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prepared in Laboratoire de Physique Théorique de la Matière Con-
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Introduction

With the global financial crisis that lasts since 2007, everybody has become familiar with math-
ematicians that use powerful tools to predict the behavior of random variables. Those variables
can be the share prices, the exchange rates, the probability that an average American reimburses
a loan or that an European country fails to reimburse his public debt. We can indeed consider
that the exchange rate between Euro and US Dollar for instance is a random variable, that we
note x, namely a quantity that can take (almost) any real value, x ∈ [0,∞[. This random variable
depends on time, and makes “jumps” each day between the value at t and the value at t + dt.
We can plot this random variable as a function of time, and try to predict its value in the future.
Lets assume that we buy 12 $ with 10 € before a trip to the US, and that the exchange rate is 0.8
$ for 1 € at our return. How long will we have to wait before the exchange rate passes above 1.2
$ for 1€, for the first time? We will call this time the first-passage time, starting from 0.8 $/€
to 1.2 $/€. To compute the average value of this random variable, the mean first-passage time
(MFPT) we will need to characterize the random process, and then to use the equation satisfied
by this process (diffusion equation for instance) with the correct initial and boundary conditions.

First-passage properties in general, and MFPT in particular, are widely used in the context
of diffusion-limited processes [168], either in chemistry [169], in biology [183], in electrical black-
out spreading [53], in epidemiology [129], for foraging animals [24, 220]. . . They play a crucial
role in those real situations, the random process modeling a transport process in disordered
media[71, 102], a neuron firing dynamics[213], the spreading of diseases[129] or of computer
viruses[155], or a target search process[22]. For each of those examples, a random walker trigger
an event when reaching for the first time a given target, and it can be advantageous to minimize
(transport process) or to maximize (viruses spreading) this first passage time. When several
targets are available, for instance when a given protein can react with several different target in
a living cell, it becomes important to know which one is reached first.

We will focus along this manuscript on proteins evolving in living cells, but the results we
will obtain can be directly transposed to the above mentioned situations. In this biological
context, modern experimental set-ups allow to follow single particles trajectories. After a general
introduction to the random world for non-specialist in the first chapter, we will answer in the
second and in the third chapter to two main questions. First, using a set of single particles
trajectories, what can we say about the underlying mechanism? Once this mechanism is known,
how can we optimize the MFPT?

Since they are the key parameter to quantify transport processes, the first-passage properties
have been extensively studied during the last decades, and a lot of results were already written in
textbooks before the beginning of this thesis. Concerning the mean first-passage time, a formal
result for Markovian processes (processes without memory) have been found years ago [6, 148].
Other first-passage observables can also be expressed in formal ways, like splitting probabilities
[65] or occupation times [67]. For a long time, these results were explicit for unbounded envi-
ronments, or in (pseudo)-unidimensional confined media. The formal expression have been made
usable – for scale-invariant processes in a general confined environment – thanks to an approxi-
mation of pseudo-Green functions by Sylvain Condamin [66], during his thesis under the direction
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of Olivier Bénichou and Raphaël Voituriez. We will recall these results as well as the pseudo-
Green function approximation in the first chapter of this manuscript. First-passage properties
of non scale-invariant processes remain so far elusive quantities, and we will study them during
this manuscript. We will also focus on random walk on discrete networks, in order to get more
insight on the important parameters of first-passage properties that have not been identified as
such yet, like target connectivity or network topology.

Real processes are not always purely Brownian: in the last few years, non-Brownian behaviors
have been observed in an increasing number of systems [172, 173], ranging from physics [122, 187]
or geophysics [186] to biology [99, 212]. In particular, living cells provide striking examples for
systems where this behavior has been repeatedly observed experimentally, either in the cytoplasm
[54, 99, 212, 232], the nucleus [160, 223] or the plasmic membrane [94, 127, 199]. We will
thus consider non-Brownian processes, like continuous time random walk (CTRW) [115, 172] or
fractional Brownian motion (fBm) [137]. Such processes can lead to anomalous diffusion, namely
to a mean square displacement 〈r2〉 scaling like tα, where α 6= 1 is the anomalous diffusion
exponent. If α < 1, the process is called sub-diffusive, if α > 1, super-diffusive. The mathematical
description of anomalous diffusion [41], popularized by Ralf Metzler [172], will be introduced in
the first chapter.

For generic random processes, we can rephrase the two questions that will structure this
manuscript as follows:

• How can we discriminate between several (sub)-diffusion mechanism using a finite data set
of single trajectories?

• Knowing the diffusion mechanism, how can we calculate the search time, and then optimize
it, or similarly how can we calculate and minimize a given MFPT?

The first question will be the core of the second chapter of this manuscript. Many direct obser-
vation of diffusing proteins in living cells exhibit anomalous diffusion. However, the microscopical
origin of sub-diffusion in cells remains debated, even if believed to be due to crowding effects in
a wide sense as indicated by in vitro experiments [8, 9, 98, 228].

Several models can cause sub-diffusion, and each model rely on a different kind of interaction
between the random walker and its environment. We will focus during the second chapter on the
three prominent models mentioned above: diffusion on fractals, CTRW and fBm. Diffusion on
fractals model assumes that the space available is fractal, namely that dead ends and bottlenecks
exist at all scales. CTRW model assumes that the random walker interacts with its environment,
and can be trapped somehow for a very long time. At last fBm model assumes that the trajectory
possesses long-term spatial correlation, a “memory” of the past steps. This can be related
to repeated interactions with a very wide object, like a long polymer (DNA) or a biological
membrane. We can gain a better understanding on the environment surrounding the random
walker if we can discriminate between those three models. Some tools have been proposed in the
literature, like the normalized variance [74] or the ergodicity breaking parameter [104], but those
observables are not adapted to small data sets. We will develop tests that allow to discriminate
between those three models with realistic data sets, and taking into account the experimental
constraints. We will also focus on alternative models, similar to diffusion on fractals, CTRW or
fBm, but that are not “infinite”, and that could explain better our observations of lipid granules
diffusion within fission yeast cells. Indeed, the diffusion on fractals model assumes that the
process is infinitely scale-invariant, even in non physical scales (femtometric or kilometric scales
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do not make sense for a living cell), CTRW assumes that the waiting time can be infinitely long (a
waiting time of a century has very little sense for a protein), and fBm assumes that the trajectory
is infinitely correlated in space. Our alternative models will be finite versions of those models.

At last, in the third chapter, we will assume that the diffusive mechanism is known, and we
will see how to calculate and if possible to minimize the search time, namely the first-passage
time to a given target. This problem goes far beyond the simple trading problem of exchange
rates: we could look at a transcription factor looking for its anchor site on the DNA [30, 83], or at
animals looking for food [15, 218]. Lévy flights [81, 219] and intermittent strategies [23, 27] have
been proposed as optimal search processes to find an hidden target, under some assumptions.
Intermittent strategies are adapted to a case where the target is hard to find: the random walker
alternates fast relocalization, where he moves fast and cannot find the target, and searching
phases, where he focus only on finding the target. So far, optimization of search strategies
with “easy” target, namely where the target is found as soon as the random walker pass in a
neighboring area, have been done with Lévy processes in infinite space, with an infinite number
of target. We will transpose this problem into a confined volume.

Search strategies assume that the random walker moves without knowing where the target is.
If we want to optimize a purely diffusive process, knowing where the target is before starting the
random walk, we can also change the surrounding space in order to increase the probability to
find the target. We will first investigate the case of a moving target, already solved formally in
1D [106]. This problem is very cumbersome from the analytical point of view, but meaningful as
soon as we consider bimolecular reactions, or a predator hunting a moving prey. We will try to
obtain a tractable expression of the first encounter time between the two random walkers.

If the protein motion within a living cell can be considered as a continuous process, in other
example, like social networks [234], viruses spreading [155] or electrical networks [53], the random
walk occurs on discrete networks. Those networks can either be seen as a discretization of a
continuous problem, or directly as a discrete problem. For regular networks such as Euclidian
lattices, we can transpose directly the results we have for continuous processes. For “complex”
networks [93], that share some common features such as small-world property [13, 225], scale free
property [4, 3] or even fractal scalings [205] the topology can be a become a crucial parameter
of the search efficiency. The link between search efficiency and network topology have for long
been controversial: the presence of loops [12], the scale-free feature [241] or the fractal features
[236] have been investigated for its potential impact. General results linking the Global Mean
First-Passage Time (GMFPT) and the network topology already exists [6, 66], we will see how
these results help to quantify the impact of network topology on search efficiency. We will also
focus directly on the Mean First-Passage Time (MFPT), and see how it is affected by the target
connectivity or the modification of a part of the network. The general approximation of pseudo-
Green functions developed in reference [66] will be used extensively during this last chapter.
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Introduction

The purpose of this guided visit is to introduce some concepts that will be used along this thesis.
The reader already familiar with random processes and first-passage observables can save some
time by just skipping this visit. The unfamiliar reader will also save some time by reading this
part before the two following. We will introduce all the theoretical background of this manuscript,
the two first sections being mainly usual textbook knowledge, while in the last one, we introduce
some new recent results on first-passage properties.

This visit will be organized in three steps. It will begin with an introduction to random
walks and diffusion, with a focus on the mathematical description and on the mathematical
tools. Analytical approaches of continuous space random processes will be quickly presented,
as well as a link between diffusion on discrete networks and continuous space diffusion. The
usual mathematical transform (Fourier, Laplace and Z-transform) will be presented in the last
sub-section, with in particular the convention chosen for this manuscript.

The second part of the visit will be a focus on first-passage properties: what is a first-passage
process, and what kind of observables can one compute. For this section, we will mainly focus on
Brownian motion. We will introduce the renewal equation, that is valid for any kind of Markovian
random walk, and see how Green functions are related with first-passage observables. The last
sub-section will present results that are not (so far) in textbooks: splitting probabilities, pseudo-
Green functions for regular lattices and occupation times. Those results were part of my Master
degrees, and will be used again in this manuscript.

The last part of the visit will be an opening on non-Brownian diffusion: anomalous diffu-
sion, strange spaces with non-integer dimension, or even non-Euclidian spaces, processes with
memory. . . The first sub-section will introduce anomalous diffusion, when the mean square dis-
placement 〈r2〉 is no more proportional to the time t. Four processes are introduced, and show
how a given diffusion mechanism can lead to anomalous diffusion. The second sub-section de-
scribe networks that lead to anomalous diffusion: all networks that will be used in this manuscript
are described here. The last sub-section shows how to approximate pseudo-Green functions H
for a scale-invariant process (either continuous or discrete). The results presented in this last
sub-section will be widely used during this manuscript, and some of them are original research
work performed in my Master thesis framework.
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1 A guided visit into the random world

1.1 Diffusion and random walks

We will first define the different concepts used in this manuscript. The first subsection will be
dedicated to basic notions, like randomness, graphs, discrete and continuous random walk. We
will define what random means for us, and what we call a random walk, either in discrete or
in continuous space. The second sub-section will introduce a link between discrete space and
continuous space diffusion: we present it on Euclidian lattices, and we will use it on complex
networks as well as for fractional diffusion. The last sub-section will present the mathematical
tools used all across the manuscript: Fourier and Laplace transforms, average definition as well
as a link between discrete and continuous random walk. This sub-section content could be found
in any (good) textbook related to diffusion, we simply picked up what would be used along this
manuscript, and defined the conventions used for the mathematical transforms.

1.1.1 Basic notions

Randomness

Random will in this manuscript mean non deterministic or non predictable: if I throw a die, I
know that I will obtain a number between 1 and 6. If I know exactly the initial position, the
initial velocity, the force applied, and so on, I could determine in advance the final result (if we
except any quantum effect). But in the practice, I just know that for a normal die, I have an
equal probability to obtain any integer between 1 and 6.

In such experiment, we only have a probabilistic information on the result: we don’t know
what will be the result of a given experiment, but we know that if we repeat the same experiment
N times, with N � 1, we will obtain in average piN times the result i, with pi the occurrence
probability of result i, with some fluctuations that decrease (relatively) as N increases. The law
of the large number ensures that the average will be piN , and the central limit theorem gives in
addition the magnitude of fluctuations.

In this manuscript, “random process” will then be used for a probabilistic process, and char-
acterized by a probability distribution. The resulting event is a “random variable”, and can be
either discrete or continuous. A discrete random variable may assume either a finite number of
values, or and infinite sequence of values, a continuous random variable may assume any value
in an interval or collection of intervals.

For a discrete random variable, we define the probability mass Prob(X = i) that the random
variable X takes the value i, such that

∑

i

Prob(X = i) = 1. (1.1)

The outcomes of a rolling die is an example. The random variable X can take six different values
{1, 2, 3, 4, 5, 6}, and the probability mass is:

Prob(X = i) =





1

6
, if i = 1, 2, 3, 4, 5, 6

0, otherwise.

(1.2)

For a continuous random variable, we will use a probability density function f(x) such that
Prob(a ≤ X ≤ b), the probability that the random variable X takes a value between a and b,

2



1.1 Diffusion and random walks

satisfies

Prob(a ≤ X ≤ b) =

∫ b

a
f(x)dx (1.3)

f(x) is normalized: for a real random variable, f(x) satisfies

∫ ∞

−∞
f(x)dx = 1 (1.4)

Graph

The main random process of interest in this manuscript are the random walks. Before defining
properly what we call here a random walk, we will define the spatial environment in which the
random walk occurs.

We will first focus on discrete spaces, that we will model using graphs. A graph is a set of
nodes (or points) connected through edges (or links). We can define several quantities using this
simple definition:

• “neighbors” nodes are two nodes connected by an edge,

• the “connectivity” is the number of neighbors of a given node,

• a “cycle” is a given number of edges forming a closed chain (the first node is also the last
one),

• a “tree” is a graph with no cycle,

• a “directed graph” is a graph where it exists at least two nodes i and j such that the edge
i→ j is not symmetric to the edge j → i (edges are here the probability to jump from i to
j: the probability to go from i to j is not equal to the probability to go from j to i),

• a “finite” graph is a graph containing a finite number of nodes,

• an “infinite” graph is in the contrary a graph made with an infinite set of nodes,

• the “chemical distance” between two nodes is the number of edges linking those two nodes
following the shortest possible path.

Some simple examples of graph can now be introduced.

A complete graph is a graph where every pair of node is connected. The complete graph of
degree n, noted Kn (from the German komplett) has n nodes, n(n− 1)/2 edges. Every node has
a connectivity n − 1. The chemical distance between two nodes is always 1 (all the nodes are
connected), and ∀n > 2, graphs Kn are finite and contain cycles. Figure 1.1 shows, from left to
right, K3, K4 and K5.

A lattice graph is a graph who corresponds to a usual grid, like square grid or triangular grid.
For instance a usual 2D Euclidian lattice of size X is a square grid of size X × X. For this
graph, interior nodes have a connectivity 4, border nodes a connectivity 3, and angle nodes a
connectivity 2. Fig. 1.2 shows a 2D Euclidian lattice of size X = 4.

At last, the Bethe lattice or Cayley tree is a graph where the connectivity of every node is the
same, and without any cycle. This tree is by definition infinite. Figure 1.3 shows such graph for
a connectivity z = 3.
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1 A guided visit into the random world

Figure 1.1: Complete graphs K3, K4 and K5.

Figure 1.2: 2D Euclidian lattice with X = 4.

Physicists use indifferently the words “graph” and “network”. Some networks are called “com-
plex”, when they have topological properties very different from usual Euclidian lattices. Among
the “complex” features, we can introduce:

• small-world networks, where the network diameter D, namely the longer chemical distance
between two nodes, grows like D ∝ ln(N), where N is the number of nodes in the network
;

• scale-free networks, where the connectivity distribution follows a power-law (at least asymp-
totically): the probability that a node have k neighbors is P (k) ∝ k−γ ;

• scale-invariant networks, where the same properties are conserved, at least in average, at
all scales: the number of nodes N(r) within a shell of size r is N(r) ∝ rdf , where df is the
fractal dimension. Among those networks, we can introduce deterministic fractal networks
that are self-similar, namely where the same pattern is observed at all scales.

As example of real complex networks, we can introduce the yeast protein interaction network
(PIN) [101], which is scale-free and exhibit a small-world structure [217]. In this network, every
node is a protein present in yeast cell. When two proteins interact, namely when two proteins stick
together in a solution, a link between the two corresponding node is added. The resulting network
is shown in Figure 1.4: the more the node is connected, the bigger is the sphere representing this
node. We observe that the majority of nodes have a small connectivity, and that the few proteins
that interact with many other structure the network.
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1.1 Diffusion and random walks

Figure 1.3: Bethe lattice of connectivity z = 3.

Figure 1.4: The yeast PIN (Picture generated by LaNet-vi software, http://lanet-
vi.soic.indiana.edu/), obtained from the filtered yeast interactome.

Very different real complex networks have been studied, like the World Wide Web network
[4], social networks and epidemic spreading [155], urban transit system [230] or electric power
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1 A guided visit into the random world

transmission grids [53]. A lot of them have been found to be scale-invariant [204].

We will now introduce some theoretical models that illustrate one of the properties defined
previously.

A model of scale-free networks is given by the Barabási-Albert model[3]: we start with a small
connected network of m0 nodes, and we add one by one the other nodes. Each new node is
connected with m existing nodes, but not with a flat probability. The new node have a higher
probability to make a link with an already highly connected node. The probability to make a
link with node i is:

Pi =
ki∑
j kj

, (1.5)

where ki is the connectivity of node i. Such network has a connectivity distribution scaling like
P (k) ∝ k−3. Figure 1.5 shows an example of such network, with m = 2, and 64 nodes.

Figure 1.5: Drawing of a Barabási-Albert graph (m=2, 64 nodes).

Self-similar networks will be illustrated with a deterministic fractal network: if scale-invariant
networks have the same property in average at all scales, self-similar networks like deterministic
fractals have exactly the same pattern at an infinite number of length scale. We can for instance
introduce the Sierpinski gasket, defined as a triangle where at each step, we remove an inner
triangle in any full triangle. If we consider the network of the triangle edges, we obtain a fractal
network. As shown in Figure 1.6, this network has 3(3g + 1)/2 nodes at generation g (g = 0 is
the original triangle). Every node have a connectivity k = 4 except the three initial nodes that
have a connectivity k = 2.

We can introduce the fractal dimension: within a ball of radius r, we have N(r) nodes. N(r)
is, for a fractal, a power-law: N(r) ∝ rdf , where df is the fractal dimension. We can compute this
dimension for the Sierpinski gasket: when we double the ball radius, we encompass a network of
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1.1 Diffusion and random walks

Figure 1.6: Scheme of the Sierpinski gasket first generations.

the next generation. This leads to:

N(2r)

N(r)
=

3g+2 + 3

3g+1 + 3
→
r→∞

3⇔ 2df = 3⇔ df =
ln(3)

ln(2)
' 1.58 . . . (1.6)

Discrete space random walk

Now that we have defined a random process and a discrete space, we can define what a discrete
space random walk is. The random walker perform a succession of jumps: at each step, the
random walker chooses a random node between the neighboring nodes, and jump toward the
chosen one.

The jump process is a random process and the walker position the resulting random variable:
we can define the probability mass for a single step ωij = ωi→j , namely the probability that being
at node i, the random walker choose the node j. Normalization gives

∑

j

ωij = 1 (1.7)

We will first assume that the random walker has no memory: every time he is on site i, the
probability ωij to jump toward site j does not depend on the previous steps. This is a property
called “Markov property”: the probability to be in rn+1 only depends on the position rn. This
property can be written as follow

Prob(rn+1 = x|r1, r2, . . . , rn) = Prob(rn+1 = x|rn) (1.8)

The probability Prob(rn+1 = x|r1, r2, . . . , rn) to be at position x after n+1 steps, knowing the n
previous positions of the random walker r1, . . . , rn is equal to the probability Prob(rn+1 = x|rn)
to be at position x after n + 1 steps, knowing only the previous position rn. The positions
r1, . . . , rn−1 do not have any influence on the n→ n+ 1 jump.

We will consider, at least in the beginning of the manuscript, only Markovian random walk.
Non-Markovian random walks allows to take in account memory effects, but are far more cum-
bersome to deal with.

A discrete random walk is then characterized by a succession of random variables, the position
of the random walker after n steps, n ∈ N. For a given graph, we will often consider nearest
neighbor random walk: we set ωij = 0 if i and j are not neighbor, and ωij = 1/ki else, where ki
is the connectivity of node i.
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1 A guided visit into the random world

In the case of Markovian processes, to characterize entirely the random walk, we will use the
propagator P (r, n|rS), defined as the probability to find the random walker at the position r
after n steps, knowing that the initial position is rS . This propagator is, for a given n, the simple
probability mass of the random walker position. Normalization gives in particular:

∀n ∈ N,
∑

i

P (ri, n|rS) = 1 (1.9)

To compute this propagator, we can write a forward equation

P (r, n|rS) =
∑

r′

ωr′rP (r′, n− 1|rS) (1.10)

This equation links the probability to be at r at time n and at r′ at time n− 1: the only way to
be in r at n is to be in a site r′ linked to r one step before, and to perform a step r′ → r. The
probability to be in r′ after n− 1 step is P (r′, n− 1|rS), and the probability to jump from r′ to
r is ωr′r. If we sum this over all possible r′, we find P (r, n|rS).

For a finite graph of size N , we can transform equation (1.10) into a matrix equality, using the
transition matrix Ω = [ωij ] (N ×N matrix)




P (r1, n|rS)
...

P (rN , n|rS)


 = Ω.




P (r1, n− 1|rS)
...

P (rN , n− 1|rS)


 (1.11)

A simple recurrence then gives




P (r1, n|rS)
...

P (rN , n|rS)


 = Ωn.




P (r1, 0|rS)
...

P (rN , 0|rS)


 (1.12)

This equation is called the Chapman-Kolmogorov equation for Markov chains. If we know the
initial position rS , and the transition matrix Ω, we can compute the whole propagator, at least
formally.

We have defined discrete random walks, we will now show how to extend this defintion to
obtain continuous random walks (continuous in space and in time).

Continuous random walks

Several ways exist to define a continuous random walk. A simple manner is to use the problem
described in 1905 by Karl Pearson, in a study of mosquito’s population migration in a forest.
Pearson asked [156]:

“A man starts from a point O and walks l yards in a straight line; he then turns
through any angle whatever and walks another l yards in a second straight line. He
repeats this process n times. I require the probability, that after these n stretches he
is at distance between r and r + dr from his starting point.”

Lord Rayleigh gave the answer a week after [166]. If n is great enough, the probability is

dP (r) ∼ 2

nl2
e−

r2

nl2 rdr (1.13)
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1.1 Diffusion and random walks

This random walk takes place in a 2D Euclidian space. At each step, the mosquito chooses
randomly a direction, and then goes straight for a given distance l. The answer given by Lord
Rayleigh is the probability to be in position r after n steps. Knowing the time needed to perform
a step, we could extract a propagator, namely the probability to be at a distance r at time t.

Pearson walks are thus not really easy to deal with, since they are not Markovian: the joint
process (position, speed) is Markovian, but not the process (position) alone. We indeed cannot
predict the position at t + dt knowing only the position at t: during a step, we also need the
speed to predict the future position.

Another way to define a continuous Markov process is to take the continuous limit of an infinite
discrete lattice, with a classical rule ωij = 0 is i and j are neighbors, and ωij = 1/ki else.

We can try to obtain as previously an equation linking p(x, t + τ |xS) and p(x, t|xS), where
p(x, t|xS) is the probability to be in position x at time t starting from xS at time t = 0. If we
consider a random walk on a 2D infinite Euclidian lattice, where the distance between two sites
is ε, and the time between two steps is τ , we can write a forward equation like equation (1.10)

p(x, t+ τ |xS) =
1

4
(p(x− εex, t|xS) + p(x + εex, t|xS) + p(x− εey, t|xS) + p(x + εey, t|xS))

(1.14)
This equation can be understood with Figure 1.7 as follows: to be in position x at time t+ τ , the
random walker has to be at time t in one of the four neighboring sites x− εex, x + εex, x− εey
or x + εey, and to perform a jump toward x. The probability to do the right jump is 1/ki = 1/4
for a 2D Euclidian lattice.

x
x+εexx-εex

x-εey

x+εey

1/4 1/4

1/41/4

Figure 1.7: Scheme of the forward Kolmogorov equation.

Here, τ and ε are real numbers. We have in the limit τ → 0 and ε→ 0, using Tailor’s theorem:

p(x, t|xS) + τ
∂p

∂t
(x, t|xS) = p(x, t|xS) +

ε2

4

(
∂2p

∂x2
(x, t|xS) +

∂2p

∂y2
(x, t|xS)

)
(1.15)
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1 A guided visit into the random world

If we assume that τ ∼ ε2, we can write:

∂p

∂t
(x, t|xS) =

ε2

4τ

(
∂2p

∂x2
(x, t|xS) +

∂2p

∂y2
(x, t|xS)

)
(1.16)

If we generalize this result for a dimension d, we obtain

∂p

∂t
(x, t|xS) =

D

2d

d∑

i=1

∂2p

∂x2
i

(x, t|xS) (1.17)

where D = ε2/τ is the diffusion coefficient. We have here a forward Fokker-Planck equation to
compute the propagator, knowing the initial conditions.

As for discrete random walk, the random walker position at time t is a continuous random
variable whose probability density function is the propagator. Normalization gives

∀t ∈ R+,

∫ ∞

−∞
p(x, t|xS)dx = 1 (1.18)

We will now see how we can link this miscroscopical description of random walk with some
macroscopic observables of diffusion.

1.1.2 From random walk to macroscopic diffusion

So far, we looked at a single random walker evolving on a graph or on an Euclidian space: a
pertinent observable of this evolution is the propagator. If instead of looking at a single random
walker we focus on a very large number of independent random walkers, this propagator becomes
the particle concentration, a macroscopic observable.

The macroscopic behavior of a large number of identical and independent random walkers will
be called “diffusion”.

To describe diffusion processes, one often use a distribution function u(r, t) giving the value of
an observable at position r and at time t, satisfying the so-called heat equation:

∂u

∂t
− α∆u = 0 (1.19)

where α is a positive constant and ∆ the Laplace operator or Laplacian. This operator is defined
in Cartesian coordinates as:

∆u =

d∑

i=1

∂2u

∂x2
i

(1.20)

We note that this equation is exactly the one obtained for a single walker with Kolmogorov
forward equation (1.17), with α = D/(2d).

The steady-state, or stationary state, can be found solving:

α∆u = 0 (1.21)

This steady-state will prove to be useful to compute first-passage observables.
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1.1 Diffusion and random walks

Adolf Fick derived in the year 1855[88] the fundamental laws of diffusion. If we note c(r, t) the
particle concentration at position r and at time t, and D ≥ 0 the diffusion coefficient, we have:

∂c

∂t
=
D

2d
∆c (1.22)

where ∆ is the Laplace operator. We retrieve a classical heat equation, where u = c and α =
D/(2d).

The link between single particles diffusion, observed by Robert Brown [42] or Jean Perrin
[157], and the heat equation has been made in 1905 by Albert Einstein[82] . He showed that the
diffusion coefficient can be deduced from the mean square displacement 〈r2〉 of a single particle:

D =
〈r2〉
t

(1.23)

Here, D is a macroscopic observable, and 〈r2〉 a microscopic one.

1.1.3 Mathematical tools

The solution of the heat equation (1.19) has been found in 1822 by Joseph Fourier[89]. A
generalization of his approach involves two kind of mathematical transforms: Fourier transform
and Laplace transform.

Fourier transform

Fourier transform decomposes a time-dependent function into its constituent frequencies:

F(f)(ω) = f̂(ω) =

∫ ∞

−∞
f(x)e−ı2πxωdx (1.24)

Knowing the Fourier transform, we can retrieve the initial function using the inverse Fourier
transform:

f(x) =

∫ ∞

−∞
f̂(ω)eı2πωxdω (1.25)

A differential equation becomes a simple polynomial equation in Fourier space:

F
(
dnf

dxn

)
(ω) = (ı2πω)nf̂(ω) (1.26)

Characteristic functions

A classical application of Fourier transform is the characteristic function. If we have a contin-
uous random variable X, the Fourier transform of the probability density function fX (with a
slightly different convention) is called the characteristic function φX :

φX(k) =

∫ ∞

∞
eikxfX(x)dx (1.27)

Characteristic function defines completely the probability density function.
Fourier transform of a convolution is the multiplication of Fourier transforms:

F
(∫ x

0
f(x′)g(x− x′)dx′

)
= (̂f ? g) = f̂ .ĝ (1.28)

11



1 A guided visit into the random world

Using this property, we can obtain easily the characteristic function of a sum of n identically
distributed random variables:

φX1+X2+...+Xn(k) = φX1(k)φX2(k) . . . φXn(k) = (φX(k))n (1.29)

This property will be widely used when considering discrete random walks, when each jump is a
random variable whose probability density function is known.

Fourier series

Fourier transform is adapted to a continuous variable defined on R. If we have boundary
conditions and a variable confined on a given segment of size T , we can extend the function f
on R with a T -periodic function. The Fourier transform can here be reduced to Fourier series. If
we use exponential Fourier series, we have:

∀n ∈ Z, f̂(n) =
1

T

∫ T/2

−T/2
f(x)e

−ı2π n
T
x
dx (1.30)

As previously, we can retrieve the initial function through resummation:

f(x) =

∞∑

n=−∞
f(n)e

ı2π
n

T
x

(1.31)

Fourier series still transform a derivative equation into a polynomial one:

d̂kf

dtk
(n) = f̂ (k)(n) =

(
2ıπn

T

)k
f̂(n) (1.32)

Discrete Fourier transform

At last, for a variable defined on a finite discrete set, typically on a graph, we can adapt the
Fourier transform using discrete Fourier transform. Let consider a sequence x0, . . . , xN−1. The
discrete Fourier transform is:

∀k ∈ [0, N − 1], Xk =
N−1∑

n=0

xne
−ı2π k

N
n

(1.33)

This formula is similar to the one for Fourier series, except that the integral is replaced by a
finite sum. The inverse discrete Fourier transform is given by:

∀n ∈ [0, N − 1], xn =
1

N

N−1∑

n=0

Xke
ı2π

k

N
n

(1.34)

Derivative have no meaning for discrete sequences, but this discrete Fourier transform will still
be a way to simplify an analog of heat equation for random walks on graphs.
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1.1 Diffusion and random walks

Laplace transform

Laplace transform is an analog of Fourier transform, where instead of transforming a function
into its frequencies, Laplace transform resolves it into its moments:

L(f)(s) = f̃(s) =

∫ ∞

0
e−stf(t)dt (1.35)

The inverse Laplace transform is given by a complex integral, usually cumbersome to compute:

f(t) =
1

2πı
lim
T→∞

∫ γ+ıT

γ−ıT
estf̃(s)ds (1.36)

Laplace transform simplify once again differentiation:

L
(
dnf

dtn

)
(s) = f̃ (n)(s) = snf̃(s)− sn−1f(0)− . . .− f (n−1)(0) (1.37)

This formula now involves the values of the real function f and its derivative in t = 0.
We also note that Laplace transform of convolution is simply the product of Laplace transforms:

L
(∫ x

0
f(x′)g(x− x′)dx′

)
= (̃f ? g) = f̃ .g̃ (1.38)

Z-transform

For a discrete sequence, the discrete Laplace transform is called Z-transform:

x̃(z) =
∞∑

n=0

x[n]z−n (1.39)

z is here a complex number, chosen in the region of convergence of the Z-transform.
The inverse Z-transform is given by:

x[n] =
1

2πı

∮

C
x̃(z)zn−1dz, (1.40)

where C is a counterclockwise closed path encircling the origin, and chosen so that the integral
exists. This contour C has to encircle all the poles of x̃(z).

Average

When using probabilities, one often performs an “average” of a given quantity. In the frame-
work of random walks, we will use two kind of averages: time average and ensemble average. A
time average, noted 〈. . .〉t, is defined for a single random walk as the average along a trajectory.
It is defined as:

〈A〉t =

∫ ∞

0
A(t)dt (1.41)

For instance the time-averaged mean square displacement is:

〈r2〉t(τ) =

∫ ∞

0
‖r(t+ τ)− r(t)‖2dt, (1.42)
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1 A guided visit into the random world

where r(t) is the position of a given random walker at time t.
An ensemble average, noted 〈. . .〉, is defined for a large set of random walks. The averaged

quantity is weighted by the probability density function f of the corresponding random variable:

〈A〉 =

∫
Adf (1.43)

For instance the mean first-passage time (MFPT) is weighted by the first-passage density FPT(t):

〈T〉 =

∫ ∞

0
tdFPT =

∫ ∞

0
tFPT(t)dt (1.44)

General heat equation solution

We will here show how Fourier and Laplace transforms can be used to solve a general heat
equation, for instance in three dimensions:

∂f

∂t
=
D

6
∆f =

D

6

(
∂2f

∂x2
+
∂2f

∂y2
+
∂2f

∂z2

)
(1.45)

If we Fourier transform (on each direction) and Laplace transform this equation, we obtain:

s
̂̃
f − f̂(t = 0) =

D

6

(
(ı2πωx)2 + (ı2πωy)

2 + (ı2πωz)
2
) ̂̃
f (1.46)

We assume that the initial condition is that all particles are in r = (0, 0, 0) at time t = 0.
f(t = 0) is thus a Dirac, and f̂(t = 0) = 1. This leads to:

̂̃
f =

1

s+
D

6

(
(2πωx)2 + (2πωy)

2 + (2πωz)
2
) (1.47)

An inverse Laplace transform gives:

f̃ = e
−D

6

(
(2πωx)2 + (2πωy)

2 + (2πωz)
2
)
t

(1.48)

At last an inverse Fourier transform leads to the following result:

f(x, y, z, t) =
1

(2πD3 t)
3/2

e
−x

2 + y2 + z2

2D
3 t (1.49)

This solution works for a particle starting in (0, 0, 0) at time t = 0, and evolving in a 3D media
without boundary. We easily retrieve Einstein’s formula:

〈r2(t)〉 =

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞
(x2 + y2 + z2)f(x, y, z, t)dxdydz (1.50)

=

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞
(x2 + y2 + z2)

1

(2πD3 t)
3/2

e
−x

2 + y2 + z2

2D
3 t dxdydz (1.51)

=

∫ ∞

0

r2

(2πD3 t)
3/2

e
− r2

2D
3 t 4πr2dr (1.52)

=
8Dt

3
√
π

∫ ∞

0
u4e−u

2
du (1.53)

= Dt (1.54)
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S

T

Figure 1.8: Scheme of a generic first-passage problem.

• We have defined what diffusion and random walks are ;

• we have introduced networks and some mathematical tools ;

• we have shown a link between random walks and diffusion.

Quick summary

1.2 First-passage properties

We will now focus on a more specific subject concerning diffusion and random walks: first-
passage properties. The first sub-section will define the first-passage observables that we will use
all along this manuscript. The second sub-section will introduce the renewal equation, only valid
for Markovian processes, and shows how to relate the mean first-passage time (MFPT) with
the pseudo-Green functions. This link is central for this manuscript: it allows a quantitative
estimation of MFPT as soon as the pseudo-Green function can be calculated or approximated.
The last sub-section extend this relationship to other first-passage time observables. The first
two sub-sections presents textbook results while the last one introduce some original results that
have been obtained during my Master thesis.

1.2.1 The basic of first-passage

We will consider a random walk starting from rS . We name first-passage time the first time the
random walker hits a target site rT . This time is called the first-passage time (FPT). As shown
in Figure 1.8, this quantity is defined for a single random walker. This quantity is fundamental
in the study of transport limited reactions [169, 185, 133], as it gives the reaction time in the
limit of perfect reaction.

This quantity is also useful in target search problems [198, 69, 22, 24, 84, 121], and other
physical systems [66, 192, 168], and will be used throughout this manuscript.

We can extract several quantities with this first definition. The more complete quantity is
the first-passage density FPT(t) giving for a single particle the probability that the first-passage
time is t. This density is the probability density function of the first-passage time, satisfying in
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1 A guided visit into the random world

particular: ∫ ∞

0
FPT(t)dt = 1 (1.55)

We can also consider the moments of this random variable, namely:

〈Tn〉 =

∫ ∞

0
tnFPT(t)dt (1.56)

The first moment (n = 1) is called the mean first-passage time (MFPT), and is for some cases a
way to characterize the whole first-passage density.

Those moments are not always defined: the integral of equation (1.56) does not always converge.
If for instance FPT ∝ t−1−α when t→∞, with α ∈]0, 1[, the first-passage density can be correctly
normalized, but all integer moments are infinite.

For a discrete time random walk, this first-passage density becomes the probability mass of a
discrete random variable, the first-passage time. Normalization becomes:

∞∑

t=0

FPT(t) = 1 (1.57)

The moments are also defined using infinite sums:

〈Tn〉 =
∞∑

0

tnFPT(t) (1.58)

If the starting point and the target point are the same, the first-passage time is called first-
return time.

Discrete and continuous first-passage

So far, we talked about “sites” as a region of space that the random walker could hit. This
notion is not exactly the same for a random walk on a graph, and for a random walk in continuous
space.

Figure 1.9 shows a random walk on an usual 2D Euclidian lattice. A site is in this case a
network node, and one can define easily the first-passage as the first time the random walker hits
the target node.

For a random walk on a continuous space, the target site is defined as a subpart of the em-
bedding space. If the target site is a point, in dimension d ≥ 2, the probability that a random
walker hits the target is smaller than 1: the first-passage time is in this case not normalized.
In order to be almost sure to hit the target eventually, one has to define an extended (or non
point-like) target. We will often use the approximation that the target extension is very small,
but one has to remember that for a continuous space random walk, the target is never, except
for unidimensional systems, a point.

Recurrence and compacity

We can here introduce two related notions: compact and non-compact exploration, and tran-
sient or recurrent sites.
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S

T

Figure 1.9: Scheme of a discrete first-passage problem.

To define a transient or a recurrent site, we have to compute the probability that, starting from
a given point, a random walker in an infinite media returns eventually to this starting point. If
this return probability is 1, then almost surely, the random walker will come back to the starting
point. Such point is called “recurrent”. If not, the point is called “transient”. Pólya theorem
[161] states that the 1D and 2D Euclidian spaces are recurrent (everywhere), and the Euclidian
spaces of dimension d ≥ 3 are transient (everywhere). One has to take care that some networks
can contain both transient and recurrent sites, like the one described in reference [2].

Since this property is site-dependent, we can define a closely related notion that is media-
dependent: the compacity of the exploration[72]. Basically, if all sites are recurrent, then the
exploration will be called “compact”, and if all sites are transient, the exploration will be called
“non-compact”. For homogeneous networks, namely where all sites have the same recurrence
property (either recurrent or transient), compact is a synonym of recurrent, and non-compact of
transient.

We can understand this notion as follows: for a compact exploration, once a site is visited,
the near vicinity will almost certainly be visited. For a non-compact exploration, one site can be
visited while the neighboring one has a probability strictly smaller than 1 to be visited.

We can propose a link with a more usual definition of compacity by looking at the trace of
a random walker in continuous space. This trace, namely the ensemble of all the sites visited
between t = 0 and t has a fractal dimension dt equal to the embedding space dimension for a
compact exploration, and a dt smaller that the embedding space dimension for a non-compact
one. Namely, a compact exploration visit all the sites in a given area, while a non-compact one
will visit only some of them before going to another area. For a regular Brownian motion, the
fractal dimension of the trace is dt = 1 for d = 1, and dt = 2 for d ≥ 2: a Brownian motion
in d > 2 is non-compact since the fractal dimension of the trace will be smaller than the space
dimension, leading to a non-compact exploration.

We will see below how to link the compacity property with the fractal dimension of the em-
bedding space df and the walk dimension dw of a scale-invariant random walk.

Several targets and first-passage
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1 A guided visit into the random world

S

T1

T2

Figure 1.10: Scheme of a two target first-passage problem.

So far, we considered the case of a random walk with a single target. If several targets exist, new
first-passage quantities appear. As shown in Figure 1.10, if more than one target is available, one
can compute the “first-passage splitting probabilities”, namely the probability that the random
walker, starting from rS , hits the target ri before any of the other targets rj 6=i. This splitting
probability will be noted Pi, it correspond to the probability mass of the discrete random variable
“index of the first target hitted”. Normalization once again gives:

∑

i

Pi = 1 (1.59)

Those probabilities allow to study quantitatively competitive reactions[169].

Another quantity is the conditional first-passage density, namely the first-passage density at
target i, without touching any of the other targets j 6= i. This density, noted FPTi(t) is the
probability density function of the first-passage time at target i, knowing that the target i is the
first target hitted. It is normalized

∫ ∞

0
FPTi(t)dt = 1 (1.60)

As previously, we can define the moments of conditional first-passage time:

〈Tn
i 〉 =

∫ ∞

0
tnFPTi(t)dt (1.61)

The last quantity we will focus on is the first exit time, namely the time needed to reach for
the first time any of the targets. The related density FET(t) is normalized, and satisfy:

FET(t) =
∑

i

PiFPTi(t)⇒
∫ ∞

0
FET(t)dt =

∑

i

Pi = 1, (1.62)

where the Pi are the splitting probabilities. If the targets surround entirely a given volume, like
in Figure 1.11, we retrieve the alternative notion of first exit time given below, namely the time
needed to exit the volume for the first time.
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1.2 First-passage properties

S

Figure 1.11: Scheme of a first exit problem.

Other first-passage quantities

We will now introduce some supplementary first-passage quantities, to offer a wide overview
of what a first-passage observables could be.

We always talk about first-passage, but for random walk performing jumps in a continuous
space, two quantities can be defined: the first-passage time and the first arrival time[123]. The
first-passage time is the first time the random walker trajectory crosses the target, but this could
occur during a jump, where the random walker does not hit the target. The first arrival time is
in the contrary the first time the random walker hits the target. By definition, the first arrival
time is always larger (or equal) than the first-passage time.

The first exit time is defined when the random walker starts in a given subset of space. As
shown in Figure 1.11, the first time the random walker exits this subset is the first exit time. It
is equivalent to a first-passage time if we define the subset boundary as the target.

The maximal excursion is a related concept: rmax(t) is the maximal distance from the origin
the random walker have reached at time t. If we note r(t) the random walker position at time t,
we can define this maximal excursion as:

rmax(t) = max
0≤t′≤t

‖r(t′)− r(t = 0)‖ (1.63)

This maximal excursion is a growing function of time, and is closely related to the first exit time.
If the first exit time of a sphere centered on r(t = 0) and of radius r0 is t, then rmax(t) = r0. The
first exit time focus on the time needed to exit a given subset while the maximal excursion focus
on the maximal distance reached at a given time.

At last, we can introduce the occupation time, the number of time Ni a random walker visit a
given site ri before reaching the target site rT . This quantity is useful in the context of reactions
occurring with a finite probability per unit of time[21, 35, 65]. We stress that the occupation
time provides a finer information on the trajectory of the particle than the first passage time.
We can retrieve this first-passage time T with the sum over all sites of the occupation time:

T =
∑

i

Ni (1.64)
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1 A guided visit into the random world

We have introduced the first-passage observables, we will now see how to compute them ana-
lytically.

1.2.2 Renewal equation and Green functions

To compute the first-passage observables, we will introduce the Green functions, that will be
extensively used in this thesis. Instead of just defining them, we will see how they appear
“naturally” when computing the mean first-passage time.

To do so, we will consider a Markovian random walker. As previously, we note P (rT , t|rS) the
propagator, namely the probability that the random walker is in position rT at time t starting
from rS at time t = 0, and FPT(t) the first-passage density from rS to rT . The renewal equation
links those two quantities:

P (rT , t|rS) = δt,0δrT ,rS +

∫ t

0
FPT(t′)P (rT , t− t′|rT )dt′ (1.65)

This equation means that the probability to be at rT at time t is equal to the probability to
hit rT for the first time at any time t′ ∈ [0, t], and to come back in the same position rT at time
t− t′. The first term of the right hand side is the correction if t = 0 and rT = rS . δ is here the
Kronecker symbol: δx,y = 1 if x = y, and 0 else. Since we have here a simple convolution, we can
obtain a simple equation after a Laplace transform:

P̃ (rT , s|rS) = δrT ,rS + F̃PT(s).P̃ (rT , s|rT ) (1.66)

We can develop those Laplace transforms into s series, assuming that all moments exist:

F̃PT(s) =

∫ ∞

0
e−stFPT(t)dt =

∞∑

n=0

(−1)n
(∫ ∞

0
tnFPT(t)dt

)
sn =

∞∑

n=0

(−1)n〈Tn〉sn (1.67)

where 〈Tn〉 is the nth moment of the first-passage time.

We cannot use directly the same formalism for the propagator: in a confined environment,
when t→∞, the propagator does not converge to 0 but to the stationary probability Pstat:

P̃ (rT , s|rS) =

∫ ∞

0
e−stP (rT , t|rS)dt

=

∫ ∞

0
e−st (P (rT , t|rS)− Pstat(rT )) dt+

Pstat(rT )

s

=
∞∑

n=0

(−1)n
(∫ ∞

0
tn (P (rT , t|rS)− Pstat(rT )) dt

)
sn +

Pstat(rT )

s
(1.68)

At last, we can obtain the mean first-passage time, by identification of the s term in equation
(1.66):

〈T〉 =

∫ ∞

0
(P (rT , t|rT )− Pstat(rT )) dt−

∫ ∞

0
(P (rT , t|rS)− Pstat(rT )) dt

Pstat(rT )
(1.69)

We will define the pseudo-Green function as:

H(rT |rS) =

∫ ∞

0
(P (rT , t|rS)− Pstat(rT )) dt (1.70)
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1.2 First-passage properties

Using this notation, we can write the MFPT in a most compact way:

〈T〉 =
H(rT |rT )−H(rT |rS)

Pstat(rT )
(1.71)

This expression was found first by Aldous [6] (chapter 2, Lemma 12), then by Noh & Rieger
[148] and later by [91]. We found during my Master thesis [66] that this expression was not only
a formal notation: it has a huge potential since we can compute those pseudo-Green functions,
either exactly or with very good approximations, for a very wide range of random walks.

1.2.3 Results already known

We will present two papers that we will intensively use in this manuscript. The first one [65]
links splitting probabilities and related first-passage observables with pseudo-Green function, and
gives exact expressions as well as some approximations for pseudo-Green functions. The second
one [67] was part of my Master thesis, and gives an extension for occupation times and related
observables.

Two targets problem

The first paper [65] introduces a way to link splitting probabilities and related quantities with
pseudo-Green functions. So far, we know that MFPT can be expressed, for a Markovian random
walker evolving on a regular lattice, as:

〈T〉 =
H(rT |rT )−H(rT |rS)

Pstat(rT )
(1.72)

When there is more than one target available, we can extend this result, and compute the splitting
probabilities. To do so, we will consider a network where two targets rT1 and rT2 exist, and use the
so-called “electrical analogy” developed in [79]. The relationship between the flux, the potential
and the mean first-passage time have been investigated in [57].

We will consider that a constant incoming flux of particles J comes from rS , and that an
outcoming flux of particles J1 exits in T1, and J2 in T2. We suppose that we have reached the
equilibrium state, such that J , J1 and J2 are constant. In particular, since all particles are
eventually absorbed, either by T1 or T2, we have J = J1 + J2. In this model, the splitting
probability, namely the probability to reach target i before touching target j 6= i is Pi = Ji/J .
The total number of particles N present in the domain is N = J〈T〉, where 〈T〉 is the mean
first-passage time by any of the target. Since we have reached equilibrium, we can write that the
average number of particle in ri, ρ(ri) satisfies:

ρ(ri) =
∑

j

ωijρ(rj) + JδiS − J1δiT1 − J2δiT2 . (1.73)

This equation means that to be in ri, the particle must come from a neighbor j, except in S
where we have to add the incoming flux J , and in Ti, where we have to remove the outcoming
flux Ji. Here, δ is the Kronecker delta function: δxy = 1 if x = y, 0 else.

To solve this problem, we use the pseudo-Green function H [14, 65], which satisfies:

H(ri|rj) =
∑

k

ωikH(rk|rj) + δij −
1

N
, (1.74)
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1 A guided visit into the random world

where N is the total number of sites of the lattice. This function is also symmetrical in its

arguments, and the sum
∑

i

H(ri|rj) is a constant independent of j. We obtain:

JH(ri|rS)− J1H(ri|rT1)− J2H(ri|rT2) =
∑

k

ωik (JH(rk|rS)− J1H(rk|rT1)− J2H(rk|rT2))

+JδiS − J1δiT1 − J2δiT2 . (1.75)

It can be seen that JH(ri|rS)− J1H(ri|rT1)− J2H(ri|rT2) and ρ(ri) solve the same equation,
so that up to a constant ρ0, we have:

ρ(ri) = ρ0 + JH(ri|rS)− J1H(ri|rT1)− J2H(ri|rT2). (1.76)

ρ0 can be determined using the fact that
∑

iH(ri|rj) is a constant. If we sum the previous
equation over all nodes, we obtain:

∑

i

ρ(ri) = Nρ0 = N = J〈T〉 ⇒ ρ0 =
J〈T〉
N

(1.77)

We choose flux J1 and J2 so that ρ(rT1) = ρ(rT2) = 0. This means that T1 and T2 are perfect
targets, any particle reaching the target is instantaneously removed. This choice gives at last
three equations, remembering that Ji = PiJ :





ρ0 + JH(rT1 |rS)− JP1H(rT1 |rT1)− JP2H(rT1 |rT2) = 0
ρ0 + JH(rT2 |rS)− JP1H(rT2 |rT1)− JP2H(rT2 |rT2) = 0

P1 + P2 = 1
(1.78)

We can deduce from this system P1, P2 and 〈T〉, adopting a more concise notation for pseudo-
Green functions (H(rTi |rTj ) = Hij , H(rTi |rS) = HiS and H(rTi |rTi) = H0i):





P1 =
H1S +H02 −H2S −H12

H01 +H02 − 2H12

P2 =
H2S +H01 −H1S −H12

H01 +H02 − 2H12

〈T〉 = N
(H01 −H1S)(H02 −H2S)− (H12 −H2S)(H12 −H1S)

H01 +H02 − 2H12

(1.79)

We can easily extend this formalism to an arbitrary number of targets: each target gives an
equation, and normalization of splitting probabilities another one. With n targets, we have n+ 1
equations, just enough to get the n splitting probabilities Pi and the mean first-passage time 〈T〉.

We can also obtain the conditional MFPT 〈Tk〉, namely the mean first-passage time from rS
to rTk knowing that Tk is the first target reached. To do so, we first compute the average number
of particle Nk in the domain that will eventually be absorbed in rTk . We have Nk = Jk〈Tk〉.
This average number is given by:

Nk =
∑

i

ρ(ri)Pk(ri), (1.80)

where Pk(ri) is the splitting probability to reach target Tk first, starting from ri. This equation
is exact, but can be quite complex to deal with. For the two targets case, we have:

N1 =
∑

i

(Hi1 −Hi2 +H02 −H12)(ρ0 + JHiS − J1Hi1 − J2Hi2)

H01 +H02 − 2H12
(1.81)
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1.2 First-passage properties

We can deduce the conditional MFPT using this formula

〈T1〉 =
∑

i

(
Hi1 −Hi2 +H02 −H12

H01 +H02 − 2H12

〈T〉+HiS − P1Hi1 − P2Hi2

P1

)
(1.82)

where P1, P2 and〈T 〉 are the one deduced previously.

Those expressions are valid for any Markovian random walker evolving on a regular lattice,
and can be adapted to other lattices using a similar approach. Splitting probabilities and related
observables can be written using pseudo-Green function, we thus need to compute or to estimate
those functions.

We emphasize that the results obtained here are exact: if the pseudo-Green functions are
known analytically, we get analytically the splitting probabilities or the conditional MFPTs. If
we approximate the pseudo-Green functions, we can estimate those observables, as well as the
error margin, using the error margin of the pseudo-Green functions.

Pseudo-Green functions

Reference [65] also provide exact expressions of pseudo-Green function H for regular hypercubic
Euclidian networks, with periodic or reflective boundary conditions. With periodic boundaries,
we can obtain a general result in d dimension using the definition of (1.74):

H(ri|rj) =

∑
kH(ri ± ek|rj)

2d
+ δij −

1

N
, (1.83)

Using a discrete Fourier transform, and (e1, . . . , ed) as an orthogonal base, we get:

Ĥ(q|rj) =

∑

k

Ĥ(q|rj) cos (q.ek)

2d
+ e−ıq.rj − δq,0 ⇒ Ĥ(q|rj) =

e−ıq.rj − δq,0
1− 1

2d

∑

k

cos (q.ek)
(1.84)

where q = (2πk1/X1, . . . , 2πkd/Xd), with Xi the lattice size in the ith direction, and ki ∈
[0, Xi − 1]. An inverse discrete Fourier transform finally gives:

H(ri|rj) =
1

N

∑

q 6=0

eıq.(ri−rj )

1− 1

2d

∑

k

cos (q.ek)
(1.85)

N =
∏
iXi is here the volume. We can see that the pseudo-Green functions only depends on

the vector ri− rj , and not on the position of ri, as expected for a lattice with periodic boundary
conditions.

We can retrieve this result using directly the propagator. We consider a d-dimensional Euclidian
lattice of size X1× . . .×Xd, with periodic boundary conditions. We can note that Pstat = 1/N =
1/
∏
iXi. If we look at the propagator, we have, for a nearest neighbor random walk on an

Euclidian lattice:

P (r, t|rS) =
1

2d

d∑

i=1

(P (r− ei, t− 1|rS) + P (r + ei, t− 1|rS)) (1.86)
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If we perform a discrete Fourier transform, we get:

P̂ (q, t|rS) =
1

d

d∑

i=1

cos (2πq.ei) P̂ (q, t− 1|rS)

=

(
1

d

d∑

i=1

cos (2πq.ei)

)t
P̂ (q, t = 0|rS), (1.87)

where q =
∑

i kiei/Xi, with ki ∈ [0, Xi − 1]. The random walker is initially in rS , we thus have

P̂ (q, t = 0|rS) = exp(−2ıπq.rS). We can now perform an inverse discrete Fourier transform:

P (r, t|rS)− Pstat(r) =
∑

q 6=0

(
1

d

d∑

i=1

cos (2πq.ei)

)t
e2ıπq.r−rS , (1.88)

We remove the q = 0 term to take in account the −Pstat term. To get the pseudo-Green function,
we just have to integrate this result over time. Since we are here in discrete time, the integration
is in fact a summation:

H(r|rS) =

∞∑

t=0

(P (r, t|rS)− Pstat(r)) =
∑

q 6=0

e2ıπq.r−rS

1− 1

d

d∑

i=1

cos (2πq.ei)

, (1.89)

We retrieve the same expression as the one obtained starting with the functional equation satisfied
by pseudo-Green functions.

This expression can be transposed to reflective boundary lattices, using the image method.
Details can be found in reference [65], but the basic idea is to consider for each wall that an
“image” of the network lies behind the wall, and that instead of being reflected by a straight wall,
the random walker can evolve in the “image” network. This approach works only for “straight”
walls (parallelepipedic domains), and gives in fact back the periodic boundary problem, that have
been solved previously.

With the assumption that a random walker hitting a boundary stay in the same positions, we
obtain for instance for a X × Y rectangle,

H(r|r′) =
4

N

X−1∑

m=1

Y−1∑

n=1

cos

(
mπx′

X

)
cos

(
nπy′

Y

)
cos
(mπx
X

)
cos
(nπy
Y

)

1− 1

2

(
cos
(mπ
X

)
+ cos

(nπ
Y

))

+
4

N

X−1∑

m=1

cos

(
mπx′

X

)
cos
(mπx
X

)

1− cos
(mπ
X

) +
4

N

Y−1∑

n=1

cos

(
nπy′

Y

)
cos
(nπy
Y

)

1− cos
(nπ
Y

) , (1.90)

withr = (x, y) and where the coordinates x and y are half-integers going from 1/2 to X − 1/2 or
Y − 1/2.

At last, in more general domains, one can approximate H by the infinite-space lattice Green
function G0 [14], G0 being evaluated as G0(r|r′) = 3/(2π‖r−r′‖) for r 6= r′, and G0(r|r) = 1.516...
in three dimensions, and G0(r|r′) = −(2/π) ln |r − r′| for r 6= r′, and G0(r|r) = 1.029... in
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Figure 1.12: Schematic picture of the occupation time problem.

two dimensions. More accurate approximations can be found [65] for pseudo-Green function in
general domains near a boundary, but the above approximations are good enough to capture the
qualitative behavior of the pseudo-Green function on usual networks.

Those evaluations are crucial for first-passage time observables. We have shown how to link an-
alytically first-passage properties with pseudo-Green functions: being able to get exactly pseudo-
Green functions leads directly to an analytical expression of first-passage observables. If we only
have a very good approximation of pseudo-Green functions, we will still being able to estimate
the first-passage observables with a very good level of confidence, since the only approximation
will be in the pseudo-Green functions estimate. We will use this to extract the MFPT or splitting
probabilities dependence with lattice volume, with distances, or with lattice topology, knowing
the pseudo-Green functions.

Occupation times

The second paper [67] has been written during my Master thesis, and use the previous results
to compute new first-passage observables, like the mean occupation time. We will go deeper in
details concerning this paper, since the solution found here will somehow be transposed later in
the manuscript.

The occupation time is the number of times a given site i of a lattice has been visited by
a random walker. The statistics of this general quantity has been studied for long, both by
mathematicians [6, 111] and physicists [19, 21, 35, 63, 47, 136, 36, 97]. Occupation time has
proven to be a key quantity in various fields, ranging from astrophysics [87], transport in porous
media [41] or diffusion limited reactions [20]. The point is that as soon as the sites of a system
have different physical or chemical properties, it becomes crucial to know precisely how many
times each site is visited by the random walker.

Figure 1.12 shows a schematic picture of the problem: the random walk begins at the site S,
and the occupation time Ni is the number of times it visits the site i before reaching the target
T . In this picture, Ni = 2.
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1 A guided visit into the random world

Occupation time is for instance used to compute the MFPT in a random-trap model: in such
model, the random walker wait a time τi in position ri. The relation with the occupation time is
the following: the MFPT 〈T〉 at the target rT starting from site rS can be written down as

〈T〉 =
N∑

i=1

〈Ni〉τi, (1.91)

where N is the volume of the confining system, Ni is the number of times the site ri has been
visited before the target is reached and 〈. . .〉 stands for the average with respect to the random
walk. If ∀i, τi = 1, we retrieve the relation between occupation time and MFPT in an usual
random walk:

〈T〉 =

N∑

i=1

〈Ni〉, (1.92)

Concerning the distribution of the MFPT with respect to the disorder, that is with respect
to the τi’s, we are finally back to summing a deterministic number N of independent random
variables 〈Ni〉τi but non identically distributed (because of the factor 〈Ni〉), which requires the
determination of the mean occupation times 〈Ni〉 introduced before.

The whole distribution can become necessary if we look at diffusion limited reactions in confined
media. We can for instance consider a free diffusing reactant A that enters in a cavity and can
react with a given fixed center ri. We assume that each time the walker reaches the reactive site
ri, it has a probability p to react, which schematically mimics an imperfect reaction in confined
geometry. Actually, numerous chemical reactions, ranging from trapping in supermolecules [10]
to activation processes of synaptic receptors[107, 179] can be roughly rephrased by this generic
scheme. Knowing the occupation time distribution in ri, we can compute the probability for A
to react with the center ri before exiting the cavity. More generally, for a random walker starting
from a site rS , we can get the probability Q to react with ri before reaching a target site rT ,
possibly different from rS . Partitioning over the number of times the reactive site ri has been
visited, we have:

Q = 1−
∞∑

k=0

P (Ni = k)(1− p)k. (1.93)

Once again, the random variable Ni is involved, but that time the determination of the entire
distribution P (Ni = k) is needed.

We present here the method of computation of the Ni statistics in confining geometry developed
in [67]. In particular, we obtain explicitly the exact distribution in the case of parallepipedic
confining domains.

We start with the computation of the mean 〈Ni〉, assuming for the time being that the starting
and target sites are different (rS 6= rT ). We note ωij the transition probabilities from site j to
site i. We have

∑
i ωij = 1, and we take ωij = ωji. These general transition probabilities can

take into account reflecting boundary conditions.

We will adapt the electrical analogy considered before: we start by considering an incoming
flux J of particles in rS . Since the domain is finite, all the particles are eventually absorbed in
rT , and in the stationary regime, there is an outgoing flux J of particles in rT . As previously,
the mean particle density ρi satisfies the following equation:

ρ(ri) = ρ0 + JH(ri|rS)− J1H(ri|rT1)− J2H(ri|rT2), (1.94)
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Figure 1.13: Scheme of the mechanism used to get the full occupation time distribution.

where ρ0 is (we have only one target):

ρ0 =
J〈T〉
N

= J (HTT −HTS) (1.95)

We used here the fact that 〈T〉 = N(HTT −HTS), as shown in section 1.2.2. To find the mean
occupation time, we can simply notice that the mean particle density ρ(ri) is equal to 〈Ni〉J .

〈Ni〉 =
ρ(ri)

J
= HiS −HiT +HTT −HST , (1.96)

This equation satisfies the boundary condition ρ(rT ) = 0.

Equality ρ(ri) = 〈Ni〉J is related to the ergodic property of the process: for the stationary
problem considered, with a constant flux J exiting in rT and incoming in rS , the stationary state
is equivalent to a time average. Indeed, at any time t, we can consider that we superpose the
trajectories started between −∞ and t. The stationary probability to be in ri is the time average
of the probability to be in ri at time t′ ∈ [0,∞[ for a single trajectory starting from rS and being
absorbed in rT (up to a scaling factor J):

ρ(ri) = J

∞∑

t=0

P (ri, t|rS) = J〈Ni〉t (1.97)

Since the process is ergodic, time average 〈. . .〉t and ensemble average 〈. . .〉 are the same.

Note that equation (1.96) also gives the mean occupation time of a subdomain, which is simply
the sum of the mean occupation time of all the sites in the subdomain.

We can go further and obtain the entire distribution of the occupation time. The idea to tackle
this a priori difficult problem is to use the splitting probabilities computed previously. To hit
the site ri k times, the random walker starting from rS has first to hit ri once, before reaching
rT , and then to come back k − 1 times without touching rT , and at last to hit rT . Figure 1.13
shows this mechanism: each arrow is associated with a splitting probability between ri and rT ,
starting either from rS or from ri.
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1 A guided visit into the random world

Using this scheme, and denoting here Pij(i|S) the splitting probability to reach ri before rj ,
starting from rS , we have P (Ni = 0) = PiT (T |S), and for k ≥ 1:

P (Ni = k) = PiT (i|S)


∑

j

ωjiPiT (i|j)



k−1 

∑

j

ωjiPiT (T |j)


 (1.98)

The three terms of this last equation correspond respectively to

• the probability to reach ri before rT , starting from rS ,

• the probability to return to ri before reaching rT , starting from ri, to the power k − 1,

• and the probability to reach rT before returning to ri.

For the last two probabilities, we sum over all neighbors of ri: to return in ri, the random walker
first has to go to a neighbor rj , with a probability ωij , and then to go back in ri (or to go in rT )
starting from rj .

Equation 1.98 can then be written

P (Ni = k) = AB(1−B)k−1 for k ≥ 1, (1.99)

with, using equations (1.79)

A ≡ PiT (i|S) =
HiS +HTT −HST −HiT

Hii +HTT − 2HiT
, (1.100)

and

B ≡
∑

j

ωjiPiT (T |j) = 1−
∑

ωjiPiT (i|j)

=

∑
j ωjiHTj −HiT −

∑
j ωjiHji +Hii

Hii +HTT − 2HiT

=
1

Hii +HTT − 2HiT
, (1.101)

where we used equation (1.74) and the fact that
∑

iwij = 1. It can also be noted that P (Ni =
0) = 1 − A. The distribution of the occupation times given by equations (1.99)-(1.101) is the
main result of this subsection, and several comments are in order.

(i) Expressions of pseudo-Green function H given in equation (1.90) makes this result exact
and completely explicit for parallepipedic domains.

(ii) Computing 〈Ni〉 with this distribution gives back the expected result (1.96).

(iii) It can be noted here that B, which characterizes the decay of the probability distribution
of Ni, is independent of the source. In addition, qualitatively, the basic evaluations of H
(namely H = G0) give for B the following order of magnitude, if ri and rT are at a distance
R:

B '





1

2G0(0)− 3

πR

in 3D,

1

2G0(0) +
4

π
ln(R)

in 2D,
(1.102)
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1.3 Beyond Brownian motion

where G0(0) = G0(r|r) is a dimension-dependent constant, given above in the discussion
on the evaluation of pseudo-Green function H. This shows that B decreases with the
distance between i and T : a larger distance corresponds to a slower decay. But, while it
tends towards 0 in two dimensions (which corresponds to a wide distribution of Ni, and a
large variance), it tends to a finite value in three dimensions. It can thus be said that the
sites much further from the target than the source have, in three dimensions, a significant
probability to be visited, but a low probability to be visited many times, whereas, in two
dimensions, they have a low probability to be visited at all, but a comparatively high
probability to be visited many times. This is connected with the transient or recurrent
character of the unbounded random walk in two or three dimensions.

(iv) The results obtained here for different starting and target sites may easily be adapted to
identical starting and target sites (S = T ):

P (Ni = 0) = 1−B ; P (Ni = k) = B2(1−B)k−1 for k ≥ 1. (1.103)

Note that this gives in particular a mean occupation time of 1 for all sites, a result which
could be derived from an extension of Kac’s formula [6, 65]. However, here, we obtain not
only the mean occupation time but the entire distribution of this occupation time, which
appears to vary from site to site: the further the site is from the target, the slower the
probability distribution decays.

To conclude, we have computed the distribution of the occupation time of a given site ri,
for a random walk in confined geometry, eventually trapped at a target. This distribution is
exact, and completely explicit in the case or parallepipedic confining domains. While the mean
occupation time, unsurprisingly, is higher when ri is near the source and lower near the target
(and uniform if the source and target are identical), the distribution of the occupation time is
essentially exponential, with a slower decay when the point is far away from the target.

Before going to the next section, we insist on the fact that pseudo-Green function H are the
key of first-passage observables. If we are able to compute or to estimate those functions, we
will obtain directly the mean first passage time, the splitting probabilities as well as the entire
occupation times distribution.

• We have introduced first-passage observables that will be used all along this
manuscript ;

• with the renewal equation, we saw that pseudo-Green functions H were a way to
compute first-passage observables ;

• we showed that those pseudo-Green functions could be computed analytically or
estimated with infinite Green functions.

Quick summary

1.3 Beyond Brownian motion

So far, we focused on nearest-neighbor random walks on regular lattices, where Pstat = 1/N .
Those random walks can be seen as a discretization of a regular continuous random walks on an

29



1 A guided visit into the random world

Euclidian space. We will introduced in this section ways to extend the results previously obtained
on first-passage properties to a wider range of random walk mechanisms.

In the first sub-section, we will present the prominent (continuous) anomalous diffusion models.
Those models will be the ground on which is built the chapter 2. They all have a mean square
displacement scaling like 〈r2〉 ∝ tα with α 6= 1, a feature often observed in experimental trajecto-
ries. We will introduce the three sub-diffusive processes studied in chapter 2, namely continuous
time random walks (CTRW), fractional Brownian motion (fBm) and diffusion on fractals, as well
as a super-diffusive process used in chapter 3, the Lévy fligths.

The second sub-section will be dedicated to (discrete) random walks on self-similar networks,
that will be used to simulate the continuous processes of anomalous diffusion. We will thus
introduce in this sub-section the networks that will be used during this manuscript, as soon as
numerical simulation on self-similar networks will be required to check an analytical result. It will
mainly be deterministic fractals, like (u, v)–flowers or the Sierpinski gasket, and random fractals,
like percolation networks or Erdös-Rényi networks.

At last, in the third sub-section, we will see how we can have a generic approximation of pseudo-
Green functions for self-similar random walks, either discrete or continuous. This approximation
allows to obtain the MFPT dependence in geometrical parameters, or in environment character-
istics. Those results have been published in [66], and were part of my Master thesis.

1.3.1 Anomalous diffusion processes

The mean square displacement can sometimes not scale linearly with time. Such phenomenon is
called anomalous diffusion:

〈r2〉 ∝ tα (1.104)

where α is the anomalous diffusion coefficient. We will talk about sub-diffusion if α < 1 and
super-diffusion for α > 1. The chapter 2 of this manuscript will be focused sub-diffusion, often
observed experimentally, but that can be explained by several models.

We will describe in this sub-section processes that take place in the usual Euclidian space,
in continuous time, and that lead to anomalous diffusion. For each model, we will describe
the mathematical aspect that will be used in chapter 2 (for sub-diffusive models) as well as an
“intuitive” explanation of the origin of anomalous diffusion. Four models will be successively
described: continuous time random walk (CTRW), that could be applied to discrete networks,
diffusion on fractals, related to what could be obtained with the discrete networks previously
introduced, fractional Brownian motion (fBm) and Lévy flights, that will be defined in continuous
space.

CTRW

Continuous time random-walks (CTRW) is a first model for sub-diffusion, that relies on the
presence of “traps”, that immobilize the walker for a random time at each step. This random
time is distributed according to a heavy tailed law in order to lead to sub-diffusion. This process
is non Markovian, even if slightly: we just change here the “clock” of the random walk. If we
assume that the waiting times at each step are 1, we find back a Markovian process. The clock
modification due to the waiting times lead also to a long range correlation for a given random
walk: time average and ensemble average does not lead to the same result, ergodicity is broken
[16].

This model is used in a wide variety of fields [115, 172], ranging from charge carrier motion
in amorphous semiconductors [187], over tracer diffusion in underground aquifers [186], up to
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1.3 Beyond Brownian motion

weakly chaotic systems [194]. CTRW can be introduced with their discrete version: let consider
a random walker that perform a succession of jumps, each jump δr being a random variable
whom probability density function is known. The jumps are assumed to be performed instanta-
neously, and between two jumps, the random walker rests a random time ψ, drawn from another
probability distribution ψ(t) [187]. Two random processes occurs at each step: the time spent in
each position is given by a random waiting time ψ, and the length of the next jump by a random
jump length δr.

If the waiting time distribution admit a finite first moment, and if the jump distribution admit
a finite second moment, the central limit theorem ensures that after a while, the CTRW model
gives back a usual Brownian motion.

If the waiting time distribution is of the “heavy tailed” form

ψ(t) ∼
t→∞

ατα

Γ(1− α)t1+α
, (1.105)

for 0 < α < 1, the mean waiting time 〈ψ〉 diverges, and the resulting process becomes sub-diffusive
with mean square displacement satisfying

〈r2〉 = Kαt
α. (1.106)

The exponent α is then the one of the waiting time density (1.105). The generalized diffusion
coefficient Kα is related to the second moment of the jump length distribution is 〈δr2〉

Kα =
〈δr2〉
2dτ

. (1.107)

The anomalous behavior in these models originates from a heavy tailed distribution of wait-
ing times[201]: without this heavy tail, we find back a Brownian motion, with, after a while,
〈r2〉 ∝ t. Waiting times with power-law distribution as in equation (1.105) has been observed
experimentally, for instance for the motion of probes in a reconstituted actin network [228].

CTRW is a model adapted to describe a random walker that can be trapped by the environment,
potentially for a very long time. For tracers diffusing in biological cells, traps can be out-of-
equilibrium chemical binding configurations[181, 182], and the waiting times the dissociation
times; traps can also be realized by the free cages around the tracer in a hard sphere like crowded
environment, and the waiting times are the life times of the cages (see Figure 1.14).

To treat mathematically CTRW, we will use in chapter 2 their continuous limit, described by
fractional diffusion equations[172, 229]. Assuming that ψ ∼ t−(1+α) for large t, with 0 < α < 1,
we have:

∂P (r, t)

∂t
=

Kα

rd−1

∂

∂r

(
rd−1 ∂

∂r

(
0D

1−α
t P (r, t)

))
, (1.108)

where we used the Riemann-Liouville fractional operator:

0D
1−α
t P (r, t) =

1

Γ(α)

∂

∂t

∫ t

0

P (r, t′)
(t− t′)1−αdt

′, (1.109)

We will see in chapter 2 that using subordination [227], we can transpose all results obtained for
regular random walk, if we replace s by Kα/Ds

α in the Laplace space.
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1 A guided visit into the random world

Figure 1.14: Random walk in a crowded environment with moving obstacles forming dynamical
cages.

Diffusion on fractals

A second kind of model for sub-diffusion relies on spatial inhomogeneities. In such model, the
entire space is not accessible, the random walker evolve on a space where bottlenecks and dead
ends exists on all scales. A discrete version is exemplified by diffusion in deterministic or random
fractals network, as illustrated by De Gennes’s “ant in a labyrinth” [73]. This results in an
effective sub-diffusion in the embedding space. While the fractal dimension df characterizes the
geometry of the fractal, the diffusive dynamics involves the random walk exponent dw.The latter
is related to the anomalous diffusion exponent through α = 2/dw [102] (dw ≥ 2 for sub-diffusion).

Fractals can be used to model complex networks, and have recently been suggested to mimic
certain features of diffusion under conditions of molecular crowding [134, 140]. The anomalous
behavior is in this case due to the presence of fixed obstacles [180], as shown in Figure 1.15, which
creates numerous dead ends and leads to an anomalous diffusive behavior.

Figure 1.15: Random walk in a crowded environment with static obstacles.

For the continuous limit, corresponding for instance to a deterministic fractals network of
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1.3 Beyond Brownian motion

generation g, with g → ∞, a partial differential equation has been proposed for the propagator
[154]:

∂P (r, t)

∂t
=

K

rdf−1

∂

∂r

(
r1−(dw−df )∂P (r, t)

∂r

)
(1.110)

This equation has been found using scaling arguments, and will prove to be quite accurate, even
if not analytical.

FBm

Fractional Brownian motion (fBm) is another model leading either to sub-diffusion or to super-
diffusion. It has been introduced to take into account long-term spacial correlations in a random
walk. In this model, the state of the system at time t is influenced by all states t′ ∈]−∞, t[. FBm
was introduced in 1D by Mandelbrot & Van Ness [137]: it is a normalized continuous Gaussian
process BH(t), which starts at 0 (BH(t = 0) = 0), has expectation zero for all t ≥ 0, and whose
auto-correlation function is:

〈
BH(t)BH(t′)

〉
=

1

2

(
|t|2H + |t′|2H − |t− t′|2H

)
(1.111)

H ∈ [0, 1] is called the Hurst index. Using this auto-correlation function, we obtain, for t′ = t,
that 〈BH(t)2〉 = tα, with α = 2H. FBm therefore describes both sub-diffusion (H < 1/2) and
super-diffusion (H > 1/2) up to the ballistic limit α = 2.

This process is rather complex from the mathematical point of view. Since the process is
infinitely correlated, we cannot obtain a (local) diffusion equation, as we had for CTRW or
diffusion on fractals. Some tools have still been developed by mathematicians, for instance a
representation using Ito’ integrals [52]:

BH(t) =
1

Γ(H + 1/2)

∫ t

0
(t− t′)H−1/2B(t′)dt′, (1.112)

where B(t) is an usual Brownian motion, and Γ the gamma function. We can check that BH(0) =
0. We can also rewrite fBm in terms of fractional differential operators [189]:

BH(t) =0 D
−(H+1/2)
t B, (1.113)

where 0D
−α
t is the Riemann-Liouville previously introduced, and B a classical Brownian motion.

This process is non Markovian: once again, time average and ensemble average do not lead to
the same result. The propagator cannot be properly defined for fBm, since no partial differential
equation exists for such process. We can still compute the one-point distribution of trajectories
at time t starting from t = −∞, and satisfying BH(t = 0) = 0, namely the pseudo-propagator
starting from a “stationary” state (the increments have reached a stationary distribution, and
the walk starts at 0):

P (x, t|0, 0) =

√
H

π

Γ(H + 1/2)

tH
e
−HΓ2(H + 1/2)

x2

t2H (1.114)

This one-point distribution is Gaussian in space, and gives all moments of fBm, which will be
used in chapter 2.

FBm is used to describe the motion of a monomer in a polymer chain [116] or single file diffusion
[128]. FBm has recently been proposed to describe the diffusion in a crowded environment [207].
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1 A guided visit into the random world

It is used as soon as one wants to introduce strong correlations (or anti-correlations) in the
trajectory. For instance in the case of a particle evolving in a solvent, the particle motion
displaces the solvent, and the resulting viscous force influences the future steps of the random
walker. To know how the random walker at a time t will evolve, we need to know the solvent
velocity field, which can be deduced from the past trajectory of the random walker.

FBm is defined in 1D, but following reference [214], we can extend fBm to several dimensions
such that a d-dimensional fBm of exponent H is a process in which each of the coordinates follows
a one-dimensional fBm of exponent H. The resulting d-dimensional fBm still satisfies relation
〈r2〉 ∝ tα, with α = 2H.

Lévy flights

At last, we briefly introduce the Lévy flight model. In his discrete version, at each step, the
random walker performs a random step drawn from a heavy-tailed distribution:

P (r) ∼
r→∞

ατα

Γ(1− α)r1+α
(1.115)

This model is somehow similar to a CTRW, but it is now the jump distribution that is heavy
tailed, and not the waiting time distribution. The generalized central limit theorem ensures that
a sum of heavy tailed variable converges to a Lévy α-stable distribution. The characteristic
function of this stable distribution is:

φ(k) = exp(−|ck|α), (1.116)

where c is a scaling factor. If α = 2, we find back the classical Brownian motion, with a variance
σ2 = 2c2.

We can extend the discrete Lévy flight to a continuous process, where the propagator is a Lévy
α-stable distribution, whose scaling factor is t1/αc instead of c. The mean square displacement
in such model in infinite, 〈r2〉 =∞. The main feature of Lévy flights is that they are self-similar,
and that r ∝ t1/α.

They have been used to describe albatrosses trajectories [218] for instance: the search process
consists in straight ballistic phases (the jumps) that alternates with reorientation phases (between
two jumps).

1.3.2 Self-similar networks

We now present scale-invariant networks that exhibit various fractal dimensions df and dw. We
recall that the fractal dimension df links the number of node N(r) at distance smaller than r of
a given node, N(r) ∝ rdf . The walk dimension dw links the typical distance r reached at time t
with time through t ∝ rdw . The electrical analogy [79] allows to compute the difference dw − df :
if we replace each link of a given network by a unitary resistance, then the equivalent resistance
R(r) between two points at a distance r fulfills R(r) ∝ rdw−df .

The walk dimension dw can be linked with the anomalous diffusion coefficient α: r2 ∝ t2/dw

leading to α = 2/dw.
As a general result, we can note that dw−df = 1 for a scale-invariant tree, since the equivalent

resistance between two points is directly the distance between those points: the absence of loop
gives directly this result. Since R(r) = r, we get dw − df = 1. Beside, for a tree, 〈k〉 = 2.

We will see in the next sub-section how to link df , dw and the compacity of the random walk.
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1.3 Beyond Brownian motion

Percolation networks

A general percolation network is created using a “regular” network, and occupying randomly each
of the edges (“bond percolation”) or each of the nodes (“node percolation”) with a statistically
independent probability p. We will here focus only on bond percolation.

We will call “clusters” a set of connected nodes on a percolation networks. When p → 0, we
have a large number of clusters on the percolation networks, and when p = 1, there is only one
cluster. We call pc the critical percolation threshold, such that starting from p = 0, a “giant”
cluster appears for the first time. This giant cluster connect almost surely both extremities of
the original network. Figure 1.16 shows how to construct a percolation cluster from a finite 2D
Euclidian network: first we remove randomly the edges, then we identify the giant cluster, here
connecting all extremities of the original network.

Figure 1.16: Creation of a percolation network starting from a 2D Euclidian network: the giant
cluster is here in red.

In this manuscript, a percolation network will refer to the giant cluster of a bond percolation
network on an Euclidian network in d dimension. Such network is random and self-similar: we
will have to average over several network realization to get a meaningful result.

On the critical percolation cluster (p = pc), the Alexander-Orbach conjecture[7] states that:

2df
dw

=
4

3
(1.117)

For a 2D Euclidian network, using Euclidian distances, pc = 0.5, and df = 91/48, which leads
using the Alexander-Orbach conjecture to dw = 2.844 . . .. For a 3D Euclidian network, once
again with chemical distances, pc ' 0.2488 . . ., df = 2.523 . . .[71], which gives dw = 3.783 . . .. We
will see in chapter 2 how to tranpose these results for chemical distances.

If p < pc, the cluster have the same fractal dimension df , but is not “infinite”, in the sense
that, almost surely, it does not connect two extremities of the original network.

If p > pc, the super-critical percolation cluster is fractal at small distances, with the same df
than in the percolation cluster, and regular at higher distances, with the same d than the original
network. The critical distance decreased as p increase.

Critical Erdös-Rényi networks

Erdös-Rényi networks can be defined as a percolation networks, but where the original network
is a complete graph (a graph where each node is connected to all the other nodes). Equivalently,
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1 A guided visit into the random world

it can be constructed as follows: we take N nodes, and for every pair of nodes (i, j), a link is
created with probability p. The Erdös-Rényi network is then defined as the giant cluster, namely
the larger set of connected nodes. The giant cluster is fractal only if p < pc.

Figure 1.17: Percolation on a complete graph K10 leading to an Erdös-Rényi network.

The percolation threshold is pc = 1/N , where N is the size of the original network. This
leads to a network where the average connectivity 〈k〉 = 2, the average being made on several
realizations of the network. The fractal dimension for a critical percolation cluster is df ' 1.9
[203]. We computed numerically dw ' 2.9. Erdös-Rényi network will in this manuscript refer to
the critical percolation cluster on a complete graph (p = pc = 1/N). Those networks are almost
self-similar trees: if loops can occurs, we still have 〈k〉 ' 2 and dw − df ' 1.

Sierpinski gasket

As introduced previously (see Figure 1.6), the Sierpinski gasket is defined as a triangle where
at each step, we remove an inner triangle in any full triangle. We have already shown that
df = ln(3)/ ln(2), we can now compute dw − df using the electrical analogy. To do so, we
compute the equivalent resistance between one edge and the two others. Figure 1.18 shows how
to replace each link by a resistance R, and then how to simplify the resistance network to obtain
an equivalent resistance.

R RR

R RR R RR

R RR
R/2 5R/6

Figure 1.18: Equivalent resistance and dw − df computation for a Sierpinski gasket.

For the Sierpinski gasket, when the distance double, the resistance is multiplied by 5/3, leading
to:

R(2r)

R(r)
=

5

3
⇒ 2dw−df =

5

3
⇒ dw − df =

ln(5/3)

ln(2)
(1.118)
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(u, v)–flowers

(u, v)–flowers are deterministic recursive networks described in reference [177]. The construction
starts at generation g = 0 from two nodes linked. At each generation, every link is substituted
by two paths of length u and v, containing thus respectively u− 1 and v − 1 nodes. Figure 1.19
shows the first generations of a (3, 2)–flower.

Figure 1.19: First three generations of a (3, 2)–flower, nodes created in the same generation having
the same color.

At the gth generation, the link number is L(g) = (u+ v)g. The network size is:

N(g) = N(g−1)+(u+v−2)L(g−1) = 2+(u+v−2)
(u+ v)g − 1

u+ v − 1
∼

g→∞
u+ v − 2

u+ v − 1
(u+v)g (1.119)

To compute df and dw with recursive deterministic networks, we can only focus on what happens
to a given link. For a (u, v)–flowers, we replace a link by two paths. The distance between the
two original point becomes u (we assume that u ≤ v), and the node number becomes u+ v. The
fractal dimension is thus:

N(ur)

N(r)
∼ (u+ v)⇒ N(r) ∼ rdf with df =

ln(u+ v)

ln(u)
(1.120)

At last, using the electrical analogy, starting from two points linked through a simple resistance,
we get two resistance u and v in parallel, leading to an equivalent resistance of uv/(u+ v):

R(ur)

R(r)
∼ uv

u+ v
⇒ R(r) ∼ rdw−df with dw =

ln(uv)

ln(u)
(1.121)

One can note that those formula does not work for u = 1. In this case, the network is not fractal
anymore, and other quantities have to be introduced to characterize the random walk [177].

We extended those networks to (u, v, w)–flowers, for which a third path is added. For those
networks, if 1 < u ≤ v ≤ w, we obtain similarly:

df = ln(u+ v + w)/ ln(u) and dw − df = − ln(1/u+ 1/v + 1/w)/ ln(u). (1.122)

Random (u, v)–flowers

These networks are constructed like deterministic (u, v)–flowers as described in [211]: instead of
transforming every link at each generation, only one link is substituted by two paths of length u
and v. The resulting network is random and self-similar.
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Figure 1.20: First three generations of a random (3, 2)–flowers, nodes created in the same gener-
ation having the same color.

Figure 1.20 shows how to construct such network. Dimensions df and dw are determined
numerically for those networks with a power-law fit of N(r) ∝ rdf and of 〈r2〉 ∝ t2/dw ; for
(2, 2)-random flowers for instance, we obtain a compact networks with dw − df ' 0.6.

Networks of Kozma et al.

These networks, defined in [125], are classical Euclidian lattices in which long range links (”short-
cuts”) are added. A short-cut starts from each node with probability p, and leads to a node at
a distance r where r is distributed according to a power law of index α. Figure 1.21 shows how
to create a Kozma network starting from an Euclidian lattice.

Figure 1.21: Creation of a Kozma network starting from a 1D Euclidian network.

We will focus on this manuscript on Kozma networks based on 1D Euclidian lattice. For such
networks, the exploration is compact for α > 2 and non-compact for α < 2.

All those networks will be used to understand the influence of the network topology on first-
passage properties: we will be able to see the difference between a tree and a network containing
loops, between compact and non-compact networks, between fractal and non-fractal (but scale-
invariant) networks, and so on. We will always perform nearest-neighbor random walks on such
network: at each step, the random walker have an equal probability to choose any of the neighbor,
namely a node linked directly to the node occupied by the random walker. The random walk is
here discrete in time and space.

1.3.3 Pseudo-Green functions for self-similar RW

We pointed out several time in this chapter that the evaluation of pseudo-Green functions is
crucial to obtain first-passage properties. We have already shown how to get exact expressions
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of those pseudo-Green functions for regular lattice, we will here present a more general approx-
imation, for scale-invariant random walk in confined media, either in discrete or in continuous
space. Those results have been published in [66], and were part of my Master thesis.

This approximation relies on two assumptions:

(i) that we can, with a very good accuracy, take the infinite Green function instead of the
confined pseudo-Green function to estimate first-passage properties,

(ii) that we can get those infinite Green functions using a scaling form of the propagator.

Since we will use very frequently in this manuscript the results given here, we will show that
this approximation is confirmed by numerical simulations for several emblematic models.

Infinite space assumption

We consider a random walker moving in a bounded domain of size N . As previously, we note
P (r, t|r′) the propagator, i.e. the probability density to be at site r at time t, starting from the
site r′ at time 0. We recall that:

〈T〉 =
H(rT |rT )−H(rT |rS)

Pstat(rT )
(1.123)

where H is the pseudo-Green function, defined as

H(r|r′) =

∫ ∞

0

(
P (r, t|r′)− Pstat(r)

)
dt (1.124)

and Pstat is the stationary probability distribution. To go further, we have to estimate the
pseudo-Green function H, which is indeed a cumbersome task, since it depends both on the
walk’s characteristics and on the shape of the domain. We propose to approximate H by its
infinite-space limit, which is precisely the usual Green function G0 :

H(r|r′) ' G0(r|r′) =

∫ ∞

0
P0(r, t|r′)dt (1.125)

where P0 is the infinite space propagator. We stress that when inserted in equation (1.123), this
form does not lead to a severe infinite space approximation of the MFPT, since all the dependence
on the domain geometry is now contained in the factor 1/Pstat. This approximation is the key
step of the derivation presented here, and captures extremely well the confining effects on MFPTs
in complex media.

Scaling law assumption

We first consider the case of a uniform stationary distribution Pstat = 1/N , which is realized
as soon as the network is undirected and the number of connected neighbors of a node, the
connectivity, is constant. This assumption does not apply to scale-free networks, which will be
tackled later on. Following [71], we assume for P0 the standard scaling:

P0(r, t|r′) ∼ t−df/dwΠ

( |r− r′|
t1/dw

)
(1.126)

where df is the fractal dimension (N(r) ∝ rdf ), and dw the random walk dimension (〈r2〉 ∝ t2/dw).
This form ensures the normalization of P0 by integration over the whole space.
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1 A guided visit into the random world

We can here link compacity with df and dw. We will assume that a compact random walk
is equivalent to a recurrent random walk, namely a walk that has a probability 1 to come back
eventually at the starting point. Equivalently, we can consider that the walk is recurrent as soon
as the average number of return is infinite, and transient else [168]. The average number of return
〈Nr〉 is approximately:

〈Nr〉 =

∫ ∞

1
P0(r, t|r)dt ∝ Π(0)

∫ ∞

1

1

tdf/dw
dt (1.127)

We start the integration at t = 1, since the scaling is valid only after a while. This does not affect
the final result: the average number of return between t = 0 and t = 1 is necessarily finite. We
deduce that if df > dw, the average number of return is finite, the random walk is non-compact
(or transient), and if df < dw, the average number of return is infinite, the random walk is
compact (or recurrent). The case df = dw will be called “marginal”, even if formally compact.

Using the scaling 1.126, a derivation (detailed in [66]) yields as central result:

〈T〉 ∼





N
(
A−Brdw−df

)
for dw < df

N (A+B ln(r)) for dw = df
N
(
A+Brdw−df

)
for dw > df

(1.128)

for r = |rT − rS | different from 0. Strikingly, the constants A and B do not depend on the
confining domain. In addition, while A is related to the small scale properties of the walk, we
emphasize that B can be written solely in terms of the infinite space scaling function Π.

For instance for non-compact exploration (df > dw), we have:




A =

∫ ∞

0
P0(0, t)dt

B =

∫ ∞

0

Π(u−1/dw)

udf/dw
du

(1.129)

For compact exploration, we have to introduce a constant C0, the limit for x → 0 of Π(x), and
define Π∗ as:

Π(x) = C0 −Π∗(x) (1.130)

We then get (see [66] for details):




A = lim
R→∞

[∫ ∞

0
(P0(0, t)− P0(R, t)) dt−BRdw−df

]

B =

∫ ∞

0

Π∗(u−1/dw)

udf/dw
du

(1.131)

A similar result exists for the dw = df case.
These expressions show a very general scaling of the MFPT dependence on the geometrical

parameters N and r. Some comments are in order:

(i) First, we point out that equation (1.128) gives the large N asymptotic of the MFPT being
a function of N and r as independent variables.

(ii) Second, the equation (1.128) shows two regimes, which rely on infinite space properties of
the walk: in the case of compact exploration (dw ≥ df ) where each site is eventually visited,
the MFPT behaves like 〈T〉 ∝ Nrdw−df (〈T〉 ∝ N ln(r) for dw = df ) at large distances,
so that the dependence on the starting point always matters; in the opposite case of non-
compact exploration, 〈T〉 tends to a finite value for large r, and the dependence on the
starting point is lost.
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1.3 Beyond Brownian motion

Numerical simulations

We now confirm these results by Monte Carlo simulations and exact enumeration methods applied
to various models which exemplify the three possible cases (dw > df , dw = df and dw < df ).

(i) The random barrier model in dimension d = 2 is defined by a lattice random walk with
nearest neighbors symmetrical transition rates Γ distributed according to some distribution
ρ(Γ). Even for a power law distribution ρ(Γ) the scaling function Π(ξ) can be shown to be
Gaussian (df = dw = 2), which allows us to explicitly compute the constant B and obtain

〈T〉 ∼ N
(
A+

1

2πDeff
ln(r)

)
. (1.132)

Here Deff is a diffusion constant depending on ρ(Γ) which can be determined by a mean
field approximation.
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Figure 1.22: MFPT as a function of the source-target distance for random barrier model. Here,
the transition rate distribution is ρ(Γ) = (α/Γ)(Γ/Γ0)α, with Γ0 = 1 and α = 0.5.
The confining domain is an L × L square with the target in the middle. Three
different domain sizes are shown, with numerical simulations of the MFPT rescaled
by the volume N , averaged over the disorder. The theoretical curve (black line) is
given by equation (1.132), where A is a fitting parameter.

(ii) The Sierpinski gasket of finite order, defined in the last sub-section, is a representative
example of deterministic fractals. In this case df = ln(3)/ ln(2) < ln(5)/ ln(2) = dw, so that
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1 A guided visit into the random world

our theory predicts the scaling

〈T〉 ∼ Nr(ln(5)−ln(3))/ ln(2). (1.133)
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Figure 1.23: MFPT as a function of the source-target distance for finite Sierpinski gasket (log/log
plot) for three different system sizes (orders 6, 7 and 8). For each set of points, the
size of the Sierpinski gasket and the target point are fixed, and the starting point
takes various positions on the network. The black line corresponds to the theoretical
scaling rdw−df .

(iii) The Lévy flight model, defined previously, is based on a heavy-tailed distribution of jump
lengths p(l) ∝ l−d−β (0 < β ≤ 2). The walk dimension is now dw = β, while the fractal
dimension is the dimension of the Euclidian space d. In dimensions d ≥ 2, or for d = 1
when β < 1, one has df > dw and our theory gives

〈T〉 ∼ N
(
A−Brβ−d

)
. (1.134)

Figures 1.22, 1.23 and 1.24 show that both the volume dependence and the source-target
distance dependence are unambiguously captured by our theoretical expressions (1.128), as shown
by the data collapse of the numerical simulations. We emphasize that the very different nature
of these examples demonstrates that the range of applicability of our approach, which mainly
relies on the length scale invariant property of the infinite space propagator (1.126), is wide.

The case of non uniform degree distribution will studied in detail in chapter 3.
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Figure 1.24: MFPT as a function of the source-target distance for Lévy flights on a square (d = 2),
for three different system size (50× 50, 100× 100 and 200× 200), with β = 1. The
target is in the middle of the network. Simulation points are fitted with 〈T〉/N ∼(
A−Brβ−d

)
(black curve).

• We have introduced anomalous diffusion processes, as well as discrete networks
leading to anomalous diffusion;

• we have shown how to approximate pseudo-Green functions for scale-invariant
processes.

Quick summary

Conclusion

During this first chapter, we have presented very basically what random walks and diffusion
were, as well as the main mathematical tools that will be used during this manuscript. Those
definitions will not always be recalled later, we will now assume that the reader is familiar with
those concepts.

We have introduced many first-passage observables: depending on the problem, the relevant
observable is not always the same. We will often focus on the mean first passage time (MFPT)
because it is an easy way to estimate transport properties, but several others will be used along
this manuscript. The key point of this long introduction has been to show how crucial the
estimation of pseudo-Green functions was: once those functions are known, we can extract many
first-passage observables using exact expressions.
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1 A guided visit into the random world

At last, we presented the concept of anomalous diffusion, as well as some prominent contin-
uous processes leading to such behavior, and some scale-invariant networks also sharing to the
same feature. Those continuous processes and networks will be used several times during this
manuscript without any further definition: the reader will have to come back in chapter 1 for
details.

My Master thesis ended with the publication of [66], detailed in the last sub-section of this
chapter. The possibility to estimate quickly and efficiently pseudo-Green functions is a powerful
tool, that works with our assumptions for Markovian random walkers on regular scale-invariant
networks, and the related continuous processes. We will during this manuscript try to extend
this result for a wider range of processes: to anomalous diffusion (non Markovian random walks,
experimental trajectories and related models) and to non regular networks (with different con-
nectivities, persistence, moving targets and broken links). Each axe will form a chapter of this
manuscript: in chapter 2 we will focus on anomalous diffusion, and in chapter 3 in first-passage
properties on non-regular networks. To do so, we will keep the infinite space approximation
(taking infinite Green functions instead of confined pseudo-Green function), and we will have to
adapt the approximation concerning the scaling form of the propagator.
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2 From experimental trajectories to
(anomalous) diffusion mechanism, and the
way back
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In this chapter, we will focus on a feature often observed in experimental trajectories: anoma-
lous diffusion. We will successively introduce a theoretical method to distinguish two sub-diffusive
microscopical mechanisms using first-passage properties, then adapt it to effectively be able to
analyze experimental trajectories, and at last introduce new models that reproduce some of the
features observed during our analysis of experimental trajectories.

We will first introduce the purpose of our analysis, namely: why would we be interested in
analyzing experimental trajectories? The first section will then present the initial approach we
had when facing this challenge, mainly based on first-passage observables introduced in chapter 1.
We will present the theoretical framework, and we will apply it to diffusion on fractals and CTRW.
We developed an experimental set-up based on this approach, and shared it with experimentalists.
After confronting our theory to experimental data, we had to change a bit the attack angle. Indeed
the usual biological data sets were too small to allow us to extract with a good level of confidence
the first-passage observables we were working with.

In the second section we will present other observables more adapted to small data sets, namely
the displacement and maximal excursion moments, their ratios, and the growing shell test. This
method will be tested on a “small” simulated data set, namely on 1,000 trajectories of 100 steps.
This is already big for a biologist, but very small compared to the usual simulation data sets
(∼ 100,000 trajectories of 1,000 steps). We will analyze experimental data to test our method:
simple Brownian diffusion of Quantum dots, and lipid granules data diffusing within S. Pombe.
For the last data set, we observed several sub-diffusive regimes at different time scales, but none
of the usual sub-diffusive models (CTRW, diffusion on fractals or fBm, introduced in chapter 1)
could explain all the features observed.

In the last section, we will go back to theory, and take some prominent characteristics of the
trajectories observed during the lipid granule analysis to focus on more adapted diffusive models.
We will thus start from experiments to construct a meaningful model, from the experimental point
of view, that can explained the observed characteristics. We will successively look at persistent
random walks, with a very short memory (one step), then at random walks in an ordered porous
media, and at last at random walks in a crowding environment.
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Fig. 1. Three trajectories obtained by tracing a small grain of putty at intervals
of 30 sec [3].

It was Nordlund who first devised a setup to obtain long time-resolved
trajectory of single particles using a moving photographic film [4]. An exam-
ple for such a trajectory of a small mercury sphere slowly falling in water is
shown in Fig. 2. The Brownian motion superimposed on the drift motion is
clearly visible. For each trajectory Nordlund then plotted the mean squared
displacement and fitted the diffusion constant. For one single trajectory the
result is reproduced in Fig. 3. This is definitely one of the first examples
of time averaging in single particle trajectories. In a similar setup with
a photographical film Kappler used the stochastic deflection of a small mir-
ror suspended on a long thread to produce single time series of the random
torsional movement [5]. This was the last of a long series of experiments to
determine Avogadro’s number from particle trajectories.

Fig. 2. Stroboscopic trajectory of a small mercury sphere slowly falling in water.
The stochastic motion superimposed on the drift produces the wave-like behaviour.
Reproduced from [4].

Figure 2.1: Three trajectories obtained by tracing a small grain of putty at intervals of 30 s.
Reproduced from reference [157].

Introduction

With modern experimental tools single trajectories of particles down to the nanoscale can be
obtained, even in complex systems such as biological cells [99, 191]. Experimental set-ups exist
to obtain single trajectories of proteins, RNA or very small particles like quantum dots. What
can we learn from those trajectories?

This idea to systematically measure individual trajectories of particles in order to obtain infor-
mation about their ensemble behavior essentially goes back to Einstein’s probabilistic interpre-
tation of diffusion [82]. It was put to much use in the determination of the Avogadro–Loschmidt
number in the beginning of the 20th century. In fact single trajectories of small granules in uni-
form gamboge emulsions obtained by fractional centrifuging were recorded and analyzed quanti-
tatively by Jean Perrin in his seminal work on the deduction of Avogadros constant [157]. A few
sample trajectories from Perrin’s work are reproduced in Figure 2.1.

Those trajectories can be used to characterize the microscopical diffusion mechanism, or if we
assume a certain diffusion mechanism, to obtain physical constants like diffusion coefficients. To
get an accurate result, one has either to have a lot of trajectories, or very long ones, in order to
get a meaningful ensemble average or time average.

It was Nordlund who first devised a set-up to obtain long time-resolved trajectories of single
particles using a moving photographic film [149]. An example for such a trajectory of a small
mercury sphere slowly falling in water is shown in Figure 2.2. The Brownian motion coupled
with the drift motion is clearly visible: the stochastic motion superimposed on the drift produces
the wave-like behavior.

For each trajectory Nordlund then plotted the mean square displacement and fitted the dif-
fusion constant. For one single trajectory the result is reproduced in Figure 2.3. The unit of
time on the horizontal axis is 1.481 second. Nordlund’s result for the Avogadro number was
remarkable: 5.91 × 1023, within 2 % of the best current value. This is one of the first examples

46



Figure 2.2: Stroboscopic trajectory of a small mercury sphere slowly falling in water, reproduced
from [149].

Analysis of Single Particle Trajectories: From Normal to Anomalous . . . 1317

Fig. 3. Mean squared displacement obtained from a single trajectory by Nordlund.
The unit of time on the horizontal axis is 1.481 seconds. Nordlund’s result for the
Avogadro number was remarkable: 5.91×1023, within 2% of the best current value [4].

In what follows we investigate long time averages for systems that deviate
from normal diffusion (Brownian motion), characterised by a linear time
dependence of the mean squared displacement. Instead we consider systems
displaying subdiffusion of the type

〈x2(t)〉 = 2Kαtα , (1)

for 0 < α < 1. Here Kα of dimension cm2/secα is the generalised diffusion
coefficient. Such anomalous scaling of the mean squared displacement is
known from a rich variety of systems including amorphous semiconductors
[6], tracer spreading in underground aquifers [7], or diffusion on percolation
clusters [8]. Also on smaller scales such subdiffusion has been reported, see
the discussion below. Note that equation (1) is an ensemble average,

〈x2(t)〉 =

∞∫

−∞

x2P (x, t) dx , (2)

where P (x, t)dx is the probability to find the particle in the infinitesmial
interval x, . . . , x + dx at time t.

In the following we show that the behaviour of the long time average
of the mean squared displacement strongly depends on the actual dynam-
ics underlying the system. In particular we demonstrate that for systems
with diverging characteristic waiting times, connected to ageing phenom-
ena, the time-averaged mean squared displacement scales the same way as

Figure 2.3: Mean square displacement obtained from a single trajectory by Nordlund [149].

of time averaging in single particle trajectories.
For a long time, it has been assumed that the diffusion of very small particles was Brownian.

The only observable was then just the diffusion coefficient D, that can be obtained through the
mean square displacement. One can perform:

(i) an ensemble average over a large set of single trajectories:

〈r2〉(t) =

∫ ∞

−∞
‖r‖2P (r, t)dr = Dt, (2.1)

where 〈r2〉 is the mean square displacement, D the diffusion coefficient, and P (r, t) the
probability to be at position r at time t, starting from r = 0 at time t = 0. In practice one
often has only a finite set of trajectories, this integral becomes a simple sum:

〈r2〉(t) =

∑
i ‖ri(t)‖2∑

i 1
' Dt, (2.2)

where ri(t) is the position in the ith trajectory of the random walker at time t, with
∀i, ri(t = 0) = 0.
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2 From experimental trajectories to (anomalous) diffusion mechanism, and the way back

Such analysis exploit only a small part of the available information in single trajectories:
for a given time span, we only extract one r2 value from each trajectory.

(ii) a time averaged mean square displacement, in order to increase the number of r2 value
we extract from one trajectory, at least for a time span small compared to the trajectory
length:

〈r2〉t(∆, T ) =

∫ T−∆
0 ‖r(t′ + ∆)− r(t′)‖2 dt′

T −∆
, (2.3)

where r(t) is the random walker position at time t, T the trajectory length, and ∆ < T the
time span. We recall that 〈. . .〉t is here a time average.

We can after this time average perform an ensemble average over all trajectories:

〈
〈r2〉t(∆, T )

〉
=

〈∫ T−∆
0 ‖r(t′ + ∆)− r(t′)‖2 dt′

T −∆

〉
= D∆ (2.4)

As previously, the integral as well as the ensemble average become summations in the
analysis of a finite set of finite trajectories.

Using the time-average/ensemble-average technique allows one to obtain accurate estimates of
the diffusion coefficient, at least for Brownian motion.

What about anomalous diffusion? Sub-diffusive single walker trajectories are indeed often
observed: in the last few years, sub-diffusion has been observed in an increasing number of systems
[172, 173], ranging from physics [122, 187] or geophysics [186] to biology [99, 212]. In particular,
living cells provide striking examples for systems where sub-diffusion has been repeatedly observed
experimentally, either in the cytoplasm [54, 99, 212, 232], the nucleus [160, 223] or the plasmic
membrane [94, 127, 199]. However, the microscopical origin of sub-diffusion in cells remains
debated, even if believed to be due to crowding effects in a wide sense as indicated by in vitro
experiments [8, 9, 98, 228].

As explained in chapter 1, the sub-diffusive behavior deviates from the usual Brownian motion,
and is usually characterized by a mean square displacement (MSD) which scales as 〈r2〉 ∝ tα

with α < 1. α is here the anomalous diffusion exponent. How can we properly estimate this α
exponent, and more importantly how can we determine which sub-diffusive models (all leading
to the same α) explain the best the trajectory features?

• How can we extract a proper anomalous diffusion exponent α from experimental
trajectories?

• For a given α, how can we determine the sub-diffusive microscopical mechanism?

Questions to be answered

2.1 First theoretical predictions: beyond the MSD

Anomalous diffusion can be obtained from a few models based on different underlying micro-
scopical mechanisms. We presented in the first chapter several models, such as continuous time
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2.1 First theoretical predictions: beyond the MSD

random walk (CTRW) [115, 172], fractional Brownian motion (fBm) [137] or diffusion on fractals
[73]. All those models lead to a mean square displacement 〈r2〉 scaling like tα. If we only use
the MSD of a given trajectory set, we will extract the sub-diffusion coefficient α, but we will not
be able to determine what kind of microscopical model cause the sub-diffusion. We will present
in this section the results published in reference [68], and see how first-passage observables in-
troduced in the first chapter can give a finer information than the MSD. We will focus in this
section solely on two possibilities: CTRW and diffusion on fractals. The analytical treatment
presented here cannot be extended to fBm, as explained below. We will see in the next section
how to deal with fBm.

CTRW and diffusion on fractals are relevant to describe anomalous diffusion in confined sys-
tems as cytoplasm or membrane of living cells. The cell is known to be a highly complex and
inhomogeneous molecular assembly, composed of numerous constituents which may widely vary
from one cell type to another. Here we wish to distinguish between two types of effects on trans-
port in cellular medium. First, the overall density of free proteins and molecular aggregates is
very high, in the cytoplasm as well as in the plasma membrane. In such crowded environment, a
tracer particle is trapped in dynamical “cages” whose life times are broadly distributed at high
densities, leading to an heavy tailed distribution of waiting times. This dynamical picture there-
fore fits the hypothesis of the CTRW model. Second, the cytoskeleton is made of semi-flexible
polymeric filaments (such as F–actin or microtubules), which can be branched and cross-linked
by proteins. This scaffold therefore acts as fixed obstacles constraining the motion of the tracer.
Moreover, the cytoplasm can be compartmentalized by lipid membranes which further constrain
the tracer. Such environment with obstacles can be described in a first approximation by a static
percolation cluster.

While these two models lead to similar scaling laws for the MSD, their microscopical origins
are intrinsically different and lead to notable differences in other transport properties. This
has strong implications, in particular on transport limited reactions [131], which will prove to
have very different kinetics in the two situations. As most of functions of a living cell are
regulated by coordinated chemical reactions which involve low concentrations of reactants (such
as transcription factors or vesicles carrying targeted proteins [5]), and which are limited by
transport, understanding the origin of anomalous transport in cells and its impact on reaction
kinetics is an important issue.

We will present – and analytically calculate – transport related observables, based on first-
passage properties already introduced in the first chapter, which allow to discriminate between
the CTRW and fractal models, and permit a quantitative analysis of the kinetics of transport
limited reactions. We briefly recall the definition of those observables introduced in chapter 1:

• The first-passage time (FPT), which is the time needed for a particle starting from site S
to reach a target T for the first time. We will focus on both the probability density function
(PDF) of the FPT, and on its first moment, the mean FPT (MFPT).

• The splitting probability, which is the probability to reach a target Ti before reaching any
other target Tj 6=i, in the case where several targets are available.

• The occupation time before reaction, which is the time spent by a particle at a given site
T1 before reaction with a target T2. We will be interested in both the entire PDF of the
occupation time, and the mean occupation time.

We will thus evaluate theoretically non trivial first-passage characteristics of transport in dis-
ordered media in any dimensions, while so far mainly effective one-dimensional geometries have
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2 From experimental trajectories to (anomalous) diffusion mechanism, and the way back

been investigated [168]. In particular we calculate here the MFPT, splitting probabilities and
occupation time distribution of a random walk on percolation clusters, and discuss the potential
implications of these results on reactions kinetics in living cells.

We will in the first sub-section set the theoretical framework and give explicit analytical ex-
pressions of the first-passage observables, which are summarized in equations (2.16), (2.17) and
(2.18). We will present our formalism, based, as in the first chapter, on pseudo-Green functions
and on their approximation. In the next two sub-section, we will apply this formalism to the
model of diffusion on fractals, which fulfills our assumption, and to the CTRW model, which is
non-Markovian. We will thus show in the third sub-section how we can deal with non-Markovian
random walks, with the example of CTRW. In the fourth sub-section, we will suggest experi-
ments which could help to discriminate the microscopical origin of sub-diffusion, using the results
obtained for diffusion on fractals and CTRW. We will present a detailed experimental set-up, and
we will see how realistic our approach is.

2.1.1 Theoretical framework

General formalism

Using techniques presented in the first chapter [64, 65, 66], we derive general analytical expressions
of the first-passage observables using pseudo-Green functions. We consider a Markovian random
walker moving in a bounded domain of N sites, with reflecting walls.

Let P (r, t|r′) be the propagator, i.e. the probability density to be at site r at time t, starting
from the site r′ at time t = 0, whose evolution is described by a master equation [216]

∂P

∂t
= LP (2.5)

with a given transition operator L. Fractional Brownian motion does not follow such equation,
local in time: we have to take into account the whole trajectory between −∞ and t to determine
what happens at t+ dt. This is why we will here focus on CTRW and diffusion on fractal, before
seing in the following section how to deal with fBm.

For the sake of simplicity we assume that the walker performs symmetric jumps and that the
stationary distribution is homogeneous

lim
t→∞

P (r, t|r′) = Pstat =
1

N
. (2.6)

As shown in the first chapter, the renewal equation gives an exact expression for the MFPT,
provided it is finite:

〈T〉 = N (H(rT |rT )−H(rT |rS)) , (2.7)

where H is the pseudo-Green function [14] of the domain :

H(r|r′) =

∫ ∞

0

(
P (r, t|r′)− 1

N

)
dt. (2.8)

Two targets problem

We can also obtain, using pseudo-Green functions, splitting probabilities Pi as well as mean time
〈T〉 to hit any of the targets, assuming that the random walker can be absorbed either by a
target T1 at r1, or a target T2 at r2:

〈T〉
N

= P1H(r1|r1) + P2H(r1|r2)−H(r1|rS). (2.9)
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Using the approach of chapter 1, we can use this equation together with the similar equation
obtained by inverting 1 and 2, and the condition P1 +P2 = 1, to obtain a linear system of 3 equa-
tions for the 3 unknowns P1, P2, and 〈T〉, which can therefore be straightforwardly determined.
In particular the splitting probability P1 reads:

P1 =
H1S +H22 −H2S −H12

H11 +H22 − 2H12
, (2.10)

where we used the notation Hij = H(ri|rj). This formula extends the result presented in chapter
1, obtained for simple random walks [64, 65], to the case of general Markov processes.

As shown in the first chapter, the splitting probabilities allow us to obtain the entire distribution
of the occupation time [67] Ni at site i for general Markov processes:

P (Ni = k) =

{
1− E1 if k = 0

E1E2 (1− E2)k−1 else
(2.11)

where

E1 =
HiS +HTT −HST −HiT

Hii +HTT − 2HiT
, (2.12)

and

E2 =
1

Hii +HTT − 2HiT
. (2.13)

In particular, the mean occupation time is then given by

〈Ni〉 = HiS −HiT +HTT −HST . (2.14)

We stress that equation (2.11) gives the exact distribution of the occupation time for all regimes.
It follows in particular that the large time asymptotic of the occupation time distribution is
exponential. Actually one can argue in the general case that the FPT is also exponentially
distributed at long times. This comes from the fact that the transition operator L has a strictly
negative discrete spectrum for a finite volume N (see [216]). This exponential decay has been
confirmed using another approach for a general scale-invariant random walk [151].

Large volume approximation

Equations (2.7), (2.10) and (2.14) give exact expressions of the first-passage observables as func-
tions of the pseudo-Green function H. The key point is then, as shown in the first chapter
[66], to estimate H. We can here assume that the problem is scale invariant and we use for P0

the standard scaling [71] that we already used in chapter 1 to approximate the pseudo-Green
functions:

P0(r, t|r′) ∝ t−df/dwΠ

(‖r− r′‖
t1/dw

)
, (2.15)

where the fractal dimension df characterizes the accessible volume Vr ∝ rdf within a sphere of

radius r, and the walk dimension dw characterizes the distance r ∝ t1/dw covered by a random
walker in a given time t. The form (2.15) ensures the normalization of P0 by integration over
the whole fractal set. Note that the mean square displacement is then given by 〈r2〉 ∝ tα with
α = 2/dw.

The derivation presented in the first chapter [66] yields for the MFPT:

〈T〉 ∼





N(A−Brdw−df ) for dw < df
N(A+B ln r) for dw = df
BNrdw−df for dw > df

, (2.16)
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2 From experimental trajectories to (anomalous) diffusion mechanism, and the way back

where explicit expressions of A and B have already been given.
In fact, the above analysis of the pseudo-Green functions also permits to obtain explicit ex-

pressions of the splitting probabilities and mean occupation times:

P1 ∼





A+B(r
dw−df
1S − rdw−df2S − rdw−df12 )

2(A−Brdw−df12 )
for dw < df

A+B ln

(
r2Sr12

r1S

)

2(A+B ln(r12))
for dw = df

1

2

((
r2S

r12

)dw−df
−
(
r1S

r12

)dw−df
+ 1

)
for dw > df

(2.17)

and

〈Ni〉 ∼





A+B(r
dw−df
iS − rdw−dfiT − rdw−dfST ) for dw < df

A+B ln

(
riT rST
riS

)
for dw = df

B
(
r
dw−df
iT + r

dw−df
ST − rdw−dfiS

)
for dw > df

, (2.18)

where rij = ‖ri − rj‖ is different from 0. Note that the entire distribution of Ni is obtained
similarly by estimating E1 and E2 as defined by equations (2.12) and (2.13).

We recall that the constants A and B do not depend on the confining domain and can be
written solely in terms of the infinite space scaling function Π of equation (2.15). We point out
that in the case of compact exploration (dw > df ) the expression of splitting probabilities is fully
explicit and does not depend on Π.

Equations (2.16), (2.17) and (2.18) therefore elucidate the dependence of the first-passage
observables on the geometric parameters of the problem, and constitute the central theoretical
result of this section.

2.1.2 Diffusion on fractals

The general formalism developed above applies to any kind of Markovian self-similar random
walk. Diffusion on fractals is an example, critical percolation clusters being a representative
example of random fractals [45, 71, 102].

Critical percolation cluster

Here we consider the case of bond percolation on a Euclidian lattice of d–dimensions. As presented
in the first chapter, when p is above the percolation threshold pc, an infinite cluster exists. In
3D, p = pc, df ' 2.58 . . . and dw ' 3.88 . . . [45]. Those value slightly differ from those presented
in chapter 1, due to the method of computation used, but dw−df = 1.3 . . . is still the same. The
motion is sub-diffusive with α = 2/dw ' 0.51. For a given critical percolation cluster, namely for a
given configuration of the disorder, the theoretical development of previous paragraph holds, and
the first-passage observables are given by the exact expressions (2.7), (2.10) and (2.14). However,
the variations between different realizations of the disorder have to be taken into account, and
averaging has to be performed in order to obtain meaningful quantities: the scaling form of the
propagator (2.15) is only valid after a disorder averaging. We thus have to check that expressions
(2.7), (2.10) and (2.14) still hold after this disorder averaging.
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2.1 First theoretical predictions: beyond the MSD

Disorder averaging

We note by X̄ the average of X over the disorder, and assume that all configurations have the
same volume N , which is a non restrictive condition in the large N limit since N is self-averaging.
Equations (2.7), (2.10) and (2.14) then show that averaging the first-passage observables is equiv-
alent to averaging the pseudo-Green function, and therefore to the propagator in virtue of (2.8).
In the case of a random walk on a critical percolation cluster it has been shown that the propa-
gator has a multifractal behavior [45].

This means that the propagator P (r, t) has a very broad distribution, and is not self-averaging:
its typical value is not its average value, which is dominated by rare events. In particular a scaling
form of the averaged propagator is not available. However, this difficulty can be by-passed if one
considers the chemical distance x, i.e. the length (in step number) of the shortest path between
two points. Indeed in the chemical space, the propagator does have a simple fractal scaling
[45, 102] and in the infinite volume limit the averaged propagator P 0(x, t) satisfies the scaling
form (2.15) (see [45]). Note that this property is shared by most of random fractals [45], and
makes the chemical distance a powerful tool to calculate disorder averages. The formalism derived
for self-similar Markovian random walks can therefore be employed, and the scaling laws of the
MFPT, splitting probability and mean occupation time averaged over the disorder are given in
chemical space by equations (2.16), (2.17) and (2.18), where r is to be replaced by the chemical
distance x. Note that in the chemical space, the fractal dimension is given by dcf = df/dmin

and walk dimension is dcw = dw/dmin. Exponent c indicate that we use chemical distances. The
dimension dmin is the fractal dimension of chemical paths and permits to recover the dependence
on the euclidian distance r through the scaling [71] x ∝ rdmin , with dmin ' 1.24 . . . in the case of
the 3D Euclidian lattice [71].

Simulations

Simulations of first-passage observables are shown in Figure 2.4. All of the embedding domains
have reflecting boundary conditions, and we averaged for each set of chemical distances {xij} the
desired observable over all configurations of source and targets yielding the same set {xij}.

Inset a) of Figure 2.4 is the MFPT for random walks on 3-dimensional critical percolation
clusters. For each size of the confining domain (203, 253 and 303), the MFPT, normalized by the
number of sites N , is averaged for a given chemical distance over both the different target and
starting points, and over several critical percolation clusters. The black plain curve corresponds
to the prediction of equation (2.16) with dcw − dcf ' 1.

Inset b) of Figure 2.4 shows the splitting probability for random walks on 3-dimensional critical
percolation clusters. The splitting probability P1 to reach the target T1 before the target T2 is
averaged both over the different target points T2 and over the percolation clusters. The chemical
distance ‖rS−rT1‖ = 10 is fixed whereas the chemical distance ‖rS−rT2‖ = ‖rT1−rT2‖ changes.
The black plain curve corresponds to the explicit theoretical equation (2.17) with dcw − dcf ' 1.

Inset c) of Figure 2.4 shows the occupation time for random walks on critical percolation
clusters. For each size of confining domain, the occupation time of site T1 before target T2 is
reached for the first time is averaged over the different target points T2 and over the percolation
clusters. The chemical distance ‖rS−rT1‖ = 10 is fixed whereas the chemical distance ‖rS−rT2‖ =
‖rT1 − rT2‖ changes. The black plain curve corresponds to the prediction of equation (2.18) with
dcw − dcf ' 1.

At last, inset d) of Figure 2.4 shows the MFPT for random walks on percolation clusters
above criticality for a 253 confining domain. The MFPT, normalized by the number of sites N ,
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Figure 2.4: Numerical simulation of first-passage observables for random walks on three-
dimensional percolation clusters. (a) MFPT for random walks on 3D critical per-
colation clusters. For each size of the confining domain, the MFPT, normalized by
the number of size N , is averaged both over the different target and starting points
separated by the corresponding chemical distance, and over the disorder. The black
curve corresponds to the prediction of equation (2.16) with dcw−dcf ' 1. (b) Splitting
probability for random walk on 3D critical percolation clusters. The chemical dis-
tance ST1 = 10 is fixed whereas the chemical distance ST2 = T1T2 varies. The black
plain curve corresponds to the explicit theoretical expression (2.17) with dcw−dcf ' 1.
(c) Occupation time for random walks on critical percolation clusters. For each size
of confining domain, the occupation time of site T1 before target T2 is reached for
the first time is averaged over the different target point T2 and over the percolation
clusters. The chemical distance ST1 = 10 is fixed whereas the chemical distance
ST2 = T1T2 varies. The black plain curve corresponds to the prediction of equation
(2.18) with dcw − dcf ' 1. (d) The MFPT for random walks on percolation clusters
above criticality for a 25 × 25 × 25 confining domain. The MFPT, normalized by
the number of sites N , is averaged both over the different target and starting points
separated by the corresponding chemical distance, and over the percolation clusters.
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2.1 First theoretical predictions: beyond the MSD

is averaged both over the different target and starting points separated by the corresponding
chemical distance, and over the percolation clusters.

Figure 2.4 (a,b,c) shows that the simulations fit very well the expected scaling. Both the
volume dependence and the source-target distance dependence are faithfully reproduced by our
theoretical expressions, as shown by the data collapse of the numerical simulations.

If the bond concentration p is above the percolation threshold pc, a correlation length ξ ∝
(p− pc)−ν appears, where ν = 0.87.. for d = 3. At length scales smaller than ξ, the percolation
cluster is fractal, with the same fractal dimension df as the critical percolation cluster, and
diffusion is anomalous. At length scales larger than ξ, the fractal dimension of the percolation
cluster recovers the space dimension d and diffusion is normal [71].

Along the lines of the previous section, we thus expect the pseudo-Green function H to scale
as rdw−df for r < ξ, and as rd−2 for r > ξ. More explicitly, on the example of the MFPT we
expect for the 3–dimensional cubic lattice

〈T〉 '





BNr1.36... for r < ξ

N

(
A′ − B′

r

)
for r > ξ

. (2.19)

Similarly, the other first-passage observables display a cross-over between these two regimes
around ξ. The simulations do show very well the transition between the two regimes (see Figure
2.4 d)).

2.1.3 CTRW

A continuous time random walk (CTRW) is not necessarily Markovian unlike the fractal case,
and therefore the above methodology cannot be applied directly. Moreover, the MFPT diverges
if we use an heavy tailed distribution for the waiting time distribution. FPT distribution for
CTRWs has however been obtained recently in [62]. We here briefly recall these results, and
derive analytical expressions of the other observables.

Heavy tail distribution

As introduced in chapter 1, CTRW is a standard random walk with random waiting times, drawn
from a distribution ψ(t). We here consider heavy tailed distributions

ψ(t) ∼
t�τ

ατα

Γ(1− α)t1+α
(2.20)

The mean waiting time, 〈ψ〉, diverges for α < 1 and the walk is sub-diffusive since the MSD
scales like 〈r2〉 ∝ tα (see [172, 187]). Here τ is a characteristic time in the process. We focus on
the representative case of a Levy α-stable distribution [111], which satisfies equation (2.20) and
whose Laplace transform is ψ̂(s) = exp(−ταsα) (0 < α < 1).

first-passage observables for CTRW

We now derive the relation between the FPT to the site rT , starting from rS for the standard
discrete-time random walk (ψ = 1 for all steps) and the CTRW.
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2 From experimental trajectories to (anomalous) diffusion mechanism, and the way back

Denoting FPT(t) the probability density of the FPT for the CTRW, and Q(n) the probability
density of the FPT for the discrete-time random walk, n being the number of steps, one has

FPT(t) =
∞∑

n=1

Q(n)ψn(t), (2.21)

where ψn(t) is the probability that the sum of the n waiting times of the trajectory is t. We
recall that each waiting time is distributed according the same distribution ψ(t). ψn(t) is here a
convolution of n identical distributions ψ(t), leading in Laplace space to:

ψ̂n(s) = ψ̂n(s) = exp(−nταsα) (2.22)

Equation (2.21) can be rewritten after Laplace transformation as

F̂PT(s) = Q̂
(
e−nτ

αsα
)
, (2.23)

where

Q̂(z) =

∞∑

n=1

Q(n)zn (2.24)

is the Z-transform of the discrete-time random walk first-passage density.

Several comments are in order.

(i) First, the small s limit shows that the MFPT is infinite, and the long-time behavior of
FPT(t) is directly related to the MFPT of the discrete-time simple random walk:

FPT(t) ∼
t→∞

ατα

Γ(1− α)t1+α
〈n〉. (2.25)

〈n〉 is here the average number of steps needed to reach the target for the original discrete-
time random walk, equivalent to a MFPT for this walk. It should be noted that as soon
as Q̂(z) is exactly known (such as for d = 3 in the large N limit, see [62]), the entire
distribution of the FPT can be obtained.

(ii) Second, as splitting probabilities are time independent quantities, they are exactly identical
for CTRW and standard discrete time random walks, and are therefore given by equation
(2.17) with the space dimension d and the walk dimension dw = 2.

(iii) Third, the same decomposition as equations (2.21), (2.23) holds for the distribution FPTi(ti)
of the occupation time ti of site i, where the distribution of the occupation time F (Ni) for
the discrete-time random walk has to be introduced. This yields to

FPTi(t) ∼
t→∞

ατα

Γ(1− α)t1+α
〈Ni〉. (2.26)

Interestingly, as F (Ni) is explicitly given by equation (2.11), the entire distribution of the
occupation time can be derived.

We emphasize that a proper definition of the mean values of the first-passage observables
(namely the MFPT and the mean occupation time) is provided by introducing a truncated

56



2.1 First theoretical predictions: beyond the MSD

first-passage observable CTRW model Fractal model

FPT distribution ∝ 1

tα+1
∝ e−Ct

(Conditional) mean FPT ∼ N
(

1− C

r

)
∼ CNrα

Splitting probability P1
1 + C

(
r−1

1S − r−1
2S − r−1

12

)

2
(
1− Cr−1

12

) 1

2

((
r2S

r12

)α
−
(
r1S

r12

)α
+ 1

)

(Conditional) 〈N1〉 1 + C
(
r−1

1S − r−1
1T − r−1

ST

)
C (rα1T + rαST − rα1S)

Table 2.1: Comparison of first-passage observables for CTRW and fractal models for d = 3.

distribution (with cut-off tc) of waiting times in place of ψ(t). As this allows to define a mean
waiting time

〈ψ〉 = C

∫ tc

0
tψ(t)dt, (2.27)

(where C normalizes the truncated PDF), the MFPT is then given by

〈T〉 = 〈ψ〉〈n〉, (2.28)

and the mean occupation time reads

〈ti〉 = 〈ψ〉〈Ni〉. (2.29)

Note that our results show that the first-passage observables scale with the geometric param-
eters N and r exactly as a simple random walk. Their scaling dependence is therefore given by
equations (2.16), (2.17), (2.18), where df is the space dimension d and dw = 2.

2.1.4 How to discriminate CTRW and diffusion on fractals?

We will now use those analytical results to propose a way to distinguish between CTRW and
diffusion on fractals, using the first-passage properties. We will first present our solution, then
some extension of the previous results, and in the end an experimental set-up that allows to
measure the proper first-passage observables.

Solution (in theory)

The first-passage observables derived earlier make it possible to distinguish between the two
models of sub-diffusion, as summarized in Table 2.1. In this table, constant C has to be redefined
on each panel.

We note that:

(i) The first-passage time has a finite mean and exponential tail for the fractal model, while
it has an infinite mean and a power-law tail in a CTRW model. Analyzing the FPT
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distribution tail therefore provides a first tool to distinguish the two models. As experiments
can only find the first-passage up to a certain time, we need to use the above mentioned
truncated means to define the MFPT for CTRW. In this case the scaling of the MFPT
for CTRW with the source–target distance is the same as for a simple random walk, and
can be distinguished from the scaling of the MFPT on random fractals. These two scalings
are strikingly different for d = 3: the CTRW performs a non-compact exploration of space
(dw = 2 < 3 = d) leading to a finite limit of the MFPT at large source-target distance, while
exploration is compact for a random walker on the percolation cluster (dw > df ) leading
to a scaling in rdw−df of the MFPT. We highlight that this feature could have very strong
implications on reaction kinetics in cells. Indeed, in the cases where the fractal description
of the cell environment is relevant, our results show that reaction times crucially depend on
the source–target distance r. The biological importance of such dependence on the starting
point has been recently emphasized in [121], on the example of gene colocalization. On
the other hand, when the CTRW description of transport is valid, reaction times do not
depend on the starting point at large distance r.

(ii) The splitting probabilities for the CTRW model and for the fractal models have different
scalings with the distance between the source and the targets. As mentioned previously
the difference is more pronounced for d = 3: the probability to reach the furthest target
T2 vanishes as r−(dw−df ) for the fractal model, r being the distance ‖rS − rT1‖ with the
notations of Figure 2.5, while it tends to a constant for d = 3 according to the CTRW
model. As discussed above, this could have important consequences for the kinetics of
competitive reactions in cells.

(iii) As for the occupation time, both its distribution and the scaling of the conditional mean
with the distances ‖rS − rT1‖ and ‖rS − rT2‖ can be used to distinguish between models.
The advantage of the mean occupation time is that it can still discriminate between the
models after averaging over initial conditions, and could therefore be used even with a
concentration of tracers.

Some theoretical extensions

The presented theoretical framework can be extended to cover more realistic situations.
First, sub-diffusion could result in some systems from a combination of both the dynamical

(CTRW) and static (diffusion on fractal) mechanisms. Interestingly, our approach can be adapted
to study the example of CTRWs on a fractal which models such situations [37]. Indeed, the same
decomposition as in equation (2.21) holds in this case and shows that the dependence of the
first-passage observables (defined with truncated means if needed) on the source-target distance
is exactly the same as in the case of a standard discrete-time random walk on the fractal, and
therefore gives access to the dimensions dw and df of the fractal. In turn, the FPT distribution
tail is in this case reminiscent of the single step waiting time distribution defining the CTRW as
shown by equation (2.25) (see also [37]). First-passage observables therefore permit in principle
to isolate and characterize each of the CTRW and fractal mechanisms even when they are both
involved simultaneously.

Second, in various systems sub-diffusion occurs over a given time scale or length scale, crossing
over to the regular diffusive behavior (see [228] for instance). Both models can be adapted to
capture this effect. In the fractal model the fractal structure persists up to the crossover length
scale (which is the correlation length ξ in percolation clusters above criticality), and the waiting
time distribution for the CTRW model has a Lévy-like decay until the crossover timescale, after

58



2.1 First theoretical predictions: beyond the MSD

  

S 

T 

T 1 

2 

Figure 2.5: Schematic proposed set-up to measure first-passage observables.

which the decay is faster so that the mean waiting time becomes finite. The MFPT will exist in
both of these modified models, but the CTRW model leads to a normal scaling of the MFPT with
the volume and the source-target distance: namely , it corresponds to the results of the simple
random walk, with the same time step as the mean waiting time. On the other hand, a truncated
fractal structure would lead to the same scaling on larger scales, but to a scaling as in equation
(2.18) at smaller scales. The small-distance behavior of the MFPT can thus discriminate the
two models. The same conclusion holds for the splitting probabilities and occupation times: the
small-length behavior will also differ.

Suggested (experimental) setup

We can at last present a potential experimental utilization of first-passage observables.

The schematic set-up that we propose to measure these observables relies on single particle
tracking techniques (see Figure 2.5). We consider a single tracer, either a fluorescent particle or
a nanocrystal, moving in a finite volume such as a living cell, a microfluidic chamber or vesicle.
A laser excitation defines the starting zone S. As soon as the tracer enters S a signal is detected
and a clock is started. Similarly, a second laser excitation defines the target zone T1, and allows
the measurement of the FPT of the tracer at T1. In the same way, a third laser excitation can
detect a second target T2: counting the time spent by the tracer in T2 before reaching T1 gives
exactly the occupation time. Splitting probabilities are straightforwardly deduced.

Experimental limitations

When presenting this idea to biologists, the setup of Figure 2.5 has been considered as rather
difficult to realize.

The usual data are just direct observations through fluorescent microscopy of GFP-fused pro-
teins. Turning on the fluorescent probe in a confined volume S is possible, but only for a limited
number of probes. The easiest way to start the random walk is to consider that it begins as soon
as the fluorescent probe leaves a given volume S. This volume can be defined using confocal
microscopy.

After that, one has to follow the fluorescent probe, and see if it crosses a second volume T1.
Once again, a confocal microscopy can define precisely a small volume, and detect, like for the
fluorescence correlation spectroscopy setup, if a random walker cross this volume of not.

With confocal microscopy, we can in the same time follow the whole trajectory, with several
fluorescent probes evolving in the same time in the observation field, and define the volume S
and T1. But the accuracy will be rather bad, either in time if the space scanning is accurate, or in
space if the scanning is fast. We could use two different lasers, one for the mesoscopic observation
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of the whole trajectory, a second for the precise definition of S and T1, but it becomes a complex
setup.

At last, we have to stop somehow the random walk when the fluorescent probe reach the volume
T2. This can be achieved with a stronger laser exposition in this volume.

If the proposed setup could be somehow realized, three major limitations hinder to use it to
discriminate between CTRW and diffusion on fractals:

(i) The random walkers can only be followed on a limited observation field. One has to take
care that the confinement has to be smaller than this observation field.

(ii) The fluorescent probe can be destroyed before ever reaching T2 through photobleaching.
The amount of trajectories longer than a given time t will decay exponentially. We will
thus have a bias in the statistic, short trajectories being over-represented compared to long
trajectories.

(iii) The data set one can hope for such setup, even with a lot of experiments, is around 1, 000
events. This data set is to small to estimate correctly the first-passage density for instance,
and discriminate between an exponential and a power-law tail.

In the end, the suggested experimental setup could be performed, but the resulting data set
would not allow to discriminate properly between CTRW and diffusion on fractal. First-passage
observables are good candidates to discriminate those two mechanisms, but the quantity studied
so far do not exploit sufficiently the available information. Biologists work with trajectories, every
single point of this trajectory should be used in the analysis, and not only the global time spent
between two points, or the number of time a fluorescent probe passes through a given volume.
New observables, based on first-passage properties, and using the whole trajectory, have to be
developed.

• First-passage observables can (theoretically) discriminate CTRW and diffusion on
fractals (even truncated or mixed) ;

• An experimental setup can be imagined to measure those observables ;

• Due to experimental constraints, other observables have to be found to exploit
more completely trajectory data sets.

Summary

2.2 Further leads to face experimental constraints

As explained previously, experimental data sets usually consists on a limited number of single
particle trajectories (typically between 10 and 1,000), each trajectory being between 20 and 1,000
frames long, with some missing frames. The data quantity, as well as the accuracy on the random
walker position, is not adequate to use first-passage observables to a given target, at least for
the time being. Indeed, the statistic we could have for the first-passage time is too limited to
be confident on the extrapolated result. One should note that the simulations presented in the
first chapter, or in the previous section, average between 10,000 and 100,000 trajectories for
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each couple (start,target). Hoping to get such accuracy is, once again for the time being, highly
unrealistic with biological experiments.

So far, we dit not show a way to discriminate a fBm with CTRW or diffusion on fractals. Other
observables have been developed to tackle this problem. We will briefly introduce the normalized
variance and the ergodicity breaking parameter, based on the same idea, and that we transposed
to suggest our moment ratio (see below).

For fBm, a sub-diffusive process that we have introduced in the first chapter, we can define
the normalized variance as:

V =

〈(
〈r2〉t(∆, T )

)2〉− 〈〈r2〉t(∆, T )〉2

〈〈r2〉t(∆, T )〉2 , (2.30)

where 〈. . .〉 is still the ensemble average, and 〈. . .〉t the time average. For fBm, this normalized
variance is equal to [74]

V ∼ k(H)





∆
T , for 0 < H <

3

4
∆ ln(T )

T , for H =
3

4(
∆
T

)4−4H
, for

3

4
< H < 1

(2.31)

The coefficient k(H) shows a non-smooth transition at H = 3/4 with a divergence on reaching
H = 3/4 both from below and above. The normalized variance tends to 0 for an ergodic process
as T →∞: time average on an infinite trajectory and ensemble average over an infinite trajectory
set are equal.

For CTRW where the waiting time distribution admit an α–heavy tail, we only have as theo-
retical result the limit when T →∞ of the normalized variance, the so-called ergodicity breaking
parameter EB [104]:

EB = lim
T→∞

V = lim
T→∞

〈(
〈r2〉t(∆, T )

)2〉− 〈〈r2〉t(∆, T )〉2

〈〈r2〉t(∆, T )〉2 =
2Γ(1 + α)2

Γ(1 + 2α)
− 1 (2.32)

This EB parameter range monotonically from 1 when α→ 0 to 0 when α = 1 (Brownian motion,
ergodic).

Using the EB parameter and the normalized variance, we could discriminate between fBm,
CTRW. The diffusion on fractals could be tackled in the same way (EB = 0 since the process is
ergodic). Once again, those criteria come from theoreticians: they are not adapted to extract all
the information contained in a given experimental data set.

Trying to analyze experimental trajectories, we developed an alternative way to distinguish
microscopical mechanisms for anomalous diffusion, using as extensively as possible experimental
data, namely single particle trajectories. All results of this section have been published in [210]
(method and first analysis) and in [113] (extensive analysis).

For this section, we will consider that the ensemble averaged mean square displacement (MSD)
follows:

〈r2(t)〉 =

∫ ∞

0
‖r‖2P (r, t)dr = Kαt

α. (2.33)
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2 From experimental trajectories to (anomalous) diffusion mechanism, and the way back

Here we assumed spherical symmetry and an isotropic environment, such that P (r, t) is the
probability density to find the particle a (radial) distance r away from the origin at time t after
release of the particle at r = 0 at time t = 0. Kα is the generalized diffusion coefficient, equivalent
of the classical diffusion coefficient D in the case of anomalous diffusion.

We will first present our method on the example of a realistic simulated data set, showing that
the observables we will introduce allow to distinguish properly the three sub-diffusion mechanisms
we will focus on, namely CTRW, fBm and diffusion on fractals. We will then apply this method
to a real Brownian data set (Qdots freely diffusing in solution) in order to check the influence
of experimental artifacts on the observables chosen. At last, we will apply our method to a
sub-diffusive data set of lipid granules evolving in fission yeast (S. Pombe).

2.2.1 Simulations

To represent an example of realistic experimental data set, we generated several trajectories with
different microscopical mechanisms. The aim was first to extract accurately the sub-diffusive
exponent α, then to develop observables allowing to distinguish the mechanisms, using as exten-
sively as possible the trajectories simulated. We decided to focus on three mechanism introduced
in the previous chapter: CTRW, diffusion on fractals and fBm. These models are physically
different, while they all lead to a mean square displacement of the form (2.33).

We generated time series of two-dimensional random walks by simulation of each of the three
sub-diffusion models. The dimensionality mimics the fact that typically 2D trajectories are
recorded in experiments. The anomalous diffusion exponent in each case was chosen as α = 0.7,
a value observed in a number of biological contexts [54, 55, 99, 190, 191, 212]. For each model
we created 1, 000 trajectories, each containing 100 frames.

In the CTRW case we performed a 2D Monte Carlo random walk with a heavy tailed waiting
time distribution of the form (1.105), with α ' 0.70, and Gaussian jump length statistics of width
〈δr2〉1/2 = 1.

To simulate diffusion on a fractal we generated Monte Carlo random walks on a 2D critical
bond percolation cluster of size 250×250 (df = 91/48 and dw ≈ 2.844, so that α = 2/dw ' 0.70).

Finally, in the fBm case we used the Hosking method [109] to generate a 2D fBm with a Hurst
exponent H = 0.35 (α = 2H = 0.70).

We point out that fBm and CTRW are simulated in an unbounded environment, while the
percolation network is, in our simulation, in a confined environment. Since we chose small time
intervals in the analysis, this will not significantly affect our results.

The purpose of the simulations is to generate sub-diffusion time series of specific models. This
enables us to prove that the tools developed in this section are indeed able to distinguish these
mechanisms. The data sets are chosen relatively small in order to mimic typical experimental
data sets.

2.2.2 Moments and ratio observables

We will introduce in this sub-section observables that differs between CTRW, fBm and diffusion
on fractals. The idea is to obtain a result as simple as the one of ergodicity breaking: a value
independent of the diffusion coefficient, of the time unit and of the space unit. The ratios we will
introduce allow this simple analysis: to compare an “absolute” value to the one obtained for a
given trajectory set. We will also introduce the maximal excursion moments, that allows a more
accurate estimate of the anomalous diffusion exponent.
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2.2 Further leads to face experimental constraints

To get the α anomalous diffusion exponent, the usual way is to compute the ensemble-averaged
mean square displacement. More generally, we can compute, for an experimental data set, the
regular moments of the displacement:

〈rk(t)〉 ' 1

N (t)

N (t)∑

i=1

rki (t), (2.34)

where N (t) is the number of trajectories that are at least t frames long.

Definition of moments ratio

We will introduce in this paragraph the ratio that will be used for anomalous diffusion processes.
We recall that we are looking for a quantity that does not depend on the specific observation
parameter (diffusion constant, time unit or space unit), but only on the microscopical diffusion
mechanism. We will first assume that we consider a classical Brownian motion, and we will show
later that we can transpose the results obtained to anomalous diffusion.

If we consider an usual Brownian motion, we expect that 〈rk(t)〉 ' 0 if k is odd, and that
〈rk(t)〉 ∝ (Dt)k/2 if k is even. We can thus obtain a time-independent observable using ratio of
regular moments. For instance:

〈r4(t)〉
〈r2(t)〉2 ∝

D2t2

(Dt)2
= 1 (2.35)

We can note that this ratio is a time-independent numerical value, that does not depend on the
diffusion coefficient D, and that is not affected by a space rescaling. For an experimental data set,
there is absolutely no fitting parameter here. It is “universal” in the sense that it only depends on
the space dimension, for a Brownian motion, as shown below. Using Cauchy-Schwartz inequality,
we know that this ratio is always greater than 1.

Such ratio is in fact a measure of the mean square displacement dispersion. If we use an infinite
data set, we expect to have a perfectly linear mean square displacement (〈r2(t)〉 = Dt). For a
finite data set, each point r(t) becomes a random variable. The ensemble average is here a simple
sum of random variables, and is itself a random variable, centered around Dt, but with a certain
variance. This variance is directly given by:

Var
[
r2(t)

]
= 〈r4(t)〉 − 〈r2(t)〉2 (2.36)

We can define a “relative” variance as follow:

var
[
r2(t)

]
=

Var
[
r2(t)

]

〈r2(t)〉2 =
〈r4(t)〉
〈r2(t)〉2 − 1 (2.37)

The ratio 〈r4〉/〈r2〉2 that we have defined is thus linked to the relative variance: the greater
this ratio, the more dispersed the data set.

Last subtlety: the exact ratio value we can compute, using the Brownian propagator, only
holds for an infinite data set. For a finite data set, which often the case for experimental data
sets, the relative variance – or equivalently the moment ratio – is itself a random variable, whom
the average value is the ratio computed for an infinite data set. If we compute the ratio for a
finite data set, we will thus observe that the value depends on time: the moments at two different
times are two distinct random variables, with the same average value. But as time grows, we
expect that the computed ratio will converge toward the predicted value. Indeed, the position
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2 From experimental trajectories to (anomalous) diffusion mechanism, and the way back

1 D 2 D 3 D

〈r2〉 Dt Dt Dt

〈r4〉 3 (Dt)2 2 (Dt)2 5/3 (Dt)2

〈r4〉/〈r2〉2 3 2 5/3

Table 2.2: Regular Brownian moments

r(t) is already a sum of t random variables (assuming the time span between two frames is 1),
the random jumps: as time grows, with a given trajectory data set, we will average on more and
more random jumps. The moments computed will thus converge toward the infinite ensemble
average as time grows. Similarly, if we compute the ratio 〈r4〉/〈r2〉2, we expect that as time
grows, this ratio converges toward the predicted value for an (infinite) ensemble average.

The moment ratio have an unique value for a Brownian motion in a given dimension. We will
see below that the moment ratio takes distinct value, still time-independent, for each sub-diffusion
mechanism, and will be good candidates to discriminate between those mechanisms.

Regular moments computation for Brownian motion

We can compute the moments for a regular Brownian motion [111]. To compute the second
and the fourth moments we use a classical diffusion equation. In d dimensions and for spherical
geometry this reads

∂P (r, t)

∂t
=

D

2drd−1

∂

∂r

(
rd−1∂P (r, t)

∂r

)
. (2.38)

D is the diffusion coefficient, P (r, t) the probability to find the random walker at a distance r of
the initial position at time t.

To compute the regular moments, for an arbitrary dimension d, we impose the normalization
and initial conditions ∫ ∞

0
P (r, t)rd−1dr = 1 and P (r, 0) =

δ+(r)

rd−1
, (2.39)

where δ+(r) is the one-sided Dirac δ function. The boundary conditions are normal, i.e. chosen
such that P (r →∞, t) = 0.

After obtaining an expression for the propagator P (r, t) we compute the nth moment

〈rn〉 =

∫ ∞

0
rnP (r, t)rd−1dr. (2.40)

Alternatively, this can be obtained by integration of rn times the diffusion equation (2.38).
Results are summarized in Table 2.2, and the computation is detailed in Appendix 1.
We see that the ratio 〈r4〉/〈r2〉2 is a time-independent, D-independent and space unit-independent

quantity, at least for a Brownian motion. It is a very good candidate to characterize precisely
(without any fitting parameter) an experimental diffusion mechanism. We will see below how to
adapt the calculus to transpose it to CTRW, fBm and diffusion on fractals.

Maximal excursion moments

In the course of searching different observables that could discriminate CTRW, fBm and diffusion
on fractals, we looked at a way to find back first-passage properties. We saw in the previous section
that first-passage properties were very good observables to distinguish CTRW and diffusion on
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2.2 Further leads to face experimental constraints

fractals. The problem was to conciliate first-passage properties with small data sets. We now
focus on an observable related to first-passage properties, the maximal excursion, more adapted
to extract as much information as possible from small data sets.

The maximal excursion rmax is the greatest Euclidian distance that the random walker reaches
between t = 0 and t. This maximal excursion is illustrated in Figure 2.6: for a given time t,
knowing the whole trajectory (and not only position at time t), we can compute rmax(t) and r(t).

S

r(t)r   (t)max

Figure 2.6: Scheme of the maximal excursion computation for a given trajectory.

As previously, we can define moments of this maximal excursion:

〈rnmax(t)〉 =

∫ ∞

0
rn0 Pr (rmax = r0, t) dr0, (2.41)

where Pr (rmax = r0, t) is the probability that the maximal distance from the origin that is reached
up to time t, is equal to r0.

This time, ∀n ∈ N, 〈rnmax(t)〉 ∝ (Dt)n/2. This ensemble average can be approximated, for a
finite data set, by:

〈rkmax(t)〉 ' 1

N (t)

N (t)∑

i=1

(
max

0≤t′≤t
ri(t
′)
)k

(2.42)

We can retrieve a time-independent ratio if we compute

〈r4
max(t)〉

〈r2
max(t)〉2 ∝

D2t2

(Dt)2
= 1, (2.43)

This ratio is a measure of the square maximal excursion relative variance. This ratio and the
regular moment ratio do not measure the same thing: the regular moment ratio is an estimate of
the position variance at a given time, this ratio is an estimate of the maximal excursion variance
since the beginning of the random walk. We could hope to distinguish several mechanisms just
with those two ratio: the relative variance of the position and of the maximal excursion are
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2 From experimental trajectories to (anomalous) diffusion mechanism, and the way back

1 D 2 D 3 D

〈r2
max〉 1.83 . . . Dt 1.53 . . . Dt 1.40 . . . Dt

〈r4
max〉 5.93 . . . (Dt)2 3.49 . . . (Dt)2 2.68 . . . (Dt)2

〈r4
max〉/〈r2

max〉2 1.77 . . . 1.48 . . . 1.36 . . .

Table 2.3: Regular Brownian maximal excursion moments

expected to be different for correlated processes (like fBm and CTRW), and Brownian (uncor-
related) motion in fractal media. Indeed, for an anti-correlated process, the maximal excursion
is expected to be lower than for an uncorrelated one: the probability to have several jumps in
the same direction, leading to an extreme position, is lowered in the case of an anti-correlated
process.

We expect that the ratios will be specific to each diffusion mechanism. We will show how to
obtain those ratios, first for Brownian motion, before extending the result to CTRW and diffusion
on fractals. fBm will be treated separately.

Maximal excursion moments computation for Brownian motion

To get maximal excursion moments for a Brownian motion, we first calculate the probability that
at time t the distance from the origin traveled by the random walker is less than r0: rmax ≤ r0.
To this end we consider an absorbing sphere at the radius r = r0 and obtain the propagator in
the domain 0 ≤ r ≤ r0 using the following boundary and initial conditions:

P (r0, t) = 0 and P (r, 0) =
δ+(r)

rd−1
. (2.44)

Any random walker that has reached before t a maximal excursion rmax ≥ r0 has here been
absorbed by the sphere r = r0 before t. The probability to be within the sphere at time t is thus
the probability to have a maximal excursion rmax at time t smaller than r0.

Pr (rmax ≤ r0, t) =

∫ r0

0
P (r, t)rd−1dr. (2.45)

The nth moment is obtained by integration of rnmax times the derivative of the cumulative
distribution, i.e. the density,

〈rnmax〉 =

∫ ∞

0
rn0
∂ (Pr (rmax ≤ r0, t))

∂r0
dr0

= n

∫ ∞

0
rn−1

0 (1− Pr (rmax ≤ r0, t)) dr0. (2.46)

Results are summarized in Table 2.3, and the computation detailed in Appendix 1.

One can note that the ratio 〈X4〉/〈X2〉2 is smaller for maximal excursion moments than for
regular moments. This means that the relative variance is smaller for maximal excursion that for
displacement: one can extract, with a greater accuracy, the diffusion coefficient or the anomalous
diffusion coefficient (here α = 1), from the same data set, using maximal excursion.

This point is really important for small data sets: a power-law fit using mean square displace-
ment could gives an anomalous diffusion coefficient α 6= 1, while a power-law fit on the mean
square maximal excursion gives a normal diffusion α ' 1.
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2.2 Further leads to face experimental constraints

Extension to diffusion on fractal

So far we focused on the Brownian motion. Those computation can be extended to anomalous
diffusion processes, at least to some extent.

We will first focus on diffusion on fractals. On such media, we can consider that we still have a
classicam random walk, where the effective space dimension d can be any (positive) real number.
As in the first chapter, we note df the (fractal) space dimension, with V ∝ rdf , where V is the
volume of a sphere of radius r, and dw the walk dimension, that characterizes the mean square
displacement, 〈r2〉 ∝ Dt2/dw . Those two dimensions are fractal-specific. We then use the generic
diffusion equation from O’Shaughnessy–Procaccia [154]:

∂P (r, t)

∂t
=

D

rdf−1

∂

∂r

(
r1−dw+df

∂P (r, t)

∂r

)
. (2.47)

As for the Brownian motion, we can solve this equation, and find:

〈r2k〉 =
Γ
(
df+2k
dw

)

Γ
(
df
dw

) (
Dd2

wt
)2k/dw

(2.48)

If we use α = 2/dw, this equation writes:

〈r2k〉 =
Γ
(

(df+2k)α
2

)

Γ
(
dfα

2

)
(

4Dt

α2

)kα
(2.49)

The diffusion equation can be used similarly for the absorbing sphere case, to retrieve the
following result [34]:

〈rkmax〉 = Ak,df ,dw

(
d2
w

4
Dt

)k/dw
= Ak,df ,dw

(
Dt

α2

)kα/2
, (2.50)

with

Ak,df ,dw =
21−df/dw2k

dwΓ
(
k
dw

+ 1
)

Γ
(
df
dw

)
∫ ∞

0

u(2k+df )/dw−2

Idf/dw−1(u)
du (2.51)

Here, In is the modified Bessel function of the first kind of order n.

Extension to CTRW

We will now extend the Brownian result for CTRW. As presented in chapter 1, CTRW is in its
discrete version a succession of jumps, where the random walker rest a random waiting time τ
between two steps. We will assume that the waiting time distribution ψ(τ) scales as ψ(τ) '
τ0/τ

1+α with 0 < α < 1. To simplify the calculus, we will use the continuous limit of CTRW,
namely the fractional diffusion, in order to retrieve a diffusion equation, as for the Brownian
motion. This continuous process is governed by the following fractional diffusion equation [172]

∂P (r, t)

∂t
=

Kα

rd−1

∂

∂r

(
rd−1 ∂

∂r

(
0D

1−α
t P (r, t)

))
. (2.52)

Here we used the Riemann-Liouville fractional operator [172] introduced in chapter 1:

0D
1−α
t P (r, t) =

1

Γ(α)

∂

∂t

∫ t

0
dt′

P (r, t′)
(t− t′)1−α , (2.53)
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2 From experimental trajectories to (anomalous) diffusion mechanism, and the way back

The generalized diffusion constant is Kα = 〈δr2〉/[2τα0 ], where we used the (finite) jump length
variance 〈δr2〉.

The Laplace transform of the diffusion equation is therefore

sP (r, s)− P (r, 0+) = s1−α Kα

rd−1

∂

∂r

(
rd−1 ∂

∂r
P (r, s)

)
. (2.54)

With this result, we can use the so-called subordination [227]. This means that we can replace
in Laplace space s by K1s

α/Kα where s is the Laplace variable conjugated to time t. Using this
method, we obtain the ratio for both regular moments and maximal excursion statistics from the
Brownian result, however, with different pre-factors

〈rk〉CTRW =
Γ(k/2 + 1)

Γ(αk/2 + 1)

〈rk〉BM

Dt
Kαt

α, (2.55)

〈rkmax〉CTRW =
Γ(k/2 + 1)

Γ(αk/2 + 1)

〈rkmax〉BM

Dt
Kαt

α, (2.56)

We can comment quickly this result. Since α < 1, regular and maximal ratio are greater for a
sub diffusive CTRW than for an usual Brownian motion:

〈r4〉CTRW

〈r2〉2CTRW

=
2Γ(α+ 1)2

Γ(2α+ 1)

〈r4〉BM

〈r2〉2BM

(2.57)

and similarly
〈r4

max〉CTRW

〈r2
max〉2CTRW

=
2Γ(α+ 1)2

Γ(2α+ 1)

〈r4
max〉BM

〈r2
max〉2BM

(2.58)

This means that the relative variance of the mean square displacement and of the mean square
maximal excursion is greater for a CTRW than for a Brownian motion. For a CTRW, the random
walker can stay for a very long time at the same place: the resulting trajectory is a succession of
jumps separated by waiting times. A given data set exhibits a wider variance, since some of the
walkers stay stuck for a very long time while others continue to evolve.

Extension to fBm

FBm is a non Markovian process: we cannot define a diffusion equation local in time. But we
have an analog of propagator in free space [224], namely the one-point distribution of trajectories
at time t, starting from r = 0 at t = 0:

P (r, t) =
2

Γ(d/2)

(
2Kα

d
tα
)d/2 exp


− r2

2Kα

d
tα


 , (2.59)

which is equal to the propagator of Brownian motion after the substitution t→ tα. This expres-
sion is in fact the superposition of d independent fBm processes. It is not a real propagator, since
we here assume that the fBm started in t = −∞ and is in r = 0 at time t = 0: we thus waited
that the increment reach the stationary probability before beginning the random walk. We have
with equation (2.59) a pseudo-propagator of the walker distribution after a time t, starting for
an “equilibrated” state. But we cannot use it as a classical propagator: knowing the position at
time t′ does not allow to get the position at time t > t′ by injecting t− t′ in equation (2.59).
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1 D 2 D 3 D

〈r2〉 Kαt
α Kαt

α Kαt
α

〈r4〉 3 (Kαt
α)2 2 (Kαt

α)2 5/3 (Kαt
α)2

〈r4〉/〈r2〉2 3 2 5/3

Table 2.4: FBm regular moments.

H fitted α (= 2H in theory) fitted α′

0.05 0.0991 0.2491
0.10 0.1993 0.3301
0.15 0.3015 0.4114
0.20 0.4003 0.4922
0.25 0.5015 0.5742
0.30 0.5971 0.6561
0.35 0.6979 0.7439
0.40 0.7982 0.8342
0.45 0.8962 0.9231
0.50 0.9975 1.0168

Table 2.5: FBm regular (α) and maximal excursion (α′) second moment exponent in 2D (numer-
ical simulations).

From equation (2.59) we can still compute at least the regular moments, with the analogous
time substitution. The results are collected in Table 2.4. To compute the maximal excursion
moments, one would need to know the solution of fBm in the presence of an absorbing boundary,
a so far elusive quantity.

We estimated the maximal excursion second and fourth moment and the related ratio with
numerical simulations. We generated 100,000 trajectories of 512 steps, in two dimensions, using
the Hosking method [109], for H exponents from 0.05 (α = 0.1) to 0.5 (α = 1, Brownian motion),
by step of 0.05.

We plotted in Figure 2.7 the second maximal excursion moment as a function of time. We
observe that it behaves like a power-law for all H values, if we except the initial points, were
the estimate of rmax is not very accurate. The surprising result is that the exponents are always
greater than α. We note α′ the second maximal excursion moment exponent, and we reported
in Table 2.5 the fitted values of α and α′. α values are always very close to the theoretical ones
(2H), and H = 0.5 gives back the Brownian motion (α = α′ = 1). We see that α′ behaves
linearly with α, a linear regression gives, with a high correlation coefficient:

α′ ' 0.156± 0.005 + (0.849± 0.008)α (2.60)

Figure 2.8 shows the MME ratio as a function of time. We here obtain a more classical behavior,
with a saturation for long times. This result was not obvious, it means that the fourth MME
moment scales as t2α

′
. The saturation value grows with H.

We note that all curves start from 2 for t = 1, which is the MSD ratio in 2D (r = rmax for
t = 1), and that the upper curve converge toward 1.49, the expected value for a Brownian motion
in 2D (H = 0.50 is a Brownian motion). We do not have access to the limit t → ∞, so we
estimated the ratio using the minimal value, reached at time t = 512. Table 2.6 summarizes
those results. Since the precision of the estimation is not very good, it is hard to recognize a
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Figure 2.7: Second maximal excursion moment as a function of time for different fBm in 2 di-
mensions. The Hurst exponent varies from 0.05 (black curve) to 0.5 (magenta curve)
by steps of 0.05. Simulations are made using the Hosking method [109]. The inset is
a log-log plot.
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Figure 2.8: Maximal excursion ratio (〈r4
max〉/〈r2

max〉2) for different fBm in 2 dimensions, as a
function of time. The Hurst exponent varies from 0.05 (black curve) to 0.5 (magenta
curve) by steps of 0.05. Simulations are made using the Hosking method [109].

H 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50

Maximal excursion ratio 1.11 1.14 1.17 1.20 1.24 1.29 1.33 1.39 1.43 1.49

Table 2.6: Maximal excursion ratio (〈r4
max〉/〈r2

max〉2) for different fBm in 2 dimensions at time
t = 512.

particular behavior of this ratio with H. We propose a rough approximation using a shifted
power-law, just for the sake to have a quick numerical value for any H:

〈r4
max〉

〈r2
max〉2

' (1.05± 0.01)H1.42±0.01 + (1.10± 0.01) (2.61)

We see that fractional Brownian motion have a relative variance, only for maximal excursion,
lower than for a classical Brownian motion. Sub-diffusive fBm are anti-correlated: they tend to
stay in the same area longer than a Brownian motion, and thus to have a less disperse envelope
for maximal excursion. The exponent difference between displacement and maximal excursion is
a clear mark of the fBm non Markovian nature.

Confrontation with numerical simulation

To see if the two ratio were enough to discriminate between CTRW, fBm and diffusion on fractal,
we computed for the three simulated data sets the second moments as well as the ratios, for both
displacement and maximal excursion.
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Figure 2.9: 〈r2(t)〉 and 〈r2
max〉 as function of time t (arbitrary units) for the three simulated time

series (1, 000 trajectories of 100 steps each), each with anomalous diffusion exponent
α = 0.7. The black set corresponds to 2D percolation data, the red set to CTRW
on Euclidian lattice, and the green set to fBm. For each set, the crosses × stand for
〈r2(t)〉, and the triangles (∆) for 〈r2

max〉.
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〈r2〉 〈r2
max〉

Fractals α ' 0.64 α ' 0.73
CTRW α ' 0.67 α ' 0.71
FBM α ' 0.72 α′ ' 0.79

Table 2.7: Anomalous diffusion exponent obtained by power-law fit for simulated data sets.

Figure 2.9 shows the result: for both displacement and maximal excursion second moment, we
obtain power-law behavior. In this figure, diffusion on fractals is in black (percolation network),
CTRW in red and fBm in green. Crosses (×) represent the ensemble averaged mean square
displacement, triangles (∆) the ensemble averaged mean square maximal excursion.

The three data sets are simulated with the same α = 0.7, the fitted anomalous diffusion
exponent are given in Table 2.7. We can note that the exponent obtained with maximal excursion
method is better, namely closer to the input value, for both fractal and CTRW data sets. We also
expect different exponents α and α′ for displacement and maximal excursion second moments in
the fBm case, but this is not obvious with our simulated data set.

To refine the analysis, we plotted in Figure 2.10 the ratio 〈X4〉/〈X2〉2 for both quantities, and
for the three data sets. In this figure, diffusion on fractals is in black (percolation network),
CTRW in red and fBm in green. + represent the displacement ratio, ∆ the maximal excursion
one. The continuous lines are the expected values for the displacement ratio, the short lines the
expected values for the maximal excursion ratio.

For diffusion on fractals (black), we have a discrepancy between simulated and theoretical
values. This might be related to the fact that simulations take place in a confined environment
(percolation cluster on a 250× 250 network): the random walker quickly reaches the boundaries
and the convergence occurs toward the equilibrium distribution, and not toward the free space
propagator.

The displacement ratio seems to oscillate much more than maximal excursion ratio. This could
be explained by the intrinsic larger relative variance of displacement statistic.

The maximal excursion ratio seems to always decrease toward the infinite value. This can be
partly explained by the sampling used in practical computation. When we calculate the maximal
excursion, we use a diffusion equation that works for the continuous process. The maximal
excursion we have at time t is the maximum of r on the segment [0, t]. When we simulate the
time series, we do not have a continuous trajectory between 0 and t, but a discrete sampling over
[0, t]. The “real” maximum at time t could have occur, for the continuous process, between two
frames of the sampling, and we could have missed it. When we compare the theoretical results
with the maximal excursion over the sampling, we expect discrepancies due to the sampling: we
will always underestimate the maximal excursion, but the relative error will decrease with the
sample size. As the frame number increases, we expect that the computed ratio slowly converges
toward the “infinite” ratio.

We know that for the first frame, since we have only one point in the sampling, maximal
excursion and displacement are the same: the two ratios are equal for this first frame. The
displacement ratio being greater, the computed maximal excursion ratio decreases, as the frame
number increases, toward the theoretical ratio.

If we take diffusion on fractals apart (black data sets), one can clearly distinguish CTRW
and fBm using those ratio: CTRW ratios are above the Brownian one, respectively 2 for the
displacement ratio and 1.79 for the maximal excursion ratio in 2D, fBm is below for maximal
excursion ratio, and around 2 for the displacement ratio.
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Figure 2.10: 〈r4(t)〉/〈r2(t)〉2 and 〈r4
max(t)〉/〈r2

max(t)〉2 as function of time t for the three simulated
time series (1, 000 trajectories of 100 steps each). The maximal excursion ratio for
the diffusion on a 2D percolation cluster (black triangles) does not converge to the
expected value 1.29 (continuous black line). The same behavior is observed for the
displacement ratio (black +), for which the expected value is 1.77 (short black line).
The maximal excursion ratio for the CTRW process (red triangles) converges slowly
to 1.97 (continuous red line). The displacement ratio (red +) is more irregular
and converges to 2.66 (short red line). At last, for fBm, the maximal excursion
ratio (green triangles) converges to the estimated value of equation (2.61), 1.33
(continuous green line), and the displacement ratio (green +) oscillates around the
Brownian value 2 (short green line).
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2.2 Further leads to face experimental constraints

• Maximal excursion is more efficient than displacement to determine the anomalous
diffusion exponent α and coefficient Kα ;

• Regular and maximal excursion ratios are different for diffusion on fractal, CTRW
and fBm ;

• The exponent is not the same for displacement (α) and maximal excursion (α′)
for, and only for, fBm ;

• Ratios seem to be more efficient to distinguish mechanisms than second moments.

Quick summary

2.2.3 Growing shell analysis

Since the previous data did not allow to clearly distinguish diffusion on fractals with the other
proposed mechanisms, we developed a new test dedicated to fractal detection. This test will be
based on the scaling form of the propagator that depends on both dw (or similarly the anomalous
diffusion exponent α) and df . Knowing dw from the second moments computed before, we can
deduce df . We will first present how to use the scaling form of the propagator, before presenting
how to perform the growing shell analysis, and confronting this test with numerical simulations.

Theoretical determination of df

We know that the probability density for a diffusing particle on a fractal satisfies the scaling
relation [71] (we recall that dw = 2/α)

P (r, t) = t−df/dwP
( r

t1/dw
, 1
)

= t−αdf/2P
( r

tα/2
, 1
)

(2.62)

The same relation hold for a CTRW or a fBm (if we consider only the one-point distribution of
trajectories) if we replace df by the Euclidian dimension d. Let us focus on the probability to be
in a growing sphere of radius r0t

α/2

Pr
(
r ≤ r0t

α/2, t
)

=

∫ r0tα/2

0
rd−1P (r, t)dr

= A(r0)tα(d−df )/2 (2.63)

Since the exponent α is known from the second moment fit we can extract df from the above
relation.

Practical computation

With a finite data set, we can compute the probability to find the particle at time t in a (growing)
shell of radius r0t

α/2. Here r0 is a free parameter. It should be chosen sufficiently large, such
that for a given trajectory the probability to be within the shell is appreciably large. At the same
time it should not be too large, otherwise the probability to be within the shell is always almost
one. Choosing a small multiple of 〈r(t = 1)〉 appears to be a good compromise. The probability
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2 From experimental trajectories to (anomalous) diffusion mechanism, and the way back

to be inside the shell then becomes

Pr
(
r ≤ r0t

α/2
)
' 1

N (t)

N (t)∑

i=1

Θ
(
ri(t)− r0t

α/2
)
, (2.64)

where Θ(r) is the Heaviside function, that equals 1 if r ≥ 0, and 0 if r < 0. We expect that this
probability scales as tα(d−df )/2. To fit the fractal dimension df we need the anomalous diffusion
exponent α as input. We will use the value extracted from the second maximal excursion moment
fits. The direct plot of the probability is quite easy to interpret : if the probability is constant,
then d = df , if this probability slowly grows, then d > df , and the support is fractal (df 6= d).
The dimension d is here the dimension of the trajectories (2 in our examples due to the projection
onto the focal plane).

Confrontation with numerical simulations

Figure 2.11 shows the plot of the probability to be in a shell growing in r0t
α/2 for the three

simulated data sets (r0 changes between the different sets). α is here the fitted value of the
second maximal excursion moment for each set. Once again, the black set represent diffusion on
fractals (critical percolation), the red one CTRW and the green one fBm .

We see clearly that for CTRW and fBm, the probability is approximately constant, and that
for the diffusion on a percolation cluster, it grows with time, indicating that df < d, as it should
be.

We performed power-law fit of each set to quantify this. We obtained d − df ' 0.11, which
corresponds to df ' 1.89 (exact value 91/48 ' 1.896) for diffusion on fractals (black set). CTRW
gives d − df ' 0.01 instead of 0, and fBm d − df ' −0.004 instead of 0. This means that
the growing shell analysis gives a very good indication on the fractality of the space where the
random walk takes place.

(〈r2〉(t), 〈r2
max(t)〉)

( 〈r4〉(t)
〈r2〉2(t)

,
〈r4

max〉(t)
〈r2

max〉2(t)

)
Pr
(
r ≤ r0t

α/2, t
)

Brownian motion (∝ t,∝ t) (2, 1.49) A0

Fractals (∝ tα,∝ tα) (< 2, < 1.49) ∝ tα(2−df )/2

CTRW (∝ tα,∝ tα) (> 2, > 1.49) A0

FBm (∝ tα,∝ tα′) (2, < 1.49) A0

Quick summary (in 2D)

2.2.4 Application to experimental data sets

So far, we only considered simulated data sets, with an infinite precision: we did not deal with
the classical experimental problems, like photobleaching (missing frames, trajectories of different
lengths), displacement of the sample (drift, random moves of the microscope elements), obser-
vation in aqueous solutions (optical parasites, solvent motion). The random walker position is
obtained after image analysis, and even this process is not perfect: the Gaussian fit can lead to
new artifacts in the data.
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Figure 2.11: Probability to be in a growing shell of radius r0t
α/2 as function of tα/2 for the three

simulated sets (arbitrary units). This analysis is based on the previously fitted values
of α. The 2D critical percolation cluster (black ×) produces d − ff ' 0.11, i. e.
df ' 1.89 (exact value 91/48 ' 1.896). The CTRW set (red ×) gives d− df ' 0.01
instead of 0, and the fBm set (green ×) leads to d− df ' −0.004 instead of 0.

Since the method is dedicated to experimental analysis, we applied it on experimental data
sets. The first one is simply an observation of Quantum dots (Qdots) freely diffusing in solution.
The aim is to see if all the artifacts described previously have an influence on our analysis, and if
so, in which proportion. The second data set is a biological observation of lipid granules in living
cells. We will try to apply our formalism, to see if we can say something on the diffusion of lipid
granules with our observables.

a) Analysis of Qdots data

Experimental data acquisition

The first set of data was obtained from fluorescence video tracking of single quantum dots freely
diffusing in glycerol. The trajectories were recorded by a CCD camera, and then filtered by a
particle tracker software. The software extracted the trajectories (t, x(t), y(t)) using a Gaussian
fit. The details of the experimental setup are in Appendix 1.

The analysis is based on 67 trajectories, the longest of which consists of 210 frames. For these
data, we expect to observe normal Brownian motion.
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2 From experimental trajectories to (anomalous) diffusion mechanism, and the way back

Analysis

The first test is simply to plot the second moment of both displacement and maximal excursion
as a function of time. As shown in Figure 2.12, if we make an ensemble average of the 67
trajectories, we obtain for both 〈r2〉 and 〈r2

max〉 somehow a linear behavior. If we perform a
power-law fit to confirm this, we obtain 〈r2〉 ∝ t0.81 (red line) and 〈r2

max〉 ∝ t1.02 (magenta line).
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Figure 2.12: Analysis of an experimental set of 67 trajectories, the longest consisting of 210 points,
for quantum dots freely diffusing in a solvent. Second moment of displacement (black
×) fitted by a power law leads to an exponent α = 0.81 (red line). We also show a
linear fit where α is set to 1 (green line, expected behavior for a Brownian motion).
The maximal excursion second moment (blue ×) fitted by a power law lead to
α = 1.02 (magenta line). Time is in s; distances are in µm. (Inset) log-log plot of
the same data.

This means once again that the maximal excursion has a better statistic: one can extract
a more accurate α using the second maximal excursion moment than using the usual mean
square displacement. With a larger data set, this distinction decreases, since the accuracy of the
second moments exceed the data accuracy. Indeed, the relative variance decreases as the data
set increases, while experimental errors are constant: the limitation does not come anymore from
the observable used but directly from the data.

The second observation is that the fBm identification based on the difference between α and
α′ is not really usable for a limited data set. The difference we see is more linked to the statistic
difference than to the microscopical diffusion mechanism.

At last, we performed a linear fit of the mean square displacement in Figure 2.12 (green line).
This fit does look acceptable: the power law fit leading to α = 0.81 is convincing at short time,
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2.2 Further leads to face experimental constraints

but if we had longer trajectories, we would certainly retrieve the classical Brownian behavior.
This is an important point to emphasize: if we focus only on the mean square displacement with
short trajectories, we could obtain an “anomalous” diffusion, while it is only due to a medium
statistic quality, and a short-time artifact of the power-law fit. To confirm an anomalous diffusion,
one should always check that other observables also lead to the same conclusion.

If we plot the ratio of displacement and of maximal excursion, we see in Figure 2.13 that
the ratio converge toward the expected values for a Brownian motion (continuous lines). With
trajectories of different lengths, we observe a slower convergence, since only few trajectories are
averaged for long times. We discarded here the t > 120 frames.
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Figure 2.13: Analysis of an experimental set of 67 trajectories, the longest consisting of 210 points,
for quantum dots freely diffusing in a solvent. Ratio of displacement (black ×) and
of maximal excursion (red ×) as a function of time (in frames), compared to the
expected values for a Brownian motion, namely 2 for the displacement ratio (black
line), and 1.49 for the maximal excursion ratio (red line).

At last, we can apply the growing shell analysis, to see the method accuracy. Figure 2.14 shows
that we obtain a relatively flat probability. With a small data set, we have some noise in the
result, but a “blind” power-law fit leads to d − df = −0.012, close to 0 as expected. This test
seems to be quite reliable even for a small and noisy data set.

b) Lipid granules

The real purpose of the whole method is to extract information on the microscopical diffusion
mechanism using a finite set of data. We applied it to a real biological problem: lipid granules
in yeast cells.
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Figure 2.14: Analysis of an experimental set of 67 trajectories, the longest consisting of 210 points,
for quantum dots freely diffusing in a solvent. Probability to be in a growing shell
of radius r0t

α/2 as function of tα/2 (α = 1, t in frames). The power law fit (red line)
leads to d− df = −0.012, close to 0 as expected.

Experimental data acquisition

In this second set of much longer trajectories (5,500 to 19,400 frames) the particle positions
were acquired by video tracking of lipid granules in yeast cells by Christine Selhuber-Unkel and
Lene B. Oddershede at Niels Bohr Institute (Copenhagen, Denmark). They used Schizosaccha-
romyces pombe (S. pombe, D817) fission yeast cells, expressing a GFP-fused marker of the nuclear
and plasma membrane systems [77]. Spherical lipid granules are endogenously present in the cy-
toplasm of these cells [174]. The granules are refractive enough to be visualized with bright-field
microscopy.

The S. pombe fission yeast cells appear cylindrical with outer dimensions of approximately
4 µm by 12 µm. The cell is surrounded by a rigid cell wall. The granules which were tracked in
the present experiment are densely packed lipids of almost spherical shape and of approximately
300 nm diameter. These granules are located uniformly throughout the cytoplasm, except in the
nucleus. The granules perform thermal fluctuations, these fluctuations being somewhat hindered
by the presence of cytoskeletal elements such as microtubules, actin, and membranous structures.
Due to the coupling to their viscoelastic environment one would expect a sub-diffusive behavior
of the granules. It is, however, possible that a minority of the granules are actively moved, either
by molecular motors (though, this has not been proved in literature to our best knowledge) or
by cytoplasmic streaming.
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2.2 Further leads to face experimental constraints

Analysis

This set contains video tracking of eight different lipid granules moving in yeast cells. The
trajectories are between 5,515 and 19,393 frames long. As we had few long trajectories, before an
ensemble average we first directly analyzed the eight trajectories using the time-averaged mean
square displacement. We compute the following quantity:

〈r2〉t(∆, T ) =
1

T −∆

T−∆∑

i=1

‖r(i+ ∆)− r(i)‖2 (2.65)

If the microscopical mechanism is ergodic, namely if time average and ensemble average lead
to the same result, this time-average yields an accurate result, since we average over all the
trajectory, even with only eight distinct trajectories. As shown in Figure 2.15, we obtain a
distinct sub-diffusive behavior with an exponent close to 0.4. It is interesting to see that the data
exhibit a scatter in amplitude and considerable local variation of slope. Such features were also
observed previously; see, for instance, [54, 99].
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Figure 2.15: Lipid granules diffusing in a yeast cell. Eight trajectories, between 5, 515 and 19, 393
frames’ long. Log-log plot of the time-averaged mean square displacement as a
function of the lag time (continuous lines), and A0t

0.4 (dotted lines). Lag time is in
s, and distances in µm.

The scattering of the diffusion coefficient may possibly be related to aging effects [11]. Those
effects have so fare been related to CTRW, but for such mechanism, one would expect a linear
behavior for the time-average mean square displacement. Another explanation could simply be
that the granules size varies between two trajectories, each trajectory being the observation of a
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2 From experimental trajectories to (anomalous) diffusion mechanism, and the way back

given lipid granules. Similarly, one could argue that each trajectory correspond to a given cell
organization, with a given cytoskeleton, that depends on the cell phase in the cell cycle. In the
wider set that will be studied in the next sub-section, we will look more closely on the cell phase
influence on the diffusion properties of lipid granules.

We also note that one of the curves shows a much steeper slope than do the others (magenta
line in Figure 2.15). Here, it is not the diffusion coefficient that changes, but the anomalous
diffusion exponent. We here clearly suspect a modification in the cell organization: we do expect
a Brownian behavior for lipid granules in a aqueous solvent, and we observe a clear sub-diffusive
behavior within a cell. The cell impact could be modulated, for instance depending on the cell
cycle phase (G0, G1, S, G2 or M): the cytoskeleton for instance is not the same during cell
division and during interphase. If the cytoskeleton interacts with lipid granules, either with
simple volume exclusion or with chemical interaction, the anomalous diffusion exponent could
depend on the cytoskeleton organization, and thus on the cell cycle phase.

We extended the time-average analysis to the second maximal excursion moment and again
obtained a clear sub-diffusive behavior, but with an exponent close to 0.5, as shown in Figure
2.16. This time-averaged second maximal excursion moment is computed as follows:

〈r2
max〉t(∆, T ) =

1

T −∆

T−∆∑

i=1

max
i≤t≤i+∆

‖r(t)− r(i)‖2 (2.66)
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Figure 2.16: Lipid granules diffusing in a yeast cell. Eight trajectories, between 5, 515 and 19, 393
frames’ long. Log-log plot of the time-averaged mean maximal excursion for the eight
lipid granules trajectory (continuous lines), and A0t

0.5 (dotted lines). Lag time is in
s, and distances in µm.
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Once again, we have a scatter in amplitude. The initial slope variation (0 < t < 0.1 s) is due
to the inaccuracy in the MME estimation when there are only few frames to average, typically
less than 10 frames. A greater exponent for MME than for regular moment could be due to an
inaccuracy in the fit. However, it may indeed point toward an underlying fBm process.

Those two analysis show a clear sub-diffusive behavior. The time-average results are still
difficult to interpret, because the diffusing process is not necessarily ergodic, which is the case
of fBm [74] and CTRW [16]. To tackle this problem, we decided to cut the few long trajectories
to a large number of short (and independent) trajectories. As the different trajectories were not
all recorded at the same frequency (96.5 and 99.1 frames/s), we kept only the greater set (96.5
fps), containing five trajectories, and we split those into 526 short trajectories of 100 steps each.
These trajectories are non-overlapping and one may view them as the result of 526 separate
observations.

Surprisingly, we retrieve the exponent 0.41±0.01 using the mean square displacement, and the
value 0.53 ± 0.02 from the second maximal excursion moment, as shown in Figure 2.17. In this
figure, the black dots represent the mean square displacement, the red dots the second maximal
excursion moment, for the set of 536 trajectories of 100 steps long.

We repeated this analysis with a set of trajectories of 150 frames (350 trajectories), corre-
sponding to the black and red crosses in Figure 2.17. We observe that the choice of trajectories
of 100 steps long has no influence on the value of the anomalous coefficient.

Because one of the trajectory (the magenta line in Figures 2.15 and 2.16) shows a much steeper
slope, we excluded it for the rest of the analysis. We did once again the analysis for 445 trajectories
of 100 steps long (blue and magenta dots in Figure 2.17), and for 296 trajectories of 150 steps
long (blue and magenta crosses in Figure 2.17).

An interesting observation is the following: assuming that the underlying stochastic process is
indeed an fBm, equation (2.60) for α = 0.41 predicts a value α′ = 0.50 for the maximal excursion
statistics, in quite good agreement with the fitted value. This finding is quite suggestive in favor
of fBm as the stochastic process governing the particle motion.

Because the trajectories correspond to different granules, in different cells, we also studied them
separately: each trajectory was split into stretches of 100 steps. For each granule, we plotted
in Figure 2.18 the displacement and the maximal excursion ratios. They are somewhat noisy,
but for each granule the maximal excursion ratio is clearly below the Brownian one (1.49): it
ranges between 1.20 and 1.40. The regular moment ratio is slightly above the Brownian value
(2), between 1.7 and 2.5. We also plotted the ratio for the whole set of 100 steps (thick lines),
which gives approximately the same result as those obtained for individual trajectories. From
these ratios, we obtain another clue pointing at an underlying fBm mechanism: the maximal
excursion ratio is, on average, below the value for Brownian motion, and the displacement ratio
is close to the Brownian value. These maximal excursion ratios are not very precise, but seem
to range somewhat above the expected value for fBm with a α = 0.41: equation (2.61) gives
1.21± 0.02.

The test with the growing sphere shown in Figure 2.19 is, once again, somewhat noisy; however,
it clearly shows that the probability to be in a sphere, growing like tα/2, attains a constant value.
This excludes the possibility that the process corresponds to diffusion on a fractal.

We did not really expect the diffusive mechanism to be diffusion on a fractal, since lipid granules
are rather big particles in a cell. A fractal media could hardly exists over more than one order
of magnitude.

The above analysis demonstrates that the tools proposed in this section allow us to classify
the stochastic process underlying the motion of the measured single particle trajectories of the
granules. We observe that the lipid granule motion in a yeast cell shares several distinct features
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Figure 2.17: Lipid granules diffusion in a yeast cell. 526 subtrajectories of 100 steps extracted
from the experimental set of 5 trajectories, which are between 5, 515 and 19, 393
frames’ long. Ensemble average of the mean square displacement (black circles) fitted
by a power law (α = 0.41, black line) and ensemble average of the second maximal
excursion moment (red circles), fitted with a power law (α = 0.55, red line). We
checked that creating 350 trajectories of 150 steps instead of 100 does not change the
exponents obtained (crosses instead of circles). Because one of the trajectories has a
steeper slope than the others, we repeated the same analysis without this trajectory.
The new subset contained 445 trajectories of 100 steps (blue and magenta circles), or
296 of 150 steps (blue and magenta croisses). The power law fit now lead to α = 0.42
for the MSD (blue line) and to α = 0.51 for the maximal excursion (magenta line).
Time is in s and distances in µm. (Inset) log-log plot of the same data.

with the fBm process. Namely, fBm explains the finding of different scaling exponents between the
displacement and the maximal excursion second moment, including their actual values connected
by equation (2.60). It is also consistent with a Brownian regular moment ratio, and an maximal
excursion ratio lower than the Brownian ratio, as shown in Figure 2.18. The recorded data were
also shown to be incompatible with diffusion on a fractal.

The question arises: Could CTRW function as a potential mechanism? The scatter between
different single trajectories observed in the time-averaged second moments is reminiscent of the
weak ergodicity breaking for CTRW sub-diffusion with diverging characteristic waiting time, as
studied in the literature [104, 135].

However an alternative explanation may simply be that various cell environments and various
granule sizes lead to a scattering of the diffusion coefficient. It should be noted that even between
successive recordings the cellular environment may change slightly, influencing the motion of the
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Figure 2.18: Lipid granules diffusing in a yeast cell. Eight trajectories, between 5, 515 and 19, 393
frames’ long. For each trajectory, the displacement ratio (upper curves) and the
maximal excursion ratio (lower curves) are plotted, as well as an average over the
eight trajectories (thick magenta line). Time is in frame.

observed particle. The CTRW hypothesis, however, is not consistent with the moment ratio
test: the expected ratio for α = 0.4 would be 3.38 for the regular one, and 2.50 for the maximal
excursion one – far above the observed values.

In this section, we proposed a new way to analyze single trajectories:

• Mean square displacement can be completed with maximal excursion moments,
which has a better statistic to extract the anomalous diffusion coefficient and
exponent.

• Ratios 〈X4〉/〈X2〉2 are a signature of the microscopical mechanism.

• Growing shell test is a good and simple way to leave out diffusion on fractals.

• For long trajectories, time-average is often used. Slicing a long trajectory in
several independent short ones is a simple and efficient trick to retrieve a “classic”
data set.

Summary
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Figure 2.19: Lipid granules diffusing in a yeast cell. Eight trajectories, between 5, 515 and 19, 393
frames’ long. For each trajectory, the probability to be in a growing sphere of radius
r0t

α/2 as a function of tα/2 is plotted, as well as an average over the eight trajectories
(thick magenta line).

2.2.5 Extensive analysis of lipid granules

After analyzing the first lipid granule data set, we suspected the diffusive mechanism to be a
fBm. To assess this assumption, we gathered more data, on a wider time range.

The set was extended with more trajectories obtained through optical microscopy, and with
a wider time span, since we added data extracted by an optical tweezers setup. Those data
have been gathered by Christine Selhuber-Unkel and Lene Oddershede at Niels Bohr Institute in
Copenhagen (Denmark). The protocols are detailed in Appendix 1.

We note that during the optical tweezers tracking the granule particles become increasingly
confined in the optical tweezers’ trapping potential. The time-averaged mean square displacement
of an ergodic process would therefore saturate to a stationary value. CTRW sub-diffusion, as
shown in our data, is non-stationary and shows a power-law growth of the time-averaged mean
square displacement.

Short-time analysis

We first focus on the short-time behavior, when the granule motion is recorded in an optical
tweezers setup. In the experiment the trap is initially centered onto the granule such that no
force is exerted. When the granule starts to move away from the trap center it experiences a
restoring Hookean force [170]. The measured time-averaged mean square displacement 〈r2〉t(∆, T )
from two different cell stages are shown in Figure 2.20. The voltage signal from the photodiode is
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directly proportional to the particle position relative to the trap center. But imprecise knowledge
of the optical properties in the cell hampers an accurate conversion to absolute length. In Figure
2.20 a distinct turnover is observed from an initial linear growth 〈r2〉t ∝ ∆ to a power-law
behavior 〈r2〉t ∝ ∆β with β ' 0.15 . . . 0.20.
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t

Figure 2.20: Time-averaged mean square displacement from individual trajectories of lipid gran-
ules in S. pombe in early mitotic (EM) cells (lower curves) and in early telophase
(ET) cells (upper curves), measured by optical tweezers. A distinct turnover from
〈r2〉t ∝ ∆ to ∝ ∆β (β ' 0.1 . . . 0.2) occurs. The two thick lines in the middle show
the averages of the ET (red circles) and EM (black squares) data set. The overlaid
thick black line is the result of CTRW simulations in a harmonic potential. ET and
EM curves are shifted vertically.

The size of the lipid granules is about 300 nm. In addition to the amplitude scatter between
different trajectories expected from CTRW theory[50, 51, 104], the fluctuations of the data in
Figure 2.20 are due to natural granule size variations and different optical conditions for each
trajectory. We note that oscillations around the turnover may arise for sub-diffusion in an
underdamped medium [48, 49].

An analogous data set has already been analyzed previously through ensemble average, and
anomalous diffusion was observed with α ' 0.80 . . . 0.85 in a range of 0.1 to 3 msec [191]. In
contrast, in Figure 2.20 the initial behavior of 〈r2〉t corresponding to this time range does not
exhibit any apparent anomaly but scales like 〈r2〉t ∝ ∆. At longer lag time ∆ due to the trap force
one would expect 〈r2〉t to saturate to a stationary thermal value; instead, the regime 〈r2〉t ∝ ∆β

appears. This behavior is consistently observed in different cell stages (Figure 2.20).

Such a peculiar behavior is consistent with CTRW sub-diffusion: For free motion one finds
〈r2〉t ∝ ∆/T 1−α, whose ∆ scaling is independent of α, while the corresponding ensemble average
follows 〈r2〉 ∝ ∆α [104, 135]. Under confinement a turnover to the power-law 〈r2〉t ∝ (∆/T )1−α

occurs [50, 51, 146]. This second power-law regime is terminated when ∆ approaches the total
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2 From experimental trajectories to (anomalous) diffusion mechanism, and the way back

measurement time T , causing a dip in 〈r2〉t back to the plateau of the ensemble average. The
observed characteristic turnover behavior is intimately connected to CTRW ageing and ergodicity
breaking [11, 16, 40, 131, 167, 235]. Correlated motion [75] could not explain the observed
behavior 〈r2〉t ∝ ∆ turning over to 〈r2〉t ∝ ∆β.

The following features point toward CTRW sub-diffusion as the stochastic mechanism for the
granule motion at short times:

(i) The time average 〈r2〉t initially scales linearly with ∆, albeit the ensemble average shows
sub-diffusion (〈r2〉 ∝ ∆α) in comparable time ranges.

(ii) At longer times a turnover to the power-law 〈r2〉t ∝ ∆β occurs instead of the convergence
to a plateau, which would necessarily occur for an ergodic process; the anomalous diffusion
exponent α ' 0.80 . . . 0.85 observed in the ensemble average is consistent with the exponents
β ' 0.15 . . . 0.20 observed in Figure 2.20 based on the relation β = 1 − α [50, 51, 146], as
well as the slopes of the long time data (see below).

We can complement this analysis by evaluating 〈r2〉t as function of the total measurement
time T : no ageing is observed, as shown in Figure 2.21, contrasting the scaling 〈r2〉t(T ) ∝ Tα−1

predicted for CTRW sub-diffusion with diverging mean waiting time [50, 51, 104, 135].
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Figure 2.21: Time-averaged mean square displacement for two set of lipid granules in S. pombe,
either in early mitotic cells (red curves) or in early telophase (blue curves), as a
function of measurement time T . The overlaid thick black line is the result of
CTRW simulations in a harmonic potential for α = 0.85.

If we look directly at the trajectories, we observe a behavior that is neither an fBm nor a
CTRW. Figure 2.22 shows a typical trajectory along a given coordinate (x(t)), and a simula-
tion of a trajectory with the same anomalous coefficient α = 0.8 for a fBm or a CTRW. fBm
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leads to an antipersistent motion, really noisy around a stationary position. CTRW consists on
very pronounced stalling events. Experimental trajectory is somehow a mix between those two
mechanisms: some “jumps” with small but noisy excursions during the waiting times.

Figure 2.22: Time series x(t) of the experimentally recorded lipid granule motion in S. pombe (a),
and from simulations of fBm (b) and CTRW (c) with α = 0.2.

At short time, we thus have a motion that shares some features with a sub-diffusive CTRW,
but not all of them. The exact mechanism is probably an intrication of the “pure” CTRW and
of the “pure” fBm model.

Longer time analysis

For longer time, we focus on motion of the lipid granules recorded by video particle tracking.
Figure 2.23 shows the time-averaged mean square displacement as a function of lag time ∆.
Initially the slope is around α ' 0.8 or slightly below, consistent with the short time data.

Several of the curves turn to a gentler slope at around t ∼ 100 ms, some curves eventually
switch to normal diffusion (α = 1) at t ∼ 100 s. The regime change occurs for 〈r2〉t ∼ 10−3µm2

leading to a typical distance of 30 nm: it is not related to cell membrane confinement effect, since
the cell is approximately 4 µm×12 µm. But it could be linked to the typical size of the available
space for a diffusing object of 300 nm diameter (lipid granule) trapped in a cytoskeleton “cage”.

Significant deviations are observed, which, for a living systems, is not surprising. Both the
granule size and the materials properties of the cellular environment may change on these time
scales, for instance depolymerization or repolymerization of the cytoskeleton.
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Figure 2.23: Time-averaged mean square displacement for lipid granules in S. pombe (cells in
interphase) from video tracking data. An initial slope around α ' 0.8 is found,
turning over to a gentler slope. Several trajectories later exhibit a pseudo-Brownian
behavior α ' 1.0.

If we plot the displacement and the maximal excursion ratios, we observed that the value are
not consistent with a CTRW. The displacement ratio (upper curves) are really noisy, and slightly
above the expected value for a Brownian motion in two dimensions (2). The maximal excursion
ratio (lower curves) slowly decrease, but are clearly under the expected value for a Brownian
motion (1.49), which is a characteristic of fBm.

At longer times the motion is best described by sub-diffusive fBm, although a conclusive
statement in this time range is more difficult due to the fact that cellular processes appear to be
superimposed on the motion.

Physically, the CTRW-like motion may be associated with the interaction between granules
and the semiflexible filaments of the cytoskeleton similar to the observations in [228]. While the
behavior becomes more erratic in the long time data a turnover to a gentler slope is observed
before a final increase to normal diffusion. This behavior may be connected to the visco-elastic
properties of the complex cellular environment. The identification of fBm as stochastic mechanism
is consistent with conclusions in [207, 226].
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X
X

Figure 2.24: Displacement (upper curves) and maximal excursion (lower curves) ratio for lipid
granules diffusing in S. pombe recorded by video tracking. Each curve correspond to
a given lipid granule, and the overlaid black thick line stand for the average over the
different lipid granules. The expected Brownian values are 2 for the displacement
ratio, and 1.49 for the maximal excursion ratio. The experimental displacement ratio
seems to be above the Brownian value, while the experimental maximal excursion
ratio is under the expected value for a Brownian motion.

• At short time, the lipid granules share a lot of CTRW characteristics.

• At longer time, the lipid granules seem to evolve according to a fBm.

• Neither model explain completely experimental observations: none of the model
of anomalous diffusion studied here cannot explain all features observed for lipid
granules.

Quick summary

Conclusion

In this section we were looking for realistic observables to discriminate between several sub-
diffusive mechanisms, namely diffusion on fractals, fBm and CTRW. We showed with simulated
data sets that we were able to discriminate – “blindly” – those three mechanisms.
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2 From experimental trajectories to (anomalous) diffusion mechanism, and the way back

We also showed that the maximal excursion statistic was really useful for limited data sets.
The fit accuracy to extract the anomalous diffusion exponent α or the diffusion coefficient Kα is
better using second maximal excursion moment than using mean square displacement.

At last, when we applied our method to an experimental data set, we observed first that with
a limited data set, we could think that lipid granules were evolving according to a fBm model.
But after extensive analysis, over a large time span, we were forced to admit that none of our
three simple model could explained the variety of behavior observed. The models considered so
far do not allow to explain all the features observed in experimental data.

We still gathered some informations:

• We clearly observe a sub-diffusive behavior for lipid granules in S. pombe cells ;

• Several sub-diffusive regimes have been observed through video tracking, indicating that
the geometry could have two levels (a cytoskeleton “cage”, and a “cage” network) ;

• the ratio analysis show a clear antipersistent behavior, since the maximal excursion is clearly
below the expected value for a Brownian motion.

2.3 Further models: starting with microscopical facts

During the previous section, we analyzed extensively an experimental data set of lipid granules
diffusing in yeast cell. We observed that the lipid granules motion shared some features with
CTRW (short time linear time-average MSD), and other with fBm (anti-persistent effects on the
maximal excursion ration), with in particular distincts regimes at short times and at long times.
This is in strong contrast with the three sub-diffusive models used so far: we always assumed
that the process was scale-invariant.

So far, we studied classical diffusion model, and we tried to see if experimental data were in
agreement with one of those models. We will now make the way back: we have identified key
features of an experimental data set of lipid granules, we will in this section study successively
three other mechanisms that illustrate at least one of this prominent features. Since we have also
shown in the first section of this chapter that first-passage observables were very good candidates
to discriminate between several sub-diffusive mechanism, we will focus on the MFPT as well as
on the MSD.

The first sub-section will focus on persistent random walks: we will analyze how a very short
memory (one step only) can affect a discrete random walk. We will perform an extensive theoreti-
cal analysis of this model, in order to extract the different regimes of the MFPT, the pseudo-Green
functions as well as the mean square displacement. We will see that this model could lead, at
times shorter than the memory length, to an apparent sub-diffusion, while normal diffusion is
recovered at longer times.

The second sub-section will be dedicated to the statical cage model: we will assume that the
random walker evolves in an ordered porous media. This model aim to mimic a non-fractal actin
network: only two scales exist, the cage, and the cage network. The links between two neighbor
cages are small compared to the cage size, and the cages are nodes of a regular lattice. For
a very big diffusive particle, like lipid granules in yeast cells, we could indeed assume that the
cytoskeleton is only seen on few scales, and is not fractal anymore. For this model, we will mainly
focus on the mean square displacement.

At last, the third sub-section will assess the impact of crowding on MFPT. If we consider a
random walker evolving in a medium where several hard-core obstacles move, we could expect to
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2.3 Further models: starting with microscopical facts

find back a CTRW with a “natural” cut-off. Indeed, the obstacles surround the walker forming
a dynamical cage. The walker have to wait that the obstacles leave a free space before moving.
We could thus have our two scales here: a first behavior when the random walker is surrounded
by obstacles, and the second behavior when he finally manage to exit a given dynamical cage.
We will see that this model also leads to an anti-persistent random walk.

2.3.1 Persistent random walks

We observed in the previous section that lipid granules had a maximal excursion ratio under
the expected value for a Brownian motion. This feature, shared by fBm, means that the longest
excursion is somehow less dispersed for lipid granules than for a classical Brownian motion. We
could attribute this effect to an anti-persistence behavior, like for sub-diffusive fBm. We will in
this sub-section study the effect of anti-persistence, modelized by a short-term memory.

The results on first-passage properties we have obtained in the first chapter are valid for
Markovian scale-invariant random walks [66]. At larger scales however, most examples of walkers
– even if random – have at least short range memory skills and show persistent motions, as is
the case for bacteria [32] or larger organisms [17], which cannot be described as Markovian scale-
invariant processes. The study of persistent random walks has actually proved to be important
in various fields such as neutron or light scattering [35, 139, 243]. In this context exact results
have been derived that characterize the diffusion properties of persistent walks in infinite space
[85, 95, 243], or mean return times in bounded domains [21, 35, 63, 139]. The question of
determining first-passage properties of persistent walks has however remained unanswered so far.

“Persistence” will here mean that at each step, all orientations are not equivalent for the
random walker: the probability to choose a given orientation depends on the past steps. For a
fractional Brownian motion, the correlation run over all previous steps since t = −∞. We will
here study a simpler model, where the probability to choose an orientation only depends on the
last step.

We will first show how to compute the MFPT in a confined media for a persistent random
walker, namely for a walker that recall the last jump direction. Since the analytical result is rather
complex, we will propose some approximations for the useful regimes: small and large persistence
parameter and large distances. We will then go a step further and derive analytically the pseudo-
Green functions for this problem. These functions can be used to obtain other first-passage
observables using the result of the first chapter. One has to take care that the random walk alone
is non Markovian here: only the joint process (position, last jump direction) is Markovian. At
last, we will focus on the mean square displacement for a persistent random walk, in order to
compare somehow this model with the results obtained for lipid granules.

MFPT of a persistent random walk

We will assume that the persistent random walk occurs in an usual Euclidian space. For the
simplicity sake, we will use a discrete description with an Euclidian lattice.

We consider a cubic lattice in d dimensions, of size (X1, X2, . . . , Xd), with periodic boundary
conditions. B = (e1, e2, . . . , ed) is an orthogonal base of this lattice. The random walker starts
at r0 toward a given direction ei, and at each step, he has a probability p1 to continue in the
same direction, p2 to go in the opposite one, and p3 = (1 − p1 − p2)/(2d − 2) to choose one of
the orthogonal directions. The Brownian random walk is equivalent to p1 = p2 = p3 = 1/(2d).
Following reference [85], we note p1 = p3 + ε and p2 = p3 − δ.
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2 From experimental trajectories to (anomalous) diffusion mechanism, and the way back

If we consider the ensemble-averaged mean first-passage time 〈T〉(rT |r, ei) to reach a target
located in rT , starting from r with an initial orientation along the ei direction, this quantity
satisfies a backward Kolmogorov equation:

〈T〉(rT |r, ei) = p1〈T〉(rT |r+ei, ei)+p2〈T〉(rT |r−ei,−ei)+p3

∑

±ej∈B,j 6=i
〈T〉(rT |r+ej , ej)+1 (2.67)

The definition of the “last” step direction is a bit delicate for the starting site r, but for a
persistent random walker, we need to know the initial random walker orientation to determine
the next step. We will afterward be able to adapt our result to any convention chosen for the
initial orientation, by combining the results for different ei.

After some computations detailed in Appendix 2, and a simplification in the Fourier space, we
can obtain a simple expression. One can note that so far, the MFPT is defined up to a constant.
Indeed, equation (2.67) is satisfied by ∀λ ∈ R/ 〈T〉(rT |r, ei) + λ. We can set this constant by
choosing λ so that 〈T〉(rT |rT , ei) = 0:

〈T〉(rT |rS , eS) =
∑

q 6=0




1− (ε+ δ)e−2ıπq.eS

1 + ε2 − 2ε cos(2πq.eS)− δ2

1− e2ıπq.(rS−rT )

1− 2p3

∑

ej∈B

cos(2πq.ej)− (ε+ δ)

1 + ε2 − 2ε cos(2πq.ej)− δ2




(2.68)
We can check that for a Brownian motion (ε = δ = 0 and p3 = 1/(2d)), we retrieve the classical
result [111], where eS does not play any role:

〈T〉(rT |rS , eS) =
∑

q6=0

1− e2ıπq.(rS−rT )

1− 1

d

∑

ej∈B
cos(2πq.ei)

(2.69)

If d = 1, equation (2.69) can be simplified. We will note p = ε+1/2 the probability to continue
in the same direction, and 1− p = 1/2− δ the probability to go back:

〈T(r)〉 =
1

2p

X−1∑

k=1

1− e2ıπkr/X

1− 2(1− p) cos(2πk/X)

1− (2p− 1) cos(2πk/X)

=
2p− 1

2p
X(1− δ(r)) +

1− p
p

r(X − r), (2.70)

where r = ‖rT − rS‖, and δ(r) is the Kronecker delta function (δ(r) = 1 if r = 0, 0 else). We can
check that the condition 〈T(r = 0)〉 = 0 is satisfied.

Some comments are in order:

(i) First of all, we retrieve the Brownian motion (p = 1/2):

〈T(r)〉 = r(X − r) (2.71)

(ii) For large volume (X � 1), and for large distances (r � 1), we retrieve a Brownian motion,
with an effective diffusion coefficient Deff = (1− p)/p, as obtained by reference [96]:

〈T(r)〉 ∼
X →∞
r →∞

1− p
p

r(X − r) (2.72)
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(iii) For a highly persistent random walk (1 − p = ε � 1), we obtain 〈T(r)〉 ∼ X + εr(X − r).
This almost constant result (ε� 1) is in fact due to the average over the initial orientation.
If we fix this orientation to −ex, we obtain, using (2.68):

〈T(r| − ex)〉 =
2p− 1

p
r +

1− p
p

r(X − r) ' r +
1− p
p

r(X − r) (2.73)

For p � X/(X + 1), we have a ballistic behavior 〈T(r| − ex)〉 ' r. But as soon as X is
great enough, this regime disappear since p < 1. For 1 − p � 1, we can consider that we
have a Brownian behavior with an effective diffusion coefficient Deff = (1 − p)/p, and an
effective volume Xeff = X − 1 + 1/(1 − p). For r � Xeff, we then have a simili-ballistic
behavior, but with a speed DeffXeff > 1 : 〈T(r| − ex)〉 ' DeffXeffr.

(iv) For a highly antipersistent random walk, the previous result still apply, but now p � 1.
We always have a Brownian behavior with Deff ' 1/p.

For d ≥ 2, equation (2.68) cannot be simplified anymore. We can test this equation numerically:
as shown in Figure 2.25, this result fits perfectly numerical simulation (here for d = 2). Here,
rs = (xS , 0), rT = (0, 0), eS = (1, 0), with xS ∈ [0, 9]. The theoretical result of equation (2.68)
(red line) fits exactly the simulation (black circles).

0 2 4 6 8
x

S

0

1

2

3

<
T

(r
)>

/V

Figure 2.25: Mean first-passage time for a 10 × 10-large periodic network, where rs = (xS , 0),
rT = (0, 0), eS = (1, 0), with xS ∈ [0, 9]. Here ε = −0.04 and δ = 0.32. The black
circles stand for the numerical simulation, the red line for the theoretical result of
equation (2.68).

This approach gives a quite simple (and exact) result, and will be extrapolated for reflective
boundaries below, using persistent pseudo-Green functions (see Appendix 2 for details).
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Some MFPT approximations

Equation (2.68) is exact, but not easy to deal with. We can propose some approximations of this
mean first-passage time, in order to have more tractable expressions.

First of all, if we consider that ε � 1, namely that the persistence is very low, we get, after
averaging over all eS :

T(rT |rS) '
ε�1

A(ε, δ)V +
1− δ − ε
1 + δ + ε

T(rT |rS)|ε=0,δ=0 , (2.74)

where A(ε, δ) is a constant defined by:

A(ε, δ) =
δ − ε

1− ε+ δ
+

2ε

(1 + ε+ δ)(1− ε+ δ)
Bd, (2.75)

and where Bd is the limit of:

Bd = lim
V→∞

1

V

∑

q6=0

1

d

∑

ej∈B
(1− cos(2πq.ej))

2


1

d

∑

ej∈B
1− cos(2πq.ej)




2 (2.76)

For d = 2, B2 ' 1.36.
We note that we have here an effective diffusion coefficient Deff = (1 + δ + ε)/(1 − ε − δ),

that will later be related to the mean field approximation. We retrieve in equation (2.74) the
expected result, namely the Brownian behavior multiplied by 1/Deff , but up to a constant. This
constant being proportional to V , it does not disappears when V → ∞. This could be related
to the “residual” mean first-passage time described in reference [208]: when doing a persistent
random walk, the walker “miss” some neighbors in his exploration, by keeping the same direction
for several steps.

As shown in Figure 2.26, this approximation works really well for ε up to 0.3. The continuous
lines here stand for, from up to down, ε = 0 (red), 0.1 (green), 0.2 (blue) and 0.3 (magenta). The
black dashed lines stand for the approximation of equation (2.74), from up to down, for ε = 0,
0.1, 0.2 and 0.3.

What happens if ε → 1? If 1 − ε � 1, we can approximate equation (2.68) after a small
reorganization:

〈T(rT |rS)〉 =
V (δ − ε)
1− ε+ δ

+
2ε

(1 + ε+ δ)(1− ε+ δ)

∑

q 6=0

1− e2ıπq.(rS−rT )

1

d

∑

ej∈B

1

1 +
(ε− 1)2 − δ2

2ε(1− cos(2πq.ej))

(2.77)

We here focus on a X ×X square (d = 2), and obtain, after some math detailed in Appendix
2:

〈T(rT |rS)〉 '
ε→1

X2(δ − ε)
1− ε+ δ

+
2ε

(1 + ε+ δ)(1− ε+ δ)

×
(

(X − 1)(X + 3)−
(
Xδ(rS−rT ).ex + 1

) (
Xδ(rS−rT ).ey + 1

)
+ 4
)

+
1− ε− δ
1 + ε+ δ

(
(X − 1)

X2 − 1

6
+ (rS − rT ).ex (X − (rS − rT ).ex)

+(rS − rT ).ey (X − (rS − rT ).ey)
)

(2.78)
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Figure 2.26: Mean first-passage time for a 70 × 70-large periodic network, with δ = 0, and for
ε = 0 (red curve), 0.1 (green curve), 0.2 (blue curve) and 0.3 (magenta curve). The
black dashed lines stand for the approximation of equation (2.74), from up to down,
for ε = 0, 0.1, 0.2 and 0.3.

This expression is simply polynomial in X, and shows that the mean first-passage time diverge
when ε → 1 + δ. The divergence is due to the network considered: when ε = 1 + δ, the random
walker can’t reorientate, and stay always on the same line. On an Euclidian network with periodic
boundaries, closed orbits exists. If the random walker does not start on an orbit comprising the
target, it stays on this orbit forever, and can never reach the target, leading to an infinite mean
first-passage time. If the target is in the starting orbit, we find back an unidimensional problem,
treated above.

At last, we will focus on what happens at large distances, for d ≥ 2. We can approximate the
discrete sum of equation (2.69) with an integral when all Xi → ∞. We consider the case where
r = rT − rS is great enough, namely when r = ‖r‖ =

√∑
i(r.ei)

2 � 1. After some computations
detailed in Appendix 2, we obtain:

〈T(r)〉 ' V
((

δ − ε
1− ε+ δ

+ ∆

)
(1− δ(r)) +

1− ε− δ
1 + ε+ δ

(G0,d(0)−G0,d(r))

)
, (2.79)

where G0,d is the infinite Green function in d dimensions. ∆ is a correction depending on ε and
δ. We can note that the second term is the one predicted in the mean field approximation: we
obtain the first-passage time for a random walker diffusing with an effective diffusion coefficient:

Deff =
1 + ε+ δ

1− ε− δ (2.80)
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We will show later on that this effective coefficient is indeed the one predicted by a mean field
approximation. We retrieve in equation (2.79) the expected result, namely the Brownian behavior
multiplied by 1/Deff , but up to a constant.

We can estimate the ∆ correction, as shown in Appendix 2:

∆ ' (1 + ε2 − δ2)

(1 + ε+ δ)(1− ε+ δ)

∫

[0,2π]d

dq

(2π)d

×




1

1− (ε− 1)2 − δ2

d

∑

ej∈B

cos(q.ej)

1 + ε2 − 2ε cos(q.ej)− δ2

− (ε− 1)2 − δ2

1 + ε2 − δ2

1

1− 1

d

∑

ej∈B
cos(q.ej)




(2.81)

The simulation being discrete, we also obtain in equation (2.79) a “residual” MFPT, the first
term, that do not vanish even in the large volume limit. This is quite a surprise, since the
random walk is here discrete, but also a nearest neighbor walk. This residual MFPT vanishes for
δ = ε = 0 (Brownian limit).

Persistent pseudo-Green functions

To get more insight on first-passage properties, we can compute directly pseudo-Green functions
for persistent random walks. Those pseudo-Green functions can afterward be used to get splitting
probabilities, mean occupation times or first-passage time densities, as shown in the first chapter.

To do so, we first have to get the propagator, and then deduce pseudo-Green functions, for a
discrete network with periodic boundary conditions.

We note Pei(r, t|rS , eS) the conditional propagator, namely the probability to be at the position
r at time t, when the last step have been following the vector ei, starting from rS with orientation
eS . For simplicity sake, we will skip rS and eS in the notation. To obtain the usual propagator,
i.e. the probability to be in r at time t, without information on the last step, one has to sum
those conditional propagators over all vectors :

P (r, t) =
∑

ei∈B
(Pei(r, t) + P−ei(r, t)) (2.82)

The conditional propagator satisfies the master Chapman-Kolmogorov equation:

Pei(r, t+ 1) = p1Pei(r− ei, t) + p2P−ei(r− ei, t) + p3

∑

ej∈B,j 6=i

(
Pej (r− ei, t) + P−ej (r− ei, t)

)

(2.83)

After a passage in the Laplace-space (Z-transform), and a Fourier transform, we obtain (see
Appendix 2 for more details):

P̂ei(q, z) =
(1− εze2ıπq.ei)P̃ei(q, 0)− δze−2ıπq.eiP̃−ei(q, 0) + p3z(e

−2ıπq.ei − (ε+ δ)z)P̂ (q, z)

1 + ε2z2 − δ2z2 − 2εz cos(2πq.ei)
(2.84)

We then can determine the Fourier transform of the propagator, P̂ (q, z), by summation over
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all ei:

P̂ (q, z) =

∑

ei∈B

(
1− (ε+ δ)ze2ıπq.ei

)
P̃ei(q, 0) +

(
1− (ε+ δ)ze−2ıπq.ei

)
P̃−ei(q, 0)

1 + ε2z2 − δ2z2 − 2εz cos(2πq.ei)

1− 2p3z
∑

ei∈B

cos(2πq.ei)− (ε+ δ)z

1 + ε2z2 − δ2z2 − 2εz cos(2πq.ei)

(2.85)

This leads to an explicit expression of P̂ei(q, z).

Knowing the conditional propagator, we can obtain the conditional pseudo-Green functions,
defined as:

H(r, ei|rS , eS) =

∞∑

t=0

(Pei(r, t|rS , eS)− Pstat(r, ei)) , (2.86)

where rS is the initial position, eS the initial “last” direction, and Pstat(r, ei) =
∏
iX
−1
i /(2d) is

the (conditional) stationary probability. We choose for initial condition:

P̃ei(q, 0) = δ(ei, eS) exp(−2ıπq.rS) (2.87)

, where δ(x,y) = 1 if x = y, and 0 else. We obtain:

H(r, ei|rS , eS) =
1∏

i

Xi

∑

q 6=0

e2ıπr.q

((
(1− εe2ıπq.ei)δ(ei, eS)− δe−2ıπq.eiδ(−ei, eS)

)
e−2ıπq.rS

1 + ε2 − δ2 − 2ε cos(2πq.ei)

+
p3(e−2ıπq.ei − (ε+ δ))P̂ (q, z = 1)

1 + ε2 − δ2 − 2ε cos(2πq.ei)

)
(2.88)

where

P̂ (q, z = 1) =

(
1− (ε+ δ)e2ıπq.eS

)

1 + ε2 − δ2 − 2ε cos(2πq.eS)
e−2ıπq.rS

1− 2p3

∑

ei∈B

cos(2πq.ei)− (ε+ δ)

1 + ε2 − δ2 − 2ε cos(2πq.ei)

(2.89)

The q = 0 term has been removed in the summation, to take in account the −Pstat(r, ei) term
of equation (2.86).

We can check that we retrieve Brownian motion if we choose ε = δ = 0:

∑

±ei∈B
H(r, ei|rS , eS) =

1∏

i

Xi

∑

q 6=0

e2ıπq.(r−rS)

1− 1

d

∑

ei∈B
cos(2πq.ei)

(2.90)

As shown in Appendix 2, we can use the pseudo-Green function given by equation (2.88) to
obtain an equivalent expression of the exact expression (2.68) of the MFPT.

All the results we have presented previously that use pseudo-Green functions can be transposed
here. In particular, we can use them to treat the reflective boundary conditions case. The calculus
are presented in Appendix 2. Figure 2.27 shows that we can obtain an exact expression for the
mean first-passage time, here for a 10 × 10 network with reflective boundaries. We have chosen
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rs = (xS , 0), rT = (0, 0), eS = (1, 0), with xS ∈ [0, 9]. The theoretical result, given in Appendix
2, of equation (164) with pseudo-Green function of equation (170) (red line) fits exactly the
simulations (black circles). The exact result for reflective boundary conditions is rather formal:
using the approximations developed for periodic boundary conditions would be a way to obtain
a simple, even if not analytical, expression.

0 2 4 6 8
x

S

0
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10

<
T

(r
)>

/V

Figure 2.27: Mean first-passage time for a 10×10-large network with reflective boundaries, where
rs = (xS , 0), rT = (0, 0), eS = (1, 0), with xS ∈ [0, 9]. Here ε = −0.04 and δ = 0.32.
The black circles stand for numerical simulations, the red line for theoretical result
of equation (164).

Mean square displacement

In this chapter, we focused mainly on the mean square displacement, which was a way to detect
anomalous diffusion. The persistent random walk is not really anomalous, but can look like
anomalous diffusion at “short” time (short will be quantified at the end of this paragraph). To
compare this persistent model with the usual experimental observations, we can compute an
approximation of the mean square displacement 〈r2(t)〉, using the infinite space propagator [85]:

P̂ (q, z) =

∑

ei∈B

1− (ε+ δ)z cos (q.ei)

1 + (ε2 − δ2)z2

2
− εz cos(2πq.ei)

∑

ei∈B

1 + (ε+ δ)z2 − (1 + ε+ δ)z cos(2πq.ei)

1 + (ε2 − δ2)z2

2
− εz cos(2πq.ei)

(2.91)
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The Z-transform of the mean square displacement is then given by −∂2P̂ (q, z)/∂q2 with q = 0:

〈r2(z)〉 =
z

(1− z)2

1 + (ε+ δ)z

1− (ε+ δ)z
⇒ 〈r2(t)〉 =

1 + ε+ δ

1− (ε+ δ)
t− 2(ε+ δ)

(1− ε− δ)2

(
1− (ε+ δ)t

)
if t ≥ 1

(2.92)

After a while, we obtain a mean square displacement linear in time, as expected for a Brownian
motion, but with an effective diffusion coefficient given by:

Deff =
1 + (ε+ δ)

1− (ε+ δ)
(2.93)

A mean field approach would lead to the same result. Indeed, we would expect the effective
diffusion coefficient to be in average [43, 111]:

Deff =
1 + 〈cos(θ)〉
1− 〈cos(θ)〉 =

1 + (ε+ δ)

1− (ε+ δ)
, (2.94)

where 〈cos(θ)〉 is the average cosine of the angle θ between to successive steps. In our case, θ = 0
for a step backward, θ = π for a step forward, and θ = π/2 for an orthogonal reorientation.

Equation (2.92) is valid even for short time: the approximation we made to obtain this result
was to assume that the propagator to be used was the infinite space one. We then observe at
short time either a ballistic regime (ε+ δ ≥ 0) or a static oscillating motion (ε+ δ ≤ 0). At short
time, namely when t ≤ 2|ε+ δ|, the persistence effect is dominant. If the persistence is positive,
we mainly see ballistic motions for the first steps. If the persistence is negative, the random
walker oscillates around its initial position for a discrete random walk, and should stay almost
stationary in the continuous limit of this discrete process.

Figure 2.28 shows the mean square displacement 〈r2〉 for persistent random walks for a highly
anti-persistent random walk with ε = 0 and δ = −0.9 (black dots), and a highly persistent one
with ε = 0.9 and δ = 0 (red dots). The continuous lines stand for equation (2.92), and the dashed
line for the mean field approximation (〈r2〉 = Defft). The random walk takes place on a 400×400
periodic Euclidian network. Several comments are in order:

(i) One can see first that the approximation of equation (2.92) fits perfectly the simulations.
Approximate the confined propagator by the infinite propagator is exact as long as the
random walker does not hit a boundary.

(ii) After a while, we still retrieve a linear MSD, as expected with the mean field approach.
But this mean field approach does not gives the constant correction of equation (2.92):

〈r2(t)〉 '
t→∞

Defft−
2(ε+ δ)

(1− ε− δ)2
(2.95)

This “residual” MSD is a first correction to the mean field approach.

(iii) The initial behavior for an anti-persistent random walk could lead to the erroneous con-
clusion that the random walk is sub-diffusive. One has to take care that in such model, at
longer time, we retrieve a trivial Brownian behavior.

Anti-persistent random walk is thus a process that leads after a while to a Brownian diffusion,
as observed in the extensive analysis of lipid granule trajectories, and can lead to a sub-diffusive
like behavior at short time. Such short-term memory effects could be related to the medium
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Figure 2.28: Mean square displacement for persistent random walkers on periodic 400× 400 Eu-
clidian lattice. The black dots stand for a numerical simulation of a highly anti-
persistent random walk with ε = 0 and δ = −0.9, the red dots stand for a highly
persistent one with ε = 0.9 and δ = 0. The continuous lines stand for equation
(2.92), and the dashed line for the mean field approximation (〈r2〉 = Defft).

influence, like the solvent velocity field, or the obstacles position. Like for the fBm, we introduce
correlation in the trajectory, but only this correlation is now finite.

We will see in the third chapter that this process can be used in another context, namely the
search process optimization, when the target is hidden.

• We obtained persistent pseudo-Green functions, and we can subsequently calcu-
late analytically a wide range of first-passage observables.

• Concerning the MSD for an anti-persistent random walker, we observe an apparent
initial sub-diffusive behavior, followed by a classical Brownian behavior, with a
“residual” MSD.

Quick summary

2.3.2 Static cages: porosity

Experimental analysis showed that lipid granules had two diffusion modes: one at short time,
and a different one at longer time. We cannot assume anymore that the global diffusion process
is scale-invariant. We will mimic this effect using a model with two geometrical levels, with a
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2.3 Further models: starting with microscopical facts

distinct diffusion mechanism at each level. We will assume that the random walker evolve in an
ordered porous media: we consider a regular lattice of cages, each cage being connected to the
neighboring ones through small holes. Those static cages could be linked to the microscopical
cell organization (microtubules and F-actin network for instance): for a big random walker like
lipid granules, the walk cannot explore the small bottlenecks or dead ends. The walker can just
see a succession of confined volumes, linked together with small holes, the volume of each cage
being approximately of the same magnitude order.

If we focus on the cage network, we have a diffusion with a quasi-CTRW behavior: the waiting
time is the time needed for the random walker to enter the cage by one point, and exit through
another one. This time is finite, but can be widely distributed. This introduces almost naturally
a cut-off in the waiting time distribution, and could explain why the lipid granules behave like
CTRW at short times, and differently at longer times.

The model considered here is thus a periodic network of cages. Diffusion in periodic porous
networks has been extensively studied during the last decades. The periodic network can be an
artificial system [105, 150], a crystallographic network [58, 162], or a porous materia l[145]. The
diffusion in such system has been proposed as a way to differentiate cells [70], to control gas flux
[145] or to sort DNA molecules of different size [60].

Several models have been developed to explain the diffusion observed in periodic porous struc-
tures. The first one is to consider the periodic network as a porous material: the diffusion
coefficient is then a function of the fraction of accessible space, the porosity ε ∈ [0, 1]. Several
formulae exist, depending on the geometry and on ε values: for 1 − ε � 1, Maxwell’s formula
gives [138]

D(ε) = D(0)
ε

1 +
1

2
(1− ε)

(2.96)

For isotropic 2D networks, the formula becomes [141]

D(ε) = D(0)
(

1− (1− ε)1/2
)

(2.97)

Those porous models only take ε as parameter: with only one parameter, they can be applied to
random media, but no to ordered media, where the geometry can be more important than ε: for
our model, we expect that the hole size govern the diffusion coefficient, and not the porosity ε.

Other models consider that if the holes between two cages are small enough, one can use a
simple continuous time random walk (CTRW): the walker waits a random time in each cavity,
and diffuses on the cavity network. The mean waiting time is approximately the time needed on
average to escape the cavity through any of the holes, the random walker being initially uniformly
distributed (noted 〈Tesc〉). This approach works somehow for small holes in circular geometry
[159] or for cubic networks [80]:

DCTRW = D(0)
1

2〈Tesc〉
(2.98)

The coefficient 2 in this formula appears somehow magically: authors claim in reference [159]
that it is related to the probability 1/2 to cross the hole between to cages when the random
walker hits this hole. This could be the case if each time the random walker hits a boundary,
he has a probability 1/2 to be reflected. But for a continuous medium, where the holes are not
semi-reflective, this probability is already present in the 〈Tesc〉.

We will in our model take in account more precisely the microscopical details: we consider a
random walker evolving on a network of identical cavities, as shown in Figure 2.29. As for the
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2 From experimental trajectories to (anomalous) diffusion mechanism, and the way back

experimental data, we will introduce two levels: for a given cavity, we have to compute the mean
waiting time and the probability to choose a given neighbor, on the cavity network we will use
these microscopical quantities to determine the (global) diffusion coefficient.

Figure 2.29: Scheme of the diffusion on a cage network.

If we consider the cage’ network, we find back a CTRW, but one has to take care at transition
probabilities between cages. This sub-section is structured as follows: we will first focus on the
cage level, and we will find analytically the probability transition between two cages, and the
related waiting times. Since those probabilities are not all equivalent, we will then focus on the
cage level network, and compute the global diffusion coefficient, as a function of the cage char-
acteristics, and of the network geometry. We will only consider the mean square displacement in
this model, but once the transition probabilities and the waiting times are known, we could ob-
tain somehow a propagator, and the related pseudo-Green functions. We will compare the result
we obtain here with the existing approach, mainly the “simple” CTRW described in reference
[159], for two cages geometries, discrete cubic networks and continuous circular cages.

Diffusion within a cavity

We first focus on the microscopical level, namely the diffusion within a cavity. The random
walker enters through a given hole, and we need to compute two observables: the probability to
choose a given hole, and the time needed to do so.

We will start by a problem simplification, using the network symmetry. As shown in Figure
2.30, starting from a given hole S, we have two kinds of holes accessible: the nearest neighbors
(holes of index 3) and the opposite ones (holes of index 2). If we consider a single cavity, and
look for the first hole reached, we will find the starting hole S, since the random walker starts on
it. If we consider, as shown in Figure 2.30 two adjacent cavities, we can symmetrize the problem,
and simply search the first hole reached, the starting hole being reflective. Once reached, we
can consider that with a probability 1/2, we reached this hole in the left cavity (in the original
problem), and with a probability 1/2, the symmetric hole in the right cavity.
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Figure 2.30: Scheme of the diffusion starting from a given hole, between two adjacent spheres.

By doing so, we avoid any problem in the definition of starting conditions: we do not have to
introduce a cut-off distance where the random walker land after leaving the hole S.

After this simplification, we have three quantities to compute: the splitting probabilities p2,
p3, and the mean escape time 〈Tesc〉 through any of the holes, starting from hole S. We will treat
both continuous and discrete cavities with our formalism: for continuous cavities, the holes will
be extended and not point-like, and the corresponding pseudo-Green functions will sometimes
be only approximations. We will treat the problem with a discrete approach (point-like holes),
and we will transpose the results obtained to continuous cavities using pseudo-Green function of
extended targets in the final formula.

The pseudo-Green functions Hij are defined as usual as

Hij =

∫ ∞

0
(Prob(rj , t|ri, t = 0)− Pstat(rj)) dt, (2.99)

where Prob(rj , t|ri, t = 0) is the probability to be at rj at time t starting from ri at time t = 0,
and Pstat the stationary probability.

We note S the initial hole, rS its position, 2 the opposite hole and 3 any of the orthogonal hole.
We note p2 the probability for the random walker to exit through the hole 2 and p3 the probability
to hit one of the orthogonal holes first. The (2d − 2) orthogonal holes 3 are equivalent. Using
the electrical analogy formalism of [65], that we applied in chapter 1 to compute the splitting
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2 From experimental trajectories to (anomalous) diffusion mechanism, and the way back

probabilities, we have:





0 = ρ0 + JH2S − Jp2H22 − J
p3

2d− 2
(2d− 2)H23

0 = ρ0 + JH3S − Jp2H23 − J
p3

2d− 2
(H33 +H2S + (2d− 4)H23)

(2.100)

We have to take care that if all orthogonal holes are equivalent when we start from S or 2, it
is not the case anymore when we start from a given hole 3. We will illustrate this point with
Figure 2.30: we note 3 the upper orthogonal hole, 3′ the lower orthogonal hole and 3” the two
holes in the middle. The second equation use here the overall cavity symmetry: starting from
hole 3, one can either choose the same hole 3, giving the H33 term, the opposite hole 3′, leading
to H33′ = H2S , or one of the middle hole 3”, leading 2d− 4 times to H33” = H23.

Using the normalization of splitting probabilities, we deduce

(
p2

p3

)
= A−1.

(
H2S −H23

1

)
(2.101)

with

A =


 H22 −H23

2H23 −H22 −H2S

2(d− 2)
1 1


 (2.102)

We already used some symmetries, for instance H3S = H23 or H33 = H22.

We obtain finally:

p2 = 1− (2d− 2)(H22 −H2S)

(2d− 2)(H22 −H23)− 2H23 +H22 +H2S
(2.103)

p3 =
(2d− 2)(H22 −H2S)

(2d− 2)(H22 −H23)− 2H23 +H22 +H2S
(2.104)

Knowing the splitting probabilities p2 and p3, we can deduce the mean waiting time to exit a
given cavity through any of the holes, using once again the formalism of [65]:

〈Tesc〉 = V (p2H22 + p3H23 −H2S) , (2.105)

V being the cavity volume. This lead to:

〈Tesc〉 = V (H22 −H2S)
H22 +H2S − 2H23

(2d− 2)(H22 −H23)− 2H23 +H22 +H2S
(2.106)

Diffusion on the cavity network

For simplicity sake, we will consider that the cavity network is a simple Euclidian network of d
dimension. To avoid persistence effect, we will more precisely consider the lattice connecting the
holes together, as shown in Figure 2.31.

Figure 2.31 shows that the holes have two kinds of links: between two neighboring holes, and
between two opposite holes. Among each kind, all the links are equivalent. We thus have two
probabilities, p3 for the neighboring holes, and p2 for opposite ones, associated to two distinct
time distributions ψ2 and ψ3. Those time distributions are the distribution of the conditional
time needed to reach for the first time a hole of a given kind, without touching any of the other
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Figure 2.31: Scheme of hole network.

holes. The average time to reach any of the accessible holes from a given hole is, as defined
previously:

〈Tesc〉 = p2〈ψ2〉+ p3〈ψ3〉 (2.107)

Using a mean field approach, if we can escape either through a hole 2 with a probability p2

and at a distance 1, or through a hole 3, with a probability p3 = 1− p2 and at a distance 1/
√

2,
and that we wait in average 〈Tesc〉, we obtain, after a while:

〈r2〉(t) '
t�1

(
p2(1)2 + p3

(
1√
2

)2
)

1

〈Tesc〉
Dt =

1 + p2

2〈Tesc〉
Dt, (2.108)

where D is the diffusion coefficient of the random walker within the cavity. If the lattice step is
not l = 1, we just have to multiply this result by l2.

Some comments are in order:

(i) We get for long time a classical Brownian behavior (〈r2〉 ∝ t), as observed for the lipid
granules in the previous section.

(ii) The diffusion coefficient is a product of three terms: D, usually 1/(2d), is the diffusion
coefficient within a cavity, (1+p2)/2 is a correction related to the fact that the two kinds of
hole are not equivalent (p2 6= p3), 1/〈Tesc〉 is the correction expected for a CTRW starting
from a hole. Those three terms are uncorrelated, which is really a surprise: one could have
expected a correlation between the probability and the escape time, where the whole time
distribution ψ2 and ψ3 would have been involved.

(iii) We don’t have to compute the mean conditional first-passage times, 〈ψ2〉 and 〈ψ3〉, but only
the mean escape time 〈Tesc〉. This leads to a huge simplification of the problem. This time
is not the one of the simple CTRW approach described in reference [159], since we assume
that in this approach we start evenly distributed in the cavity: 〈Tesc〉 is the average time
needed to exit the cavity, starting from a given hole (considered as reflective after), while
〈Tesc〉 is the average time needed to exit the cavity, after averaging on all possible starting
positions within the cavity.
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Using expressions of p2 and 〈Tesc〉 obtained previously, we can compute the effective diffusion
coefficient, defined as:

Deff =
1

2d

1 + p2

2〈Tesc〉
=

1

2V (H22 −H2S)
(2.109)

The pseudo-Green functions are here the ones of a single cavity, where the hole 2 is absorbing,
and the starting hole S is reflective. V is the cavity volume. This result is astonishingly simple:
the effective diffusion coefficient is the half of the inverse of the mean first-passage time to hole
2, starting from hole S (with reflective boundary conditions in S), without considering any other
hole. This MFPT is related to the “narrow escape” problem, problem that have been extensively
studied during the last few years [29, 108, 188, 196, 197]. We thus have analytical results for
many geometries.

Alternative approach

We do not always have the exact pseudo-Green functions H for the problem with one absorbing
hole and a reflective one (the starting hole). If one only has the H functions with absorbing
holes, we can retrieve the previous results for Deff using a small approximation.

We will consider that when the random walker starts, he does not start exactly on the starting
hole, but at a very near position rS . We thus note 1 the starting hole, r1 its position, with
‖rS − r1‖ � 1. This problem becomes a persistent random walk: it is no more equivalent to
reach a given hole from the right side or from the left side, since one is teleported at a given
distance ‖rS−r1‖ to the hole, but not in the same direction. We can use the formalism developed
for a persistent random walk, with p̃2 the probability to cross straight a cavity, p̃1 to exit back
through the initial hole, p̃3 to reorientate orthogonally and 〈T̃esc〉 the average escape time of a
cavity starting from rS . The diffusion coefficient on the cavity network is, as shown in the last
sub-section:

Deff =
1

2d

1 + (p̃1 − p̃2)

1− (p̃1 − p̃2)

1

〈T̃esc〉
(2.110)

When ‖rS − r1‖ → 0, p̃1 → 1, p̃2 and p̃3 → 0 and 〈T̃esc〉 → 0. The effective diffusion coefficient
Deff is then undetermined.

We can tackle this problem by considering a slightly different situation: we will consider as
previously two adjacent cavities, the random walker being initially in the hole linking those two
cavities. We have once again a situation where the random walker can exit this ensemble of two
cavities, either by choosing one of the two extreme holes (with a probability p2) or through one
of the 4(d − 1) orthogonal holes (with a probability p3). Since both cavities are the same, this
problem is equivalent to a problem where the random walker start in r1, and where r1 is not
a hole anymore, but a part of the reflecting boundary. For this problem, we can compute as
previously p2 and p3.

Considering the two cavities together, we can link p̃1, p̃2 and p2. Indeed, the probability to
choose one of the opposite holes, is the probability to choose it directly, or to come back in r1

once or several times, and then choose the opposite hole rather than one of the orthogonal holes:

p2 =

∞∑

i=0

p̃2p̃1
i =

p̃2

1− p̃1
(2.111)

The mean escape time of the two cavities ensemble, noted 〈Tesc〉, is the time necessary to exit
the cavity through a hole 2 or a hole 3, or to go back in r1 and to exit through a hole 2 or a hole
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3 and so on. For our problem, the time needed to come back in r1 is 〈T1S〉 → 〈T11〉 = 0. We thus
have:

〈Tesc〉 =

∞∑

i=0

(
〈T̃esc〉+ i〈T1S〉

)
p̃1
i → 〈T̃esc〉

1− p̃1
(2.112)

We can retrieve the effective diffusion coefficient Deff , recalling the p̃1 → 1 and p̃2 → 0:

Deff =
1

2d

1− (p̃1 − p̃2)

1 + (p̃1 − p̃2)

1

〈T̃esc〉
=

1 + p2

2

1

〈Tesc〉
(2.113)

If we know the behavior of p̃1, p̃2 and 〈T̃esc〉 with ε = ‖rS − r1‖, we can take the limit ε → 0
to get back the initial result. This approach is useful if the ε dependence is known, and if the
problem with a reflective starting hole cannot be treated exactly. An example is a cavity where
the random walker can stick to the boundary and diffuse on the external surface: the introduction
of a reflective hole is rather cumbersome, while the ε dependency can be estimated.

Comparison with classical CTRW approach

We can compare this result to the simple CTRW approach of reference [159]. With this model
we expect, for an Euclidian cage network in d dimensions, that

〈r2〉 '
t�1

1

2d

1

2〈Tesc〉
t (2.114)

where 〈Tesc〉 is the mean escape time of a given cavity averaged over all starting points possible
within this cavity.

We will use a simplification based on the assumption that, for a large volume

Hij →
V→∞

G0(‖ri − rj‖) = G0(rij) (2.115)

where G0 is the infinite volume Green function. We also assume that G0(r) → ∞ when r → 0,
and in particular G0(1) � G0(0). G0(0) is the average number of times that a random walker
return in the starting site for an infinite random walk in an infinite environment: it is finite for a
transient random walk, and infinite for a recurrent one. The above approximation thus holds for
recurrent random walk (compact exploration). The effective diffusion coefficient for our model
becomes, with this approximation:

Deff =
1

2V (H22 −H2S)
' 1

2V (G0(0)−G0(1))
' 1

2V G0(0)
(2.116)

We can approximate 〈Tesc〉 by considering, using symmetries, a cavity fraction V/(2d) with
only one target, and reflective boundary conditions. For such situation, if we consider the large
volume limit, where H ' G0

〈Tesc〉 =
V

2d
H22 →

V→∞
V

2d
G0(0) (2.117)

We thus obtain the same limit for both models:

〈r2〉(t) →
V→∞

1

2V G0(0)
t (2.118)

We note that as soon as G0(0)−G0(1) is significantly different from G0(0), the two models do
not lead to the same result. We will see that this difference can be observed for discrete cavities
(where G0(0) is finite), or for marginal explorations of the cavity (where G0(0) is infinite, but
where G(1) = O (G0(0))).
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2 From experimental trajectories to (anomalous) diffusion mechanism, and the way back

Discrete euclidian cavities

We consider that the cavities are hypercubic discrete lattices of dimension d, with reflective
boundary conditions, of size Ld, where a hole is placed on the center of each face, as shown
in Figure 2.32 for d = 2. The pseudo-Green function are for this case exactly known for any
dimension d.

S 2

3

3
Figure 2.32: Scheme of the diffusion within an hypercubic discrete lattice (here for d = 2).

We thus can compute analytically p2 and 〈Tesc〉, and compare our result to numerical sim-
ulations. Figure 2.35 shows the mean square displacement for a random walker evolving on a
3D cubic network of cage, the cages being cubic discrete lattices. Circles stand for numerical
simulation results, for several cage size: black for 113-cages, red for 213-cages and green for 313-
cages. The continuous line are obtained by computing analytically the diffusion coefficient, using
equation (2.109) and the exact expression of pseudo-Green function, analogous to equation (1.90)
given in the first chapter. The dashed line are the result of the simple CTRW model proposed
in reference [159], where the mean exit time has been computed numerically.

Figure 2.35 shows an excellent agreement between simulations and our theory, and also a clear
discrepancy between simulations and the simple CTRW approach. This is due to the discrete
nature of the random walk: for a 3D euclidian lattice, G0(0) = 1.5163 . . . does not diverge, and
G0(1) = 3/(2π). The classical CTRW approach gives:

〈r2〉(t) →
V→∞

1

2V G0(0)
t ' 0.3297 . . .

V
t (2.119)

Our approach gives:

〈r2〉(t) →
V→∞

1

2V (G0(0)−G0(1))
t ' 0.4813 . . .

V
t (2.120)

As soon as G0(1) = O (G0(0)), the simple CTRW approach does not work well: Discrete
networks are an example of such situation.
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Figure 2.33: 〈r2〉 for a diffusion on a 3D-network, where cages are discrete cubic lattices. Black
circles stand for numerical simulation where the cages are 113 cubes, red circles for
213 cubes, and green circles for 313 cubes. The continuous line stand for equation
(2.109) using exact pseudo-Green functions, the dashed line for the simple CTRW
model, where the mean exit time has been computed numerically.

Continuous compact exploration also lead to G0(1) = O (G0(0)), and thus to the same discrep-
ancy between numerical results and simple CTRW approach is expected. We will study the case
of critical exploration, neither compact nor non-compact, with the 2D continuous exploration.

Continuous spherical cavities

We will now assume that the cages are spherical, with 2d holes, two on each direction. The
sphere of radius R is centered on r = 0, the random walker start at −Re2 and can exit if he hit
any of the sphere portion of radius da� R centered on ±Rei.

We now have a continuous space exploration, in continuous time. For this problem, the pseudo-
Green function H are not known exactly, but very good approximations exist [59]. For instance,
d = 2 (2D circle of radius R = 1) gives

H22 −H2S =
2 ln(2)− ln(da)

2π
(2.121)

Using this expression, we obtain a very good approximation of the simulated diffusion coeffi-
cient. Figure 2.34 shows the mean square displacement as a function of time for a 2D Euclidian
lattice of R = 1/2 disks. The circles stand for the numerical simulation, from up to down, with
a window of size da = 0.2 (green), 0.01 (red) and 0.05 (black). The straight lines stand for
the prediction of equation (2.109), where the pseudo-Green function are approximated by the
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2 From experimental trajectories to (anomalous) diffusion mechanism, and the way back

formula of equation (2.121). We observe a very good fit between predictions and numerical sim-
ulations, even for “large” holes. The dashed lines stand for the simple CTRW approach [31], the
theoretical prediction being detailed below.
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Figure 2.34: 〈r2〉 for a diffusion on a 2D-network, where cages are continuous disks of radius
R = 1/2. The circles stand for the numerical simulation, from up to down, with
a hole of size da = 0.2 (green), 0.01 (red) and 0.05 (black). The straight lines
stand for the prediction of equation (2.109), where the pseudo-Green function are
approximated by the formula of equation (2.121). The dashed lines stand for the
simple CTRW approach [31], where the mean exit time is computed through equation
(2.122).

〈Tesc〉 can here be computed analytically using the formula of reference [158]: if we have a disk
of radius R = 1, and N = 4 holes of size da, then

〈Tesc〉 =
1

2

(
1

2
− ln(2da)

)
(2.122)

The diffusion coefficient would then be with this approach

DCTRW =
D(0)

2〈Tesc〉
=

D(0)
1
4 − ln(2da)

(2.123)

instead of (here V = πR2 = π)

Deff =
D(0)

2V (H22 −H2S
=

D(0)

2 ln(2)− ln(da)
(2.124)
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2.3 Further models: starting with microscopical facts

Once again, we retrieve the influence of H2S , missing in the simple CTRW approach. For infinitely
small holes, da → 0, both models lead to D → −D(0)/ ln(da). But for small holes da ∼ R/100,
as shown in Figure 2.34, the simple CTRW approach gives only a rough estimate of the exact
value, while our approach lead to a very good fit.

We have developed in this sub-section a model to compute the global diffusion constant for
a random walker evolving on an ordered porous network. The usual approach either considers
very small holes (simple CTRW approach) or a random media with a given porosity (porous
approach). Here, we show how to explicitly take in account the cavity geometry, and we obtain
a clear improvement of the estimated diffusion coefficient.

This approach can be widely used for regular artificial systems, crystallographic networks or
ordered porous material. If we manage to integrate a slight variability in the cavity size or in the
hole diameter, this model could be transposed to biological problems, like diffusion in entangled
actin networks, or in the extracellular matrix.

If we go back to the original problem, namely the lipid granules diffusion in yeast cell, we can
here integrate easily the two levels observed experimentally: we can consider that the diffusion
within a cavity is anomalous, while we will find back a Brownian behavior after a while if we
consider the cavity network. Once again, we could at short times see only the sub-diffusion within
a cavity, without seeing that at longer times, we find back a Brownian behavior. Introducing an
anti-persistence effect related to the solvent velocity field within a cavity would make sense for a
lipid granule in an actin network.

• We developed an analytical model to estimate the effective diffusion coefficient in
regular porous networks.

• This result has been checked through numerical simulation, and is in contradiction
with previous works, like [58, 159].

• This two-levels model makes sense for a big random walker evolving in complex
medium, where only independent connected cavities are seen.

Quick summary

2.3.3 Dynamical cages: crowding effect

In this last sub-section, we will focus on crowding effect and its impact on first-passage properties.
We observed in lipid granules trajectories that, at short time, the diffusive behavior shared a lot
of common features with CTRW. CTRW could be related to a crowding effect [181, 182] within a
cell: lipid granules cannot move before the crowding particles leave some space. Those crowding
particles form a cage that disappears after some time, releasing the lipid granules.

We could use a classical CTRW formalism, with a cut-off time that can be fitted with ex-
perimental data. But we chose here to model as simply as possible this crowding problem, in
order to extract the general behavior, and to understand the crowding influence on first-passage
processes.

The observable we will focus on is the MFPT. We will not study here the MSD, but our
approach could be used to lead to a mean field approximation of the MSD. To obtain the MFPT
in our model, we will first consider the problem with only one vacancy (over-crowded case). We

113



2 From experimental trajectories to (anomalous) diffusion mechanism, and the way back

Figure 2.35: Crowding and dynamical cages: surrounding particles can form, for a given time, a
“cage” around the diffusing molecule.

will compute the conditional probabilities for a tracer step, knowing the initial vacancy position,
as well as the mean waiting time between two tracer steps. We will then be able to get analytically
the MFPT for the problem with a single vacancy. We will treat similarly the case of an arbitrary
number of vacancy: we will approximate the conditional probabilities and the mean waiting
time in order to get an approximation of the MFPT. This approximation will be compared with
numerical simulation results.

Model

We will consider a crowding problem on a discrete network. This allow somehow a simplification
of the problem, since the crowding effect can be simply defined as follows: two particles cannot
occupy the same node.

On the considered network, we will mix one or several obstacles, each occupying one node,
and a tracer particle, also occupying one node. At each time step, all obstacle will successively
choose a neighboring site, and move toward it if the site is free. Since the obstacles are all the
same, the movement order does not really matter. After the obstacle diffusion, the tracer chooses
a neighboring site, and move toward it if there is no obstacle already occupying this node. Else,
the tracer stays in the same position.

We can see the problem symmetrically by considering the vacancies: instead of considering no

obstacles, we can assume that the network contains n = V − (no + 1) vacancies, where V is the
network volume, i.e. the number of site, and the +1 term comes from the tracer. Each vacancy
is an independent random walker, and two vacancies cannot occupy the same site. In this vision,
the tracer moves as soon as a vacancy hit him: the tracer position and the vacancy position are
simply exchanged. As previously, the vacancies move first, and if a vacancy hit the tracer, the
tracer moves. At last, we impose that the tracer can only move once at each time step.

To allow an analytical treatment, the network considered will be a periodic Euclidian lattice
in d dimensions, the lattice being Xi large in the i direction.
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2.3 Further models: starting with microscopical facts

Problem for a single vacancy

We will start with a single vacancy, n = 1. This problem can be solved exactly for certain
geometries. Our goal will be to obtain the mean first-passage time 〈Tt〉(rT , rS) for the tracer
between an initial position rS , and a target site rT .

At each step, the tracer has to wait that the vacancy comes back, and thus performs a con-
tinuous time random walk. The waiting time is the time needed for the vacancy to hit again the
tracer. Since the tracer motion is related to the path chosen by the vacancy to hit the tracer,
the latter performs an anti-persistent random walk: it is more likely that the vacancy hits the
tracer from the opposite direction of the last step than in the same direction.

To obtain the MFPT, we will use the MFPT of a persistent random walk: the tracer performs
indeed an anti-persistent CTRW. We will first compute the persistence probabilities of the random
walk for the single vacancy problem (a), and then the mean waiting time between two steps (b).
Assembling those two results, we will deduce the mean first-passage time of a tracer in a discrete
network with a single vacancy (c).

a) Conditional step probabilities

As shown previously, to obtain the MFPT for a persistent random walker, one has first to compute
the conditional step probabilities, namely the probability to perform a step in a given direction,
knowing what was the last direction chosen.

We will consider an Euclidian lattice of dimension d, where (e1, . . . , ed) is an orthonormal base.
If we note r(t) the position of the tracer at time t, rV (t) the position of the vacancy, making a
step in the direction ei at time t means that r(t+1) = r(t)+ei and rV (t+1) = r(t). The vacancy
then starts from r(t), and the next step occurs at t′ > t when rV (t′) = r(t+ 1). The tracer will
go in rV (t′ − 1): to compute the probability to go in the direction ej , we have to compute the
probability that rV (t′ − 1) = r(t+ 1) + ej if rV (t′) = r(t+ 1) for the first time since t, knowing
that rV (t+1) = r(t+1)−ei. We have here a random walk with a short memory: the probability
to make a step in direction ej depends on the position r(t), but also on the direction ei of the
last step. We can define the conditional probability to perform a step in direction ej after a step
in direction ei starting from r(t):

Prob(ej |ei, r(t)) = Prob
(
rV (t′ − 1) = r(t) + ej |rV (t) = r(t)− ei

)
, (2.125)

where t′ is defined as:
t′ = min

(
t1 ∈ N

/
t1 > t & rV (t1) = r(t)

)
(2.126)

t′ is here the first-passage time of the vacancy to the initial tracer position.
To compute this conditional probability, we need to know the last position of the vacancy

before hitting the tracer, knowing that the vacancy start in r(t) − ei. This problem can be
formalized using an electrical analogy [65]: we consider that we inject a flux J on the network in
r(t)− ei, and we remove a flux J in r(t). Our problem is to determine the flux J±j on each edge
r(t)± ej → r(t). Using the pseudo-Green function, we can write that the stationary density (for
the flux problem) fulfills:

ρ(ri) = J
(
H (r(t)|r(t))−H (r(t)|r(t)− ei) +H (ri|r(t)− ei)−H (ri|r(t))

)
, (2.127)

where H(ri|rj) is the pseudo-Green function. As previously, this function is defined using the
propagator P (ri|rj , t), probability to be in ri at time t, starting from rj at time t = 0, and
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Pstat(ri), the stationary probability (for the original network, without flux) to be in ri:

H (ri|rj) =

∞∑

t=0

(
P (ri|rj , t)− Pstat(ri)

)
(2.128)

We can thus compute the stationary probability in r(t)± ej , and deduce the flux J±j :

ρ(r(t)± ej) = J
(
H (r(t)|r(t))−H (r(t)|r(t)− ei)

+H (r(t)± ej |r(t)− ei)−H (r(t)± ej |r(t))
)
, (2.129)

J±j = ωr(t)±ej→r(t)ρ(r(t)± ej), (2.130)

where ωr(t)±ej→r(t) is the transition probability from r(t) ± ej to r(t). We finally obtain the
probability:

Prob (ej |ei, r(t)) =
Jj
J

(2.131)

= ωr(t)+ej→r(t)

(
H (r(t)|r(t))−H (r(t)|r(t)− ei)

+H (r(t) + ej |r(t)− ei)−H (r(t) + ej |r(t))
)

(2.132)

Some comments are in order:

(i) Those probabilities are entirely determined by the vacancy motion, which is so far a classical
Brownian motion. In particular, the pseudo-Green functions can be known exactly for some
geometries.

(ii) The tracer motion is persistent for the general case. One can easily understand that it is
easier for the vacancy to come back using the same path than to circle around the tracer
to arrive in the opposite direction: the tracer performs an anti-persistent motion.

(iii) The transition probabilities for the tracer depend on the position r(t) in the general case.

We can slightly simplify the problem if we consider a tracer moving on a periodic Euclidian
lattice in d dimensions. The network is parallepipedic, being Xi long on direction ei. For such
network, the transition probability does not depends anymore on the tracer position, and the
pseudo-Green function is exactly known:

H(r|r′) =
1

d∏

i=1

Xi

∑

q 6=0

e2ıπq.(r−r′)

1− 1

d

d∑

i=1

cos (2πq.ei)

, (2.133)

where q = (1/X1, . . . , 1/Xd). We can note that the pseudo-Green function only depends on the
difference r− r′: H(r|r′) = H(r− r′) = H(r′ − r). The tracer transition probability becomes:

Prob (ej |ei) =
1

2d

(
H (0)−H (ei) +H (ej + ei)−H (ej)

)

=
1

2d

d∏

i=1

Xi

∑

q 6=0

1− e2ıπq.ei + e2ıπq.(ej−ei) − e2ıπq.ej

1− 1

d

d∑

i=1

cos (2πq.ei)

(2.134)

One can note that if X = X1 = X2 = . . . = Xd (hypercubic domain) we have only three
probability, as soon as d ≥ 2: Prob(ei, ei), Prob(ei,−ei) and Prob(ei, ej 6=i). We will note them
respectively Prob→→, Prob→← and Prob→↑.
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b) Waiting time

The second quantity we will compute is the waiting time between two tracer steps. Knowing that
the tracer performs an anti-persistent random walk, we can indeed compute the mean number
of steps necessary to reach a given target, using the formalism developed for persistent random
walks. But we do not know how many time the tracer have to wait between two steps.

One could argue that the first return time is not the same for each couple (ei, ej). The correct
mean first-passage time 〈Tt〉 for the tracer should be:

〈Tt(rS , rT )〉 =

d∑

i=1

d∑

j=1

〈N(rS , rT )〉(±ei,±ej)〈ψ〉(±ei,±ej), (2.135)

where 〈N〉(ei, ej) is the average number of reorientation from ej to ei during the tracer walk, and
〈ψ〉(ei, ej) the mean waiting time between a step along ej and a step along ei. The two random
variables N and ψ are uncorrelated, we can thus multiply the means to obtain the mean of the
product. 〈ψ〉(ei, ej) is here a conditional mean first-passage time for the vacancy: starting from
r − ej , this is the mean first-passage time to r when the last step occurs along r − ei → r. We
will compute successively 〈N〉(ei, ej) and 〈ψ〉(ei, ej), after some simplifications.

Assuming once again that the problem occurs in a hypercube of size X in d dimensions, we
can slightly simplify the problem:

〈Tt(rS , rT )〉 = 〈N→→(rS , rT )〉〈ψ→→〉+ 〈N→←(rS , rT )〉〈ψ→←〉+ 〈N→↑(rS , rT )〉〈ψ→↑〉. (2.136)

The problem can be further simplified. We note N→↑(rT |rS , ei) the number of reorientation
→↑ starting from r, the previous step being ei and the target rT . This quantity satisfies, for
r 6= rT :

〈N→↑〉(rT |r, ei) = Prob→→〈N→↑〉(rT |r− ei, ei) + Prob→←〈N→↑〉(rT |r− ei,−ei)

+Prob→↑
∑

±ej ,j 6=i
〈N→↑〉(rT |r− ei, ej) + Prob→↑. (2.137)

We can compare it with the equation satisfied by the mean first-passage time for a “classical”
persistent random walker, namely a persistent random walker waiting one time step between two
jumps, starting from r with orientation ei, when rT is the target, 〈T〉(rT |r, ei), once again for
r 6= rT :

〈T〉(rT |r, ei) = Prob→→〈T〉(rT |r− ei, ei) + Prob→←〈T〉(rT |r− ei,−ei)

+Prob→↑
∑

±ej ,j 6=i
〈T〉(rT |r− ei, ej) + 1. (2.138)

Both quantities satisfy the same equation, except for the source term. We can then deduce that:

〈N→→〉(rT |rS , eS) = Prob→→〈T〉(rT |rS , eS) (2.139)

〈N→←〉(rT |rS , eS) = Prob→←〈T〉(rT |rS , eS) (2.140)

〈N→↑〉(rT |rS , eS) = Prob→↑〈T〉(rT |rS , eS) (2.141)

Those equations are still valid after an average over eS . 〈T〉(rT |rS , eS) is the mean first-passage
time for a persistent random walker waiting a time unit between two steps, and is analytically
known, using equation (2.68).
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The mean first-passage time for our problem becomes:

〈Tt(rS , rT )〉 = 〈T〉(rT |rS)
(

Prob→→〈ψ→→〉+ Prob→←〈ψ→←〉+ Prob→↑〈ψ→↑〉
)

(2.142)

The last term can be simplified:

〈ψ〉 = Prob→→〈ψ→→〉+ Prob→←〈ψ→←〉+ Prob→↑〈ψ→↑〉, (2.143)

where 〈ψ〉 is the mean first-passage time for the vacancy, starting from r − ei to r. Using the
Kac’ formula, we simply obtain 〈ψ〉 = 1/Pstat = Xd.

The important point is here that we can only consider the mean first-passage time of the
vacancy, without computing the conditional mean first-passage times for each possible jump ej .
This simplification can be done as soon as the probabilities Prob→→ and the conditional mean
waiting times 〈ψ→→〉 do not depend on the position r.

c) Mean first-passage Time

We can combine the previous result to obtain the mean first-passage time for a tracer evolving
in a crowded periodic euclidian lattice with n = 1 vacancy:

〈Tt(rS , rT )〉 = Xd〈T(rT |rS)〉 (2.144)

The mean first-passage time for a tracer in a crowded environment with n = 1 vacancy is simply
the mean first-passage time of a persistent random walker multiplied by the mean first return
time of the vacancy. 〈T(rT |rS)〉 is here the average first-passage time for a persistent random
walk, already obtained previously, that we briefly recall here:

〈T(rT |rS)〉 =
1

d

∑

q 6=0




∑

ej∈B

1− (ε+ δ) cos (2πq.ei)

1 + ε2 − 2ε cos(2πq.ei)− δ2

1− e2ıπq.(rS−rT )

1− 2p3

∑

ej∈B

cos(2πq.ej)− (ε+ δ)

1 + ε2 − 2ε cos(2πq.ej)− δ2



,

(2.145)
where ε = Prob→→ − Prob→↑ and δ = Prob↑→ − Prob→←. Those conditional probabilities are
obtained using equation (2.134).

Figure 2.36 shows the mean first-passage time of a tracer diffusing on a crowded 2D periodic
Euclidian lattice, as a function of the initial (Euclidian) distance between the tracer and the
target (r =

√
‖rS − rT ‖2). The black circles strand for the numerical simulation result on a

10 × 10 network, red circles for a 20 × 20 network. The continuous line corresponds to the
analytical result of equation (2.144). The analytical result fits perfectly the numerical results.

We obtained, for a periodic Euclidian network, an analytical result for the mean first-passage
time of a tracer in a crowded environment, with n = 1 vacancy. Using the result of equation
(2.144), we can obtain the GMFPT, with the same formalism as for the persistent random walker.

Extension for n ≥ 1

We will now propose an approximation for the mean first-passage time of a random walker
evolving on a crowded periodic euclidean lattice with n ≥ 1.
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Figure 2.36: Mean first-passage time for a tracer evolving on a crowded 2D-periodic Euclidian
lattice, with a single vacancy. The black circles stand for the simulation results
on a 10 × 10 network, the red circles for a 20 × 20 network. The continuous line
corresponds to the analytical result of equation (2.144).

The basic idea is to consider that we still have a n = 1 vacancy problem, that we can solve
analytically, but where the conditional jump probabilities (ε, δ) depend on n. We will apply the
result of equation (2.144), with (εn, δn), now depending on n (a). The mean waiting time between
two tracer steps 〈ψ〉 will also depends on n (b). Combining those two results, we will be able
to propose an approximation of the mean first-passage time of a tracer in a crowded periodic
Euclidian lattice for an arbitrary vacancy number n (c).

a) Approximation of εn and δn

When the tracer evolves with n vacancies, we will consider that the tracer chooses with conditional
probability (ε, δ) the next jump if he is hit by the same vacancy that the one that hits him during
the last step. We will note 0 this vacancy. Else, the tracer chooses randomly a neighbor with an
uniform probability.

This approximation is somehow a short memory one: only the last vacancy has a memory of
the last step, the n− 1 other are assumed to by uniformly distributed when the last step occurs.
What we will be looking for is the probability that the vacancy hitting the tracer at a given step,
vacancy 0, is the first vacancy to hit him at the next step. We will write Probtw this probability
that the same vacancy hits the tracer twice in a row.

With our approximation:
εn ' Probtw(n)ε
δn ' Probtw(n)δ

(2.146)
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ε and δ are the conditional probabilities obtained for a single vacancy, using equation (2.134).

To compute Probtw(n), we need to know the first-passage density to the tracer for each of
the vacancy. We note ψ0 the first-passage density of the vacancy that hits the tracer during
the last step, and ψb the first-passage density of a vacancy uniformly distributed in the “bulk”.
Both kind of vacancy perform a simple nearest neighbor random walk on a periodic Euclidian
network. Since the network is periodic, this first-passage density does not depend on the position
r considered.

We can first approximate those first-passage density using the result of reference [151], assuming
that d ≥ 2:

ψ0(t) =

(
1− Xd

GMFPT

)
δ

(
t− 1

GMFPT

)
+

Xd

GMFPT2 exp

(
− t

GMFPT

)

ψb(t) =
1

GMFPT
exp

(
− t

GMFPT

) (2.147)

δ(x) is here a Dirac delta function. The Xd term come from the fact that the first-passage time
for the vacancy 0 is Xd, and the GMFPT is the global mean first-passage time to a given point
of the network (they are all equal for a periodic network). The t − 1 for ψ0(t) means that the
vacancy 0 need at least one step to hit the tracer.

The first-passage densities in equation (2.147) work for vacancies freely diffusing. If we can
neglect the interactions between the n − 1 “bulk” vacancies since we do not care which one of
them arrive first, we have to take into account interactions between vacancy 0 and the n − 1
“bulk” vacancies, because the arrival order changes the tracer motion (one case is persistent, the
other is not). We will assume that the general behavior of bulk vacancies is not influenced by
vacancy 0. But the first-passage density of vacancy 0 depend on the bulk vacancy number n− 1.

We will take in account interactions between vacancy 0 and the bulk vacancies in equation
(2.147) with a mean field approach. We will treat successively the short time and the long time
behavior of ψ0(t).

Since two vacancies cannot occupy the same site at the same time, vacancy 0 has to wait a
given time, that we note 〈T0〉, before moving. A first approximation of 〈T0〉 is to consider that at
each time step, the vacancy 0 can move only if the next site is not occupied by one of the n− 1
bulk vacancies. The next site is occupied with a flat probability (n − 1)/(Xd − 1) at each time
step. n− 1 because there is n− 1 bulk vacancies, Xd − 1 is the volume accessible minus the site
occupied by the tracer. We then obtain for 〈T0〉:

〈T0〉 =

∞∑

t=1

t

(
n− 1

Xd − 1

)t

∞∑

t=1

(
n− 1

Xd − 1

)t =
1

1− n− 1

Xd − 1

=
Xd − 1

Xd − n (2.148)

We can check that if n = 1, 〈T0〉 = 1, and if n→ Xd, 〈T0〉 → ∞.
In average, vacancy 0 has to perform Xd steps before hitting the tracer again. We can consider

that the interaction with bulk vacancies is, in average, equivalent to wait a time 〈T0〉 at each
step. We can then approximate the long time behavior of ψ0(t) as follow

ψ0(t) '
t�1

Xd

GMFPT2 exp

(
− 〈T0〉

GMFPT
t

)
(2.149)
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At short time, we will consider that the vacancy 0 can arrive at t = 1 only if the target site
(here the tracer) is free. We will indeed consider that the persistence effect works only if vacancy
0 is the only one that hit the tracer. We thus multiply the Dirac delta of equation (2.147) by the
probability that no bulk vacancy hit the tracer at this time. In the end, we have:

ψ0(t) =

(
1− Xd

GMFPT

)(
1− n− 1

Xd − 1

)
δ

(
t− 1

GMFPT

)
+

Xd

GMFPT2 exp

(
− 〈T0〉

GMFPT
t

)
(2.150)

Knowing both first-passage densities, we can compute Probtw:

Probtw(n) =

∫ ∞

0
ψ0(t)

(∫ ∞

t
ψb(t

′)dt′
)n−1

dt

=

(
1− Xd

GMFPT

)(
1− n− 1

Xd − 1

)
(2.151)

+

∫ ∞

0

Xd

GMFPT2 exp

(
− 〈T0〉

GMFPT
t

)
exp

(
− (n− 1)t

GMFPT

)
dt

=

(
1− Xd

GMFPT

)
Xd − n
Xd − 1

+
Xd

GMFPT

1

〈T0〉+ n− 1

=

(
1− Xd

GMFPT

)
Xd − n
Xd − 1

+
Xd

GMFPT

Xd − n
n(Xd − n+ 1)

(2.152)

Once again, Probtw(1) = 1, and Probtw → 0 when n→ Xd, .

Using this approximation, we can obtain the conditional probabilities εn and δn.

b) Approximation of 〈ψ〉

We now have to obtain 〈ψ〉, the time between two tracer steps. It does not matter anymore
wether the vacancy 0 or any bulk vacancy hit the tracer first: as shown for the single vacancy
case, we just need to have the mean waiting time between two tracer steps. This time can be
approximated by the first-passage time of n particles uniformly distributed. We will assume that
we have n vacancies having the first-passage density ψb(t):

〈ψ〉 =

∫ ∞

0
tψb(t)

(∫ ∞

t
ψb(t

′)dt′
)n−1

dt′ (2.153)

=

∫ ∞

0

t

GMFPT
exp

(
− t

GMFPT

)
exp

(
− (n− 1)t

GMFPT

)
dt (2.154)

〈ψ〉 =
GMFPT

n
(2.155)

This time is simply the minimum of n random variables exponentially distributed.
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c) First-passage time with n vacancies

At last, the first-passage time with n vacancies is the one of a persistent random walk, with
conditional probabilities (εn, δn) and a mean waiting time 〈ψ〉 = GMFPT/n:

〈Tt(rS , rT , n)〉 =
GMFPT

n

(
Xd(δn − εn)

1− εn + δn
+

1 + ε2n − δ2
n

(1 + εn + δn)(1− εn + δn)

×
∑

q 6=0

1− e2ıπq.(rS−rT )

1− (εn − 1)2 − δ2
n

d

∑

ej∈B

cos(2πq.ej)

1 + ε2n − 2εn cos(2πq.ej)− δ2
n




(2.156)

with

εn '
(

1− Xd

GMFPT

)
Xd − n
Xd − 1

+
Xd

GMFPT

Xd − n
n(Xd − n+ 1)

ε

δn '
(

1− Xd

GMFPT

)
Xd − n
Xd − 1

+
Xd

GMFPT

Xd − n
n(Xd − n+ 1)

δ

(2.157)

Figure 2.37 shows the mean first-passage time for a tracer evolving on a 20 × 20 periodic
Euclidian lattice, as a function of the initial distance between the tracer and the target. The
circles stand for numerical simulations, for several crowding conditions: from down to up, 10
particles (including the tracer, in black), 20 (red), 80 (green) and 120 (blue). This corresponds to
an obstacle density varying between 2.5 to 30 %. The continuous lines stand for the approximation
of equation (2.156): one can clearly see that this approximation fits very well the simulation
results.

Figure 2.38 shows the mean first-passage time for a tracer evolving on a 20 × 20 periodic
Euclidian lattice, as a function of the initial distance between the tracer and the target. The
circles stand for numerical simulations, for higher crowding conditions: from down to up, 240
particles (including the tracer, in black), 280 (red), 3200 (green). The obstacle density is now
varying between 60 to 80 %. The continuous lines stand for the approximation of equation
(2.156): even for a very crowded network, we still have an excellent approximation of simulation
results. We also know that for an overcrowded environment, with a single vacancy, approximation
of equation (2.156) gives back the exact result of equation (2.144).

We have developed here a quite simple approximation of hard-core crowding on discrete net-
work. This model was developed to see what would be the effect of crowding on first-passage
processes: we surprisingly retrieve a “simple” persistent random walk with a waiting time at
each step. This process shares some features with CTRW at short time, in particular a scattering
of the diffusion coefficient due to the variability of the vacancy first return time, and become a
persistent random walk with an effective diffusion coefficient at longer time.

The final approximation is astonishingly good: we consider a tracer diffusing on a network
with many hard-core obstacles interacting, and we see that the mean first-passage time can
be approximated very decently through a rather simple expression. Once again, the absence of
correlation between conditional probabilities and conditional mean first-passage time is surprising,
and simplifies greatly the formalism.

We had introduced in the first sub-section of this chapter a model of persistent random walk in
order to mimic some characteristics of the lipid granules trajectories. This crowding model, with
its dynamical cages, gives a possible explanation of the anti-persistence observed experimentally.
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Figure 2.37: Mean first-passage time for a tracer evolving on a 20x20 periodic euclidian lattice,
with a low obstacle density. The circles stand for numerical simulations, for higher
crowding conditions: from down to up, 240 particles (including the tracer, in black),
280 (red), 3200 (green). The obstacle density is now varying between 60 to 80 %.
The continuous lines stand for the approximation of equation (2.156).

To get the MSD, we can use the result found for persistent random walker, and divide the effective
diffusion coefficient by the mean waiting time 〈ψ〉 between two steps.

• We have developed a simple approximation of the mean first-passage time of a
tracer evolving on a crowded discrete Euclidian lattice.

• We can generate a “natural” cut-off on a CTRW model, as well as persistence,
using hard-core interaction on a crowded network.

Quick summary

The three models developed in this section aim to give some alternatives to the three sub-
diffusive models studied previously, namely diffusion on fractals, CTRW and fBm. We started
with a vision of the random walk that was “infinite”: fractals are infinitely scale-invariant, CTRW
can have infinite mean waiting times, fBm are infinitely correlated. Since the real systems are
finite, we tried to introduce alternative models that had the same behavior as the initial models
at short time, but that led to a “classical” behavior at longer time. With persistent random
walks, we were looking for a finite version of fBm, with only one step of correlation instead of an
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Figure 2.38: Mean first-passage time for a tracer evolving on a 20x20 periodic euclidian lattice,
with a high obstacle density. The circles stand for numerical simulations, for higher
crowding conditions: from down to up, 240 particles (including the tracer, in black),
280 (red), 3200 (green). The obstacle density is now varying between 60 to 80 %.
The continuous lines stand for the approximation of equation (2.156).

infinity. We showed that we could obtained an apparent anomalous behavior at short time with
such model. With the static cages, we proposed a process with two spatial scales, and not an
infinity like for a fractal. We focused only on the long time behavior, and found that the simple
CTRW approach used in the litterature was incorrect in some cases. At last, the crowding effect
was a way to combine a CTRW model (with a natural cut-off) with persistence effects (fBm like).
This model is quite basic, with the same size and the same diffusion coefficient for both tracer
and obstacles, but could be a realistic way to understand the lipid granules motion in fission
yeast.

Conclusion

This second chapter was dedicated to a way to extract information from experimental data
exhibiting anomalous diffusion, namely to find the microscopical cause of anomalous diffusion.
The goal was to obtain more than just a power-law fit on ensemble-average or time-average MSD
plot leading to the anomalous diffusion exponent α.

The first section was a preliminary work done with a theoretical point of view: if we have a
trajectory, how can we define a test that allow to distinguish between diffusion on fractals and
CTRW? We showed that first-passage properties, among them the mean first-passage time, the
first-passage density, the occupation time and the splitting probabilities were tools allowing to
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discriminate the sub-diffusive mechanisms. We also imagined an experimental set-up that could
be used to measure such observables. However, after sharing this set-up with experimentalists,
it appeared that the data amount we could get was, for the time being, insufficient for our tests.

The second section took the experimental constraints in mind to adapt the initial idea: find a
way, using somehow first-passage observables, to discriminate between the sub-diffusive mecha-
nisms. We showed that maximal excursion was a way to improve the estimation of the anomalous
diffusion exponent α with the same data set, and that second moment, ratio and growing shell
tests were efficient tool for our problem. We applied it on simulated data sets of realistic size,
then on an experimental Brownian data set, before trying it on an experimental sub-diffusive
data set. We observed that the lipid granule motion in fission yeast cell was sub-diffusive, with
an anti-persistence behavior like fBm at long time, and a more CTRW-like behavior at short
time. For very long time, we find back a Brownian behavior. None of the three model introduced
could explain entirely the behavior observed.

The third section was somehow a way back to the theory: since the motion of the lipid granules
was somehow better understood, could we propose an unified model that explained the observed
features, and was understandable from the biological point of view? The models studied here,
persistence random walk, cage networks and hard-core crowding, were somehow finite versions
of the usual anomalous diffusion mechanisms. We saw that each of those model could explain
several features observed experimentally. They can all lead to an apparent sub-diffusive behavior
at short time, that becomes a Brownian behavior after a while: experiments that show anomalous
diffusion at short time could lead to a Brownian one after a while if those models apply. At last,
we emphasize that if we used those models in the context of lipid granule motion, they can be
applied in many other fields, like in biology, chemistry or condensed matter. . .
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During the second chapter, the main question was to determine the microscopical mechanism
underlying a stochastic process. We will during this chapter assume that the diffusion mechanism
is known, and we will try to optimize the random search process, namely the time needed to find
a target. This random search process can model at the microscopical level a protein looking for
a DNA site [25, 27] in the context of diffusion–controlled reactions. This random search process
is also relevant at the macroscopical scale, as in the case of an animal looking for food, mate or
shelter [17, 22, 90, 120, 130, 153, 218, 219]. In all these example, the minimization of the search
time can be a competitive advantage, since it is a limiting quantity.

We can start by assuming that the searcher does not know at the beginning where the target
is. We also assume that the target and the searcher are confined in a finite volume, otherwise the
searcher could die ten times before ever seeing a glimpse of the target. The goal is to define a
generic strategy that minimizes the search time: what will be the searcher strategy that minimizes
the first-passage time to the target?

After a brief introduction to the usual search strategies, we will introduce in the first section
an alternative way to minimize the search time. To do so, we will use a model developed in
the previous chapter, namely persistent random walks. Under some assumptions, we will show
that such process can be optimized. The quantity that will be minimized is the global mean
first-passage time, namely the mean first-passage time averaged over all possible starting sites,
for a given target. This quantity is to be used as soon as the random walker does not know its
relative distance to the target at the beginning of the walk.

During the second section, we will focus to the mean first-passage time when the target is
moving. This case could model a predator hunting down a moving prey or two chemical reactants
diffusing in a solution: if both the searcher and the target move, what do first-passage properties
become? This problem is very cumbersome from the mathematical point of view, and we will
thus only focus on a 1D sub-domain.

The last section will think the random search problem differently: if we assume that the walker
diffuses, and that we know where the target is, how can we change the environment to minimize
the searching time? This question is essential to design lab-on-a-chip, or for biological cells:
proteins do diffuse, and have to find their target. How can we optimize the search process,
without using energy through molecular motors? We will see that the network topology have a
certain influence on the MFPT, for a given size N and a given initial distance source-target r.
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The first sub-section will focus on general bounds of the GMFPT. The target connectivity will
appears to be an important parameter for the GMFPT, and we will continue our investigations
in the second sub-section by assessing the target connectivity effect directly on the MFPT. The
last sub-section will focus on network perturbations, namely adding or removing a link between
two nodes somewhere in the network. Once again, we will estimate the impact of such attack on
the MFPT.

Introduction

The search strategy problem defined previously turns out to be a very general question, which
arises at different scales and in various fields. The first theoretical studies on this subject date
back to World War II, when the U.S. Navy was hunting submarines [56, 193]. The same algorithms
have been rationalized to be used in rescue context [92, 171]: once a ship or a submarine is lost,
it can be advantageous to scan the shores with an optimized strategy, in order to rescue as fast
as possible the survivors. The same kind of search process applies to animals looking for food,
mate or shelter, as mentioned above [17, 22, 90, 120, 130, 153, 218, 219].

At the microscopic scale, search processes are directly related to the kinetic of diffusion-
controlled reactions. More generally, the first step of a chemical or biochemical reaction is the
encounter between reactive molecules. The theory of diffusion-controlled reactions, initiated years
ago by the work of Smoluchowski [222], is widely applied for biochemical reactions in cell. In
a cell, the average number of reactive molecules can be very small, and the first encounter be-
tween two reactants governs the reaction kinetic. The confined volume of the cell, or of the cell
compartment, makes it a good example of search process in a confined medium. We can cite for
instance the search for specific DNA sequences by transcription factors [33, 39, 100, 221, 231].

We will shortly present the two major search strategies that have been developed to minimize
search processes. The first one is the Lévy search model, the second is an intermittent strategy.

Lévy walks are random walks where the jump size is distributed according an α-stable distribu-
tion. The probability to perform a jump of size l is P (l) ∝ r−(α+1), with α ∈ [0, 2]. Lévy walkers
thus perform long ballistic jumps, and reorientate between two jumps. Since the jumps can be
very long, the probability to explore twice the same region is lower than for a classical Brownian
motion. If we assume that the random walker evolves in an infinite media where several targets
are randomly distributed, we can optimize the average number of targets found per time unit. If
once reached the target reappears at the same location, α ' 1 optimizes the search process. If
once reached the target is definitely destroyed, α → 0 (ballistic motion) is the optimal strategy.
This model has led to a controversy [81, 218, 219]: Lévy walks were found in trajectories of for-
aging animals, like albatrosses, bumblebees and deers, but data artifacts and inappropriate data
processing have been pointed as a potential origin heavy tails observed in the jump distribution.
Besides, the optimization is somehow simple: if the target reappears at the same place, once the
random walker finds the first target, he can just stay in the same position and wait for the target
to reappear instead of making a small turn around. If the target does not regenerate, the straight
line optimizes the territory explored.

Another problem in the previous model is that it implicitly assumes that the random walker
can find the target as soon as he walks over it. But if the target is hidden, the velocity degrades
the perception. The search behavior of “saltatory animals”, often considered as Lévy walks,
could be explained differently: the animal explores intensively a small area, and relocates after
a while. During the relocation, the animal goes indeed too fast to find any target [126, 152].
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Intermittent models have thus been developed: the search process could be made of ballistic
relocations alternating with diffusive searching phases [22]. In such models, the time spent in
both phases can be optimized to minimize the search time. Another model has been developed
in the same spirit to model proteins searching for a site on DNA: the protein alternates 3D “fast”
diffusive relocations and 1D diffusive searchs along DNA. The 3D excursions are a way to jump
from one DNA site to another in a very short time. If we look at the linear distance along DNA,
such excursions are very fast jumps. Once again, the time spent in both phase (1D and 3D) can
be optimized to minimize the search time [26], namely to find the target faster than just diffusing
along DNA or just diffusing in 3D and hitting from time to time the DNA. The interested reader
can report to [27] for more details on those models.

3.1 Persistence as an optimal search strategy

We presented in the introduction two strategies that could optimize the search time of an hidden
target, under some conditions: Lévy walks and intermittent strategies. We will focus here on a
specific problem: what is the better search strategy of a hidden target, in a confined Euclidian
space, where the search ends when the searcher finds the target? Can we do better than Lévy
walks, often presented as the optimal strategy for such problems? We saw while analyzing lipid
granules trajectories in the second chapter that the granules seemed to exhibit an anti-persistent
behavior. We will here analyze how the persistence of a random walker influence the search
efficiency.

As presented previously, Lévy walks, which are defined as randomly reoriented ballistic excur-
sions whose length l is drawn from a power law distribution P (l) ∝ 1/l1+µ when l → ∞, with
0 < µ ≤ 2, have been suggested as potential candidates of optimal strategies [219]. In fact, Lévy
walks have been shown – mostly numerically – to optimize the search efficiency, but only in the
particular case where the targets are distributed in space according to a Poisson law, and are in
addition assumed to regenerate at the same location after a finite time. Conversely, in the case of
a destructive search where each target can be found only once the optimal strategy proposed in
[219] is not anymore of Lévy type, but reduces to a trivial ballistic motion. Given these restrictive
conditions of optimization, the potential selection by evolution of Lévy trajectories as optimal
search strategies is disputable, and in fact the field observation of Lévy trajectories for foraging
animals is still elusive and controversial [18, 81, 112]. We will thus compare persistent search
strategies to Lévy walks, in order to show that under some conditions, persistent random walkers
perform better than any Lévy walk.

In this section, we consider a minimal model of persistent search process – called persistent
random walk model hereafter – with short range memory characterized by an exponential dis-
tribution of the length of its successive ballistic excursions P (l) ∝ e−αl/lp when l → ∞, where
lp is the persistence length of the walk and α a numerical factor. We already focused on this
model in the previous chapter, where we extracted the MFPT for such model. Here, we will focus
on a different observable: we will see how the jump distribution influences the search efficiency,
measured by the GMFPT.

Our model shares some features with Lévy walks: at each step, the random walker reorientates
and performs a ballistic excursion of length l. But in contrast to Lévy walks, the jump distribution
has a finite variance and a finite mean. We calculate exactly for this kind of persistent random
walker the MFPT to a target in a bounded domain and find that it admits a non trivial minimum
as a function of lp, thus revealing an optimal search strategy which is very different from the
simple ballistic motion obtained in the case of Poisson distributed targets. In addition, we show
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Figure 3.1: Example of search trajectory for a persistent random searcher in a bounded domain.

numerically that such optimal persistent random walk strategy is more efficient than any Lévy
walk of parameter µ ∈]0, 2[. Together, our results show that the distribution of targets plays
a crucial role in the random search problem. In particular, in the biologically relevant cases of
either a single target or patterns of targets characterized by a peaked distribution of the target to
target distance [17], we find that, in marked contrast with repeated statements in the literature,
persistent random walks with exponential distribution of excursion lengths can minimize the
search time, and in that sense performs better than any Lévy walk.

Model

We first recall the model that we have defined in the previous chapter (see Figure (3.1)). We
consider a persistent random walker in discrete time and space, moving on a d–dimensional cubic
lattice L of volume V = Xd, where a single target site is located. In practice we take d = 2
or d = 3, make use of periodic boundary conditions (reflecting boundary conditions lead to
similar results) and consider the dilute regime X � 1. This geometry encompasses both cases
of a single target in a confined domain, and of regularly spaced targets in infinite space with
concentration 1/V . The latter situation can be seen as a limiting case of target distribution with
strong correlations, as opposed to the Poissonian case, and is biologically meaningful for example
in the case of repulsive interactions between targets [17]. Note that here the lattice step size
corresponds to the target size and is set to 1, which defines the unit length of the problem. At
each time step, the random searcher has a probability p1 to continue in the same direction, p2

to go backward, and p3 to choose an orthogonal direction, so that p3 = (1 − p1 − p2)/(2d − 2).
Following [85], we denote p1 = p3 + ε and p2 = p3 − δ, and set in what follows δ = 0 for the
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sake of simplicity. The probability of a ballistic excursion of l consecutive steps with unchanged
direction is then P (l) = (1− p1)pl−1

1 , and the persistence length of the walk can be defined as

lp =

∞∑

l=1

lP (l) = 1/(1− p1), (3.1)

where p1 = (1 + (2d − 1)ε)/(2d). In chapter 2, we calculated analytically the search time 〈T〉
between a given starting point and a given target, defined as previously as the MFPT. We will use
this result to get the GMFPT, defined as the MFPT to a given target averaged over all possible
starting positions and over all initial velocities of the searcher, and analyze its dependence on
the persistence length lp (or equivalently ε) and the volume Xd.

While the position process alone is non Markovian, the joint process of the position and velocity
of the searcher is Markovian. We briefly recall that we can obtain an exact backward equation
for the MFPT 〈T〉(r, ei) to the target of position rT , for a random searcher starting from r with
initial velocity ei, where B = {e1, . . . , ed} defines a basis of the lattice :

〈T〉(r, ei) = p1〈T〉(r + ei, ei) + p2〈T〉(r− ei,−ei) + p3

∑

±ej∈B,j 6=i
T(r± ej ,±ej) + 1. (3.2)

After some transformations detailed in chapter 2, we can average the MFPT over all possible
starting positions and velocities to obtain:

GMFPT =
−ε(V − 1)

1− ε +
1 + ε2

1− ε2
∑

q 6=0

1

1− h(q, ε)
(3.3)

where

h(q, ε) =
(ε− 1)2

d

∑

ej∈B

cos(q.ej)

1 + ε2 − 2ε cos(q.ej)
(3.4)

and
∑

q 6=0 denotes the sum over all possible vectors q = (2πk1/X1, . . . , 2πkd/Xd), (k1, . . . , kd) ∈
[0, X1 − 1] × . . . [0, Xd − 1] except q = 0. This exact expression of the search time for a non
Markovian searcher constitutes the central result of this section. We discuss below its physical
implications, based on two useful approximations, and see how we can minimize it.

We first consider the case where the persistence length is of the same order as the target size,
that is lp = O(1), or equivalently ε� 1. In this regime the search time reads:

GMFPT =
ε�1

A(ε)(V − 1) +
GMFPT0

D(ε)
, (3.5)

where GMFPT0 is the search time of a non persistent random walk (ε = 0) which is known
exactly [61]. A(ε) is a constant defined by

A(ε) = (Bd − 1)ε+O(ε2) (3.6)

where

Bd = lim
V→∞

2

V

∑

q 6=0

1

d

∑

ej∈B
(1− cos(2πq.ej))

2


1

d

∑

ej∈B
1− cos(2πq.ej)




2 (3.7)
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is a dimension dependent numerical constant (for example B2 ' 2.72). In turn, D(ε) = (1 +
ε)/(1 − ε) is the diffusion coefficient of the persistent random walk normalized by the diffusion
coefficient of the non persistent walk (case ε = 0) [85]. Hence, in equation (3.5), GMFPT0/D
is the search time expected for a non persistent random searcher of same normalized diffusion
coefficient D. Note that the persistence property yields a non trivial additive correction which
scales linearly with the volume, and therefore should not be neglected; this could be related to
the “residual” mean first passage time described in [208].

We next consider the case where the persistence length is much larger than the target size,
that is lp � 1, or equivalently ε→ 1. In this regime the search time reads in the case d = 2 :

GMFPT =
2(X − 1)

1− ε +
(X − 1)2

2
+ (1− ε)(X − 1)(X + 3)(X − 2)

12
+O

(
(1− ε)2

)
. (3.8)
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Figure 3.2: Search time for a persistent random walker GMFPT normalized by the search time
for a non persistent walker (GMFPT0) as a function of the rescaled persistence length,
for X = 10 (upper set of curves) and X = 100 (lower set of curves). The red line
stands for the exact result of equation (3.3), the dotted lines for the approximation
ε � 1 of equation (3.5), the dashed lines for the approximation ε → 1 of equation
(3.8).

Figure 3.2 shows the search time for a persistent random walker (GMFPT) normalized by the
search time for a non persistent walker (GMFPT0) as a function of the rescaled persistence length,
for X = 10 (upper set of curves) and X = 100 (lower set of curves). The red line stands for the
exact result of equation (3.3), the dotted lines for the approximation ε� 1 of equation (3.5), the
dashed lines for the approximation ε→ 1 of equation (3.8). The approximation of equation (3.5)
is accurate as long as lp is small. Equation (3.8) also provides a good approximation of the exact
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3.1 Persistence as an optimal search strategy

result of equation (3.3) for lp � 1. Note that the search time diverges for lp → ∞ because the
searcher can then be trapped in extremely long unsuccessful ballistic excursions.

Both asymptotics ε → 0 and ε → 1 clearly show that the search time can be minimized as
a function of ε or equivalently lp, as seen in figure 3.2. The minimum can be obtained from
the analysis of the exact expression (3.3), and reveals that the search time is minimized for
lp = l∗p ∼

X→∞
λX with λ = 0.14... in 2D. Note that the asymptotic expression (3.8) yields a

good analytical approximate of this minimum. This defines the optimal strategy for a persistent
random searcher, which is realized when the persistence length has the same order of magnitude
as the typical system size. We stress however that the numerical factor λ is non trivial and
notably small. This optimal strategy can be understood as follows. In the regime lp � X, the
random walk behaves as a regular diffusion and is therefore recurrent for d = 2. The exploration
of space is therefore redundant and yields a search time that scales in this regime as V lnV [209].
On the contrary for lp � 1 exploration is transient at the scale of lp and therefore less redundant.
As soon as lp ∼ X one therefore expects the search time to scale as V [209]. Taking lp too large
however becomes unfavorable since the searcher can be trapped in extremely long unsuccessful
ballistic excursions, so that one indeed expects an optimum in the regime lp ∼ X. This argument
suggests the following scaling of the optimal search time scaled by the non persistent case in the
case d = 2 :

GMFPTl∗p

GMFPT0
∝ 1

ln(V )
, (3.9)

which can indeed be derived from the asymptotic expression (3.8). This shows the efficiency of
the optimal persistent search strategy in the large volume limit, as compared to the non persistent
Brownian strategy.

Figure 3.3 shows the optimal search time scaled by the non persistent case as the function of
the domain volume V . The black line stands for the numerical optimization of equation (3.3),
the red line for the analytical optimization of equation (3.8), and the green dashed line for a
fit A/ ln(V ). In the inset, the black line stands for the persistence length at the minimum, l∗p,
obtained by a numerical optimization of equation (3.3), as a function of X. The dashed red line
is a linear fit of this curve (lp ' 0.14 X + 3.6). This figure shows that the scaling in 1/ ln(V ) is
indeed observed.

Note that for d = 3 a similar analysis applies. However, since in this case GMFPT0 ∝ V the
scaled optimal search time tends to a constant.

Last, we compare the efficiency of the persistent and Lévy walk strategies. More precisely we
consider a Lévy walker such that the distribution of the jump length of its successive ballistic
excursions P (l) follows a symmetric Lévy law of index µ and scale parameter c restricted to the
positive axis, defined by the Fourrier transform P̂ (k) = e−c|k|

µ
, so that P (l) ∝

l→∞
1/l1+µ. For

0 < µ ≤ 1, the persistence length is infinite, yielding in turn an infinite search time. We therefore
focus on the regime 1 < µ ≤ 2 and study numerically the dependence of the search time on both
µ and lp (which is set by c). Figure 3.4 shows the results of this numerical computation. The
search time for a Lévy walk on a 2D lattice (X = 50) is plotted. Plots with circles stand for the
search time for the following values of µ (from top to bottom): µ = 1.2, 1.4, 1.6, 1.8 and 2. The
black line stands for a persistent random walk for several values of ε. The abscissa stands for the
persistence length lp, function of c or ε.

Figure 3.4 shows that the search time can be minimized as a function of lp for all µ ∈]1, 2], and
that this optimal value decreases when µ is increased. In particular the search time for the Lévy
strategy is minimized when µ = 2, i.e. when the length of the ballistic excursions has a finite
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Figure 3.3: Optimal search time scaled by the non persistent case as the function of the domain
volume V . The black line stands for the numerical optimization of equation (3.3), the
red line for the analytical optimization of equation (3.8), and the green dashed line
for a fit A/ ln(V ). In the inset, the black line stands for the persistence length at the
minimum, l∗p, obtained by a numerical optimization of equation (3.3), as a function

of X. The dashed red line is a linear fit of this curve (lp ' 0.14 X + 3.6).

second moment so that the walk is no longer of Lévy type. As seen in Figure 3.4 the optimal
persistent random walk strategy therefore yields to a search time shorter than any Lévy walk
strategy.

This optimal persistent search strategy is in marked contrast with the simple ballistic motion
obtained in the case of Poisson distributed targets, and shows that the distribution of targets
plays a crucial role in the random search problem. In particular, in the biologically relevant
cases of either a single target or patterns of targets characterized by a peaked distribution of
the target to target distance, we find that, as opposed to repeated statements in the literature,
persistent random walks with an exponential distribution of excursion lengths can minimize the
search time, and in that sense perform better than any Lévy walk.

• The search process in a confined environment, or in a free environment with
periodic targets, can be optimized by a persistent random walker.

• An optimized persistent walker finds an hidden target faster than any Lévy walk.

Quick summary
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Figure 3.4: Numerical computation of the search time for a Lévy walk on a 2D lattice (X = 50).
Plots with circles stand for the search time for the following values of µ (from top to
bottom): µ = 1.2, 1.4, 1.6, 1.8 and 2. The black line stands for a persistent random
walk for several values of ε. The abscissa stands for the persistence length lp, function
of c or ε.

3.2 First-passage with moving target

Search problems can be a little more involved in the real life: in chemistry as well as in biology,
the searching walker could look for a moving target. In such case, knowing where the target
was initially is irrelevant. The formalism developed in the last section is not directly usable. We
will see in this section how we can adapt our formalism to compute first-passage properties for
moving targets. This case is really complex to deal with, we will thus consider a rather simple
case, namely unidimensional systems, in order to extract usable expression, and to understand
how physical parameters can optimize the search time.

Introduction

A classical example for the application of first-passage concepts with moving targets is the
diffusion-regulation of bimolecular chemical reactions upon mutual diffusional encounter of the
two molecular reactants in a three-dimensional liquid environment [215]. However, there are
many cases in which the diffusional encounter of particles in a one-dimensional (or pseudo one-
dimensional) environment becomes relevant. To name but a few examples, we mention the
diffusional sliding motion of proteins or enzymes on DNA [163, 200], the diffusion of chemi-
cal reactants in the nanoconfinement of fluidic channels [114], and the relative motion of two
aminoacids of a protein along the one-dimensional reaction coordinate [233].
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In an unbounded environment, the encounter problem of two random walkers reduces to the
consideration of the relative coordinate of the two walkers, with a diffusivity that equals the sum
of the two individual diffusion constants. Similar to this unconfined case, for the diffusion of two
particles on a finite domain with periodic boundary conditions, we may assume that one of the
two walkers is fixed, and that the other diffuses with diffusivity D′ = 2D, where D is the diffusion
constant of a single walker. The problem is therefore equivalent to the first-passage problem for
a single random walker, such that the mean first encounter time becomes

〈T〉 =
1

2D′
r(L− r), (3.10)

where r denotes the initial distance between the two random walkers and L the interval size.

If, however, we consider reflective or absorbing boundaries at the interval endpoints, the prob-
lem becomes more involved despite the apparent simplicity of this process. Indeed, we can no
longer reduce the two-walkers problem to an effective one-walker scenario, because we now need
two free parameters to characterize the system, for instance, the position of one walker and its
distance to the second walker, instead of only the mutual distance in the unbounded case. We
consider two cases: first, the probability that the random walkers meet before one of them is
removed at the absorbing interval boundaries; and then, the typical encounter time between the
two walkers when the boundaries are reflective. An analytic solution for the former problem has
recently been presented [106],

PM (x1, x2) = − 2

π
=
{

log

[
℘

(
ω(x2 + ıx1)

L
√

8

)]}
. (3.11)

Here, ω =
∫∞

1 (x(x− 1))−3/4dx ≈ 5.244, ı =
√
−1, and the initial positions of the two walkers are

x1 and x2 [106]. In equation (3.11), ℘ represents the Weierstrass elliptic function satisfying the
differential equation

℘′(x)2 = 4℘3(x)− ℘(x). (3.12)

The computation of the imaginary part of the logarithm of a complex number may become
difficult and quite time consuming numerically. We will therefore try to find a simpler expression
for this result. In the following we show that weak approximations lead to closed form expressions
for the relevant quantities in terms of trigonometric, hyperbolic, and logarithmic functions. The
accuracy of these results is corroborated by numerical simulations. We will first calculate the
encounter probability of the two walkers before being annihilated by hitting the absorbing walls.
We then proceed to the scenario of first encounter in the opposite case of reflecting boundaries,
before concluding on relevant parameters for search problems with moving targets.

Computation being already quite cumbersome, we will restrict for this section to a confined
1D problem, the searcher and the target diffusing with the same diffusion coefficient D.

3.2.1 Encounter probability

We first consider the case of two absorbing boundaries and calculate the probability for encounter
of the two walkers before either one of them becomes removed on hitting a boundary. This
probability is simply a splitting probability: we compute the probability that the random walker
hits first the moving target before hitting the absorbing wall.

To this end we rephrase the problem of two walkers in a one-dimensional domain by a single
walker in a finite two-dimensional domain of size L × L. We then seek the probability that,

136



3.2 First-passage with moving target
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Figure 3.5: Scheme of the transformation 1D → 2D for a moving target with absorbing
boundaries.

after starting from the point (x1, x2), this single random walker on the two-dimensional domain
crosses the diagonal x = y, before touching the boundaries for the two coordinates, x ∈ {0, L}
or y ∈ {0, L}. Without loss of generality, we assume that x1 > x2. Figure 3.5 shows the
transformation considered.

As the process is terminated when the two-dimensional random walker crosses the diagonal
x = y, we use the method of images to determine the associated probability. First, we compute
the probability that a two-dimensional random walker with diffusion coefficient D hits a given
wall in an L × L square, whose boundaries are absorbing, without considering the absorbing
diagonal. The propagator, namely the probability to be at position (x, y) at time t starting from
(x1, x2) at t = 0, satisfy a standard diffusion equation, here in 2D,

∂P

∂t
(x, y, t|x0, y0) = D

(
∂2

∂x2
+

∂2

∂y2

)
P (x, y, t|x0, y0) (3.13)

The solution for a square of size L with absorbing boundaries is

P�(x, y, t|x1, x2) =
4

L2

∞∑

k=1

∞∑

l=1

sin

(
kxπ

L

)
sin

(
kx1π

L

)
sin

(
lyπ

L

)
sin

(
lx2π

L

)
e−

(k2+l2)Dπ2t

L2 .

(3.14)
The probability to hit the wall at x = L is then calculated using the Fick law. The probability
to be absorbed at time t in a given position of the wall is given by the flux

φ(x, y, t) = −D
∫ −→∇P (x, y, t|x1, x2).

−→
dn (3.15)
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where
−→
dn is a vector oriented normally to the surface considered, and

−→5 the gradient operator.
The probability to be absorbed by a given wall, that we will note Probwall, is the sum of this flux
along the whole wall, integrated between t = 0 and ∞:

Probwall,�(x = L|x1, x2) =

∫ ∞

t=0

∫ L

y=0
φ(L, y, t)dydt (3.16)

After some maths detailed in Appendix 3, we obtain:

Probwall,�(x = L|x1, x2) =
4

π

∞∑

l=0

sin

(
(2l + 1)x2π

L

)

2l + 1

sinh

(
(2l + 1)x1π

L

)

sinh ((2l + 1)π)
. (3.17)

We have here a “simple” infinite sum: we sum standard functions, with only real variables, over
only one integer l. We will see that this equation allows a simpler result than the one of equation
(3.11).

This expression simplifies when we introduce the approximation sinh((2l + 1)π) ≈ exp((2l +
1)π)/2, leading to, after some computations detailed in Appendix 3:

Probwall,�(x = L|x1, x2) ' 2

π


arctan




sin
(πx2

L

)

sinh

(
π(L− x1)

L

)


− arctan




sin
(πx2

L

)

sinh

(
π(L+ x1)

L

)







(3.18)
whose maximal deviation from the exact expression (3.17) is around 0.2 %. Consistently, equation
(3.18) vanishes if x1 = 0, x2 = 0, or x2 = L. At x1 = L, equation (3.18) gives approximately 1.

To link this result with the meeting probability of two random walkers in a one-dimensional
domain with absorbing boundaries, we consider a random walker on the two-dimensional L× L
square with diffusion coefficient D, starting from (x1, x2). Since the process terminates when
x = y, the line x = y is considered absorbing. We use the image method to set the probability on
the line x = y equal to 0. Namely, if we consider a L×L domain, and if we note P�(x, y, t|x1, x2)
the probability to be on (x, y) at time t starting from (x1, x2) at t = 0 on a square with absorbing
boundaries, and P (x, y, t|x1, x2) the same quantity when the line x = y is absorbent, then

∀(x, y) ∈ [0, L]2 / x > y, P (x, y, t|x1, x2) = P�(x, y, t|x1, x2)− P�(x, y, t|x2, x1) (3.19)

Figure 3.6 illustrate this image method: if we add a particle with a positive probability, and a
fictive particle with a negative probability, we have an overall probability equal to 0 across the
diagonal x = y, and along all the square boundary. This image method gives then a propagator
P (x, y, t|x1, x2) satisfying the diffusion equation as well as the boundary conditions. Since the
solution is unique, we have the good one. One just has to take care that it only works for the
lower triangle: the negative values in the upper triangle are not physical.

We can now compute the encounter probability. The probability to touch the x = y line before
the wall y = 0 or x = L is 1 minus the probability to touch either the wall y = 0 or x = L. We
can compute those probabilities to touch a given wall Probwall using the expression found for an
absorbing square Probwall,�, and the image method:

Probwall(x = L|x1, x2) = Probwall,�(x = L|x1, x2)− Probwall,�(x = L|x2, x1) (3.20)

We thus obtain that the encounter probability for the original problem, noted her PM , is

PM (x1, x2) = 1− Probwall(x = L|x1, x2)− Probwall(y = 0|x1, x2) (3.21)
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Figure 3.6: Scheme of the image method used to obtain P (x, y, t|x1, x2) knowing P�(x, y, t|x1, x2).

Using equation (3.17), we obtain an exact expression for the encounter probability (detailed
computation are in Appendix 3)

PM (x1, x2) =
8

π



∞∑

l=0

sin

(
(2l + 1)x2π

L

)

2l + 1

sinh

(
(2l + 1)(L− x1)π

L

)

sinh ((2l + 1)π)

+
∞∑

l=0

sin

(
(2l + 1)x1π

L

)

2l + 1

sinh

(
(2l + 1)x2π

L

)

sinh ((2l + 1)π)


 (3.22)

As previously, we can approximate this expression

PM (x1, x2) ' 4

π


arctan




sin
(πx2

L

)

sinh
(πx1

L

)


− arctan




sin
(πx2

L

)

sinh

(
π(2L− x1)

L

)




+ arctan




sin
(πx1

L

)

sinh

(
π(L− x2)

L

)


− arctan




sin
(πx1

L

)

sinh

(
π(L+ x2)

L

)





(3.23)

We see that the encounter probability decreases with the distance x1 − x2, and that it decreases
faster if an absorbing wall is in the nearby. We checked both exact et approximate results with
numerical simulations.

Figure 3.7 shows the encounter probability PM of two random walkers on the interval [0, 1],
initially placed at (x1, x2), where x1 = 0.5 and x2 varies between 0 and 0.5. We compare
simulations results (black circles) with the approximate result given by equation (3.23) (red
crosses) and the exact result given by equation (3.22) (green line). The inset shows the relative

139



3 How to optimize random search processes?

difference between the approximate and the exact results. The relative error is of the same order
of magnitude for all x2 (below 0.2 %).
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Figure 3.7: Encounter probability of two random walkers on the interval [0, 1], starting in (x1, x2),
where x1 = 0.5, and x2 ∈ [0, 0.5]. Black circles stand for simulations results, red
crosses for the approximate expression of equation (3.23) and the green line for the
exact result given by equation (3.22). (Inset) Relative difference between the approx-
imate and the exact results in %. The relative error is of the same order of magnitude
for all x2 (below 0.2 %).

Figure 3.8 shows the encounter probability PM of two random walkers initially placed at
(x1, x2), where now x1 = 0.9 and x2 varies between 0 and 0.9. We still compare the simulations
results (black circles) with the approximate result given by equation (3.23) (red crosses) and the
exact result, equation (3.22) (green line). The inset shows the relative difference between the
approximate and the exact results (red line). The relative error decreases as x2 grows, but is
always below 0.2 %.

Figures 3.7 and 3.8 show excellent agreement between the exact and the approximate formula
of equations (3.22) and (3.23), as well as with numerical simulations of the encounter process. The
approximate formula provided by equation (3.23) obviously provides an excellent approximation.
Its numerical evaluation is significantly quicker than the exact result involving the Weierstrass
elliptic function with complex argument. Moreover, the accuracy is sufficient for most purposes:
the relative error is always smaller than 0.2 %. The approximate result is far easier to han-
dle analytically than the exact expression (3.11) proposed in [106], and the dependence on the
geometrical parameters is much more explicit.
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Figure 3.8: Encounter probability of two random walkers on the interval [0, 1], starting in (x1, x2),
where x1 = 0.9, and x2 ∈ [0, 0.9]. Black circles stand for simulations results, red
crosses for the approximate expression of equation (3.23) and the green line for the
exact result given by equation (3.22). (Inset) Relative difference between the approx-
imate and the exact results in %. The relative error decreases as x2 grows, and stays
below 0.2 %.

3.2.2 First encounter time

We now consider the analogous problem with reflective boundaries at the endpoints of the
one-dimensional interval. We determine the mean first encounter time, namely, the average
of the first time when the two random walkers encounter each other. To compute this time,
we again transform the problem of two random walkers in the one-dimensional domain into a
two-dimensional single walker problem. This two-dimensional walker moves on one half of the
square domain L × L. In this half-square, the diagonal is absorbing while the two equilateral
edges are reflecting. As shown in figure 3.9, we transform by symmetry this problem to the
first exit time of a

√
2L ×

√
2L square, where, if we assume x1 > x2, the initial coordinates are

(x0, y0) = ((x1 − x2)/
√

2, (x1 + x2)/
√

2).
We start with the propagator on the

√
2L ×

√
2L square, with absorbing boundaries. As

previously, starting from (x0, y0), we have

P (x, y, t|x0, y0) =
2

L2

∞∑

k=1

∞∑

l=1

sin

(
kxπ√

2L

)
sin

(
kx0π√

2L

)
sin

(
lyπ√
2L

)
sin

(
ly0π√

2L

)
e−

(k2+l2)Dπ2t

2L2 .

To obtain the mean first exit time of this square, we will first compute the survival probability,
S (t|x0, y0), namely the probability to still be in the square at time t, starting from (x0, y0). This
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Figure 3.9: Scheme of the symmetry used to simplify the first encounter problem.

survival probability is simply the integrate over all square of the propagator

S (t|x0, y0) =

∫ √2L

0

∫ √2L

0
P (x, y, t|x0, y0)dxdy

=
16

π2

∞∑

k=0

∞∑

l=0

sin
(

(2k+1)x0π√
2L

)

2k + 1

sin
(

(2l+1)y0π√
2L

)

2l + 1
e−

((2k+1)2+(2l+1)2)Dπ2t

2L2 .

We then deduce the mean first encounter time 〈T〉(x0, y0) as function of the initial positions x0

and y0 (computation details are in Appendix 3):

〈T〉(x0, y0) =

∫ ∞

0
S (t|x0, y0)dt

=
x0

2D

(√
2L− x0

)

− 8L2

Dπ3

∞∑

k=0

sin
(

(2k+1)x0π√
2L

)

(2k + 1)3

sinh
(

(2k+1)y0π√
2L

)
+ sinh

(
(2k+1)(

√
2L−y0)π√

2L

)

sinh ((2k + 1)π)
(3.24)

Figure 3.10 shows the mean first encounter time 〈T〉 between two random walkers initially
placed at (x1, x2) on a one-dimensional domain, where x1 = 0.5, and x2 varies between 0 and
0.5. We compare the simulations results (black circles) with the exact result, equation (3.24) (red
line). The exact result fits perfectly with numerical simulations.

In equation (3.24) the first term is the mean first exit time of a one-dimensional random walker
confined to a domain of size

√
2L, with diffusion coefficient D. The second term is the correction

in a square domain. We approximate this second term in some limits. For instance, when the
two particles are initially near a corner of the one-dimensional domain, i.e., x2 + x1 � L, such
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Figure 3.10: Mean first encounter time 〈T〉 between two random walkers initially placed at
(x1, x2), where x1 = 0.5 and x2 ∈ [0, 0.5]. The black circles stand for simulation
results, the red line for the exact result of equation (3.24).
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that y0/L� 1 and x0/L� 1, we have

∞∑

k=0

sin
(

(2k+1)x0π√
2L

)

(2k + 1)3

sinh
(

(2k+1)y0π√
2L

)
+ sinh

(
(2k+1)(

√
2L−y0)π√

2L

)

sinh ((2k + 1)π)

≈
∞∑

k=0

sin
(

(2k+1)x0π√
2L

)

(2k + 1)3
exp

(
−(2k + 1)y0π√

2L

)
. (3.25)

This expression can be simplified in the limit x0/L� 1, using

∞∑

k=1

sin (kx)

k3
exp (−ky) = xLi2(exp(−y)) +O(x3), (3.26)

where Li2 is the dilogarithm defined as

Li2(z) =
∞∑

k=0

zk

k2
. (3.27)

The series expansion of Li2(z) around 1− is

Li2(z) =
π2

6
+ (1− ln(1− z))(z − 1) +O

(
(z − 1)2

)
(3.28)

We thus obtain

∞∑

k=0

sin
(

(2k+1)x0π√
2L

)

(2k + 1)3

sinh
(

(2k+1)y0π√
2L

)
+ sinh

(
(2k+1)(

√
2L−y0)π√

2L

)

sinh ((2k + 1)π)

' x0π

2
√

2L

(
π2

4
+

(
ln

(
y0π√

2L

)
− 1− ln(2)

)
y0π√

2L

)
. (3.29)

Thus, when both particles are initially close to an endpoint of the interval, we find

〈T〉(x0, y0) ' 2x0y0

Dπ

(
1 + ln(2)− ln

(
y0π√

2L

))
− x2

0

2D
. (3.30)

A similar approach leads to the same result when
√

2L− y0 � L and x0/L� 1, if we replace y0

by
√

2L− y0. In the original variables we rewrite the previous expression as follows

〈T〉(x1, x2) ' x2
1 − x2

2

Dπ

(
1 + ln(2)− ln

(
(x1 + x2)π

2L

))
− (x1 − x2)2

4D
. (3.31)

Figure 3.11 shows the mean first encounter time 〈T〉 between two random walkers initially
placed at (x1, x2) on a one-dimensional domain, where x1 = 0.95 and x2 varies between 0 and
0.95. We compare the simulation results (black circles) with the exact result given by equation
(3.24) (red line) and the approximation of equation (3.31) (green dashed line). The inset shows a
zoom into the area around 0.95, where the approximation is valid (

√
2L−y0 � L and x0/L� 1).

We see that in the approximation validity area, approximation of equation (3.31) demonstrates
excellent agreement with the simulations. This approximation gives a very good shape of the
exact result, even if the precision decreases as the initial distance between the two random walkers
grows.
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Figure 3.11: Mean first encounter time between two random walkers initially placed at (x1, x2),
where x1 = 0.95 and x2 ∈ [0, 0.95]. The black circles stand for simulation results,
the red line for the exact result of equation (3.24) and the dashed green line for the
approximation of equation (3.31). (Inset) Zoom around the approximation validity
area (x1 − x2 � 1), with the same data set.
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Figure 3.12: First encounter time distribution FET of two random walkers on a finite 1D domain,
initially at (x1, x2), where x1 = 0 and x2 = 0.5, as a function of time t. Black circles
stand for simulation results, red line for the leading exponential term of the exact
result (3.32), and the dashed green line for the ten first leading terms of the same
equation.

Finally, as a by-product, we can calculate the associated first passage density FET(x0, y0, t).
This first passage density is in fact the first exit density of a square of size L

√
2×L

√
2. It directly

follows from the survival probability S (t|x0, y0) in equation (3.24), through

FET(x0, y0, t) = −∂S (t|x0, y0)

∂t

=
8D

L2

∞∑

k=0

∞∑

l=0

(
2k + 1

2l + 1
+

2l + 1

2k + 1

)
sin

(
(2k + 1)x0π

L
√

2

)
sin

(
(2l + 1)y0π

L
√

2

)

× exp

(
−((2k + 1)2 + (2l + 1)2)Dπ2t

2L2

)
. (3.32)

Figure 3.12 shows the first encounter time distribution FET of two random walkers on a finite
one-dimensional domain, initially positioned at (x1, x2), where x1 = 0 and x2 = 0.5, as a function
of time t. We compare the simulations results (black circles) with the leading exponential of the
exact result given by equation (3.32) (red line) and the first ten terms of the same expression
(dashed green line).

Figure 3.12 shows that only the first few terms of this infinite sum are sufficient to reproduce
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very accurately the simulations results. We observe that the leading term is given by

FET(x0, y0, t) ∼
16D

L2
sin

(
x0π√

2L

)
sin

(
y0π√

2L

)
exp

(
−Dπ

2t

L2

)
. (3.33)

Conclusions

In term of search processes, we have here obtained analytically the impact of confinement on
a search problem where both the searcher and the target move. We obtained a simple for-
mula for the encounter probability of two random walkers on a finite one-dimensional domain
with absorbing boundary conditions at the interval endpoints. The resulting infinite sum can
be approximated by analytical functions to high accuracy. The obtained result is quite elegant
mathematically, and facilitates significantly the analytical and numerical handling of this prob-
lem, compared to the rigorous mathematical result. For the first encounter time of two random
walkers in the presence of reflective boundary conditions, analogous results are presented and
approximations are obtained.

3.3 Search efficiency and network topology

We will now focus more specifically on random walks on networks, and try to identify the rel-
evant parameters that influence the search efficiency. The networks are used here as discrete
description of continuous random walk, either on Euclidian space (for Euclidian lattice) or on
fractals (for scale-invariant networks). Random walks on networks are somehow simpler to deal
with than continuous diffusion, when looking for first-passage observables. We will extensively
use the pseudo-Green functions formalism introduced in the first chapter, as well as the pseudo-
Green functions approximation. Networks allow to introduce some parameters that have no clear
equivalent in continuous diffusion, such as the target connectivity, or the intensity of a link.

We will in the first sub-section study the Global Mean First Passage Time (GMFPT) as
a measure of the search efficiency. We already saw with persistent random walkers that this
observable could quantify, under some assumptions, the time needed to hit for the first time
a hidden target. We will now analyze the influence of network topology on this GMFPT, and
exhibit general boundaries on this observable. We will in particular see that this GMFPT is
somehow proportional to 1/Pstat(T ), the stationary probability being proportional to the target
connectivity.

The second sub-section will explore this dependence on the target connectivity directly on the
MFPT, namely when the target position is known. To do so, we will have to assume a scaling form
of the propagator that depends on the target connectivity, for a general scale invariant process.
We will then extend the result of [66] presented in the first chapter. Once again, compact and
non compact processes will behave completely differently.

The last sub-section will focus on the impact of a small network modification on the search
time. If we want to minimize the search time of a random walker on a given network, knowing
the initial and the target localization, we can modify directly the network topology. We will
investigate the case where a link is removed, and where a link is added.

3.3.1 General bounds of GMFPT

If the target position is unknown, or symmetrically if the starting position is unknown, we can
estimate the average time to reach for the first time the target by averaging the MFPT over
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all possible starting points. In this first section, we will see how the network and the target
characteristics influence the search time for a nearest-neighbor random walk.

If the walker starts at a random position, what can we say on the time necessary to find a
hidden target while performing a nearest neighbor random walk? How the environment, for
instance the space topology, does influence this search time? Many authors focused [3, 13, 78] on
so-called “complex networks”, in order to extract a link between the network topology and the
averaged MFPT (we will define the average we use later). Some topological properties, introduced
in chapter 1, have been found to be relevant: small-world property [13, 225], scale free property
[3, 4], or fractal scalings [204]. For scale-invariant environments, we already presented in the
first chapter how to link fractal dimensions df and dw with mean first passage time from a given
starting point toward a given target [66].

Following the seminal work of Montroll [142], many authors have focused on the MFPT aver-
aged over the starting point of the walker [1, 2, 38, 103, 124, 206, 236, 238, 240], sometimes called
the global mean first-passage time (GMFPT). The goal was to estimate the volume dependence
of this GMFPT: if we double the available volume, how does the GMFPT evolve? The less it
grows, the more efficient the search strategy is.

In 2009, a sub-linear dependence on the size N of the network of the GMFPT to the most
connected node of a specific network was shown [238], and was interpreted as favorable for an
efficient trapping. For such network, the search time through a simple nearest neighbor random
walk is lower than expected: the network topology has been interpreted as allowing an efficient
search process. It is not the random walk in itself that is changed, but the network construction
that increases search efficiency, compared to a simple Euclidian lattice. This finding, in strong
contrast with previously known results in the case of regular [142] or fractals [1, 38, 103, 124]
lattices, has motivated an increasing number of works [2, 236, 239, 240, 242] that have tried to
find examples of networks with high trapping efficiency, namely displaying weaker and weaker
dependence on N of the GMFPT. Relying on these specific examples, the heterogeneity, and
more precisely the scale-free property was put forward as advantageous [236, 238], whereas the
fractal property was suggested to be unfavorable [240].

In this sub-section, we propose a general framework, applicable to a broad class of networks,
which deciphers the dependence of the search efficiency on the network topology. More specifi-
cally, we will see how the GMFPT depends on the network size N , and how we can explain the
recent results obtained on specific examples [2, 236, 238, 239, 240, 242]. We will first show on
the example of a new set of networks that the GMFPT to the most connected node can scale as
N θ, with θ arbitrarily close to 0 despite the fractal property of the network. We will see how this
can be linked with the linear volume dependence of the MFPT previously stated [66]. We will
then present an analytical approach which yields to

(i) rigorous bounds on the N dependence of the GMFPT, and

(ii) a simple criterion under which this bound is reached, which in particular provides a condi-
tion for a sub-linear scaling with N , which is independent of the scale-free, small-world, or
fractal nature of the network.

Last, we show that a sub-linear scaling is never representative of the network, in the sense that
the GMFPT averaged over the target site always scales faster than N .
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Definition of the problem and notations.

We consider a set of graphs {Gg}g∈N where Ng denotes the number of sites of the graph Gg at
generation g, such that Ng →∞ when g →∞.

We consider a discrete time random walker on Gg. We assume that the transition probabilities
ωij from site i to site j defining the walk are such that an equilibrium distribution Pstat satisfying
detailed balance exists. We further assume that:

supX∈GgPstat(X) →
g→∞

0. (3.34)

We denote by FPTS→T (T = n) the probability that the walker reaches the target site T starting
from site S for the first time after T = n steps, and write 〈T〉S→T for the MFPT from S to
T . Note that this first average 〈·〉 is taken over the realizations of the random walk. Taking the
average of the MFPT over the starting point, we define the GMFPT according to:

GMFPT(T ) = 〈TS→T 〉S 6=T =

∑

S 6=T
Pstat(S)〈T〉S→T

1− Pstat(T )
. (3.35)

Note that this quantity depends on the target point T . Here the space average . . . is taken over the
equilibrium distribution Pstat, and slightly differs from the definition used in [241, 236, 238, 240, 2]
where the average is taken over the flat distribution. It can be checked numerically on networks
recently studied in the literature that both definitions lead to the same scaling with Ng.

This GMFPT somehow measures the average time to reach the target if the target appears
suddenly on the network, the random walker being distributed according to the stationary proba-
bility. This could be the case for an animal looking for food: the food appears at a given moment,
and the animals are already scattered everywhere looking for food when this food (fruits, prey,
. . . ) appears. We can thus assume that the animal has already reached the stationary distribu-
tion. A small GMFPT will be the sign of an efficient trapping. Since the search process is here
a nearest neighbor random walk, only the network topology will be studied. To compare two
different networks, one has to compare the GMFPT for a given size. If we focus on the large
volume behavior, we will consider that the least this GMFPT depends on N , the more efficient
the search process on this network is.

Efficient trapping on a fractal network.

We first exhibit a set of fractal networks which extends the so-called (u, u)-flowers [177] intro-
duced in the first chapter, and whose GMFPT to the most connected node scales as N θ, with
θ arbitrarily close to 0. Note that a similar scaling has been reported in reference [119] for an
example of non fractal network. The first generation of graph consists in two nodes connected
by one link; then, at each iteration, every link is broken and replaced by k paths of u ≥ 2 links.
Figure 3.13 shows the example of the first three generations of this network for k = 3 and u = 2.
As for the (u, v)–flowers, this network is fractal with a fractal dimension df = ln(ku)/ ln(u) since
the diameter of the network at generation g is Lg ∼ ug while the number of sites is Ng ∼ (ku)g

(the usual (u, u)–flowers in reference [177] correspond to the special case k = 2).

Taking as target one of the initial nodes, it is easily seen that the GMFPT determination
becomes a simple 1D problem since all the points n(r) at the same distance r of the target
are equivalent by symmetry, and thus lead all to the same 〈T〉(r). Noting next that ∀r ∈
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Figure 3.13: New fractal network: case of k = 3, u = 2 between generations g = 1 and g = 3 (left
to right).

[1, ug − 1], Pstat(r)n(r) = 2Pstat(T ) and Pstat(u
g)n(ug) = Pstat(T ), and using the classical 1D

expression 〈T〉 = r(2ug − r) [168], we obtain the following exact expression:

GMFPT(T ) =

∑
r Pstat(r)n(r)〈T〉(r)

1− Pstat(T )
=
ug (2ug + 1)

3
∝ N2 ln(u)/ ln(ku). (3.36)

In other words, for k large enough, a random walk is arbitrarily efficient on this network to find
a target place in one of the original node, despite its fractal property. Namely, we can obtain a
network where the search time is independent of the network size if we place the target in the
right position.

Lower bound of the GMFPT.

In order to gain understanding in the real parameters relevant to the scaling of the GMFPT
with the network size N , we now derive a general lower bound for the GMFPT. This derivation
follows from the generalization of the Kac formula [6, 64] which we briefly recall here.

We start from the discrete backward equation satisfied by the first passage density FPTS→T
for n ≥ 2 (see [168]):

FPTS→T (n) =
∑

j 6=T
ωSj FPTj→T (n− 1), (3.37)

which is completed by FPTS→T (n = 1) = ωST . Laplace transforming and averaging this equation
over S (with a weight Pstat(S) as in equation (3.35)) yields the generalized Kac formula

Pstat(T )

1− Pstat(T )

(
F̂PTT→T (s)− e−s

)
= (e−s − 1)〈F̂PTS→T (s)〉S 6=T , (3.38)

where

F̂PTS→T (s) ≡
∞∑

n=1

e−snFPTS→T (n). (3.39)
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This very general equation, derived in a similar form in [64], relates the distribution of the
first return time to a site T to the distribution of the global first-passage time to T . Expanding
equation (3.38) to first order in s yields the classical Kac formula 〈T〉T→T = 1/Pstat(T ) [6, 64].
In turn, the second order in s gives :

GMFPT(T ) =
1

2

Pstat(T )〈T2〉T→T − 1

1− Pstat(T )
. (3.40)

Using next 〈T2〉T→T ≥ 〈T〉2T→T and the classical Kac formula, the above exact expression gives
a lower bound for the GMFPT:

GMFPT(T ) ≥ 1

2Pstat(T )
. (3.41)

Note that this lower bound is in close analogy with the one obtained in [21] in the context of
continuous space Pearson random walks in confinement.

We now discuss under which conditions this lower bound is reached. A strict equality requires
the very restrictive condition that the variance of TT→T is zero. More generally we can discuss
under which conditions the right and the left hand side of equation (3.41) share the same scaling
in the large size limit. To do so, we consider a sequence of target sites {Tg ∈ Gg}g∈N, which can
be for instance hubs of the networks at each generation as in [2, 236, 238]. Using equation (3.41),
and recalling that we have assumed Pstat(Tg) → 0 for g → ∞, we define the minimal scaling of
the GMFPT for g →∞ by

GMFPT(Tg) = O(1/Peq(Tg)). (3.42)

Equation (3.40) then shows straightforwardly that this minimal scaling is reached as soon as the
reduced variance of the first return time is finite in the large size limit, namely:

〈T2〉T→T − 〈T〉2T→T
〈T〉2T→T

= O(1). (3.43)

We now show that this condition for a minimal scaling with the network size Ng is actually
equivalent to the transience property of the random walk at the target site Tg in the large size
limit. We first derive an alternative exact expression for the GMFPT. We will use the pseudo-
Green functions, as introduced previously in chapter 1:

HS→T =

∞∑

n=1

(P (T, n|S)− Pstat(T )) , (3.44)

where P (T, n|S) is the propagator, namely the probability for the walker to be at T after n steps
starting from S.

As shown in the first chapter:

〈T〉S→T =
1

Pstat(T )
(HT→T −HS→T ) . (3.45)

Making use of the relation Pstat(S)HS→T = Pstat(T )HT→S , which follows from detailed balance
(see also [148]), we obtain a second exact expression for the GMFPT:

GMFPT(T ) =
HT→T

Pstat(T ) (1− Pstat(T ))
. (3.46)
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This equation provides an alternative condition under which the minimal scaling is realized,
given by HT→T = O(1) in the large g limit. Using the definitions of recurrence and compacity,
introduced in chapter 1, we can link this condition with the recurrence of the random walk.
From the HT→T definition of equation (3.44), the condition HT→T = O(1) states that in the
limit g →∞, a random walker returns on average only a finite number of times to Tg [46], which
is equivalent to the fact that the random walk is transient at site Tg in this limit [168]. Conversely,
equation (3.46) indicates that if the walk is recurrent at Tg for g →∞, that is if HTg→Tg diverges
for g →∞, then GMFPT(Tg) grows faster than 1/Pstat(Tg).

The lower bound (3.41) and minimal scaling (3.42) for the GMFPT obtained above call for
comments.

(i) First, our analysis puts forward a very general criterion to have a minimal scaling of the
GMFPT with the network size, namely the type (transient or recurrent) [46] of the random
walk at the target site. We stress that this criterion is independent of the scale-free, small
world or fractal properties of the network. Note that for a generic set of graphs {Gg}g∈N,
the type of the random walk for g →∞ is a site dependent property [38, 46, 177].

(ii) Second, the minimal scaling (3.42) is fully determined by the equilibrium distribution at
the target site, which is generally much easier to obtain than dynamical quantities, and
which crucially depends on the connectivity of the target site. Let us take the classical
example of a neares neighbor random walk, for which ωij = 1/ki if i and j are neighbors
and else 0, where ki denotes the connectivity of site i. The minimal scaling of the GMFPT
to a target Tg then reads Ng〈k〉/kTg , where 〈k〉 is the connectivity averaged over all sites.

(iii) Note finally that in the case of a recurrent random walk at the target the minimal scaling is
not realized, but the scaling of the GMFPT can however be sub-linear if the growth of the
connectivity at the target is fast enough. In this case the scaling of the GMFPT depends
on the scaling of HTg→Tg , which generally depends both on the network and on the target
Tg.

It is noteworthy that our analysis provides a comprehensive view of recent papers highlighting
a sub-linear dependence of the GMFPT to a hub on different examples of networks.

(i) In the example of deterministic scale-free graph proposed in [2], the minimal scaling that
we predict in equation (3.42) is indeed realized and the transience of the random walk at
the target site (as defined above) is shown in the limit of large size (since the probability
to come back at the hub in a finite time is null, as can be seen in equation (36) from [2] in
the large size limit), in agreement with our approach.

(ii) The authors of [236, 238] have studied different examples of small world scale-free networks
(Apollonian networks [236] and (u, v) flowers [238]) where the GMFPT to the main hub
displays a sub-linear scaling. In these examples the scaling of GMFPT(Tg) is strictly faster
than our predicted minimal scaling 1/Pstat(Tg) (and satisfies the upper bound given in
(3.52)). Our criterion therefore implies that random walks on such structures are recurrent
at the target site in the large size limit.

Bounds on the averaged GMFPT.

As demonstrated previously, the GMFPT highly depends on the target site, especially in the case
of scale-free networks where the connectivity can be very heterogeneous. Therefore the GMFPT
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to a specific target site cannot be taken as a general characteristic of the network. Actually, as
we proceed to show the GMFPT averaged over target sites, defined by

〈GMFPT〉 =
∑

T

Pstat(T )GMFPT(T ), (3.47)

has scaling properties with Ng which can widely differ from the case of a fixed target site studied
above. The inequality (3.41) gives straightforwardly the following lower bound for 〈GMFPT〉
(see also [6]):

〈GMFPT〉 ≥ Ng

2
. (3.48)

Hence, the averaged GMFPT always scales faster than Ng, and sub-linear scalings discussed
above are point-wise properties which are never representative of the network. This general
inequality sheds some light on the result obtained by Bollt and ben Avraham [38] in the case
of a specific network ((1,2) flowers), where the GMFPT averaged over a fraction of nodes of the
network scales sub-linearly with Ng, while the GMFPT averaged over all the nodes is linear with
Ng.

Interestingly, we can also propose an upper bound for 〈GMFPT〉 following [6]. First we define
(see also [12, 38]) the mean commute time as:

τij = 〈T〉i→j + 〈T〉j→i. (3.49)

The quantity τij can actually be bounded using the electrical analogy. Let us assign a unitary
resistance to each link of the graph. Then it can be shown (see [57]) that the following general
relation holds

τij = Ng〈k〉Rij , (3.50)

where Rij is the effective electrical resistance of the network between sites i and j. It is then
straightforward to obtain that Rij ≤ dij where dij is the distance between i and j. Indeed, dij is
the resistance of a path of length dij between i and j, and any parallel paths can only lower the
resistance. We therefore finally obtain:

Ng

2
≤ 〈GMFPT〉 ≤ Ng〈k〉〈d〉

2
, (3.51)

where 〈d〉 is the weighted average over pairs of the point to point distance dij .
Importantly, this shows that the scaling of 〈GMFPT〉 is much more constrained than the scaling

of the GMFPT for a fixed target. This is particularly striking in the case of small world networks
for which 〈d〉 ∝ ln(Ng): hence in the case of small-world networks with finite 〈k〉, widespread
in nature [13], this shows that 〈GMFPT〉 always scales linearly with Ng (up to log corrections).
Note also that the bounds of equation (3.51) are compatible with the linear scaling of 〈GMFPT〉
with Ng reported in the case of Apollonian networks [110] and (1,2) flowers [38]. The conditions
for which the scaling of each of the bounds in equation (3.51) is realized can also be discussed.
As for the scaling of the lower bound, a sufficient condition for its realization is that for any
sequence of targets {Tg ∈ Gg}g∈N, the random walk is transient at Tg in the limit g →∞. Note
however that this condition is not necessary, and the bound can be reached for networks having
mixed type properties, as in the case of (1,2) flowers already mentioned [38]. As for the scaling of
the upper bound, first notice that for any tree graph, Rij is exactly the distance dij as discussed
above using the electrical analogy. We conclude that for any tree the scaling of the upper bound
is realized. In particular we find that 〈GMFPT〉 ∼ Ng ln(Ng) for any small world tree (see [237]
for an example).

Additional comments are in order.
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(i) First, equation (3.51) provides as a by-product an upper bound for the GMFPT itself,
leading finally to:

1

2Pstat(T )
≤ GMFPT(T ) ≤ Ng〈k〉〈d〉

2Pstat(T )
. (3.52)

(ii) Second, this upper bound for GMFPT inductively gives an upper bound of the trapping
time in the case of a moving target using the Pascal principle [143].

(iii) Last, we underline that in the case of fractal networks, characterized by a fractal dimension
df and a walk dimension dw [204] an explicit scaling of 〈GMFPT〉 can be obtained (see
[1, 38]). Indeed, using for instance the asymptotics of the MFPT between points separated
by a distance d [66] and averaging over d, one gets the following scaling

〈GMFPT〉 ∼





Ng if dw < df
Ng ln(Ng) if dw = df

N
dw/df
g if dw > df

, (3.53)

which depends on the type of the random walk (transient if df > dw, recurrent else).

Conclusion.

We have presented a general framework, applicable to a broad class of networks, which provides
rigorous bounds on the size dependence of the GMFPT to a target site. We have shown that
the GMFPT has the same scaling in the large size limit as this lower bound under the condition
that the random walk is transient at the target site. This shows that the type of the random
walk (transient or recurrent) is a crucial criterion to determine the scaling of the GMFPT,
widely independent of its scale free, small world, or fractal properties. Those results reconciles
recent works on GMFPT for random walks on various network examples. Additionally, we have
demonstrated that the scaling of the GMFPT to a specific target is not a representative property
of the network, since the target averaged GMFPT satisfies much more restrictive bounds, which
in particular forbid any sub-linear scaling with the network size.

We have presented a measure of the search efficiency, the GMFPT, and made explicit
the target and the network dependence of this GMFPT, with analytical boundaries on
the volume dependence. We have explicit expressions for fractal networks, and exact
scalings for trees and for transient target nodes.

Quick summary

3.3.2 Target connectivity

A striking topological feature of many real-world complex networks is the wide distribution of the
number k of links attached to a node – the connectivity – , as exemplified by the class of scale-free
networks introduced in chapter 1, such as internet [86], biological networks [217], stock markets
[117] or urban traffic [230]. For all those networks, the connectivity is distributed according
to a power law. The impact of connectivity on transport properties has been put forward in
[12, 119, 132, 209], where it was found in different examples that transport towards a target node
can be favored by a high connectivity of the target.

154



3.3 Search efficiency and network topology

We studied in the previous sub-section the impact of topological properties of a network on its
transport properties, with a particular focus on complex networks[12, 38, 118, 148, 178]. We saw
the target influence on the global mean first passage time (GMFPT) in equation (3.46). We will
here look at the mean first-passage time (MFPT) [168] to a target node. This quantity is also an
indicator of transport efficiency [1, 2, 93, 103, 110, 124, 238, 242]: after averaging over all couples
at a given distance, the MFPT gives the average time to find a target located at a distance r.
The GMFPT was global and target dependent, we will here go a step further in accuracy (and in
complexity), by taking into account both the target connectivity and the source-target distance.

The dependence of the MFPT on geometric properties, such as the volume of the network and
the source to target distance, is already known [29, 66, 68, 151], as presented in chapter 1: the
starting position of the random walker plays a crucial role in the target search problem. We
thus have two effects: a high connectivity and a small distance seem to minimize the MFPT.
We will try to quantify the relative importance of distance and connectivity effects on transport
properties on complex networks, which is equivalent to answer the following question: is it faster
for a random walker to find either a close, or a highly connected target?

We will here propose a general framework, applicable to a broad class of networks, which
deciphers the dependence of the MFPT both on the target connectivity and on the source to target
distance, and provides a global understanding of recent results obtained on specific examples. Our
approach highlights two strongly different behaviors depending on the so-called type – compact
or non compact – of the random walk. In the case of non compact exploration, the MFPT is
found to scale linearly with the inverse connectivity of the target, and to be widely independent
of the starting point. On the contrary, in the compact case the MFPT is controlled by the source
to target distance, and we find that unexpectedly the target connectivity is irrelevant for remote
targets.

This analytical approach, validated numerically on various examples of networks, can be ex-
tended to other relevant first-passage observables such as splitting probabilities or occupations
times [68].

Model and notations

We are interested in the MFPT denoted T(rT |rS) of a discrete Markovian random walker to a
target rT , starting from a source point rS , and evolving in a network of N sites. We denote
by k(r) the connectivity (number of nearest neighbors) of site r, and by 〈k〉 its average over
all sites with a flat measure. The corresponding degree distribution is denoted by p(k). We
assume that at each time step n, the walker, at site r, jumps to one of the neighboring site with
probability 1/k(r). Let P (r, n|r′) be the propagator, as defined in chapter 1: the propagator is
the probability that the walker is at r after n steps, starting from r′. The stationary probability
distribution is then given by Pstat(r) = k(r)/N〈k〉, and it can be shown that detailed balance
yields the following symmetry relation :

P (r, n|r′)Pstat(r
′) = P (r′, n|r)Pstat(r), (3.54)

which will prove to be useful.
We consider networks with only short range degree correlations, namely such that 〈k(r)k(r′)〉 =
〈k〉2 for |r − r′| larger than a cut-off distance R, where the average is taken over all pairs r, r′

with ‖r − r′‖ fixed. ‖r − r′‖ is here the chemical distance between r and r′ (number of links
in the shortest path linking r and r′). This hypothesis is verified in particular by networks
whose Pearson assortativity coefficient [147] is 0, such as Erdös-Rényi networks. It is however
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3 How to optimize random search processes?

less restrictive since local degree correlations can exist, and many networks actually comply with
this assumption, as exemplified below. The hypothesis of short range degree correlations implies
in particular that the degree distribution in a shell of radius r > R is identical to the degree
distribution p(k) over the whole network, so that

∑

r′\|r−r′|=r
Pstat(r

′) ' Nr(r)/N (3.55)

where Nr(r) is the number of sites r′ such that |r − r′| = r. We then introduce the weighted
average at distance r of a function f of two space variables defined by

{f(r, r′)}r′ =
N

Nr(r)

∑

r′/|r−r′|=r
f(r, r′)Pstat(r

′), (3.56)

and the standard flat average

〈f(r, r′)〉r′ =
1

Nr(r)

∑

r′/|r−r′|=r
f(r, r′). (3.57)

Scaling form of the propagator for scale invariant processes

We focus hereafter on transport processes having scale invariant properties, in order to use the
approximation of chapter 1 for the infinite propagator. In this case, we will assume that the
propagator in the infinite network size limit P0, after averaging over points at a distance r from
the starting point, satisfies the standard scaling for |r− r′| > R:

〈P∞(r, n|r′)〉r ∝ n−df/dwΠ
( r

n1/dw

)
, (3.58)

where, as usual, the fractal dimension df characterizes the accessible volume Vr ∝ rdf within a
sphere of radius r, and the walk dimension dw characterizes the distance r ∝ n1/dw covered by a
random walker in n steps. Π(u) is here a scaling function: for instance Π(u) = exp(−udw) for a
classical fractal medium [154].

A first central result of this section is to show numerically that the dependence of the propagator
on the connectivity of the target site can be actually made explicit and reads

〈P∞(r, n|r′)〉r,k ∝ kn−df/dwΠ
( r

n1/dw

)
, (3.59)

where the average is taken over sites r at a distance r from r′ with fixed connectivity k.

This scaling form is an assumption based on several observations:

i) the k dependence hypothesized in equation (3.59) satisfies the symmetry relation of equation
(3.54);

ii) an average of equation (3.59) over k gives back the scaling of equation (3.58);

iii) an average over all possible starting points should gives a GMFPT scaling like k ∝ 1/Pstat(T ).
The k dependence of H(rT |rT ) is not trivial, but using equation (3.46), one could expect
indeed a GMFPT growing like k.
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3.3 Search efficiency and network topology

We will see that this scaling leads in fact to a finer k dependence for the GMFPT that the one
of equation (3.46).

Numerical simulations on various examples of scale invariant networks, such as percolation
clusters and (u, v)–flowers (introduced in chapter 1) validate this assumption, as shown in Figures
3.14 and 3.15.

The upper plot of Figure 3.14 shows a rescaled propagator for a random walker diffusing on a
supercritical 3D percolation networks (p = 0.8) of different sizes. We plot:

tdf/dw
〈P (r, t|r′)〉r,k

k
= f

( r

n1/dw

)
, (3.60)

Following equation (3.59), we expect to obtain the same plot Π(u) independently of the target
connectivity. In Figure 3.14, we plot this rescaled propagator for different k(rT ). rs is chosen in
the center of the network, and t is small enough to avoid hits on the network’s border. Black,
red, green, blue, magenta and orange symbols stand respectively for k = 1, 2, 3, 4, 5 and 6.
Circles, triangles, diamonds and squares stand respectively for networks of size 203, 253, 303 and
403. We see a perfect superposition of all plots, meaning that the scaling form of equation (3.59)
is satisfied numerically.

The lower plot of Figure 3.14 shows the same rescaled propagator for a random walker diffusing
on (2, 2, 2)–flowers (see chapter 1 for definition), for different target connectivity k(rT ). Black,
red and green circles stand respectively for k = 2, 6 and 18. This network is not random as
percolation clusters: we have a very marked order at short range, with in particular a very strong
degree correlation at short range. If for small r/t1/dw , the scaling of equation (3.59) seems false,
after some steps, we obtain a very decent merging of all curves.

The upper plot of Figure 3.15 shows the rescaled propagator for a random walker diffusing
on a critical 3D percolation networks (p = 0.2488) of different sizes, and for different target
connectivity k(rT ). rs is chosen in the center of the network, and t is small enough to avoid hits
on the network’s border. Black, red, green, blue, magenta and orange symbols stand respectively
for k = 1, 2, 3, 4, 5 and 6. Circles, and triangles stand respectively for networks of size 403 and
503. We see once again a very good superposition of all plots.

At last, the lower plot of Figure 3.14 shows the rescaled propagator for a random walker
diffusing on (3, 3)-flowers (see chapter 1 for definition) for different k(rT ). Black, red, green, blue
circles stand respectively for k = 2, 4, 8 and 16. This regular fractal have also a very strong
short-range degree correlation, but for r/t1/dw great enough, the scaling of equation (3.59) is
verified.

We stress that the scaling form (3.59) is verified in the cases of both compact (dw > df ) and
non compact (dw < df ) exploration. We believe that this result on its own can be important
in the analysis of transport processes on networks. We show next that it enables to obtain the
explicit dependence of first-passage properties on the connectivity of the target site.

Mean first-passage time

We now extend the theory developed in [66] to compute the MFPT of a discrete Markovian
random walker to a target rT , and obtain explicitly its dependence on k(rT ). As shown in
chapter 1, the MFPT satisfies the following exact expression[6, 64, 66, 148]:

T(rT |rS) =
H(rT |rT )−H(rT |rS)

Pstat(rT )
, (3.61)
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1 2r/t1/dw
0
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w
P k(r
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P k(r
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/k

Figure 3.14: Plot of the propagator P (rT , n|rS) for non compact explorations. (Upper plot)
Supercritical 3D percolation networks (p = 0.8). Black, red, green, blue, magenta
and orange symbols stand respectively for target connectivities k(rT ) = 1, 2, 3, 4, 5
and 6. Circles, triangles, diamonds and squares stand respectively for networks of
size 203, 253, 303 and 403. (Lower plot) (2, 2, 2)–flowers. Black, red and green circles
stand respectively for target connectivities k(rT ) = 2, 6 and 18.

where we have as usual the pseudo-Green function of the problem defined as[14]:

H(r|r′) =

∞∑

n=1

(P (r, n|r′)− Pstat(r)) (3.62)
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Figure 3.15: Plot of the propagator P (rT , n|rS) for compact explorations. (Upper plot) critical
3D percolation networks (p = 0.2488). Black, red, green, blue, magenta and orange
symbols stand respectively for target connectivities k(rT ) = 1, 2, 3, 4, 5 and 6.
Circles, and triangles stand respectively for networks of size 403 and 503. (Lower
plot) (3, 3)–flowers. Black, red, green, blue circles stand respectively for target
connectivities k(rT ) = 2, 4, 8 and 16.

Note that averaging equation (3.61) for rS covering the nearest neighbors of rT gives the expres-
sion of the averaged MFPT 〈T〉Kac(rT ) expected from Kac formula [6, 65]:

〈T〉Kac(rT ) = 〈T(rT |rS)〉rS |‖rT−rS‖=1 =
1

Pstat(rT )
− 1 =

N〈k〉
k(rT )

− 1, (3.63)
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3 How to optimize random search processes?

which we will use below.
Following [66], we consider the large N limit of equation (3.61). Making use of the symmetry

relation of equation (3.54), we obtain

Pstat(rT )T(rT |rS) ∼ G0(rT |rT )− k(rT )

k(rS)
G0(rS |rT ). (3.64)

Here ∼ denotes equivalence for large N and G0 is the usual infinite space Green function defined
by

G0(r|r′) =

∞∑

n=1

P0(r, n|r′), (3.65)

It is useful to notice that this leading term of the MFPT still satisfies the Kac formula (3.63).
We next take the weighted average of equation (3.64) over the source points and obtain:

Pstat(rT )TrT (r) ∼ G0(rT |rT )− k(rT )

〈k〉 〈G0(rS |rT )〉rS , (3.66)

where we defined TrT (r) ≡ {T(rT |rS)}rS . Substituting the scaling (3.58) in Eq. (3.66) then
yields the large N equivalence of the MFPT to a target site rT averaged over sources, which is
valid for r > R:

TrT (r) ∼ N〈k〉
(
Ak +Brdw−df

)
. (3.67)

In this expression the constant Ak depends on the connectivity k of the target and B is a constant
independent of k ad r, which depends on the scaling function Π. We now distinguish two regimes
depending on the compact or non compact nature of the transport process, and focus on the
large r regime.

Compact case dw ≥ df

In the compact case, dw ≥ df , which corresponds to recurrent random walks, we obtain that
the MFPT scales in the large r limit as

TrT (r) ∼ N〈k〉Brdw−df . (3.68)

This shows that unexpectedly the MFPT is asymptotically independent of the connectivity of
the target, while the dependence on the distance r is crucial. Equation (3.67) is valid for r
large enough (typically r > R). The dependence of Ak on k, which impacts on the MFPT for r
small only, can be estimated by assuming that this expression still holds approximately for short
distances. Following [28], we take r = 1 in equation (3.67) and use the Kac formula (3.63) to
obtain:

1/k ' Ak +B, (3.69)

which provides the k-dependence of Ak. We next aim at evaluating B. We introduce the weighted
average of the MFPT over the target point, τ(r):

τ(r) = {〈T(rT , rS〉rS}rT =
∑

rT ,rS/ ‖rT−rS‖=r
Pstat(rT )T(rT |rS). (3.70)

Using equation (3.69), this quantity writes:

τ(r) ∼ N
(

1 +B 〈k〉 (rdw−df − 1)
)
. (3.71)
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In the case of compact exploration, the continuous space limit can be defined (see [28]) and
imposes τ(r → 0) = 0. This extra equation, based on the existence of a continuous limit, enables
to evaluate B as B = 1/〈k〉. Note that for fractal trees (dw − df = 1) we recover the exact result
τ(r) = Nr. Finally one has :

TrT (r) ∼ N〈k〉
(

1

k
+

1

〈k〉
(
rdw−df − 1

))
, (3.72)

which fully elucidates the dependence of the MFPT on k and r. We recall here that this expression
is originally derived for r large, and that the small r regime relies on the less controlled assumption
that the scaling form of the propagator (3.59) holds for any distance r, and in particular that a
continuous limit exists. It will however prove numerically to be accurate in various examples for
all r values.

Figure 3.16 shows the MFPT for critical Erdös-Rényi networks, as a function of the source-
target distance r, for a various target connectivity k. From up to down, black symbols correspond
to k = 1, red to k = 2 and blue to k = 3. Circles stand for a network of size N = 1000,
triangles stand for N = 2000. The straight lines stand for the zero-constant formula (〈k〉 = 2) of
equation (3.72). Critical Erdös-Rényi are defined in chapter 1: they can be seen as percolation
cluster (p = 1/N) on a complete graph. df has been estimated 1, 9− 2, 0[203] and we computed
numerically dw ' 2, 9. We see that equation (3.72) is in very good agreement with numerical
simulations.

Figure 3.17 shows the MFPT random (2, 2)-flowers (dw = 2.5 and df = 1.9), as a function of
the source-target distance r, for a various target connectivity k. From up to down, black symbols
stand for k = 2, red for k = 3, green for k = 4, blue for k = 5 and magenta for k = 6. Circles
stand for simulations results, straight lines for 1/k + 1/〈k〉(rdw−df ) (〈k〉 = 3) of equation (3.72).
The prediction matches very well numerical simulations

Figure 3.18 shows the MFPT on compact Kozma networks[125] (α = 2.5) of size X = 50, as
a function of the source-target distance r, for a various target connectivity k. Kozma networks
are defined in chapter 1, we briefly recall that in 1D, these networks are compact for α > 2 and
non compact for α < 2. Symbols stand for simulation result: black is k = 3, red k = 4 and green
k = 5. The expected scaling is in r0.5: circles stand for simulation results, straight lines stand
for 1/k + 1/〈k〉(r0.5 − 1) (〈k〉 = 2.5) of equation (3.72).

Non compact case dw < df

In the non compact (or transient) case, dw < df , we obtain that the MFPT scales in the large
r limit as

TrT (r) ∼ N〈k〉Ak. (3.73)

This shows that the MFPT is independent of r for r large, as was already discussed in the litera-
ture [66]. The dependence on k is now fully contained in the constantAk, which we now determine.
Following [119], we assume that the FPT distribution is proportional to exp(−Akt/(N〈k〉)), with
A = O(1), and widely independent of r in agreement with the result obtained in Eq.(3.73) for
the first moment. This implies that the GMFPT, as defined in the beginning of this chapter and
denoted by GMFPT, scales as

GMFPT = {T(rT |rS)}rS ∝ N〈k〉/k, (3.74)

where we used the weighted average of equation (3.56) on all possible rS . We recall the exact
result derived in the first section of this chapter:

GMFPT =
H(rT |rT )

Pstat(rT )
, (3.75)
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Figure 3.16: Rescalled MFPT (〈TrT (r)〉/N〈k〉) for critical Erdös-Rényi networks for various tar-
get connectivities k. From up to down, black symbols correspond to k = 1, red to
k = 2 and blue to k = 3. Circles stand for a network of size N = 1000, triangles
stand for N = 2000. The straight lines stand for the zero-constant formula (〈k〉 = 2)
of equation (3.72).

where use the approximation 1−Pstat(rT ) ' 1. We thus deduce from this equation that H(rT |rT ),
and therefore asymptotically the infinite space Green function G0(rT |rT ), is independent of k in
the case of non compact exploration. As shown below, this has been checked numerically in
Figure 3.22.

Identifying in equation (3.67) Ak = G0(rT |rT )/k, which is finite in the case of non compact
exploration, we finally obtain:

TrT (r) ∼ N〈k〉
(
A

k
−Brdw−df

)
. (3.76)

Figure 3.19 shows the MFPT as a function of the source-target distance r, for a various target
connectivity k, on supercritical 3D percolation network (p = 0.8). For this network, dw ' 2
and df = 3, the exploration is non compact. From up to down, blue symbol stand for k = 4,
magenta for k = 5 and orange for k = 6. Circles stand for simulations results, straight lines for
a fit by A/k + Brdw−df , with A ' 2.33 and B ' 0.8. We observe that after a certain distance,
Figure 3.19 shows a good agreement of numerical simulations with equation (3.76). As explained
previously, our result does not apply very well in the small r area, since it relies on a scaling
hypothesis on the propagator that is not fully satisfied for small r. But our general result (simple
shift proportional to 1/k between the different curves) is still true as soon as r is great enough.

As in the compact case this expression is valid for r large, and becomes hypothetical for r
small. It reveals that in the case of non compact exploration, the MFPT is independent of r for
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Figure 3.17: MFPT on random (u, v)-flowers for various target connectivities k. From up to
down, black symbols stand for k = 2, red for k = 3, green for k = 4, blue for
k = 5 and magenta for k = 6. Circles stand for simulations results, straight lines for
1/k + 1/〈k〉(rdw−df ) (〈k〉 = 3) of equation (3.72).

r large, and scales as the inverse connectivity of the target. This behavior is in strong contrast
with the case of compact exploration.

Discussion

Finally our central result can be summarized as follows, where the case of marginal exploration
(dw = df ) has been obtained along the same line :

TrT (r)

N〈k〉 ∼





1

k
+

1

〈k〉
(
rdw−df − 1

)
if dw > df

1

k
+B ln(r) if dw = df

A

k
−Brdw−df if dw < df

. (3.77)

Figure 3.20 shows the MFPT regular (2, 2)-flowers, as a function of the source-target distance
r, for a various target connectivity k. For thise networks, dw = df . Black symbols stand for
k = 2, red for k = 4 and blue for k = 8. Circles and crosses stand for simulation results, for
two sizes of the network (respectively generations 4 and 5), straight lines stand for the formula
1/k +B ln(r) of equation (3.77), with B = 0.24. The scaling works really well when dw = df .

Expression (3.77) is very general and shows the respective impact of distance and connectivity
on the MFPT. In particular the MFPT is fully explicitly determined in the compact case. The
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Figure 3.18: MFPT on compact Kozma networks, for various target connectivities k. Symbols
stand for simulation result: black is k = 3, red k = 4 and green k = 5. The
expected scaling is in r0.5: circles stand for simulation results, straight lines stand
for 1/k + 1/〈k〉(r0.5 − 1) (〈k〉 = 2.5) of equation (3.72).

positive constants A and B depend on the network in the case of non compact exploration. We
comment that in both cases the target connectivity k plays an important role at short distances
r. However for large source-target distances r, the k-dependence is damped out in the compact
case, while it remains important in the non compact case. The r-dependence is found to be
important in the compact case and largely irrelevant in the non compact case in agreement with
previous results [66]. The question raised in introduction can therefore be answered as follows :
in the non compact case connected targets are found the fastest almost independently of their
distance, while in the compact case close targets are found the fastest almost independently of
their connectivity.

We can conclude that for self-similar networks with short range degree correlations, the main
criterion that governs the behavior of T is the type (compact or non compact) of the random
walk. In particular the existence of loops is irrelevant. Further comments are in order.

(i) As stressed above, equation (3.77) is derived in the large r regime. Its applicability to the
small r regime relies on the assumption that the scaling form of the propagator (3.59) holds
for all values of r, which is not always satisfied for real networks. In particular when degree
correlations exist the relation B = 1/〈k〉 obtained in the compact case gives only a rough
estimate, and the result of equation (3.77) is valid only for r larger than the correlation
length.

(ii) Our results can be extended to the case of non self-similar networks, still under the as-
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Figure 3.19: MFPT on supercritical 3D percolation networks (p = 0.8) for various target con-
nectivities k. From up to down, blue symbol stand for k = 4, magenta for k = 5
and orange for k = 6. Circles stand for simulations results, straight lines for a fit by
A/k +Brdw−df , with A ' 2.33 and B ' 0.8.

sumption that degree correlations are negligible. Following the method developed above,
one can infer that

TrT (r) ∼ N〈k〉 (A/k + g(r)) (3.78)

where g does not depend on k and satisfies g(r → ∞) = C in the transient case, and
g(r → ∞) = ∞ in the recurrent case. The relative impact of connectivity and distance is
therefore qualitatively the same as in the case of self-similar networks discussed above.

Figure 3.21 shows the MFPT on a non compact Kozma 1D network[125] (α = 1.0) of size
X = 400, as a function of the source-target distance r, for a various target connectivity
k. Those networks are not strictly self-similar, we thus apply the result of equation (3.78).
From up to down, green circles stand for k = 6, blue for k = 7 and magenta for k = 8. The
insight shows a translation along the y axis of A/k with A = 2.04 according to equation
(3.78). As predicted, this quantity does not depend on k.

(iii) Incidentally, our results straightforwardly yield the k dependence of the GMFPT. We find
in the large N limit :

GMFPT ∼





CNdw/df if dw > df
CN lnN if dw = df
CN/k if dw < df

(3.79)

which complements previous results obtained in the first section of this chapter. This
expression, along with equation (3.75), yields as a by-product the large N asymptotics of
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Figure 3.20: MFPT on (u, v)-flowers for various target connectivities k. Black symbols stand for
k = 2, red for k = 4 and blue for k = 8. Circles and crosses stand for simulation
results, for two sizes of the network (respectively generations 4 and 5), straight lines
stand for the formula 1/k +B ln(r) of equation (3.77), with B = 0.24.

H(rT |rT ):

H(rT |rT ) ∼





CkNdw/df−1 if dw > df
Ck lnN if dw = df
C if dw < df

. (3.80)

This k-dependence of H(rT |rT ) is checked numerically in Figure 3.22 and directly validates
the k–dependence of the GMFPT.

Figure 3.22 shows the pseudo-Green function H(rT |rT ) average over all target rT of a given
connectivity for several networks. The main plot shows the case of critical 3D percolation net-
works (p = 0.2488, compact case). The circle stand for numerical simulation, for a 103 network
(black circles), 153 (red) and 203 (green). A fit in CkNdw/df−1 (straight line) is performed, with
the same fitting constant C for the three sizes. The inset shows the case of supercritical 3D
percolation networks (p = 0.8, non-compact case). Three network sizes are plotted, 103 (black),
153 (red) and 203 (green). As predicted in equation (3.80), H(rT |rT ) does not depend either on
k or on N . Figure 3.22 is in perfect agreement with equation (3.80) for both a compact and a
non-compact examples.

Conclusion

To conclude, we have proposed in this section a general theoretical framework which elucidates the
connectivity and source-target distance dependence of the MFPT for random walks on networks.
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Figure 3.21: MFPT on non compact Kozma 1D network[125] (α = 1.0) of size X = 400, for
various target connectivities k. From up to down, green circles stand for k = 6, blue
for k = 7 and magenta for k = 8. (Inset) translation along the y axis of A/k with
A = 2.04 according to equation (3.78).

This approach leads to explicit solutions for self-similar networks and highlights two strongly
different behaviors depending on the type – compact or non compact – of the random walk. In
the case of non compact exploration, the MFPT is found to scale as the inverse connectivity of
the target, and to be widely independent of the source-target distance. On the contrary, in the
compact case the MFPT is controlled by the source-target distance, and we find that unexpectedly
the target connectivity is irrelevant for remote targets. The question raised in introduction can
therefore be answered as follows : in the non compact case connected targets are found the
fastest almost independently of their position, while in the compact case close targets are found
the fastest almost independently of their connectivity. Last, we stress that following [68], this
explicit determination of MFPTs can be straightforwardly generalized to obtain other relevant
first-passage observables, such as splitting probabilities or occupation times.

For our search strategy problem, the GMFPT can be used to quantify the search time. We
have very different behaviors depending on the compact or non-compact character of the random
walk: we expect the GMFPT to be independent of target connectivity for compact networks,
and proportional to 1/k for non-compact one. We thus have a finer scaling with N and k than
the bounds found in the previous sub-section.
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Figure 3.22: Numerical computation ofH(rT |rT ) for critical 3D percolation networks (p = 0.2488,
compact case). The circle stand for numerical simulation, for a 103 network (black
circles), 153 (red) and 203 (green). A fit in CkNdw/df−1 (straight line) is performed,
with the same fitting constant C for the three sizes. (Inset) supercritical 3D perco-
lation networks (p = 0.8, non-compact case). Three network sizes are plotted, 103

(black), 153 (red) and 203 (green).

3.3.3 Network perturbation

At last, we will investigate the impact on first passage properties of a topological change in the
network.

This topological change can either be a protective measure to limit the propagation of a dan-
gerous walker, or an aggressive attack to weaken a network. Recently, an increasing interest
in modeling failures or attacks in networks has developed [144], for instance in the context of
epidemic spreading [155], virus attack on networks [76], or electrical blackout [44, 53]. Most of
these studies deal with static properties of networks after a given perturbation (typically the
removal of nodes or links), with the notable exception of [195]. In particular it has been showed
that scale free networks are very resilient to random perturbations, while the targeted removal
of a hub can have dramatic consequences. Very recently, it has also been put forward that in
the case of interdependent networks a broader degree distribution increases the vulnerability to
random failure [44].

In this context, quantifying the impact of targeted perturbations of a network on the search
efficiency and more generally on transport properties is an important and yet unexplored problem.
We will here provide a general framework that quantifies the response of the MFPT to a target
node to a local perturbation of the network, both in the context of attacks (damaged link) or
strategies of transport enhancement (added link). This approach enables to determine explicitly
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3.3 Search efficiency and network topology

the dependence of this response on geometric parameters (such as the network size and the
position of the perturbation) and on the intensity of the perturbation. In particular, it reveals
that the relative variation of the MFPT is independent of the network size N in the large N limit,
and remains significant even for very large networks ; additionally, in the case of non compact
exploration of the network, a targeted perturbation keeps a substantial impact on transport
properties for any localization of the damaged link.

To model those effects, we will consider a discrete time random walker on a network of N
nodes, and assume that the transition probabilities ωuw from u to w of the walker are such
that a stationary distribution Pstat exists. In addition, we denote P (x, n|y) the propagator, as
previously defined as the probability to be at site x after n steps for a random walk starting from
site y. In this sub-section, we will be interested in the influence of targeted perturbations of the
network on the MFPT 〈TTS〉 from a starting site rS to a target site rT .

Response of the MFPT to a damaged link

We first introduce the general method to study the influence of a single link perturbation on
the MFPT, and take the example of the weakening or removal of a link. More precisely, we
assume that the transition probability ωuw from u to w is changed by δωuw < 0. Without loss
of generality, we here assume that this perturbation is compensated on the probability ωuu to
stay at u during the elementary step, i.e. δωuu = −δωuw, and that all other transition rates
are unchanged. Note that the important particular case of a broken link is then given by taking
δωuw = −ωuw. This means that when the random walker wants to use the path u → w, with
a probability δuw, he will remain in u instead of reaching w. Figure 3.23 shows the effect of a
damage link between u and w. Those two points do not play a symmetric role in the network
perturbation. In the sequel, all quantities denoted with a prime correspond to the perturbed
situation.

S

Tu w

Figure 3.23: Scheme of the damaged link on a discrete network.

The MFPT in the perturbed situation can be calculated by first noting that the perturbation
affects only the trajectories that pass through u before reaching T , so that, for any starting point
x :

〈T′Tx〉 − 〈TTx〉 = P Tux
(
〈T′Tu〉 − 〈TTu〉

)
, (3.81)
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where P Tux is the splitting probability to reach u before T starting from x. Writing next the
Kolmogorov backward equation for the MFPT [168]:

〈T′Tu〉 = 1 +
∑

v

ω′uv〈T′Tv〉 (3.82)

both in the perturbed and unperturbed situations, we obtain

〈T′Tu〉 − 〈TTu〉 =
∑

v

ωuv
(
〈T′Tv〉 − 〈TTv〉

)
+ δωuw(〈T′Tw〉 − 〈T′Tu〉). (3.83)

Using equations (3.81) and (3.83), the variation of the MFPT starting from site u is found to be
given by :

〈T′Tu〉 − 〈TTu〉 =
δωuw(〈TTw〉 − 〈TTu〉)

1− P̄ Tuu + δωuw(1− P Tuw)
, (3.84)

where we have introduced
P̄ Tuu ≡

∑

v

ωuvP
T
uv, (3.85)

defined as the probability to come back to u before reaching T . Using equation (3.81), we finally
obtain the relative MFPT variation δTS , defined as:

δTS ≡ (〈T′TS〉 − 〈TTS〉)/〈TTS〉 (3.86)

for any starting site S:

δTS =
P TuS
〈TTS〉

δωuw(〈TTw〉 − 〈TTu〉)
1− P̄ Tuu + δωuw(1− P Tuw)

. (3.87)

Using [28, 64, 65, 66], δTS can be expressed as a function of the perturbation δωuw, the un-
perturbed stationary distribution Pstat, and the pseudo-Green function, Hxy of the unperturbed
problem, defined as:

Hxy ≡
∞∑

n=0

(P (x, n|y)− Pstat(x)) (3.88)

We obtain

δTS =
HTu −HTw

HTT −HTS

δωuw [Pstat(T )(HuS −HuT ) + Pstat(u)(HTT −HTS)]

Pstat(T ) + δωuw [Pstat(T )(Huu −Huw) + Pstat(u)(HTw −HTu)]
. (3.89)

This central result has several important implications.
First, we stress that in the particular case of a regular d–dimensional hypercubic parallelepi-

pedic network with constant probability transitions between nearest neighbors the pseudo Green
functions are known exactly [14] (see chapter 1). Using next that the stationary probability is in
this case uniform (Pstat(x) = 1/N for any node x), equation (3.89) provides an exact and fully
explicit result for the effect of an arbitrary modification of a given link on the MFPT.

Second, in the case of more general networks, but possessing scale-invariant properties, the
dependence on the geometrical parameters can still be determined, by taking the large network
size limit. This is for example the case of self-similar networks like (u, v)–flowers [202, 204] defined
in chapter 1. More precisely, the large network size limit can be conveniently discussed when the
random walk is a scale-invariant process, i.e. when the infinite volume propagator satisfies the
scaling

P (x, n|y) ∝ n−df/dwΠ(|x− y|/n1/dw) (3.90)
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3.3 Search efficiency and network topology

where dw and df denote as usual the walk dimension and the fractal dimension of the network, and
where |x− y| denote the distance between nodes x and y. Indeed, in this case all the differences
Hxy −Hxz that enters equation (3.87) can be rewritten in terms of differences Hxx −Hxy which
satisfy in the large volume limit [28, 66] (see chapter 1 for details)

Hxx −Hxy ∼





A+B|x− y|dw−df if dw < df
A+B ln |x− y| if dw = df
B|x− y|dw−df if dw > df

(3.91)

where A and B are numerical constants depending only on the infinite volume propagator, and
more precisely on the scaling function Π.

Figure 3.24 shows the relative variation of the MFPT as a function of the distance |S − T |
between source and target (here the relative positions of T , u and w are fixed and averages
over triplets are taken). Symbols stand for numerical simulation of 3D regular lattices (circles,
dw − df = −1), 2D critical percolation clusters (triangles, dw − df ' 0.98) and (2, 2)–flowers
(crosses, dw = df ). For each network, several size are plotted in different colors. The plain lines
are the result of equation (3.89), where the pseudo-Green functions are either exact (3D regular
lattices) or approximated by the scaling of equation (3.91). The very good fitting shows that the
approximation of equation (3.91) is good enough to reproduce accurately the MFPT variations
using equation (3.89).

Equations (3.89) and (3.91) have two consequences.

(i) The independence of N of equation (3.91) readily gives that the relative variation δTS is
independent of N in the large volume limit. This quite unexpected effect, illustrated by
the data collapse for different volumes in Figure 3.24 on various networks, implies that the
effect of a targeted perturbation is not diluted but remains finite even for extremely large
networks. Actually this universal asymptotic independence on N of the relative variation
δTS for fixed starting node S strongly differs from the relative variation δT of the GMFPT,
defined as previously by

GMFPT ≡
∑

S

Pstat(S)〈TTS〉. (3.92)

More precisely, assuming next detailed balance, it can be shown using symmetry relations
of Hxy that

δT ≡ GMFPT′ −GMFPT

GMFPT

=
HTu −HTw

HTT

δωuwPstat(u)(HTT −HTu)

Pstat(T ) + δωuw[Pstat(T )(Huu −Huw) + Pstat(u)(HTw −HTu)]
.(3.93)

In the large volume limit, this exact expression leads to

δT ∼





C if dw < df
C/ lnN if dw = df
C/Ndw/df−1 if dw > df

(3.94)

where we have derived the asymptotic expression of HTT using [151, 209]. In other words,
as for the relative variation δT , the N independence is recovered only in the case df > dw
of so-called non compact exploration, while a strong dependence on N is found in the
opposite case of compact exploration (dw ≥ df ). Figure 3.25 shows the relative variation
of the GMFPT, δT for different network sizes N for 1D (black crosses), 2D (red circles)
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Figure 3.24: Relative variation of the MFPT δTS as a function of the distance |S−T | for several
networks. Symbols stand for numerical simulation of 3D regular lattices (circles,
dw−df = −1), 2D critical percolation clusters (triangles, dw−df ' 0.98) and (2, 2)–
flowers (crosses, dw = df ). For each network, several size are plotted in different
colors. The plain lines are the result of equation (3.89), where the pseudo-Green
functions are either exact (3D regular lattices) or approximated by the scaling of
equation (3.91).

and 3D (blue triangles) cubic lattices and a 2D critical percolation cluster (green circle -
inset). The relative positions of T , u and w are fixed for all networks of a given kind. The
circles stand for the simulated δT , the black lines for the theoretical prediction of equation
(3.94), where C is a fitting parameter, different for all networks. The N dependence of the
GMFPT strongly changes between compact and non-compact networks.

(ii) The asymptotic form (3.91) used in equation (3.89) also provides the explicit dependence
of δTS on the relative distances between the nodes S, T, u, w. Such dependence has been
checked numerically (see Figure 3.24) for various networks such as regular euclidian lattices
(dw = 2), 2D critical percolation clusters (dw = 2.88 and df = 91/48), and (u, v)–flowers
(see chapter 1 for definition). Figure 3.24 reveals a very different behavior in the case of
compact exploration (illustrated by critical percolation clusters) for which δTS vanishes
at larges distances, and in the case of non-compact exploration (illustrated by 3D regular
lattices), for which δTS remains finite even for very large distances. Noteworthily this
shows that in the non compact case a targeted perturbation keeps a substantial impact on
transport properties for any localization of the damaged link.

Third, in the general case of a random walk on an arbitrary network, where the pseudo-
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Figure 3.25: Relative variation of the GMFPT as a function of the network size N , for 1D (black
crosses), 2D (red circles) and 3D (blue triangles) Euclidian lattices and a 2D critical
percolation cluster (green circle - inset). The relative positions of T , u and w are
fixed for all networks of a given kind. The circles stand for the simulated δT , the
black lines for the theoretical prediction of equation (3.94), where C is a fitting
parameter, different for all networks.

Green functions can be difficult to evaluate, equation (3.89) still gives explicitly the functional
dependence of δTS on the perturbation δωuw, which takes the form

δTS =
Dδωuw
E + δωuw

(3.95)

where D and E do not depend on δωuw (note that E does not depend on S either). This general
form has been validated by numerical simulations in Figure 3.26. This figure shows the relative
variation of the MFPT as a function of the u → w link perturbation, for given T , u and w
sites, and two different S for each network (one color for each S): 2D critical percolation clusters
(circles) and (3, 3)-flower of generation 3 (triangles). For the flower networks, the perturbed link
leads to T . Numerical simulations are fitted with equation (3.95).

Additionally, provided that the differences Hxx−Hxy involved in equation (3.89) have a finite
limit in the large volume regime, D and E turn out to be independent of N . This shows that
the independence of δTS on N still holds in this case, and makes this property very robust.

Finally, it should be noted that the relative variation δTS remains rather weak for an arbitrary
perturbed link. We however stress that such local attack of a network is not affected by dilution
effects and remains finite even in the large volume limit; additionally, in the non compact case,
it is also widely independent of the localization of the perturbation and non vanishing even for
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Figure 3.26: Relative variation of the MFPT δTS as a function of the u→ w link perturbation, for
given T , u and w sites. Two different starting sites S are chosen for each network
(one color for each S): circles stand for 2D critical percolation clusters (red and
black) and triangles for (3, 3)–flowers of generation 3 (green and blue).

a very remote damaged link. Furthermore, the effect of a local perturbation can become much
stronger if targeted to a link directly leading to the target, as can be expected intuitively (see
Figure 3.26).

Response of the MFPT to an added link

Importantly, the above formalism can be extended to tackle the reciprocal problem of enhancing
instead of damaging the transport abilities of a network. As a first step in this direction, we
quantify the effect of adding a new link between two nodes. The definition of the perturbation
has to be slightly modified in the case of an added link, since the case studied above is ill defined
for δωuw > 0 and Ruu = 0. We assume now that there is initially no link between u and w
(ωuw = 0), and consider a perturbation δωuw > 0. In turn, we set for all neighbors v of u that
δωuv = −δωuw/k(u), where k(u) is the initial connectivity of u (note that δωuw is assumed to be
small enough so that all transition probabilities remain positive). In this case, the equivalent of
equation (3.87) can be obtained along the same line and reads:

δTS =
P TuS
〈TTS〉

δωuw (〈TTw〉 − 〈TTu〉+ 1)

1− P̄ Tuu + δωuw
(
P̄ Tuu − P Tuw

) , (3.96)

which, as previously, can be expressed only in terms of δωuw and pseudo-Green functions.
Figure 3.27 shows the relative variation of the MFPT in response to the addition of a new

link, in the directed (red squares and black circles) and bidirectional case (green triangles) for
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3D Euclidian lattices. Simulations (symbols) are plotted against the theoretical prediction of
equation (3.96) (plain lines). Black circles: S, T , u and w are distinct, and the new link starts
from a target neighbor. Red squares: the new link is between S and T . Green triangles : addition
of a link between two 3D regular lattices (with δωuw = δωwu), S being in the first lattice, and T
in the second. Here we define δST = (MFPT−min(MFPT))/min(MFPT).
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Figure 3.27: Relative variation of the MFPT in response to the addition of a new link in the
directed (red squares and black circles) and bidirectional case (green triangles) for
3D Euclidian lattices. Simulations (symbols) are plotted against the theoretical
prediction of equation (3.96) (plain lines). Black circles: S, T , u and w are distinct,
and the new link starts from a target neighbor. Red squares: the new link is between
S and T . Green triangles : addition of a link between two 3D regular lattices (with
δωuw = δωwu), S being in the first lattice, and T in the second.

Note that the MFPT can be decreased very significantly if the new link points to the target (red
line of Figure 3.27). Last, we stress that the case of a single added bidirectional link connecting
two nodes u and w of initially distinct networks N1, N2 can be obtained using the same method,
and yields an explicit results for the MFPT which is displayed in Figure 3.27 (green line). This
constitutes a first step in designing interdependent networks as introduced in [44].

Conclusion

To conclude, we have presented a general framework that quantifies the response of the MFPT
to a target node to a local perturbation of the network, both in the context of attacks (damaged
link) or strategies of transport enhancement (added link). This approach enables to determine
explicitly the dependence of this response on geometric parameters (such as the network size and
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the position of the perturbation) and on the intensity of the perturbation. It reveals that the
relative variation of the MFPT is independent of the network size, and remains significant even
in the large size limit. Additionally, in the non compact case a targeted perturbation keeps a
substantial impact on transport properties for any localization of the damaged link.

Conclusion

This third chapter aimed to understand how a random search process could be optimized in a
confined media, namely how the search time could be minimized. If the target localization is
unknown, the adequate observable is the GMFPT. If we have more insight on the relative position
of the starting and the target sites, the MFPT becomes the relevant observable.

During the first section, we showed that for a walker evolving on a periodic Euclidian lattice,
persistent random walks could be optimized. We focused on the GMFPT (MFPT have been
studied in chapter 2), and found that the optimized persistent random walk performed better
than any Lévy walk in the sense that the optimized GMFPT was lower.

The second section investigated the case of a moving target. We wanted to assess the impact
of a moving target on first-passage observables. Since the problem was cumbersome, we focused
on 1D subdomain, and found analytical and approximate expressions of the first encounter time,
either its mean and its full density. The results obtained are non trivial, and in particular the
first encounter density does not behaves as expected from [151]. The usual approximation on
pseudo-Green functions for the first-passage time does not seem to apply well on extended targets
(in the 2D problem).

The last section assessed the impact of several network topological features on the first-passage
time. General boundaries of the GMFPT have been summarized in the first sub-section, showing
that the compacity of the exploration was a key parameter to estimate the GMFPT. The tree
structures also have a particular behavior. The second sub-section extended the result previously
obtained on MFPT to take into account the target connectivity. The scaling form proposed
for the propagator seems to apply very well on various scale invariant networks. At last, the
influence of a network perturbation have been studied in the last sub-section, showing once again
the differences between compact and non compact random walks. For compact random walks, a
distant perturbation does not affect the MFPT in the large volume limit, while it affects a non
compact random walks independently of the network volume.
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Conclusion

Random walks and their first-passage properties govern the microscopical world, and in particular
biochemical reactions. Understanding how the first-passage properties are influenced by the
surrounding environment or by the diffusion mechanism can either help to probe the microscopical
environment with single particle trajectories, or to control the behavior of a random walker by
designing correctly the environment.

Our first approach was to use the random walk framework to extract information from single
particle trajectories. Modern tracking setups allow to have access directly to trajectories, and not
only to macroscopical averaged data such as diffusion coefficients. Experiments have observed
repeatedly anomalous diffusion, in particular in biology, but so far the information extracted
from those data was only the anomalous coefficient α. We have shown here that the first-
passage properties of single particle trajectories were a powerful tool to investigate the origin
of anomalous diffusion. We took into account the experimental constraints to propose several
tests that can help discriminate between the three prominent model of anomalous diffusion,
namely diffusion on fractals, CTRW and fBm. Those tests could be widely applied to single
particle trajectories analysis, and enhance the accuracy of the extracted anomalous exponent α
and anomalous diffusion coefficient Kα with the same data set. They could also help to identify
some key features of experimental behaviors, like space correlations or environment fractality.

After applying our method to experimental data, we analyzed three models that were somehow
finite versions of the three anomalous diffusion models studied, namely a model with only two
scales instead of an infinity (cage networks), a model with a short-range correlation (persistent
random walks), and a model with finite waiting time (hard-core crowding). Persistent random
walks, cage networks and hard-core crowding could all lead to sub-diffusion at short times, and
a Brownian behavior at longer ones. For cage networks, we have pointed out some discrepancies
between the simple CTRW approach and the simulations, and explained them. We also point out
that we obtained a very good approximation of the MFPT for hard-core crowding on Euclidian
network. This crowding effect is often cited as a potential source of anomalous diffusion in cells,
and is seen as a CTRW with a cut-off time. We have shown that in addition to the (finite) CTRW
behavior, one had to take into account memory effects (anti-persistence).

The second approach was to optimize, assuming a given diffusion mechanism, the search time,
namely the time needed to a random walker to find a hidden target. We showed in the first section
that optimized persistent random walks could outrun any Lévy walk in a periodic Euclidian
lattice, when the target position is unknown. This result is really important for search processes,
since this optimization is in many cases crucial for the random walker (animal looking for food
for instance).

The case of the moving target has been investigated in the second section, and we showed that
the resulting first encounter time density was not trivial. An extension of this result in higher
dimension would be really interesting, since in chemistry for instance, bimolecular reactions take
place in 2D or in 3D, and not only in 1D. An exact result will probably be hard to obtain, but
if we use approximations of pseudo-Green functions, we may manage to obtain the mean first
encounter time, at least in the large volume limit.

177



3 How to optimize random search processes?

Search processes can also occur on discrete networks, like social networks, computer networks
or electrical grids. On such networks, other parameters appear and can be adjusted in order
to optimize the first-passage time. The identification of those key parameters was still an open
question in the beginning of this work. We first summarized several distinct results to find general
bounds on the GMFPT, valid for any Markovian process on a discrete network, no matter how
complex the network is. These bounds show that the compacity of the random walk and the
target connectivity are parameters that influence greatly the GMFPT. We also found out that
tree networks has tighter bounds than networks containing loops.

Going deeper into details, we assessed the impact of target connectivity. Assuming a scaling
form for the propagator that depends on the target connectivity, we showed that for scale invariant
processes, the target connectivity influence is crucial for non-compact explorations, and much less
important for compact explorations.

At last, we estimated the influence on search efficiency of a little variation of the network.
We determined the impact on the MFPT of a damaged link, or in the reverse of the creation
of a new link. The modification of the network could be a strategy to optimize lab-on-a-chip.
Indeed, we could design a microscopical maze, where several reactive sites have to be visited by
a reactant diffusing freely. If the maze is optimized, we can hope that almost surely, the reactant
will visit all the reactive sites, in the good order, before exiting the maze. We could also design
the maze to sort out several random walkers with different characteristics (size, interaction with
the support. . . ) in continuous time.

We have here extended somehow the available knowledge of first-passage properties, mainly
on networks. We hope that those results will help to analyze more efficiently real trajectories of
single random walkers, and to gain a better understanding of first-passage properties of random
walks on discrete networks.

1 Moments computation and experimental setups

We here detail the regular moment and maximal excursion moments computation, for brownian
and anomalous diffusion.

We start by the Brownian motion, and extend those results to anomalous diffusion afterward.

1.1 Brownian motion

Diffusion equation

In d dimensions and for spherical geometry, the diffusion equation is

∂P (r, t)

∂t
=

D

2drd−1

∂

∂r

(
rd−1∂P (r, t)

∂r

)
. (97)

where D is the diffusion coefficient.

Regular moments

To compute the regular moments, we impose the normalization and initial conditions

∫ ∞

0
P (r, t)rd−1dr = 1 and P (r, 0) =

δ+(r)

rd−1
, (98)
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where δ+(r) is the one-sided δ function. The boundary conditions are normal, i.e., chosen such
that P (r →∞, t) = 0. After obtaining an expression for the propagator P (r, t) we compute the
nth moment

〈rn〉 =

∫ ∞

0
rnP (r, t)rdf−1dr. (99)

Alternatively, this can be obtained by integration of rn times the diffusion equation.

Maximal excursion moments

To compute maximal excursion moments, we first compute the probability that at time t the
distance from the origin traveled by the random walker is less than r0: rmax ≤ r0. To this end
we consider an absorbing sphere at the radius r = r0 and obtain the propagator in the domain
0 ≤ r ≤ r0 using the following boundary and initial conditions:

P (r0, t) = 0 and P (r, 0) =
δ+(r)

rd−1
. (100)

The role of the absorbing sphere is to remove the cumulative probability that the random walker
actually crossed the distance r0 before t. The sought maximal excursion probability then becomes

Pr (rmax ≤ r0, t) =

∫ r0

0
P (r, t)rd−1dr. (101)

The nth maximal excursion moment is obtained by integration of rnmax times the derivative of
the cumulative distribution, i.e., the density,

〈rnmax〉 =

∫ ∞

0
rn0
∂ (Pr (rmax ≤ r0, t))

∂r0
dr0

= n

∫ ∞

0
rn−1

0 (1− Pr (rmax ≤ r0, t)) dr0. (102)

One dimension

The diffusion equation is simply

∂P (r, t)

∂t
=
D

2

∂2P (r, t)

∂r2
. (103)

After normalization the solution is the well-known Gaussian propagator

P (r, t) =
1√
Dπt

2

exp

(
− r2

2Dt

)
. (104)

We then obtain for the second and the fourth moment

〈r2〉 = Dt and 〈r4〉 = 3(Dt)2. (105)

For an absorbing sphere placed at r = r0 the MME propagator after becomes

P (r, t) =
2

r0

∞∑

n=0

cos

(
(2n+ 1)πr

2r0

)
exp

(
−D(2n+ 1)2π2t

8r2
0

)
. (106)
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Integrating from 0 to r0 we find the cumulative distribution function

Pr (rmax ≤ r0, t) =
4

π

∞∑

n=0

(−1)n

2n+ 1
exp

(
−D(2n+ 1)2π2t

8r2
0

)
. (107)

This expression simplifies in the Laplace domain,

Pr (rmax ≤ r0, s) =
4

π

∞∑

n=0

(−1)n

2n+ 1

1

s+ D(2n+1)2π2

8r20

. (108)

This expression can be simplified recalling that

sech(z) = π

∞∑

n=0

(−1)n(2n+ 1)

π2(n+ 1/2)2 + z2
. (109)

The cumulative distribution can therefore be rewritten in the form

Pr (rmax ≤ r0, s) =
1

s

[
1− sech

(
r0

√
2s

D

)]
. (110)

From this expression the Laplace transforms of the second and fourth MME moments become

〈r2
max(s)〉 =

2

s

∫ ∞

0
r0sech

(
r0

√
2s

D

)
dr0 (111)

=
D

s2

∫ ∞

0
usech(u)du =

2DC

s2
(112)

〈r4
max(s)〉 =

4

s

∫ ∞

0
r3

0sech

(
r0

√
2s

D

)
dr0 (113)

=
D2

s3

∫ ∞

0
u3sech(u)du (114)

=
D2

s3
(6ı(Li4(−ı)− Li4(ı))) . (115)

Here C ≈ 0.916 is Catalan’s constant, and Li4 the polylogarithm. Inverse Laplace transform
leads to the following results:

〈r2
max(t)〉 = 2DCt ≈ 1.83Dt (116)

〈r4
max(t)〉 = 3ı(Li4(−ı)− Li4(ı))(Dt)2 (117)

≈ 5.93(Dt)2 (118)

We compare the variance and the dispersion of regular and maximal excursion moments in table
1.

Two dimensions

We write the diffusion equation in Cartesian coordinates,

∂P (x, y, t)

∂t
=
D

4

(
∂2P (x, y, t)

∂x2
+
∂2P (x, y, t)

∂y2

)
. (119)
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σ2 = 〈X4〉 − 〈X2〉2 γ =
√
〈X4〉−〈X2〉2
〈X2〉2

RM 2(Dt)2 1.41
ME 2.58(Dt)2 0.876

Table 1: Regular and maximal excursion moments in 1D.

After normalization the solution is

P (r, t) =
2

Dt
exp

(
− r

2

Dt

)
. (120)

The second and fourth moments follow,

〈r2〉 = Dt and 〈r4〉 = 2(Dt)2. (121)

To place an absorbing circle at r = r0 we need to pass to spherical coordinates,

∂P (r, t)

∂t
=
D

4r

(
r
∂2P (r, t)

∂r2
+
∂P (r, t)

∂r

)
. (122)

Rescaling of time by D leads to the solution

P (r, t) =
∞∑

n=0

AnJ0 (Knr) exp

(
−DK

2
n

4
t

)
, (123)

where An and Kn are the free parameters. Here we chose the Bessel function J0 to ensure strict
positivity of the density in r = 0. The boundary condition P (r0, t) = 0 then imposes Kn = x0n/r0

(x0n is the nth zero of J0). For the normalization we use the Fourier-Bessel expansion formalism

An =

∫ r0

0

δ(r)

r
J0 (Knr) 2πrdr

∫ r0

0
J0 (Knr)

2 2πrdr

=
1

πr2
0J1(x0n)2

. (124)

Integrating P (r, t) from 0 to r0 we find

Pr (rmax ≤ r0, t) =
∞∑

n=0

2

x0nJ1(x0n)
exp

(
−Dx

2
0nt

4r2
0

)
. (125)

In the Laplace space,

Pr (rmax ≤ r0, s) =

∞∑

n=0

2

x0nJ1(x0n)




1

s+
Dx2

0n

4r2
0


 . (126)

By a non trivial contour integral (see reference [165] for a complete proof) we finally obtain

Pr (rmax ≤ r0, s) =
1

s




1− 1

I0

(
r0

√
4s

D

)



. (127)
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σ2 = 〈X4〉 − 〈X2〉2 γ =
√
〈X4〉−〈X2〉2
〈X2〉2

MSD (Dt)2 1
MME 1.13(Dt)2 0.694

Table 2: Regular and maximal excursion moments in 2D.

This expression cannot be simplified any further. We compute the second and the fourth maximal
excursion moment numerically, in Laplace and real space,

〈r2
max(s)〉 =

D

2s2

∫ ∞

0

u

I0(u)
du (128)

⇒ 〈r2
max(t)〉 =

Dt

2

∫ ∞

0

u

I0(u)
du (129)

〈r4
max(s)〉 =

D2

4s3

∫ ∞

0

u3

I0(u)
du (130)

⇒ 〈r4
max(t)〉 =

(Dt)2

8

∫ ∞

0

u3

I0(u)
du. (131)

Table 2 summarizes our findings in two dimensions.

Three dimensions

The diffusion equation in cartesian coordinates reads

∂P (x, y, z, t)

∂t
=
D

6

(
∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2

)
)P (x, y, z, t). (132)

with the normalized solution

P (x, y, z, t) =
1

(
2πDt

3

)3/2 exp

(
− r2

2Dt
3

)
, (133)

with r =
√
x2 + y2 + z2. We then obtain for the second and the fourth moments

〈r2〉 = Dt and 〈r4〉 =
5

3
(Dt)2. (134)

To calculate the solution with an absorbing sphere located at r = r0 we turn to spherical
coordinates,

∂P (r, t)

∂t
=

D

6r2

∂

∂r

(
r2∂P (r, t)

∂r2

)
=
D

r

∂2rP (r, t)

∂r2
. (135)

The quantity rP (r, t) satisfies the 1D diffusion equation. rP (r, t) can be written in a Fourier
expansion, but now the value at r = 0 is 0:

∂P (r, t)

∂t
=
∞∑

n=1

2nπ

r2
0

sin(nπr/r0)

4πr
exp

(
−Dn

2π2t

6r2
0

)
. (136)
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σ2 = 〈X4〉 − 〈X2〉2 γ =
√
〈X4〉−〈X2〉2
〈X2〉2

MSD 2/3(Dt)2 0.816
MME 0.712(Dt)2 0.602

Table 3: Regular and MME moment statistics in 3D.

Integration from 0 to r0 and Laplace transformation leads to the expression

Pr (rmax ≤ r0, t) =
∞∑

n=1

2(−1)n+1 exp

(
−Dn

2π2t

6r2
0

)
(137)

Pr (rmax ≤ r0, s) = 2
∞∑

n=1

(−1)n+1

s+
Dn2π2

6r2
0

. (138)

This expression can be simplified by use of a contour integral, obtaining

Pr (rmax ≤ r0, s) =
1

s




1−

√
6s

D
r0

sinh

(√
6s

D
r0

)



. (139)

We deduce the Laplace transform of the moments, as well as their expression after inverse Laplace
transform,

〈r2
max(s)〉 =

D

3s2

∫ ∞

0

u2

sinh(u)
du (140)

⇒ 〈r2
max(t)〉 =

7ζ(3)

6
Dt (141)

〈r4
max(s)〉 =

D2

9s3

∫ ∞

0

u4

sinh(u)
du (142)

⇒ 〈r4
max(t)〉 =

31ζ(5)

12
(Dt)2. (143)

Here ζ represents the Riemann zeta function. The results of the 3D case are summarized in table
3.

1.2 Experimental setups for data acquisition

We here detail how the experimental data set analyzed in chapter 2 have been obtained.

Qdots freely diffusing

The first set of data was obtained by Ralf Jungmann and Friedrich Simmel at the Technical
University of Munich (Garching, Germany), from fluorescence video tracking of single quantum
dots (Qdot 565 streptavidin conjugate, Invitrogen Corporation, USA) freely diffusing in glycerol
(G7757, Sigma Aldrich, USA) at room temperature (25C). The quantum dot stock solution was
diluted in glycerol to a final concentration of 1 nM prior to usage. Samples were imaged using mi-
croscopic chamber slides (µ-slide 8, ibidi GmbH, Germany), which were incubated with 10 mg/ml
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BSA solution (A-7906, Sigma Aldrich, USA) for 2 h to prevent non-specific adsorption of quantum
dots to the surface. Fluorescence imaging was carried out on an inverted fluorescence microscope
(IX-71, Olympus Corporation, Japan) in wide field configuration with an oil-immersion objective
(PlanApo, 100X, NA 1.45 Oil TIRFM, Olympus Corporation, Japan) corresponding to a pixel
size of 160 nm. The illumination light (X-Cite Series 120, EXFO Life Sciences, Canada) was
filtered using an excitation bandpass filter (HQ 470/40, AHF Analysetechnik, Germany) and
passed through a beam splitter (z 488 RDC, AHF Analysetechnik, Germany). Fluorescence light
was filtered with an emission filter (HQ 510 LP, AHF Analysetechnik, Germany) and imaged on
an EMCCD camera (Andor iXon+ DU897E, Andor Technology, North Ireland) using a frame
rate of 31 fps and an exposure time of 0.03029 s. Single quantum dot trajectories were calculated
using the ParticleTracker Plugin [184] for ImageJ [164].

Lipid granule observation

Cell preparation

For the both data set (the small one and the extensive one), the cells were cultured on AA-Leu
agar plates for 12-14 hours at 33C and after growth stored at 4C. Prior to the experiments, the
cells were suspended into liquid AA medium. The fluid chamber for the experiments consisted of
two glass slides glued together by a layer of double sticky tape as a spacer. The chamber was then
filled with the cell suspension. The cells were allowed to relax on the surface for approximately
20minutes, so that they do not move during data acquisition. The experiments were performed
at room temperature (25C).

Optical microscopy protocol

Bright-field microscopy imaging was carried out on a Leica DMIRE2 microscope, using an
oil immersion objective (Leica PL Apo 100x), and the AVT Pike F100B camera (Allied Vision
Technologies) and the SmartView software(Allied Vision Technologies) for recording. Particle
tracking was carried out using the PolyParticleTracker Package in Matlab [176]. The error in the
determination of the particle position of this method is 20 nm.

For the extensive data set, we only wanted cells in interphase, to avoid the variability that could
arise if we compare cells in interphase or in mitosis. To confirm that the cells were in interphase,
the GFP fluorescence of the membranes was observed. Particle tracking was carried out using
the algorithm of [176]. This algorithm is well-established for intracellular granule tacking [175].

Optical tweezers protocol

Optical tweezers were created using a Nd:YVO4 laser (Neodymium-doped yttrium ortho-
vanadate, 5W Spectra Physics BL-106C, λ = 1064 nm, TEM00), implemented in an inverted
fluorescence microscope (Leica, DMI 6000) equipped with a cooled CCD camera (Andor, Ixon
cooled EMCCD). We used an oil immersion objective from Leica (HCX PL Apo, 100/NA=1.4 oil
Cs). The forward scattered light of the highly-refractive intracellular granules was recorded by
a silicon quadrant photodiode (S5981, Hamamatsu) in the back focal plane, allowing nanometer
precision detection of the granule position in the laser focus. The motion of a single granule in
the laser focus was tracked for approximately 3 sec at a sampling frequency of 22 kHz. We used a
laser power of approximately 0.05 W at the sample, rendering this technique nearly non-invasive.
The voltage signal from the photodiode was digitalized using home-written Labview algorithms.
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2 First-passage properties of persistent random walks

While the voltage signal is directly proportional to the particle position with respect to the trap
center, due to lack of knowledge of the precise optical conditions in the cell we could not convert
the voltage signal to absolute distance. The time averaged mean square displacement obtained
from this method is therefore given in arbitrary units.

2 First-passage properties of persistent random walks

We here detail the computations of the first passage properties in the persistent random walker
case.

We consider a cubic lattice in d dimensions, of size (X1, X2, . . . , Xd), with periodic boundary
conditions. B = (e1, e2, . . . , ed) is an orthogonal base of this lattice. The random walker starts
at r0 toward a given direction ei, and at each step, he has a probability p1 to continue in the
same direction, p2 to go in the opposite one, and p3 = (1− p1− p2)/(2d− 2) to choose one of the
orthogonal directions. Following [85], we note p1 = p3 + ε and p2 = p3 − δ.

2.1 Mean first passage time

We start from the backward Kolomogorov equation:

〈T〉(rT |r, ei) = p1〈T〉(rT |r+ei, ei)+p2〈T〉(rT |r−ei,−ei)+p3

∑

±ej∈B,j 6=i
〈T〉(rT |r+ej , ej)+1 (144)

where 〈T〉(rT |r, ei) is the ensemble-averaged mean first passage time to reach a target located in
rT , starting from r and when the last step has been along ei direction.

Using a discrete Fourier transform, this leads to:

〈T̃〉(rT |q, ei) + V e−2ıπq.rT = p1〈T̃〉(rT |q, ei)e2ıπq.ei + p2〈T̃〉(rT |q,−ei)e
−2ıπq.ei

+p3

∑

±ej∈B,j 6=i
〈T̃〉(rT |q, ej)e2ıπq.ej + V δ(q) (145)

The second term on the left hand is due to the fact that equation (144) is not valid for r = rT .
Indeed, equation (144) gives the first return time to rT , on the left hand, and the first passage
time from rT to rT (equal to 0) on the right hand. We thus have to add the first return time,
given by the Kac’ formula 1/Pstat(rT ) = V , on the left hand.

Considering equation (144) for both ei and −ei, we obtain

(
〈T̃〉(rT |q, ei)
〈T̃〉(rT |q,−ei)

)
=

(
1− εe2ıπq.ei δe−2ıπq.ei

δe2ıπq.ei 1− εe−2ıπq.ei

)−1

.

(
V
(
δ(q)− e−2ıπq.rT

)
+ p3f(q)

V
(
δ(q)− e−2ıπq.rT

)
+ p3f(q)

)

(146)
with

f(q) =
∑

ej∈B

(
〈T̃〉(rT |q, ej)e2ıπq.ej + 〈T̃〉(rT |q,−ej)e

−2ıπq.ej
)

(147)

A summation over all ei ∈ B gives for f(q)

f(q) = 2V
(
δ(q)− e−2ıπq.rT

)

∑

ej∈B

cos(2πq.ej)− (ε+ δ)

1 + ε2 − 2ε cos(2πq.ej)− δ2

1− 2p3

∑

ej∈B

cos(2πq.ej)− (ε+ δ)

1 + ε2 − 2ε cos(2πq.ej)− δ2

(148)
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We thus obtain

〈T̃〉(rT |q, ei) = V
1− (ε+ δ)e−2ıπq.ei

1 + ε2 − 2ε cos(2πq.ei)− δ2

δ(q)− e−2ıπq.rT

1− 2p3

∑

ej∈B

cos(2πq.ej)− (ε+ δ)

1 + ε2 − 2ε cos(2πq.ej)− δ2

(149)

After an inverse Fourier transform, and a shift of λ so that 〈T〉(rT |rT , ei) = 0 (equation (144)
is defined up to a constant), we retrieve equation (2.68):

〈T〉(rT |rS , eS) =
∑

q 6=0




1− (ε+ δ)e−2ıπq.eS

1 + ε2 − 2ε cos(2πq.eS)− δ2

1− e2ıπq.(rS−rT )

1− 2p3

∑

ej∈B

cos(2πq.ej)− (ε+ δ)

1 + ε2 − 2ε cos(2πq.ej)− δ2




(150)

2.2 Approximations

ε→ 1

We can approximate the MFPT for the case ε→ 1, using a small reorganization:

〈T(rT |rS)〉 =
V (δ − ε)
1− ε+ δ

+
2ε

(1 + ε+ δ)(1− ε+ δ)

∑

q 6=0

1− e2ıπq.(rS−rT )

1

d

∑

ej∈B

1

1 +
(ε− 1)2 − δ2

2ε(1− cos(2πq.ej))

(151)
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We focus on an square (d = 2), but the same calculation can be made in any dimension:

〈T(rT |rS)〉 =
X2(δ − ε)
1− ε+ δ

+
2ε

(1 + ε+ δ)(1− ε+ δ)

×




X−1∑

k=1

X−1∑

l=1

1− e2ıπq.(rS−rT )

1

2

∑

ej∈B,q.ej 6=0

1

1 +
(ε− 1)2 − δ2

2ε(1− cos(2πq.ej))

+

X−1∑

k=1|l=0

2
(

1− e2ıπq.(rS−rT )
)

1

1 +
(ε− 1)2 − δ2

2ε(1− cos(2πq.ex))

+

X−1∑

l=1|k=0

2
(

1− e2ıπq.(rS−rT )
)

1

1 +
(ε− 1)2 − δ2

2ε(1− cos(2πq.ey))




'
ε→1

X2(δ − ε)
1− ε+ δ

+
2ε

(1 + ε+ δ)(1− ε+ δ)

(
X−1∑

k=1

X−1∑

l=1

(
1− e2ıπq.(rS−rT )

)

×


1 +

1

2

∑

ej∈B,q.ej 6=0

(ε− 1)2 − δ2

2ε(1− cos(2πq.ej))


+ 2

X−1∑

k=1|l=0

(
1− e2ıπq.(rS−rT )

)

×
(

1 +
(ε− 1)2 − δ2

2ε(1− cos(2πq.ex))

)
+ 2

X−1∑

l=1|k=0

(
1− e2ıπq.(rS−rT )

)

×
(

1 +
(ε− 1)2 − δ2

2ε(1− cos(2πq.ey))

))

'
ε→1

X2(δ − ε)
1− ε+ δ

+
2ε

(1 + ε+ δ)(1− ε+ δ)

×
(

(X − 1)(X + 3)−
(
Xδ(rS−rT ).ex + 1

) (
Xδ(rS−rT ).ey + 1

)
+ 4
)

+
1− ε− δ
1 + ε+ δ

×
(

(X − 1)
X2 − 1

6
+ (rS − rT ).ex (X − (rS − rT ).ex) + (rS − rT ).ey (X − (rS − rT ).ey)

)

r →∞

We can approximate the discrete sum of equation (2.68) with an integral when all Xi →∞:

〈T(rT |rS)〉 ' V (δ − ε)
1− ε+ δ

(1− δ(rS , rT )) +
V (1 + ε2 − δ2)

(2π)d(1 + ε+ δ)(1− ε+ δ)

×
∫

[0,2π]d

(
1− eıq.(rS−rT )

)
dq

1− (ε− 1)2 − δ2

d

∑

ej∈B

cos(q.ej)

1 + ε2 − 2ε cos(q.ej)− δ2
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At large distances, r = rT − rS is great enough, namely that r = ‖r‖ =
√∑

i(r.ei)
2 � 1. We

develop the integral for small q, and we average this result for a given r = ‖r‖:

〈T(r)〉 ' V

(
δ − ε

1− ε+ δ
+ ∆

)
(1− δ(r)) +

V

(2π)d
1− ε− δ
1 + ε+ δ

×
∫

[−π,π]d

dq

‖q‖2

∫ π

0

(
1− eı‖q‖r cos(θ)

)
sin(θ)d−2dθ

∫ π

0
sin(θ)d−2dθ

' V

(
δ − ε

1− ε+ δ
+ ∆

)
(1− δ(r)) +

V

(2π)d
1− ε− δ
1 + ε+ δ

×
∫

[−π,π]d

dq

‖q‖2


1−

Jd/2−1(‖q‖r)Γ
(
d

2

)

(‖q‖r
2

)d/2−1




' V

((
δ − ε

1− ε+ δ
+ ∆

)
(1− δ(r)) +

1− ε− δ
1 + ε+ δ

(G0,d(0)−G0,d(r))

)
, (152)

where Jν(x) are the Bessel functions of the first kind, and G0,d the infinite Green function in d
dimensions. ∆ is a constant correction due to the small q expansion, that we can estimate:

∆ ' (1 + ε2 − δ2)

(1 + ε+ δ)(1− ε+ δ)

∫

[0,2π]d

dq

(2π)d
1

1− (ε− 1)2 − δ2

d

∑

ej∈B

cos(q.ej)

1 + ε2 − 2ε cos(q.ej)− δ2

−(ε− 1)2 − δ2

1 + ε2 − δ2

1

1− 1

d

∑

ej∈B
cos(q.ej)

2.3 Persistent pseudo-Green functions

We note Pei(r, t|rS , eS) the conditional propagator, namely the probability to be at the position r
at time t, when the last step have been following the vector ei, starting from rS with orientation
eS . For simplicity sake, we will skip rS and eS in the notation. The conditional propagator
satisfies the master Chapman-Kolmogorov equation:

Pei(r, t+1) = p1Pei(r−ei, t)+p2P−ei(r−ei, t)+p3

∑

ej∈B,j 6=i

(
Pej (r− ei, t) + P−ej (r− ei, t)

)
(153)

We can transform this equation successively using a discrete Fourier transform (assuming
periodic boundary conditions) and a Z transform:

P̂ei(q, z) =
∞∑

t=0

ztP̃ei(q, t) =
∞∑

t=0

zt
(X1−1,...,Xd−1)∑

r=(0,...,0)

Pei(r, t)e
−2ıπq.r, (154)
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where q = (k1/X1, k2/X2, . . . , kd/Xd). Equation (2.83) then become:

z−1
(
P̂ei(q, z)− P̃ei(q, t = 0)

)
=


p1P̂ei(q, z) + p2P̂−ei(q, z) + p3

∑

±ej∈B,j 6=i
P̂ej (q, z)


 e−2ıπq.ei(155)

= εP̂ei(q, z)e
−2ıπq.ei − δP̂−ei(q, z)e−2ıπq.ei + p3P̂ (q, z)e−2ıπq.ei(156)

Considering this equation for both ei and −ei, we obtain:

(
P̂ei(q, z)

P̂−ei(q, z)

)
=

(
1− εze−2ıπq.ei δze−2ıπq.ei

δze2ıπq.ei 1− εze2ıπq.ei

)−1

.

(
P̃ei(q, 0) + p3zP̂ (q, z)e−2ıπq.ei

P̃−ei(q, 0) + p3zP̂ (q, z)e2ıπq.ei

)

(157)

In particular, we have:

P̂ei(q, z) =
(1− εze2ıπq.ei)P̃ei(q, 0)− δze−2ıπq.eiP̃−ei(q, 0) + p3z(e

−2ıπq.ei − (ε+ δ)z)P̂ (q, z)

1 + ε2z2 − δ2z2 − 2εz cos(2πq.ei)
(158)

We then can determine P̂ (q, z) by summation over all ei:

P̂ (q, z) =

∑

ei∈B

(
1− (ε+ δ)ze2ıπq.ei

)
P̃ei(q, 0) +

(
1− (ε+ δ)ze−2ıπq.ei

)
P̃−ei(q, 0)

1 + ε2z2 − δ2z2 − 2εz cos(2πq.ei)

1− 2p3z
∑

ei∈B

cos(2πq.ei)− (ε+ δ)z

1 + ε2z2 − δ2z2 − 2εz cos(2πq.ei)

(159)

We then have an explicit expression for all P̂ei(q, z). We can then get an explicit expression
for pseudo-Green functions H(r, ei|rS , eS):

H(r, ei|rS , eS) =
∞∑

t=0

(Pei(r, t|rS , eS)− Pstat(r, ei)) , (160)

where rS is the initial position, eS the first direction chosen, and Pstat(r, ei) =
∏
iX
−1
i /(2d) is

the stationary probability. The initial condition gives P̃ei(q, 0) = δ(ei, eS) exp(−2ıπq.rS), where
δ(x,y) = 1 if x = y, else 0. We finally obtain:

H(r, ei|rS , eS) =
1∏

i

Xi

∑

q 6=0

e2ıπr.q

((
(1− εe2ıπq.ei)δ(ei, eS)− δe−2ıπq.eiδ(−ei, eS)

)
e−2ıπq.rS

1 + ε2 − δ2 − 2ε cos(2πq.ei)

+
p3(e−2ıπq.ei − (ε+ δ))P̂ (q, z = 1)

1 + ε2 − δ2 − 2ε cos(2πq.ei)

)
(161)

and

P̂ (q, z = 1) =

(
1− (ε+ δ)e2ıπq.eS

)

1 + ε2 − δ2 − 2ε cos(2πq.eS)
e−2ıπq.rS

1− 2p3

∑

ei∈B

cos(2πq.ei)− (ε+ δ)

1 + ε2 − δ2 − 2ε cos(2πq.ei)

(162)
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We remove the q = 0 case in the summation, because it correspond to the Pstat term. We can
check that we retrieve the brownian motion if we choose ε = δ = 0:

∑

±ei∈B
H(r, ei|rS , eS) =

1∏

i

Xi

∑

q 6=0

e2ıπq.(r−rS)

1− 1

d

∑

ei∈B
cos(2πq.ei)

(163)

2.4 Retrieving 〈T〉 using pseudo-Green functions

The first passage time from a given site rS with velocity eS to a target site rT is in fact a first
passage problem with 2d sites: we consider that all sites r are divided in 2d distinct sites, each
with a given velocity ei. Following [65], we have, for the mean first passage time 〈T〉(rT |rS , eS):

〈T〉(rT |rS , eS)

2dV
= −H(rT , eS |rS , eS) +

∑

ei∈B
P+
i H(rT , ei|rT , eS) + P−i H(rT ,−ei|rT , eS) (164)

V =
∏
iXi is the volume of the subdomain, and P±i the conditional splitting probabilities to

reach rT with a velocity ±ei starting from rS with a velocity eS . Those probabilities are given
by:




P+
1

P+
2

...
P−d


 =




H

(
rT rT
e1 e1

)
−H

(
rT rT
e2 e1

)
. . . H

(
rT rT
e1 −ed

)
−H

(
rT rT
e2 −ed

)

...
. . .

...

H

(
rT rT
e1 e1

)
−H

(
rT rT
−ed e1

)
. . . H

(
rT rT
e1 −ed

)
−H

(
rT rT
−ed −ed

)

1 . . . 1




−1

×




H

(
rT rS
e1 eS

)
−H

(
rT rS
e2 eS

)

...

H

(
rT rS
e1 eS

)
−H

(
rT rS
−ed eS

)

1



, (165)

where

H

(
rT rS
ei eS

)
= H (rT , ei|rS , eS) (166)

Knowing all the pseudo-Green functions, we retrieve an analytic expression for the first passage
time. I did not manage to link analytically those two expressions, but the numerical computation
of both expression (2.68) and (164) lead to the same result, as expected.

2.5 Reflective boundary extension

We can extend our formalism beyond periodic boundary conditions. We will here show how to
transform our previous results to treat reflective boundary conditions.

We can consider that a system of size X with reflective boundary conditions is equivalent to
a 2X large system with periodic boundary conditions. The slight difficulty is to define correctly
what happens when a random walker hit the border in the original network: we consider here
that the random walker stay at the same position, but the velocity is reflected by the wall. For
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the 2X system, the random walker perform a classical persistent random walk. In 1D, this can
be written as follow:

H�(r, ei|rS , eS) = H	(r + 1/2, ei|rS + 1/2, eS) +H	(s(r + 1/2), s(ei)|rS + 1/2, eS), (167)

where, H� is the pseudo-Green function for a X-large system with reflective boundaries, H	 for
a 2X-large system with periodic boundaries, 1 = {1} a vector, and s(.) the symmetry operator
by the x = X point. The vector 1/2 is added so that near the border, the random walker can
stay on the same position with a velocity reflected by the wall. We can write this expression as :

H�(r, ei|rS , eS) = (Id + s) ◦H	(r + 1/2, ei|rS + 1/2, eS), (168)

The operator Id + s apply only on r and on ei.
If we then go to the general case with d dimension, we can obtain a similar result:

H�(r, ei|rS , eS) =
∏

i

(Id + si) ◦H	(r + 1/2, ei|rS + 1/2, eS), (169)

with H� is the pseudo-Green function for a (X1, . . . , Xd)-large system with reflective boundaries,
H	 for a (2X1, . . . , 2Xd)-large system with periodic boundaries, 1 = (1, . . . , 1) a vector, and
si(.) the symmetry operator by the xi = Xi hyperplane. We thus have a sum of 2d terms. In
particular, d = 2 gives:

H�(r, ei|rS , eS) = H	(r + 1/2, ei|rS + 1/2, eS) +H	(sx(r + 1/2), sx(ei)|rS + 1/2, eS)

+H	(sy(r + 1/2), sy(ei)|rS + 1/2, eS)

+H	(sx ◦ sy(r + 1/2), sx ◦ sy(ei)|rS + 1/2, eS) (170)

This result has been checked numerically, and as shown in Figure 28, it fits perfectly the
simulations.

3 First-passage properties for a moving target

We here detail the computations of the first passage properties in the moving target case.
We consider a 1D segment of size L, and searcher and a target diffusing with a coefficient D, and

boundaries successively absorbing (first section) and reflective (second section). We transform
this problem with two moving particle to a 2D problem, with a single moving particle.

3.1 Encounter probability

We start from the standard 2D diffusion equation:

∂P

∂t
(x, y, t|x0, y0) = D

(
∂2P

∂x2
(x, y, t|x0, y0) +

∂2P

∂y2
(x, y, t|x0, y0)

)
(171)

where P (x, y, t|x0, y0) is the propagator.
The solution for a square of size L with absorbing boundaries is

P�(x, y, t|x1, x2) =
4

L2

∞∑

k=1

∞∑

l=1

sin

(
kxπ

L

)
sin

(
kx1π

L

)
sin

(
lyπ

L

)
sin

(
lx2π

L

)
e−

(k2+l2)Dπ2t

L2 .

(172)
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0 2 4 6 8
x

S

0

5

10

<
T

(r
)>
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Figure 28: Mean first-passage time for a 10× 10-large network with reflective boundaries, where
rs = (xS , 0), rT = (0, 0), eS = (1, 0), with xS ∈ [0, 9]. Here ε = −0.04 and δ = 0.32.
The black circles stand for numerical simulations, the red line for theoretical result of
equation (164).

The probability that a random walker diffusing in a 2D square of size L with absorbing bound-
ary hit a given wall is:

Probwall,�(x = L|x1, x2) =

∫ ∞

0

∫ L

y=0
−D ∂P (x, y, t|x1, x2)

∂x

∣∣∣∣
x=L

dydt

= − 4

π2

∞∑

k=1

∞∑

l=1

(−1)k
k

l

(
1− (−1)l

)
sin

(
kx1π

L

)
sin

(
lx2π

L

)
1

k2 + l2

= − 8

π2

∞∑

l=0

sin

(
(2l + 1)x2π

L

)

2l + 1

∞∑

k=1

(−1)kk

k2 + (2l + 1)2 sin

(
kx1π

L

)
. (173)

We then exploit the Fourier expansion of the sinh function (more precisely, the periodic function
equal to sinh between −π and π),

sinh(ax)

sinh(aπ)
= − 2

π

∞∑

n=1

(−1)nn

a2 + n2
sin(nx), (174)

to rewrite the probability Probwall,� to hit the wall at x = L,

Probwall,�(x = L|x1, x2) =
4

π

∞∑

l=0

sin

(
(2l + 1)x2π

L

)

2l + 1

sinh

(
(2l + 1)x1π

L

)

sinh ((2l + 1)π)
. (175)
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This expression simplifies when we introduce the approximation sinh((2l + 1)π) ≈ exp((2l +
1)π)/2, leading to

Probwall,�(x = L|x1, x2) ≈ 8

π

∞∑

l=0

sin

(
(2l + 1)x2π

L

)

2l + 1
sinh

(
(2l + 1)x1π

L

)
× exp (−(2l + 1)π)(176)

=
2

ıπ

∞∑

l=0




exp
(π
L

(ıx2 + x1 − L)
)2l+1

2l + 1
+

exp
(π
L

(−ıx2 − x1 − L)
)2l+1

2l + 1
(177)

−
exp

(π
L

(ıx2 − x1 − L)
)2l+1

2l + 1
−

exp
(π
L

(−ıx2 + x1 − L)
)2l+1

2l + 1




=
1

ıπ


ln




1 + exp
(π
L

(ıx2 + x1 − L)
)

1− exp
(π
L

(ıx2 + x1 − L)
)

1− exp
(π
L

(−ıx2 + x1 − L)
)

1 + exp
(π
L

(−ıx2 + x1 − L)
)


 (178)

− ln




1 + exp
(π
L

(ıx2 − x1 − L)
)

1− exp
(π
L

(ıx2 − x1 − L)
)

1− exp
(π
L

(−ıx2 − x1 − L)
)

1 + exp
(π
L

(−ıx2 − x1 − L)
)




 (179)

=
1

ıπ




ln




1 + ı
sin
(πx2

L

)

sinh

(
π(L− x1)

L

)

1− ı
sin
(πx2

L

)

sinh

(
π(L− x1)

L

)




− ln




1 + ı
sin
(πx2

L

)

sinh

(
π(L+ x1)

L

)

1− ı
sin
(πx2

L

)

sinh

(
π(L+ x1)

L

)







(180)

=
2

π


arctan




sin
(πx2

L

)

sinh

(
π(L− x1)

L

)


− arctan




sin
(πx2

L

)

sinh

(
π(L+ x1)

L

)





 (181)

We can use the exact expression (3.17) to obtain an exact expression of the encounter proba-
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bility:

PM (x1, x2) = = 1− Probwall(x = L|x1, x2)− Probwall(y = 0|x1, x2) (182)

= 1− (Prwall(x = L|x1, x2)− Prwall(x = L|x2, x1)

+Prwall(y = 0|x1, x2)− Prwall(y = 0|x2, x1)) (183)

= 1− (Prwall(x = L|x1, x2)− Prwall(x = 0|x1, x2)

+Prwall(y = 0|x1, x2)− Prwall(y = L|x1, x2)) (184)

= 2 (Prwall(x = 0|x1, x2) + Prwall(y = L|x1, x2)) (185)

=
8

π



∞∑

l=0

sin

(
(2l + 1)x2π

L

)

2l + 1

sinh

(
(2l + 1)(L− x1)π

L

)

sinh ((2l + 1)π)

+

∞∑

l=0

sin

(
(2l + 1)x1π

L

)

2l + 1

sinh

(
(2l + 1)x2π

L

)

sinh ((2l + 1)π)


 (186)

3.2 Mean first encounter time

We start with the propagator on the
√

2L ×
√

2L square, with absorbing boundaries. As previ-
ously, starting from (x0, y0), we have

P (x, y, t|x0, y0) =
2

L2

∞∑

k=1

∞∑

l=1

sin

(
kxπ√

2L

)
sin

(
kx0π√

2L

)
sin

(
lyπ√
2L

)
sin

(
ly0π√

2L

)
e−

(k2+l2)Dπ2t

2L2 .

We then compute the survival probability, S (t|x0, y0), namely the probability to still be in
the square at time t, starting from (x0, y0)

S (t|x0, y0) =

∫ √2L

0

∫ √2L

0
P (x, y, t|x0, y0)dxdy

=
16

π2

∞∑

k=0

∞∑

l=0

sin
(

(2k+1)x0π√
2L

)

2k + 1

sin
(

(2l+1)y0π√
2L

)

2l + 1
e−

((2k+1)2+(2l+1)2)Dπ2t

2L2 .
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〈T〉(x0, y0) =

∫ ∞

0
S (t|x0, y0)dt

=
32L2

Dπ4

∞∑

k=0

∞∑

l=0

sin
(

(2k+1)x0π√
2L

)

2k + 1

sin
(

(2l+1)y0π√
2L

)

2l + 1

1

(2k + 1)2 + (2l + 1)2

=
32L2

Dπ4

∞∑

k=0

sin
(

(2k+1)x0π√
2L

)

(2k + 1)3

∞∑

l=0




sin
(

(2l+1)y0π√
2L

)

2l + 1
−

(2l + 1) sin
(

(2l+1)y0π√
2L

)

(2k + 1)2 + (2l + 1)2




=
8L2

Dπ3

∞∑

k=0

sin
(

(2k+1)x0π√
2L

)

(2k + 1)3


1−

sinh
(

(2k+1)y0π√
2L

)
+ sinh

(
(2k+1)(

√
2L−y0)π√

2L

)

sinh ((2k + 1)π)




=
x0

2D

(√
2L− x0

)

− 8L2

Dπ3

∞∑

k=0

sin
(

(2k+1)x0π√
2L

)

(2k + 1)3

sinh
(

(2k+1)y0π√
2L

)
+ sinh

(
(2k+1)(

√
2L−y0)π√

2L

)

sinh ((2k + 1)π)
(187)

195





List of publications

This research work has led to several publications, that are listed here. Publications 1 and 2 were
related to my Master thesis, but are extensively used here. Publication 11 is not directly related
to this thesis, even if it uses the same global formalism for an application in chemistry.

1. S. Condamin, O. Bénichou, V. Tejedor, R. Voituriez & J. Klafter, First-passage times in
complex scale-invariant media”, Nature, 450 (2007), 77–80.

2. S. Condamin,V. Tejedor & O. Bénichou, Occupation times of random walks in confined
geometries: From random trap model to diffusion-limited reactions, Physical Review E, 76
(2007), 050102, R.

3. S. Condamin, V. Tejedor, R. Voituriez, O. Bénichou & J. Klafter, Probing microscopic
origins of confined subdiffusion by first-passage observables, PNAS, 105 (2008), 5675-5680.

4. O. Bénichou, B. Meyer, V. Tejedor & R. Voituriez, Zero Constant Formula for First-Passage
Observables in Bounded Domains, Physical Review Letters, 101 (2008), 130601.

5. R. Metzler, V. Tejedor, J.-H. Jeon, Y. He, W.H. Deng, S. Burov & E. Barkai, Analysis of
Single Particle Trajectories: From Normal to Anomalous Diffusion, Acta Physica Polonica
B, 40 (2009), 1315-1331.

6. V. Tejedor, O. Bénichou & R. Voituriez,Global mean first-passage times of random walks
on complex networks, Physical Review E, 80 (2009), 065104(R).

7. V. Tejedor & R. Metzler, Anomalous diffusion in correlated continuous time random walks,
Journal of Physics A-Mathematical and Theoretical, 43 (2010), 082002.

8. V. Tejedor, O. Bénichou, R. Voituriez, R. Jungmann, F. Simmel, C. Selhuber-Unkel, L.B.
Oddershede & R. Metzler,Quantitative analysis of single particle trajectories: mean maxi-
mal excursion method, Biophysical Journal, 98 (2010), 1364-1372.

9. V. Tejedor, O. Bénichou, R. Voituriez & M. Moreau, Response to targeted perturbations for
random walks on networks, Physical Review E, 82 (2010), 056106.

10. J-H. Jeon, V. Tejedor, S. Burov, E. Barkai, C. Selhuber-Unkel, K. Berg-Sørensen, L. Odd-
ershede & R. Metzler, In Vivo Anomalous Diffusion and Weak Ergodicity Breaking of Lipid
Granules, Physical Review Letters, 106 (2011), 048103.
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Les propriétés de premier passage en général, et parmi elles le temps moyen de premier
passage (MFPT), sont fréquemment utilisées dans les processus limités par la diffusion. Les
processus réels de diffusion ne sont pas toujours Browniens : durant les dernires années,
les comportements non-Browniens ont été observés dans un nombre toujours croissant de
systmes. Les milieux biologiques sont un exemple frappant o ce genre ce comportement a
été observé de faon répétée. Nous présentons dans ce manuscrit une méthode basée sur les
propriétés de premier passage permettant d’obtenir des informations sur le processus réel
de diffusion, ainsi que sur l’environnement o évolue le marcheur aléatoire. Cette méthode
permet de distinguer trois causes possibles de sous-diffusion : les marches aléatoires en
temps continu, la diffusion en milieu fractal et le mouvement brownien fractionnaire. Nous
étudions également l’efficacité des processus de recherche sur des réseaux discrets. Nous
montrons comment obtenir les propriétés de premier passage sur réseau afin d’optimiser
ensuite le processus de recherche, et obtenons un encadrement général du temps moyen
de premier passage global (GMFPT). Grâce à ces résultats, nous estimons l’impact sur
l’efficacité de recherche de plusieurs paramtres, notamment la connectivité de la cible, la
mobilité de la cible ou la topologie du réseau.

Mots-clés: Propriétés de premier passage, diffusion anormale, marches aléatoires, réseaux
discrets.

Résumé



Eigenschaften der First Passage, dem erstmaligen Überschreiten eines festgelegten Gren-
zwertes, und die Mean First Passage Time (MFPT) im besonderen sind häufig benutzte
Methoden zur Charakterisierung von stochastischen Prozessen. Dabei sind reale Prozesse
nicht immer Brownscher Natur: in den letzten Jahren wurde nicht-Brownsches Verhalten in
einer zunehmenden Anzahl von Systemen beobachtet. Insbesondere Single particle tracking
Experimente in lebenden Zellen sind ein frappierende Beispiel, wo nicht-Brownsches
Verhalten in der Form von Subdiffusion vielfach beobachtet wird. Wir schlagen hier eine
Methode vor, die auf First Passage Eigenschaften beruht, um weitergehende physikalische
Informationen über den zugrundeliegenden stochastischen Prozess sowie die physische
Umgebung, in der der Diffusionsprozeß abläuft, zu gewinnen. Diese Methode erlaubt es
uns, zwischen den drei prominenten Modelle der Subdiffusion zu unterscheiden: Continuous
Time Random Walks, Diffusion auf Fraktalen und fractional Brownian motion. Wir
untersuchen außerdem Random Walks auf diskreten Netzwerken. Wir zeigen, wie via First
Passage Eigenschaften auf diesen Netzwerken die diffusive Suche nach einem bestimmten
Ziel optimiert werden kann. Wir erhalten allgemeine Schranken für die globale MFPT.
Mit diesen Ergebnissen schätzen wir die Effizienz des Suchprozesses ab, wenn verschiedene
Parameter wie die Ziel-Konnektivität, Bewegung des Ziels oder Veränderungen der Netzw-
erktopologie stattfinden.

Stichworte: Eigenschaften der First Passage, Diffusionsprozess, nicht-Brownsches Verhal-
ten, diskrete Netzwerke.

Zusammenfassung



First-passage properties in general, and the mean first-passage time (MFPT) in particular,
are widely used in the context of diffusion-limited processes. Real processes are not always
purely Brownian: in the last few years, non-Brownian behaviors have been observed in
an increasing number of systems. Especially single particle experiments in living cells
provide striking examples for systems in which non-Brownian behavior of subdiffusive
kind has been repeatedly observed experimentally. Here we present a method based on
first-passage properties to gain more detailed insight into the actual physical processes
underlying the anomalous diffusion behavior, and to probe the environment in which this
diffusion process evolves. This method allows us to discriminate between three prominent
models of subdiffusion: continuous time random walks, diffusion on fractals, and fractional
Brownian motion. We also investigate the search efficiency of random walks on discrete
networks for a specific target. We show how to compute first-passage properties on those
networks in order to optimize the search process, as well as general bounds on the global
mean first-passage time (GMFPT). Using those results, we estimate the impact on the
search efficiency of several parameters, namely the target connectivity, the target motion,
or the network topology.

Keywords: First-passage properties, anomalous diffusion, random walks, discrete networks.
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