which would consist only of

features with the same color).

4.2.3 Selective Activity With Top-Down Feedback

In biological attention systems, according to recent neuroscientific findings (as intro-

duced in Section 2.1.3), two main mechanisms accomplish a low-level information

filter: bottom-up attraction originates directly from sensory devices and affects the

attentive activation within certain regions of the perceptive field (see above); and

top-down or feedback mechanisms inhibit or enforce activation based on higher-level

processes and context knowledge. Only regions with significant activation are being

payed attention to, i.e. are in a computational sense worth further processing. In

this section the integration of the second aspect into the above approach is elabo-

rated on in greater detail.

In order to integrate bottom-up and feedback effects into an attention condensation

mechanism, the attention effects have to be projected into a common transforma-

tion representation. In addition to the association layer, where activation features of

se(3) are combined and propagated to higher-level and actuator modules, in the per-

ception system an association of activation projected into a subspace corresponding

to the image plane takes place.

Utilizing the Lie algebra vector space of this perceptive tranformation space, atten-

tion, i.e., regions of high activation in the perception domain can be defined easily

and then be pushed to the association layer for further processing of sensory input

data. As a result, the sensorimotor robotic system essentially consists of two as-

sociation subsystems. One for sensorimotor association (see Section 4.3), i.e. the
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aforementioned activation association layer comprising features of se(3), and an ad-

ditional association layer for visual attention (which works on projected features of

se(3) and bottom-up activation).

As regions of attention only make sense within a spatio-temporal context, from the

set of activation features only the ones referring to a relevant context are selected for

determining the level of attention in a region. The selected features may have posi-

tive (excitatory) or negative (inhibitory) weight, depending on the type of influence

they represent. Consider for example a mono-camera setup as shown in Figure 4.10.

At some point in time the level of attention regarding the complete perceptive field

is simply the accumulated activation, i.e., the sum of all feature descriptors,

Figure 4.10 2D mono-camera setup: features in sensor space projection

and accumulated activation in the perceptive field repre-

sented as a Lie algebra element.

A =
∑
i∈#F

si. (4.49)

The simple example, because it is a 2D system with translations only, requires a 2D

transformation space of reference, so s = (sx, sy)
T specifies a valid activation de-

scriptor in the translation subgroup of SE(3). To become a useful region of interest
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detector, the accumulated activation is not computed for the complete perceptive

field at once, but at higher spatio-temporal resolution instead. The accumulated

activation in a spatio-temporal patch

A =
∑

i∈#FSD

si +
∑

i∈#FV E

si −
∑

i∈#FIOR

si (4.50)

is furthermore influenced by bottom-up excitation from scene dynamics (SD) with

positively weighted features, by top-down inhibition-of-return (IOR) with negatively

weighted features, and top-down volitional excitation (VE) again with features of

positive weight9.

Typically, a detected object in a dynamic scene would be tracked by higher-level

modules and further activation can be arbitrated, as the anticipated pose and motion

of the object would inhibit further attention attraction on the region it refers to in

the perceptive field. The effect is, that patch (1) in the Figure 4.11 receives high

activation (in the x-dimension) in feature space, because there is only bottom-up

excitation. Higher-level processes like an object detector can then react to this

activation. In patch (3) which overlaps with a region containing a known object,

the bottom-up excitation on the other hand gets eliminated by top-down inhibition-

of-return (negative feedback) and no activation is induced on that patch.

4.2.4 Application: Tracking Interaction Partners

As a demonstration, the process described above is shown in a human-robot interac-

tion scenario. For intuitive human-robot interaction it is essential to give the human

user a feeling of presence and reaction from the robot partner. In order to fulfill

this task, the robot system in the scenario detailed in Section 5.1.2 implements a

face tracking mechanism, which is used to drive the Philips iCat head10. The effect

is that the iCat head turns towards the user the robot is interacting with.

For natural interaction it also makes sense not only to recognize one single partner,

but instead realize that for example a second person enters the scene. Follow-up

projects to the JAST project like the EU-funded JAMES project on “Joint Action

for Multimodal Embodied Social Systems”11 focus on this aspect of human-robot

interaction and foster research in this field.

9Sometimes bottom-up excitation from scene dynamics and inhibition-of-return are subsumed to exoge-

neous or reflexive attention effects, while volitional excitation is called endogenous attention control

[ Corbetta and Shulman 2002 ].
10http://www.research.philips.com/technologies/robotics.html
11http://james-project.eu
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Figure 4.11 Attention activation for different spatial patches: (1) un-

known object: high bottom-up excitation, (2) no object: nei-

ther bottom-up nor top-down excitation, (3) known object:

bottom-up excitation is arbitrated by top-down feedback.

The contribution towards this direction in the interaction partner recognition do-

main is discussed in the following in greater detail. The approach is based on motion

based bottom-up attention generation (Section 4.2.2), Haar cascades and camshift

for face detection and tracking and top-down projection of high-level scene knowl-

edge with inhibition-of-return (IOR) mechanisms (Section 4.2.3).

Bottom-Up Attraction

Uniform object motion in the perceptive field can be modeled as activation in the Lie

algebra of the 2D transformation space corresponding to the image plane according

to Section 4.2.2. This activation is represented using the activation features and

describes bottom-up attraction of attention in a temporal and spatial context. In

the scenario the temporal context of an attractive feature always corresponds to the

time interval between two consecutive image frames, while the spatial context is the

position and size, i.e. a region of interest, in the image plane. Figure 4.12 shows

the bounding box of corresponding activation features as described in Section 4.2.2

indicated with a red outline.
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Figure 4.12 Left-top: region of attention (white-red), left-bottom: de-

tection result (green), right-top: initialized tracker (blue),

right-bottom: tracker result (blue) and new region of atten-

tion (white-red).

Face Detection and Tracking

Once the bounding boxes for regions with spatio-temporally corresponding activa-

tion features attract attention in the recognition system, the system tries to detect

an interaction partner in the regions of interest. For this task an object detector pro-

posed by [ Viola and Jones 2001 ] and improved by [ Lienhart and Maydt 2002 ]

in its OpenCV implementation is used. The object detector is based on Haar -like

features used in a cascade (i.e., a complex comprising multiple simpler classifiers).

It needs a training file, which for this scenario is provided with the OpenCV library.

The detection result is shown in Figure 4.12 and Figure 4.13 with a green bound-

ing box. If a region of attention contains a face, i.e., the face detector successfully

responded and a green box can be drawn, an interaction partner is detected.

Due to the time consuming face detection algorithm, it is neccessary to track the

interaction partner using a realtime tracking method. For this task the camshift

tracking method [ Bradski 1998 ] is used. Camshift stands for “continuously adap-

tive meanshift” and is based on the meanshift algorithm [ Comaniciu et al. 2000 ]

with an additional abstraction from object size (scale) and orientation. The method

evaluates color statistics, so basically it is an optimization based on color histograms.

95



4 From Activation to Coordination

Figure 4.13 Left-top: simultaneous tracking and detection, left-bottom:

tracking without bottom-up attraction, right-top: tracking

and inhibition-of-return, right-bottom: inhibited and non-

inhibited regions of attraction.

Once meanshift finds a new optimized object center using the old position in the

image, camshift optimizes on the scale and orientation of the object.

In the figures the tracking result is shown with blue bounding boxes. Note, that

the tracker does not need any bottom-up attraction to operate, it computes on the

image directly. In this way an interaction partner can be tracked, even if no motion

in the image and thus no bottom-up activation is present (see left-lower image in

Figure 4.13).

Top-Down Activation Feedback

The most interesting part of the interaction partner recognition system comes next.

The level of attention payed to a specific region in the perceptive field with bottom-

up activation is not only based on the aforementioned bottom-up mechanism, but

may also be influenced from the tracking result. The system here uses negative

back-projection of the activation features present in higher-level modules through

tracking. The high-level tracking result in this case is represented as an activation

feature with a rectangular box as its spatial context in the 2D transformation space

corresponding to the image plane, so back-projection (blue bounding box in the
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figures) is only an identity transform on the track in this scenario.

The crucial part is, that bottom-up activation represented by regions of object mo-

tion in the image plane is auto-inhibited if it corresponds to back-projected acti-

vation from tracks. A spatio-temporal correspondence according to Section 3.2.1

(and as a result a negative weight on the bottom-up regions of attention) is indi-

cated in the figure with red only color. Regions of attention that are not exposed

to an inhibitory feedback on the other hand are indicated as white boxes with a

red outline. For example, in the right-lower image in Figure 4.13 two red regions

correspond to a tracking result, while the third bottom-up region does not.

This mechanism allows for efficient realtime interaction partner recognition, as only

the non-inhibited bottom-up regions of attraction are actually passed as activation

features (regions of attention) upwards to the activation association layer and in the

following a cognitive module with the face detector. For the human-robot interaction

scenario, a newly detected face can hence again be passed upwards into the higher-

level cognitive system to react on that event. As a result, for example the robot

manipulator can move its end-effector towards the new interaction partner for a

handshake (details on such motor responses, direct or on high-level command are

discussed in Section 4.3 in greater detail) or speech synthesis can express a “hello”,

etc., to confirm that the robot noticed the new person.

4.2.5 Application: Workspace Surveillance

To show the integration of an activation mechanism into a more complex robot

system this section discusses the workspace surveillance system implemented as a

part of the JAST human-robot interaction system (see Section 5.1.2)12.

Basically the JAST robot needs to know which objects are present in the workspace

for joint assembly (see e.g. Figure 4.15). Thus an object recognition module is

developed for determining the type and precise location of any construction part

on the table. As the camera device is facing downwards from the ceiling, it also

seems natural to use the image information to extract gestures of the human and

give feedback on the robot motion to the cognitive layers in the system.

As the different visual processing units have to work on the same image resource,

the proposed software framework for parallelization (Appendix B) is perfectly eligi-

ble for this task: the system comprises a single data acquisition unit connected to

the camera hardware), an early processing unit for region of interest computation,

a communication unit connected to the higher-level cognitive modules of the dis-

12Preliminary research on workspace surveillance is discussed in [ Müller 2006 ] and [ Müller 2007 ].
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tributed system, and several region analysis units. All of these units run in parallel

and thus, it is possible to avoid waiting for a complete analysis of the workspace, but

instead upward propagate (publish) the results present at any time. Figure 4.14

shows an overview of the units and data channels for the workspace analysis system.

Figure 4.14 Workspace analysis system in the JAST scenario with data

channels (black and red) and IO-connections to cognitive

layer (blue).

Early Processing

The early processing unit in the JAST workspace analysis scenario implements tech-

niques discussed before. This means the unit computes an activation in the percep-

tive transformation space, on a subgroup of se(3) in the 2D image plane. Regarding

Section 4.2.2 the motion detector computes bottom-up activation directly in the

subgroup, i.e. in the Euclidian group se(2). Thus, as soon as something enters the

field of view of the camera from some direction, activation features are generated for

the corresponding spatio-temporal context. The early processing unit incorporates

feedback from higher-level units (red arrows in Figure 4.14), in particular feedback

from the analysis units in order to suppress activation in certain regions of the field

of view, i.e. modeling inhibition-of-return.
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Concretely, if higher-level knowledge in form of an activation feature corresponding

to the bottom-up activation is present in the activation layer, the features are fused

and the result represents activation with feedback information integrated. Typically

the top-down feedback is negative with respect to bottom-up activation, so previ-

ously attended regions of interest (probably containing objects, gestures or robot

manipulator parts) which have already been analyzed do no longer cause attention

and activation to be passed upwards.

Finally, only the regions of attention, i.e. those regions of interest in the field of view

with a significant accumulated activation, are made available to the region analysis

units for further processing. In the following these are called bottom-up regions of

interest.

Robot Recognition

Robot recognition units in principle take a region of interest from early processing

and compare it with projected activation received as an input from the higher-level

robot control program (blue arrow in the figure). As the cognitive layer in the system

knows the angle configuration of the robot manipulators, it is possible to project a

(simplified) robot model into the 2D plane with respect to known calibration data. If

a region of interest matches the projection, the region is marked as a “robot” region

(see Figure 4.15) and passed back downwards into the early processing layer for

inhibition of attention, as well as upwards to the communication unit for publishing.

Gesture Recognition

Gesture recognition units implement a two-step approach for gesture detection and

classification. The first step evaluates, whether a region is plausible to contain a

human gesture. As one can see from Figure 5.5, it is not possible to enter the

scene from arbitrary directions in the scenario. As the workspace (the table) is

perpendicular to an upright human body position, only regions connected to one of

the 2D plane borders corresponding to the boundaries of the camera field of view

are likely to contain a gesture.

The second step classifies the regions containing human gestures by means of a

näıve Bayes classifier with distance weighting after extracting the hand contours

(see Figure 4.16).

The implementation supports the three types of gestures shown in Figure 4.17. The

figure also shows the classification result and additional information required in the

higher level cognitive system, i.e., in case of a grasping gesture the grasp location,
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Figure 4.15 Robot analysis compares top-down robot position feedback

with bottom-up regions of interest (left-upper corner) ob-

tained from early processing.

in case of a pointing gesture the pointing direction, and in case of a holding out

gesture the location for object hand-over.

Object Recognition

Object recognition in a region of interest passed upwards from the early processing

stage is implemented as a template matching algorithm. The scenario comprises

sixteen different primitive object types and four assembly objects (see Figure 4.18).

The objects are wooden construction parts from the Baufix 13 domain. As the objects

are of uniform color and robust for robot handling, they are ideal for a research

scenario.

The object recognition system needs to identify the objects and determine their

exact position and orientation for robot grasping operations. The first step in this

process is analysis of the dominant colors in a region of interest, the result can be

seen in the left-upper part of the bounding boxes in Figure 4.19.

The second step includes matching of the extracted color information with object

specifications obtained from a configuration file. Corresponding object-region pairs

then undergo the template matching process. Within this process several position

and orientation alternatives are evaluated with respect to a similairty measure. The

13http://www.baufix.de
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Figure 4.16 Steps to find the contour used for gesture type classification:

color-conversion, segmentation, and contour extraction.

system uses the correlation coefficients measure implemented in OpenCV 14, which

can be written as

RT,I(x, y) =

∑
x′,y′ (T (x′, y′) · I(x+ x′, y + y′))√∑

x′,y′ T (x′, y′)2 ·
∑

x′,y′ I(x+ x′, y + y′)2
, (4.51)

where I(x, y) is a pixel in the image region of interest (ROI) and T (x, y) one in the

template. Due to normalization bad matches refer to values close to zero and prefect

matches evaluate to 1.0 respectively. By using image ROIs the system actually is

able to perform the matching much faster than in a näıve approach, where the whole

field of view would need be checked. Formally, x and y do thus correspond to the

relative offsets inside a ROI instead of absolute camera image pixel positions.

Nevertheless, the OpenCV implementation only uses the original template orienta-

tion. Hence, to evaluate the orientation of a part on the table, the template has

to be rotated and matched several times in different rotations in order to find the

correct orientation of an object on the table. This process is very time-consuming

and benefits greatly from parallelization and in particular from region selection by

activation in the attention system of the proposed framework. Inhibitory top-down

feedback on already known regions thus avoids wasting computing time on analyzed

and processed objects.

4.3 Intention and Coordination

In this section two aspects are to be discussed. First, the principle of association

of sensor activation with motor activation, and second the integration with or me-

diation from cognitive or higher-level coordinative modules is explained. Finally,

14http://opencv.willowgarage.com
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Figure 4.17 Gesture types supported by the gesture region analysis units.

applications in the visual servoing and active perception domain in the SFB sce-

nario are shown.

The triplet of spatial, temporal, and excitative correspondences derived before intu-

itively leads to sensorimotor association and sensor-based servoing systems.15 The

approach proposed here uses the direct uplink of an activation feature, i.e., the

spatial and temporal context information and the common representation in an

activation reference space to introduce reflex-like motion response from the senso-

rimotor system on the one hand and volitionally drive the actuator(s) or introduce

inhibitory effects on sensor stimuli on the other hand.

The first and almost “classical” application resembles the system of [ Drummond

and Cipolla 1999b, Drummond and Cipolla 2000 ] and comprises direct coupling

of visual stimulus and motor response in a reflexive manner. The proposed system

can mimic this behavior by using the Lie algebraic activation features and their

correspondence mechanisms. Activation in the perceptive field is computed in order

to compensate for a pose change and actuated sensor devices are thus tuned towards

the desired target pose. The setup refers to a hand-in-eye configuration where the

15Note the relation to embodiment theory: embodiment postulates that action and perception are always

associated and thus one can never occur without the other.
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Figure 4.18 Baufix primitive and assembly objects supported by the

JAST object recognition system.

sensor is mounted at the end-effector in an overt scenario, in a covert scenario it

is almost equivalent to the attention mechanism from Section 4.2. This process is

automatic as long as the association of sensor stimulus with actuator activation is

concerned. The task of pose adjustment is intrinisc to this system and cannot be

changed during execution – a motor response cannot be suppressed.

The second scenario integrates cognitive feedback into the first one and thus enables

intentional motion and volitional inhibition of stimulus – the ingredients for deliber-

ate and not only reflexive behavior. In this way a sensor stimulus can be mediated

directly and for example instantaneous motor response can be prevented. Basi-

cally, from a higher level cognitive layer the system projects activation (or counter-

activation) through the activation association layer into the perceptive field of a

sensor or the motor system, which in turn causes damping or reinforcement on the

Lie features there.

4.3.1 Reflexive Motion from Sensor Stimulus

The principle for reflexive motion from sensor stimuli through activation association

is applied to the a problem domain consisting of a visual sensor and a 6R serial

manipulator.

The term visual servoing then refers to the task of controlling the motion of a motor

system (“servoing”) with “visual” perception support (Figure 4.20). While this is

the standard terminology, the approach presented here also applies to sensor based

servoing in general. However, it is assumed, that the servoing system is calibrated.

This means, to the system controller the position and orientation of sensors relative
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Figure 4.19 Object recognition result: classification, position, orienta-

tion, and color information is computed in parallel and in

realtime by multiple analysis units.

to the actuator of consideration is known.

In a visual servoing application representing activation features of perception and

actuation in the same reference space must always be possible. This can be the sen-

sor space SE(2) directly or the actuator space SE(3), where se(2) or se(3) would

be the Lie algebra spaces for representing activation respectively. In the vision

domain in literature (e.g. [ Chaumette and Hutchinson 2006, Chaumette and

Hutchinson 2007 ]) representation in sensor space refers to image-based servoing,

while representation in actuator space refers to position-based servoing. The pro-

posed approach thus is a generalization of traditional approaches to arbitrary trans-

formation spaces. In general, the goal is to find activation features for the actuator

controller that correspond to moving it towards the desired target (see Figure 4.21).

Considering the actuator space as the common space of reference, a transformation
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Figure 4.20 The association layer accumulates activation and propagates

from sensors into the motor system.

moving the actuator towards the target, i.e. a tool for grasping, can be computed

within n perceptive fields of a sensor set (S0, S1, . . . , Sn). Initially, for this purpose

the actuator (the end-effector) pose is projected into the perceptive fields and the

distance to the 2D pose of the target (tool) is evaluated. An activation feature F Si

corresponding to the pose-to-target transformation in a sensor space Si can then be

projected into the 3D common (actuator) space by means of the feature’s 2D spatial

context (the projected actuator pose) and the calibration information of the sensor

i

F Si 7→ FC
i . (4.52)

An activation in the common space FC refers to a normalized sum of input features

from multiple sensors, the more the more accurate, and the actuator activation FA

FC =
1

n

∑
i∈n

FC
i . (4.53)

The temporal context is also clear: it corresponds to the actuator update rate di-

rectly. The spatial context of the features FC
i in common space is defined up to some
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Figure 4.21 A visual servoing setup: activation is generated from a re-

gion of interest in the perceptive field. The active perception

system actuates the sensor in order to compensate for a dis-

placement from the center of the field.

uncertainties from the 2D-3D reconstruction as well. By means of spatio-temporal

correspondence the activation is then transferred into an actuator activation FA.

As the actuator space was chosen to be the common space, the transfer is as simple

as

FA = FC =
1

n

∑
i∈n

FC
i , (4.54)

or equivalently

FC =
1

n+ 1

(
FA +

∑
i∈n

FC
i

)
, (4.55)

which is valid in the spatio-temporal patch of the end-effector’s current pose 16. This

16Recall, that for combining features (in particular the Lie algebraic activation), i.e. using the
∑

in the
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works, as the spatial context for introducing an actuator (end-effector) motion is

known from its current pose (see Section 2.3.3 for details). Hence in this application

scenario the actuator activation can simply be seen as a writable feature to which

the sensor activation is written. Once the activation has been passed to the action

domain in this way, the next pose for the end-effector is automatically computed

according to Section 4.1 and the corresponding motor commands are sent.

To close the loop, also FC is mapped back into the sensor spaces

FC = FC
i 7→ F Si , (4.56)

which in turn specifies the next pose of the end-effector in the perceptive fields. If

this still matches the pose-to-target transformation, the features F Si are propagated

again and the motion commands are iteratively computed. If the target pose has

changed meanwhile, F Si ’s are modified accordingly. As a special case, when the

target pose has been reached, the activation become zero in the sensor space, so in

the end also the propagated activation feature becomes zero in the common space,

as well as the actuator activation, when the target is reached.

As mentioned before, this resembles the mechanisms for visual servoing shown in lit-

erature [ Drummond and Cipolla 2000, Chaumette and Hutchinson 2007 ], only

by means of a more general methodology. The advantage is that the approach can

now be extended to incorporate other modules mediating activation in the associ-

ation layer. Therewith reflexive sensorimotor response can be modified voluntarily

from higher levels.

4.3.2 Application: Visual Robot Guidance

The visual robot guidance application (Figure 4.22) follows the approach described

in [ Drummond and Cipolla 2000 ], except that it uses the association layer for

transferring visual inputs into the manipulator domain.

The goal of this application is controlling a serial 6R robot using visual cues. The

cues are evaluated from a camera image where a colored marker cross is presented.

Preliminary work was done in [ Plopski 2010 ] and further development integrated

the relative pose estimation from this system into the activation association mech-

anism.

Posing the marker in the visual field results in a transform describing the relative

displacement of the marker corresponding to an initial / target pose in the image

above, special restrictions apply to SE(3). For example the BCH-formula has to be used to compensate

for non-commutativity or an appropriate approximation is necessary (see Section 3.2.2).
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Figure 4.22 Guiding a robot by association of activation in the visual

field originating from a marker-cross with motor commands

in the activation layer.

center. The transform then undergoes a logarithmic transform in order to obtain

the Lie algebraic activation values. The Lie activation is finally linked to a temporal

context (i.e. the current timestamp or frame) and pushed into the association layer.

The spatial context in this application is global, i.e. the robot end-effector is always

associated with the activation feature.

Instantaneous motor response results from propagated activation, this means the

activation is directly passed into the actuator controller, where it is translated into

a pose increment on the current end-effector position and orientation. The realtime

path generation system there computes a joint angle update taking smoothness and

former target poses into account as described in Section 4.1.

4.3.3 Intention Extends the Reflexive System

Intention can counteract or enforce the reflexive activation, or introduce completely

new activation. In principle this refers to a projection of activation from an addi-

tional source into the sensorimotor association layer from above. The architecture

therefore extends to an additional module as shown in Figure 4.23.

In Section 4.3.1 in particular Equation (4.54) shows, how activation is accumu-

lated in the association layer (orange box in the figure) and then propagated into

actuator controller and sensor modules. Integrating intention into this process is

relatively straight forward. Basically, activation corresponding to the intended mod-

ulation is generated in a higher-level controller and then pushed into the activation

association layer exactly in the same way as inputs from the motor system and the
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Figure 4.23 An additional module translates higher-level decisions into

the sensorimotor association layer.

sensor system are, so

FC =
1

n+ 1 +m

(
FA +

∑
i∈n

FC
i +

∑
j∈m

FC
j

)
. (4.57)

Depending on the values inside the activation features this “volitional” induction

into the association layer can yield different interesting effects:

• Volitional inhibition of sensor activation

Projecting anticipated activation into the sensor system prevents it from gen-

erating features with significant values, so further activation and upward prop-

agation into the higher-level module and the actuator / motor system is in-

hibited. The effect is a loss of the attentional focus in the cognitive modules

and a suppression of a motor reflex in the actuator controller. The direct

sensorimotor association loop described earlier can in this way interrupted.

• Volitional Motion

Projecting positive activation into the association layer while no corresponding
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sensor stimulus occurs simultaneously, yields propagation of that activation

into the motor system and the sensor system. The motor system translates

this activation into a motor command and the manipulator moves. The sensor

system receives activation feedback and this is averaged with sensor stimulus.

The sensor response is a mediated stimulus if a spatio-temporal correspondence

is found – most likely the activity is lower than if the activation would not be

anticipated.

The following section gives an example application for direct sensorimotor associa-

tion as described in Section 4.3.1, while thereafter Section 4.3.4 shows how the

effects explained above can be exploited for an attention based active operator focus

scenario.

4.3.4 Application: Active Multi-Operator Focus

The idea of the application described below is the following. A “social” robot in

a human-robot interaction scenario with more than one human interaction partner

needs to have the capability to draw attention to interaction partners entering the

scene while it must at the same time convey attention necessary for completing a

task to its current counter-part. The system presented here satisfies these properties

on a sensorimotor level by using the Lie algebraic activation system fed from the

three modules, motor system, sensor system, and higher-level cognitive system as

introduced above.

Actively focussing multiple operators or interaction partners subject to attention

attractors from the environment then generally requires a system to be able to tune

its perceptive devices (sensors) towards relevant aspects of the surrounding. The

scenario thus implies a setup, where the sensor itself is not statically overlooking

the scene, but in fact is mounted to an actuator, for example like the one shown in

Figure 4.24.

In principle thus three phases in the active perception system are to be implemented

in the scenario. The phases correspond to the number of human interaction partners

present in the perceptive field.

In the first phase, i.e. the detection and initialization on attended regions phase, the

bottom-up attraction introduces activation in the perceptive field (the sensor space).

The attention mechanism or early information processing algorithm described in

Section 4.2 condensates excitation in a specific region of the perceptive field. It

generates an activity feature which can then be used as a basis for the tracker

initialization, e.g. if a suitable target is found in the region.
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Figure 4.24 An active perception setup implies an actuated sensor device.

In the figure, the sensor (a camera) is mounted to the end-

effector of a Mitsubishi RV-6S robot.

The active perception system in the second phase, the stabilization phase, always

tries to optimize the pose of the end-effector (which in this case directly interacts

with the preceptive field) in order to keep the region of interest in the center of the

field as shown in Figure 4.21.

For this reason the sensor system computes a compensating activation feature for

the target’s motion. This is of course only possible if the target pose can be tracked.

The compensation feature is then pushed into the association layer and propagated

into the actuator system where it is translated into a motor command.

This phase also implements an ego-motion compensation algorithm. This means,

whenever the actuator moves, self-induced attraction from actuator motion in the

perceptive field is inhibited. The method is simple: whenever the sensor device is

moved, the corresponding activation generated from static objects in the perceptive

field can be anticipated, as the motor system feeds motion feedback into the sensor

space. The inhibition works according to the mechanism from Section 4.2, only

the sensor is mounted directly to the actuator, hence the ego-motion algorithm is

straight forward. The inhibitory top-down activation FIOR compensating for ego-
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motion is simply the negated projection of the actual end-effector activation Fego

− Fego = FIOR. (4.58)

For example if the actuator moves the sensor leftwards, a stimulus corresponding to

rightward motion is present all over the perceptive field, so this activation has to be

suppressed with inhibitory (negative) top-down activation.

The third phase corresponds to selection or averaging of relevant features. In

fact, in literature (e.g. as aforementioned in [ Drummond and Cipolla 2000 ] or

in [ Chaumette and Hutchinson 2006, Chaumette and Hutchinson 2007 ]) one

can find systems accomplishing phase two tasks directly, i.e. without the detour

through an association layer and without using Lie algebraic activation features,

but the advantage of the presented approach is that it generalizes on these com-

mon approaches. Therefore, it is easy to integrate other controller modules into

the sensorimotor association system. This in particular appears in phase three, i.e.

whenever more than one target occurs in a scene.

Consider for example the following activation equation

FA =
1

n
(FT1 + FT2 + . . .+ FTn) =

1

n

∑
i∈n

FTi , (4.59)

where the actuator system activation FA is averaged from motion compensation

features of all targets Ti in a scene on a global spatial context. The application

uses an approximation to the correct form of the Baker-Campbell-Hausdorff for-

mula in Equation (3.13) and Equation (3.14), which is proposed from [ Fletcher

et al. 2003, Govindu 2003 ], so averaging follows the usual vector arithmetics. This

resembles the direct mechanism of phase two introduced earlier, but now extended

by multiple targets and thus multiple activation features. The result is a mean com-

pensation, which occurs as a jiggling, “indecisive” actuator motion in the worst case

(e.g. if the targets move towards or apart from each other).

In the third phase therefore a higher-level module interacts with the association

layer. It acts as a mediator or modifier on activation features and in this way

influences the behavior of the motor system. The higher-level module may do so by

emitting an “anti-”feature FH to one or more of the target motion compensation

features. In this way, some of the components in Equation (4.60) can be annihilated.

FA =
1

n

∑
i∈n

FTi +
1

n

∑
i∈n

FHi
, (4.60)
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where FHi
either contains a zero activation vector for the features that are allowed

to be propagated through or the inverse of the corresponding activation in FTi in

order to inhibit the component.

4.3.5 Application: Seamless Semi-Autonomous Control

Taking the same line, another interesting application is conceivable. The idea as sim-

ple as useful. Considering an autonomous system supervised by a human operator,

it is sometimes useful to be able to modify the system behavior during runtime of the

system. For example the system miscalculates the target pose of the end-effector of

the robot. Traditional systems mostly have an emergency shutdown mechanism for

this case, so the operator has to interrupt the current process, resume a “healthy”

system state and let the task continue. The methodology presented above allows for

another, more elegant approach.

Once the operator detects a misbehavior, he can directly modify the manipulator

motion without actually interrupting the autonomous task. This can be achieved

in the association layer by adding the input activation feature generated from a

manual control device. Such devices can be for example physical devices like the

3Dconnexion SpaceNavigator 17 with six degrees of freedom, and the NOVINT Fal-

con18 force-feedback device with three degrees of freedom as shown in Figure 4.25;

or interaction elements (e.g. buttons) in some kind of graphical user interface.

Figure 4.25 Supported force-feedback device with three degrees of free-

dom and three feeback channels and 6-dof input device.

Analogously to the active multi-operator focus, the activation features emitted
17http://www.3dconnexion.com/products/spacenavigator.html
18http://www.novint.com/index.php/products/novintfalcon
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from the manual control devices act as a high-level input module and mediate the

sensor-actuator activation propagation in the association layer according to Equa-

tion (4.60).
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Scenarios and Discussion
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AFTER elaborating on theoretical background and related work in Chapter 2,

Chapter 3 derived a novel theoretical framework for describing activation in a

sensorimotor robotic system based on Lie algebras. In Chapter 4 the theoretical Lie

algebra activation descriptors were applied to the different domains of sensorimotor

robotics, the actuator or motor system, for perception and modelling attention and

finally to coordination, either for achieving purely reflexive behavior or integrating

top-down intentional influences into the association system.

This chapter first introduces the research scenarios in Section 5.1 where the pre-

sented approaches are implemented, then discusses results in those scenarios in Sec-

tion 5.2, and in Section 5.3 draws a conclusion and summarizes the proposed

methods and techniques. Finally in Section 5.4 further experimental applications

and future directions in the field of research are outlined briefly.

5.1 Research Scenarios

While some applications have already been discussed earlier in Chapter 4, this

section introduces the general research context, i.e. the scenarios where these appli-

cations are useful and necessary.

5.1.1 SFB 453-T4: an Industrial Automation Scenario

Originating from a telepresence and teleaction scenario in the medical context1 the

1Project SFB 453-I4 on “Shared Control for Cooperative Tele-Manipulation in Robotic Surgery: Methods,

Implementation and Evaluation”
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transfer towards automation in an industrial pro-

duction environment is the focus of the prototyp-

ical industrial automation scenario below. This

means, a sensor-assisted robotic system has to

perform certain tasks autonomously, while still

allowing for manual intervention with direct in-

teraction facilities by means of a teleoperation

devices and realtime workspace surveillance.

Setup and Task Definition

As a demonstration task in an experimental industrial environment a prototypi-

cal application for autonomous joining of two ends of an asymmetric rubber band

was chosen. In the setup (see Figure 5.1) several statically mounted cameras are

used: one top-view camera for workspace overview, one general camera for scenario

surveillance and remote control, and another camera for visual analysis of the work-

piece profile. Furthermore, an actuated camera device at the robot’s end-effector is

utilized for close-up inspection and accurate positioning.

Figure 5.1 The rubber ring joining setup for SFB 453-T4.

On the actuator side the setup comprises a Mitsubishi RV-6S 2 industrial manipulator

with six degrees of freedom mounted top-down, a guide plate for joining the ends

of the workpiece, and several different types of electrical servo grippers (see also

Figure 5.2), either mounted to the robot’s end-effector or statically mounted to the

2http://www.mitsubishi-automation.de
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gantry.

Figure 5.2 Two types of gripper devices used in the industrial automation

prototypical setup. Both devices are mounted to the end-

effector of the manipulator, the arrangement on the left also

integrates an eye-in-hand camera.

Despite performing the main joining task autonomously, the control architecture

has to allow for manual intervention at any time (also from a remote location via

teleaction). A telecontrol unit thus interfaces with the control device (spacemouse,

force-feedback device, etc.) and maintains data channels with the control system.

Supported teleoperation devices are physical devices like the 3Dconnexion Space-

Navigator 3 with six degrees of freedom, and the NOVINT Falcon4 force-feedback

device with three degrees of freedom (see Figure 4.25); or even wireless devices as

presented in [ Plopski 2010 ].

Using a such device typically results in high-level feedback into the sensor-actuator

association, which influences the autonomous task execution on a sensorimotor level.

Moreover the system provides means for influencing the autonomous sequence via

a graphical user interface – another high-level module modifying activation in the

sensor-actuator association layer.

3http://www.3dconnexion.com/products/spacenavigator.html
4http://www.novint.com/index.php/products/novintfalcon
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The GUI also implements data channels to the robot’s position feedback and the

live surveillance video unit. Here, the system computes on-the-fly compression and

decompression of the surveillance stream (see details in Section B.2.2). Also, it

connects to the robot’s manipulator channel and other actuator channels for inter-

action.

Figure 5.3 A sample gui with live surveillance video (second tab) and a

robot simulation facility. Cartesian robot target controls are

also shown.

The GUI unit comprises a Qt5 window with several customizable widgets. The ele-

ments of the GUI are not per se fixed by the software framework, only the application

defines the concrete widgets. Widget prototypes predefined by the framework or user

defined interaction widgets can be connected to arbitrary data channels to perform

visualization (e.g., video display) and realize control facilities (e.g. push buttons).

For a detailed description of the software architecture please refer to Appendix B.

A simple GUI built with such predefined prototypes is shown in Figure 5.3. An

online video6 shows the remote control and interaction facilities of the industrial

automation scenario in greater detail.

An analysis of the demonstration task leads to the requirements described below.

5http://qt.nokia.com
6http://www.youtube.com/watch?v=kO0k5cBkkdA
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1. Basically, the task needs to be implemented with a sensor-based system, as the

position of the workpiece, a limp rubber band, is not fully predictable during

task execution, but instead has to be monitored using sensor devices.

2. Furthermore, realtime scenario surveillance for remote control of the system

needs to be implemented. It shall in this way be possible to recover the system

manually from an error state, which eventually involves interrupting or correct-

ing the current autonomous task and overtaking control using a teleoperation

device. This also implies it must be possible to view a live video stream of the

setup during task execution for monitoring.

3. Considering the workpiece, its structure needs to be evaluated in order to

determine possible grasping points. Also, hardware and software means have

to be provided to avoid unwanted twisting before the join of the ends. A higher-

level autonomous error recovery strategy has to be implemented in case the

workpiece has insolvable knots or unexpected problems occur during execution.

The software architecture presented in Appendix B is used to implement the system.

The application task is decomposed and decoupled into sub-tasks and thus several

processing units can be implemented to fulfill the desired requirements in parallel.

Interaction, i.e., data exchange between the units and event generation defines the

application workflow.

Robot Puppeteer Extension

A slightly modified setup is the basis for another interesting experiment in this sce-

nario. The goal of this experiment is to improve a secondary humanoid robot’s gait

system with reinforcement learning strategies. Figure 5.4 shows the experimental

setup.

As it would be time consuming to put the humanoid (puppet) into its original posi-

tion after an erroneous try, which happens very often during the gait improvement

phase, this process is automated using a puppeteer manipulator. The humanoid is

equipped with a force sensor to detect if it has fallen over. Once this is detected the

puppeteer robot sets the humanoid into a start position again. Then a trajectory is

sent to the manipulator in order to guide the humanoid along its next try. In this

way it is possible to teach even complex trajectories like walking a curve or walking

up or down a tilted plane at different velocities. A reinforcement strategy in the

gait controller of the humanoid computes a new set of gait parameters after each

episode, which incrementally result in a better gait behavior. Details on the results

of the experiment can be reviewed from [ Völk 2010 ].
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Figure 5.4 Puppeteer setup in the scenario. The industrial robot and its

modified remote control interface is exploited to play the role

of a puppeteer for improving a humanoid robot’s gait system.

For the experiment the remote control unit is modified in order to be scriptable

by a remote client computers via a telnet server unit. The gait controller of the

humanoid robot is enabled to send Cartesian target commands. Also, Cartesian po-

sition feedback channels and a data channel with information on Euclidian distance

to the current target are integrated in the manipulator server unit. The server unit

then emits necessary Success and Error events and handles the communication

with the task control unit on the one hand and with the telnet client on the other

hand.
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5.1.2 JAST: A Human-Robot Interaction Scenario

Opposing the industrial automation scenario, the purpose of the scenario introduced

in the following is purely research. The topic of interest is dialog-based intuitive

human-robot interaction and joint action. Fulfilling an assembly task in cooperation

with a humanoid robot is the overall goal of the scenario.

In particular this requires the system to be re-

sponsive to the human interaction partner in

terms of action and speech (see Section 4.2.4),

and be aware of the processes in the common

workspace environment by means of recognizing

assembly objects, human gestures, and its own

manipulators (see Section 4.2.5).

The JAST setup is based on a distributed system, which is implemented with Ze-

roC’s Ice7 platform as a middleware [ Foster et al. 2006, Rickert et al. 2007,

Giuliani 2011 ]. The system comprises two industrial robot manipulators with grip-

pers mounted side-ways on a gantry to mimic a human upper torso. The Mitsubishi

RV-6SL8 manipulators are complemented with a Philips iCat9, an animatronic talk-

ing head in the shape of a yellow cat (see Figure 5.5). The iCat can express facial

motions and turn in two degrees of freedom, and apart from moving the manipu-

lators in six degrees of freedom the system includes synthesized speech. The input

channels consist of speech recognition, object recognition, gesture recognition, robot

sensors, and face tracking. On the cognition side, the system integrates a goal in-

ference system based on neural fields with a classical rule-based assembly planning

paradigm [ Foster et al. 2008 ].

The components developed with the proposed methodology and software frame-

work focus on visual perception and attention based early processing. This includes

workspace analysis, i.e., observing the table with a top-view camera with respect

to robot parts, gestures, and wooden assembly objects (Section 4.2.5); and en-

vironment surveillance and interaction partner recognition, i.e., detecting faces of

interacting users with a camera device (Section 4.2.4) based on attention attractors.

As mentioned above, the JAST setup is based on a proprietary middleware, Ze-

roC’s Ice. A limitation of this of course is, that the processing modules of the

overall system are not distributed at runtime, but instead have to be configured in

7http://www.zeroc.com
8http://www.mitsubishi-automation.de
9http://www.research.philips.com/technologies/robotics.html
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Figure 5.5 The human-robot interaction setup for JAST.

advance, i.e., the computers that run Ice components have to be specifically con-

figured to run a certain executable, that in turn establishes a connection to other

distributed resources. Nevertheless, the scenario demonstrates integration of a pos-

sibly distributed subsystem based on the software framework from Appendix B with

external software components. The two example modules shown, i.e., one for ob-

ject recognition and realtime workspace observation and one for interaction partner

detection and tracking, seamlessly interact with the external Ice-based middleware

using dedicated communication units. These communication units realize and en-

capsulate the necessary Ice interfaces and handle all data exchange with the other

components, so the task processing units in the presented subsystems do not need

to explicitly take care of communication issues.

5.1.3 Further Scenarios

Apart from the industrial automation scenario and the human-robot interaction

scenario other scenarios with respect to the work of thesis can be identified in the

automotive field. Preliminary research in this field has already been carried out in
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cooperation with Audi Electronics Venture GmbH 10 and fortiss GmbH 11.

The scenario on the one hand comprises activation correspondence of GPS, environ-

ment model and visual perception data for navigation and localization. An early

system tried to align both activation generators and find a better approximation of

the vehicle position. Figure 5.6 shows the aligned environment model data pro-

jected into the image plane.

Figure 5.6 Fusion of GPS data and visual perception for navigation and

self localization.

On the other hand autonomous obstacle avoidance and pedestrian recognition are

an interesting field of application for methods proposed within this work. A first

implementation tried to apply the template matching approach from Section 4.2.5

on a depth image to the pedestrian recognition domain (see Figure 5.7). The result

was not satisfying, as the system detected too many false positives.

A more sophisticated attempt uses histograms of oriented gradients [ Dalal and

Triggs 2005 ] for human detection in a stereo camera setup and a particle filter

for tracking the human(s) in the scene. Direct linear transform is used for 3D

reconstruction on corresponding points in both views retrieved with SURF [ Bay

et al. 2008 ]. The tracker is then updated from time to time with a detection result

for increased robustness.

10http://www.audi-electronics-venture.de
11http://www.fortiss.org
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Figure 5.7 Template matching for pedestrian detection.

The result (see Figure 5.8) is promising, as shown in [ Tuong et al. 2011 ] and

[ Tuong 2010 ]. Still, the approach should be more successful using the attention

mechanism with inhibition-of-return based on knowledge of ego-motion and its back-

projection into the common space of transformation as presented in Section 4.2.

5.2 Results and Discussion

This section elaborates on the results achieved for the research scenarios above. It

discusses solutions and approaches provided by the work in this thesis and shows

limitations and further potentials.

5.2.1 Manipulator Control

The SFB scenario requires a multi-channel input to the actuator control system.

This means, multiple input modules need to be able to modify the Cartesian end-

effector target pose at the same time. Therefore, the manipulator controller must be

able to recompute a trajectory in realtime according to a possibly modified target

pose. Furthermore, the path generator must generate smooth paths in order to

prevent the manipulator from mechanical damage due to abrupt motion commands.

As proposed in Section 4.1, the Lie algebraic activation feature system provides

exactly these properties. The realtime target pose update is implemented such that

the pose is only incremented, but never set to an absolute value directly, as the

increment is computed from the exponential map on the value vector in the Lie

algebra corresponding to the transformation for the increment.

The algorithm applied is derived from a method for moving towards a static target
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Figure 5.8 Particle filter based pedestrian tracking result with histogram

of oriented gradients detector feedback (yellow/pink: tracker

result, green: ground-truth).

pose according to the manipulator update rate. With this method (Section 4.1.1)

the end-effector path can be configured to comply with different velocity profiles, be

it constant, trapezoidal, or S -ramped profiles. This method is extended to allow for

realtime target pose updates during the path generation, while the smoothness (with

respect to higher order terms) of the path can be maintained (Section 4.1.2). A

worst case analysis shows, that for a constant velocity profile this means the sign of

the velocity vector may flip, and the position increment absolute remains constant.

The same applies for higher order profiles, so example for trapezoidal velocity profiles

the absolute of the velocity increment or decrement remains constant, and so on.

The drawback with the online target pose update is of course, that a minimum jerk

profile is in general not possible, but substituted with an S -ramped profile, because

the duration of the motion is not clear from the the beginning.

The advantage of the approach is clearly, that at any time an input from the asso-

ciation layer can be fed into the motor controller and still the system remains in a

consistent state, i.e., the motion is slowed or direction is changed smoothly.
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5.2.2 Attention in a Perception System

Due to the great computational cost of visual processing tasks, it is often necessary

to speed up vision systems in order to enable realtime performance. The approach

presented in Section 4.2 takes advantage of Lie algebras to achieve this goal. The

basic idea is to implement strategies similar to the human attention system. The

algorithm is based on an attention condensation mechanism (Section 4.2.1), which

has been discussed in several preliminary publications [ Müller and Knoll 2008a,

Müller and Knoll 2008b, Müller and Knoll 2009a ], and in a much restricted

scenario but with integration of evolutionary strategies in [ Müller and Knoll

2011 ].

In this thesis this approach is improved and integrated into the Lie algebraic frame-

work. In particular, in Section 4.2.2 bottom-up stimulus in the perceptive field,

the attention attractors from environmental influences, is represented by means of

Lie activation features. In Section 4.2.3 then top-down (or higher-level) feedback

is combined with the bottom-up attraction in the Lie domain, so regions of interest

can be extracted for further analysis efficiently.

These methods are applied to the interaction partner recognition and tracking sys-

tems in the JAST research scenario (Section 4.2.4) and to the workspace surveil-

lance systems in both the JAST and the SFB scenario (Section 4.2.5). The impor-

tance of fast reaction times on human-robot interaction (e.g. with respect to safety)

is discussed in great detail in [ Giuliani et al. 2010 ], and preliminary research in

this field is also shown in [ Müller, Lenz, Barner and Knoll 2008 ].

The benefit of improving performance in comparison to näıve visual processing meth-

ods can be measured in the workspace analysis and the interaction partner recog-

nition and is easily calculated. The percentage of coverage of regions of activation

with respect to the image plane directly decreases the computation times. For ex-

ample, if the regions of activation cover one fifth of the perceptive field, only one

fifth has to be analyzed within higher-level units. As regions of activation can also

be narrowed down from regions of bottom-up attraction by inhibition-of-return, i.e.,

top-down effects, these effects also directly influence the computation times.

For example in the interaction partner recognition system, most of the time uniform

motion is detected inside regions that already contain a recognized interaction part-

ner. Thus, these regions can be entirely discarded from face detection and only the

much faster track update has to be computed. The detection to tracking computa-

tion time ratio is about 12.7 in the experimental setup (Intel Core2 Quad CPU at

2.5GHz × 4 with 3.2 GB of memory) using a cascaded Haar classifier for detection
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and a camshift algorithm for tracking. I.e., a detection cycle costs more than ten

times compared to a track update cycle.

Furthermore, the scenario implements parallelization for multi-core machines (Ap-

pendix B and [ Müller, Ziaie and Knoll 2008, Müller and Knoll 2010, Müller

et al. 2010 ]), which scales almost linearily and thus again improves the performance

of the overall system. In the workspace observation system this is due to the com-

plex analysis of regions. Thus, the larger the number of processing units for analysis,

the better the distribution on multi-core machines. For example, considering object

recognition12, the detection and classification algorithm needs to be applied to each

region (usually about ten in the JAST scenario), within a region each of the twenty

objects needs to be matched in several rotations (twelve alternatives on average).

This results in 10 · 20 · 12 = 2400 times applying the cross-correlation from Equa-

tion (4.51) per frame. This truly is a time-consuming process. Thus, if each of the

regions can be processed in parallel, and thus be distributed to all available cores,

this reveals great benefit to the system performance.

All together, by application of early-processing strategies and paralellization mech-

anisms the performance of the workspace analysis system can be improved from

analysis of a single frame of about sixty seconds on average (depending on the num-

ber of objects on the table) to visual realtime (i.e. 25 Hz). In the interaction partner

recognition system the activation correspondence and tracking strategy and paral-

lelization also results in realtime performance (where the CPU load is about 35%13)

using the experimental system compared to about 1.8 seconds (ca. 0.55 Hz) pro-

cessing each frame with the face detector at full load on only a single CPU. If one

estimates the performance for a high-speed camera device, where the CPU potential

can be utilized completely, the improvement is about: 35% CPU = 25 Hz, so 100%

CPU = 71 Hz; and this results in ca. 130 times the performance, while the quality

can be maintained.

5.2.3 Sensorimotor Association and Intention

The motivation for the approach for sensor-to-actuator propagation, i.e. closing the

action-perception loop, presented in this thesis was implementing a system allowing

for direct motor control from sensor stimulus in a reflexive manner on the one hand,

and seamlessly manipulating the reflex-like behavior with higher-level input on the

12Details on the gesture recognition subsystem can be reviewed from [ Ziaie, Müller, Foster and

Knoll 2008, Ziaie et al. 2009 ], and [ Ziaie, Müller and Knoll 2008 ], where it is stated that the

system reveals about 96% correct classifications in the JAST scenario.
13This is due to the maximum framerate of the camera device of 25 Hz.
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other hand. The approach proposed here consists of establishing a sensorimotor

association layer (Section 3.1), where activation features (Section 3.2) are used

for combination of inputs from different sources and back-propagation based on Lie

algebraic structures is performed (Section 3.3).

Above it was discussed, how the algebraic structure, i.e. the activation feature can

be utilized for interesting tasks in the manipulator and the sensor domain. Now,

the association layer is discussed briefly with respect to the results achieved in the

research scenarios.

As the association layer is intended to generalize common sensor-based manipulator

control systems, it must be capable of resembling this behavior. The common term

for these robotic setups is visual (or sensor-based) servoing systems. The standard

approach translates visual input into motor commands such that the manipulator

target pose corresponds to a predefined goal state. This can for example be the

workpiece positioned in the view center. Achieving this goal is performed by in-

cremental pose updates until the goal state is reached. Another example is moving

the manipulator by visual displacement of a controlling device. The methodology

is analogous. In both examples the displacement is continuously translated into an

increment on the manipulator pose. This process is implemented on basis of Lie

algebras in the proposed work (Section 4.3.1). This means, the displacement in-

crement is not expressed in the transformation space SE(3) directly, but mapped

to the corresponding Lie algebra se(3).

The advantage is, that in the Lie algebra, as it represents an increment, not an

absolute value, calculations become more efficient due to the differential simplifi-

cation. For example, normally, if a pose represented as a transformations needs

to be modified several times this requires sequential matrix multiplications (details

in Section A.2) and the result is not consistent, as it is highly dependent on the

current pose. If the sequence is transferred into the Lie algebra domain instead, the

result is consistent, as it is performed independent from the current pose – it is only

applied to the current configuration after performing the computation! Therefore,

round off errors minimize and computation becomes simpler, as it is done on a six-

vector instead of a 4 × 4 matrix. Most important, now computation can be done

on an abstract level, i.e. in the association layer, without actually considering the

current pose of the robotic system, only after propagating the result into the motor

system it is translated into the concrete pose transformation update.

The experimental visual robot guidance application in the SFB scenario described

in Section 4.3.2 implements this abstract propagation of sensory input, in this case
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visual stimulus, into motor commands. This resembles the behavior described in lit-

erature (e.g. [ Drummond and Cipolla 2000, Chaumette and Hutchinson 2007 ]),

while it uses the association layer instead of directly pushing motor commands into

the manipulator system. Of course, the same well-known problems may occur. This

includes for example inaccuracies due to faulty displacement estimations of the vi-

sual controller and thus incorrect corresponding Lie increments. Nevertheless, this

can be damped efficiently with the smooth realtime manipulator control system.

Here, the advantage of the proposed abstraction towards an activation association

layer becomes even clearer, if one considers the inputs of higher-level modules to

the sensorimotor system (Section 4.3.3). Using the feature combination facility

of the layer with the BCH -approximation derived from e.g. [ Fletcher et al.

2003, Govindu 2003 ] integrating with other inputs becomes an easy task. One

application of this procedure is shown in Section 4.3.4. It refers to an active end-

effector orientation and pose update with respect to turning towards multiple human

interaction partners based on the level of attention payed to each of them. Here,

a higher-level module mediates the bottom-up sensor-based activation features and

pushes “anti”-features into the association layer which enables inhibition of selected

features by averaging. The application is intended for the JAST research scenario

(or its follow ups like e.g. JAMES14), where multiple interaction partners are often

present in the scene and such selection is necessary.

The feature push mechanism from multiple sources is also used for an application

in the SFB scenario (Section 4.3.5). Here, in the semi-autonomous task execution

process sometimes the human supervisor must be able modify a task at runtime.

Therefore, controller devices (either physical devices like a spacemouse or the graph-

ical user interface) allow for pushing inputs into the association layer. In this way,

the behavior of the manipulator end-effector can be modified during task execution

and thus the task needs not be interrupted, but can be continued integrating the

online-adjustments seamlessly.

5.3 Conclusion and Summary
This thesis presents original work on applying continuous transformation groups

and their tangential vector spaces at the identity group element, the Lie algebras, to

sensor-based robotic systems. For such applications a descriptor structure based on

Lie algebras of various transformation groups, most prominently SE(2) and SE(3),

is derived. Means for generating, combining, and evaluating the difference of these

14http://james-project.eu
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descriptors are discussed on a mathematical level.

Then, this work proposes applications of the Lie algebraic activation features to

different domains of sensor-based robotic systems. This includes modules for effi-

cient realtime manipulator control, sensor data (pre-)processing, and sensorimotor

association and coordination.

• In the manipulator control domain, a realtime path generation system for freely

moving Cartesian targets is derived. It allows for receiving target pose updates

from activation features at any, while still generating smooth end-effector paths

according to the hardware specifications and motion constraints.

• Thereafter applying the activation features to early processing in the perception

domain is presented. Here, using the Lie algebraic constructs an attention

mechanism is implemented, which includes bottom-up excitation and top-down

feedback, and is similar to the human attention system. It is shown, how this

attention based vision system can be used to dramatically improve performance

on workspace surveillance on the one hand and multiple interaction partner

recognition on the other.

• Finally, in the coordination domain the activation features can be used to real-

ize direct sensorimotor association as necessary for traditional visual servoing

applications. In addition to that, the activation features allow for seamless inte-

gration of intentional, and therefore high-level cognitive inputs to the reflexive

servoing system on a sensorimotor association level. Unifying the represen-

tation of actuator-, sensor-, and cognitive activation with the Lie algebraic

features, and multi-directional combination and propagation by an association

layer facilitate this capability.

A short overview of all contributions with respective sections is given in Summary 5.1

below.

5.4 More Applications and Future Directions

Two possible interesting applications in the field of sensorimotor robotics are intro-

duced briefly in the following. First, transferring the insights of path generation into

an application for limp structure recognition is implemented in a preliminary appli-

cation, and second, auto-calibration of sensor-actuator systems by observation over

time – just as humans do it in their early days of live, would be great applications.

Furthermore, in the theoretical field of group theory with respect to sensorimotor

130



5.4 More Applications and Future Directions

Summary 5.1 – Contribution Overview

Theoretical derivation of Lie algebraic activation features:

à Lie theory and algebras – SECTION 2.2 and SECTION 2.3

à Feature structure and generation – SECTION 3.2 and SECTION 3.3

Lie descriptors in the actuator domain:

à Activation based realtime path generation – SECTION 4.1.1

à Smooth realtime paths for freely moving targets – SECTION 4.1.2

à Implementing a control system – SECTION 4.1.3

Lie descriptors in the perception domain:

à Activation basics in the sensor space – SECTION 4.2.1

à Top-down and bottom-up activity – SECTION 4.2.2 and SECTION 4.2.3

à Improving vision systems – SECTION 4.2.4 and SECTION 4.2.5

Lie descriptors for coordinative tasks:

à Reflexive behavior – SECTION 4.3.1 and SECTION 4.3.2

à High-level intentional inputs – SECTION 4.3.3 to SECTION 4.3.5

robotics one more interesting property can be investigated in greater detail in the

future: dual quaternions as an elegant representation of transformations in SE(3),

as well as their orthonormal basis. Probably this representation has the capability

to further simplify the combination and averaging methodology in the activation

feature space.

5.4.1 Feature-based Limp Object Recognition

The principle idea of the approach presented in the next sections is to apply the

continuous path generation method from the last chapter to the domain of linear

object detection. In general, the idea is based on a simple thought: as little as a

path generated for a robot end-effector is allowed to make abrupt direction changes,

also the direction when “walking” along a deformable linear structure (such as a

cable) is likely to change within an infinitesimal increment (see Figure 5.9). Both
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is due to physical constraints, i.e., in the case of a robot path mass inertia applies

and the consequence would be e.g. damage to the robot, while in the linear object

domain other physical constraints apply (for example material stiffness) and the

consequence would be e.g. cable break. So it should be possible to apply the

smoothness constraints of robot end-effector paths to the detection algorithm for

limp structures in the visual perception system.

Figure 5.9 Analogy for transferring from the robot (action) domain to

the vision (perception) domain.

Modeling Limp Objects

A model for linear deformable structures can be built online using the path generator

in the visual domain. Few other approaches have been proposed for this task, all of

them lacking sufficient robustness or efficiency for realtime visual processing due to

the large number of degrees of freedom. Hence, reducing the scope of the problem

by adequate simplification, e.g., with chain models, mass-spring systems, or finite-

elements methods (FEM), is essential. A review on chain models can be found

in [ Joukhadar and Laugier 1997 ]; an overview and limitations of mass-spring

systems is provided for example by [ Loock and Schömer 2001 ] or [ Provot 1995 ].

As the continuous robot path is discretized technically with the robot update in-

terval, consequently also a discretized model for the continuous linear object is

computed. A such model is usually called a chain model and comprises nodes and

vertices (also links). While the links of the chain are simply modeled as piecewise
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stiff components (see Figure 5.10), the nodes can be modelled as poses with a

single angular degree of freedom (like revolute joints) in SE(2), or with two angu-

lar degrees of freedom (like ball and socket joints) in SE(3) [ Grassia 1998 ]. The

compositional generator is then used to iteratively interpolate a path between such

nodes for retrieval of the object model.

Figure 5.10 Chain models in 2D and 3D space.

The velocity profile used within the generator is of minor importance for this ap-

plication. In fact it makes sense to use the most simple constant velocity profile,

as this corresponds to a constant internode distance when the time domain in the

path generation process is transferred to the spatial recognition process in the visual

domain. The link length is thus represented by the velocity constraint of the path

generation, i.e., the larger the maximum velocity vmax = v in the constant velocity

profile, the greater the node distance. This of course is only a “virtual” velocity, as

the computation of the path is not depending on any timing or realtime constraint,

but should run as fast as possible. Together with the “virtual” update interval u, it
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is only needed to specify the spatial resolution r = v ·u corresponding to the number

of nodes per length unit and thus the accuracy of the generated chain model.

Recognition Algorithm

The detection, online model generation algorithm for deformable linear structures

comprises several steps (Figure 5.11 shows a flow diagram). In general it is an

iterative coarse to fine procedure with plausibility measurement and few input pa-

rameters.

Figure 5.11 Flow diagram for limp object recognition using the composi-

tional path generation system.

In advance, material properties in terms of the path generation method have to be

specified. These are the velocity and update rate (referring to the model accuracy

as explained above) and a maximum radius for the end point search. Application

specific are also criteria for evaluating the plausibility of a detected point on the

structure. This is typically a local color distribution, gradient or other descriptor
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that can be evaluated with respect to an optimum. The result is a trust value for a

node to be part of the desired structure.

The first step in the algorithm is specifying a starting point. This is a point on

the structure (with orientation) plus its local descriptor, e.g., a histogram of its

neighborhood region. Either a global search in the perception field gives this starting

point for the procedure or the point is given from an external process.

A radial (or spherical) search at the maximum radius gives the first guess(es) for an

end point. The generated path from the starting point to the end point is accepted

for a plausibility

∀i ∈ n : Pi > Pmin, (5.1)

where n is the number of intermediate (way) points and Pmin is the minimum plau-

sibility for acceptance. If the condition is satisfied, the path (its nodes) are accepted

for the online model and the end point becomes a new starting point for the next it-

eration. If not, other guesses on the current search radius are evaluated first, if there

are none left, the search radius is decreased to its half and the procedure starts again.

The algorithm terminates, if the radius would be less than the internode distance

or the new end point has already been a starting point before.

The advantage of the algorithm is clear. The system does not need to do a radial/-

spherical search at the internode distance in every step, but it only tries to find one

end point and evaluates the way points directly from the path generation (and exits

the evaluation whenever the first non-accepted way point is detected). While this

benefit is already significant in the 2D case, in the 3D case it becomes essential for

efficient computations.

Infinitesimal Chain Object Motion and Tracking

This section covers tracking of limp objects or general linear deformable structures.

In particular, it introduces compositional modeling of chain motion and shows how

this can be integrated into an established optimization approach.

“Walking” along a chain in a general mathematical sense involves alternating op-

erations of translation (moving along a link) and rotation (changing orientation

according to the node orientation)

T = RnTn ·Rn−1Tn−1 · . . . ·R0T0, (5.2)

where T corresponds to the transformation or pose (position and orientation) of the

n-th node relative to an arbitrary home pose of node 0. Note that for constant
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velocity profiles ∀i, j ∈ n : Ti = Tj is valid in the local reference frame of each

node i and j, and refers to a translation along the local x-axis (and the value refers

to the constant internode distance). These step transformations can be combined

pairwise into a single transformation Tn = Rn · T , and are initially known for each

node from the recognition algorithm. The Tn correspond to the DH parameters in

robot mechanics as discussed in Section 2.3.1.

In general in a tracking system a node i ∈ n is allowed to move freely15 in a close

range to its current pose. Mathematically this refers to a transformation on the node

pose close to the identity. In Section 2.3.2, methods were described to model such

transformations efficiently in terms of group theory and Lie algebras. Consequently,

it makes sense to apply this methodology to the tracking problem investigated here.

The basic idea with this respect is to recycle the modeling of a serial manipulator

motion with the Product-of-Exponentials, and use it to describe the motion of a

deformable linear structure in the perception domain.

Consider the pose of a node n, then the screw motion T (θ) of the node, in analogy

to the PoE Equation (2.57), with orientation changes θi of previous nodes, can be

written immediately for the 2D case as

T (θ) =
n∏
i=0

Ti(θi) =
n∏
i=0

exp(θiGi), (5.3)

where Gi are the (motion) screws of previous nodes in the chain model. Or, referring

to Equation (2.58), the pose with respect to an explicit previous pose T (θ)16.

T =

[
n∏
i=0

exp(∆θiGi)

]
· T (θ) = T (∆θ + θ). (5.4)

So, in order to apply a compositional object tracking method to this domain the

motion screws Gi have to be found for each node in the chain. For the 2D case,

this of course works analogously to the method described in and Section 2.3.3,

because each node only has a single orientation parameter as its degree of freedom

(like revolute joints in the serial manipulator case).

For the 3D case, it is possible to parametrize rotations conducted by ball-and-socket

joints (which correspond to the node-model derived for SE(3) above) by rotations

about any two orthogonal axes in a plane perpendicular to the major axis of the node

15In more sophisticated systems node motion might be modeled to comply with a dedicated motion model.
16The vector θ refers to the curvature, i.e., the orientation angles for all nodes i ∈ n of the chain in the

previous state.
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in its zero position17. This is possible, because according to [ Grassia 1998 ] it is

not necessary to allow spinning of the joint around its major axis (see Figure 5.10).

The orthogonal axes can be represented as unit vectors forming a 2D basis and

thus a node rotation can be expressed with the last two infinitesimal generators in

Equation (A.42), i.e.,

GRy =


0 0 1 0

0 0 0 0

−1 0 0 0

0 0 0 0

 , and GRz =


0 −1 0 0

1 0 0 0

0 0 0 0

0 0 0 0

 . (5.5)

Defining the y- and z-axis as a basis for the rotation simplifies the next steps, but

in principle any other orthogonal pair of vectors in the plane could be used just the

same. The two parameters for a node are then the scales of these generators in the

exponential map. If the all node pose changes need to be expressed in the reference

frame of a single node (most likely the first one in the chain), for example for a

tracking algorithm, the motion screws corresponding to these generators have to be

derived. This is almost trivial, as it is only requires minimal modification of the

procedure in Section 2.3.3.

Gs =

(
[x]× yT

0 0

)
, i.e., s = (x,y) (5.6)

can be found for the y-rotation with T denoting the pose of the node

x = xp − xo = T (0, 1, 0, 1)T − T (0, 0, 0, 1)T and y = xo × x (5.7)

and for the z-rotation, as already derived in Section 2.3.2,

x = xp − xo = T (0, 0, 1, 1)T − T (0, 0, 0, 1)T and y = xo × x. (5.8)

The pose of some node after one cycle in the algorithm thus is in the 3D case, as an

extension to Equation (5.4) presented earlier, can be written as

T =

[
n∏
i=0

exp(∆θyiG
y
i ) exp(∆θziG

z
i )

]
· T (θ) = T (∆θ + θ) (5.9)

This is an elegant method for modeling possible motion of a linear deformable struc-

ture with as little as one parameter per node in SE(2) or two parameters per node

17Here, the major axis is chosen to be the x-axis so that the following (link-)translation corresponds to a

pure displacement on the x-axis in analogy to the 2D case.
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in SE(3). In addition, these parameters have small values for orientation changes,

because the identity transformation, i.e. θi = 0, refers to no change of the node

orientation (or curve element in the chain model).

Still tracking the object is not a trivial task. At least, the algorithm has to optimize,

e.g., perform predictions and corrections in a Bayesian tracking process, on n in

parameters SE(2) or 2n in parameters SE(3). Luckily the values sought by the

tracking system only range in a short interval around zero for each parameter -

which is due to the infinitesimal motion model. This greatly reduces rounding

errors and speeds up the process.

Also the algorithm is not designed to find a global optimum for all parameters

at once, but instead, beginning with a start point in the chain model, the node

parameters are optimized sequentially. There is a vast amount of literature on

such optimization and Bayesian tracking. The algorithm presented here uses the

Bayesian tracking pipeline implemented in the OpenTL visual-tracking framework.

Please refer to [ Panin et al. 2008 ] for a detailed introduction.

Preliminary Application: SFB Workpiece Analysis

Workpiece analysis units perform several visual tasks on the camera images provided

from low-level units. A new workpiece detection unit continuously observes the

workspace using the top-view camera and applies the early information processing

and attention condensation strategies from Section 4.2. The unit fires an event if

a new workpiece is present on the table.

A structure analysis unit uses the algorithms from Section 5.4.1 to build a model of

the object online and determine possible grasping points. Also knots are detected at

intersections of the linear structure (see Figure 5.12) and a strategy for resolution

can be triggered by firing a “knot detected” event.

Finally, before joining the ends of the workpiece, the profile of the rubber band has

to be analyzed by a special unit. The unit performs template matching on the ends

to determine whether the orientation of the ends has to be adjusted before joining

(see Figure 5.13).

5.4.2 Auto-Calibration

In this work, it is always assumed, that the sensorimotor systems are calibrated. This

means, the transformations between sensor and actuator (in particular end-effector)

reference frames are known from the setup specification. However, it would be

interesting if finding such calibration information autonomously is feasible using the
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Figure 5.12 Knot and grasping point detection result on linear structures.

Figure 5.13 Template matching for determining the workpiece orientation

before joining the ends.

activation features based on Lie algebras discussed in Section ?? and Section 4.2.

The key idea of the algorithm for autonomous hand-eye calibration is finding the

sensor-actuator space conversion matrix (or equivalently its inverse), i.e., the spatial

uplink, from features corresponding in the temporal and excitative domain. The

problem then reduces to approximating a solution to an over-determined matrix

equation system.

In a common setup, one could take the actuator system as a space of reference,

so for any feature FA = FC applies, as described in Section ??. The conversion

matrix T then applies to

pA = pC = TpSj or pSj = T−1pC = T−1pA (5.10)

for any activation feature F = {s,p, t}. In the autonomous calibration process, the

algorithm assumes a static environment or constrained environment. This means

the only activation propagated from the sensor spaces originates from the part of the

actuator being calibrated. This can be achieved for example by tracking a marker
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attached to the end-effector18 or by adjusting the early information filter accordingly

(see Section 4.2.2).

For calibration it is expected that the perceptive field covers the actuator space, at

least the patch where the part to be calibrated is located. In the following this part

is considered to be the end-effector of a robot. Also, the process is only introduced

on a single sensor, as for multiple sensors the algorithm would work analogously.

In the calibration loop, temporal consistency is essential, as any motion of the end-

effector may cause direct activation in the perceptive fields of the sensory system.

The calibration utilizes a property of expressing motion in terms of Lie algebra

Tp→p′ =
n∏
i=1

exp(sAi G
A
i ), (5.11)

projection of scaled (by sAi ) infinitesimal generators GA
i into the actuator space A

which is usually SE(3). Within the end-effector domain each of the infinitesimal

generators GA
i is sequentially actuated, so at any time

sA = (0, . . . , sAi , . . . , 0)T . (5.12)

In this way, the perception (apart from noise) necessarily correlates to this actuator

action directly. The scale or activation sA, i.e., the value of an activation sAi on a

generator GA
i is not relevant in this case as the calibration would need to normalize

on activations, so the influence of an activation sAi distributes on the normalized

activation received from the sensor sS

sA 7→ sS with |sA| = |sS|, (5.13)

according to some weight vector wS = (wS0 , . . . , w
S
n)T ,

sS = (sS0 , . . . , s
S
n)T = (wS0 s

A
i , . . . , w

S
ns

A
i )T . (5.14)

Within the calibration, a Kalman-filter [ Kalman 1960 ] could be used to optimize

on the weights with respect to noisy perception. Once the weights are found for

translation generators, it would be also possible to determine the relative orientation

of a sensor towards the actuator system in the same way. By composition of multiple

sensor devices simultaneously evaluating these weights then reconstruction of the

conversion matrix from sensor to actuator space (and back) would be possible.

18For the vision domain the libraries OpenCV (http://opencv.org) and OpenTL (http://opentl.org)

provide sufficient functionality for such purposes.
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5.4.3 Dual Quaternions

It would be interesting to evaluate a competitive representation of SE(3), opposed

to decoupled or matrix representations utilized in this work, the dual quaternion

representation. Only recently, dual quaternions have been (re-)introduced for de-

scribing transformations, rigid body motions, interpolations, and the like. Dual

quaternions are a composition of dual numbers [ Clifford 1873, Study 1891 ] and

quaternions. While quaternions (see Appendix A) are suitable to represent rota-

tions in 3D space by means of the four dimensional unit hypersphere S(3), dual

quaternions represent both rotations and translations in 3D space by means of a

four dimensional hyper-complex sphere.

The basis of this extension is the Principle of Transference [ Selig 2005 ]. This

essentially states, that any representation of rotations in 3D space SO(3) can be

transferred into a representation of rotations and translations in 3D space SE(3) by

means of using dual numbers instead of real number within the representation.

Dual numbers extend real numbers with an additional imaginary entity ε with the

special property ε2 = 0 (in contrast to the “normal” imaginary number i with

i2 = −1). The element ε thus is nilpotent and dual numbers are defined by

ž = a+ bε with a, b ∈ R (5.15)

A dual quaternion for example then, instead of being defined as q = w+xi+yj+zk

with imaginary units i,j,k, is defined as

q̌ = w̌ + x̌i + y̌j + žk, (5.16)

where w̌, x̌, y̌ and ž are dual numbers instead of real values as in q. Without further

discussion, it is stated, that this yields interesting geometric properties and might

further simplify algorithms in the action, perception and coordination domain of

sensorimotor systems.
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Appendix A

Group Representations for Robotics

Contents
A.1 Decoupled Representations . . . . . . . . . . . . . . . . 145

A.2 Transformation Matrices . . . . . . . . . . . . . . . . . 154

A.3 Screw Motions . . . . . . . . . . . . . . . . . . . . . . . 156

IN Chapter 2 some background on group theory in general was given. The ba-

sic concepts of Lie groups, Lie algebras, infinitesimal generators and exponential

mappings were explained alongside. However, the introduction only covered repre-

senting transformation groups by means of transformation matrices. Yet, there may

be more efficient representations regarding applications to robotics and sensorimotor

systems. Such efficient representations are thus derived in the following.

For robot applications, we basically consider a space of three dimensions, as we (and

all the robots we are able to build) live there. In 3D space in principle three types of

transformations are possible on (rigid) objects: translations, rotations, and reflec-

tions. Concerning a real-world machine such as a robot, we can discard reflections,

as they can not be physically performed [ Selig 2003 ]. Thus the elements of the

transformation group for robotics are composed from 3D rotations and translations.

It is common to use an abbreviation for this type of group, SE(3), which stands

for Special Euclidian group of three dimensions. The group is called “Euclidian”,

because the transformations preserve angles and proportions of the objects being

transformed (as opposed to e.g., a perspective projection). It is called “Special”,

because we refrain from allowing reflections. One common notation for transforma-

tions of SE(3) utilizes 4× 4 matrices

TSE(3) =

(
R t

0 1

)
, (A.1)

where R denotes a 3× 3 rotation matrix and t a translation vector. Applying such

transformations (or short “transforms”) to points of our 3D coordinate world, we

can find a consistent description of any pose a rigid object can possibly take. The

term pose or posture stands for a specific orientation and position of an object in

space.
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A Group Representations for Robotics

Nevertheless, group theory knows many classifications of transformation groups in

arbitrary dimensions, and in fact, this section will introduce the ones relevant not

only for robotics, but also for computer vision and perception (see Table A.1).

Translations Rotations Combined

2
D

Lie Group R2 SO(2) SE(2)

Lie Algebra trivial so(2) se(2)

Group-Dimension 2 1 3

Representation (e.g.) 2D vector scalar angle 3D vector

3
D

Lie Group R3 SO(3) SE(3)

Lie Algebra trivial so(3) se(3)

Group-Dimension 3 3 6

Representation (e.g.) 3D vector 3× 3 matrix 4× 4 matrix

Table A.1 Overview of relevant groups for robotics and computer vision.

The group dimension corresponds to the number of infinitesi-

mal generators of the algebra.

Considering the field of visual processing, in particular regarding detection, recogni-

tion and tracking of objects present in the field of view, sometimes the set of relevant

transformations can be restricted to two dimensions. This is the case, because pro-

cessing actually takes place in a 2D image plane into which elements of the physical

world are projected1. Thus, “sometimes” here refers to the algorithm applied for

visual processing. Typically these algorithms operate either in image space (2D) or

object space (3D). However, hybrid approaches are possible, e.g., hierarchical track-

ing systems, where low-level features are tracked in image space and higher level

object representations are tracked in 3D space.

The problem of representation corresponds to choosing a proper suitable general

(mathematical) description of a set of transformations relevant for a specific task. As

mentioned above, for robot control applications only transformations corresponding

to rotations and / or translations in 3D are of interest, while perceptive tasks like

visual processing may be performed in 3D or 2D representations.

In general, there is no “best choice” for this description. Possibilities for 3D space

(which typically requires six degrees of freedom) include decoupled descriptions such

as a translation vector and a quaternion for rotations, or combined representations

1This also holds for other sensory devices, where the projection might take place in a different dimensional

sensor space.
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A.1 Decoupled Representations

like the most wide-spread 4 × 4 matrices, screw motions, or even dual quaternions

(e.g. [ Kavan et al. 2006 ]). For each of those advantages and disadvantages apply

regarding redundancy, computational complexity, accuracy and numerical stability;

or from a more technical viewpoint, means for combination, interpolation, or scaling,

to name but a few.

In the sections below, only representations applying to 3D space are discussed in

greater detail2, because simplifying the representations to 2D space is straightfor-

ward or even trivial. With respect to their practical relevance, three different repre-

sentations of transformations in SE(3) are explained, namely decoupled representa-

tions TD, transformation matrices TM , and screw motions TS. Where necessary, also

the construction methodology for the Lie algebra of the presented transformation

representation is described.

A.1 Decoupled Representations
In terms of group theory, SE(3) comprises the semidirect product of the group of

translations R3 and the group of rotations without reflections SO(3)3, the Special

Orthogonal group of three dimensions,

SE(3) = R3 n SO(3). (A.2)

This means, naturally, rotations denoted by SO(3) and translations R3 act on the

same space, the 3D physical world, not disjunct spaces4. The decoupled represen-

tations of SE(3) exploit this feature of the structure and keep the both parts of a

transformation separate. Because this is intuitively clear to most people, decoupled

representations of transformations are utilized frequently. The representation with

separate rotation r and translation t parts of a transformation, can be denoted as

TD = 〈r, t〉. (A.3)

For many practical applications this also allows for significantly simplified computa-

tions. For example, consider a linear trajectory of a robot end effector. Computing

any intermediate transformation would then only require a simple scaling on the

2Also, whenever the term transformation is used, it refers to a transformation in SE(3), i.e., a rotation,

a translation or a combination of the two in 3D space.
3The general group of 3D rotations also considering reflections is called orthogonal group O(3).
4To be exact, the semidirect product specifies, that only the SO(3) acting on R3 makes sense, while the

other way round would not. With a direct product instead, swapping the parts of the product would

not yield an undefined, but an isomorphic structure.
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A Group Representations for Robotics

delta translation vector δt = tend − tstart of the transformation, while the rotation

part could remain constant.

∀i ∈ n : Ti = 〈r, i
n
δt+ tstart〉, (A.4)

where n is the number of intermediate transformations (way points).

Considering the rotation part, one can in particular choose an adequate representa-

tion according to the desired task, be it axis-angle description, quaternions, rotation

matrices, to name but the most common. Also it is easily possible to switch between

any of those representations using common efficient algorithms.

The challenge with decoupled representations appears in the synchronization of both

parts of the transformation tuple, e.g. for blending or interpolation between trans-

formations applying rotation and translation simultaneously. Consider for example

a constant robot end-effector linear and angular target velocity. Say we are moving

along a trajectory and both rotation and translation should start and finish at the

same time yielding a smooth motion. In practice, it is very unlikely that both, rota-

tion and translation, require the same amount of interpolations to meet the desired

target velocity. The developer of the system thus first has to compute the interme-

diate number of steps for rotations and translations and then choose the maximum

of both numbers and compute the next pose on the trajectory accordingly (see more

on smooth online trajectory generation in Section 4.1).

Also, from the point of view of a software engineer, the decoupled representation

requires some additional effort, as both parts have to be stored, monitored, and

maintained synchronously. In practice, when decoupled representations are used,

mostly the separate parts are described using a unique representation internally

(e.g., quaternions for rotation, 3D vector for translation), and means for access of the

various rotation representations are provided through the API. However, frequent

conversions between internal and external representation eventually yields inefficient

code, and the advantage of decoupling may vanish completely.

The next paragraphs investigate several practically relevant representations of both

parts of a decoupled representation of SE(3). For translations, this is the 3D (ho-

mogeneous) vector representation and the matrix representation. For rotations

∈ SO(3), rotation matrices, axis-angle representations, and quaternions are dis-

cussed. Any of those can be combined to specify a transformation in SE(3) with

TD = 〈r, t〉 defined above.
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A.1 Decoupled Representations

A.1.1 Translation

Usually the translation part of a 3D transformation is represented as a vector t ∈ R3

t = (tx, ty, tz)
T . (A.5)

Applying the transformation to a point p = (px, py, pz)
T with three coordinates in

space then only corresponds to a simple vector addition

p1 = t+ p0. (A.6)

However, it is also common to describe points in homogeneous coordinates. In this

case, an additional dimension is constructed which only contains a single scalar 1.

Then, applying translations to a point can also be expressed by means of a matrix

multiplication,

p′ =


1 0 0 tx
0 1 0 ty
0 0 1 tz
0 0 0 1

 ·

px
py
pz
1

 =

(
t+ p

1

)
=


px + tx
py + ty
pz + tz

1

. (A.7)

It is obvious, that matrix and vector representations of translations are equivalent

(apart from the “artificial” additional dimension).

The basis vectors of the translation vector space are the unit vectors along the

coordinate axes

tx = (1, 0, 0, 1)T , ty = (0, 1, 0, 1)T , and tz = (0, 0, 1, 1)T . (A.8)

The elements of the Lie group for translations in 3D space are composed by addition

of scaled versions of those vectors.

t = xtx + yty + ztz (A.9)

The elements of the Lie algebra for pure translations are composed from the in-

ifinitesimal basis generators as usual. These generators can be obtained from the

(partial) derivative of the basis vectors of t at the identity

Gx =
∂t

∂tx

∣∣∣
tx=0

=


1

0

0

0

 , Gy =
∂t

∂ty

∣∣∣
ty=0

=


0

1

0

0

 , Gz =
∂t

∂tz

∣∣∣
tz=0

=


0

0

1

0

 .

(A.10)
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Elements of the Lie algebra are hence scaled versions of these infinitesimal generators

composed by addition,

tLie = xGx + yGy + zGz, (A.11)

and the exponential map transfers these back into the Lie group of translations in

R3,

t = exp(tLie) = exp(xGx + yGy + zGz). (A.12)

A.1.2 Rotation by Matrix

When it comes to rotations, i.e., changes of the orientation of a rigid body in 3D

space, things get a little more complicated. Rotations in 3D space are generally part

of the group SO(3), the special orthogonal group. The most common representation

of rotations uses 3 × 3 matrices. The rotation R is specified by a set of three

orthonormal unit basis vectors b ∈ R3 of the new, rotated system,

R3×3 = (b0
T , b1

T , b2
T ), with b0b1 = 0 and b0 × b1 = b2 (A.13)

Considering this representation, almost arbitrary rotations can be composed of a

sequence of rotations around the “old” coordinate frame axes (composition of Euler

angles)

Rx(θ) =

1 0 0

0 cos θ − sin θ

0 sin θ cos θ

 ,

Ry(θ) =

 cos θ 0 sin θ

0 1 0

− sin θ 0 cos θ

 ,

Rz(θ) =

cos θ − sin θ 0

sin θ cos θ 0

0 0 1

 . (A.14)

However, several issues arise when this method for creating the representation is

used: first, the composition is non-commutative. It does matter which rotation is

applied first. Then, so called gimbal-locks5 may occur. The reason is the alignment

of gimbal axes in certain configurations and the resulting loss of a degree of freedom.

Nevertheless, the main advantage of the matrix representation of rotations is that

they can be combined easily by matrix multiplication R = Rn · · ·R1R0.

5Wikipedia gives a good introduction to the problem of gimbal-locks at

http://en.wikipedia.org/wiki/Gimbal_lock
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A.1 Decoupled Representations

Concerning the elements of the Lie algebra for SO(3), usually denoted by lower case

letters so(3), the approach is analogous to the group of translations. Imagine the

three rotations around the coordinate axes, one after the other (Euler composition)

as specified above. The derivatives, evaluated at the identity θ = 0 then are

GRx(θ) =
dRx

dθ

∣∣∣∣
θ=0

=

0 0 0

0 − sin θ − cos θ

0 cos θ − sin θ

∣∣∣∣∣
θ=0

=

0 0 0

0 0 −1

0 1 0

 , (A.15)

GRy(θ) =
dRy

dθ

∣∣∣∣
θ=0

=

− sin θ 0 cos θ

0 0 0

− cos θ 0 − sin θ

∣∣∣∣∣
θ=0

=

 0 0 1

0 0 0

−1 0 0

 , (A.16)

and

GRz(θ) =
dRz

dθ

∣∣∣∣
θ=0

=

− sin θ − cos θ 0

cos θ − sin θ 0

0 0 0

∣∣∣∣∣
θ=0

=

0 −1 0

1 0 0

0 0 0

 . (A.17)

In general

• elements of SO(3) specifying an arbitrary rotation around one of the axes

(according to the orthonormal basis of the rotation space) can be obtained

with a scale s ∈ R, as

TR = exp(s ·GR),

• and the group elements specifying rotations around one or more axes can be

obtained with the exponential of a sum of scaled generators

TR = exp

 ∑
i∈{x,y,z}

si ·GRi

 with si ∈ R.

A.1.3 Rotation by Axis-Angle

A different representation of rotations is based on Euler’s rotation theorem [ Euler

1776 ]6. The theorem says, that any rotation of a rigid body with one point of the

body on the origin in 3D space can be described by an axis through the origin and

an angle of rotation around that axis. Basically two different notations of this are

commonly in use:

6The Latin original reads as “Quomodocunque sphaera circa centrum suum conuertatur, semper assignari

potest diameter, cuius directio in situ translato conueniat cum situ initiali”.
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1. A unit length axis vector r̂ plus an angle α specifying the rotation about the

axis

TR = 〈r̂, α〉 with |r̂| = 1.

2. A non-unit axis vector r with the norm of the vector representing the rotation

angle α

TR = r with |r| = α.

Concerning the elements of the Lie algebra to this representation of the group SO(3),

the infinitesimal generators still correspond to the partial derivatives of the axis

vector components as described before, which account for generating the axis of

rotation. Scaling the generators then corresponds to creating the amount of rotation

around the axis desired. This obviously is straight forward in the second (non-unit

axis) representation from above. The first (unit-length axis) representation can be

obtained using the length of the vector

α =
√
s2
x + s2

y + s2
z, (A.18)

for the amount of rotation and applying an additional normalization step

s′x = α−1sx, s′y = α−1sy, and s′z = α−1sz. (A.19)

The axis-angle representation does not suffer from gimbal lock, and in its second,

more concise notation avoids redundancy, as it only uses three parameters for the

three degrees of freedom. Nevertheless, from a technical perspective, in particular

when it comes to combining two arbitrary rotations, the axis-angle representation of

rotations requires conversion to another representation. Thus, a slightly more com-

plicated structure, namely the quaternion, is in general more efficient for practical

applications.

A.1.4 Rotation by Quaternion

Quaternions were introduced by William R. Hamilton in 1853 [ Hamilton 1853,

Blaschke 1960 ]. They represent rotations in 3D space on the unit 3-sphere, a hyper

sphere in four dimensional space denoted by S3 which is isomorphic to SU(2)7. Of

course, this is not as intuitive as the previous representations because it uses a four

dimensional structure, but there are some significant advantages.

7SU(2) is the Special Unitary group of two dimensions. Considering the correspondence to SO(3), S3

thus is a double cover: two unit quaternions actually correspond to every rotation.
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A.1 Decoupled Representations

The structure of a quaternion comprises four elements, a real value w (scalar part)

and three imaginary values v = (x, y, z) called the vector part. The structure is

then defined as

q = w + xi + yj + zk, (A.20)

where the imaginary entities i,j,k have special properties. These properties have

been first scratched into Brougham Bridge in Dublin by William Hamilton in 1843,

as he walked by and had the ingenious idea of quaternion multiplication

i2 = j2 = k2 = ijk = −1. (A.21)

Quaternion multiplication can hence be derived as

q1 · q2 = (w1w2 − x1x2 − y1y2 − z1z2)

+ (w1x2 + x1w2 + y1z2 − z1y2) i

+ (w1y2 − x1z2 + y1w2 + z1x2) j

+ (w1z2 + x1y2 − y1x2 + z1w2) k (A.22)

or using the scalar / vector notation

q1 · q2 = 〈w1,v1〉 · 〈w2,v2〉 = 〈w1w2 − v1v2,v1 × v2 + w1v2 + w2v1〉 (A.23)

These formulae are the basis for efficient combination of rotations with fewer oper-

ations and less rounding errors compared to matrix multiplication [ Dobkin 1973,

de Groote 1975, Howell and Lafon 1975 ]. For example for sequencing two

rotations a rotation matrix multiplication requires 27 scalar multiplications, while

quaternion multiplication can be optimized to use only 16 such operations at most.

Other operations like constant velocity interpolation are also significantly more ef-

ficient in quaternion space [ Shoemake 1985 ]. Furthermore, even the storage re-

quirement is less for quaternions (nine for matrix, compared to four elements for

quaternion representations)8.

In the representation of quaternions, basis-transformations of SO(3) (rotations around

coordinate axes about an angle θ), correspond to

qx(θ) = 〈cos(θ/2), sin(θ/2)(1, 0, 0)T 〉
qy(θ) = 〈cos(θ/2), sin(θ/2)(0, 1, 0)T 〉
qz(θ) = 〈cos(θ/2), sin(θ/2)(0, 0, 1)T 〉, (A.24)

8Some more information on the performance of quaternion operations can be reviewed from

http://en.wikipedia.org/wiki/Quaternions_and_spatial_rotation.
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A Group Representations for Robotics

in scalar/vector notation of a quaternion. The next equations are only given for

x-axis rotations, y- and z-axis formulae can be derived analogously.

qx(θ) = cos(θ/2) + 1 · sin(θ/2)i + 0 · sin(θ/2)j + 0 · sin(θ/2)k

= cos(θ/2) + sin(θ/2)i (A.25)

Regarded as a function of θ, a rotation about the x-axis is then defined as

f(θ) = cos(θ/2) + sin(θ/2)i, (A.26)

so the derivative f ′(θ) is given by

f ′(θ) =
d

dθ
f(θ)

=
d

dθ
(cos(θ/2) + sin(θ/2)i)

= −1

2
sin

(
θ

2

)
+

1

2
cos

(
θ

2

)
i (A.27)

and the infinitesimal generators for rotations parametrized by quaternions evaluate

at the identity θ = 0 to something as simple as

Gqx = f ′(θ)
∣∣
θ=0

=
1

2
i, (A.28)

and analogously for the other imaginary components

Gqy =
1

2
j, and Gqz =

1

2
k. (A.29)

Finally, an element of the Lie algebra so(3) can be composed by scaling and summing

up

qLie = sx
1

2
i + sy

1

2
j + sz

1

2
k (A.30)

from real scalar angle values s = (sx, sy, sz)
T – which is actually a quaternion with

a vector part v = s and a zero scalar part9 ω = 0. Group elements specifying

arbitrary rotations in SO(3) are obtained with the exponential of a sum of scaled

generators as shown in the last sections, but now using the quaternion generators

Gq

q = exp(qLie) = exp

 ∑
i∈{x,y,z}

si ·Gqi

 with si ∈ R. (A.31)

9As the structure of Lie algebra and Lie group elements is so similar, this also yields efficient technical

implementations because the same data structure can be used.
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A.1 Decoupled Representations

To conclude the section, this inverse (exponential) mapping back from the Lie al-

gebra to the Lie group of 3D rotations SO(3) represented as quaternions has to be

described coarsely. Considering a scalar part ω, and a vector part v = (x, y, z)T of

any quaternion, the exponential is in general derived from the power series definition

of the exponential function (e.g. [ Rudin 1986 ])

exp(q) =
∞∑
n=0

qn

n!
= eω

(
cos |v|+ sin |v| · v

|v|

)
(A.32)

with |v| =
√
x2 + y2 + z2 stating the L2-norm of the vector part. This general

formula for the exponential of a quaternion can now be used to derive the exponential

mapping of Lie algebra elements. As described above, these elements qLie are just

quaternions with a zero scalar value

qLie = 0 + sx
1

2
i + sy

1

2
j + sz

1

2
k. (A.33)

Here, we show the exponential map so(3) 7→ SO(3) for rotations being represented

as quaternions on two crucial examples.

1. exp(q0
Lie) = qid, i.e., taking the exponential of the identity Lie algebra element

q0
Lie with scales s = 0 = (0, 0, 0)T results in the identity quaternion applying

no rotation qid = 1 + 0i + 0j + 0k.

2. Taking the exponential of a scaled version of one of the infinitesimal generators

of basis-rotation yields the unit quaternion of a such rotation.

For the first part, i.e., the scales s = (0, 0, 0)T for the Lie algebra element (or the

vector part of a zero scalar quaternion), it is clear, that

lim
s→0

[ exp(qsLie)] = exp(0 + 0i + 0j + 0k)

= e0

(
cos(0) + sin(0)

s

|s|

)
= e0(1 + 0) = 1

= 1 + 0i + 0j + 0k

= qid. (A.34)

Here the limit has to be used because of the factor s · |s|−1. The result is true,

because ∀i ∈ x, y, z : |s| ≥ si.

For the second part, here only given for rotations of sx = θ around x-axis with the

generator Gqx = 1
2
i as stated in Equation (A.28), we can write the corresponding
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quaternion qsLie for the Lie algebra element s = (θ, 0, 0)T

qsLie = θGqx

=
θ

2
i

= 0 +
θ

2
i + 0j + 0k (A.35)

and may derive the Lie group element for the rotation around x-axis about an angle

θ, a unit quaternion qx with non-zero scalar value, by exponentiation. For qsLie in

quaternion notation, the vector part v = ( θ
2
, 0, 0)T and |v| = θ

2
are obvious, and

thus

qx(θ) = exp

(
0 +

θ

2
i + 0j + 0k

)
= exp(0)

(
cos |v|+ sin |v| · v

|v|

)
= cos(θ/2) + sin(θ/2) · 1 · i + 0 · j + 0 · k
= cos(θ/2) + sin(θ/2)i. (A.36)

So in fact, applying the exponential Equation (A.36) to scaled generators in quater-

nion notation Equation (A.35) yields the corresponding rotation unit quaternion

as expected, as

|qx(θ)| =
√

cos(θ/2)2 + sin(θ/2)2 = 1. (A.37)

A.2 Transformation Matrices
Transformation matrices are the most wide-spread means for representing transfor-

mations. Many people consider them to be most intuitive. Transformations TM are

specified as 4×4 matrices in 3D space, i.e., for SE(3); or 3×3 matrices in 2D space,

as they operate on homogeneous coordinates

TM =

(
R t

0 1

)
. (A.38)

For 2D space, t is a vector of two dimensions t = (tx, ty)
T and R is a 2× 2 matrix

for rotations around the z-axis. R is thus specified as

R(θ) =

(
cos θ − sin θ

sin θ cos θ

)
(A.39)
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Summary A.1 – Decoupled Transformation Representations

Transformations of SE(3) are specified by two separate parts, translation and

rotation.

Ê R3 translations are normally represented as a translation vector.

Ë SO(3) rotations are mostly represented as a

à 3× 3 matrix,

à an axis of rotation and an angle, or

à a unit quaternion.

When combining two transformations in decoupled representations, typically first

rotations are applied, then translations.

The 2D transformations TM then simply act on points represented as homogeneous

vectors p = (x, y, 1)T with

p′ = TMp = TM

xy
1

 =

x cos θ − y sin θ + tx
x sin θ + y cos θ + ty

1

. (A.40)

In 3D space, transformations TM from Equation (A.38) are defined analogously,

where R is then a 3× 3 rotation matrix and t a vector ∈ R3 for translations. Rules

for combination of transformations by means of matrix multiplication, as well as

scaling, exponentiation and formulas for matrix derivatives can be reviewed from

any ordinary textbook on mathematics, e.g., [ Meyberg and Vachenauer 2001 ].

For SE(3) one can define the following six infinitesimal generators considering a

common orthogonal basis of the transformation space and derivatives at the identity

analogously to what has been described earlier in Section 2.2 and Section A.1

GTx =


0 0 0 1

0 0 0 0

0 0 0 0

0 0 0 0

 , GTy =


0 0 0 0

0 0 0 1

0 0 0 0

0 0 0 0

 , GTz =


0 0 0 0

0 0 0 0

0 0 0 1

0 0 0 0

 , (A.41)
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for translations and for rotations

GRx =


0 0 0 0

0 0 −1 0

0 1 0 0

0 0 0 0

 , GRy =


0 0 1 0

0 0 0 0

−1 0 0 0

0 0 0 0

 , GRz =


0 −1 0 0

1 0 0 0

0 0 0 0

0 0 0 0

 .

(A.42)

The Lie algebra elements are then scale vectors s ∈ R6, or in matrix notation with

i ∈ {Tx, Ty, Tz, Rx, Ry, Rz}.

Gs =
∑
i

(si ·Gi) =


0 −sRz sRy sTx
sRz 0 −sRx sTy
−sRy sRx 0 sTz

0 0 0 0

 (A.43)

and the elements of the Lie group (transformations in SE(3)) close to the identity

can simply be constructed from those algebra elements with

TM = exp(Gs). (A.44)

Numerous algorithms regarding common operations, i.e., in particular exponentia-

tion, on this mathematical structure exist and are publicly available (e.g., [ Lawson

1967, Higham 2004 ]). Still, matrices encounter disadvantages regarding computa-

tional complexity, e.g. when derivatives, blending or interpolation operations have

to be performed - if they not yield sub-optimal or inaccurate solutions at all (e.g.,

[ Kavan et al. 2006 ]).

A.3 Screw Motions
Another notation of transformations using matrices uses the concept of screw mo-

tion. Screw motions intrinsically provide for interesting properties for robotics.

They are most suitable for describing the action of revolute joints (e.g. in serial

manipulators), as transformations can be parametrized by a single angle of rotation

and computations then become efficient and mathematically elegant. Nevertheless,

understanding the concept is non-trivial for most people and also general application

sometimes seems cumbersome.

In essence they are based on Chasles’s theorem also called Mozzi’s theorem [ Jackson

1942 ], an extension of Euler’s rotation theorem [ Euler 1776 ], which states an

alternative way of describing a transformation. It basically says, that whatever
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motion a physical rigid object performs in 3D space, one can also view this as a

rotation about an axis and a translation about the same axis10

TS =

(
R(θ,x) θp

2π
x

0 1

)
. (A.45)

We take a closer look at the entries of the above matrix. First, the 3 × 3 matrix

R(θ,x) specifies a rotation of θ in 3D space around the axis defined by the unit

vector x. The matrix is in fact derived from the common axis angle representation

of a rotation. The Rodrigues formula11 tells, how to obtain the rotation matrix from

the axis x and angle θ

R(θ,x) = exp(θ[x]×)

= I + [x]× sin θ + [x]2×(1− cos θ). (A.46)

Here, I is the identity and the operator [· · · ]× transforms a 3D vector into a 3 × 3

anti-symmetric matrix, such that [x]×y = x× y, i.e.,

[x]× =

 0 −x3 x2

x3 0 −x1

−x2 x1 0

 . (A.47)

Analyzing θp
2π
x from Equation (A.45), we find this a 3D vector of translation along

the unit vector x with some scaling according to an additional pitch p, that expresses

the actual displacement in x-direction after a full rotation of 2π, and the scalar θ

stretching the unit vector x.

As mentioned earlier, so far only screw motions were examined, where the axis

passes through the origin. Luckily though, generalizing the above results to any

screw motion axis in 3D space can be easily achieved by first translating some point

y on the axis to the origin, then applying the screw motion, and finally translating

it back to its original position12

TS =

(
I3 xo

0 1

)(
R(θ,x) θp

2π
x

0 1

)(
I3 −xo
0 1

)

=

(
R(θ,x) θp

2π
x+ (I3 −R(θ,x))xo

0 1

)
(A.48)

10The formula in Equation (A.45) is of course only true if the axis x passes through the origin. A

generalized version of the equation is presented in Equation (A.48).
11Interestingly this also defines a closed form of the exponential map from the Lie algebra so(3) to the Lie

group of rotations in 3D SO(3).
12The simplified formula Equation (A.48) is adopted from [ Selig 2005 ].
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Putting it together, we generally call transformations TS represented in this way a

screw motion. Once the motion parameters, namely the axis of rotation x, pitch p,

and displacement xo are known, the transformation can be described by a single pa-

rameter θ corresponding to the angle of rotation. This is a convenient representation

for transformations conducted by a revolute joint.

Now, as screw motions are commonly written in matrix notation, also the Lie al-

gebra and its generators, i.e., the partial derivatives of the transformation space

basis evaluated at the identity, can be constructed analogously. Looking at Equa-

tion (A.46), and Equation (A.47), this is obviously similar to the rotation gener-

ators from Equation (A.42), apart from a normalization factor θ. So for example,

sRx = θx1 and so on.

The same holds for translation generators, which correspond to the displacement

vector xo and its derivative at the identity with respect to a parameter θ. In fact,

this parameter is of such importance, as it is the only variable concerned for a

revolute joint in robotics. This was explained in sufficient detail in Section 2.3.
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THE software framework proposed in this chapter combines promising ideas of

recent neuroscientific research with a blackboard information storage mech-

anism and an implementation of the multi-agent paradigm. Therewith, the in-

tegration framework for sensorimotor applications strives for increasing flexibility

in development of robotic, computer vision, and machine intelligence applications

(Section B.1). The goal is to provide a sound and easy-to-use, but yet efficient

and highly parallelizable base architecture for complex sensor-based robotic systems

with a strong focus on intrinsically dynamic (e.g., vision-based industrial automa-

tion) scenarios (Section B.2).

Section B.3 briefly explains the software development kit and the deployment pro-

cess and finally, Section B.4 describes necessary steps to setup the software frame-

work and shows how to build a simple, distributed application.

B.1 Architecture
Detached from physical hardware specifications, the basic building blocks (or prim-

itive modules) may involve low-level actuator control actions just as well as sensory

(for example visual) input processing or reasoning tasks. These task processing

primitive blocks are called processing unit (PU) in the proposed framework (Sec-

tion B.1.1).

Typically these semantically independent processing units need to exchange data

between each other in order to map an application workflow. As means for this an

event-based data management mechanism is introduced in Section B.1.2. Event

triggers can be used to control execution of processing units, while generic data

channels maybe used to exchange information between the units in an efficient way.
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To enable implementations of concrete application workflows a mechanism for hier-

archical composition of processing units is presented in Section B.1.3. This involves

enveloping multiple lower-level processing units into a new, more abstract unit. In

this way an implicit tree representation can be generated incrementally.

By means of a failure event in the processing units it is also possible to monitor

the success of an operation. In composite units (referring to a an interconnected

collection of lower-level processing units) errors in a submodule can be handled

internally (for example with repetition) or escalated to the next higher enveloping

unit. In this way multi-layer error handling strategy can be implemented with little

effort.

B.1.1 Processing Units

Basically any algorithm, calculation, or processing task in the proposed framework

has to be implemented within the main loop of a processing unit. In addition to

providing this main loop, PUs also implement means for generic data exchange and

event-based state transitions.

In Figure B.1 one can see the general structure of a PU. It comprises task execution

trigger events, namely a Start and Stop trigger. During execution of a task the

state events Success or Error maybe emitted to enable other PUs react on the

processing result. It is important to mention at this point, that all processing units

implement a stop event listener. This listener always has priority to the current

task process, so at any time a PU can be interrupted using this methodology. Of

course, this might leave the unit in an undefined state. A reset function is called

automatically every time the start event is received in order to provide means for

handling this issue.

A processing unit may also define dedicated data channels (black in the figure). Pro-

grammatically these data channels are templated (and possibly buffered) variables,

i.e., their type is evaluated during compile time of the unit. Variables needed for, or

generated within a processing task initially only exist within the processing unit for

read and write access. However, data channels can be connected between processing

units in the same way events can be connected. Then, both read and write access

on parameter data is allowed to any connected instance.

Data channels can furthermore include an event. Then, the data channel transports

a signal, whenever data is written to the channel. This is extremely useful for

the different supported communication types between processing units, because it

facilitates implementation of publish / subscribe paradigms, data-listeners, polling,
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Figure B.1 Structure of processing units.

push services, and synchronous or asynchronous behavior.

Finally, the PU structure provides a configuration mechanism to the automation

system. It is possible to load parameter defaults from a configuration file on system

start-up, for example to initialize calibration parameters or define default behavior.

PUs in the framework are designed as threads. Typically, an application comprises

a set of PUs, where PUs perform their action in parallel, either continuously or in

a one-shot manner once they are triggered by a start event. While most hardware

interfaces need a cyclic, continuous update / retrieval (such as the robot realtime in-

terface or the camera interface), higher-level actions wrapped into a PU, e.g. moving

the end-effector from A to B, handing a workpiece over to another robot, or find-

ing a grasping point in a visual scene, most commonly only implement a non-cyclic

action.

B.1.2 Data Management

In order to map a complex sensorimotor workflow, exchanging data between PUs

is essential. In Figure B.2 an example (visual processing) application is shown on

an abstract level. The camera device unit maps to the segmentation unit, which

then maps to the visual processing unit and finally both visual processing result and

camera image map to the user interface unit. In this example the camera unit thus

has to share the image it acquires with the GUI and the segmentation unit, while

the segmentation result has to be available in the visual processing instance. The

proposed framework introduces a generic information manager for facilitating these

data transfers. It is implemented as a singleton and is thus only available once in
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an application instance1.

Figure B.2 Multiple processing units (grey) coexist and communicate via

the information manager (red).

Figure B.3 shows the mechanism for data registration, storage, and retrieval modal-

ities as a diagram. Before actually entering the main loop of an application (and

most likely the main loop of task execution in one or more PUs) the data channels

of all processing units that need to exchange data have to be connected. If for exam-

ple the camera unit needs to publish the image it acquires, the corresponding data

channel has to be shared. Other processing units can then connect to the channel

to be able to read images from it. In general however, units connected to a data

channel can always read and write data to that channel.

When connecting to a data channel, the connection can be passive or active. Ac-

tive connections refer to a PU just polling data whenever it needs (second row in

Figure B.3). If there is no data on the channel, the PU receives a NULL item on a

1In Chapter ?? it will be shown, that this is only true for applications run on a single computer. In

a cluster setup multiple application instances and thus multiple information managers may need to

synchronize across an MPI ring.
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Figure B.3 Data exchange mechanisms for processing units using the in-

formation manager.

read operation and needs to handle this internally. This mechanism is for example

useful for implementing asynchronous data access paradigms, e.g., in multi-agent

systems. In a passive connection on the other hand, i.e., if a PU is connected to

a channel and the connection is marked passive, whenever the data changes on the

channel it emits a notification signal to the passively connected PU (third row in

Figure B.3). Only the passively connected PU receives the signal and may then

process the current data item. This mechanism is dedicated to synchronous data

exchange strategies.

In the proposed implementation of the information manager a channel allows mul-

tiple active and passive connections to a data item at the same time. Thus, parts

of an application implemented with the framework can be sychronous, while other

parts can be asynchronous in the same program. Also, both event and data channels

implement the same interface. This is useful, as it allows active connections in case

there is no event associated with a data channel as described above; and, on the

other hand, it allows for declaring additional input or output events to a processing

unit by means of data channels. The payload of these channels then is only an event,

and no additional data item.

B.1.3 Task Coupling and Abstraction

The processing units together with (a)synchronous connections between them al-

ready have all necessary means for coupling and abstraction of tasks on-board. An

example is shown in see Figure B.4. In the figure only event channels are shown.
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However, it should be clear that chaining two processing units and enveloping them

into a higher-level one is easily possible also when data channels get involved. In

the case depicted, no additional logic other than mapping the events from and to

low-level units PU1 and PU2 is needed.

Of course, the task processing loop of the higher-level unit PU12 can be implemented

to perform more sophisticated tasks than just mapping events. For example listening

on computed data and producing a combined result can be implemented in the

processing loop.

Figure B.4 Coupling of two units into an envelope unit.

As the composite unit PU12 implements the same interfaces than its components

PU1 and PU2, it can itself again be used as a component for higher-level units. In

this way units can be stacked or combined into a hierarchical structure.

The framework even implies no restriction on utilizing a unique component in more

than one composites. This may lead to overlapping composite units as shown in

Figure B.5. The schema in the figure for example uses the graphical user interface

(GUI) unit in both the composite grasp unit and the composite analyze unit. More

details on this specific example are discussed in Chapter ??.

B.1.4 Fault Tolerance and Robustness

Considering robustness, dependability is one of the most important aspects in in-

dustrial scenarios. This is particularly important, when investigating sensor assisted

robotic setups where processes are partly deterministic at best. Therefore, the

aforementioned concept achieves to handle the dynamics in a sensorimotor robotic

application by means of an error monitoring concept.
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Figure B.5 Possibly overlapping composite units can be composed from

arbitrary processing units and represent abstract, higher-level

task building blocks.

The following three important questions with respect to faults and errors must be

evaluated for any application complex built from processing units [ Echtle 1998 ]:

1. What can happen and where can it happen?

First, an error hypothesis is needed. It contains all possible sources of a fault

including design errors (specification / implementation / documentation), pro-

duction errors and operation errors (mechanical, electrical faults, user mistakes,

logical algorithmic mistakes, etc.). Once the possible sources of faults are iden-

tified on an abstract level, the components / modules involved in the faults

have to be designed in order to enable detection and recovery of possible faults.

2. How can a fault/error/failure be detected or avoided in one of the monitoring

units?

While avoidance means optimizing and improving a system in advance, ap-

plication of sensor based fault detection, software based detection or actuator

feedback based detection has to be discussed for monitoring a process during

its execution.

3. Once occurred, how can an error be handled?

Methods for error handling are manifold. In general, methods are error passi-

vation / reconfiguration (evacuation / insertion / elimination), error recovery

(forward / backward recovery) or error compensation (error correction / fault

masking).

The fault tolerance mechanisms developed and applied here comprise two perpen-
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dicular areas of measurement. On the on side, the framework described in the above

sections is the basis for the modular monitoring approach, as it provides for the de-

composability of the task into software modules, represented by the processing units.

The framework provides means for ensuring that the system is in a good state, as

the PUs provide a failure event in case of an error. According to the specification

above, answering the first question is entirely due to the application developer.

Answering the second question principally it can be stated, that the software frame-

work proposed here is only in a very limited way able to detect hardware, algorithmic

or design errors directly. Only misconfiguration of processing units (for example

connection channel type mismatches), or general implementation errors (like not

implementing PU interface specifications) can be detected automatically. The task

processing, i.e., the implementation of main loop of a processing unit, is a black box

to the framework and thus has to be handled by the application developer.

However, discussing the third question, the framework provides means for passing

failures inside a component to an appropriate error handling unit. This implies,

that of course, in the general case of a system crash or unhandled failures inside a

processing unit, the framework application will also crash.

Error Recovery

Nevertheless, this enables the developer to generate a hierarchical error handling unit

by unit composition and abstraction from low-level operations (see Figure B.6).

For example consider a sensor-based object detection and handling task. Processing

unit PU1 in this case is the detection unit. It tries to find an object to be grasped

by the robot. If this succeeds, PU2 gets invoked. Its duty is to move the end-effector

towards the object and grasp it.

The interesting error recovery occurs in PU3. Here, if the detection fails, the sensor

position can be modified. So composing the units in a way shown in the figure

enables a composite unit PU123 to handle a detection error internally. According to

[ Echtle 1998 ] this corresponds to a backward recovery or soft-reset. Only if the

sensor positioning or the grasping fails, the composite unit emits the failure and a

higher-level unit needs to handle it.

Failure Avoidance

A common technique for avoidance of system failures is redundancy. In this case,

failures of certain task processing units are anticipated and accepted. Hence mul-

tiple instances of the same processing unit are initialized from the beginning. The
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Figure B.6 Recovering from an error within a composite unit.

framework provides special processing units for handling the output events of such

redundant instances (see Figure B.7).

The multiplexer units (such as PU3) specify data channels that accept events of

multiple redundant instances (PU1 and PU2) as an input. The multiplexer units

are implemented in various variants. One for example simply suppresses errors if

a Success event is present from one of the redundant units. Another applies a

majority voting on multiple Success events. Other custom implementations are

possible, for example to react on redundant output events and also take redundant

output data channels into account. These however are application dependent and

have to be implemented by the application developer.

Again, composing redundant structures into a composite unit (PU13) abstracts from

lower-level failure handling routines for higher-level units. Thus, hierarchical error

handling can be implemented easily.

Timing Constriants

Lest we forget to mention, that also timing constraints can be considered in a multi-

plexing or error handling unit. This is especially useful if a task should be interrupted

after some time-out interval (see Figure B.8).

The Success event of a task processing unit PU2 is in this case monitored by a

timer unit PU1, and if no Success event from task processing is received in time,
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Figure B.7 Redundancy for task completion within a composite unit.

the timer emits a Stop event to the task unit and an Error event to higher-level

handling routines. On the other hand, in case the task’s Success event was in time,

the composite unit PU3 emits a Success event as well.

B.2 Parallelization and Distributed Resources

As multi-core processor architectures are unlike a few years ago already a de facto

standard nowadays, state-of-the-art software frameworks must take parallelization

techniques into account from the very beginning in the specification and design

process.

In the last chapter it was briefly mentioned, that the proposed software framework

is intrinsically designed for parallel application scenarios. The encapsulation of

task processing into a threaded processing unit’s main loop provides the means for

such. Preliminary work on this topic can be reviewed from [ Müller, Ziaie and

Knoll 2008 ], while recent results are elaborated in Section B.2.1.

Additionally, the unique feature of the framework is the possibility to parallelize au-

tomatically not only on a single multi-core machine, but on a computing cluster with

many multi-core members just the like (see Section B.2.2). A well established clus-

ter computing paradigm and implementation based on the message passing interface

(MPI) acts as a base communication layer and abstracts from actual cluster issues.

Earlier results with this respect are discussed in [ Müller and Knoll 2010, Müller

et al. 2010, Müller et al. 2011 ].
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Figure B.8 A composite unit for tasks with an additional timing con-

straint monitored by PU3.

The result is a modular system that integrates sensorbased realtime robot control

with facilities for remote control. Due to the MPI base implementation of the

framework also runtime distribution of tasks is achieved. Thus, for evaluation and

testing the system may run on a single control PC on the one hand, and on the other

hand automatically scales to multiple computers as soon as more resources become

available in the MPI ring. Several student theses have sucessfully demonstrated the

applicability of the proposed methods by extending the base system with multiple

features integrated into new or existing processing units. For example [ Hellerer

2009 ] modified the proposed robot control unit to use potential field based target

generation and collision avoidance, [ Tran 2010 ] worked on early visual processing

and proposed a task control unit with error recovery for automation of the SFB

joining task, or [ Plopski 2010 ] developed a wireless control device using vision

based recognition and active servoing.

B.2.1 Auto-Parallel Processing

Crucial to any parallel system is the choice on which hierarchical (semantic) layer of

abstraction the parallelization takes place. Traditional auto-parallelization systems

like OpenMP [ Chapman et al. 2007 ] require the extensive usage of dedicated

statements within the source code (e.g. pragma in OpenMP) to mark parallizable

blocks like for-loops. The compiler interpretes the statements and the result is a

parallel application. The approach works well, if one only wants to parallelize a

simple sequential application without in depth knowledge of synchronization and
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parallelization techniques. Other traditional approaches utilizing multithreading

approaches work well, but they require expert knowledge on shared data access,

function binding, avoidance of dead locks, and the like.

The system presented here encapsulates the actual parallelization from the appli-

cation developer. The programmer only needs to define three essential structural

components:

• Decoupled Tasks

The developer decides which tasks are possible to be run in parallel, i.e., which

tasks can be seen as a semantic entity. This works on different levels of semantic

abstraction.

• Shared Data

The data sharing mechanism via the information manager and data or event

channels introduced in Section B.1.2 enables quick definition of shared data

structures. The framework then automatically provides the synchronization

and mutually exclusive access functionality.

• Application Workflow

An application workflow is defined by its event and data flow. Essentially, this

means that each task may specify, process or emit events and / or data signals.

These can be used to determine the sequence of operations within a task, or

subtask, or trigger operations within other task units. The concept was already

introduced in Section B.1.1.

For example, considering a typical application for object recognition and tracking.

The application comprises image acquisition, segmentation, recognition and track-

ing, and result visualization. Regarding the point of view of a parallelization engi-

neer, these operations need not necessarily run in a sequential order, but instead can

be decoupled into separate tasks. This already defines the structural components.

Later, the software engineer has to implement the task logic into corresponding PUs

(see Figure B.2).

Also, it has to be defined, which data structures need to be transferred from one

task to another. In the example, the camera unit would need to transfer the input

image to the segmentation unit, while this would need to transfer the result image

to the recognition and tracking unit, and so forth. The system now allows to de-

couple these tasks automatically, as there is no reason not to load the next image

from the camera, while the current image is still being processed. Having defined

the shared data structures and event triggers, thread-safe read and write access as

well as synchronization is intrinsically provided by the frameworks parallelization
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capabilities. Internally, the framework realizes this functionality by implementing

the information management as a “blackboard”. Once a datum is shared, any set

or get operation on a connected data channel automatically results in a post or

pull (and required synchronization operations) on the global singleton information

storage.

Finally, specifying an application workflow is straight forward, in fact it is implicitly

given and does not need to be specified explicitly. In preliminary work [ Müller,

Ziaie and Knoll 2008 ] the information manager is only a global storage for data.

Now, introducing event management, the storage was extended to be the instance of

workflow management within an application. Any shared data item can be defined

to emit a signal to any connected processing unit whenever the datum changes. By

default, all processing units implement an event listener, so, reacting on incoming

events enables the software engineer to conveniently introduce the desired workflow.

B.2.2 Automatic Distribution

In the last section parallel systems on a single computer using the intrinsic multi-

threading capabilities of the framework were discussed. The programmer is in this

case able to specify and implement parallel applications without explicitly dealing

with distribution of tasks and synchronization issues. This section elaborates on

the process of automatic task distribution whenever an application built with the

framework runs on a computing cluster. A schematic overview of the parallelization

layers for a such hardware setup is shown in Figure B.9.

The lowest layer comprises connected hardware components. These components

(usually computers) need not be identical in their hardware configuration. In fact

the cluster middleware used in the following is available for almost any current hard-

ware platform and operating system. Only the computers need to be interconnected

somehow (see Section B.2.3). The second layer abstracts from the actual hardware

by means of processors. The processors do not necessarily correspond to the number

of CPUs on a hardware, but it makes sense in a productive environment (see Sec-

tion B.2.4). The highest layer is composed from processing units introduced in the

previous chapter. In a distributed application each processing unit is first assigned

to a processor, which in turn is assigned to a computer (i.e., the hardware infrastruc-

ture). The proposed framework handles this hierarchical assignment autonomously,

except for the special case discussed in Section B.2.5.
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Figure B.9 Layers of abstraction in the automatic parallelization and dis-

tribution framework.

B.2.3 MPI Clusters

For the implementation of the second and third layer the Message Passing Interface

[MPI, A Message-Passing Interface Standard 1995 ] is used as a middleware. MPI

is the de facto standard for high-performance computing (HPC) environments and

hence provides support for a large variety of platforms and has a huge user pool.

MPI also supports a wide range of cluster participants, from very few or even a single

computer to several hundreds or thousands. The standard allows for composition of

computing environments by means of joining individuals to the so-called MPI ring.

The MPI implementation then chooses the fastest channel for data exchange within

the participants of the ring (be it e.g., shared memory, ethernet, infiniband, etc.).

Another advantage of MPI is, that extending or setting up an MPI ring is straight

forward, as it only requires to start the MPI system service (daemon) on a computer.

Also, at compile-time of a distributed application, it is not necessary to know which

and how many computers actually form the MPI ring in the execution environment.

So scaling an application is simple: the administrator only needs to add a new

computer to the ring.

When adding a computing resource to an existing ring, the administrator specifies

the number of processors for a resource. Note, that in the MPI terminology, a

processor does not specify a CPU as such, but in fact a process started on a com-

puter. The number of processors need not match the number of CPUs available
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on a computer, but can be set to an arbitrary number. This allows for simulating

cluster setups on a single computer - an essential mechanism for debugging. In a

productive environment though, it makes sense to specify the number of processors

according to the number of CPUs.

In a typical scenario, to exploit best the parallelization potentials of a hardware

setup, one would on the one hand implement at least as many processing units, as

MPI processors are available, and on the other hand one would set the number of

processors on each MPI ring member at least to the number of CPUs available.

B.2.4 Distributed Processors and Synchronization

When an application built with the proposed framework is run, the user thus has

two general options:

• Direct Execution

The application is run by executing the compiled file directly. This is called

local execution also. In this case the application automatically parallelizes on

the local, currently used computer as described in Section B.2.1 according to

the structural components and the number of CPUs available. It is equivalent

to running the application on an MPI cluster with only one processor and a

single ring participant (Figure B.10).

Figure B.10 Processing units are bound to a processor at runtime, an

information manager (IM) handles the communication.

• MPI Execution

The application is run using MPI tools, e.g., mpiexec. This triggers task dis-

tribution within the MPI ring. In this case, at boot time (see Section B.4 for

a code snippet) the application environment automatically checks for presence

of processors participating the MPI ring. Here, the application’s processing

units are assigned to an arbitrary processor (which is assigned to a ring mem-
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ber) and thus PUs are automatically distributed to available MPI resources

(see Figure B.11).

Figure B.11 The MPI ring specifies the number of processors and binds

them to physical hardware resources at runtime.

Processors in the sense of MPI only carry a unique identifier, the so-called rank and

no further information on the physical resource of a processor. The processor on

which the application is started has rank zero. Within the proposed framework,

processors also carry information about their host computer (e.g., the IP-address)

and process information (for example the pid).

The concept for data synchronization and exchange between PUs implemented in

the presented framework has already been introduced in Section B.1.2. There, it

has been mentioned, that the information manager used for this task is implemented

as a singleton for each application. However, considering a distributed scenario, it is

not only necessary to synchronize data between processing units on the highest layer,

but also between MPI processors one layer below. Thus, each MPI processor needs

to be initialized with its own information manager for MPI layer data exchange.

At runtime, the information managers then synchronize bi-directionally on-demand

using MPI methodology2 (see Figure B.12).

On-demand synchronization between information managers is possible, as the pro-

cessing units define data and event channels that can be connected. For efficiency,

only connected channels are to be synchronized in an application’s runtime hard-

2An implementation detail: the MPI calls are not directly executed, but the powerful MPI wrapper util-

ities of Boost (http://www.boost.org) were used. This allows for convenient transmission of arbitrary

datatypes given that they are serializable with Boost’s serialization engine.
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Figure B.12 Information managers of each processor are synchronized via

MPI. The figure shows one possible runtime layout for a

distributed sensorimotor application.

ware setup with multiple MPI processors. Even more, only when data is requested

from the manager the first time (or in the case of a synchronous channel the first

write operation on the channel occurs), the MPI synchronization is initialized on

the information managers (i.e., the inter-processor level).

Unfortunately, as the most tasks implemented with the proposed work involve visual

processing, the mechanisms described above do not work as well as expected for any

runtime configuration. This has some obvious reasons: MPI and most of its imple-

mentations, e.g., MPICH23 are designed to transmit messages, i.e., preferentially text

messages or small data chunks. Thus, transmission of for example strings, short

integers or even matrices and vectors does works efficiently, i.e., reaches realtime

performance easily on recent network and hardware infrastructures. But compared

to matrices and the like, where serialized messages have the size of a few (hundred)

bytes, a serialized image can easily reach a few million bytes (several megabytes).

Thus, it is necessary to implement a special synchronization mechanism for large

3http://www.mcs.anl.gov/research/projects/mpich2
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data (in particular image) transfer4 between information managers of different pro-

cessors. In practice, the sychronization for images is hence based on on-demand

data streaming.

Whenever an information manager of a processor requires for example an image that

is not only connected on the same processor, a bi-directional image stream is con-

nected between the information managers of the processors hosting the connected

processing units. The image streams are encoded and decoded on the fly using

the Xvid-codec5. The drawback of this approach is the loss of image quality on a

roundtrip. But in practice this is not of much relevance, as most applications do

not implement extensive round-trips, but image processing units usually generate

new, modified intermediate, or result images; or abstract result representations like

object classifications or locations. The advantage is obvious: now it is possible to

distribute visual processing to a cluster of computers which enables much higher

performance and excellent scaling given that the application’s structural compo-

nents are well-defined. Furthermore, still the user does not have to deal with the

parallelization across multiple computers explicitly, as this is handled automatically

by the framework.

B.2.5 Explicit Physical Binding

In some cases it is useful, if not necessary, to have a possibility to specify at least

the computer that a processing unit has to run on. For example, a camera device

might be connected to a certain computer or the GUI needs to be displayed on some

dedicated display.

To cope with this requirement, processing units provide a functionality to enforce

a physical binding. Physical binding refers enforces a mapping from the process-

ing unit (i.e., the application layer) to the hardware layer (physical resource layer).

Whenever the physical binding is specified, the configured unit is only run on the

requested machine. Inherently, this forces the application to terminate if no proces-

sor is found on the requested resource. By default though, the physical binding is

left empty and the framework decides autonomously, where to run a unit.

To avoid loosing the generic runtime distribution facilities of the framework, usually

the physical binding of a processing unit is specified within an application’s config-

uration file. In this way only the configuration needs to be modified to reflect for

example plugging in a camera device to a different MPI ring participant.
4To be exact: within the implementation a specialization of the general templated Synchronizer-class

was introduced.
5http://www.xvid.org

176

http://www.xvid.org


B.3 Application Development and Deployment

B.3 Application Development and Deployment

The following sections briefly introduce the development and deployment archi-

tecture used in the framework. This architecture ensures convenient application

development as well as integration of new modules into the core framework (see

Section B.3.1). In Section B.3.2 an additional goal is to elaborate on methodol-

ogy for automated building, testing, and deploying of the software implemented as

part of the thesis.

B.3.1 Framework SDK

The framework is designed as a plug-in system based on shared libraries. This

means the application developer has to link against the core framework library and

my extend it with custom libraries. Then an application can be linked against all

implemented libraries and in this way integrate modules developed earlier.

The reasoning behind this approach is the following. The framework core provides all

necessary means for parallelization on multi-core machines and automatic distribu-

tion in cluster environments. The prototypes for processing units are also provided,

including inter-unit communication facilities and event handling, the information

managers for inter-machine communication and methods to retrieve environment

information. This core functionality is encapsulated from the application developer,

so the software developer only needs to implement the task logic into processing

units, for example to integrate a custom hardware device, or introduce an applica-

tion task workflow. The implemented processing units are packaged into a module

library at varying granularity (at disposal of the software engineer) which can then

be used in different applications yielding efficient code reusability.

The application itself then only loads the predefined processing units and defines

the event and data channel connections. As pointed in Chapter 5, for the future

it is intended to provide means to do so in a graphical user interface for easy plug-

and-play application composition. Up to this point, a processing unit parameter

configuration can be loaded from an XML definition file in order to restore a certain

application state at start-up.

Finally, the build system of the framework produces an executable which can be

used on a single PC not running any MPI components, as well as on a distributed

system with multiple MPI ring members. The application decides at startup, which

mode is to be loaded and how processing units are to be distributed on multi-core

machines or cluster resources.
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B.3.2 Build Virtualization and Deployment

The frameworks build system is designed to build and test developed applications

on-the-fly, i.e., for example in a nightly build environment. For this purpose, scripts

have been created in order to check out source code from a repository automatically,

trigger a build process and create an installer. These processes also generate HTML

report files.

For efficient automation of these processes certain dedicated virtual machines are

set up. These virtual machines are powered up according to a scheduling algorithm

on the host machine(s). The process is depicted schematically in Figure B.13.

Figure B.13 Automated build, test, and result-tracking process.

The framework project, comprises of three major parts, (1) the library itself, (2)

multi-layer tests and (3) tutorial applications. A brief overview of the requirements

for the automated build, test and deploy framework are given in Table B.1.

As one can see from the table, the three parts have different dependencies, build

specifications, deployment scenarios and access permissions. The results of the au-

tomated build process are published according to the access permissions to a web-

service that provides the HTML reports, test and build log files and the binaries built

in the process.
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Library Tests Tutorials

Source repository Subversion Subversion Subversion,

HTTP

Binary repository Subversion, Subversion -

HTTP

Code Variability High Medium Low

Build Environment Yes Yes No

Dependencies 3rd Party 3rd Party, 3rd Party,

Library Library

Package Library binaries, - Sources,

Contents Headers, Binaries,

Reference manual User guide

Error Reporting Build, Build, Build

Packaging, Execution

Installation

Access Developers, Developers Developers

Permissions End-Users End-Users

Table B.1 Framework overview

The build system of the framework is in principle also able to accomplish tasks

for cross platform target operating systems and various software configurations,

as shown in the OpenTL library project, from which it is originally adapted (see

details in [ Müller and Knoll 2009b ]). This can be achieved due to virtualization.

Virtual operating systems are instantiated for each task in a non-persistent mode,

so at start-up it can be guaranteed, that the virtual machine is in a “good” state.

Thus the system produces repeatable results for equal sources on each of the target

platforms.

Furthermore, based on the setup of the virtual machines, it is quite easy to exactly

specify the requirements of physical hardware for the end user and investigate the

performance difference emerging from higher memory capacity, better CPU avail-

ability, etc. For this purpose one simply has to reconfigure the virtual machine,

which facilitates the evaluation process enormously. Finally, it is also possible to

replace the host system conveniently, as the virtual machine images can simply be

copied to the new host and run directly. All the new host needs to do is provide a

public folder for the results and take this folder as the document root for a webserver.
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B.4 System Manual
The following is intended to give a short introduction on how to install the core

framework and necessary third-party dependencies, and furthermore how to imple-

ment a simple distributed application. All steps can be reviewed in greater detail

from the tutorial6. The following sections refer to an installation on Ubuntu7.

B.4.1 Third-Party Dependencies

As Ubuntu is entirely open-source, all third-party dependencies can be downloaded

and installed directly from corresponding repositories.

1 sudo a p t i t u d e i n s t a l l b u i l d−e s s e n t i a l ccache cmake \
2 cmake−cu r s e s−gu i l i b c v 4 l i b c v−dev l i b c v a u x 4 l i b c v au x−dev \
3 l i b h i g h g u i 4 l i b h i g h g u i −dev l i b q t 4−dev l i b q t 4−dbg l i b s o q t 4−dev \
4 l i b c o i n 6 0−dev l i b b o o s t−a l l −dev l i b b o o s t−mpi−dev l i bmp i ch2−dev \
5 e c l i p s e l i b s pn a v−dev spacenavd s u b v e r s i o n

Downloading and installing all these packages can take several minutes, depending

on available hardware and internet connection.

B.4.2 Eclipse - the IDE

It is recommended to install three more or less essential (but anyway useful) exten-

sions to Eclipse8. To do so, the following update sites have to be added:

1 # C/C++ Development Too l i ng (CDT)

2 ht tp : // download . e c l i p s e . o rg / r e l e a s e s / g a l i l e o

3 # CMakeEd

4 ht tp : // cmakeed . s o u r c e f o r g e . net / e c l i p s e /

5 # Sub c l i p s e

6 ht tp : // s u b c l i p s e . t i g r i s . o rg / update 1 . 6 . x/

B.4.3 Setting up MPI

Create the MPI configuration file in a user home directory:

1 cd $HOME

2 touch .mpd . con f

6http://www.flexiblerobotics.com
7http://www.ubuntu.com
8http://www.eclipse.org
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3 echo MPD SECRETWORD=[mysecretword ] > .mpd . con f

4 chmod 600 .mpd . con f

Start the MPI-daemon on the master:

1 mpd −− l i s t e n p o r t =[master−po r t ]

Start it on the slaves (make other computers join the ring):

1 mpd −−hos t=[master−i p ] −−po r t =[master−po r t ] \
2 −− i f h n =[ s l a v e−i p ] −− l i s t e n p o r t =[ s l a v e−po r t ]

Check for ring-members with (on any of the computers):

1 mpdtrace − l

Start an MPI-application (here: passing local variable LD LIBRARY PATH):

1 mpiexec −g e n v l i s t LD LIBRARY PATH [ e x e c u t a b l e ] [ commandline−arg ]∗

B.4.4 Building an Application

This is a short snippet for implementing a (very) simple application to displaying the

live image of a standard OpenCV-camera using the graphical user interface (GUI)

unit.

1 #inc lude < f r f . h>

2

3 i n t main ( i n t argc , char ∗∗ argv )
4 {
5 // Boot d i s t r i b u t e d env i ronment

6 f r f : : boot ( argc , a rgv ) ;

7

8 // Setup p r o c e s s i n g u n i t s

9 f r f : : v i s i o n : : camera : : OpenCVCamera∗ cam = new f r f : : v i s i o n : : camera : :

OpenCVCamera ( ) ;

10 f r f : : gu i : : Gu iUn i t ∗ gu i = new f r f : : gu i : : Gu iUn i t ( ) ;

11

12 // I n i t i a l i z e the p r o c e s s i n g u n i t s

13 f r f : : i n i t ( ) ;

14

15 // Connect the sha r ed pa ramete r s
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16 unsigned i n t i d ;

17 i d = cam−>share< f r f : : c o r e : : data : : Image>( f r f : : v i s i o n : : camera : :

OpenCVCamera : : LIVE IMAGE) ;

18 gui−>connectTo ( id , ” L i v e Images ” ,

19 new f r f : : gu i : : f e edback : : Image ( ”USB Image” ) ) ;

20

21 // Run d i s t r i b u t e d a p p l i c a t i o n

22 return f r f : : run ( ) ;

23 }

Note that start events are automatically fired to all units at frf:run() if not spec-

ified explicitly. The stop events are on the other hand automatically connected to

the GUI per default. Figure B.14 shows a screenshot of the running application.

Figure B.14 Screenshot of the simple application described in the text.
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with distance weighting for hand-gesture recognition, Proceedings of the 13th

International CSI Computer Conference.

Ziaie, P., Müller, T., Foster, M. E. and Knoll, A.: 2009, A näıve Bayes classifier

with distance weighting for hand-gesture recognition, Advances in Computer

Science and Engineering, Vol. 6 of Communications in Computer and Informa-

tion Science, Springer Berlin Heidelberg, pp. 308–315.

Ziaie, P., Müller, T. and Knoll, A.: 2008, A novel approach to hand-gesture recog-

nition in a human-robot dialog system, Proceedings of the First Intl. Workshop

on Image Processing Theory, Tools & Applications.

184



References

Agrawal, M.: 2005, A lie algebraic approach for consistent pose registration for

general euclidean motion, Intl. Conference on Intelligent Robots and Systems.

Anderson, M. L.: 2003, Embodied cognition: A field guide, Artificial Intelligence

149.

Arkin, R. C.: 1998, Behavior-Based Robotics, MIT Press.

Bach-y-Rita, P.: 1967, Sensory plasticity: Applications to a vision substitution

system, Acta Neurologica Scandinavica 43(4), 417–426.

Balkenius, C. and Hulth, N.: 1999, Attention as selection-for-action: a scheme for

active perception, Advanced Mobile Robots, 1999. (Eurobot ’99) 1999 Third

European Workshop on, pp. 113–119.

Ball, R. S.: 1876, The theory of screws: A study in the dynamics of a rigid body,

Hodges, Foster.

Bay, H., Ess, A., Tuytelaars, T. and Gool, L. V.: 2008, SURF: Speeded up robust

features, Computer Vision and Image Understanding 110(3), 346–359.

Blaschke, W.: 1960, Kinematik und Quaternionen, VEB Deutscher Verlag der Wis-

senschaften.

Boudreau, R. and Podhorodeski, R. P.: 2010, Singularity analysis of a kinematically

simple class of 7-jointed revolute manipulators, Transactions of the Canadian

Society for Mechanical Engineering 34(1).

Bouguet, J.-Y.: 2000, Pyramidal implementation of the Lucas Kanade feature

tracker, Technical report, Intel Corporation, Microprocessor Research Labs.

Bradski, G. R.: 1998, Computer vision face tracking for use in a perceptual user

interface, Intel Technology Journal Q2.

Broadbent, D. E.: 1958, Perception and communication, Pergamon Press, London.

Brockett, R. W.: 1984, Robotic manipulators and the product of exponentials for-

mula, Mathematical Theory of Networks and Systems 58, 120–129.

185



References

Brooks, R. A.: 1986, A robust layered control system for a mobile robot, IEEE

Journal of Robotics and Automation 2(1), 14–23.

Brooks, R. A.: 1991, Intelligence without representation, Artificial Intelligence

47, 139–159.

Buss, S. R.: 2009, Introduction to inverse kinematics with jacobian transpose, pseu-

doinverse, and damped least squares methods, Technical report, University of

California, San Diego, California.

Chapman, B., Jost, G. and van der Pas, R.: 2007, Using OpenMP, MIT Press.

Chaumette, F. and Hutchinson, S.: 2006, Visual servo control part i: Basic ap-

proaches, IEEE Robotics & Automation Magazine 13(4), 82–90.

Chaumette, F. and Hutchinson, S.: 2007, Visual servo control part ii: Advanced

approaches, IEEE Robotics & Automation Magazine 14(1), 109–118.

Choset, H., Lynch, K. M., Hutchinson, S., Kantor, G., Burgard, W., Kavraki, L. E.

and Thrun, S.: 2005, Principles of Robot Motion: Theory, Algorithms, and

Implementations, The MIT Press.

Clark, A.: 1997, Being There: Putting Brain, Body, and World Together Again, The

MIT Press.

Clifford, W. K.: 1873, Preliminary sketch of bi-quaternions, Proc. London Math.

Society, Vol. 4, pp. 381–395.

Cohen, J. D., Aston-Jones, G. and Gilzenrat, M. S.: 2004, A systems-level perspec-

tive on attention and cognitive control: Guided activation, adaptive gating, con-

flict monitoring, and exploitation versus exploration, Cognitive Neuroscience of

Attention, Guilford Publications, pp. 71–90.

Comaniciu, D., Ramesh, V. and Meer, P.: 2000, Real-time tracking of non-rigid

objects using mean shift, Computer Vision and Pattern Recognition.

Corbetta, M.: 1998, Frontoparietal cortical networks for directing attention and the

eye to visual locations: identical, independent, or overlapping neural systems?,

Proceedings of the National Academy of Sciences of the USA 95(3).

Corbetta, M. and Shulman, G.: 2002, Control of goal-directed and stimulus-driven

attention in the brain, Nature Reviews Neuroscience 3, 201–215.

Craig, J. J.: 1955, Introduction to Robotics: Mechanics and Control, Prentice Hall.

Dalal, N. and Triggs, B.: 2005, Histograms of oriented gradients for human detec-

tion, Computer Vision and Pattern Recognition, pp. 886–893.

Dayan, P. and Abbott, L.: 2001, Theoretical Neuroscience: Computational and

Mathematical Modeling of Neural Systems, The MIT Press.

186



de Groote, H. F.: 1975, On the computational complexity of quaternion multiplica-

tion, Information Processing Letters (6), 177–179.

de Michieli, L., Nori, F., Pini Prato, A. and Sandini, G.: 2008, Study on humanoid

robot systems: an energy approach, IEEE-RAS International Conference on

Humanoid Robots.

Denavit, J. and Hartenberg, R. S.: 1955, A kinematic notation for lower-pair mech-

anisms based on matrices, Trans ASME J. Appl. Mech pp. 215–221.

Dobkin, D.: 1973, On the Arithmetic Complexity of a Class of Arithmetic Compu-

tations, PhD thesis, Harvarad University.

Drummond, T. and Cipolla, R.: 1999a, Real-time tracking of complex structures

with on-line camera calibration, In Proc. British Machine Vision Conference

(BMVC’99, pp. 574–583.

Drummond, T. and Cipolla, R.: 1999b, Visual tracking and control using lie al-

gebras, In Proc. IEEE Conf. on Computer Vision and Pattern Recognition

(CVPR), IEEE Computer Society Press, pp. 652–657.

Drummond, T. and Cipolla, R.: 2000, Application of lie algebras to visual servoing,

International Journal of COmputer Vision 37(1), 21–41.

Drummond, T. and Cipolla, R.: 2002, Real-time visual tracking of complex

structures, IEEE Transactions on Pattern Analysis and Machine Intelligence

24(7), 932–946.

Dynkin, E. B.: 1947, Calculation of the coefficients in the campbell–hausdorff for-

mula, Proceedings of the USSR Academy of Sciences, Vol. 57, pp. 323–326.

Eberly, D.: 2011, Euler angle formulas, Technical report, Geometric Tools, LLC.

http://www.geometrictools.com.

Echtle, K.: 1998, Fehlertoleranzverfahren, Springer-Verlag GmbH.

Eskridge, B. E. and Hougen, D. F.: 2009, Using action abstraction to evolve effective

controllers, Genetic and Evolutionary Computation Conference.

Euler, L.: 1776, Novi Commentarii academiae scientiarum Petropolitanae, Vol. 20,

St. Petersburg Academy.

Flash, T. and Hogan, N.: 1985, The coordination of arm movements: An experimen-

tally confirmed mathematical model, Journal of Neuroscience 5(7), 1688–1703.

Fletcher, P. T., Lu, C. and Joshi, S.: 2003, Statistics of shape via principal geodesic

analysis on lie groups, Intl. Conference on Computer Vision and Pattern Recog-

nition.

187



References

Foster, M. E., By, T., Rickert, M. and Knoll, A.: 2006, Humanrobot dialogue for

joint construction tasks, Proc. ICMI.

Gallese, V. and Lakoff, G.: 2005, The brain’s concepts: The role of the sensory-

motor system in conceptual knowledge, Cognitive Neuropsychology 21(0).

Geib, C., Mourao, K., Petrick, R., Pugeault, N., Steedman, M., Krueger, N. and

Wörgötter, F.: 2006, Object action complexes as an interface for planning and

robot control, IEEE-RAS International Conference on Humanoid Robots.

Gilles, S.: 1998, Robust Description and Matching of Images, PhD thesis, University

of Oxford.

Giuliani, M.: 2011, Multimodal Fusion for Human-Robot Interaction, PhD thesis,

Technische Universität München.

Govindu, V. M.: 2003, Lie-algebraic averaging for globally consistent motion esti-

mation, Intl. Conference on Computer Vision and Pattern Recognition.

Grassia, F. S.: 1998, Practical parameterization of rotations using the exponential

map, Journal of Graphics Tools 3, 29–48.

Graves, A. R. and Czarnecki, C.: 2000, Design patterns for behavior-based robotics,

IEEE Transactions On Systems, Man, And Cybernetics 30(1).

Hamilton, W. R.: 1853, Lectures on Quaternions, Royal Irish Academy.

Hara, F. and Pfeifer, R.: 2000, On the relation among morphology, material and

control in morpho-functional machines, Sixth International Conference on the

Simulation of Adaptive Behavior, MIT Press, pp. 33–40.

Hawkins, J.: 2004, On Intelligence, Times Books.

Hebb, D. O.: 1949, The Organization of Behavior: A Neuropsychological Theory,

Wiley and Sons, New York.

Hellerer, M.: 2009, Potential field based position control for Mitsubishi RV-6S in-

dustrial robots. Bachelor’s Thesis, Department of Informatics, Technische Uni-

versität München.

Higham, N.: 2004, The scaling and squaring method for the matrix exponential

revisited, SIAM J. Matrix Anal. Appl. 26(4), 1179–1193.

Hinton, G. E.: 2007, To recognize shapes, first learn to generate images, in P. Cisek,

T. Drew and J. Kalaska (eds), Computational Neuroscience: Theoretical In-

sights into Brain Function, Elsevier.

Hogan, N.: 1984, Adaptive control of mechanical impedance by coactivation of

antagonist muscles, IEEE Transactions on Automatic Control AC-29(8), 681–

690.

188



Hollerbach, J. M.: 1985, Optimum kinematic design for a seven degree of freedom

manipulator, Robotics Research: The Second International Symposium, MIT

Press, pp. 215–222.

Hommel, B.: 2010, Grounding attention in action control: The intentional control

of selection, in B. Bruya (ed.), Effortless attention: A new perspective in the

cognitive science of attention and action, The MIT Press, pp. 121–140.

Howell, T. D. and Lafon, J.-C.: 1975, The complexity of the quaternion product,

Technical report, Cronell University, Ithaca, N.Y.

Huber, M., Radrich, H., Wendt, C., Rickert, M., Knoll, A., Brandt, T. and Glasauer,

S.: 2009, Evaluation of a novel biologically inspired trajectory generator in

human-robot interaction, The 18th IEEE International Symposium on Robot

and Human Interactive Communication, pp. 639 – 644.

Ishiguro, A. and Kawakatsu, T.: 2003, How should control and body systems be

coupled? a robotic case study., Embodied Artificial Intelligence’03, pp. 107–

118.

Itti, L. and Koch, C.: 2001, Computational modelling of visual attention, Nature

Reviews Neuroscience 2, 194–203.

Itti, L., Koch, C. and Niebur, E.: 1998, A model of saliency-based visual attention for

rapid scene analysis, Pattern Analysis and Machine Intelligence 20(11), 1254–

1259.

Jackson, D.: 1942, The instantaneous motion of a rigid body, The American Math-

ematical Monthly 49(10), 661–667.

James, W.: 1890, Principles of Psychology, Harvard University Press.

Johnson, M. and Demiris, Y.: 2005, Hierarchies of coupled inverse and forward

models for abstraction in robot action planning, recognition and imitation,

Social Intelligence and Interaction in Animals, Robots and Agents.

Joukhadar, A. and Laugier, C.: 1997, Dynamic simulation: Model, basic algorithms,

and optimization, In Proc. of the Workshop on the Algorithmic Foundations of

Robotics, Toulouse (FR, A.K. Peters Publisher, pp. 419–434.

Kadir, T. and Brady, M.: 2000, Saliency, scale and image description, IJCV .

Kahneman, D.: 1973, Attention and Effort, Prentice-Hall, Inc.

Kalman, R. E.: 1960, A New Approach to Linear Filtering and Prediction Problems,

Journal of Basic Engineering 82(1), 35–45.

Kavan, L., Collins, S., O’Sullivan, C. and Zara, J.: 2006, Dual quaternions for rigid

transformation blending, Technical report, Trinity College Dublin.

189



References

Khatib, O.: 1985, The potential field approach and operational space formulation

in robot control, Proceedings of the Fourth Yale Workshop on Applications of

Adaptive Systems Theory, Yale University.

Khatib, O.: 1987, A unified approach for motion and force control of robot ma-

nipuators: The operational space formulation, IEEE Journal of Robotics and

Automation RA-3(1).

Kienzle, W., Wichmann, F. A., Schölkopf, B. and Franz, M. O.: 2006, A nonpara-

metric approach to bottom-up visual saliency, Proc. NIPS ’06.
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