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1
Motivation and objectives

About supernovae

Supernovae are very luminous and compared to usual astrophysical time scales very short-
lived phenomena that are related to explosions of stellar objects. Due to observational
limitations only a few progenitor stars have been detected before they explode. Thus, a
supernova, which commonly constitutes a final phase in the stellar evolution, reveals that
a star has existed at this location. The brightness of a supernova may rise to such an
extent that its peak luminosity is of the same order of magnitude as its host galaxy (see
Figure 1.1). Supernovae are responsible for galactic chemical evolution. The reason are
the nucleosynthesis processes in the center of massive stars that lead to the production of
heavy elements which are released during the supernova explosion (Burbidge et al., 1957).1

In addition, the supernova breakout itself may lead to the production of heavy elements,
since physical conditions for thermonuclear reaction processes in the explosion are achieved
(e.g. Seeger et al., 1965; Arnett, 1971b; Woosley et al., 1973). It is also believed that star
formation can be triggered by supernovae. The pressure wave released from a supernova
may compress the surrounding interstellar medium, leading to a gravitational collapse in
molecular clouds that eventually induces star formation (e.g. Preibisch & Zinnecker, 1999,
2001; Prialnik, 2000). In this sense, there is a cycle between the destructions and births of
stars. Younger star generations, however, will consequently have a larger fraction of heavier
elements (metallicity) that were produced in the nucleosynthesis processes in older stars.
Moreover, a subclass of supernovae shows very homogeneous features that can be used for
applications in cosmology (Kowal, 1968; Colgate, 1979). Investigations of these supernovae
have led to the surprising conclusion that we are living in an accelerating expanding universe
(Perlmutter et al., 1999; Riess et al., 1998, 2004).

1The famous work of Burbidge et al. (1957) is also called the B2FH paper (named after the initials of the
authors).
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1 Motivation and objectives

Fig. 1.1: The Type Ia supernova SN 2002bo, discovered in the spiral galaxy NGC 3190 in march
2002 (Benetti et al., 2004).

Historical Overview

In December 185 AD a guest star that suddenly appeared and slowly vanished was reported
by Chinese authors in the Hou Hanshu (Zhao et al., 2006).2 In April 1054 AD a new star
in the sky was described in several sources (mostly again in Chinese documents) where we
can observe the famous Crab Nebula today. In early modern Europe it was Tycho Brahe in
1572 and Johannes Kepler in 1604 who discovered new stars. Their publications about these
observations led to a revolution in the universally accepted opinion of the sky. Fritz Zwicky
and Walter Baade proposed in 1934 the term Supernova for these bright events (Baade &
Zwicky, 1934; Zwicky, 1940). Zwicky was also the first who suggested in 1938 that supernovae
are induced by a gravitational collapse. With Baade he pioneered the theory that supernovae
may produce neutron stars (Zwicky, 1938). Due to a continuous increase in observations it
was revealed that supernovae can have very different features. Therefore, they have been
subdivided into two classes (Minkowski, 1941). Type I supernovae show no hydrogen in their
spectra which is present in Type II supernovae. In contrast to Zwicky’s theory, no neutron

2The history of the later Han Dynasty
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star could be identified in many Type I supernovae.3 Instead, lines of intermediate mass
elements like silicon appeared in the spectra. Fred Hoyle and William Fowler proposed in
1960 that these events may result from thermonuclear explosions of white dwarf stars (Hoyle
& Fowler, 1960). Therefore, these supernovae that are called Type Ia supernovae (SNe Ia)
have a fundamentally different explosion mechanism than all other subclasses of supernovae.
For the latter it is commonly believed that these explosions originate from the gravitational
core collapse of massive stars.

SNe Ia seem to have remarkably homogeneous features. Charles Kowal was the first to
use the homogeneity in the brightness of these objects to measure cosmological distances
(Kowal, 1968). However, the improvements of observational methods and the associated
increasing number of observed supernovae revealed that there are some variations in the
spectra and light curves within the class of SNe Ia. Therefore, these events are further
subdivided into normal and peculiar SNe Ia (Branch et al., 1993), where the latter may
show pronounced anomalies in the spectra and light curves, so that they cannot be used
for cosmological distance measurements anymore. However, also the normal SNe Ia show a
certain degree of variations that affect the applicability to use them as cosmological distance
indicators. It is therefore desirable to understand the observed variations on a physical
basis. Since this issue remains unresolved to date, one tries to calibrate these variations with
specific correlations between peak luminosities, spectral properties and light curve shapes.
A particularly successful model is the Phillips relation that describes a correlation between
the peak luminosity and the decline of the light curve in the first 15 days after approaching
its maximum (Phillips, 1993). In 1999, investigations of the research groups HZT (High-z
Supernova Search Team) and SCP (Supernova Cosmology Project) showed independently
that the absolute brightnesses of SNe Ia in far away galaxies are dimmer than expected for
a matter-dominated universe. Their results lead to the discovery that our universe currently
undergoes an accelerating expansion (Perlmutter et al., 1999; Riess et al., 1998, 2004).4 The
reason of this acceleration may be explained by the existence of a dark energy, of which
the properties are still controversially discussed (e.g. Huterer & Turner, 1999; Carroll, 2001;
Caldwell et al., 1998, 2003).

The delayed detonation model of Chandrasekhar-mass white dwarfs

Since SNe Ia have attained a crucial importance for cosmology, we need to understand the
physics of these objects. The biggest challenge in this context is to find a physically moti-
vated model for SN Ia explosions that can reproduce the homogeneous features, but has still
the capability of explaining the observed variations. In addition, a model has to account for
the observed correlation between the brightness of an event and the age of the host stellar
population (Gallagher et al., 2008) and it must predict the observed rate of SN Ia explosions
(e.g. Ruiter et al., 2009). There is a high probability that not all SNe Ia can be described
with a single scenario. To develop a reliable SN Ia model we need information about the
progenitor system. In contrast to some core collapse supernovae, a progenitor system for
a SN Ia explosion has not been identified yet, hence valuable knowledge of the origin of
SNe Ia is not available directly. Therefore, information of these explosions can only be in-
directly derived from the observed light curves and spectra. Several theoretical scenarios of
the progenitor system and the explosion mechanism have been proposed from these obser-
vations. One popular progenitor system invokes the so-called Chandrasekhar-mass explosion

3There are also some Type II supernovae where no neutron star has been found so far (e.g. SN 1987A).
4S. Perlmutter, B. P. Schmidt and A. Riess received the Nobel Prize in Physics in 2011 for this discovery.
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1 Motivation and objectives

model. Characteristic for this model is that all white dwarfs have the same mass when they
explode, which may explain the main homogeneous features. For the explosion mechanism
in this model the delayed detonation scenario (Khokhlov, 1991a) is particularly successful
in explaining several main features of SNe Ia. Here a thermonuclear burning front (com-
monly described as a flame) starts out as a subsonic deflagration that propagates through
heat conduction processes. In the later explosion phase a physical mechanism leads to a
Deflagration-to-Detonation Transition (DDT), where the onset of a supersonic detonation
affects the further explosion dynamics.

Objectives and organization of the thesis

Despite the success of the delayed detonation model, the physics of the DDT is not well
understood. However, since the work of Khokhlov (1991a), many studies in this field have
been carried out from which we can derive necessary constraints for DDTs in SNe Ia. These
constraints are the starting point of this thesis. From the relevant quantities for a DDT we
develop a new model that includes the physics of a DDT according to our current knowledge.
This DDT model is implemented in a numerical hydrodynamic code and applied to three-
dimensional large-scale simulations that follow the explosion of the whole white dwarf on the
simulation grid. The main focus of the model are the properties of turbulence. Turbulence
occurs due to different instabilities during the deflagration phase and may play a fundamental
role in the mechanism that triggers a DDT. The DDT process is not resolved in our full-
star simulations, so that the DDT quantities have to be modeled on unresolved scales in
an appropriate way. The turbulent evolution depends strongly on the properties of the
deflagration which in turn depend on the unknown ignition process of the deflagration flame.
Therefore, different ignition scenarios of the deflagration have to be taken into account as
an additional model parameter within the studies of DDTs. The main issues and questions
on which this thesis focuses are given in the following:

1. An important basic question is whether the properties of turbulence at the deflagration
flame are suitable for the occurrence of DDTs. The analysis of Röpke (2007) indicates
that turbulence may be strong enough to trigger a DDT, but we intend to investigate
this issue in more detail.

2. Since we perform numerical simulations we need to find out how the necessary physical
constraints on delayed detonations can be treated in a numerical approach properly.
The DDT process is not resolved in our studies, so that these constraints are imple-
mented in a so-called subgrid-scale (SGS) model. What are the requirements to keep
this DDT-SGS model robust and resolution-independent?

3. Can three-dimensional simulations of delayed detonations that use the new DDT-SGS
model reproduce the observed variations in the brightness of normal SNe Ia? What are
the effects of different ignition scenarios of the deflagration and the associated different
evolutions of the turbulent deflagration on the DDT model? What are the immediate
consequences for the dynamics of the ensuing detonation phase?

4. Most of the values of the DDT quantities are not well known and we cannot deter-
mine these values in our large-scale simulations. However, we intend to find out how
the explosion brightness can be controlled with the DDT model. To what extent is a
variation of the values of the DDT quantities or a different evolution of the deflagra-
tion the decisive parameter that determines the explosion brightness? Can we place
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any constraints on DDT quantities, so that the obtained range of brightnesses in the
simulations is largely consistent with the observed variations in the brightness of nor-
mal SNe Ia? Can we further derive any necessary constraints for DDTs to occur in
deflagrations of white dwarfs generally?

To address these issues, the thesis is organized as follows: In Chapter 2 our current under-
standing of SNe Ia is discussed. The properties of turbulence in the deflagration phase and
the known constraints on DDTs are described in Chapter 3. In Chapter 4 the hydrodynamic
code LEAFS that is used to carry out the simulations of this work and the initial white dwarf
model are explained. The implementation of the DDT model and the tests in simulations
are described in Chapter 5 where we will address the issues (1) and (2). In Chapter 6 we
tackle issue (3) where we apply the DDT model to different ignition setups of the deflagra-
tion and investigate the evolution of the explosions in simulations of pure deflagrations and
delayed detonations. To address issue (4) a detailed parameter study of DDT simulations is
performed, of which the results are discussed in Chapter 7. In Chapter 8 a summary of the
thesis and an outlook of further applications and projects are given.
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2
Type Ia Supernovae

In this chapter the current knowledge of SNe Ia and the derived models are described. Since
the progenitor systems are not identified yet, theoretical models have been developed from
observational results. In Section 2.1 we summarize the main observational properties of
SNe Ia. The theoretical progenitor scenarios are given in Section 2.2. In Section 2.3 the
explosion models are discussed.

2.1 Observational properties of Type Ia Supernovae

SNe Ia are classified by the absence of hydrogen and the presence of silicon lines in the early
spectra. The observations reveal that apart from the homogeneous features there are also
events that show a higher degree of anomalies in the light curves and spectra. Therefore,
SNe Ia are subdivided into normal and peculiar SNe Ia (Branch et al., 1993). While in
the beginning of this separation 83 - 89% appeared to be of normal type, the improved
observations show that the fraction of peculiar SNe Ia is about 30% (Li et al., 2011).

2.1.1 Normal SNe Ia

Light curves

For a normal SN Ia there is a steep rise in the luminosity that approaches a maximum of
about MB ≈ MV ≈ −19.3 mag1 at about 20 days after the onset of the explosion (Riess
et al., 1999; Hillebrandt & Niemeyer, 2000). The bolometric luminosity at this time is
Lbol ≈ 1043 erg s−1 (Contardo et al., 2000). After maximum there is a steep decline of
about 3 mag in the following 30 days. Normal SNe Ia obey the Phillips relation, hence for
brighter explosions, a slower decay of the luminosity after the maximum of the light curve is
observed (Phillips, 1993; Hamuy et al., 1996; Höflich et al., 1996; Phillips et al., 1999). The
later evolution is characterized by a weak exponential decline with a rate of about 1 mag per
month. Observations in the infrared show a second maximum that appears approximately
20 - 30 days after the first one (e.g. Suntzeff, 2003; Contardo et al., 2000). The overall

1B = blue band (≈ 445 nm), V = visible band (≈ 550 nm) (e.g. Johnson & Morgan, 1953)
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release of kinetic energy is of the order of 1051 erg (e.g. Khokhlov et al., 1993). There is no
appreciable emission of radio waves and X- and gamma rays.

Spectra

The spectra at the time of peak luminosity are dominated by blue-shifted lines of interme-
diate mass elements, such as SiII, MgII, CaII and OI. In particular, a deep absorption line
at a wavelength of about 615 nm that is attributed to singly ionized silicon, is a charac-
teristic feature for SN Ia spectra. Since the inner part of the star remains opaque at this
time we see the chemical composition of the outer expanding envelope. The expansion ve-
locities, determined from the Doppler shift of the blue-shifted spectral lines is of the order
of 104 km s−1 (Filippenko, 1997). Two weeks after peak luminosity, the central part of the
star becomes optically visible. The spectra show now FeII lines and the intermediate mass
elements (except for CaII) have gone. About one month after peak luminosity the supernova
enters the so-called nebular phase, where the outer layers become completely transparent
for optical radiation. Now the spectra are dominated by forbidden FeII, FeIII, and CoIII
lines (Axelrod, 1980). During the temporal evolution the Co lines lose intensity, while the
intensity in the Fe lines grows.

Occurrence

While core collapse supernovae occur only in spiral and irregular galaxies, and here predom-
inantly in spiral arms and HII regions, the SNe Ia are found in all types of galaxies. In
spiral galaxies they are also less concentrated in spiral arms or in the vicinity of HII regions
than core collapse supernovae. The rate of nearby SNe Ia is about 0.2 SNu2 (Cappellaro
et al., 1999). Mannucci et al. (2005) showed that SNe Ia occur more frequently in spiral and
irregular galaxies than in elliptical galaxies.

Summary

From the observational properties one can conclude that the light curves of SNe Ia are pow-
ered by the decay chain 56Ni → 56Co → 56Fe (Truran et al., 1967; Colgate & McKee, 1969).
The half-life of 56Ni is approximately 6.1 days and of 56Co 77.3 days. Before approaching
peak luminosity the outer layers are so dense that due to high opacities the radiation from
the 56Ni decay can hardly escape. By approaching peak luminosity at about 20 days, most
of the 56Ni has already decayed to 56Co, so that a significant part of the further decline of
the light curve is determined by the 56Co decay (Kuchner et al., 1994). From light curves
and spectra we can estimate the amount of produced 56Ni (Arnett, 1982; Arnett et al., 1985)
which is in the range of approximately 0.4 . . . 0.9M�3 for normal SNe Ia (Contardo et al.,
2000; Stritzinger et al., 2006; Mazzali et al., 2007). From the 56Ni yield one can further find
an explanation for the Phillips relation. Brighter SN Ia explosions produce more 56Ni that
also leads to an increase of the amount of iron group elements. The high densities of these
elements causes high opacities that in turn broaden the light curve (Mazzali et al., 2007).
It should be noted that a strong neutronization during the thermonuclear burning at high
densities leads to an enhanced production of stable isotopes of the iron group (e.g. Seiten-
zahl et al., 2009b) that in turn affects the opacities and hence the light curve. This is why

21 SNu = 1 supernova per century per 1010 LB� (where LB� ≈ 5.2 · 1032 erg s−1 is the solar luminosity in

the B-band)
31M� = 1 solar mass ≈ 1.989 · 1033 g
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a relationship between the brightness of an explosion and the produced 56Ni holds only up
to a certain extent. For the second maximum seen in the infrared there are several theories,
but it is most probable that it results from ionization processes of iron group elements in
the outer ejecta (Kasen, 2006).

Since SNe Ia occur in all types of galaxies and stellar populations of very different ages,
the exploding stellar objects cannot be short-living massive stars. Due to the absence of a
compact remnant associated with the lack of radio waves and X- and gamma rays, neutron
stars and black holes seem not to originate from SN Ia explosions. From these considerations
it is generally believed that SNe Ia are the result of thermonuclear explosions of white dwarfs
as proposed by Hoyle & Fowler in 1960.

2.1.2 Peculiar SNe Ia

1991T-like objects

1991T -like objects (Phillips et al., 1992) contribute at least 9% to all SNe Ia (Li et al.,
2011). They are named after the prototype supernova SN 1991T and are characterized by
a higher brightness than those of normal SNe Ia. The peak luminosity of these events is on
average −19.6 mag and about 1M� of 56Ni is needed to power the light curve (Spyromilio
et al., 1992; Mazzali et al., 1995). These supernovae also obey the Phillips relation, hence
their light curves appear broader than those of normal SNe Ia. In the early spectra, neither
SiII nor CaII lines are found (Phillips et al., 1992). In contrast, spectral lines of highly
excited FeIII are identified (Filippenko et al., 1992b). In the later phase, the spectra tend
to adjust gradually to that of normal SNe Ia (Phillips et al., 1992). These supernovae seem
to produce more iron group and less intermediate mass elements than normal SNe Ia. They
are predominantly found in spiral galaxies in regions of recent star formation.

Superluminous objects

Rarer but even brighter than the 1991T-like objects are the so-called superluminous events.
They reach peak luminosities up to −20 mag (Yamanaka et al., 2009). The amount of 56Ni
needed to achieve such high luminosities is 1.2 . . . 1.7M� (Howell et al., 2006; Hicken et al.,
2007; Silverman et al., 2011; Taubenberger et al., 2011). They have a very slow decline
rate in the light curve which does not obey the Phillips relation anymore. Also the main
homogeneous features that are found in the spectra of normal SNe Ia are lost. There is some
evidence that superluminous events preferentially occur in regions of recent star formation
(Silverman et al., 2011).

1991bg-like objects

1991bg-like objects (Filippenko et al., 1992a; Leibundgut et al., 1993) named after the pro-
totypical supernova SN 1991bg, are faint events with peak luminosities in the range from
−16.9 mag to −17.9 mag. They merely produce about 0.1M� of 56Ni (Mazzali et al., 1997).
At least 15% of all SNe Ia seem to fall into this subclass (Li et al., 2011). However, the real
number of these objects may be highly underestimated, since due to their low brightness an
uncertain fraction of them may elude detection. The light curves show a rapid decline that
does not obey the Phillips relation (e.g. Garnavich et al., 2004; Hicken et al., 2009). Charac-
teristic for their spectra is the absence of the second maximum in the infrared. The spectra
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show predominantly lines of intermediate mass elements and only weak lines of iron (Maz-
zali et al., 1997). There is a tendency for these objects to occur preferentially in elliptical
galaxies in old stellar populations (Sullivan et al., 2006).

Summary

From the observations of peculiar SNe Ia, there is no direct conclusion whether the majority
or at least some of them are just extreme outliers of normal SNe Ia, or if a part of these
events must be considered as an independent class with an own progenitor system. It is
remarkable that between the 1991bg-like objects and the normal SNe Ia there seems to be a
gap in the 56Ni yields of approximately 0.1 . . . 0.4M�. In this range only a few events have
been found so far, like SN 2005hk (see Phillips et al., 2007). The 1991bg-like objects seem to
have similar light curve and spectral properties (Garnavich et al., 2004; Taubenberger et al.,
2008) that are distinct from the normal SNe Ia. This may indicate that these objects have
a progenitor system and/or an explosion mechanism that is different from those of normal
SNe Ia. Also the superluminous events, where a large amount of 56Ni has to be produced in
the explosion process may not be easily explained with the same scenario that is favored for
normal SNe Ia.

2.2 Progenitor systems

As described at the end of Section 2.1.1 it is believed that the cause of normal SNe Ia is a
white dwarf that undergoes a thermonuclear explosion. A white dwarf is a stable object of
high density where the pressure of the degenerate electron gas compensates for self-gravity.
A spontaneous explosion seems improbable, so that an isolated white dwarf will stay in this
equilibrium forever, where merely its temperature declines and density increases on very
long time scales (e.g. Lesaffre et al., 2006). Therefore, it is believed that SNe Ia occur only
in close binary systems, in which a companion star plays a crucial role in the evolution of
the white dwarf toward its explosion. Due to mass accretion from the companion onto the
white dwarf, the latter may become unstable until physical conditions are achieved that lead
to a thermonuclear explosion (see Section 2.3).

White dwarfs can be composed of pure helium or a mixture of carbon/oxygen or oxy-
gen/neon. The mass of helium white dwarfs is usually lower than 0.45M� (Iben & Tutukov,
1985). Due to mass accretion the helium may ignite in which case the thermonuclear com-
bustion produces solely iron group elements and no intermediate mass elements (Nomoto &
Sugimoto, 1977; Woosley et al., 1986), inconsistent with observations. White dwarfs that
are composed of oxygen and neon show in numerical simulations that they preferentially
collapse to neutron stars (Saio & Nomoto, 1985; Nomoto & Kondo, 1991; Gutierrez et al.,
1996). In addition, these white dwarfs are probably not numerous enough to come into ques-
tion for SN Ia explosions (Livio & Truran, 1992). Therefore, carbon/oxygen white dwarfs
seem to be the most appropriate candidates for SN Ia explosions. The physical properties
and composition of the companion star, however, are highly uncertain. Depending on the
type of the companion, different theoretical models have been proposed.

2.2.1 Single-degenerate scenario

In the single-degenerate scenario (Whelan & Iben, 1973; Nomoto, 1982; Iben & Tutukov,
1984) the companion is either a main sequence star, a helium star or a red giant. The distance
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between both components is so close that the companion fills its Roche lobe, leading to a
continuous mass transfer of hydrogen or helium from the companion onto the surface of the
white dwarf. If the companion is a red giant the mass transfer may also occur by stellar
winds.

Hydrogen-accreting white dwarf and the Chandrasekhar-mass explosion model

In the case of the accretion of hydrogen-rich material, the hydrogen burns at the surface of
the white dwarf to helium first that further burns to carbon. In this way, the mass of the
white dwarf increases slowly. There is an upper limit for the mass of a white dwarf at which
the pressure of the degenerate electron gas cannot compensate for self-gravity anymore. This
mass is called the Chandrasekhar limit MCH (Chandrasekhar, 1931) which is approximately
MCH ≈ 1.4M� for a non-rotating white dwarf. For masses M > MCH a gravitational
collapse will turn the white dwarf into a neutron star. However, under certain circumstances
the white dwarf may explode just before its mass has reached MCH. When approaching
MCH, the central density increases rapidly above 109 g cm−3. The temperature becomes
high enough for the carbon ignition, which marks the beginning of the so-called simmering
phase (see Section 2.3.1). At the end of this phase, a thermonuclear runaway sets in that
eventually leads to the explosion and destruction of the whole white dwarf. This model is
called the Chandrasekhar-mass explosion model.

Since all white dwarfs have the same mass at the time of the explosion, this model can
explain some of the homogeneous features of SN Ia light curves and spectra. The observed
variations can be mainly explained by different ignition and explosion dynamics (see Sec-
tion 2.3) which in turn partially depend on the carbon/oxygen ratio, metallicity and rotation
of the white dwarf. The main weakness of the Chandrasekhar-mass explosion model is that
depending on the initial mass and rotation of the binary system, there is only a small win-
dow for allowed accretion rates at which the additional mass has to be transferred onto the
surface of the white dwarf. In the case of hydrogen transfer, Nomoto & Kondo (1991) give
an accretion rate of ∼ 10−7M� per year. If the accretion rate is of this order, the accreted
material can burn in a stable way to heavier elements at the surface of the white dwarf.
The produced heat in this process slowly penetrates the interior of the white dwarf, so that
its center is continuously heated up to a point where conditions for the carbon fusion are
achieved just before MCH is reached. If the mass transfer occurs too fast, carbon ignites at
the surface, which will turn the white dwarf into an oxygen/neon white dwarf, eventually
leading to a collapse to a neutron star. If the accretion rate is too slow a constant fusion of
the material at the surface of the white dwarf is not possible for a longer time and some of
the accreted material will be expelled as repeated novae breakouts.

The problem of the required accretion rates is related to the question of whether the
Chandrasekhar-mass explosion model can explain the observed SN Ia rates. Following Ruiter
et al. (2009) the observed SN Ia rates are several orders of magnitude higher than the ex-
pected rates from exploding hydrogen accreting Chandrasekhar-mass white dwarfs. Further-
more, it is expected that the nuclear hydrogen burning at the surface of the white dwarf will
release detectable soft X-rays (Kahabka & van den Heuvel, 1997). The X-ray emissions of
nearby elliptical galaxies, however, seem to be far too low to explain the observed SN Ia rates
with exploding hydrogen accreting Chandrasekhar-mass white dwarfs (Gilfanov & Bogdán,
2010).

Another question is whether the hydrogen itself should be detectable during the supernova
breakout. Since there are no hydrogen lines in SN Ia spectra one can conclude that the
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amount of hydrogen in the system must be so low that it eludes direct detection. However,
it is believed that when the ejecta of the exploding white dwarf collides with the companion
star, some of the hydrogen rich material in the outer layer of the companion is stripped off
and mixed into the ejecta (Marietta et al., 2000), which may have an effect on the spectra.
Pakmor (2010) showed that only 0.01M� of hydrogen rich material is stripped off from the
companion by the impact and mixed into the ejecta, which is lower than the current detection
limit. There is also the possibility that the amount of hydrogen of the system at the time
where the supernova breaks out is only marginal. One can assume that apart from the mass
growth the white dwarf also gains a substantial amount of angular momentum during the
accretion process that may postpone the explosion (Di Stefano et al., 2011; Justham, 2011).
During this delay, the companion star may exhaust its hydrogen-rich envelope and shrink to
a certain degree, so that before approaching the explosion phase, the companion does not
fill its Roche lobe anymore (Justham, 2011). When the white dwarf eventually explodes, the
interaction between the ejecta and the shrunken companion is expected to be much lower.

Helium-accreting white dwarf and the sub-Chandrasekhar mass explosion model

In the case of helium accretion from a helium star (Woosley & Weaver, 1994), only the
helium needs to be burned to carbon. There is only marginal X-ray emission, since the
nuclear energy release of the fusion from helium to carbon is far lower than the fusion of
hydrogen to helium. Hence, these systems would be more consistent with the observations
of Gilfanov & Bogdán (2010), but the calculations of Ruiter et al. (2009) show that these
systems seem to be not frequent enough to explain the observed rates of SNe Ia. In this
scenario, however, there is the possibility that the white dwarf explodes at a time when its
mass is far below MCH. In this sub-Chandrasekhar mass explosion model the helium is not
steadily burned, so that the white dwarf may be enveloped by a degenerate helium shell.
If the mass of this shell grows large enough, it may become dynamically unstable leading
to a detonation that spreads over the entire surface of the white dwarf. This in turn can
trigger a second detonation in the center of the carbon/oxygen core due to the convergence
of shock waves that originate from the detonation of the helium shell (Woosley & Weaver,
1994; Livne & Arnett, 1995).

To a certain extent, the sub-Chandrasekhar mass explosion model can also be applied to
systems where initially hydrogen is accreted that burns to helium at the surface of the white
dwarf (e.g. Cassisi et al., 1998; Piersanti et al., 1999, 2000). In contrast to the Chandrasekhar-
mass explosion model, a far lower mass has to be accreted from the companion star until the
explosion occurs, so that the sub-Chandrasekhar mass explosion model is more consistent
with the observed SN Ia rates. Fink et al. (2007) showed that a helium shell of only 0.1M�
is already sufficient to trigger the carbon/oxygen detonation. Differences in the 56Ni yields
can be obtained from different masses and densities of the white dwarfs. In particular,
Fink et al. (2010) and Sim et al. (2010) showed that the sub-Chandrasekhar mass explosion
model can reproduce the whole observed variations in the brightness of normal SNe Ia.
However, radiative transfer calculations by Kromer et al. (2010) for these models showed
some discrepancies of the synthetic light curves and spectra with observations.

2.2.2 Double-degenerate scenario

In the double-degenerate scenario (Iben & Tutukov, 1984; Webbink, 1984) both components
of the binary progenitor system are white dwarfs. In the beginning (when the formation of
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the second white dwarf is completed) the distance between both white dwarfs is commonly
so large that mass transfer is impossible. However, the system loses angular momentum due
to emission of gravitational waves, leading to a continuous decrease in the distance between
both components. When one of the white dwarfs fills its Roche lobe, mass transfer sets in,
where the stability of the transfer depends strongly on the mass ratio of the white dwarfs.
If one component is a helium white dwarf, a similar scenario as in the sub-Chandrasekhar
mass explosion model may happen (Guillochon et al., 2010). If both components are car-
bon/oxygen white dwarfs (which we assume in the following) and if the total mass of the
system exceeds MCH the system may behave similarly to the Chandrasekhar-mass explosion
model, but this has not been shown yet. However, this scenario is only possible if the mass
difference of the white dwarfs is sufficiently large, which ensures a stable mass transfer. If
this is not true, the less massive white dwarf will be disrupted due to tidal forces shortly after
mass transfer sets in (Benz et al., 1990; Yoon et al., 2007; Motl et al., 2007; Lorén-Aguilar
et al., 2009) and its material is accreted at such a high rate by the more massive white dwarf
that the carbon ignites at its surface (Saio & Nomoto, 1998). This will turn the white dwarf
into an oxygen/neon white dwarf that will further collapse to a neutron star.

However, during the merger of the white dwarfs conditions for a detonation may be
achieved, so that this scenario may lead to a SN Ia explosion (Pakmor et al., 2010, 2011).
Perhaps it is possible that during the merger process neither a detonation nor a conversion of
the white dwarf into a neutron star happens, in which case the mass accretion continues. Due
to conversion of angular momentum, the differential rotation of the white dwarf increases.
In this way, the mass of the white dwarf can grow up to 2M� (Yoon & Langer, 2004, 2005),
where an ensuing explosion in the interior of the white dwarf may proceed similar as in the
non-rotating Chandrasekhar-mass explosion model. However, as stated in Section 2.2.1 the
white dwarf may have to spin-down to a certain degree in order to explode.

Since the total mass in a double degenerate merger may exceed MCH to a large extent
there are conjectures that the explosion of these super-Chandrasekhar mass objects may
explain the observed superluminous events. But calculations of Pakmor (2010) show that
within the most massive merger of two white dwarfs, the maximum mass of 56Ni that can
be obtained is approximately 1M�, insufficient to explain superluminous events.

The main advantage of the double-generate scenario is that it easily explains the absence
of hydrogen lines in the spectra. Compared to the single-degenerate Chandrasekhar-mass
explosion model, there are no strict limitations of the accretion rates, since the accreted
material has not to be burned to heavier elements. In addition, from population synthesis
calculations one can derive that the frequency at which these systems occur can explain the
observed SN Ia rates better than any other progenitor system (Ruiter et al., 2009). The
results of Pakmor et al. (2010) and Pakmor et al. (2011) indicate that during the merger of
two carbon/oxygen white dwarfs with an individual mass of about 0.9M� and a sufficient
small mass difference, conditions for a detonation are reached. However, the produced 56Ni
yield in the simulations was only 0.1M�, i.e. far below the mass needed to explain the
brightness of normal SNe Ia. It is possible that these models are capable of explaining the
1991bg-like objects, since apart from the produced amount of 56Ni also other features like
synthesized light curves and spectra seem to fit the observed properties of the 1991bg-like
objects quite well (Pakmor et al., 2010, 2011). However, a very recent study indicates that
more massive merger may produce a significant higher 56Ni yield that is comparable with
typical normal SNe Ia (Pakmor et al., 2012).
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2.2.3 Summary

All described and according to our current knowledge all potential progenitor scenarios have
individual strengths and weaknesses. It is likely that not all observed SNe Ia can be described
with a single progenitor scenario. This work is based on the Chandrasekhar-mass explosion
model. Despite the discrepancy of the predicted SN Ia rates, this model has had great success
in reproducing some of the main observed features of normal SNe Ia. In the following, the
ignition phase and theoretical explosion models of Chandrasekhar-mass white dwarfs are
discussed.

2.3 Explosion models

2.3.1 Simmering phase and ignition

The main physical processes leading to the ignition and explosion of the white dwarf are
highly uncertain. However, there is a widely accepted picture about the final phase directly
prior to the ignition that will be summarized here. When the mass of the white dwarf
approaches MCH, its center is highly degenerate and thermodynamic conditions for the
carbon ignition are reached (Nomoto, 1982), which marks the beginning of the so-called
simmering phase. This phase can be subdivided coarsely into three stages. In the first stage,
carbon burning occurs only at a low rate, where neutrino losses alone are able to carry away
all of the produced nuclear energy (Arnett, 1971a; Nomoto et al., 1984; Woosley & Weaver,
1986; Winget et al., 2004). The nuclear energy release, however, depends strongly on the
temperature, so that a low temperature increase leads to a large growth of the nuclear
energy production rate. At some point, when the time scale for carbon fusion becomes
shorter than the time scale for neutrino losses, convection sets in, where the nuclear energy
excess is transported outward due to convective motions (Arnett, 1969, 1971a; Woosley &
Weaver, 1986). This leads to a rapid growth of a convective core, which is also called the
carbon-flash phase that may last for several hundred years. Within this phase the so-called
URCA-process is of high importance (Gamow & Schoenberg, 1941; Paczyński, 1972; Barkat
& Wheeler, 1990; Aparicio & Isern, 1993; Lesaffre et al., 2005; Podsiadlowski et al., 2008;
Förster et al., 2010).4 The concept of this process is based on the assumption that apart
from 12C and 16O there are traces of other heavier elements in the white dwarf5, of which
23Ne and 23Na play a major role here. In the vicinity of the center of the white dwarf it is
energetically favorable for a 23Na nucleus to turn into a 23Ne nucleus by electron capture.
Due to convection the 23Ne nucleus ascends up to a place, where it becomes energetically
favorable to emit an electron by β−- decay. Hence, the 23Ne nucleus converts back to a
23Na nucleus that now descends back to the center of the star. The described cycle can be

4The process was first discussed by George Gamow and Mario Schoenberg in a casino named Cassino da
Urca in Rio de Janeiro, where Gamow said to Schoenberg that ”the energy disappears in the nucleus of
the supernova as quickly as the money disappeared at that roulette table” (see also Nadyozhin (1995) and
Haensel (1995) and references therein).

5These elements result mostly from the metallicity of the main sequence star from which the white dwarf
evolved. However, due to the high densities in the central region of the white dwarf, additional neutron-
ization effects may lead to a further increase of the metallicity in the simmering phase (Piro & Bildsten,
2008).
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summarized by the two following reactions:

23Na + e− → 23Ne + ν, (2.1)
23Ne→ 23Na + e− + ν. (2.2)

We see that in every conversion of the nucleus an electron neutrino ν or an electron anti-
neutrino ν is emitted that is able to carry away energy without interaction with the stellar
material. Therefore, the URCA-process constitutes an enhanced cooling mechanism of the
central region in this phase that may delay the initiation of the explosion.

In the last stage of the simmering phase the time scale for carbon fusion becomes shorter
than the time scale of convective circulations. At this point efficient cooling mechanisms do
not exist any longer and the energy released from the carbon fusion cannot be transported
away from the central region. In addition, the white dwarf is unable to expand and to
cool, since due to the high degeneracy of the central area, the pressure is independent
of the temperature. Eventually the center of the star is heated up rapidly leading to a
thermonuclear runaway that marks the birth of a thermonuclear flame and the begin of the
explosion.

There are several parameters, like the initial mass, the accretion history, as well as the
cooling time of the white dwarf that determine the thermodynamic state in the interior
of the star. Lesaffre et al. (2006) derive a possible range of central densities from less than
2×109 g cm−3 up to more than 5×109 g cm−3 at ignition time of the flame. One uncertainty
in the evolution up to the ignition of the flame is the value of the screened 12C - 12C fusion
rate (Itoh et al., 2003; Gasques et al., 2005, 2007; Jiang et al., 2007). However, it seems
that the central density at ignition time depends only weakly on the exact value of this rate
(Cooper et al., 2009; Iapichino & Lesaffre, 2010). While metallicity has a high impact on the
brightness of the explosion (Timmes et al., 2003; Travaglio et al., 2005; Bravo et al., 2010),
the central density at ignition time also show only a weak dependence on metallicity as well
as the carbon/oxygen ratio (Lesaffre et al., 2006).

Remarkable efforts have been made to study the simmering phase in detail but there are no
clear conclusions yet about the physical properties and the geometry of the ignition region
(e.g. Garcia-Senz & Woosley, 1995; Höflich & Stein, 2002; Woosley et al., 2004; Kuhlen
et al., 2006; Almgren et al., 2006; Piro & Bildsten, 2008; Piro & Chang, 2008; Zingale et al.,
2009; Aspden et al., 2011; Nonaka et al., 2012). In numerical simulations that do not follow
the pre-ignition evolution but start immediately at ignition time of the flame, a simple
single ignition or multiple ignitions in the vicinity of the center (Plewa, 2007; Röpke et al.,
2006, 2007a,b) or even time-dependent, stochastic ignitions (Schmidt & Niemeyer, 2006)
are frequently used. Woosley et al. (2004) propose a multispot ignition scenario where the
first ignition occurs at a distance of 150− 200 km off-center. The diameter of an individual
ignition spot is expected to be of the order of a kilometer (Iapichino et al., 2006). Another
more recent study of Nonaka et al. (2012) suggests a single off-center ignition within a radius
of roughly 50 km.

As the ignition process, also the burning mode of the ignited flame is unknown. From
combustion theory, however, it is known that the flame can propagate either as a detonation
or as a deflagration.

2.3.2 Detonations

The first model to explain the explosion of a white dwarf whose mass is near the Chan-
drasekhar limit was proposed by Arnett (1969), where a detonation commences in the center
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of the white dwarf. A detonation occurs when the ignition leads to a strong pressure gra-
dient (commonly described as a shock) that propagates supersonically with respect to the
sound speed in the unburned carbon/oxygen material. The shock leads to a compression
and heating of the material up to a point where thermonuclear burning processes occur.
Hence, the shock wave and the flame are linked with each other and move with the same
speed through the white dwarf.

The one-dimensional model of Arnett (1969) showed that a detonation releases enough
energy to gravitationally unbind the star. However, due to the supersonic flame speed the
white dwarf cannot react with an expansion, so that the whole carbon/oxygen composition
is burned at high densities to heavy iron group elements. This is inconsistent with the
observed spectra, since the latter also show the presence of intermediate mass elements (see
Section 2.1). Hence, pure detonations of Chandrasekhar-mass white dwarfs are ruled out as
a viable scenario to explain SN Ia explosions.

2.3.3 Deflagrations

Apart from a shock-driven detonation the burning in a white dwarf may proceed by thermal
conduction. The burning speed is far slower than the sound speed in the unburned material.
This burning mode is called a deflagration.6 While the flame propagates outward the white
dwarf reacts with an expansion, where the degree of this expansion depends strongly on the
nuclear energy release. Due to the expansion and the associated decline in the density, there
is a point at which the carbon/oxygen mixture cannot be burned to iron group elements any-
more, so that in the later explosion phase mainly intermediate mass elements are produced.
Thus in contrast to a pure detonation, a deflagration can explain the observed intermediate
mass elements (e.g. Nomoto et al., 1976, 1984).

An undisturbed deflagration of a white dwarf, however, would never be strong enough
to explain the main observed features of SN Ia explosions. The flame would propagate so
slowly that the burning ceases after a marginal fraction of the unburned material has been
converted to heavier elements. Moreover, the energy release would be too low to overcome the
gravitational binding energy of the white dwarf. However, as shown in Chapter 3, instabilities
occur during the deflagration that cause turbulent motions. The burning processes are highly
affected by the interaction with turbulence, leading to an acceleration of the flame and an
increase of the flame surface area, which in turn enhances the energy release.

The results of numerical simulations of pure turbulent deflagrations show that the released
energy is sufficient to unbind the white dwarf (Reinecke et al., 2002; Gamezo et al., 2003;
Röpke et al., 2007a). However, it should be noted that the dynamics of the turbulent
flame and the energy release in pure deflagrations crucially depend on the modeled ignition
scenario of the flame. Compared to pure detonations, pure turbulent deflagrations explain
the observed properties of SNe Ia much better. The main problem of pure deflagrations,
however, is that there are regions of unburned material left behind the flame in the central
part of the white dwarf. This would be visible in the late time spectra, which is not the case
for normal SNe Ia (Khokhlov, 2000; Gamezo et al., 2003; Kozma et al., 2005). Moreover,
even strong turbulent deflagrations produce usually no more than 0.4M� of 56Ni and also
the energy release tends to be too low compared to observations (Gamezo et al., 2003; Röpke
et al., 2007a). Therefore, pure deflagrations cannot account for the observed variations in
the brightness of normal SNe Ia. They may, however, explain some peculiar events, such as

6Sometimes this burning mode is also simply described as slow burning.
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the supernovae SN 2002cx and SN 2005hk (Jha et al., 2006; Phillips et al., 2007).

2.3.4 Delayed Detonations

The delayed detonation model, introduced by Khokhlov (1991a), can fix the major problems
of both pure deflagrations and pure detonations. The idea is that the explosion starts out as
a deflagration and in a later explosion phase, a physical mechanism leads to a Deflagration-
to-Detonation Transition (DDT) (Blinnikov & Khokhlov, 1986, 1987; Khokhlov, 1991a;
Khokhlov et al., 1997; Niemeyer & Woosley, 1997). Due to the onset of the detonation,
the explosion dynamics are drastically changed. The unburned material that is left behind
by the deflagration front may be reached and burned by the detonation. Hence, the amount
of iron group and intermediate mass elements are increased due to the additional burning
of the carbon/oxygen mixture. In summary, a chemical composition can be obtained in
the delayed detonation model that is in good agreement with observations (Gamezo et al.,
2005; Golombek & Niemeyer, 2005; Röpke & Niemeyer, 2007; Mazzali et al., 2007; Bravo &
Garćıa-Senz, 2008; Kasen et al., 2009).

For the delayed detonation model, the strength of the deflagration is an important pa-
rameter that sets the brightness of the explosion. In general, weak deflagrations lead to a
low expansion of the star, so that a delayed detonation can burn a significant part of the
stellar material at high densities to 56Ni. Conversely, in strong deflagrations where the star
expands much further, most of the unburned material is at low densities, where a delayed
detonation burns less material to 56Ni. Depending on the strength of the deflagration which
in turn depends strongly on the ignition properties of the deflagration flame, a broad range
of 56Ni yields can be obtained from delayed detonation models that is consistent with the
observed variations in the brightness (e.g. Mazzali et al., 2007; Kasen et al., 2009).

The problem of the delayed detonation model is that the physics of DDTs is not well un-
derstood. A generally accepted picture of DDTs is that this process occurs in a mixed region
of a specific size that is composed of hot burned and cold unburned material.7 A sufficient
mixing of both components in turn requires a certain turbulent intensity. Therefore, the
properties of turbulence play an important role in this explosion scenario which is discussed
in more detail in Section 3.3.3.

2.3.5 Explosion of differentially rotating white dwarfs

Differential rotation of the white dwarf can significantly affect the explosion characteris-
tics. The mass of differentially rotating white dwarfs may grow as large as 2M� (Yoon &
Langer, 2004, 2005). Pure deflagrations of these super-Chandrasekhar-mass models show
only a marginal burning and an aspherical flame propagation that is attributed to a cen-
trifugal expansion and to anisotropic buoyancy and mixing effects (Pfannes et al., 2010b).
In contrast, pure detonations lead to very bright explosions that are comparable with su-
perluminous events (Pfannes et al., 2010a). The nuclear energy release, however, is here so
high that the ejecta expands too fast compared to observations. In addition, also in pure
detonations the explosion evolves highly anisotropic, leading to an aspherical structure of
the ejecta that is observed preferentially for the faint 1991bg-like objects. In simulations of
delayed detonations of differentially rotating white dwarfs Fink (2010) found similar results
as for the pure detonations simulated by Pfannes et al. (2010a).

7A recent study of Poludnenko et al. (2011) also supports the idea that a DDT may happen in unconfined
media.
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2.3.6 Gravitationally confined detonation

In the gravitationally confined detonation (GCD) model (Plewa et al., 2004; Plewa, 2007;
Townsley et al., 2007; Jordan et al., 2008; Meakin et al., 2009) a delayed detonation is
triggered in the late deflagration phase, but the whole explosion dynamics are fundamentally
different compared to the delayed detonation model described in Section 2.3.4. The GCD
model is primarily based on a very weak deflagration that starts off-center in the form of one
or a few bubbles that burn aspherically toward the surface of the white dwarf. Turbulence
leads to an increase of the burning speed and the flame surface area. However, the overall
energy release is far too low to unbind the star gravitationally and only a marginal fraction of
the entire carbon/oxygen material is burned at the time when the flame breaks through the
surface of the white dwarf. The strong surface gravity forces the burned material to sweep
along the surface until it converges at the opposite side of the star. At this convergence
point unburned material is compressed and heated, leading to conditions where carbon
ignites. In this case, two jets may be formed, while an inwardly directed jet is susceptible
for shear instabilities, where eventually conditions for a detonation are achieved (Meakin
et al., 2009). Because of the massive amount of unburned material that additionally resides
at high densities, the detonation burns most of the material to iron group elements, where
commonly more than 1M� of 56Ni is synthesized (e.g. Meakin et al., 2009). Hence, the
GCD model produces exclusively bright events, like the 1991T-like objects.

2.3.7 Pulsational delayed detonation and pulsational reverse detonation model

The pulsational delayed detonation (PDD) model is similar to the delayed detonation model,
described in Section 2.3.4, but a DDT occurs after one or several pulsations of a gravitation-
ally bound white dwarf (Ivanova et al., 1974; Khokhlov, 1991a). A variant is the pulsational
reverse detonation (PRD) model, where a deflagration leads to an initial expansion of the
white dwarf that becomes damped before the gravitation is overcome. During the recollapse
a detonation sets in due to compression and heating in the center, after burned material
from the deflagration has ascended while new unburned material has descended to the cen-
ter of the star (Dunina-Barkovskaya et al., 2001; Bravo & Garćıa-Senz, 2005, 2006). Within
the PRD model 56Ni yields can be obtained that are consistent with normal SNe Ia (Bravo
& Garćıa-Senz, 2006). However, synthesized spectra of PRD models show at the time of
maximum brightness carbon lines and at late times a considerable amount of iron group
elements in the outer layers that are inconsistent with the observations (Baron et al., 2008).

2.3.8 Summary

From the discussed explosion mechanisms in a Chandrasekhar-mass white dwarf, the delayed
detonation model described in Section 2.3.4 is a preferred model that is capable of explaining
several main features of normal SNe Ia. In particular, a recent study of Kasen et al. (2009)
and Blondin et al. (2011) showed that apart from the obtained 56Ni yields also synthetic
light curves and some spectral properties seem to be in good agreement with observations.
It is remarkable that the light curves seem to reproduce the Phillips relation quite well. The
uncertainty of the physics of the DDT process remains a problem to date. One main subject
on which this work focuses is the construction of a new model that includes the current
knowledge of the physics of DDTs. As already described, turbulence in the deflagration
plays a crucial role for the DDT, hence we need to understand the properties of turbulence
in this burning phase first.
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Turbulence and delayed detonations in SNe Ia

The burning processes in a deflagration of a white dwarf are accelerated by turbulence in such
a way that the associated increase in the energy release may be sufficient to gravitationally
unbind the star (e.g. Reinecke et al., 2002). However, for reasons described in Section 2.3.3
pure turbulent deflagrations cannot account for the observed variations of normal SNe Ia.
Here turbulence again may point to a way out, since it is believed that strong turbulent
velocity fluctuations constitute a necessary constraint for a delayed detonation (e.g. Woosley
et al., 2009). In this chapter the properties of turbulence in the deflagration phase and its
implications for the delayed detonation scenario are explained. Since the cause of turbulent
motions is the occurrence of instabilities during the deflagration in a white dwarf, we first
describe these instabilities in Section 3.1. In Section 3.2 the properties of turbulence itself
are discussed. Finally, the delayed detonation model is described in detail in Section 3.3 that
is based on our current knowledge and is a key part of this work. Since the burning speed
of the deflagration flame is much slower than the sound speed in the unburned material of
the white dwarf, we restrict all considerations of this burning phase to incompressible flows
in the following.

3.1 Instabilities in deflagrations of white dwarfs

We consider a system that has the length L, a mean flow velocity V and the kinematic
viscosity ν. The flow characteristic can be estimated by the dimensionless Reynolds number
Re (Stokes, 1851; Reynolds, 1883)

Re =
L · V
ν

. (3.1)

The Reynolds number is a measure of the ratio of inertial forces to viscous forces. For
sufficiently low Re effective external perturbations are suppressed and damped due to viscous
forces. The flow is characterized by a slow, regular and eddy-free motion that is called a
laminar flow. With growing Re viscous forces become less efficient and the flow is more
susceptible to external perturbations. The condition where a fluid becomes unstable to
perturbations is given by a critical Reynolds number Recrit. For Re > Recrit occurring
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perturbations are not damped anymore and they will grow without restrictions. In this case,
the flow is characterized by an irregular and disordered motion with some pronounced vortex
structures, which is called a turbulent flow. If Recrit is known, equation (3.1) can be applied
to get a first impression of the main flow characteristic for a given system. However, to
determine under what conditions a flow becomes unstable to a certain instability an analysis
of the instability is required, which is outlined in the following sections.

3.1.1 Stability analysis of incompressible flows

We consider an incompressible fluid with a constant kinematic viscosity ν and density ρ that
is not exposed to external forces. Then the momentum balance reads

∂v

∂t
+ (v · ∇)v = −∇p

ρ
+ ν∆v (3.2)

with the incompressibility constraint

∇ · v = 0, (3.3)

where P and v denote the pressure and velocity. Equation (3.2) is the incompressible Navier-
Stokes equation (Navier, 1823) that constitutes the equation of motion for an incompressible
fluid (e.g. Landau & Lifschitz, 1991). In general, a fluid may become unstable against in-
finitesimal perturbations if Re ≈ Recrit (e.g. Landau & Lifschitz, 1991). Then the onset of an
instability and Recrit can be estimated with the following procedure. The stationary solution
of the Navier-Stokes equation (3.2) is superimposed by a small non-stationary perturbation.
For the resulting system of equations, an ansatz of the form exp(ikx + ωt) is made. That
way we obtain a dispersion relation ω(k) between the complex frequencies ω and the wave
numbers k of the perturbation. If all possible ω(k) have only negative real parts, all pertur-
bations will decay exponentially with time t and Re < Recrit holds. For Re = Recrit there
is exactly one ω(k), of which the real part is zero. This limiting case is characterized by a
varying behavior between a laminar and turbulent flow. If there is only a single ω(k) with
a positive real part, the perturbation will grow unrestrictedly with t. Consequently the flow
is unstable to this instability, and Re > Recrit holds.

3.1.2 Instabilities of thermonuclear deflagration fronts

After the ignition, the deflagration flame propagates from the center outward toward the
surface of the white dwarf. The stellar material that is traversed by the flame is thermonu-
clearly burned to heavier elements. The energy release and the reaction rate depend on the
density and temperature as well as on the composition and the thermal conductivity of the
material which is currently burned. As long as the exothermic reactions release enough heat
to ignite the surrounding material the deflagration can spread further through the star.

The onset of certain instabilities may crucially affect the flame propagation. Hence, a
stability analysis is important to understand the impact of these instabilities on the explosion
dynamics in the deflagration. In the following, we first discuss the properties of laminar
burning, in which instabilities are neglected. Then the most important instabilities are
described that occur in the deflagration. All considerations of burning in this chapter are
restricted to premixed flames, where it is assumed that all necessary reactants for the burning
are available in the fuel mixture.
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3.1 Instabilities in deflagrations of white dwarfs

Laminar Burning

In laminar burning there is a balance between thermal diffusion and energy generation.
The profile of the deflagration flame is composed a diffusion zone in which the fuel (here
the carbon/oxygen composition) is heated up to its ignition temperature, and a reaction
zone, in which the burning takes place (e.g. Mikhel’son, 1889). For the diffusion time scale
τdiff ∼ δ2/κ holds, where δ is the flame width and κ is the thermal diffusivity. For the
nuclear burning time scale τnuc ∼ e/Ṡ holds, where e is the specific energy and Ṡ the specific
energy generation rate. Since in equilibrium τdiff = τnuc, we find (Mikhel’son, 1889; Landau
& Lifschitz, 1991)

δ ≈
√
κe

Ṡ
. (3.4)

In the time τnuc the flame progresses the distance δ. With equation (3.4) the laminar burning
speed ulam = δ/τnuc results to

ulam ≈

√
κṠ

e
. (3.5)

The laminar burning constitutes an ideal case of an undisturbed deflagration that basically
does not occur in SN Ia explosions. However, the velocity in equation (3.5) is a good estimate
for the burning speed vflame in the early deflagration phase. A more detailed study of laminar
burning velocities was performed by Timmes & Woosley (1992). The authors applied a fit
to numerically calculated values of ulam in a carbon/oxygen white dwarf for a range of fuel
densities ρfuel of 107 g cm−3 ≤ ρfuel ≤ 1010 g cm−3, where ulam is then given by

ulam = 92.0× 105

(
ρfuel

2× 109

)0.805 [X(12C)

0.5

]0.889

cm s−1. (3.6)

Here X(12C) denotes the specific mass fraction of 12C. The uncertainty of ulam in equa-
tion (3.6) is approximately 10% (Timmes & Woosley, 1992). Typical values for ulam and δ
in the early explosion phase are ulam ≈ 107 cm s−1 and δ = 10−5 cm (Timmes & Woosley,
1992). Therefore, the width of the flame is very thin compared to other characteristic length
scales of the white dwarf. Full-star simulations that follow the explosion of the whole white
dwarf are usually unable to resolve the flame width. This is why the flame is sometimes
treated as a sharp discontinuity in these simulations.1

The Landau-Darrieus instability

The Landau-Darrieus instability (LD instability) is a pure hydrodynamic instability. Dar-
rieus (1938) and Landau (1944) revealed surprisingly that planar laminar flames in the dis-
continuity approximation are generally unstable. The dispersion relation of this instability
is given by (Landau & Lifschitz, 1991)

ω(k)LD = kulam
µ

1 + µ

(√
1 + µ− 1

µ
− 1

)
, (3.7)

1During the deflagration the laminar flame becomes broader up to several centimeters (Timmes & Woosley,
1992). However, at this explosion phase the flame is already strongly affected by turbulence which may
broaden the flame up to several kilometers (see Section 3.2.3). Hence, strictly speaking, a turbulently
broadened flame cannot be considered as a sharp discontinuity anymore.
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where µ = ρfuel/ρash is the ratio of the density in the fuel to the ash (the burned material).
Due to the high heat generation in the burning processes and the partial lifting of the electron
degeneracy ρfuel > ρash. Hence, <(ω(k)LD) > 0 follows for all wave numbers, leading to an
uninterrupted growth of the instability. In the vicinity of the center of the white dwarf, the
high densities and the associated high degree of the electron degeneracy lead initially to the
effect that the burned material can hardly expand, so that here µ ∼ 1. However, the density
declines continuously from the center outward, which is further amplified by the expansion
of the star during the deflagration. In summary, the outward propagating flame becomes
more unstable during the explosion process. The growth of the perturbations, however, is
limited by cusp formation in the nonlinear regime and the flame is stabilized in a cellular
structure (Zel’Dovich, 1966; Röpke, 2003). Consequently, the flame is only deformed slightly
and its surface is increased mildly. The burning speed remains almost unchanged. Therefore,
the LD instability in deflagrations plays a subordinate role in the generation of turbulent
motions.

The Rayleigh-Taylor instability

In the description of the LD instability we indicated that in the deflagration phase a stratifi-
cation occurs, where denser unburned material lies on top of less dense burned material. Due
to the gravitational field of the white dwarf a configuration develops in which the gradients
of gravitational acceleration g and density show in antiparallel directions. This unstable
configuration is called the Rayleigh-Taylor instability (RT instability). The stability analysis
shows that the dispersion relation of this instability is given by (e.g. Chandrasekhar, 1961)

ω(k)RT =

√
kg
ρfuel − ρash

ρfuel + ρash
=
√
kgAt =

√
kgeff , (3.8)

where geff = gAt is the effective gravitational acceleration and At = (ρfuel−ρash)/(ρfuel+ρash)
the Atwood number. In our case, we conclude from ρfuel > ρash directly that <(ω(k)RT) > 0,
hence the configuration is unstable for all wave numbers, leading to an unrestricted growth
of perturbations. Characteristic for the RT instability is the development and merger of
hot rising bubbles of burned material in the nonlinear regime. Conversely, unburned dense
material descends and mixes with burned material in the interior of the star. Moreover,
the flame front becomes highly deformed, leading to the formation of mushroom cap like
structures, which occur predominantly at the parts of the flame that have propagated farthest
toward the surface of the white dwarf.

In contrast to the LD instability, there is no effective stabilizing mechanism for the RT
instability. However, the latter is only effective on large length scales and it evolves predomi-
nantly parallel to the direction of gravity. On small length scales the RT instability becomes
suppressed due to the competition of the time scale of the growth rate of the perturbations
with the nuclear burning time scale τnuc. One can derive a minimum length scale λmin at
which the flame front can be affected by the RT instability. This scale (sometimes called the
fire polishing length) is given by (Timmes & Woosley, 1992)

λmin =
4πu2

lam

geff
. (3.9)

With decreasing density the width of the flame δ grows (see Timmes & Woosley, 1992),
while the quantity λmin decreases (e.g. Figure 1 in Zingale et al., 2005). Hence, in the course
of the deflagration the RT instability can disturb the flame on smaller and smaller length
scales.
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The Kelvin-Helmholtz instability

For two fluids that are in contact and that move with different velocities tangentially to their
boundary layer, shear instabilities may arise.2. The dispersion relation of this instability,
also known as the Kelvin-Helmholtz instability (KH instability), depends on the tangential
relative velocity ∆v of the fluids and is given by (e.g. Landau & Lifschitz, 1991)

ω(k)KH = k∆v

√
ρfuelρash

ρfuel + ρash
. (3.10)

We easily see that analogously to the LD- and RT instability <(ω(k)KH) > 0 for all wave
numbers. However, in deflagrations of SNe Ia, the KH instability appears only as a result of
the RT instability, since the latter is responsible for the occurrence of boundary layers that
may move with different tangential velocities along each other. Therefore, the KH instability
acts as a secondary induced instability.

The KH instability leads to a rapid eddy generation in the vicinity of the tangential
discontinuity in the nonlinear regime. It should be noted that effective shear flows may
be able to suppress the stability mechanism of the LD instability (e.g. Niemeyer, 1995).
However, it is not known to what extent the turbulent behavior of a flame may be partly
the result of the suspension of the stabilizing mechanism for the LD instability through the
KH instability.

3.1.3 Summary

All three described instabilities are characteristic for deflagrations in SNe Ia.3 The outward
propagating flame is substantially affected by the RT instability on the large length scales,
leading to the formation of pronounced mushroom cap like structures at the flame front. In
addition, secondary induced shear instabilities lead to a strong eddy generation along these
highly deformed structures at the flame. The lack of sufficient stabilizing mechanisms for
both the RT- and the KH instability in the deflagration leads to the generation of turbulent
motions. We can estimate the flow characteristic in an exploding white dwarf with the
Reynolds number. The typical size of a Rayleigh-Taylor bubble is of the order of L ∼ 107 cm,
while for the average flow velocity V ∼ 107 cm s−1 holds. The shear viscosity η is of the
order of 109 g cm−1 s−1 (e.g. Nandkumar & Pethick, 1984), hence for a typical density of
109 g cm−3 we find for the kinematic viscosity ν = η/ρ ∼ 1 cm2 s−1. Inserting these values in
equation (3.1) we find a huge Reynolds number of ∼ 1014 . Therefore, in an exploding white
dwarf we may assume Re � Recrit. Such flows are commonly described as fully developed
turbulence, of which the properties are investigated in the following.

3.2 Turbulence in SNe Ia

In this section the turbulent phenomena are explained that are triggered by the described
instabilities in the preceding section. In general, there are several, partially mathematically

2Under the presence of a gravitational force that points in the direction normal to the contact interface one
can derive that the flow is stable, if the ratio of the buoyancy force to the inertia force (this ratio is also
called the Richardson number) is greater than 1/4 (Chandrasekhar, 1961).

3There are other instabilities, like the diffusive-thermal instability that, however, have no significant effects
on the flame propagation, since <(ω(k)) < 0.
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sophisticated approaches to describe and investigate the properties of turbulence. For in-
stance, a study of the Navier-Stokes equation (3.2) reveals that the chaotic and turbulent
behavior of fluid motions arises from the nonlinear term (v·∇)v. In three-dimensional objects
(like a white dwarf) also turbulence has to be treated as a three-dimensional phenomenon
(e.g. Mathieu & Scott, 2000). This is why all considerations and analyses of this work will be
three-dimensional. Turbulence is also part of chaos theory and turbulent structures may have
a fractal character on certain length scales. Due to its chaotic and unpredictable behavior,
statistical methods play an important role in the analysis of turbulent flows. In particular,
a statistical approach is useful in the case of Re� Recrit, which is valid for turbulent defla-
grations of white dwarfs. Under this condition some important scaling relations of turbulent
velocity fields can be derived without challenging mathematical considerations. A pioneering
work in this field was performed by Andrei Nikolajewitsch Kolmogorov, who made major
contributions in the probability theory of turbulence. He was able to find important rela-
tions between characteristic quantities of a given turbulent system and summarized them in
his theory in the form of different hypotheses (Kolmogorov, 1941, 1991). The Kolmogorov
theory is only valid for incompressible flows.

3.2.1 Isotropic turbulence

The hypotheses of Kolmogorov

Similar to Section 3.1 we consider a fully developed turbulent and incompressible flow with
the kinematic viscosity ν. We define now L as the integral length scale on which turbulence
is generated and ηk as the so-called Kolmogorov length scale, on which kinetic energy is
dissipated. Under these conditions the hypotheses of Kolmogorov apply that are summarized
in the following (see Pope, 2000; Frisch, 1995):

• H1. Isotropy hypothesis: At sufficiently high Reynolds numbers a turbulent flow be-
haves on small length scales `� L statistically isotropic.

• H2. First similarity hypothesis: Under the condition of H1 the statistical properties
of turbulent flows on small length scales are explicitly given by the kinematic viscosity
ν and the energy dissipation rate ε.

• H3. Second similarity hypothesis: Under the condition of H1 the statistical properties
of turbulent flows on a scale ` in the range of ηk � ` � L are explicitly given by the
energy dissipation rate ε and independent of the kinematic viscosity ν.

Consequences of the Kolmogorov hypotheses

From the Kolmogorov hypotheses several interesting consequences can be inferred. By H1
the behavior of a turbulent flow on scales ` � L remains unaffected of possible anisotropic
effects on large scales ` ∼ L. From a mathematical point of view this means that broken
symmetries of the Navier-Stokes equation by boundary effects or effects on large scales are
restored on smaller scales (Frisch, 1995). The specific kinetic energy ekin(`) of a turbulent
system is proportional to v′2(`), where v′(`) are the turbulent velocity fluctuations on the
scale `. From H3 it follows that the average energy dissipation rate 〈ε〉 in the range of length
scales ηk � `� L, which is defined as the inertial range, is given by

〈ε〉 =
d

dt
ekin(`) ∼ v′2(`)

`/v′(`)
=
v′3(L)

L
= const ηk � `� L. (3.11)
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Hence, 〈ε〉 is a constant and scale-independent quantity in the Kolmogorov theory that is
simply determined by the integral length scale and the velocity fluctuations on this scale.
Strictly speaking, equation (3.11) does not describe a dissipation of kinetic energy, since 〈ε〉
is by H3 independent on ν in the inertial range. In fact, a transfer of kinetic energy from
larger to smaller length scales in the form of an energy cascade (also known as the Richardson
cascade (Richardson, 1922)4) occurs, without any interaction with viscous forces. In this
context, 〈ε〉 complies with a constant energy flow of ekin(`)/τeddy(`), where τeddy(`) = `/v′(`)
is the so-called eddy turnover time. For fully developed turbulent flows a universal scaling
behavior of v′(`) in the inertial range can be found that is given by

v′(`) ∼ `α, (3.12)

where α is a characteristic scaling exponent. In the case of Kolmogorov’s theory, we find
with equation (3.11) directly

v′(`) ∼ `1/3 (3.13)

and we see α = 1/3. Using this relation we can estimate the Kolmogorov length scale ηk. By
H2, on this scale the viscosity ν leads to a dissipation of kinetic energy. With the turbulent
Reynolds number Ret(`) = ` · v′(`)/ν we can write

Ret(ηk) =
ηk · v′(ηk)

ν
=
η

4/3
k 〈ε〉1/3

ν
, (3.14)

where in the second step equation (3.11) was applied. From the scaling behavior in equa-
tion (3.13) it follows that Ret(`) decreases for smaller length scales. Hence, it is allowed to
set Ret(ηk) = 1 and we eventually find

ηk =

(
ν3

〈ε〉

)1/4

. (3.15)

With ν = 1 cm2 s−1, L = 107 cm and v(L) = 107 cm s−1 (see Section 3.1.3) we find with
equation (3.11) that ηk is of the order of 10−3 cm only. This further implies L/ηk ∼ 1010,
hence to study all turbulent effects of deflagrations in SNe Ia, one has to take 10 orders of
magnitude in length scales into account. In general, this estimate can also be made with the
Reynolds number only. In analogy to equation (3.14) we can write

Ret(L)

Ret(ηk)
=
L4/3 · 〈ε〉1/3

ν

ν

η
4/3
k 〈ε〉1/3

. (3.16)

With Ret(L) = Re = 1014 (see Section 3.1.3) and Ret(ηk) = 1 we find the useful relation
(see also Landau & Lifschitz, 1991)

L

ηk
= Re3/4 ∼ 1010. (3.17)

4L. F. Richardson originally summarized the interplay of large and small scales with the rhyming verse
”Big whirls have little whirls that feed on their velocity, and little whirls have lesser whirls and so on to
viscosity” (Richardson, 1922).
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From equation (3.11) and (3.15) it follows that the energy dissipation εη on the Kolmogorov
scale can be written as

εη =
v′(ηk)3

ηk
=
ν3

η4
k

. (3.18)

Using equation (3.15) the velocity v′(ηk) and eddy turnover time τeddy(ηk) on the scale ηk

are given by

v′(ηk) = (ηk · εη)1/3 = (ν · εη)1/4 , (3.19)

τeddy(ηk) =
η

v′(ηk)
=

(
ν

εη

)1/2

. (3.20)

Dynamics of turbulent eddies

With equation (3.11) we also can write for v′(`)

v′(`) = v′(L)

(
`

L

)1/3

. (3.21)

The time scale for the rotation of an eddy on the length scale ` can be derived with equa-
tion (3.13), where we find τeddy(`) = `/v′(`) ∝ `2/3. Using equation (3.21) it follows

τeddy(`) =
`

v′(`)
=

L1/3

v′(L)
`2/3 = τeddy(L)

(
`

L

)2/3

. (3.22)

From this equation we see that for smaller length scales, the dynamical eddy turnover time
decreases. Hence, turbulent structures can evolve faster on these scales. Here we find
again that the effects that are dominating on large length scales ` ∼ L have no significant
influence on much smaller length scales, since structures on scales ` � L may have been
evolved already by several dynamical time scales.

Turbulent eddies can be further considered as a transport and mixing mechanism. In this
picture, two fluid elements in a turbulent flow that are separated by a distance ` can be
brought together in a half eddy turnover time

τeddy1/2
(`) = 0.5 · `/v′(`). (3.23)

Hence, τeddy1/2
(`) is the minimum required time for the mixing of two different fluids on the

scale `.

Energy spectra and velocity structure functions

The statistical analysis of the turbulent velocity field in a fluid is a crucial method to derive
scaling and correlation properties on certain length scales of the turbulent flow. The major
task of such a statistical study is to obtain scaling exponents that may reveal the properties
of turbulence in the underlying fluid. Two commonly used methods will be presented in the
following.

From equation (3.12) we find for the specific kinetic energy the relation ekin(`) ∼ `2α. If
we change from real to Fourier space ekin(k) ∼ k−2α holds. From here we can derive a scaling
relation of the energy spectra E(k) that is given by

E(k) =
d

dk
ekin(k) ∼ k−2α−1. (3.24)
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In the case of Kolmogorov’s theory, we find with α = 1/3 directly EKol ∼ k−5/3. This
is the scaling relation of the Kolmogorov energy spectrum that is valid for isotropic and
incompressible turbulence.

In the other method we first consider the absolute velocity difference ∂v(r, `) of two fluid
elements, whose distance is ` = |`|, where r is a position vector of one of the fluid elements.
We can write

∂v(r, `) = |v(r + `)− v(r)|. (3.25)

From here we can obtain correlation properties of the turbulent velocity field by averaging
over a sufficient number of velocity differences of various fluid elements that have different
distances `. We define the velocity structure function Sp of the order p as

Sp(`) ≡ 〈(∂v(r, `))p〉 ∼ `ζ(p). (3.26)

In the case of Kolmogorov’s theory, the scaling exponent ζ(p) of the first order is ζ(1) =
α = 1/3. For every successive order, ζ(p) increases by an additional 1/3, so that in general
ζKol(p) = α · p = p/3 for isotropic and incompressible turbulence. The calculated scaling
properties of the turbulent velocity field are more convincing the higher the orders that can
be obtained from the analysis. However, to obtain reliable scaling exponents of very high
order the calculation of structure functions may become computationally too expensive.
From a statistical point of view one also needs a very large number of different point pairs
over that can be averaged.

It should be noted that the isotropy of turbulence can be further investigated by splitting
up the velocity field into different directions. An exploding white dwarf can be considered
as a spherical system, so that the turbulent velocity field can be split up into a radial and
an angular component (Ciaraldi-Schoolmann et al., 2009). For isotropic turbulence, the
corresponding radial and angular structure functions are equal (see Figure 2 in Ciaraldi-
Schoolmann et al. (2009)). If this is not the case, anisotropic effects in the turbulence have
to be taken into account.

Anisotropic Turbulence

According to H1, anisotropic turbulence may occur on large length scales. In particular,
the RT instability may cause anisotropic effects in the turbulent velocity field, since this
instability evolves anisotropic itself, mainly in the direction parallel to gravity. Similar to
the Kolmogorov theory we can find a specific scaling relation of the velocity field with the
length for the RT instability which is given by (Davies & Taylor, 1950; Sharp, 1984)

vRT = B
√
geff`, (3.27)

where the constant B is approximately 1/2. Hence, for turbulence that is driven by the RT
instability, vRT ∝ `1/2 and thus α = 1/2. Due to the different scaling properties we may
expect a transition from Kolmogorov to RT instability driven turbulence on a certain length
scale. Here Niemeyer & Woosley (1997) give an estimate for this length scale of

`Kol/RT ≈ 106 cm, (3.28)

which separates the Kolmogorov turbulence on scales ` . `Kol/RT from the RT instability
driven turbulence on scales ` & `Kol/RT. For considerations of radial velocity fluctuations
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3 Turbulence and delayed detonations in SNe Ia

that always point in the direction parallel to gravity, the described transition was found by
Ciaraldi-Schoolmann et al. (2009), where these calculations were based on an analysis of the
properties of turbulence in predominantly burned material. In analogy to the Kolmogorov
theory, we can derive useful scaling relations for the RT instability driven turbulence. With
equation (3.27) it follows for the structure functions Sp ∼ `p/2 with the scaling exponents
ζRT(p) = p/2. For the energy spectrum we find with α = 1/2 and equation (3.24) ERT(k) ∼
k−6/3.

Summary

On the largest length scale L, kinetic energy is injected into the turbulent flow that becomes
apparent in the motion of the largest turbulent eddies. These eddies decay to smaller eddies
that further decay into smaller vortex structures. In this way, kinetic energy is transferred
due to a cascade process in the inertial range ηk � ` � L from large to small length
scales. This behavior is illustrated in Figure 3.1, where a sketch of the energy spectrum is
shown. As long as turbulence is fully developed, incompressible and isotropic, the cascade
process appears as a power law in the energy spectrum that is given by E(k) ∝ k−5/3. In
the presence of the RT instability the anisotropy in the velocity field in the range of length
scales `Kol/RT . ` . L may lead to a change in the scaling properties of the turbulent flow

in the direction parallel to gravity. In this case, a power law of the form E(k) ∝ k−6/3

can be found (see also Figure 1 in Ciaraldi-Schoolmann et al., 2009). By approaching the
Kolmogorov scale ηk kinetic energy is converted to internal energy in the form of small
vortex structures due to effective viscous forces on these scales. The flow on these scales has
a laminar character.

3.2.2 Intermittency

Most studies of turbulent velocity fields that are based on computations of velocity structure
functions reveal that for sufficiently high orders ζ(p) < α · p. This anomaly is attributed to
the intermittent character of turbulent motions. An intermittent system has the ability and
affinity to change spontaneously between a periodic and chaotic behavior. The system has
regular and steady phases with approximate periodic time dependence that is superimposed
by sudden unpredictable, irregular and chaotic phases (e.g. Frisch, 1995).

The underlying cause of intermittent turbulence is not well understood, hence there are
several theoretical models that try to give a prescription for this phenomenon. Here, we
briefly summarize a basic picture of intermittent turbulence that is described in more detail
in Frisch (1995)(see also Frisch et al., 1978). A commonly used explanation for intermittency
is the spatial inhomogeneity in the energy dissipation. Illustratively the daughter eddies that
emerge from the mother eddy will fill less space, so that some part of the kinetic energy is
not transferred, but already dissipated in the inertial range due to eddy decays. In addition,
kinetic energy will not dissipate on the smallest scales in always exactly identical vortices,
but in different vortex structures. The different amount of dissipated kinetic energy in these
diverse structures in turn leads to a spatially inhomogeneous and intermittent distribution of
the turbulent intensity. This behavior becomes apparent in the occurrence of spontaneously
very high velocity fluctuations that may play an important role for the DDT in the delayed
detonation model (see Section 3.3).
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Fig. 3.1: Sketch of the turbulent energy spectrum that includes only radial velocity fluctuations
under the presence of the RT instability.

3.2.3 Turbulent deflagration

The flamelet and distributed burning regime

After we discussed the properties of turbulence we can now describe the different phases of
the deflagration of white dwarfs. With the ignition of the deflagration in the central area of
the white dwarf, a thermonuclear flame is born that starts to propagate outward toward the
surface due to heat conduction processes. In the very early stage, the characteristics of the
flame are approximately given by laminar quantities, since instabilities have not evolved so
far. Hence, for the burning speed vflame ≈ ulam holds.

During the deflagration the RT- and the KH instability appear, leading to turbulence
production that in turn affects the flame propagation. There are different types of turbulent
combustion that are usually summarized in a regime diagram (e.g. Abdel-Gayed et al., 1984,
1987; Borghi, 1985; Peters, 1986). Such a diagram is shown in Figure 3.2 in a slightly
modified version of Peters (1999). The degree of interaction of turbulence with the flame
can be estimated with a specific dimensionless number. The Karlovitz number

Ka =
τnuc

τeddy(ηk)
(3.29)

measures the ratio of the burning time scale to the microscopic turbulent time scale of the
flow. As long as Ka < 1, turbulence is not able to affect the internal flame structure.
The interaction of the flame with turbulence on large scales is purely kinematic and the
microphysical processes on small scales within the flame remain unaffected by turbulence.
Illustratively the flame burns so fast through the large turbulent eddies that the latter cannot
sufficiently rotate to modify the flame on scales ` ≈ δ. This burning regime is the so-called
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Fig. 3.2: Regime diagram for premixed turbulent combustion, based on Peters (1999).

flamelet regime which can be divided further into two sub-regimes. With increasing ` the
velocity v′(`) of the turbulent eddies grows (see equation (3.21)). As long as v′(`) < ulam

turbulence modifies the flame surface only marginally. This regime is called the wrinkled
flamelet regime. On larger scales ` � δ, v′(`) may become comparable to or higher than
ulam. The regime with Ka < 1 and v′(`) & ulam is the so-called corrugated flamelet regime
where turbulence significantly modifies the shape of the flame.

From equation (3.18) we find for the kinematic viscosity the relation

ν = v′(ηk) · ηk. (3.30)

The Schmidt number

Sc =
ν

Di
(3.31)

is defined as the ratio of viscous diffusivity to mass diffusivity Di. Following Peters (2000)
it seems useful for scaling purposes to assume equal diffusivities for all reactions. With a
Schmidt number of unity it follows ν = Di and the flame width and the kinematic viscosity
can be written as (see Peters, 2000)

δ =
Di

ulam
=

ν

ulam
, (3.32)

ν = δ · ulam. (3.33)
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Inserting equation (3.18) in (3.20) and using equation (3.33) for ν yields

τeddy(ηk) =

(
ν

εη

)1/2

=

(
η4

k

ν2

)1/2

=
η2

k

ulam · δ
. (3.34)

Then the Karlovitz number reads

Ka =
τnuc

τeddy(ηk)
=

δ

ulam

ulam · δ
η2

k

=
δ2

η2
k

. (3.35)

Therefore, as long as ηk > δ the flame resides in the flamelet regime. The transition between
the burning regimes can also be described with the Gibson scale `gibs which is defined as
the length scale at which τeddy(`gibs) = τnuc and equivalently v′(`gibs) = ulam holds (Peters,
2000). For v′(`) and `gibs we conclude from the Kolmogorov theory with equation (3.21)

v′(`) = ulam

(
`

lgibs

)1/3

, (3.36)

`gibs = `

(
ulam
v′(`)

)3

. (3.37)

For ` = ηk we find with equation (3.18) and (3.33) for `gibs

`gibs = ηk

(
ulam

v′(ηk)

)3

=
u3

lam

εη
= u3

lam ·
η4

k

u3
lam · δ3

=
η4

k

δ3
. (3.38)

Combining equation (3.35) with equation (3.38) yields another useful expression for the
Karlovitz number:

Ka =
δ2

η2
k

=
δ2

`
1/2
gibs · δ3/2

=

(
δ

`gibs

)1/2

. (3.39)

Hence, an equivalent condition for burning in the flamelet regime is `gibs > δ.

For Ka > 1 (resp. `gibs < δ), turbulence is strong enough to modify the internal flame
structure and to distribute material within and around the flame. This is why this regime
is called the distributed burning regime. As described in Section 3.1.2 the flame is composed
of a diffusion and a reaction zone, while the latter may be much thinner than the former.
Therefore, the flame enters the thin reaction zone regime first, where turbulence will only
affect the diffusion zone which becomes broader, while the burning continues in the thinner
reaction zone. Eventually turbulence becomes able to affect the internal flame structure on
scales δr < δ where δr denotes the reaction zone thickness. This is the regime of broken
reaction zones. We can replace δ with δr in equation (3.35) and use a modified Karlovitz
number Kaδr which is given by

Kaδr =
δ2

r

η2
k

= Ka
δ2

r

δ2
. (3.40)

For Kaδr = 1 and a typical width of the reaction zone of δr ≈ 0.1 δ we find Ka & 100 in the
regime of broken reaction zones (e.g. Peters, 1999).
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Turbulent combustion and mixing in the deflagration phase

In the turbulent deflagration phase, the burning speed vflame is not given by ulam anymore,
but by the turbulent velocity fluctuations v′(`) that are much faster at the prevailing low
densities. From equation (3.37) we see that `gibs scales with ulam to the third power. There-
fore, `gibs declines with decreasing fuel density (see equation (3.6) and Figure 2 in Niemeyer
& Woosley (1997)). Since the density declines continuously in direction outward, which is
additionally enhanced by the expansion of the star, `gibs falls steeply during the explosion.
In summary, turbulence will affect the flame on an increasing range of length scales, leading
to an acceleration and growth of the width δ of the flame with time.

For `gibs � δ, τnuc is exclusively given by the fastest turbulent process that can transport
unburned material to the flame. The time scale for this process is determined by τeddy(`).
The reason is that eddies in the vicinity of the flame are able to reach unburned material
faster than the flame itself, and mix it in a time of the order of `/v′(`) into the reaction
zone. We follow the description of laminar burning in Section 3.1.2 but substitute now τdiff

by τeddy(`). In equilibrium, τnuc = τeddy(`) and we find (e.g. Damköhler, 1940; Niemeyer,
1995)

τnuc ∼
`

v′(`)
, and δ(`) = τnuc · vflame(`) ≈ `, (3.41)

where vflame(`) = v′(`) was used. It is remarkable that for `gibs � δ, the burning time scale
τnuc is completely independent of the thermal diffusion. A further interesting consequence
is that the flame width may grow as large as the turbulent integral scale. In this case,
τnuc depends only on the largest turbulent velocities v(L) and we easily find analogously to
the equations (3.41) the relations vflame(L) ≈ v′(L), τnuc ≈ τeddy(L) ∼ L

v′(L) , and δ ≈ L.
Under these conditions the behavior of the burning can be estimated with an additional
dimensionless number. The turbulent Damköhler number

Dat =
τeddy(L)

τnuc
(3.42)

measures the ratio of the macroscopic turbulent time scale of the flow to the burning time
scale. Hence, the only difference between Ka and Dat are the considered length scales of the
turbulent flow.5 The regime with Dat < 1 is called the well-stirred reactor (WSR) regime
(Peters, 2000) and the regime with Dat > 1 is the stirred flame (SF) regime (Kerstein, 2001).
Both regimes were studied in detail by Woosley et al. (2009) and Aspden et al. (2010) in
the context of turbulent combustion in SN Ia explosions. In the WSR regime, δ > L holds.
Since τeddy(L) < τnuc the material at the flame is mixed before burned. The burning occurs
on a well defined nuclear time scale (e.g. Woosley et al., 2009; Aspden et al., 2010). The
SF regime constitutes a very complex regime of turbulent burning. Here turbulence on the
integral scale cannot fully mix the material before it is burned by the flame. Consequently,
there exists no well-defined nuclear time scale anymore (e.g. Woosley et al., 2009; Aspden
et al., 2010).

Finally, in the late phase of the deflagration, the flame is propagated so far that at the
prevailing low densities the thermonuclear combustion ceases. In this phase, no more energy
is injected into the turbulent energy cascade on the scale L. The residual turbulent energy
in the inertial range is dissipated on the smallest scales in a time of approximately τeddy(L)
and the energy cascade vanishes, leading to the freeze out of turbulent motions.

5Sometimes Dat is not related to a fixed macroscopic scale in literature, hence Dat → Dat(l). With
equation (3.29) we find Dat(ηk) = Ka−1.
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3.2.4 Fractal description of the flame

In the inertial range ηk � `� L, turbulent structures behave self-similar. Therefore, when
the flame is deformed by turbulence, its structure may be similar to that of fractals (e.g.
Gouldin, 1987; Kerstein, 1988; Woosley, 1990; Niemeyer, 1995). From a mathematical point
of view, however, the flame is no ideal fractal, since deformations and curvatures of the flame
are not sustained on very small length scales, which results particularly from the decrease of
the interaction of turbulence with the flame. The range of length scales at which a fractal
description of the flame seems appropriate is uncertain. It is generally agreed that the
largest scale is the turbulent integral scale L (e.g. Gouldin, 1987; Kerstein, 1988; North &
Santavicca, 1990). Peters (1986) and Kerstein (1988) propose that the smallest scale is `gibs

while Gouldin (1987), North & Santavicca (1990) and Gülder (1991) argue that this scale
should be ηk. We will follow here Peters (1986) and Kerstein (1988) and assume that within
the range of length scales of `gibs � `� L a fractal description of the flame can be applied.
A fractal F can be defined as (Mandelbrot, 1983)

F ∝ `β, (3.43)

where β ∈ [0; 1] is the fractal excess. The flame can be considered as an object whose two-
dimensional extension scales in the three-dimensional space with the characteristic length
scale ` to the power of β. The fractal dimension D is defined as

D = n− 1 + β, (3.44)

where n is the integer dimension of the space the fractal is embedded in. In our case, n = 3
holds, hence D ∈ [2; 3].6 We can use the scaling relations of v′(`) to determine the fractal
dimension of the flame theoretically. If the speed of the turbulent flame is interpreted in a
geometrical way, so that v′(`) ∝ F holds (e.g. Woosley, 1990; Niemeyer, 1995; Niemeyer &
Woosley, 1997), we find v′(`) ∝ `β. When comparing this relation with equation (3.13), we
easily see β = 1/3 for the Kolmogorov theory. Using equation (3.44), the fractal dimension
reads

DKol = 2.33. (3.45)

Following Sreenivasan (1991) and Kerstein (1991) the fractal dimension for intermittent
turbulence can be written as

Dturb =
7

3
+

2

3
(1−D1/3), (3.46)

where D1/3 is called the generalized dimension, of which the value was experimentally de-
termined to 0.96, leading to Dturb = 2.36 (Halsey et al., 1986; Sreenivasan, 1991). Finally, a
fractal dimension for large length scales can be determined where the RT instability is the
dominant process that drives the turbulent motions. With vRT ∝ `1/2 (see Section 3.2.1) we
find

DRT = 2.5. (3.47)

6In general, D is not uniquely defined. From an experimental point of view D can be derived, for instance,
from the Hausdorff dimension, the self-similarity dimension or the box-counting dimension (e.g. Feder,
1988; Schroeder, 1991).
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It should be noted that the mere existence of the LD instability leads to the effect that the
flame has a fractal character (Blinnikov & Sasorov, 1996). However, compared to the RT-
and KH instability the influence of the LD instability on the flame characteristics appears
only marginal in the turbulent deflagration phase (see Section 3.1.2). But it has not been
strictly shown yet (and it is probably hard to examine) whether and to what extent the
fractal character of the flame in a turbulent deflagration is a result from effects of the LD
instability.

3.3 Theory of Deflagration-to-Detonation Transitions

3.3.1 Introduction

As indicated in Section 2.3.4, the delayed detonation model can reproduce some of the main
features of observed normal SNe Ia quite well. However, the mechanism that causes the
transition from a subsonic deflagration to a supersonic detonation is unclear and discussed
controversially. Even if some recent studies reveal that DDTs may happen in unconfined
media (Poludnenko et al., 2011) we use here the concept of the so-called Zeldovich gradient
mechanism (Zel’dovich et al., 1970) that is outlined in the following. We consider a region
at the flame front of a specific size with a rather uniform temperature and fuel fraction. This
can be translated to a spatial region that has a shallow gradient of induction times. In this
region a spontaneous ignition of the fuel may occur, leading to a supersonic reaction wave.
If the phase velocity of this wave matches a particular velocity (the so-called Chapman-
Jouguet detonation velocity (Chapman, 1899; Jouguet, 1905)), the wave may transition into
a detonation. Similar to the described detonation model in Section 2.3.2, the ignition will
build up a shock in this case that propagates through the white dwarf (Khokhlov et al., 1997;
Niemeyer & Woosley, 1997), where the compressed material is burned thermonuclearly to
heavier elements.

The gradient mechanism was first applied to SNe Ia by Blinnikov & Khokhlov (1986,
1987) and Khokhlov (1991a) and further investigated by Khokhlov (1991b), Khokhlov et al.
(1997) and Niemeyer & Woosley (1997). The results of their analyses show that the described
induction time gradient only occurs by a sufficient mixing of hot burned and cold unburned
material. This mixing in turn requires a strong interaction of turbulence with the flame,
hence the properties of turbulence in the deflagration phase are crucial for a DDT. Too intense
turbulence can also cause local fluctuations in the temperature and chemical composition
that may prevent the formation of sufficiently shallow induction time gradients, particularly
in the flamelet regime (Niemeyer, 1999; Niemeyer et al., 1999).

The major challenge for the investigation of DDTs in SNe Ia is that this process occurs
on microphysical length scales that are not resolved in full-star simulations which follow
the explosion of the whole white dwarf. Therefore, it is difficult to study the microphysical
properties of DDTs and its implications for the overall SN Ia explosion simultaneously. This
is why DDTs are analyzed separately in small-scale simulations which are able to take the
microphysics into account. However, in these studies the problem arises that the conditions
at which DDTs occur are determined by the dynamics on the large scales.

On the other hand, for large-scale simulations the question arises, how DDTs can be
modeled properly. Most of the developed DDT models so far include only one parameter
(Arnett & Livne, 1994a; Khokhlov et al., 1997; Höflich et al., 1998; Livne, 1999; Gamezo
et al., 2005; Bravo & Garćıa-Senz, 2008; Townsley et al., 2009; Jackson et al., 2010; Krueger
et al., 2010), commonly a certain critical fuel density ρcrit that has to be reached by the
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flame in order to trigger the DDT. The choice of ρcrit has a major impact on the produced
56Ni masses, and hence on the brightness of the explosion. It was found that values of the
order of ρcrit ≈ 107 g cm−3 may produce 56Ni yields that are consistent with observations
(e.g. Höflich, 1995; Höflich et al., 1998; Domı́nguez et al., 2001). At these densities the
deflagration is already close to extinction.

The problem of these one-parameter models is the fact that the mixing process of burned
an unburned material is given by turbulent quantities and not by a (sometimes arbitrarily
chosen) critical fuel density. If no further constraints are set in these models, a DDT will
always occur, since the simple constraint ρfuel < ρcrit at the flame will practically always
be met during the deflagration. In specific deflagrations, however, the presence of relatively
weak turbulence may lead to an insufficient mixing of the burned and unburned material, so
that DDTs will in reality not occur. Finally, the constraint ρfuel < ρcrit will usually be met
first by the parts of the flame that are propagated farthest toward the surface of the white
dwarf. These parts are the heads of the mushroom cap like structures that occur due to the
influence of the RT instability. As shown later, turbulence is here significantly weaker than
alongside of these structures where strong shear instabilities occur.

From these considerations we argue that a criterion for a DDT should be based on tur-
bulent quantities. One necessary constraint for the DDT is the burning in the distributed
burning regime (Niemeyer & Woosley, 1997). This criterion has been applied to two- and
three-dimensional simulations by Golombek & Niemeyer (2005) and Röpke & Niemeyer
(2007). In general, the two relevant quantities δ and `gibs for this criterion are not resolved
and have therefore to be modeled somehow in order to evaluate where distributed burning
sets in (see Section 3.2.3). However, based on the turbulence driving mechanism, Niemeyer
& Woosley (1997) and Niemeyer & Kerstein (1997) derived an upper threshold value for the
fuel density for distributed burning. In this context, the density is an important parameter
after all, since it can be qualitatively used to assess of whether the flame has already entered
the distributed burning regime (e.g. Niemeyer & Woosley, 1997). As shown in the following,
there are additional constraints for a DDT within this burning regime that also concerns the
fuel density.

3.3.2 Constraints on DDTs

Turbulence

For a detailed study of DDTs it is inevitable to analyze the microphysical nature of turbulent
flames in white dwarfs. Such studies were carried out extensively by Lisewski et al. (2000),
Aspden et al. (2008) and Woosley et al. (2009). Although their analyses provide no evidence
for DDTs, we can derive necessary constraints from these studies. The most important
constraint for a DDT is the occurrence of particularly high velocity fluctuations at the
flame. Here the question arises, of whether turbulence remains strong enough for a DDT
in the phase where the deflagration is close to extinction. The RT instability in the late
deflagration phase becomes weaker until the expansion of the star will freeze out all turbulent
motions (Khokhlov, 1995). From microphysical studies, Lisewski et al. (2000) argue that the
turbulent velocity fluctuations must be of the order of 108 cm s−1 for a DDT, which is already
20 − 25% of the sound speed in the unburned material of the white dwarf. Röpke (2007)
found in numerical simulations of SNe Ia that these high velocity fluctuations, although
rare, may indeed occur at the flame. From a statistical point of view we can translate this
to a non-vanishing probability of finding these fluctuations. In addition, the study of Röpke
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(2007) was performed for some instants of time only. Hence, the occurrence of one or a few
of these fluctuations at the flame during the entire late deflagration phase may reach a high
probability. Recent studies of Woosley et al. (2009) show also that velocity fluctuations of
the order of 0.5× 108 cm s−1 maybe already sufficient to trigger a DDT.

The average velocity fluctuations at the flame in the turbulent deflagration phase are
approximately 107 cm s−1 (e.g. Figure 1 in Röpke, 2007)). Turbulent velocity fluctuations
of 0.5×108 cm s−1 or even 108 cm s−1 are therefore statistically expected to occur much rarer.
The occurrence of these high velocity fluctuations can only be explained by intermittency,
of which the properties may be crucial for a DDT (Pan et al., 2008). Weak intermittency in
predominantly burned material of the white dwarf was found by Schmidt et al. (2010). This
analysis was based on the computation and fitting of characteristic scaling exponents of the
turbulent velocity field that were obtained from the calculation of velocity structure functions
up to the sixth order, using the data of a highly resolved deflagration model (Ciaraldi-
Schoolmann et al., 2009; Röpke et al., 2007a). The fact that Röpke (2007) also found high
velocity fluctuations in the same model may indicate that intermittency is also present at the
flame. But the analysis of Röpke (2007) has never been intended to study intermittency in
detail, hence some uncertainties about the origin of these high velocity fluctuations remain.
Anyway, we conclude that a certain degree of intermittency in turbulence at the flame is
necessary for a DDT to occur.

Fuel fraction and fuel density

The sole fact that high velocity fluctuations exist somewhere at the flame is not sufficient
for a DDT to occur. It is also important that these fluctuations are predominantly located
in the unburned material within the mixed region. The minimum amount of fuel XDDT

fuel that
is required for the ignition and development of a self-sustained propagating detonation wave
depends on many quantities, such as the fuel density ρfuel, the chemical composition of the
local material as well as the fuel temperature (Arnett & Livne, 1994b; Khokhlov et al., 1997;
Seitenzahl et al., 2009a). In general, the ignition in a region that contains a too low amount
of fuel cannot build up the required shock strength for the detonation. Due to the described
dependencies, there is no general value for XDDT

fuel for triggering a DDT. A detailed analysis
in this context is given in Seitenzahl et al. (2009a) for instance.

To estimate a value for ρfuel for a DDT, we first ensure that burning takes place in the
distributed burning regime. Here Niemeyer & Woosley (1997) found that this condition is
approached for densities lower than 3 × 107 g cm−3. But there are further constraints for
detonations in the distributed burning regime. As long as a balance between turbulent mixing
and burning exists, DDTs may be prevented (Woosley, 2007). This balance is disturbed
when the flame width δ approaches the integral scale L, where the unsteady nature of the
burning becomes important. The condition δ ' L is met, when Dat = 1 (see Section 3.2.3),
which is therefore an additionally necessary constraint for a DDT in the distributed burning
regime (Woosley, 2007).7 For this case, Woosley (2007) derived a density range of ρfuel =
(0.5 . . . 1.5) × 107 g cm−3 at which DDTs are expected to occur. It should be noted that
Woosley (2007) assumes L ≈ 10 km, which is of the same order of magnitude as `Kol/RT (see
Section 3.2.1). In the analysis of Ciaraldi-Schoolmann et al. (2009), L seems to be larger,
since kinetic energy is injected into the cascade on larger length scales, similar to the case

7Woosley et al. (2009) further argue that DDTs can only occur in the SF regime, where Dat & 1. However,
there is no clear conclusion yet at which value of Dat DDTs are most probable. According to Woosley
et al. (2009) DDTs are expected for Dat ∼ 1 . . . 10.
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shown in Figure 3.1. However, at `Kol/RT the isotropy in the turbulence is broken, hence
in the context of the study of Woosley (2007) we may define LKol = `Kol/RT as the integral
length scale for isotropic turbulence (see also discussion in Schmidt et al., 2010). Whether or
not Dat & 1 holds for the burning processes in the case of LKol . δ . L under the influence
of an anisotropic turbulent velocity field is not known. However, as shown later, we have
to take into account the different scaling properties of the turbulent velocity field for length
scales smaller and larger than `Kol/RT for a modeling approach for DDTs.

Critical size and mixing of the DDT region

Finally, a region that meets the described constraints for the quantities v′(`), XDDT
fuel and ρfuel

has to exceed a critical length scale `crit for a DDT (e.g. Khokhlov et al., 1997; Niemeyer
& Woosley, 1997; Dursi & Timmes, 2006; Seitenzahl et al., 2009a) that is approximately
106 cm (e.g. Khokhlov et al., 1997; Seitenzahl et al., 2009a). As shown later, the size of this
region has to be derived from the flame geometry, hence the fractal dimension of the flame
becomes important.

In Section 3.2.1 we introduced with the half eddy turnover time τeddy1/2
(`) = 0.5 · `/v′(`)

(equation (3.23)) a time scale which constitutes the minimum required time for the mixing
of two different fluids (like the fuel and ash in a DDT region) on the scale `. However,
as outlined in the following the eddy turnover time depends on the degree of anisotropy
and intermittency in the turbulent motions that are both not considered in equation (3.23).
For isotropic turbulence equation (3.22) holds. To account for anisotropic effects on certain
length scales the exponent of 2/3 in equation (3.22) has to be modified accordingly on
these scales, which consequently affects the eddy turnover time. Moreover, for the study of
DDTs we restrict the considerations to high turbulent velocity fluctuations that are mainly
attributed to intermittency. When we fully exclude the average velocity fluctuations that
occur far more frequently and obey well-defined statistical properties (see Section 3.2.1), the
picture of a steady and undisturbed energy cascade with a well-defined scaling relation breaks
down. This becomes even more obvious, when we consider that the high velocity fluctuations
may originate from inhomogeneous energy dissipation rates on different length scales due
to intermittency in the turbulent motions (see Section 3.2.2). The eddy turnover time in
equation (3.22) relies on a constant energy dissipation rate in the inertial range. Therefore,
the real eddy turnover time in a region with very high turbulent velocity fluctuations may
significantly deviate from the estimated value for τeddy1/2

(`) with equation (3.23). As shown
later in Section 5.2 both the degree of anisotropy and intermittency in the vicinity of the flame
are difficult to estimate and not well known. In the following, we neglect the influences of
anisotropy and intermittency on the eddy turnover time and assume an undisturbed mixing
of the fuel and ash on the scale `crit. Then we can estimate the time for the mixing process
with equation (3.23), where we assume that the fuel and ash can be mixed by a turbulent
eddy of size `crit in a time of

τeddy1/2
(`crit) = 0.5 · `crit/v

′(`crit). (3.48)

With `crit = 106 cm and v′(`crit) = 108 cm s−1 (Lisewski et al., 2000) it follows
τeddy1/2

(`crit) = 0.5 × 10−2 s. With v′(`crit) = 0.5 × 108 cm s−1 (Woosley et al., 2009) we

find τeddy1/2
(`crit) = 1.0 × 10−2 s, respectively. If eventually a region that meets the above-

mentioned constraints exceeds `crit for at least τeddy1/2
(`crit), DDTs may occur.
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3.3.3 Summary

From the described constraints for a DDT it becomes obvious that a one-parameter criterion
is not capable of accounting for the detailed physics of the DDT process, even if such models
may lead to results that are consistent with observations. However, the latter has not been
strictly shown yet for multi-dimensional models. In two- and three-dimensional models DDTs
occur more frequently and the explosions become brighter than in one-dimensional models.
As a consequence, the threshold value of a relevant quantity for a DDT criterion (such as
ρcrit for instance) has to be accordingly adjusted in dependence of the dimensionality in
order to obtain the observed explosion brightnesses. In this way, it may become very hard
to reproduce the observed faint events of normal SNe Ia in three-dimensional simulations.
In this work, a new DDT model is introduced and applied exclusively to three-dimensional
simulations, where the model is motivated by the described necessary constraints for a DDT
to occur. The following quantities have to be taken into account for the physics of a DDT
(in the following referred to as DDT quantities):

• Turbulent velocity fluctuations v′(`) and the turbulent driving mechanism (Kolmogorov
or RT instability) at the flame

• Minimum amount of fuel XDDT
fuel and fuel density ρfuel at the flame

• Fractal dimension D of the flame

• The size of the flame surface area and the DDT region

• The half eddy turnover time τeddy1/2
(`crit)

In general, a conclusive evidence for DDTs requires resolving the microphysical properties
of the DDT. As already described, the length scales where this process is expected to occur
are too small to be resolved in multidimensional full-star simulations. Therefore, we do
not address the question of whether or not DDTs occur here from a microphysical point
of view. Instead, we assume that they occur and devise a model to implement them into
large-scale SN Ia simulations taking into account all known constraints on the microphysical
mechanism.

38



4
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explosions

The physical processes of an exploding white dwarf are very complex and constitute a major
challenge for numerical modeling. In particular, the hydrodynamic equations, including the
reaction equations of the thermonuclear burning in partially relativistic degenerate gases of
very high densities have to be taken into account. These equations are commonly imple-
mented in numerical hydrodynamic codes that run on supercomputers, sometimes for several
weeks or months. Despite the continuous improvements of numerical codes and the perfor-
mance of supercomputers it will probably never be possible to resolve all relevant length
scales of SN Ia explosions in full-star simulations. These length scales span a range of ap-
proximately 12 orders of magnitudes, if we assume that a typical white dwarf has a radius of
2000 km (which may additionally expand in a deflagration) and the Kolmogorov length scale
is smaller than a millimeter (see Section 3.2.1). Since physical processes occur on unresolved
length scales which determine the explosion dynamics, a corresponding modeling approach
is required. Several numerical methods have been developed in this context, including the
large eddy simulations (LES). In LES the largest turbulent structures are resolved on the
grid scale or above. Physical processes in smaller irresolvable turbulent structures are mod-
eled with a subgrid-scale (SGS) turbulence model. In this work, a hydrodynamic code is used
which complies with some basic concepts of LES. The main features of this code are outlined
in Section 4.1. The standard setup of the performed simulations that includes the initial
white dwarf model is described in Section 4.2.

4.1 LEAFS

For this work, the hydrodynamic code LEAFS (LEvelset based Astrophysical Flame
Simulations) is used. LEAFS is a descendant of the PROMETHEUS code which has been
developed by Fryxell et al. (1989) (see also Reinecke, 2001). In this work, the code is used
to perform three-dimensional full-star simulations of delayed detonations of Chandrasekhar-
mass white dwarfs. In the following, the main features of LEAFS are discussed. For a
detailed description of the code we refer to Reinecke (2001). The SGS model is outlined
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separately in Section 5.2, where it is tested with respect to the implementation of the DDT
model.

4.1.1 Flame propagation via level set method

The numerical code uses two nested co-moving simulation grids (Röpke, 2005; Röpke et al.,
2006). While an outer inhomogeneous grid follows the expansion of the whole white dwarf,
the flame is tracked with an inner homogeneous Cartesian grid. Throughout this work it
is understood that ∆(t) belongs to the time-dependent resolution of the inner expanding
grid. The flame width δ is very thin compared to the size of the white dwarf and treated
as a sharp discontinuity. This holds for both deflagration and detonation flames. For prop-
agating flames in white dwarfs in the discontinuity approach, the level set method has been
proven useful (Osher & Sethian, 1988; Smiljanovski et al., 1997; Reinecke et al., 1999). Here
the geometry Γ(t) of the flame front in a three-dimensional simulation is given by a two-
dimensional hyper surface. As shown later, this relation can be used to estimate the fractal
dimension of the deflagration flame. Γ(t) is additionally associated with the zero point of
a scalar distance function G(r, t), where in burned material G(r, t) > 0 and in unburned
material G(r, t) < 0 holds. Therefore, for grid cells near the flame we find |G(r, t)| < ∆(t).
The propagation of the flame is determined by the temporal evolution of G(r, t). Here, we
have to take into account that the flame is advected by the fluid motion and it propagates
normal to the flame surface due to burning. The time evolution of G(r, t) is given by (see
Reinecke et al., 1999)

∂G

∂t
= −(vu + vflameun)(−n|∇G|) = (vu · n + vflameu)|∇G|, (4.1)

where vu, vflameu and n denote the velocity of the fluid in the fuel, the burning speed with
respect to the unburned material and the normal vector to the flame front that points toward
the unburned material, respectively.

4.1.2 The effective burning speed of the deflagration flame

In the very early deflagration phase the flame propagation is laminar, hence vflame equals
approximately the laminar burning speed ulam which is given by equation (3.6). In the
turbulent deflagration phase a correct determination of vflame requires to resolve all the
wrinkles and curvatures of the flame front. But in our large-scale simulations these turbulent
flame structures are not fully resolved and the flame surface is smoothed artificially. However,
the burning speed can be estimated by assigning an effective turbulent flame speed vt(`) to
the smoothed flame and relating this quantity to the laminar burning speed ulam and the
turbulent velocity fluctuations v′(`). Following Pocheau (1994) vt(`) is given by

vt(∆(t)) = ulam

√
1 +

4

3

(
v′(∆(t))

ulam

)2

, (4.2)

where we used ` = ∆(t). The turbulent velocity fluctuations v′(∆(t)) are provided by a
turbulence SGS model, of which the properties are discussed extensively in Schmidt et al.
(2006a,b).
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4.1.3 Hydrodynamics and equation of state

White dwarfs are self-gravitating degenerate gas masses that are in hydrostatic equilibrium.
For a complete physical description of these objects, one needs the hydrodynamic conserva-
tion laws for mass, momentum and energy and a thermodynamic equation of state (EOS)
for the degenerate material. In addition, for the SN Ia problem the properties of thermonu-
clear burning and the participating chemical species and reactions have to be included. The
resulting system of coupled partial differential equations are called the reactive Euler equa-
tions. With gravitation as external force, these equations are given by (e.g Röpke & Schmidt
(2009)):

• mass conservation

∂ρ

∂t
= −∇ · (ρv), (4.3)

• momentum balance

∂ρv

∂t
= −∇ · (ρvv)−∇p− ρ∇φ, (4.4)

• species balance

∂ρXi

∂t
= −∇ · (ρXiv) + ρωXi i = 1...N, (4.5)

• energy balance

∂ρetot

∂t
= −∇ · (ρetotv)−∇(ρv)− ρv · (∇φ) + ρS, (4.6)

with

ωXi = ωXi(ρ, T,Xi), (4.7)

p = fEOS(ρ, eint, Xi), (4.8)

T = fEOS(ρ, eint, Xi), (4.9)

S = S(ωXi), (4.10)

∆φ = 4πGρ. (4.11)

In these equations is ρ the mass density, v the velocity, p the pressure, φ the gravitational
potential, Xi the specific mass fraction of the i-th chemical species, ωXi a corresponding reac-
tion rate, etot the specific total energy, eint the specific internal energy, fEOS an appropriate
EOS, T the temperature, S a source term for the energy release due to the reactions and G
the gravitational constant. The EOS of white dwarf matter that determines the pressure and
energy, consists of the non-relativistic ion gas, the electron gas that may be both degenerate
and relativistic, the thermal photon gas, as well as a contribution from the generation of
electron-positron pairs. For the individual components, the pressure and energy density e
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are given by (see Cox, 1968; Shapiro & Teukolsky, 1983)

pion = ρRT
∑
i

Xi

Mi
, (4.12)
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pphoton =
4

3c
σBT

4, (4.14)
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eion = 3/2pion, (4.16)
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√
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ephoton = 3pphoton, (4.18)
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h3
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2
(η, β) + βF̃ 5

2
(η, β)

]
, (4.19)

where R is the gas constant, Mi the molar mass of the i-th chemical species, h the Planck
constant, me the electron mass, c the speed of light, σB the Stefan-Boltzmann constant and
Fk and F̃k are the relativistic Fermi integrals defined as

Fk(η, β) =

∞∫
0

xk
(
1 + 1

2βx
) 1

2

e−η+x + 1
dx k > −1, (4.20)

F̃k(η, β) = Fk(η, β) + Fk

(
−η − 2

β
, β

)
. (4.21)

The parameters η and β are further given by

η =
EF

kBT
and β =

kBT

mec2
, (4.22)

where EF is the Fermi energy and kB the Boltzmann constant. η and β are a measure
for the degree of the degeneracy and the influence of relativistic effects, respectively. In the
dense center of the white dwarf EF is high enough that relativistic effects become important.
During the explosion process the degeneracy is partially lifted in the burned material due to
the high temperature increase.

The reactive Euler equations are treated numerically in a finite volume approach (Fryxell
et al., 1989) by the use of the Piecewise Parabolic Method (PPM) of Colella & Woodward
(1984). Since the Fermi integrals in the EOS are computationally too expensive to be
calculated during a simulation time step directly, the corresponding values are obtained
from a prior calculated table with bilinear interpolation.

4.1.4 Nuclear reaction processes

The complete nuclear reaction network to burn a carbon/oxygen mixture to iron group
elements includes more than 3000 reactions and hundreds of isotopes (e.g. Hix & Thielemann,
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1996; Burbidge et al., 1957). The use of such a sophisticated network in hydrodynamic
simulations would require a significant amount of computational resources. In LEAFS, only
a few effective reactions and chemical species are taken into account.

Depending on the density where burning currently takes place, the material is converted to
heavier elements: For sufficiently high densities, the material is mainly burned to a mixture
of 56Ni and α-particles in nuclear statistical equilibrium (NSE). In this case, at each time step
the fractions of 56Ni and α-particles are adapted to the current thermodynamic conditions
of the white dwarf. Burning to NSE increases the overall fraction of iron group elements
(IGE) that is approximated by one representative. With decreasing density, the reaction
already ends with the production of intermediate mass elements (IME), of which the overall
fraction is also given by one representative. For lower densities, only 12C can still burn to
16O until at even lower densities no thermonuclear reactions occur anymore.

The required fuel densities to burn the carbon/oxygen composition to heavier elements,
additionally strongly depend on the burning mode. In the case of a shock-driven detonation,
fuel at relatively low densities can be still sufficiently compressed to be burned, which does
not hold for deflagrations. In Figure 4.1 the obtained mass fractions of the chemical species
that are used in LEAFS are shown as function of the fuel density for a deflagration and a
detonation (see also Fink et al., 2010), where the fuel is assumed to be consisted of carbon
and oxygen in equal amounts by mass.

The described simplified reaction network consumes only marginal computational re-
sources in the hydrodynamic simulation and leads already to a good estimate for the energy
release during the burning (or equivalently for the source term S). However, we are also able
to obtain mass fractions of individual elements and isotopes by performing a post process-
ing step with tracer particles that are implemented in LEAFS. The tracer act as artificial
particles that are passively advected by the flow, whereby they collect certain information
along their trajectories during the SN Ia simulation (see Travaglio et al., 2004; Seitenzahl
et al., 2010a,b).

4.2 The initial white dwarf model

The initial model of the white dwarf that is set up in the numerical simulation includes
some parameters, of which the values are not well known (see Section 2.3.1). In particu-
lar at ignition time, the central density ρc and temperature Tc, the chemical composition
(metallicity and carbon/oxygen ratio) of the white dwarf, as well as the physical properties
of the ignition region from which the flame evolves are highly uncertain. Furthermore, the
rotation of the star can be included in which case the white dwarf may also have a higher
initial mass than MCH (see Section 2.3.5).

4.2.1 The standard initial conditions of the white dwarf

In the following, the standard setup of the initial white dwarf model is described that is
frequently used in the simulations of this work. We assume isothermal, cold and non-rotating
Chandrasekhar-mass white dwarfs in hydrostatic equilibrium with ρc = 2.9×109 g cm−3 and
Tc = 5 × 105 K. The chemical composition is 50% 12C and 50% 16O which is distributed
homogeneously throughout the star. The electron fraction Ye of a given composition can be

43



4 Numerical simulations of Type Ia supernova explosions

0.0

0.2

0.4

0.6

0.8

1.0

1e4 1e5 1e6 1e7 1e8

m
a

s
s
 f

ra
c
ti
o

n

ρfuel [g cm
-3

]

Carbon    [Detonation]

Carbon  [Deflagration]

Oxygen   [Detonation]

Oxygen [Deflagration]

IME      [Detonation]

IME    [Deflagration]

IGE      [Detonation]

IGE    [Deflagration]

Fig. 4.1: Mass fractions of chemical species from thermonuclear burning as function of the fuel
density ρfuel in detonations (Fink et al., 2010) (solid lines) and deflagrations (dashed lines).

defined as

Ye =
∑
i

Xi
Pi
Ai
, (4.23)

where Xi, Pi and Ai denote the specific mass fraction, the proton number and the nu-
cleon number of the i-th chemical species in the composition, respectively. Hence, for
X(12C) = X(16O) = 0.5 we find Ye = 0.5. The initial chemical composition is fixed in
the current implementation of the code. However, we can take a certain metallicity of the
white dwarf into account by determining Ye with a slightly different chemical composition.
In our case, we replace a certain amount of the carbon/oxygen mixture with 22Ne and adjust
the value of Ye accordingly. We assume that the progenitor star of the white dwarf has solar
metallicity, which corresponds to a 22Ne mass fraction of about X(22Ne) = 0.025.1 With

1X(22Ne) = 0.025 has been used by Nomoto et al. (1984) in a famous deflagration model (called W7 ).
We outline here, how X(22Ne) can be estimated roughly under the assumption of solar metallicity. The
metallicity Z can be defined as the mass ratio of chemical species with a proton number of P ≥ 3 to the
overall chemical species. For the Sun, Anders & Grevesse (1989) give a value of Z ≈ 0.020, while Asplund
et al. (2005) propose a far lower metallicity of Z ≈ 0.012. Here we make a compromise and simply
take the average, which yields Z = 0.016. We further assume that most of the metals (isotopes with
P ≥ 3) are found within the CNO cycle in which continuously 14N is produced. Thereby the metallicity
stays approximately constant. During the ensuing helium burning phase 22Ne is synthesized from 14N by
two captures of α-particles and a subsequent β+- decay. As a result the metallicity now increases up to
A(22Ne)/A(14N) · Z ≈ 0.025 (Seitenzahl, 2012).
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X(12C) = X(16O) = 0.5− (0.5 · 0.025) = 0.4875 we find with equation (4.23)

Ye = 0.4875 · 6

12
+ 0.4875 · 8

16
+ 0.025 · 10

22
= 0.49886 (4.24)

which is our standard value for Ye of the initial white dwarf model.

4.2.2 The ignition geometry of the deflagration

The main difference in the models in most of the performed simulations of this work is
the ignition geometry of the deflagration. As indicated in Section 2.3.1 there are no clear
conclusions about the location(s) and size(s) of the ignition region(s). Therefore, the ig-
nition geometries in our models are not directly motivated by physical assumptions, but
constructed in a way to obtain different evolutions of the deflagration flame. As pointed out
in Section 2.3.4 for the delayed detonation scenario the strength of the deflagration plays
an important role for the brightness of the explosion. It is known that off-center ignitions
of the deflagration flame yield mainly weak deflagrations (e.g. Röpke et al., 2007b). Here
an ensuing detonation commonly leads to bright explosions only (e.g. Meakin et al., 2009).
Therefore, for the delayed detonation scenario centrally ignited deflagration flames are re-
quired if the delayed detonation scenario should account for the whole observed variations
in the brightness of normal SNe Ia. For our ignition models we follow Plewa (2007), Röpke
et al. (2006) and Röpke et al. (2007a,b) and perform single and multiple spot ignitions in the
vicinity of the center of the white dwarf. In Table 4.1 the ten standard ignition models with
specific values of the parameters of the ignition geometry are summarized. These models
are frequently used in the following studies.

The primary parameter of the ignition geometry is the number of spherical ignition kernels
Nk from which the deflagration flame evolves. This parameter sets mainly the strength of
the deflagration (Röpke et al., 2006) which in turn determines the energy release and hence
the expansion rate of the white dwarf. Two additional parameters are the radius rk of the
kernels and the minimum distance dk that the center of these kernels have to maintain.

For each ignition geometry exclusively one uniform value for rk and dk is chosen. The
radius of an individual kernel in multiple spot ignition scenarios may be of the order of
105 cm (e.g. Woosley et al., 2004; Iapichino et al., 2006). This value is below our initial
grid resolution and we use rk = 106 cm. The value of dk is chosen arbitrarily. Since we
use a constant value for rk for all ten standard models, the parameter dk can be seen as a
measure of how fast the flame kernels become merged in the explosion. This in turn has
an effect on the occurrence of different kinks and bends at the flame that are the seeds
for instabilities to arise. We note that for large Nk, dk < rk, indicating that kernels may
partially overlap, so that instabilities may arise quickly after the onset of the explosion. The
effect of a variation of rk and dk within an ignition geometry on the simulation results is
investigated in Section 7.2.3.

For all ignition geometries, the kernels are placed spherically symmetric in the central
region of the white dwarf. They are mostly concentrated in the vicinity of the center, while
their number declines outward, following a Gaussian distribution. A fixed cutoff R is set,
which defines the maximum distance for the ignition kernels from the center of the white
dwarf. We use R = 2.5·σ, where σ is the variance of the Gaussian distribution. σ is chosen in
a way that we obtain (except for Model I) values for R that agree with the study of Woosley
et al. (2004). However, there is no physical consensus on how the ignition kernels should be
distributed generally. For ignition geometries with small Nk we note that the arrangement of
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the kernels cannot be considered as a real Gaussian distribution anymore. In particular, for
Nk = 1 (Model I), where R = σ, the setup can be described as a simple off-center ignition
scenario. A further special ignition model is Model X that is based on a configuration used
in a highly resolved simulation of a pure deflagration, performed by Röpke et al. (2007a).
By the generation of this setup also R = σ holds. Furthermore, individual ignition kernels
are removed and newly arranged, until a very compact and dense initial flame configuration
of high spherical symmetry is obtained.

In Figure 4.2 we show the ignition geometries from Table 4.1, except for the single spot
off-center of Model I. In the figures an isosurface is drawn that corresponds to a density
of 2.2 × 109 g cm−3 which is about 2.5 × 107 cm away from the center of the white dwarf.
For the generation of the ignition geometries, a Monte-Carlo based program is used that
produces the ignition setups from the input of the required parameters in the form of a table
that includes the position and the uniform size of ignition kernels. It should be noted that
in general for a chosen set of parameters for an ignition setup, more than one realization is
possible which are different in the spatial distribution of the ignition kernels.

In this work, a detailed parameter study is performed, where a large number of additional
ignition geometries of the deflagration is used, of which the parameters are summarized in
Table 4.2. Some setups may appear twice in Table 4.2 or equal a standard setup of Table 4.1.
Here another realization of the corresponding setup was chosen.
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Model Nk σ [107 cm] rk [106 cm] dk [106 cm]

I 1 0.36 1.00 -

II 3 0.50 1.00 3.00

III 5 0.60 1.00 1.00

IV 10 0.60 1.00 1.00

V 20 0.60 1.00 0.60

VI 40 0.60 1.00 1.00

VII 100 0.60 1.00 0.30

VIII 200 0.75 1.00 0.30

IX 1600 1.00 1.00 0.05

X 1600 1.80 1.00 0.05

Table 4.1: Setups of the ten standard ignition geometries of the deflagration flame.

Model Nk σ rk dk Model Nk σ rk dk

[107 cm] [106 cm] [106 cm] [107 cm] [106 cm] [106 cm]

1 5 0.60 1.00 1.00 19 200 0.75 1.00 0.10

2 30 0.60 1.00 1.00 20 200 0.75 1.00 0.34

3 40 0.60 1.00 1.00 21 200 2.00 1.00 0.50

4 50 0.60 1.00 0.80 22 250 0.80 1.00 0.23

5 60 0.40 1.00 0.40 23 300 0.80 1.00 0.23

6 60 0.40 1.00 0.40 24 350 0.90 1.00 0.20

7 80 0.60 1.00 0.50 25 400 1.00 1.00 0.10

8 125 0.60 1.00 0.40 26 500 1.00 1.00 0.17

9 150 0.60 1.00 0.35 27 600 1.00 1.00 0.13

10 175 0.60 1.00 0.30 28 700 1.00 1.00 0.12

11 200 0.75 1.00 0.30 29 800 1.00 1.00 0.08

12 200 0.66 1.00 0.30 30 900 1.00 1.00 0.08

13 200 1.00 1.00 0.30 31 1000 1.00 1.00 0.07

14 200 1.50 1.00 0.30 32 1200 1.00 1.00 0.06

15 200 2.00 1.00 0.30 33 1400 1.00 1.00 0.05

16 200 3.00 1.00 0.30 34 1600 1.00 1.00 0.05

17 200 0.75 0.50 0.30 35 3000 1.40 1.00 0.03

18 200 0.75 1.10 0.30 36 5000 1.60 1.00 0.02

Table 4.2: Setups of the ignition geometries of the deflagration flame for the parameter study in
Chapter 7.
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4 Numerical simulations of Type Ia supernova explosions

(a) Model II (Nk = 3) (b) Model III (Nk = 5) (c) Model IV (Nk = 10)

(d) Model V (Nk = 20) (e) Model VI (Nk = 40) (f) Model VII (Nk = 100)

(g) Model VIII (Nk = 200) (h) Model IX (Nk = 1600) (i) Model X (Nk = 1600)

Fig. 4.2: Ignition geometries of the deflagration of Model II - Model X. Shown are the arranged igni-
tion kernels (red spheres) and a transparent blue isosurface where ρfuel = 2.2×109 g cm−3.
The distance from the center of the white dwarf where ρc = 2.9 × 109 g cm−3 to this
isosurface is approximately 2.5 × 107 cm. Only in Model IX, some ignition kernels may
approach this distance. Model X obviously has a very compact and dense arrangement of
the ignition kernels, resulting in a setup of high spherical symmetry.
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5
Modeling delayed detonations

To resolve a DDT region that has a length of `crit ≈ 106 cm we need at least 10243 grid
cells in LEAFS. The microphysical processes within a DDT region occur on much smaller
scales that cannot be resolved in our full-star simulations. With the currently available
computational resources, simulations with 10243 grid cells are already very expensive and
take a significant amount of time. This work, however, is designed to run many simulations
in order to perform detailed parameter studies, which is motivated by the fact that most of
the values of the DDT quantities that are summarized in Section 3.3.3 are not well known.
Therefore, many low resolved simulations with 2563 grid cells are performed in which the
length of the grid cells ∆(t) is larger than `crit during the entire late deflagration phase.
For the implementation of a DDT model in LEAFS this means that an appropriate SGS
approach is required to model the DDT quantities on unresolved scales. In this chapter
the construction and the tests of this DDT-SGS model (in the following simply referred
to as DDT model) are described. In Section 5.1 we first determine the flame surface area
that meets certain constraints for a DDT. The already existing SGS model in LEAFS
that calculates the turbulent velocity fluctuations v′(`) in the deflagration phase is tested
in Section 5.2 where we explicitly evaluate, whether this model is capable of modeling the
important high velocity fluctuations for a DDT properly. In Section 5.3 we formulate the
DDT model and the criterion for DDTs. The resolution dependence of the DDT model is
tested in Section 5.4. Here we are also able to derive a value for the fractal dimension of the
flame. Section 5.5 gives a summary of the DDT model.

5.1 Determination of the flame surface area

First we determine the grid cells that meet the necessary constraints for a DDT. To capture
all regions at the flame we take into account only grid cells where |G(r, t)| < ∆(t) (see
Section 4.1.1). Furthermore, as stated in Section 3.3.2 a specific amount of fuel XDDT

fuel , a
certain fuel density ρfuel and high velocity fluctuations v′(`) at the flame are required for
a DDT. Here the question arises how these constraints can be implemented in a model in
which a DDT region is not resolved. A further complication is that the flame is treated
as a sharp discontinuity that prevents us to determine values of physical quantities at the
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5 Modeling delayed detonations

flame precisely. Hence, the value of XDDT
fuel , ρfuel and v′(`), as well as the mixing processes

within a DDT region at the flame cannot be determined directly. We also have to take into
account that due to the grid discretization the flame can be found in all possible regions
within a grid cell. The values of the physical quantities of a grid cell represent the physical
properties at the flame best, when the flame approximately splits the grid cell into two parts
of equal size. Therefore, we will perform a preselection of the grid cells in which the flame
propagates on average through their centers. We note that in principle DDTs may occur
at all suitable places at the deflagration flame that meet the necessary DDT constraints,
regardless of whether the flame propagates through the central part of a grid cell or whether
a grid cell is hardly intersected by the flame. The latter will be skipped in our analysis, since
this cell mainly represents the physical properties in ash or fuel regions. The preselection of
grid cells implies that a certain fraction of the deflagration flame that may meet the necessary
DDT constraints is not taken into account in our study. In the context of the DDT model,
this will eventually lead to an underestimate of the occurrence of DDTs. However, as shown
later the flame surface area that meets the DDT constraints is not the only (and often not
the most important) quantity that is relevant for the DDT criterion. In the following, we
describe the method, how our study can be restricted to grid cells that seem appropriate for
a DDT.

5.1.1 Constraints on the fuel fraction in the grid cells

We define the fuel fraction Xfuel in a grid cell as the fraction of the carbon/oxygen com-
position to the overall chemical species, hence Xfuel ∈ [0; 1]. In the performed simulations
a value of Xfuel is always given for the entire grid cell, of which the length is larger than
`crit. Hence, for the implementation of a DDT model the analysis should be restricted to
the vicinity of the flame on a sub scale `crit < ∆(t).

For grid cells with Xfuel ≈ 0 and Xfuel ≈ 1 (these cells are not or hardly intersected by the
flame) we mainly analyze the physical properties of ash and fuel regions that are far away
from the flame and therefore inappropriate for the DDT model. To estimate the physical
properties at the flame we employ with Xmin

fuel and Xmax
fuel two free parameters for the minimum

and maximum fuel fraction and take for the analysis only grid cells into account in which
Xmin

fuel ≤ Xfuel ≤ Xmax
fuel . For now we set Xmin

fuel = 1/3 and Xmax
fuel = 2/3 but these threshold

values are varied later in the following studies to analyze the influence of a variation of these
parameters on the simulation results. The average fuel fraction in the grid cells is expected
to be X fuel = 1/2 · (Xmin

fuel + Xmax
fuel ) = 1/2. This also holds if no restrictions on Xfuel would

have been set but now we find that the flame (resp. the level set) propagates on average
through the central part of the grid cells. Under these conditions, we argue that a DDT
region should also be localized in the central part within a grid cell, since at this place there
is an enhanced probability that both fuel and ash are found on a sub scale `crit, while in
other places there will be mostly pure fuel or ash.

From the viewpoint of DDTs that occur in the centers of grid cells we note that in most
cases where Xfuel > Xmax

fuel , there is pure fuel on a sub scale `crit in the center of the cor-
responding grid cell, whereas for Xfuel < Xmin

fuel there will be most often exclusively burned
material. In both cases, a DDT in the center of the corresponding grid cell is unlikely to
occur, since the distance between the flame and the DDT region is too large. At some local
places, however, strong turbulence may deform the flame in a way that the value of Xfuel on
a sub scale `crit in the center of the grid cells can be still quite high or low, even if the fre-
quency at which these cells occur is significantly reduced due to the introduced restrictions
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III

II I

IV

lcritΔ

Fig. 5.1: Sketch to illustrate the effect of the restrictions on Xfuel in the case of ∆(t) ≈ 4 · `crit in
two-dimensional view. In the center of the grid cells a square with the edge length of `crit

is shown in white. Within the cells, the fuel is shown in blue and the ash in red, where
both components are separated by the flame that is shown as a yellow curve. In grid cell
I the flame propagates through the center and since Xmin

fuel ≤ Xfuel ≤ Xmax
fuel this cell obeys

the constraint concerning Xfuel in our approach. In grid cell II the flame misses the center
and in addition Xfuel > Xmax

fuel . Consequently this cell is not taken into account for further
considerations. The inaccuracy of the described method is illustrated in the grid cells III
and IV. In the former, the flame propagates through the center and there may be in addition
sufficient fuel for a DDT on the sub scale `crit, but since Xfuel > Xmax

fuel , this cell is skipped
in our study. In the latter, the fuel fraction is in the range of Xmin

fuel ≤ Xfuel ≤ Xmax
fuel so that

this cell will not be skipped. However, the flame misses the center of the cell. We note
that in particular the cases in the grid cells III and IV only appear if the flame propagates
in a strong unusual serpentine like way through the grid cells. In reality the curvatures
of turbulent flames are less pronounced in the level set approach in LEAFS than in the
shown sketch here (see for instance Figure 6.15).

on Xfuel. This behavior is illustrated in Figure 5.1.

We further find that due to the various curvatures of the flame and the implemented co-
moving grid technique, X fuel deviates from 1/2 to a certain degree. In addition, the value
of X fuel varies for different ignition models of the deflagration. Both effects are shown in
Figure 5.2 where X fuel, determined from all grid cells with |G(r, t)| < ∆(t) is plotted as
function of simulation time t for five ignition models of Table 4.1 that give rise to different
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Fig. 5.2: Average fuel fractions in the grid cells at the flame as function of simulation time t for five
ignition models of the deflagration of Table 4.1.

strengths of the deflagration. The resolution of the simulations of these pure deflagrations
was 2563 grid cells. We see that X fuel initially declines below 1/2 for all models, indicating
that in the DDT model preferentially grid cells are captured that have less than 50% of fuel.
Only in the very late deflagration phase where no more DDTs occur X fuel approaches 1/2.

If we increase the resolution, but let the threshold values for Xmin
fuel and Xmax

fuel constant, the
number of grid cells that have a low or a high fraction of fuel on a sub scale `crit in the center
is further reduced. A similar result can be achieved by placing more stringent constraints on
Xfuel, where a higher value for Xmin

fuel always implies a lower value for Xmax
fuel , since the flame

should cross on average the central part of the grid cells. Here the problem arises that for
the application of the DDT model, a certain number of grid cells is required, so that much
more stringent constraints on Xfuel than Xmin

fuel = 1/3 and Xmax
fuel = 2/3 are hardly possible

for simulations with 2563 grid cells.

We can summarize that there is no accurate way to determine the physical properties of
DDT regions at the flame precisely. The main reasons are that these regions are not resolved
and that the flame is treated as a sharp discontinuity. However, with two parameters Xmin

fuel

and Xmax
fuel we can restrict the analysis to the vicinity of the flame and additionally ensure

that there is on average some fuel for a DDT. We emphasize that Xmin
fuel and Xmax

fuel are not
in any way related to the required fuel fraction XDDT

fuel for a DDT (see Section 3.3.2). The
lack of a sufficiently accurate modeling approach for XDDT

fuel on scales `crit < ∆(t) prevents
us to judge whether there is indeed enough fuel for a DDT. This is also why we cannot
take into account that XDDT

fuel additionally depends on various other quantities as outlined
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5.1 Determination of the flame surface area

in Section 3.3.2.

5.1.2 Constraints on the fuel density in the grid cells

The second constraint a grid cell has to meet is that the flame in this cell is in the distributed
burning regime. Furthermore, the constraints for detonations in this burning regime, de-
scribed by Woosley (2007) and Woosley et al. (2009) have to be taken into account. In anal-
ogy to the quantity Xfuel, we define two threshold values ρmin

fuel and ρmax
fuel as the minimum and

maximum fuel density and take only grid cells into account where ρmin
fuel ≤ ρfuel ≤ ρmax

fuel . For
now, we follow Woosley (2007) and use ρmin

fuel = 0.5×107 g cm−3 and ρmax
fuel = 1.5×107 g cm−3.

Similar to Xfuel, these threshold values will be varied later, since the allowed range of ρfuel

with the above values seems to be quite large.

5.1.3 The flame surface area

We define the number of all grid cells that are located in the vicinity of the flame (hence the
cells in which |G(r, t)| < ∆(t)) at the time t as Nflame(t) and the grid cells that additionally
obey the DDT constraints concerning Xfuel and ρfuel as N∗flame(t). In the same context, we
define the entire flame surface area as Aflame(t) and the part of the flame that additionally
meets the DDT constraints as A∗flame(t), respectively. In general, N∗flame(t) � Nflame(t)
and hence A∗flame(t) � Aflame(t). To estimate the flame surface area we have to relate
the quantities ∆(t) and Nflame(t) to Aflame(t). Here we assume that due to the nature
of turbulence, the flame in the deflagration phase can be considered as a fractal object
that has a fractal dimension D. As indicated in Section 3.2.4 the fractal description of
turbulent flames is only an approximation, since the wrinkled and folded flame structures
become smoother on smaller length scales, which is not valid for a fractal. However, for fully
developed turbulence we expect that in the range of length scales `gibs � ` � L a fractal
description can be applied to the flame (Peters, 1986; Kerstein, 1988). In our analysis we
may assume that due to the co-moving grid technique (see Section 4.1.1) and the fact that
`gibs decreases significantly during the explosion (see Section 3.2.3), `gibs < ∆(t) for the late
turbulent deflagration phase, where we may expect DDTs. However, it is uncertain, whether
at the same time ∆(t) < L holds. With L = LKol ≈ 10 km (see Section 3.3.2) we always
find ∆(t) > L for the late deflagration phase, hence the entire inertial range of isotropic
turbulence is not resolved. Following Ciaraldi-Schoolmann et al. (2009) L is much larger,
where for length scales larger than 10 km the angular velocity fluctuations still obey the
Kolmogorov scaling, whereas the radial velocity fluctuations follow a scaling law of the RT
instability (see Section 3.2.1). As described in Section 3.2.4 different scaling behaviors of the
turbulent velocity field have an effect on the fractal dimension of the flame. In the case of
∆(t) < L we further have to take into account that due to the grid expansion the range of
length scales `gibs � `� L that can be resolved on the grid scale continuously decreases until
eventually ∆(t) > L (even for high values of L). These uncertainties and problems prevent
us to perform detailed considerations and studies (such as in Gouldin (1987), Kerstein (1988)
and North & Santavicca (1990) for instance). Instead, we will use a more general method
to determine the fractal dimension of the flame and compare our results with the expected
values for D that are indicated in Section 3.2.4. As described in Section 4.1.1 the turbulent
flame is numerically treated as a sharp discontinuity which propagates as a thin interface
through the grid cells. Since this holds for all chosen grid resolutions we assume that the
flame surface behaves self-similar for different resolved length scales and that the quantity
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Aflame(t) is resolution-independent. Then we can calculate the self-similarity dimension that
is defined as (e.g. Feder, 1988; Schroeder, 1991)

D =
logN

log ε
, (5.1)

where N is the number of self-similar pieces and ε the reduction or zoom factor. For our
purposes we need the number of grid cells Nflame1(t) and Nflame2(t) from two simulations
with different resolutions ∆1(t) and ∆2(t) that are performed with the same initial white
dwarf model. Then D is given by

D =
log(Nflame2(t)/Nflame1(t))

log(∆1(t)/∆2(t))
. (5.2)

From here it follows

Nflame1(t) · (∆1(t))D = Nflame2(t) · (∆2(t))D (5.3)

and since Aflame(t) should be equal for both simulations we identify

Aflame(t) = Nflame(t) · (∆(t))D (5.4)

as the flame surface area (see also Sreenivasan, 1991; Niemeyer, 1995). The calculation of D
will be performed together with a resolution study of the DDT model in Section 5.4. If D is
determined, A∗flame(t) can be calculated with N∗flame(t) and D by applying equation (5.4).1

5.2 Testing the turbulence SGS model for DDTs

For the construction of a DDT model that is based on the properties of high turbulent
velocity fluctuations, the already implemented SGS model that calculates the turbulence in
the deflagration phase has to be tested. This SGS model was developed by Schmidt et al.
(2006a,b) and has been applied to numerical simulations of pure turbulent deflagrations in
white dwarfs (e.g. Röpke et al., 2007a). Röpke (2007) found that the SGS model generates
some velocity fluctuations at the flame that maybe sufficiently high for a DDT. However,
it was not explicitly tested, whether these high velocity fluctuations reveal the intermittent
behavior in turbulence or whether they constitute an artifact of turbulence modeling. For
the delayed detonation scenario that relies on the existence of high velocity fluctuations,
a correct modeling of turbulence, which also includes the intermittent behavior, may be
decisive for the success of this explosion scenario. Therefore, in this section we perform some
test calculations in order to assess, whether the SGS model can be used for the construction
of a DDT model. For a detailed description of the SGS model we refer to the work of Schmidt
et al. (2006a,b) and Schmidt (2004).

The most important quantity that we need from the SGS model are the turbulent velocity
fluctuations, where the model returns a value of v′(`) on the time-dependent grid scale ∆(t).
Since we need a value of v′(`crit) on the fixed length scale `crit, we have to investigate how
to rescale v′(∆(t)) to v′(`crit).

1Here it is assumed that both the entire flame as well as the region of the flame that meets the DDT
constraints have the same fractal dimension. Due to N∗flame(t) � Nflame(t) there are not enough data to
derive a reliable value of D for A∗flame(t) directly.
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5.2 Testing the turbulence SGS model for DDTs

For testing the SGS model we will exclusively use the simulation data of pure deflagrations
with different resolutions of the model described in Röpke et al. (2007a) which is a variant of
Model X and is referred to as Model X∗ in the following. Model X∗ that has been originally
performed with 10243 grid cells uses a finer resolved ignition geometry with rk = 2.6×105 cm
and dk = 5.2 × 104 cm. The properties of turbulence in burned regions of this deflagration
model were extensively analyzed by Ciaraldi-Schoolmann et al. (2009) and Schmidt et al.
(2010), which enables us to compare our results with these studies.

5.2.1 About probability density functions and histograms

To judge whether the SGS model is capable of reproducing the high velocity fluctuations
at the flame correctly, we first have to find out how often these fluctuations occur. One
commonly used statistical method is the calculation of a probability density function (PDF).
The probability P (a ≤ X ≤ b) that a random variable X takes on a value between a and b
is given by

P (a ≤ X ≤ b) =

b∫
a

f(x) dx, (5.5)

where f(x) is the PDF of the random variable X. The PDF is normalized by

∞∫
−∞

f(x) dx = 1. (5.6)

By definition a PDF constitutes a continuous function but in most cases only discrete data
are available. Then the probability density can be estimated by sampling and sorting the
data into bins and constructing histograms. We define the relative frequency density as

h(xi) =
1

∆x
· Number of data points in the i-th bin

Total number of data
, (5.7)

which constitutes the ratio of the number of data points in the i-th bin to the total number
of data, normalized to the bin width ∆x.2 The normalization of the histogram is then given
analogously to equation (5.6) by

∑
i

(h(x)i ·∆x) =
∑
i

Number of data points in the i-th bin

Total number of data
= 1. (5.8)

After a histogram is constructed, a continuous function can be used to fit the histogram.
The fit then constitutes an approximated PDF of the random variable.

Usually the data in histograms are presented by rectangles, but in our case this would
be somewhat impractical. The width of the rectangles (resp. the bin width ∆x) in the
histograms is so narrow that these rectangles are replaced by a simple data point which is
located at the half width of the corresponding rectangle. These data points are sometimes
additionally connected with lines.

2Here a constant bin width is assumed that holds within each constructed histrogram in our studies.
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5.2.2 Testing the SGS model in reproducing the high velocity fluctuations

Röpke (2007) calculated histograms of v′(`) at the flame that contain the data of the SGS
model and used an empirical function to fit the data. The result shows clearly a slow decline
of the histogram toward higher velocity fluctuations. Therefore, there may be still a low
probability of the occurrence of velocity fluctuations that are high enough for a DDT. It is
not clear, however, whether the found slow decline of v′(`) in the histogram appears due
to high intermittent turbulence or whether it is an artifact of turbulence modeling. To
investigate this we developed an algorithm that derives the turbulent velocity fluctuations
from the resolved velocity field of the hydrodynamic flow. This allows us to compare the
histogram that contains the data of the resolved fluctuations with the histogram that contains
the values v′(`) of the SGS model.

Estimating the resolved velocity fluctuations on the grid scale

The resolved velocity field v(r) of the hydrodynamic flow is a superposition of the turbulent
velocity fluctuations and the bulk expansion of the white dwarf, where the latter contribution
points in radial direction. We have to subtract the bulk expansion from v(r) to obtain the
pure fluctuating part vturb(r). This procedure is described in Ciaraldi-Schoolmann et al.
(2009). To compare vturb(r) = |vturb|(r) with v′(`) we have to take into account that the SGS
model returns a value on the scale ∆(t), so that the quantity vturb(r) has to be considered on
the scale ∆(t) as well. To ensure this we use a routine that is similar to the computation of
structure functions (see Section 3.2.1). Here, however, we choose a constant length scale of
` = |`| = ∆(t), hence the routine is based on the computation of averaged absolute velocity
differences |vturb(∆(t))| of neighboring grid cells. Using a Monte-Carlo based algorithm, a
random grid cell and N adjacent cells are selected. Then |vturb(∆(t))| is given by

|vturb(∆(t))| = 1

N

N∑
i=1

|vturb(r)− vturbi
(r + `)|, (5.9)

where vturb(r) is the velocity fluctuation in the selected grid cell and vturbi
(r + `) is the

velocity fluctuation in the i-th of the N adjacent grid cell. In our three-dimensional analysis
the number of all adjacent grid cells is N = 6.3 However, as shown in the following, not all
of these cells are always taken into account.

We further extend this analysis by performing the calculation with a fixed length scale of
` = 4 · ∆(t). For comparison with the result from the SGS model, we have to rescale the
values of v′(`) from v′(∆(t)) to v′(4 ·∆(t)). Following equation (3.12) the rescaling can be
performed with

v′(4 ·∆(t)) = v′(∆(t)) · (4 ·∆(t))α

∆(t)α
= 4α · v′(∆(t)). (5.10)

For sufficiently small length scales the scaling of the turbulent velocity field is given by the
Kolmogorov theory (see Section 3.2.1), where α = 1/3 and hence v′(4 ·∆(t)) = 41/3 ·v′(∆(t)).
With increasing length scales the turbulent velocity field becomes anisotropic, where in the
direction parallel to gravity a scaling behavior for RT instability driven turbulence is observed
(Ciaraldi-Schoolmann et al., 2009). In this case, α = 1/2 and hence v′(4 ·∆(t)) = 2 ·v′(∆(t)).

3The computational domain is far away from the edge of the simulation grid.
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The computation is performed for data in burned regions and for the data Nflame(t) in the
vicinity of the flame. For burned regions, G(r, t) ≥ ∆(t) holds for the randomly selected grid
cell as well as for the N cells that are used for the calculation of |vturb(∆(t))| (equation (5.9)).
This applies to both cases ` = ∆(t) and ` = 4 · ∆(t). All grid cells are far away from the
flame and N = 6 always holds.

For regions at the flame, |G(r, t)| < ∆(t) holds for the randomly selected grid cell but
this is frequently not automatically true for adjacent grid cells and particularly for the more
distant cells in the case of ` = 4 · ∆(t). Here we exclude all grid cells with Xfuel > 0.5
for the calculation of |vturb(∆(t))| (equation (5.9)). Therefore, we ensure that only grid
cells are taken into account that are located either at the flame or in burned regions (in
which Xfuel ≈ 0). As a consequence, we frequently find here for the number of grid cells
that are used for the calculation of |vturb(∆(t))|, N < 6. The routine is always applied to
a total number of 106 different randomly selected grid cells, where for a larger number we
find no change in the results anymore. After the calculation, a histogram of |vturb(∆(t))| is
constructed.

Comparison of the histograms of |vturb(∆(t))| and v′(∆(t))

In the Figures 5.3 and 5.4 the histograms of |vturb(∆(t))| and v′(∆(t)) that contain the data in
burned regions and in the vicinity of the flame are shown, where for the performed simulation
a resolution of 5123 grid cells was used. The simulation time is t ≈ 0.8 s corresponding to the
late deflagration phase, where turbulence is strong and therefore affects the structure and
propagation of the flame significantly. In the case of ` = ∆(t) no scaling procedure has to be
performed for the SGS model, while for ` = 4 ·∆(t) the results of both rescaling operations
– Kolmogorov- and RT instability driven turbulence – are shown in the plots.

In all figures we see a qualitative agreement of the histograms, where the histogram of
|vturb(∆(t))| shows a stronger scatter than the SGS model. The main reason lies in the
algorithm for determining |vturb(∆(t))| that is based on averaging over a few (maximum
six) grid cells only leading to a poor statistic. This becomes particularly apparent for high
velocity values in the half-logarithmic plot. However, we see a slow decline in all plots at
the right side of the histogram of |vturb(∆(t))| that is in an adequate agreement with the
histogram of v′(∆(t)). This is a first hint that the found high velocity fluctuations of the
SGS model are no artifact of turbulence modeling but may reveal the intermittent behavior
of turbulence.

For the length scale ` = 4 ·∆(t) we unfortunately cannot obtain any conclusion, of whether
the behavior of the velocity fluctuations can be explained by either the Kolmogorov theory or
the influence of the RT instability. While the maximum of the histograms seems to fit better
with the Kolmogorov theory, the high velocity fluctuations seen in the half-logarithmic plots
fit better with a scaling behavior of the RT instability.

In Figure 5.5 we show a comparison of the resolved velocity fluctuations |vturb(∆(t))| for
both length scales ` = ∆(t) and ` = 4 · ∆(t) with the data Nflame(t). Apart from the fact
that the probability of finding high velocity fluctuations is obviously higher for the length
scale ` = 4 ·∆(t), we see a similar slope of the right part of both histograms toward higher
velocity fluctuations. This result is not trivially expected, since in the case of ` = 4 ·∆(t)
a major part of the grid cells are not located in the vicinity of the flame but in the burned
material. Even if the resolved velocity fluctuations show a strong scatter the agreement of
the slopes of both curves indicates that the occurrence of high velocity fluctuations at the
flame and in burned regions near the flame may be similar. This behavior will be further
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Fig. 5.3: Histograms of |vturb(`)| and v′(`) for the fixed length scales ` = ∆(t) and ` = 4 ·∆(t) in
burned regions at t ≈ 0.8 s.

investigated with the data of the SGS model in Section 5.2.4.

Conclusions and comparison with other studies

Since we found in burned regions as well as at the flame front a slow decline in the histogram
of v′(∆(t)) toward high velocity fluctuations that can be additionally reproduced from the
resolved velocity field, it is very likely that the SGS model does not calculate artificially
high velocity fluctuations, but can reproduce the intermittent behavior in turbulence. This
preliminary conclusion, however, should be further reinforced by an appropriate intermit-
tency model that can explain the occurrence of the found high velocity fluctuations. For
burned regions, a detailed analysis of intermittency was performed by Schmidt et al. (2010),
where the same SGS model was used in the simulation. Here an intermittency model of Kol-
mogorov (1962) and Oboukhov (1962) was applied that assumes that the turbulent velocity
profile follows a log-normal distribution. The result indicates weaker intermittency than
predicted by the Kolmogorov-Oboukhov model. In contrast, the analysis of Röpke (2007)
revealed that the slow decline in the histogram that contains the data of the SGS model
at the flame cannot be explained by a log-normal fit, since the latter declines faster toward
higher velocity fluctuations than the histogram of v′(`). Hence, the results of Röpke (2007)
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Fig. 5.4: Histograms of |vturb(`)| and v′(`) for the fixed length scales ` = ∆(t) and ` = 4 ·∆(t) in
the vicinity of the flame at t ≈ 0.8 s.

and Schmidt et al. (2010) are different. Since an incorrect modeling of turbulence seems un-
likely according to the analysis presented above, a possible explanation is that intermittency
at the flame is much stronger than in burned regions (see also the discussion in Schmidt
et al., 2010). Unfortunately we cannot perform a detailed analysis of intermittency such as
in Schmidt et al. (2010) which was based on fitting of characteristic scaling exponents that
were obtained from the computation of structure functions up to the sixth order. The data
for this computation must be available within a simply connected region, where a chosen
pair of points has to be connected by a straight (uninterrupted) line.4 For this reason, it is
impossible to compute structure functions at a highly wrinkled and folded flame.5 However,
as shown later in Section 5.2.4 we are at least able to qualitatively estimate the difference in
the degree of intermittency at the flame and in burned regions by comparing the shape of the
slow decline toward high velocity fluctuations of the corresponding histograms of v′(`crit).

4In an exploding white dwarf for instance the computation can be performed inside a sphere, whose surface
is approximately at the flame and whose center coincides with the center of the white dwarf (see Ciaraldi-
Schoolmann et al., 2009).

5From a statistical point of view we argue that a reliable analysis of intermittency requires scaling exponents
up to significant high orders. Unless increasing the resolution of the simulation up to non-realizable high
values, the number of grid cells at the flame in full-star simulations is far too small to obtain these
high-order scaling exponents.
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Fig. 5.5: Comparison of the histograms of the resolved velocity fluctuations |vturb(∆(t))| for both
length scales ` = ∆(t) and ` = 4 ·∆(t) in the vicinity of the flame.

5.2.3 Rescaling of the velocity fluctuations

Compared to the quantities Xfuel and ρfuel the turbulent velocity fluctuations can be modeled
on unresolved scales more appropriately, since we expect that the turbulent velocity field
obeys defined scaling relations in the intertial range (see 3.2.1). For the DDT model we have
to rescale v′(∆(t)) to v′(`crit) at each time step. In analogy to equation (5.10), v′(`crit) is
given by

v′(`crit) = v′(∆(t)) · (`crit/∆(t))α , (5.11)

where α is the rescaling exponent that depends on the properties of the turbulent velocity
field. As discussed in Section 3.2.1 the transition length scale `Kol/RT between the Kol-
mogorov turbulence and the large-scale RT instability driven turbulence is approximately
106 cm (Niemeyer & Woosley, 1997; Ciaraldi-Schoolmann et al., 2009). Hence, at first glance
α = 1/2 seems to be always the right exponent, since `Kol/RT is of the same order of mag-
nitude as `crit and in our performed simulations `crit < ∆(t). The calculations of Ciaraldi-
Schoolmann et al. (2009), however, have been performed in predominantly burned material.
For the DDT model a corresponding scaling behavior at the flame is needed that cannot
be easily obtained for the reasons described in the preceding section. But there is a spe-
cific method to estimate the degree of anisotropy in turbulence at the flame qualitatively.
Following Zingale et al. (2005) contours of the turbulent velocity field in Fourier space can
be constructed. Here Zingale et al. (2005) and Ciaraldi-Schoolmann et al. (2009) showed
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5.2 Testing the turbulence SGS model for DDTs

that turbulence at the flame becomes anisotropic with lower wave numbers. Hence, we may
speculate that the properties of the isotropy in turbulence at the flame and in burned regions
are similar.

There is, however, no clear conclusion on how anisotropy in turbulence at the flame affects
the scaling properties of the turbulent velocity field (that are unknown at the flame anyway).
Finally, we argue that the considerations described above include all turbulent velocity fluc-
tuations but for the DDT model we need only the properties of the rarer high fluctuations.
In this context, it is of high importance to find out where the high fluctuations are exactly
located. As shown later, the strongest turbulent motions are found at trailing edges along
the Rayleigh-Taylor mushroom cap like structures and in small crevices between them, where
strong shear instabilities occur. The scaling behavior of an intermittent turbulent velocity
field in these regions at the flame is not known.

From the described aspects so far it remains uncertain which scaling law has to be applied
to rescale v′(∆(t)) to v′(`crit). In addition, we found in Figure 5.4 no clear evidence of
whether turbulence at the flame on the considered length scales ∆(t) and 4·∆(t) agrees better
with the Kolmogorov theory or a RT instability driven turbulence. It is confirmed in most
performed studies, however, that at least on small length scales turbulence complies with
the Kolmogorov theory (e.g. Zingale et al., 2005; Röpke et al., 2007a; Ciaraldi-Schoolmann
et al., 2009). In this work, we will also assume Kolmogorov turbulence for all length scales.
However, in the following we estimate the uncertainty if the effects of the RT instability
have to be taken into account. With equation (5.11) the error cKol/RT that results from the
difference between the scaling behavior for Kolmogorov turbulence and the RT instability is
given by

cKol/RT =
(∆(t)/`crit)

1/2

(∆(t)/`crit)
1/3

= (∆(t)/`crit)
1/6 . (5.12)

This means that in LEAFS simulations with very high resolutions of 10243 grid cells where
∆(t) ≈ `crit, the error becomes negligible. In the performed studies, however, simulations
with 2563 and 5123 grid cells are performed. Here in the late deflagration phase at the time
where DDTs are expected to occur, the length of the grid cells is ∆(t) ≈ 4 × 106 cm for
simulations with 2563 grid cells and ∆(t) ≈ 2 × 106 cm for the higher resolved simulations,
leading to uncertainties of 26% and 12%, respectively. To check to what extent these devia-
tions affect the rescaled values of the high velocity fluctuations at the flame we compare the
histograms of v′(`crit) with both rescaling exponents α = 1/3 and α = 1/2. With respect to
the implementation of a DDT model, we take now only grid cells into account that meet the
DDT constraints, hence the data N∗flame(t) is used for the construction of the histogram (see
Section 5.1.3). The histograms are shown in Figure 5.6 at t ≈ 0.9 s and we see particularly
in the lower resolved simulation a slight deviation between both histograms.

5.2.4 Fitting the high velocity fluctuations of the histogram

In numerical simulations of deflagration models Röpke (2007) found that the high velocity
fluctuations in the histogram cannot be reproduced by a Gaussian- or a log-normal fit,
since these distributions fall off steeper here than v′(`crit). Since a detailed analysis of
intermittency at the flame cannot be performed easily, we compare the histogram of v′(`crit)
that contains the data in burned regions with the histogram that contains the data N∗flame(t).
In Figure 5.7 both histograms are shown at t ≈ 0.9 s. We find a clear difference between the
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Fig. 5.6: Comparison of the histograms of v′(`crit) at the flame with a resolution of (a) 2563 and
(b) 5123 grid cells with a rescaling exponent of α = 1/3 (Kolmogorov) and α = 1/2 (RT
instability) at t ≈ 0.9 s.

histograms after the maximum toward high velocity fluctuations. In the half-logarithmic plot
we see for the histogram of v′(`crit) that contains the data in burned regions an almost linear
slope after the maximum, while the histogram that contains the data N∗flame(t) shows here a
significantly stronger positive curvature. This result is a further evidence that intermittency
at the flame is stronger than in the ash. However, the value of the most probable velocity
fluctuation (the maximum of the histogram) and also the probability of finding high velocity
fluctuations (the right part of the histogram) are higher in burned regions. We also show in
Figure 5.7 a histogram of v′(`crit) that contains the data in unburned regions where we see
only marginal velocity fluctuations.

In our study we obviously find in Figure 5.7 high velocity fluctuations in burned regions,
while in the study of Schmidt et al. (2010) only weak intermittency was found in these
regions. We emphasize that further investigations are required to determine what may cause
a possible difference in the results of both studies. It would be desirable to apply a fit that
corresponds to the intermittency model of Kolmogorov (1962) and Oboukhov (1962) to our
histogram of v′(`crit) that contains the data in burned regions. This would eventually enable
us to compare our results with the results of Schmidt et al. (2010). Unfortunately, this is not
possible, since for this comparison we need again a sufficiently large set of scaling exponents
that requires a more detailed analysis, where our data are insufficient (see Section 5.2.2).

We cannot rule out completely that the difference between the histograms that contain
the data in burned regions and the data at the flame are a result from an effect of flame
modeling, which may lead here to a different decline in the histograms of v′(`crit) toward
high velocity fluctuations. However, this cannot be analyzed easily, since that would require
either a detailed analysis of intermittency at the flame or one has to compare histograms of
v′(`crit) at the flame that are constructed from data of different flame models. On the other
hand the question arises, whether a flame modeling effect would also appear in the curves
of the resolved velocity fluctuations in Figure 5.5. Here we found that the decline of the
histograms of v′(`crit) toward high velocity fluctuations at the flame and in burned regions
near the flame seem to be similar. However, due to the large scatter of the resolved velocity
fluctuations some uncertainties remain.

To obtain a clearer picture, it would also be desirable to find a distribution function that
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Fig. 5.7: Histograms of v′(`crit) constructed from the data in burned regions (G(r, t) ≥ ∆(t)), from
the data N∗flame(t) at the flame (|G(r, t)| < ∆(t)), as well as from the data in unburned
regions (G(r, t) ≤ −∆(t)) at t ≈ 0.9 s.

is supported by the theory of intermittency and that is capable of explaining the found high
velocity fluctuations at the flame. Since this distribution function is unknown, we have to
find an empirical fit function that reproduces the right part of the histogram of v′(`crit). Here
we follow the suggestion of Röpke (2007) and use a three-parameter geometric fit function
of the form

f(v′(`crit)) = exp
(
a1v
′(`crit)

a2 + a3

)
, (5.13)

where f(v′(`crit)) constitutes an approximated probability density function of v′(`crit) (see
Section 5.2.1) and a1, a2 and a3 are fit parameters. The probability of finding velocity
fluctuations of at least v′(`crit) is given by the integration of this equation (see Section 5.3.1,
equation (5.14)).

Remarks on the implementation of the fit

Since the rare high velocity fluctuations are crucial for the DDT, we will focus on the data
of the histogram of v′(`crit) that lies to the right of the maximum. There is, however, no
consensus on which value of v′(`crit) in the histogram is the most appropriate starting point.
But we may expect that the higher v′(`crit) (and hence the further away the data are located
from the maximum toward higher velocity fluctuations) the more can these fluctuations be
attributed to intermittency.
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To restrict the fit to the right part of the histogram of v′(`crit), we first determine its
maximum. If we start the fit right away at this maximum the fit will not converge. The
reason is that the histogram of v′(`crit) that contains the data N∗flame(t) has a turning point
after the maximum (see Figure 5.7) that cannot be fitted with equation (5.13). In addition, it
is questionable to use the most probable value of the velocity fluctuations as a starting point,
since as described above the corresponding velocities here may probably not be attributed
to intermittent turbulence. Therefore, we arbitrarily varied the starting point of the fit and
checked at which value a fit seems to be most appropriate.

We outline that a further complication is involved here by the fact that due to the nature of
turbulence, the values of the velocity fluctuations are not predictable. This of course holds
also for the histogram of v′(`crit) and here particularly for the right slow decline toward
high velocity fluctuations. Hence, there will be no uniform ideal starting point for the fit
for different time steps in the simulation. However, in the late deflagration phase where
turbulence is fully developed and where DDTs are expected to occur, there is some kind of
a typical histogram profile as shown in Figure 5.7 for instance.

From many convergence tests for the fit we find that an appropriate starting point is twice
the velocity value, at which the histogram is maximal. From the fit with this starting point,
the initial values a1, a2 and a3 were determined that lead to a reliable convergence. In the
simulation then, the first histogram of v′(`crit) and the fit are calculated when a sufficient
number of grid cells N∗flame(t) are available. From there on the histogram and the fit are
calculated at each time step, provided that sufficient data are available. When convergence
is achieved in the fit, the obtained values for the fit parameters are just the new initial values
for the fit in the next time step, where N∗flame(t) is sufficiently large again. This procedure
leads to a fast and reliable convergence of the fit during this phase in the simulation, as long
as the profile of the histogram of v′(`crit) changes smoothly.

5.2.5 Resolution study of the high velocity fluctuations of the histogram

As a final test of the SGS model, we analyze whether the decline in the histogram of v′(`crit)
toward high velocity fluctuations and the applied fit are resolution-dependent. Here we use
the data N∗flame(t) at t ≈ 0.9 s from the simulations that are performed with a resolution
of 2563 and 5123 grid cells. Unfortunately other resolutions cannot be taken into account.
Higher resolutions are not possible due to limitations of computational resources, while the
histogram and the fit cannot be calculated for lower resolutions due to insufficient data.
Therefore, the resolution dependence of the histogram and the fit can only be estimated
roughly. The results are shown in Figure 5.8 where we see a very good agreement of the
histograms and the corresponding fits. However, for the lower resolved case we find a larger
scatter for given values of v′(`crit) in the histogram and an earlier cutoff of the slow decline
toward high velocity fluctuations. For the latter, which can also be seen when comparing
both panels of Figure 5.6, we emphasize that this behavior indicates by no means that the
probability of the occurrence of high velocity fluctuations at the flame in higher resolved
simulations is higher. The described effect occurs due to the fact that there are much less
grid cells that meet the DDT constraints in lower resolved simulations, leading to a smaller
number of grid cells that have high velocity fluctuations. In our implementation, the less
data in lower resolved simulations means a coarser binning of the histogram of v′(`crit). This
explains the smaller horizontal scatter toward the right end of the histogram and the absence
of data at high values of v′(`crit) for lower resolved simulations. In the case shown here, these
effects have an insignificant impact on the fit. However, for very low resolved simulations
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Fig. 5.8: Histograms of v′(`crit) at the flame and the corresponding fits (equation 5.13) for different
resolutions at t ≈ 0.9 s.

the binning may become so coarse that the fit may deviate to a certain degree or even fail
to converge. That is why the histogram of v′(`crit) and the fit are only calculated, when
N∗flame(t) is sufficiently large, which implies that the DDT model cannot be applied to very
low resolved simulations (see Section 5.3.3).

In Section 5.1.1 we introduced with Xmin
fuel = 1/3 and Xmax

fuel = 2/3 two threshold values
for the allowed fuel fractions in the grid cells in order to restrict our analysis to the vicinity
of the flame. The largely resolution independence of the histogram of v′(`crit) and the fit
in Figure 5.8 shows that these restrictions have no significant effect on the results obtained
for different resolutions. In the following, we will further estimate the influence of different
allowed ranges for Xfuel and ρfuel on the histogram of v′(`crit).

5.2.6 The impact of different fuel fractions and fuel densities in the grid cells
on the histogram of v′(`crit)

In this section we investigate roughly to what extent the probability of finding high velocity
fluctuations depends on different allowed ranges for Xfuel and ρfuel in the grid cells. Using the
data Nflame(t) we place constraints on ρfuel and Xfuel separately and construct and compare
the resulting histograms of v′(`crit). For Xfuel we use the two ranges 0.2 ≤ Xfuel ≤ 0.8 and
1/3 ≤ Xfuel ≤ 2/3. For ρfuel we simply use the part of the flame with ρfuel ≥ 107 g cm−3 and
ρfuel < 107 g cm−3. We use for this analysis the data of the simulation with 5123 grid cells
at t ≈ 0.8 s which is the same snapshot as used in Section 5.2.2 (but note that we use here
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Fig. 5.9: The influence of restrictions on the quantities Xfuel and ρfuel on the histogram of v′(`crit).

the rescaled velocity fluctuations v′(`crit) and not v′(∆(t))).

The results are shown in Figure 5.9 together with the obtained histogram of v′(`crit) which
contains the total data Nflame(t). We see in Figure 5.9(a) that the histograms for different
allowed ranges for Xfuel are very similar. Therefore, the restrictions on the fuel fraction
in the grid cells do not lead to large deviations of the probability of finding high velocity
fluctuations.

In contrast to Xfuel, we see in Figure 5.9(b) for different ranges of allowed fuel den-
sities a clear deviation of the histograms. We find the slowest decline of the histogram
toward high velocity fluctuations for fuel densities of ρfuel < 107 g cm−3. For fuel densities
of ρfuel ≥ 107 g cm−3 the histogram falls off even steeper toward high velocity fluctuations
than the histogram that contains the total data Nflame(t) (where all densities at the flame
are taken into account). On the other hand, we find for higher densities that the maximum
of the histogram is located at higher velocity fluctuations. Therefore, we may assume that
turbulence is on average stronger at higher densities, but the intermittency in turbulence
that leads to the occurrence of particularly high velocity fluctuations becomes more evident
at lower densities.

5.2.7 The impact of different fuel fractions in the grid cells on the rescaled
velocity fluctuations

As described in Section 5.1.1 the discontinuity approach of the flame prevents us to determine
the physical properties (such as v′(`crit)) at the flame precisely. However, for grid cells with
|G(r, t)| < ∆(t) and Xfuel ≈ 0.5 the flame propagates frequently through the center of these
cells. Hence, the values of the physical quantities in these cells represent an estimation of
the physical conditions at the flame.

With the rescaled velocity fluctuations v′(`crit) we estimate to what extent the values of
these velocity fluctuations depend on the fuel fraction Xfuel in the grid cells. For this study
we use Nflame(t), hence all cells with |G(r, t)| < ∆(t) are taken into account. The analysis is
performed for four different ignition models from Table 4.1 that give rise to different strengths
of the deflagration. These models are simulated with a resolution of 2563 grid cells. The
results are shown in Figure 5.10 where the average values of v′(`crit) in the grid cells Nflame(t)
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Fig. 5.10: Average rescaled velocity fluctuations v′(`crit) in the grid cells Nflame(t) that are found
within a specific interval of the fuel fraction Xfuel in the grid cells as function of time for
four ignition models of the deflagration (see Table 4.1). The rescaled turbulent velocity
fluctuations become higher with decreasing Xfuel.

that are found within a specific interval of the fuel fraction Xfuel in the grid cells is plotted
as function of time. Obviously the grid cells that contain a large fraction of fuel have only
low velocity fluctuations, while turbulence seems to be much stronger in burned regions.
This result is consistent with the histograms of v′(`crit) in Figure 5.7. We further see in
Figure 5.10 a first indication that weak deflagrations (models with small Nk) may generate
higher velocity fluctuations at the flame (compare the blue curves where 0.4 < Xfuel ≤ 0.6).
This behavior is investigated in more detail in Chapter 6.

5.3 Determination of the DDT criterion

5.3.1 The probability of finding high velocity fluctuations

The function (5.13) that is used to fit and extrapolate the histogram of v′(`crit) that contains
the dataN∗flame(t) constitutes an approximated PDF of v′(`crit) (see Section 5.2.1). Therefore,
we can determine the probability P (v′(`crit) ≥ v′crit)(t) of finding velocity fluctuations v′(`crit)
on the scale `crit of at least v′crit at the flame that meets the DDT constraints concerning
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Xfuel and ρfuel by integration (see equation (5.5)) which yields (Röpke, 2007)

P (v′(`crit) ≥ v′crit)(t) =

∞∫
v′crit

f(v′(`crit)) dv
′(`crit) =

exp(a3)Γ(1/a2,−a1(v′crit)
a2)

a2(−a1)1/a2
, (5.14)

where Γ is the upper incomplete gamma function. For v′crit we follow Lisewski et al. (2000)
and use v′crit = 108 cm s−1 but this threshold value will be varied later in a parameter study
in Chapter 7. Equation (5.14) is calculated at each time step when the fit to the histogram
of v′(`crit) was successful. In this case, the parameters a1, a2 and a3 found from the fit have
to be inserted.

5.3.2 The potential detonation area and the DDT criterion

In Section 5.1.3 we defined A∗flame(t) as the part of the flame that meets the DDT constraints
concerning the fuel fraction Xfuel and the fuel density ρfuel. In the preceding section we
derived separately the probability of finding velocity fluctuations of at least v′crit at this
restricted flame front. We can now define

Adet(t) = A∗flame(t) · P (v′(`crit) ≥ v′crit)(t) (5.15)

as the fraction of the flame surface area that is capable of performing a DDT (see also Röpke,
2007). This quantity which we call the potential detonation area in the following has to be
compared with the critical size of DDT regions. Here we face the problem that the dimension
and geometry of DDT regions are not known. Despite the fractal properties of turbulent
structures (such as the flame) we will assume here at first that DDT regions have a smooth
surface area. We define the critical flame surface area required for a DDT as

Acrit = `2crit = 1012 cm2. (5.16)

If during the simulation Adet(t) ≥ Acrit occurs it is checked, whether this condition holds for
τeddy1/2

(`crit). This is the DDT criterion in our DDT model. For τeddy1/2
(`crit) we will use

0.5 × 10−2 s (see Section 3.3.2) but this threshold value will be varied later in a parameter
study in Chapter 7. If the criterion is finally met detonations are initialized. We note that
both quantities A∗flame(t) and particularly P (v′(`crit) ≥ v′crit)(t) in Adet(t) may vary strongly
within τeddy1/2

(`crit).

The main problem of the proposed DDT model is that it does not make a statement of
whether there exits indeed a compact region of the size Acrit. The histogram of v′(`crit)
(and hence the probability P (v′(`crit) ≥ v′crit)(t)) and the quantity A∗flame(t) are determined
from all grid cells at the flame that meet the DDT constraints. Thus, we get no information
about the physical properties of localized structures, since the DDT model contains mainly
global quantities. This also holds for τeddy1/2

(`crit) where we also use one uniform value for
the DDT criterion.

For the above-mentioned reasons it further follows that there are no clear conclusions at
which specific places at the flame detonations have to be initialized. Four different scenarios
have been considered and tested and shall be outlined here:

1. The DDT occurs in a single grid cell of N∗flame(t) in which v′(`crit) is maximal. This
scenario takes into account the importance of the high velocity fluctuations and the
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improbability that the constraints for a DDT are met simultaneously at different places.
It is, however, unclear whether in the grid cell where v′(`crit) is maximal that the other
conditions for a DDT are most suitable.

2. The DDT occurs in all grid cells of N∗flame(t) independently of v′(`crit), hence all grid
cells are taken into account that meet the DDT constraints concerning Xfuel and ρfuel.
The probability P (v′(`crit) ≥ v′crit)(t) may be sufficiently high to meet the DDT cri-
terion, but the histogram of v′(`crit) with the underlying data N∗flame(t) shows clearly
that most of the values of v′(`crit) are not found at the slow decline of the right part
of the histogram that contains the important high velocity fluctuations. In this con-
text, we remember that the fit to the histogram of v′(`crit) starts approximately at the
beginning of this decline, from which P (v′(`crit) ≥ v′crit)(t) is eventually calculated. In
summary, the velocity fluctuations in the grid cells N∗flame(t) are mostly too low for a
DDT.

3. The DDT occurs in all grid cells of N∗flame(t) in which v′(`crit) ≥ v′crit. This approach
seems reasonable, since v′crit is defined as the minimum required velocity fluctuation
for a DDT. In contrast to scenario (2), only grid cells are taken into account that
represent the slow decline of the right part of the histogram of v′(`crit). As stated in
Section 5.2.5, however, grid cells with v′(`crit) ≥ v′crit are not necessarily found in the
simulation. Those cells are more likely to occur in simulations with higher resolutions,
leading to a resolution depending effect of the DDT model. In an extreme case, it is
possible that v′crit is not found in a single grid cell in low resolved simulations, so that
with this approach no DDTs occur in the entire simulation.

4. The DDT occurs in a number of grid cells of N∗flame(t) that is equivalent to the ratio
of the potential detonation area Adet(t) to the critical flame surface area Acrit. This
approach can be considered as a measure, to what extent the DDT criterion is met.
Since Adet(t) may significantly grow within τeddy1/2

(`crit) DDTs will commonly occur
in several grid cells. However, in this approach we still have to choose in which cells
detonations should be initialized. We follow scenario (1) and initialize the first detona-
tion in the cell with the highest value of v′(`crit). If Adet(t)/Acrit ≥ 2 the cell with the
second highest value of v′(`crit) is selected for a DDT and so on, until the number of
initialized detonations equals the ratio Adet(t)/Acrit. Similar to scenario (3) we capture
here only grid cells that make up the slow decline of the right part of the histogram
of v′(`crit), but a further advantage of this scenario is that DDTs will definitely occur,
when the criterion is met.

As described in Section 3.3.2 high velocity fluctuations are crucial for a DDT, hence we
exclude that scenario (2) is from a physical point of view a suitable approach for the delayed
detonation model. For reasons of the resolution dependence and the uncertainty that high
values of v′(`crit) are indeed found in the grid cells, scenario (3) is inappropriate for a SGS
model for DDTs. Since the DDT criterion constitutes a global criterion it is highly uncertain,
which is the most suitable location to perform a DDT. This uncertainty concerns scenario
(1), but also to a certain extent scenario (4). In the latter case, however, DDTs may occur
in many grid cells, hence local considerations where DDTs are most suitable are far less
important. Together with the fact that scenario (4) evaluates to what extent the criterion is
met, we will exclusively use this scenario in the analyses of this work. The number of DDTs
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FDDT at a time tDDT when the DDT criterion is met is then given by

FDDT =
Adet(t = tDDT)

Acrit
. (5.17)

The value of FDDT is always rounded to the next smaller integer. In the simulation, det-
onations are set artificially by initializing a second level set at the DDT locations. The
minimum time between two DDTs is given by τeddy1/2

(`crit), since the time measurement
for Adet(t) ≥ Acrit is reset when the DDT criterion is met. The same holds if the condition
Adet(t) < Acrit occurs, before τeddy1/2

(`crit) is reached.

5.3.3 Remarks on the DDT model

Remarks on the time step

From the view of the performed hydrodynamic simulations, the inclusion of τeddy1/2
(`crit) is

also important to keep the DDT model resolution-independent. The reason is that the time
step in the hydrodynamic simulation is determined by the Courant-Friedrichs-Lewy (CFL)
criterion that sets the maximally possible time step ∆tCFL to ensure the numerical stability
of the solution of the Euler equations (Courant & Friedrichs, 1948) (see also Reinecke, 2001).
Due to the smaller size of the grid cells, the maximal time step of higher resolved simulations
is shorter than for lower resolved ones. Hence, to approach a certain time (for instance the
time where DDTs are expected to occur), a higher resolved simulation needs more time steps.
Since the DDT criterion is evaluated each time step, this simulation becomes an enhanced
chance for a successful DDT due to the more attempts to meet the DDT criterion, if no
time-dependent quantity like τeddy1/2

(`crit) is included.

Remarks on the required resolution for the application of the DDT model

As already indicated in Section 5.2.5, to construct and fit the histogram of v′(`crit) a sufficient
large number of grid cells N∗flame(t) is required. The quantity N∗flame(t) depends on the
resolution and on the restrictiveness of the DDT criterion. Therefore, in lowly resolved
simulations in combination with a very restrictive DDT criterion, the calculation of the
histogram of v′(`crit) and the fit may be either impossible for the entire simulation or only
possible in a particularly late phase when the number of N∗flame(t) becomes eventually large
enough. In the latter case, an additional problem may arise due to the fact that the length
of the grid cells ∆(t) becomes very large. Here we find very large values of A∗flame(t) at the
time, when the histogram and fit calculation is initialized. This in turn may lead to the effect
that the first value of the potential detonation area Adet(t) that is also determined for the
first time when the histogram of v′(`crit) and the fit can be calculated, may already exceed
Acrit. In this case, the application of the DDT model becomes questionable, since here Acrit

may already be exceeded by Adet(t) at an earlier time step, which is not possible to evaluate,
since due to the lack of sufficient data P (v′(`crit) ≥ v′crit)(t) could not be calculated.

For resolutions with less than 2563 grid cells these problems occur frequently, where in
most cases no DDTs occur due to the lack of sufficient data to construct and fit the histogram
of v′(`crit). Moreover, in these simulations ∆tCFL may become comparable to τeddy1/2

(`crit)

that lead to a resolution dependence of the DDT model. With a resolution of 2563 grid
cells, the above-described problems only occurred in the case of a few simulations that show
a very small flame surface area, so that Nflame(t) is particularly low. Here a too restrictive
DDT criterion may lead in addition to very low values of N∗flame(t) that is insufficient to
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construct and fit the histogram of v′(`crit). These simulations, however, constitute only a
minor fraction of the overall performed simulations and we conclude that for simulations
with a resolution of at least 2563 grid cells the DDT model can be applied.

Remarks on the resolution-dependent quantities of the DDT model

Since the occurrence of high velocity fluctuations in the grid cells depends on the resolu-
tion (see Section 5.2.5) the locations where detonations are initialized are also resolution-
dependent. We further note that for given DDT constraints, the minimum number of grid
cells N∗flame(t) that are required to construct and fit the histogram of v′(`crit) is reached
earlier in higher resolved simulations. This, however, would only be significant if for a given
ignition model and DDT criterion the condition Adet(t) ≥ Acrit in combination with a suc-
cessful DDT occurs in a higher resolved simulation, before the histogram of v′(`crit) and
the fit can be calculated in a lower resolved one. In this work, this effect has never been
observed. A further resolution-depending quantity is the size of the grid cells in which DDTs
occur. However, it is most likely that the dynamics of the detonations do not depend on the
size of the grid cells in which they are initialized.

5.4 Determination of the fractal dimension of the flame and
resolution test in one full-star model

To investigate the resolution dependence of the implemented DDT model, we apply it to
the Model X∗ (resp. the model described in Röpke et al. (2007a)) and perform two simula-
tions of pure deflagrations with a resolution of 2563 and 5123 grid cells.6 In the preceding
sections we set specific threshold values for the DDT quantities that are used in the fol-
lowing test simulations and that shall be summarized here: Xmin

fuel = 1/3, Xmax
fuel = 2/3,

ρmin
fuel = 0.5 × 107 g cm−3, ρmax

fuel = 1.5 × 107 g cm−3, v′crit = 108 cm s−1, Acrit = 1012 cm2 and
τeddy = 0.5 × 10−2 s. One parameter which was left undetermined is the fractal dimension
D of the flame that has to be calculated from the resolution study itself.

5.4.1 The fractal dimension of the flame

In Figure 5.11(a) Nflame(t) is shown as function of time. The black curve is the result of the
simulation with 2563 grid cells and the red curve is the result of the higher resolved one. All
other curves belong to theoretically expected curves for the higher resolved simulation that
are determined by assuming a specific fractal dimension of the flame. These curves can be
calculated from the obtained values of Nflame1(t) and the known resolutions ∆1(t) and ∆2(t).
Then a value of D has to be specified and equation (5.3) applied. It follows that Nflame2(t)
is given by

Nflame2(t) = Nflame1(t) · (∆1(t)/∆2(t))D. (5.18)

We see in Figure 5.11(a) that the curves with D = 2 and D = 3 are obviously inconsistent
with the result of the higher resolved simulation. Hence the fractal character of the flame is

6These simulations were in reality performed as delayed detonations in order to apply the implemented DDT
model. However, we left out the initialization of the detonations when the DDT criterion was met, since
this study concerns only the resolution dependence of the DDT model. The properties of the detonation
phase and its feedback on the DDT model will be investigated in Chapter 6.
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verified. In Figure 5.11(b), the fractal dimension, calculated with equation (5.2) is plotted
as function of time where we see a clear variation of D during the explosion. A necessary
constraint for DDTs is that the flame resides in a certain range of fuel densities. At the
time t ≈ 0.8 s, the first grid cells approach the upper density threshold of 1.5× 107 g cm−3,
where we find D ≈ 2.5. However, DDTs occur at later times when more grid cells are in
the necessary density range of 0.5 × 107 g cm−3 ≤ ρfuel ≤ 1.5 × 107 g cm−3. Here we find
D < 2.5. Taking into account the intermittency in turbulence we will use a constant value
of 2.36 for D in our studies (see Section 3.2.4). In Figure 5.11(c), the flame surface area
A∗flame(t) calculated with equation (5.4) with D = 2.36 is shown as function of time for both
simulations and we see there is a very good agreement of the curves. For comparison we
show in Figure 5.11(d) A∗flame(t) with D = 2 where we see that A∗flame(t) is larger for the
higher resolved simulation.

Remarks on the fractal dimension

We have to outline some issues concerning the determination of the fractal dimension of the
flame. At first we see that the choice of a constant fractal dimension is obviously a crude
approximation, since we see in Figure 5.11(b) that D declines continuously from 2.5 to
almost 2.3 in the late explosion phase until t ≈ 1.2 s. In addition, one may expect a different
curve shape of D for models with a different evolution of the turbulent deflagration. Hence,
D should be determined for each DDT simulation where the flame evolves from a different
ignition setup of the deflagration. Since in this work many different ignition models of the
deflagration flame are used, this cannot be performed. Only for Model III and Model VIII
(see Table 4.1) that are frequently used in the following studies, D has been calculated.
The results are shown together with Model X∗ in Figure 5.12. All three models have very
different ignition geometries (see Table 4.1) and as shown later in Chapter 6, they have very
different evolutions of the turbulent deflagration. Nevertheless, we see qualitatively a good
agreement of the curves. A probable reason is the fact that turbulence in the deflagration
of SNe Ia obeys well defined statistical properties (see Section 3.2.4). Hence, a significant
deviation of D for different deflagrations may be unlikely but cannot be ruled out completely.

The biggest problem, however, is the uncertainty that we cannot fully ensure whether the
data at the flame from the chosen resolutions are sufficient to determine a reliable value for
D. If for instance D would be calculated from Model X∗ from simulations with resolutions
of 5123 and 10243 grid cells, the result for D may be different, indicating that a convergence
of D is obtained at even higher resolutions only. Therefore, a logical approach to determine
a reliable value of D would be to perform a resolution study first, until D does not change
anymore. This, however, cannot be performed, since the currently available computational
resources prevent simulations with LEAFS with very high resolutions.

Obviously, there are some uncertainties in the determination of the quantity D. But
there is also the possibility that the found curve shape of D can be explained by physical
properties. The curves in Figure 5.12 are certainly not capable of describing the behavior of
turbulence and its impact on the flame in detail. They may, however, indicate that there are
several mechanisms and instabilities that drive the turbulent motions in the vicinity of the
flame. This assumption is reinforced by the fact that the found values of D ≈ [2.3 . . . 2.5] are
expected for different instabilities and turbulence driving mechanisms (see Section 3.2.4). We
emphasize, however, that we used a more simplified method to estimate the fractal dimension
of the flame than in most of the other studies in which the values of D ≈ [2.3 . . . 2.5] were
derived (see Section 3.2.4 and 5.1.3).
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Fig. 5.11: Analysis of the fractal dimension of the flame. (a) The number of grid cells found at
the flame indicates that the flame has a fractal character. (b) The fractal dimension is
a time-dependent quantity that falls below 2.5 when the first grid cells approach ρmax

fuel .
(c/d) The flame surface area A∗flame(t) with D = 2.36 shows a good agreement for both
resolutions, while with D = 2, A∗flame(t) appears larger for the higher resolved simulation.

Even if the described uncertainties in the quantity D should not be neglected completely,
it seems that the chosen value of D = 2.36 is appropriate for the DDT model, since the curve
shapes of A∗flame(t) for both resolutions in Figure 5.11(c) and also the temporal evolution of
D in different deflagrations in Figure 5.12 are in good agreement (see also Chapter 6.2.2).

5.4.2 The probability of finding high velocity fluctuations

The probability P (v′(`crit) ≥ 108 cm s−1)(t) of finding velocity fluctuations v′(`crit) on the
scale `crit of at least 108 cm s−1 is shown as function of time in Figure 5.13(a) for both
simulations. Since there is only a slight resolution dependence of the flame evolution in
the deflagration and the calculated histograms of v′(`crit) and the fits, both curves are in
a very good agreement. We see that the quantity P (v′(`crit) ≥ 108 cm s−1)(t) has the first
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Fig. 5.12: Fractal dimension of the flame as function of time for three ignition models of the defla-
gration. The fractal dimension behaves similar even for very different strengths of the
deflagration.

noticeable value at t ≈ 0.83 s and becomes marginal for times later than t ≈ 1.15 s. The
highest values are found between 0.95 and 1.00 seconds. At these times the intermittent
character in the turbulence becomes most evident.

5.4.3 The potential detonation area

The quantity Adet(t) is shown as function of time in Figure 5.13(b) for both simulations.
Since both quantities, A∗flame(t) and P (v′(`crit) ≥ 108 cm s−1)(t) have been proven resolution
independent, Adet(t) will follow this trend, which can be definitely seen in Figure 5.13. In
particular, we see that the shape of the curves of P (v′(`crit) ≥ 108 cm s−1)(t) and Adet(t)
are very similar over a long time interval. We can identify in Adet(t) the strong variations
of the quantity P (v′(`crit) ≥ 108 cm s−1)(t). This indicates that the relative change in the
quantity A∗flame(t) for a given specific time interval like τeddy1/2

(`crit) is very low compared

to P (v′(`crit) ≥ 108 cm s−1)(t).

For this resolution study we have chosen a critical flame surface area of Acrit = 1012 cm2.
We see in Figure 5.13(b) that this threshold is exceeded by Adet(t). Therefore, in the
context of the delayed detonation scenario we expect DDTs, when Adet(t) ≥ Acrit for at
least τeddy1/2

(`crit). This constraint is indeed fulfilled, where the time t1st
DDT of the first

DDT is approximately 0.92 s for both simulations. This time is additionally marked in
Figure 5.13(b) at the curve of Adet(t). In the simulation with 2563 grid cells we obtain a
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Fig. 5.13: (a) The probability P (v′(`crit) ≥ 108 cm s−1)(t) of finding velocity fluctuations of at least
108 cm s−1 and (b) the size of the potential detonation area Adet(t) as function of time.
For most of the time between 0.90 and 1.07 seconds Adet(t) ≥ Acrit. The DDT criterion
is met for the first time at t ≈ 0.92 s for both simulations (see dot on the corresponding
curve of Adet(t)).

value of Adet(t = t1st
DDT) ≈ 1.72 × 1012 cm2. Therefore, it follows FDDT = 1. In the higher

resolved simulation we find Adet(t = t1st
DDT) ≈ 2.12 × 1012 cm2, hence a DDT occurs here

already in two grid cells.

In the delayed detonation scenario, the further evolution of the explosion for times t > t1st
DDT

depends on whether the DDT criterion stays fulfilled, so that new DDTs may occur at later
times. In the performed simulations, this is true, since Adet(t) ≥ Acrit for most of the time
between approximately 0.90 and 1.07 seconds. There are, however, some interruptions, where
in a time step Adet(t) < Acrit, before τeddy1/2

(`crit) is reached that prevent a few DDTs. In

the simulation with 2563 grid cells we find FDDT = 10 and for the higher resolved simulation
FDDT = 12 at the maximum of Adet(t) that is reached by both simulations at approximately
t ≈ 0.96 s. The last DDT occurs at t ≈ 1.06 s in a single grid cell in both simulations.

5.5 Conclusions for the DDT model

We developed and tested a new DDT model for the delayed detonation scenario in SN Ia
explosions. Based on a SGS approach, specific ranges and threshold values of the DDT
quantities have been selected that are according to our current knowledge consistent with
the physical conditions and constraints for DDTs. Our DDT model can be summarized
as follows: At first a sufficient number of grid cells at the flame must have a specific fuel
fraction and a certain fuel density. Using a fractal description of the flame we determine a
suitable flame surface area for DDTs from the number and size of these grid cells. Second,
we calculate the probability of finding sufficiently high velocity fluctuations for a DDT at
this flame surface area. This is accomplished by applying a fit to the histogram of the
rescaled turbulent velocity fluctuations in the above-mentioned grid cells and integrating the
obtained approximated probability density function. Afterwards we calculate the product of
this probability and the suitable flame surface area for DDTs. This way we obtain a potential
detonation area that has to be compared with a critical flame surface area that is required
for a DDT to occur. Finally the potential detonation area has to exceed the critical flame
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surface area for at least a half eddy turnover time in order to become sufficiently mixed. If
all these conditions are met detonations are initialized in those grid cells, where the highest
velocity fluctuations are found at the suitable flame surface area for DDTs. The number of
DDTs equals the ratio of the potential detonation area to the critical flame surface area.

We showed that the DDT model is largely resolution-independent, which is a crucial
feature, since most of the DDT quantities, such as the turbulent velocity fluctuations v′(`crit)
on the critical length scale `crit and the DDT region(s) are not resolved. In the deflagration
model of Röpke et al. (2007a) that has been used in the resolution study, the DDT criterion
was met, indicating that according to the implemented DDT model the necessary conditions
for DDTs in the turbulent deflagration were suitable.

A weakness of the DDT criterion is that it constitutes a global criterion, since most of
the DDT quantities return no information about the physical properties of localized regions.
Therefore, there is no clear conclusion of whether there is a spatially connected region that
exceeds the critical flame surface area Acrit. In this context, we also face the problem of
where to initialize detonations when the DDT criterion is met. In reality DDTs would
occur in local structures at the flame, where the physical properties of these structures
are given by local quantities (like v′(`crit)). We also initialize detonations in local regions
(resp. in specific grid cells) that have local quantities, but we use in our DDT model global
quantities. In summary, we perform some kind of a translation from global quantities (such
as P (v′(`crit) ≥ 108 cm s−1)(t)) to local quantities (such as v′(`crit)). This translation is
a flaw in our modeling approach, since when the global DDT criterion is met, there is no
evidence that there is indeed a localized region, which is capable of performing a DDT.

In addition, most of the values of the DDT quantities are not well known and are kept
constant or in a constant range in the DDT model. Moreover, some of these quantities depend
on each other but these dependencies cannot be modeled on unresolved scales within our
chosen approach consistently. However, we can perform a detailed systematical parameter
study in order to evaluate to what extent a change of the threshold values of the DDT
quantities lead to a change of the simulation results (for instance of the obtained 56Ni
yield of the explosion). The results of such a parameter study give further insights in the
necessary constraints for a DDT, since the outcome of the corresponding simulations has
to match the observational properties (provided that the underlying supernova model is
correct). Since the DDT model has been proven independent of resolution, this model can
be applied reliably in simulations of delayed detonations even with a resolution of 2563

grid cells only. Therefore, the computational demand is relatively low, so that a parameter
study can cover a sufficiently wide range in the change of the threshold values of the DDT
quantities to draw some conclusions for the delayed detonation scenario. Before we describe
this parameter study, we will first study the features of the DDT model in more detail, by
applying it with two sets of parameters for the DDT criterion to the ten ignition models of
Table 4.1. Here we can estimate the range of brightnesses that can be obtained with the
DDT model and the chosen DDT criteria. In addition, we are interested in the impact of
the different evolutions of the deflagration in the models on the capability of meeting the
DDT criterion. Finally we analyze the dynamics of detonations which were not initialized
in the resolution study.
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In Section 5.4 we applied the DDT model with fixed parameters to a specific deflagration
model, where we found that the DDT criterion was met. However, the occurrence of DDTs
in a single arbitrary deflagration model with a fixed DDT criterion is no proof that the
necessary constraints for DDTs are commonly met in SN Ia explosions. Apart from the
uncertainties of these constraints, the properties of the turbulent deflagration have a cru-
cial impact on the occurrence of DDTs. The evolution of the deflagration in turn depends
strongly on the modeled ignition scenario of the deflagration flame. As described in Sec-
tion 2.3.1 many properties of the ignition process of the deflagration are unclear, including
the geometry and size of the ignition region(s) from which the deflagration flame emerges.
For the delayed detonation model it is therefore of high importance to study the evolution
of the turbulent deflagration from different ignition scenarios of the deflagration flame first
in order to evaluate to what extent these different evolutions may favor the occurrence of
DDTs.

In the following study, the DDT model is applied to the ten ignition models of the de-
flagration shown in Table 4.1. We perform simulations with resolutions of 2563 and 5123

grid cells of delayed detonations and also of pure deflagrations to investigate the difference
in these explosion scenarios in more detail. For the DDT criterion we choose two different
parameter sets for the threshold values of the DDT quantities, where we apply one set to
the lower resolved simulations and the other set that constitutes a more restrictive DDT
criterion to the higher resolved simulations. The DDT model is active in all simulations but
in the case of pure deflagrations no detonations are initialized when the DDT criterion is
met.

This chapter is organized as follows. In Section 6.1 we first describe the setup of the
simulations and explain why we choose simultaneously different DDT criteria and resolutions.
In Section 6.2 we follow the evolution of the deflagrations and delayed detonations in detail.
Here we are mainly interested in the impact of different evolutions of the deflagration phase
on the capability of meeting the DDT criterion. Furthermore, we will analyze the explosion
phase beyond the onset of DDTs and investigate the change in the mass fractions of chemical
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species due to the additional burning of the fuel after detonations are initialized. The results
of the studies are discussed in Section 6.3 which will focus on the behavior of the DDT model
in the different simulations and the implications for DDTs in SNe Ia. A summary of this
study is given in Section 6.4.

6.1 Setup of the simulations

The initial white dwarf model is described in Section 4.2, where also details of the ignition
models of the deflagration are shown (see Table 4.1 and Figure 4.2). The two parameter sets
for the DDT criteria of this study are summarized in Table 6.1. We use for parameter set I a
resolution of 5123 grid cells (in the following referred to as Study I ) and for parameter set II
a resolution of 2563 grid cells only (in the following referred to as Study II ). For both DDT
criteria we use v′crit = 1.0× 108 cm s−1 and τeddy1/2

(`crit) = 0.5× 10−2 s. The allowed ranges
for Xfuel and ρfuel are more restrictive for Study I. Due to the higher resolution, however,
there will be a significantly larger number of grid cells N∗flame(t) that may be capable of
meeting these more stringent DDT constraints (see also Section 5.3.3). This in turn ensures
the calculation of the histogram of v′(`crit) and the application of the fit. As mentioned in
Section 5.3.2, the geometry and the dimension of a DDT region is unknown and we assumed a
smooth surface with Acrit = `2crit = 1012 cm2 so far. If the DDT region, however, has similar
fractal properties as the flame, then Acrit = `Dcrit may hold. In this analysis we use this
threshold with D = 2.36 for Study I, so that the criterion becomes much more stringent.
The parameter set for Study II equals the parameter set used in the resolution study in
Section 5.4 except we choose here a much narrower allowed range of fuel densities. We use
simultaneously different resolutions and DDT criteria in the two studies for the following
reasons:

• We showed in Section 5.4 in a specific deflagration model that the flame surface area
Aflame(t) is largely resolution-independent, provided that we assign a fractal dimension
of D = 2.36 to the flame (see Figure 5.11(c)). We further found that the temporal
evolution of D is similar for different strengths of the deflagration (see Figure 5.12)
but we did not estimate a value of D for different deflagrations. Therefore, we will
check in the following study whether a fractal dimension of D = 2.36 is appropriate
for the ten ignition models of Table 4.1. This can be accomplished by calculating the
flame surface area Aflame(t) (equation (5.4)) with D = 2.36 for all pure deflagrations
and comparing the results obtained from different resolutions.

• In contrast to Aflame(t), the number of grid cells at the flame Nflame(t) and the subset
of these grid cells N∗flame(t) that meet the DDT constraints concerning the quantities
ρfuel and Xfuel depend strongly on the resolution. N∗flame(t) obviously further depends
on the restrictiveness of the DDT criterion (see Section 5.3.3). Moreover, the quantity
N∗flame(t) represents the total number of grid cells where detonations can be initial-
ized. When the criterion is met, DDTs occur in FDDT grid cells of N∗flame(t) (see
Section 5.3.2). In Study II we expect higher values of FDDT, since the DDT criterion
is less restrictive than in Study I. On the other hand, N∗flame(t) is far lower in Study
II due to the lower resolution. In summary, we expect very different numbers, times
and distributions of DDT regions in both studies which enables us to investigate to
what extent these differences affect the subsequent detonation phase and eventually
the explosion brightness.
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• The evolution of the explosion toward the first DDT (and also to a certain extent
beyond this time) is largely resolution-independent (see Section 5.4 and Figure 5.13).
Taking this into account we can analyze to what extent the two different sets of DDT
parameters affect the capability of the ignition models of meeting the DDT criterion.
We can for instance analyze how the largely resolution-independent quantities A∗flame(t)
and P (v′(`crit) ≥ v′crit)(t) vary for the two DDT criteria.

Study Resolution Xmin
fuel ≤ Xfuel ≤ Xmax

fuel ρmin
fuel ≤ ρfuel ≤ ρmax

fuel Acrit

I 5123 grid cells 0.4 ≤ Xfuel ≤ 0.6 [6 ≤ ρfuel ≤ 7]× 106 g cm−3 `Dcrit

II 2563 grid cells 1/3 ≤ Xfuel ≤ 2/3 [6 ≤ ρfuel ≤ 8]× 106 g cm−3 `2crit

Table 6.1: The two parameter sets of the DDT criterion for Study I and Study II.

6.2 The evolution of deflagrations and delayed detonations

6.2.1 The strength and gravitational binding of pure deflagrations

In Figure 6.1 the nuclear energy release Enuc is shown as function of time for the simulated
pure deflagrations of all models. We see a faster growth rate of Enuc for models with larger
Nk that implies a faster growth rate of the flame surface area. Hence, our assumption that
Nk sets mainly the strength of the deflagration is justified (see also Röpke et al., 2006).
There is, however, a saturation effect for models with Nk ≥ 200 in the late explosion phase
that can be seen in the right panels of Figure 6.1 in both studies.

In weak deflagrations that evolve from a few ignition kernels the energy release may be
so low that the gravitational binding energy of the white dwarf cannot be overcome. In
this case, we find that the radial velocity vrad(r) = v · er in the grid cells that have a
small distance r to the center of the white dwarf cannot reach the required escape velocity.
Therefore, due to effective gravitational forces some of the stellar material experiences an
acceleration toward the center of the exploding star. For strong deflagrations in contrast, a
significant part of the stellar material may reach the stage of free (homologous) expansion
in the late explosion phase, where vrad(r) ∝ r.

In the following, we consider a very late phase of the explosion, after the deflagration
has ceased. We define Ekin, Eint and Egrav as the kinetic, internal and gravitational energy,
respectively. The stellar material in the grid cells in which Ekin + Eint + Egrav < 0 remains
gravitationally bound. The corresponding regions of the white dwarf will after an initial
slight expansion start to collapse, where all these regions will unite to a compact object.
In this way, we obtain a remnant of high density that contains a bound mass Mb with a
relatively small radius rb.1 The other part of the exploding star that contains a certain
mass Mu of unbound material will continue to expand, where for the distance ru of the outer
expanding ejecta to the center ru � rb holds. For sufficiently strong deflagrations the system
is completely unbound, hence Mb = 0 and Mu = MCH. We will choose in this analysis the
data of the lower resolved simulations of pure deflagrations and analyze the time t = 100 s
only unless stated otherwise.

1We note that this remnant cannot be a neutron star, since the latter is only formed when Mb > MCH

which is in practice never the case in our Chandrasekhar-mass explosion model.
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Fig. 6.1: Nuclear energy release Enuc as function of time in the simulations of pure deflagrations.
The first time where the DDT criterion is met is marked with a black dot.

In the upper panels of Figure 6.2 the masses Mb and Mu are shown in units of solar masses
M� as function of the distance r to the center of the white dwarf. We see clearly that at
large r, Mb is significantly larger for weak deflagrations. For Nk ≥ 200 we find Mu ≈MCH.
In the lower panels of Figure 6.2 a cross section of the density through the x-y plane through
the center of the white dwarf is shown as function of r. Here we have to outline that due
to the considered late time, the outer layers of the white dwarf have expanded so far that
in combination with the co-moving grid technique, the central area is only resolved coarsely,
even for simulations with high resolutions. Here, a resolution-depending effect occurs, where
the central density in higher resolved simulations is higher. This behavior is illustrated in
Figure 6.3(a) for Model II. Due to this resolution-depending effect, the real density in the
central region of the white dwarf cannot be determined precisely. However, we can observe,
whether there is a steep rise in the density in the grid cells in the vicinity of the center of the
white dwarf. For these rough considerations the data of the lower resolved simulations are
sufficient. In the lower panels of Figure 6.2 we see clearly that the weaker the deflagration
the higher the density in the central area, where the density declines strongly with increasing
r. In agreement with the considerations of the bound masses, we see that for models with
Nk ≥ 200 there is no appreciable rise in the density in the vicinity of the center. The density
profile here simply follows the expected behavior of a spherically free expansion of an object
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Fig. 6.2: (a/b) Bound masses Mb and unbound masses Mu as function of the distance r to the center
of the white dwarf for weak and strong deflagrations. (c/d) A cross section of the density
through the x-y plane through the center of the white dwarf as function of r for weak and
strong deflagrations.

that dilutes in direction outward.

In Figure 6.3(b) the average radial velocity v̄rad(r) of Model II and Model X are shown as
function of r/∆(t), for different instants of time. Here ∆(t) refers to the grid resolution of
the corresponding simulation.2 We see in the temporal evolution of Model II that for earlier
times, greater negative values of v̄rad(r) are obtained for small distances r. At these distances
the gravitation forces the stellar material to fall back toward the center of the exploding star
with a velocity of approximately v̄rad(r). At later times this effect becomes weaker and the
curves flatten out for small distances, so that v̄rad(r) ≈ 0. With larger distances the curve
shapes of Model II become similar to the curves of Model X. For the latter we obtain a linear
slope of the curves for the times shown in the figure, which reflects the behavior of a free
expansion. We note that for large r we reach the outer inhomogeneous part of the grid (see
Section 4.1.1), where ∆(t) becomes a function of r itself. However, all curves in Figure 6.3(b)
show the behavior vrad(r) ∝ r already at a certain distance (Model II) or for all distances
(Model X) on the homogeneous inner grid, which consequently holds for larger r. Therefore,

2The normalization of r onto the time-dependent grid resolution ∆(t) of the corresponding simulation is
done to account for the different grid expansions in the simulations at different instants of time.
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Fig. 6.3: (a) Resolution dependence of the central density at t = 100 s of Model II. (b) Comparison
of the average radial velocities v̄rad(r) as function of r/∆(t) of Model II and Model X for
different instants of time. (c/d) The ratio of the average radial velocity v̄rad(r) to r as
function of r for weak and strong deflagrations.

the entire inhomogeneous grid simply follows the free expansion of the outer layers of the
white dwarf. This is why a transition effect in Figure 6.3(b) between both parts of the grid
is not expected (and indeed not observed) with the above-described normalization.

In the lower panels of Figure 6.3 the ratio of v̄rad(r) to r as function of r is shown. Since
for a free expansion v̄rad(r)/r = const, the corresponding curve will appear as a line parallel
to the abscissa. We find in agreement with the previous considerations that this behavior
is most dominating in strong deflagrations with Nk ≥ 200. For these models the curves are
almost indistinguishable, which results from the fact that pure deflagrations of models in
which the white dwarf becomes completely unbound have similar expansion velocities.

6.2.2 The turbulent energy and the flame surface area

The overall turbulent energy Eturb on unresolved scales (the so-called subgrid-scale energy) is
shown as function of time in Figure 6.4. We note that Eturb is determined by the generation of
turbulent energy but also by the expansion of the grid. With increasing ∆(t) more turbulent
motions fall below the grid resolution and the amount of turbulent energy on unresolved
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Fig. 6.4: Turbulent subgrid-scale energy Eturb as function of time in the simulations of pure defla-
grations. The first time where the DDT criterion is met is marked with a black dot.

scales consequently increases. For the same reason we find in the higher resolved simulations
of Study I lower values of Eturb.3 We see in Figure 6.4 that in the early explosion phase
Eturb is higher for stronger deflagrations. For models with Nk ≤ 20 the faster growth rate
of Eturb is associated with a larger maximum of this quantity (see left panels of Figure 6.4).
In contrast to these weak deflagrations, we find for models with Nk > 20 that the initially

3To estimate the turbulent energy on a certain fixed length scale, such as `crit, one could rescale this energy
from ∆(t) to `crit. This is similar to the rescaling procedure of the velocity fluctuations from v′(∆(t))
to v′(`crit) (equation (5.11)). However, in Section 5.2.3 we argued that there are some uncertainties in
the rescaling of the velocity field. In the case of the turbulent energy, these uncertainties become even
larger, since the latter scales with v′(∆(t))2. Therefore, we do not consider the turbulent energy on a fixed
unresolved length scale. We further note that Eturb represents the turbulent energy in the whole exploding
white dwarf but for the DDT model we are mainly interested in the turbulent velocity fluctuations in the
vicinity of the flame only. This is why Figure 5.10 is more important than Figure 6.4 for our study. Since
the former shows the rescaled velocity fluctuations v′(`crit) (and not v′(∆(t))), different grid expansions
play no role here.

When we assume that turbulence at the flame is similar to turbulence in all other regions of the white
dwarf (particularly in ash regions) we can indirectly see the effect of the different grid expansion for
several models by comparing Figure 6.4 with Figure 5.10. For instance, we see in Figure 5.10(d) in Model
X that turbulence seems to freeze out far more rapidly than one would probably expect from Figure 6.4.
Obviously the grid expands very fast in this model.
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Fig. 6.5: Flame surface area Aflame(t) as function of time in the simulations of pure deflagrations.
The first time where the DDT criterion is met is marked with a black dot.

faster growth rate of Eturb is outrun by models with smaller Nk in the late deflagration phase
(see right panels of Figure 6.4).

In Figure 6.5 the flame surface area Aflame(t) (calculated with equation (5.4)) is shown as
function of time from the time step on where the first grid cells at the flame approach the
upper density threshold ρmax

fuel . Except for Model X there is a clear trend that this threshold
is reached earlier by the flame for stronger deflagrations. This behavior can be understood
with the quantity Enuc in Figure 6.1. Models with large Enuc show an early large expansion
of the white dwarf that in turn results in a fast decline of ρfuel. If we compare the slopes
of the curves in Figure 6.5 we further find a faster growth rate of Aflame(t) with time for
stronger deflagrations, which is mainly related to a faster expansion of the grid. Remarkable
is the good agreement of Aflame(t) for equal models that are simulated in Study I and Study
II with different resolutions (compare the upper with the lower panels of Figure 6.5). This
indicates once more that the choice of a fractal dimension of D = 2.36 of the flame seems
to be appropriate. An exception, however, is Model I that shows a very slow growth rate
of Aflame(t) in Study II. We find that this model has a relatively small number of grid cells
at the flame in both studies. Furthermore, a certain resolution dependence can be generally
expected for models with Nk = 1, since in a deflagration that evolves from a single spherical
ignition kernel, there are no defined seeds for instabilities to arise. Due to buoyancy effects,
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Fig. 6.6: The part of the flame surface area A∗flame(t) that meets the DDT constraints concerning
the quantities ρfuel and Xfuel as function of time in the simulations of delayed detonations.
The time t1st

DDT of the first DDT is marked with a black dot.

a deflagration bubble rises and at some point numerical noise in the simulation leads to
instabilities at this bubble until we obtain the usual picture of a turbulent disturbed flame.
The numerical noise in turn depends on the grid discretization (and hence on the resolution
of the simulation).

In Figure 6.6 the flame surface area A∗flame(t) (calculated with equation (5.4) with N∗flame(t)
instead ofNflame(t)) is shown as function of time. In contrast to the previous considerations in
this study, these are the results of the simulated delayed detonations, in which detonations are
initialized when the DDT criterion is met. Since Aflame(t) is larger for stronger deflagrations,
the quantity A∗flame(t) has also the tendency to be larger in the corresponding models, since
there is a larger flame surface area that may additionally meet the necessary constraints
concerning ρfuel and Xfuel. However, we have to take into account that a strong aspherical
flame propagation can lead to the effect that there may be always only a small part of the
entire flame surface area that can meet the constraint for ρfuel at the same time, leading
on average to lower values of A∗flame(t). As shown later the flame evolves more asymmetric
in our models that show a weaker deflagration. In Study II the values of A∗flame(t) of the
models are significantly higher than in Study I, which results from a larger part of the flame
that meets the larger allowed ranges of Xfuel and ρfuel. However, we also find in Study II
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Fig. 6.7: The probability P (v′(`crit) ≥ 108 cm s−1)(t) of finding velocity fluctuations v′(`crit) on the
scale `crit of at least 108 cm s−1 at the flame as function of time for weak deflagrations (left
panels) and strong deflagrations (right panels) for both studies.

that N∗flame(t) is too small in Model I to construct and fit a reliable histogram of v′(`crit) in
the entire simulation. Therefore the DDT model could not be applied here.

6.2.3 The behavior of the DDT model in different deflagrations

In Figure 6.7 the probability P (v′(`crit) ≥ 108 cm s−1)(t) (equation (5.14)) is shown as
function of time for weak (Nk ≤ 10) and strong deflagrations (Nk ≥ 200).4 We obtain as
a surprising result that the probability of finding velocity fluctuations v′(`crit) on the scale
`crit of at least 108 cm s−1 at the flame is higher for weak deflagrations. In addition, it seems
that for weak deflagrations the quantity P (v′(`crit) ≥ 108 cm s−1)(t) varies much stronger
with time that becomes apparent in sharp maxima and narrow widths of the curves in the
left panels of Figure 6.7.

In Figure 6.8 the quantity Adet(t) (equation (5.15)) is shown as function of time together
with the threshold value of Acrit. There is obviously no clear conclusion, of whether Acrit

is reached easier for specific models. The reason lies in a compensation effect that is based
on the described behavior of the quantities A∗flame(t) and P (v′(`crit) ≥ 108 cm s−1)(t). Weak

4Since no values are available for Model I in Study II the analysis begins with Model II for this study.
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Fig. 6.8: The potential detonation area Adet(t) as function of time for weak deflagrations (left panels)
and strong deflagrations (right panels) for both studies. The times tDDT where DDTs occur
are marked with dots.

deflagrations have higher values of P (v′(`crit) ≥ 108 cm s−1)(t) but lower values of A∗flame(t),
hence there are higher velocity fluctuations located in a relatively small flame surface area
that meets the DDT constraints concerning the quantities Xfuel and ρfuel. The opposite
holds for strong deflagrations, where lower velocity fluctuations are located in a significantly
larger flame surface area that meets the DDT constraints. In Figure 6.9 the ratio of Adet(t)
to Aflame(t) is shown as function of time. There is a clear tendency that this ratio is higher
for weak deflagrations. This indicates that for weak deflagrations, the strong turbulence and
the small flame surface area lead to the effect that on average a significant part of the entire
flame is capable of performing a DDT.

In Figure 6.8 we see that Adet(t) ≥ Acrit, hence DDTs occur if this conditions holds for at
least τeddy1/2

(`crit). In Figure 6.10 the measured time t(Adet(t) ≥ Acrit) for which the condition
Adet(t) ≥ Acrit holds is shown as function of time together with the threshold value of
τeddy1/2

(`crit). Since t(Adet(t) ≥ Acrit) ≥ τeddy1/2
(`crit), DDTs occur in all models. The total

number of time steps NtDDT where DDTs occur is given by the number how often the quantity
t(Adet(t) ≥ Acrit) crosses the threshold value τeddy1/2

(`crit), approaching from the lower part of
the curve. The number of DDTs FDDT that occur at the time tDDT when t(Adet(t) ≥ Acrit) ≥
τeddy1/2

(`crit) is given by the current ratio of Adet(t = tDDT) to Acrit (see Section 5.3.2).
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Fig. 6.9: The ratio of the potential detonation area Adet(t) to the entire flame surface area Aflame(t)
as function of time for weak deflagrations (left panels) and strong deflagrations (right
panels) for both studies.

At each time when t(Adet(t) ≥ Acrit) ≥ τeddy1/2
(`crit) the time measurement t(Adet(t) ≥ Acrit)

is reset. The condition Adet(t) ≥ Acrit will still hold in most cases, so that the quantity
t(Adet(t) ≥ Acrit) immediately begins to rise again, causing eventually a further DDT provided
that the constraint t(Adet(t) ≥ Acrit) ≥ τeddy1/2

(`crit) can be met again. This procedure may
repeat several times, leading to certain oscillations of the quantity t(Adet(t) ≥ Acrit), which can
be seen for instance in Figure 6.10(b).

In Figure 6.8 the times tDDT are additionally marked with dots at the curves of Adet(t).
We find in most cases that DDTs occur when Adet(t) has local maxima. From the Figures 6.8
and 6.10 we derive the trend that NtDDT is larger for stronger deflagrations, but for models
with very large Nk in Study I, NtDDT decreases again. In Figure 6.10 we see some values
of t(Adet(t) ≥ Acrit) that may exceed τeddy1/2

(`crit) to a certain degree. The reason is that
particularly for the lower resolved simulations of Study II, the simulation time steps become
only about one order of magnitude shorter than τeddy1/2

(`crit) (see Section 5.3.3).

6.2.4 The onset of DDTs and the evolution of detonations

The ignition geometries of the deflagration of the models are shown in Figure 4.2. Except
for Model I, the spherical flame kernels burn their way outward through the stellar material
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Fig. 6.10: The measured time t(Adet(t) ≥ Acrit) for Adet(t) ≥ Acrit as function of time for weak de-
flagrations (left panels) and strong deflagrations (right panels) for both studies. At each
time when t(Adet(t) ≥ Acrit) ≥ τeddy1/2

(`crit) detonations are initialized and the time mea-
surement t(Adet(t) ≥ Acrit) is reset (see also Section 5.3.1).

and come in contact with other propagating flame kernels until they all merge into a single
large deflagration front that moves toward the surface of the white dwarf. The larger Nk

the faster is the merger process of the flame kernels in our ten standard ignition models
(see discussion in Section 4.2.2). In Model I in contrast, a single deflagration bubble rises
asymmetrically and burns only a marginal fraction of the fuel of the white dwarf to heavier
elements.

In the Figures 6.11 and 6.12 the onset of the first DDTs and the evolution of the det-
onations are shown for Model III, Model VII and Model X of Study I and for Model II,
Model VIII and Model X of Study II, respectively. The propagation of the deflagration and
detonation fronts are each represented by a corresponding level set (see Section 4.1.1). In the
Figures 6.11(a-c) and 6.12(a-c) the time t1st

DDT of the first DDT is shown, where the initialized
detonations (resp. the DDT regions) are encircled at the deflagration flame. The latter is
visualized in a transparent blue to obtain a clear view.5 There are some interesting features

5We note that there is only a slight resolution dependence of the deflagration phase and the deflagration
flame in Model X in the Figures 6.11(c) and 6.12(c) appears only different due to another viewing angle
in order to present the DDT regions clearer.
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(a) t1st
DDT of Model III, FDDT = 6 (b) t1st

DDT of Model VII, FDDT = 7 (c) t1st
DDT of Model X, FDDT = 3

(d) 0.2s after t1st
DDT of Model III (e) 0.2s after t1st

DDT of Model VII (f) 0.2s after t1st
DDT of Model X

Fig. 6.11: Delayed detonations in Model III, Model VII and Model X of Study I (not to scale).
Shown are the deflagration level set (blue) and the detonation level set (red). (a-c) The
time t1st

DDT of the first DDT. Initialized detonations at the deflagration flame are encircled
in red (DDT in a single grid cell) or black (DDTs in multiple connected grid cells). (d-f)
0.2 seconds after the first DDT. Several detonation fronts evolve from the DDT spots and
burn the surrounding fuel to heavier elements.

that can be seen from these figures. First we observe an asymmetric flame propagation of
the weak deflagrations in Model II and Model III. In addition, we find that the DDT regions
are mostly not located on top of the mushroom cap like structures that occur due to the
influence of the RT instability, but in trailing edges and crevices between these structures
where the KH instability dominates the turbulent motions. Finally, we see that DDTs occur
frequently in regions that are composed of more connected grid cells. Such regions are found,
for instance, at the time t1st

DDT in the shown models III and VII of Study I, as well as in all
models of Study II. In the Figures 6.11(a-c) and 6.12(a-c) these DDT regions are marked
with black circles, while DDTs in single grid cells are marked with red circles.

In the Figures 6.11(d-f) and 6.12(d-f) the time 0.2 seconds after t1st
DDT is shown. Here the

detonation fronts are visualized in red and the deflagration fronts in opaque blue. Except for
Model II in Study II of the shown models, additional DDTs at other places at the deflagration
flame have occurred up to this time, since the DDT criterion stays fulfilled for most of the
time (see Figure 6.8) and because τeddy1/2

(`crit)� 0.2 s.

Similar to the ignition of the deflagration, the detonation fronts evolve from single DDT
regions and come in contact with each other. The collisions and the merger of detonation
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(a) t1st
DDT of Model II, FDDT = 257 (b) t1st

DDT of Model VIII, FDDT = 8 (c) t1st
DDT of Model X, FDDT = 5

(d) 0.2s after t1st
DDT of Model II (e) 0.2s after t1st

DDT of Model VIII (f) 0.2s after t1st
DDT of Model X

Fig. 6.12: Delayed detonations in Model II, Model VIII and Model X of Study II (not to scale).
Shown are the deflagration level set (blue) and the detonation level set (red). (a-c) The
time t1st

DDT of the first DDT. Initialized detonations at the deflagration flame are encircled
in red (DDT in a single grid cell) or black (DDTs in multiple connected grid cells). (d-f)
0.2 seconds after the first DDT. Several detonation fronts evolve from the DDT spots and
burn the surrounding fuel to heavier elements.

fronts happen very fast, in particular for weak deflagrations. In the shown Model II and
Model III the detonations have been advanced so far that a single detonation front has
almost enclosed the entire deflagration flame. From a physical point of view this indicates
that detonations burn in a very short time a lot of the remaining fuel to heavier elements. In
Model VII and Model VIII we can still identify some isolated detonation fronts. Finally, for
Model X where the expansion of the star at t1st

DDT is large, the impact of the detonations on
the explosion dynamics is relatively weak in both studies. Here, there are many detonation
fronts that propagate along the surface of the deflagration flame at low densities. Hence, the
additional burning due to detonations is much lower than in the other models.

6.2.5 Obtained masses of chemical species

In the Figures 6.13 and 6.14 the obtained masses of the chemical species that are treated in
LEAFS (see Section 4.1.4) are shown as function of time for simulations of delayed detona-
tions for six models of both studies. The times tDDT where DDTs occur are marked with
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vertical lines. The masses of the chemical species of all simulations are also summarized
in the Tables 6.2 and 6.3, where for the pure deflagrations only the results of the higher
resolved simulations are shown. Within the simulations of delayed detonations the highest
56Ni yield is obtained in Study I in Model I with ≈ 1.168M� and in Study II in Model II
with ≈ 1.130M�, respectively. In both studies, the lowest 56Ni yield is obtained in Model
X with ≈ 0.423M� for Study I and ≈ 0.397M� for Study II, respectively. Therefore, in
both studies we obtain a range of brightnesses that is in good agreement with the stud-
ies of Contardo et al. (2000), Stritzinger et al. (2006) and Mazzali et al. (2007) (see also
Section 2.1.1). However, the maximum in the 56Ni yield in our case is slightly higher than
expected for normal SNe Ia. Within the simulations of pure deflagrations, the highest 56Ni
yield is obtained in Model VIII with ≈ 0.463M�. Hence, with pure deflagrations we obtain
mainly faint events. Model I produces less than 0.1M� of 56Ni in the pure deflagration.
Due to the marginal burning the energy release is so low that a significant part of the star
remains gravitationally bound (see Figure 6.2(a)).

Model IGE 56Ni IME 12C 16O 56Ni/IGE
[M�] [M�] [M�] [M�] [M�]

I 0.092 0.074 0.019 0.639 0.650 0.804

II 0.141 0.105 0.055 0.577 0.627 0.745

III 0.273 0.210 0.041 0.531 0.555 0.769

IV 0.326 0.246 0.052 0.497 0.526 0.755

V 0.461 0.341 0.078 0.410 0.452 0.740

VI 0.568 0.408 0.087 0.350 0.397 0.718

VII 0.619 0.439 0.098 0.315 0.369 0.709

VIII 0.678 0.463 0.096 0.288 0.339 0.683

IX 0.648 0.415 0.090 0.307 0.356 0.640

X 0.593 0.369 0.096 0.328 0.384 0.622

Table 6.2: Obtained yields of total iron group elements (IGE), 56Ni, intermediate mass elements
(IME), 12C and 16O after 100 seconds in the simulations of pure deflagrations for the ten
ignition models of Table 4.1 using a resolution of 5123 grid cells.
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(b) Model IV (Nk = 10)
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(c) Model VI (Nk = 40)
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(d) Model VIII (Nk = 200)
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(e) Model IX (Nk = 1600)
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(f) Model X (Nk = 1600)

Fig. 6.13: Obtained yields of chemical species as function of time in simulations of delayed detona-
tions for six models of Study I. Initialized detonations are marked with vertical lines.
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(d) Model VIII (Nk = 200)
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(e) Model IX (Nk = 1600)
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(f) Model X (Nk = 1600)

Fig. 6.14: Obtained yields of chemical species as function of time in simulations of delayed detona-
tions for six models of Study II. Initialized detonations are marked with vertical lines.
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6 Application of the delayed detonation model in SN Ia simulations

6.3 Results and Discussion

6.3.1 Delayed detonations and explosion brightnesses

In the performed analysis we find a number of different characteristics that determine the
dynamics and brightness of the explosion. The most dominant effect is the degree of ex-
pansion of the white dwarf prior to the first DDT. Strong deflagrations that evolve from
models with large Nk burn out a significant part of the central region of the white dwarf
that leads in the early explosion phase to an enhanced production of IGE, and hence 56Ni.
In very strong deflagrations, however, the associated early large expansion of the star leads
to the effect that the flame soon encounters densities that are not sufficiently high to burn
the fuel to IGE anymore. This explains why the 56Ni yield is maximum in Model VIII and
lower for Model IX and Model X in pure deflagrations. The described behavior can also be
inferred from Figure 6.1, where Model IX and Model X show a higher initial growth rate
of the nuclear energy release Enuc, but become outrun by Model VIII in the late explosion
phase.

In simulations of delayed detonations we see in strong deflagrations only a slight additional
burning of the fuel to 56Ni after the onset of detonations (see Table 6.3). The reason is
again the large expansion of the star, so that detonations encounter the fuel mainly at low
densities that cannot be burned to IGE. In contrast, the expansion in weak deflagrations
is much smaller and the white dwarf stays more compact and denser at t1st

DDT. Therefore,
the detonation fronts propagate through the fuel at higher densities, leading to an enhanced
production of IGE.

Compared to pure deflagrations, however, in the simulated delayed detonations the 56Ni
yield decreases continuously with increasing Nk without exception. We have to keep in mind,
however, that Model IX and Model X have the same number of ignition kernels, but Model
X has a far more compact initial flame configuration (compare Figure 4.2(h) and (i)). In
the right panels of Figure 6.1 we see that the overall nuclear energy release saturates for
strong deflagrations. In particular we find in Study II that the value of Enuc at t1st

DDT for
Model VIII, Model IX and Model X is approximately equal, hence we expect that the degree
of pre-expansion of the white dwarf prior to the first DDT in these models is very similar.
Therefore, it is questionable whether the continuous decrease of the 56Ni yield can be easily
explained by a single parameter, like Enuc at t1st

DDT.

To investigate this, we first consider again that a deflagration flame which evolves from
large Nk propagates more spherically symmetric outward (see Figure 6.11 and 6.12), which
may hinder ensuing detonations to move toward the center of the white dwarf.6 Therefore,
these detonations burn even less of the remaining fuel to IGE, since the burning due to
detonations occurs predominantly at low densities ahead and along the deflagration flame.
On the other hand, we mentioned above that strong deflagrations already burn a significant
part of the stellar material in the central area of the white dwarf to IGE, so that the amount
of fuel which is left behind the deflagration flame is smaller than for weak deflagrations.
However, due to the symmetric and compact deflagration front, this fuel can commonly not

6The spherical symmetry of the ignition region and the deflagration front are not directly related to Nk but
to the fact that in our ten ignition models we find with increasing Nk a larger number of small spheres of
radius rk that are randomly placed within a single large sphere of radius R (see Table 4.1 and Figure 4.2).
Hence, with increasing Nk the entire ignition geometry becomes more compact and spherical symmetric
which is most evident in Model X (see Figure 4.2(i)). In this context, the entire initial flame configuration
of Model X may be replaced by a single large disturbed sphere of radius R.
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be reached by the ensuing detonations.7

In contrast, a deflagration flame which evolves from far less ignition kernels propagates in
a more aspherical way and leaves a larger amount of unburned material in the central region
of the white dwarf. Here initialized detonations at the deflagration flame are able to move
between the larger number of crevices between the mushroom cap like structures, eventually
reaching the remaining fuel pockets deep inside the exploding star. Due to the high densities
in these regions the fuel is converted to IGE.

Because of the compact initial flame configuration of Model X, the deflagration burns out a
larger part of the central area of the white dwarf than any other of our models. In addition, we
see in Table 6.3 that particularly for this model the 56Ni mass at t1st

DDT is already a significant
fraction of the overall produced 56Ni in the simulated delayed detonation. Therefore, the
deflagration already provides the major fraction of 56Ni. We can conclude that the stronger
the deflagration burns out the central area and the more fuel is already burned to heavier
elements by the deflagration flame, the less material can be burned by detonations at high
densities to IGE (see also Röpke & Niemeyer, 2007; Mazzali et al., 2007; Kasen et al., 2009).
This behavior can also be inferred from Figure 6.5. We see that Aflame(t) at t1st

DDT has the
tendency to be larger for stronger deflagrations. A larger flame surface area in turn implies
that more fuel has been consumed by the deflagration flame up to this time that is not
further available for occurring detonations which may burn the fuel with more efficiency
to IGE. This effect is most pronounced in Model X. However, we note that the described
behavior is in general a side effect in such strong deflagrations, whereas the pre-expansion
of the white dwarf prior to the first DDT has usually a far higher impact on the explosion
brightness.

There is a further secondary geometrical effect that may have an impact on the brightness
of the explosion that is particularly relevant for strong deflagrations. This effect is related to
the number and distribution of DDT regions at the deflagration flame. For DDTs that occur
predominantly only at one side of the star where turbulence at the flame is most intense, it
may become difficult for the detonations to propagate to the opposite side of the exploding
and rapidly expanding white dwarf. This characteristic depends on the degree of expansion
prior to the first DDT, the geometrical structure of the deflagration front and the amount of
burned material that is left behind the deflagration flame that may affect or even block the
propagation of the detonations (see Maier & Niemeyer, 2006). Since models with large Nk

have a more compact structure of the deflagration front, the propagation of the detonation
through the center to the opposite side of the star is usually completely prevented. Due
to the large expansion of the white dwarf in strong deflagrations, despite their supersonic
propagation it is also hardly possible for a detonation to move around the deflagration front
to the other side of the star which may expand significantly further, while the detonation
fronts are propagating onwards.

As seen, for instance, in Figure 6.12(b) in Model VIII of Study II there are eight DDTs at
t1st
DDT in a single solitary region that is far away from the other side of the star. In contrast, in

Model X there are only five DDTs but they are partially located at different positions at the
deflagration flame (see Figure 6.12(c)). Hence in contrast to Model VIII where only a single
detonation front exists, there are two spatially widely separated sources in Model X where

7There is further a low probability that a DDT is triggered right in one of the remaining fuel regions in the
interior of the star. However, the propagation of a detonation in an isolated fuel region that is surrounded
by ashes from the deflagration flame may be blocked (see Maier & Niemeyer, 2006) and the detonation
will probably soon cease without propagating toward the surface of the white dwarf where further fuel is
available (see also Section 7.2.1).
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6 Application of the delayed detonation model in SN Ia simulations

detonations can consume the surrounding fuel. In Figure 6.11(b) we see a similar behavior
in Model VII and Model X of Study I. Here DDTs occur in Model VII predominantly in a
specific region at the flame and the ensuing detonation fronts will join together within a very
short time. In Model X in this study there are three DDTs in single cells that are located
at completely different positions (see Figure 6.11(c)). However, in both studies additional
DDTs occur several time steps later on the other side of the star in Model VII resp. Model
VIII, so that the described geometrical effect becomes less important. But in the context
of the brightness of an explosion, one should generally take this effect into account, since
particularly in strong deflagrations it may affect the 56Ni production in the detonation phase
to a certain degree. In contrast, in weak deflagrations which show a small expansion of the
white dwarf at t1st

DDT and an increased porosity of the deflagration flame, a single or a few
detonation(s) that follow(s) from the first DDT may be able to burn most of the remaining
fuel at a high rate to heavier elements.

The only explanation why DDTs occur frequently in regions that are composed of more
connected grid cells or why they occur predominantly in a specific region that is located
at one side of the star is that there are resolved turbulent structures at the flame that
show strong velocity fluctuations. This is illustrated in Figure 6.15 for Model X of Study II
where velocity fluctuations with v′(`crit) ≥ 2.5 × 107 cm s−1 are shown as highlighted areas
at the flame at t1st

DDT. Here we also see clearly that these high velocity fluctuations do not
occur on top of the mushroom cap like structures but in the crevices between them (see
also Röpke, 2007). Obviously the regions with high velocity fluctuations are resolved in the
simulation. In the case shown here, the strongest turbulent structure is found at the right
edge at the flame which is encircled. If we compare Figure 6.15 with Figure 6.12(c) we find
that this region just corresponds to one DDT region that is composed of three grid cells.
This result originates from our chosen modeling approach, to initialize detonations at the
locations where the strongest velocity fluctuations are found.

The described effects in this section lead to the conclusion that mainly the strength of the
deflagration and the associated degree of expansion of the star prior to the first DDT which
can be estimated with Enuc at t1st

DDT determine the brightness of the explosions. However,
for strong deflagrations that evolve from many ignition kernels, the enhanced production of
56Ni in the early explosion phase, the compactness of the deflagration front, as well as the
geometrical distribution of DDT regions may additionally affect the 56Ni production in the
detonation phase. This behavior will be further investigated in Section 7.2.

6.3.2 Turbulence and the flame surface area in deflagrations

In Figure 6.7 we see that the probability P (v′(`crit) ≥ 108 cm s−1)(t) of finding velocity
fluctuations v′(`crit) on the scale `crit of at least 108 cm s−1(t) at the deflagration flame is
significantly higher for models with small Nk (e.g. Model I and Model II). In contrast, in the
left panels of Figure 6.4 we find that Eturb is significantly lower for these models. Here we
have to take into account that the quantity Eturb represents the overall generated turbulent
energy on unresolved scales. Due to the co-moving grid technique ∆(t) increases faster in
stronger deflagrations that show a rapid expansion of the star. Consequently, the amount of
turbulent energy that is not resolved increases also faster in stronger deflagrations. However,
far more crucially is that Eturb also includes the turbulence in ash regions. The sum of all
ash regions inside the white dwarf is far larger than the area in the vicinity of the flame. In
addition, turbulence seems to be more intense in ash regions (see Figures 5.7 and 5.10). All
these effects contribute to the fact that the results concerning P (v′(`crit) ≥ 108 cm s−1)(t)
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6.3 Results and Discussion

Fig. 6.15: Velocity fluctuations of v′(`crit) ≥ 2.5×107 cm s−1 (highlighted areas) at the deflagration
flame (purple) in Model X of Study II. The strong turbulent velocity fluctuations are
found in trailing edges and in crevices between the mushroom cap like structures that
occur due to the influence of the RT instability, but not on top of them. The regions
with high turbulent velocity fluctuations exceed mostly several grid cells, hence they are
resolved in the simulation. The most intense turbulent structure is encircled.

and Eturb appear different at first glance.

The low values of P (v′(`crit) ≥ 108 cm s−1)(t) (Figure 6.7) at the flame in strong deflagra-
tions at times where DDTs are expected can be understood with the following argument. For
weak deflagrations there is one or a few isolated burning and fast rising bubble(s), where the
action of local shear instabilities triggers strong turbulence. This is why we see in Figure 5.10
higher velocity fluctuations in the vicinity of the flame in weak deflagrations. Within the ten
ignition models of Table 4.1, the time it takes for the merger of all ignition kernels becomes
shorter for models with larger Nk. In this way, in stronger deflagrations an impenetrable
compact flame front emerges and grows faster (see Figure 6.5), whereas the evolution of
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locally intense turbulence (due to individual hot rising bubbles) is suppressed. For very
strong deflagrations the merger of the kernels becomes so fast that soon after the ignition of
the deflagration a single large burning front of high spherical symmetry propagates outward.
Similar to the argument of Section 6.2.2 we can imagine that turbulence become partially
suppressed in this case, because a slightly disturbed deflagration front which propagates in
a spherical symmetric way is more robust against instabilities, even if there will be a larger
number of kinks and bends at the flame where instabilities can arise (see Section 4.2.2).
Therefore, we see on average lower velocity fluctuations at the flame in Figure 5.10 for
stronger deflagrations. In addition, we find in strong deflagrations an earlier freeze out of
turbulent motions (see also Khokhlov, 1995). This can also be inferred from Figure 5.10
where we see that the maximum of the velocity fluctuations are found at earlier times for
stronger deflagrations. Hence, at later times when DDTs are expected, turbulence may be
even weaker which eventually explains why the probability P (v′(`crit) ≥ 108 cm s−1)(t) is on
average much lower in strong deflagrations. However, we also often find for a given model
that the quantity P (v′(`crit) ≥ 108 cm s−1)(t) may rise even for times beyond t1st

DDT (see Fig-
ure 6.7). Since the fuel density at the flame declines during the deflagration, we assume that
this behavior may be explained with the results in Section 5.2.6. Here we found stronger
turbulence at higher densities, but a higher probability of the occurrence of particularly high
velocity fluctuations at lower densities.

The growth rate of Aflame(t) depends mainly on the symmetry of the initial flame con-
figuration of the deflagration. In asymmetric off-center ignitions the deflagration flame also
propagates in an asymmetric way (predominantly within a certain solid angle or within a
specific sector) toward the surface of the white dwarf (e.g. Röpke et al., 2007b), where the
entire flame surface area remains small. In contrast, in Model IX and Model X for instance,
the flame spreads spherically in all directions through the stellar material and Aflame(t) be-
comes very large. However, we argue that the growth rate of Aflame(t) further depends to a
certain extent on the interaction of turbulence with the flame. This may explain the behavior
of Model X in which turbulence is relatively weak in the late explosion phase and Aflame(t)
is much smaller than in Model IX (see Figure 6.5). On the other hand, we find in Model
IX some ignition kernels of the deflagration that are located at larger distances from the
center of the white dwarf than in Model X (see Figure 4.2 (h/i)). Hence, the entire ignition
region of the deflagration is larger in Model IX, which may also contribute to a larger growth
rate of Aflame(t) in Model IX than in Model X. The weak turbulence and the associated low
values of P (v′(`crit) ≥ 108 cm s−1)(t) in Model X further lead to the effect that A∗flame(t) has
to grow very large in order to meet the DDT criterion (see right panels of Figure 6.6).

6.3.3 The number of DDTs

Due to the less restrictive DDT criterion, the number of all DDTs
∑
FDDT in the simulations

of the models in Study II is significantly larger compared to Study I. However, we find that
the total number of time steps NtDDT where DDTs occur is smaller in Study II. In addition,
we find here a clear trend that NtDDT increases continuously for models with larger Nk. In
Study I this tendency is less pronounced. Here there is rather some kind of a saturation of
NtDDT that occurs at Model VII, where NtDDT begins to decrease again for Model IX and
Model X.

These effects occur due to different reasons that are outlined in the following. First we
see in Figure 6.6 that for most models the quantity A∗flame(t) at t1st

DDT is far away from its
global maximum. Hence, there will be a larger flame surface area for times t > t1st

DDT that
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meet the DDT constraints. From the Figures 6.7 and 6.8 we can see that the probability
P (v′(`crit) ≥ 108 cm s−1)(t) is in addition for a specific time frame sufficiently high to meet
the DDT criterion for t > t1st

DDT in nearly all simulations so that further detonations follow
and NtDDT increases.

Apart from the fact that the probability P (v′(`crit) ≥ 108 cm s−1)(t) is higher in weaker
deflagrations, there are further differences between weak and strong deflagrations in the
context of this quantity. We see in Figure 6.7 that P (v′(`crit) ≥ 108 cm s−1)(t) varies faster
with time for weak deflagrations. Therefore, these deflagrations become an enhanced chance
that the condition Adet(t) < Acrit occurs before τeddy1/2

(`crit) is reached. This behavior can
be seen clearly in Study I when comparing Figure 6.10(a) with Figure 6.10(b). We conclude
that the unpredictable behavior of the occurrence of high turbulent velocity fluctuations
in weak deflagrations that is attributed to strong intermittency in turbulence may prevent
DDTs, leading smaller of NtDDT .

A further effect is that the overall time interval where P (v′(`crit) ≥ 108 cm s−1)(t) has
noticeable values, shows the tendency to be narrower for weak deflagrations. For instance,
in Study I in Model I this time interval ranges approximately from 1.10 to 1.22 seconds,
while in Model VIII this interval spans a range from 0.82 to 1.11 seconds (see upper panels
of Figure 6.7). This further reduces NtDDT in weak deflagrations. The origin of this effect
lies mainly in the evolution of the detonation fronts and the number of grid cells N∗flame(t)
that meet the DDT constraints concerning Xfuel and ρfuel. As described in Section 6.2.4 the
detonations in weak deflagrations evolve faster in the explosion due to the smaller expan-
sion of the white dwarf. This means that already shortly after the first DDT commences,
detonations may propagate through a significant fraction of the small number of grid cells
N∗flame(t) that originally were (or would have been later) a contribution to A∗flame(t). We
already indicated that A∗flame(t) may rise for a certain time beyond t1st

DDT, indicating that
detonations have not yet led to a significant decrease in the quantity N∗flame(t). Here, the
growth rate of A∗flame(t) is mainly given by the further expansion of the grid, where this
behavior is more pronounced for strong deflagrations (see Figure 6.6).

In the less restrictive DDT criterion of Study II, the ratio of initialized detonations FDDT

to N∗flame(t = t1st
DDT) at the time t1st

DDT of the first DDT is relatively high for the Model II,
Model III and Model V. This leads to a short but very steep decline of the quantity A∗flame(t)
that can be identified in Figure 6.6(c). In general, a high ratio of FDDT to N∗flame(t = tDDT) at
times tDDT where DDTs occur will lead to a certain reduction of A∗flame(t) and consequently
of Adet(t). This makes it difficult for the corresponding models to meet the DDT criterion
for later times that eventually leads on average to smaller NtDDT . Due to the lower resolution
we find in Study II much lower values of N∗flame(t). In contrast, the DDT criterion is less
restrictive in Study II, so we find higher values of FDDT. In summary, we find in Study II
higher ratios of FDDT to N∗flame(t = tDDT) in the models, explaining the lower values of NtDDT

compared to Study I. In this context, there is a remarkable event in Study II that occurs in
Model VIII and happens at about one second in the explosion. The final DDT occurs here
in several thousand grid cells (see Figure 6.8(d)), leading to an abrupt decline of A∗flame(t)
that can be seen in Figure 6.6(d). However, it should be clear that even if further DDTs
occur in such simulations, the additional detonations have no more effect on the explosion
dynamics.

Finally, we see in Study I that for very strong deflagrations that have weak turbulence,
Adet(t) is sometimes not large enough to exceed the high threshold value of Acrit (see Fig-
ure 6.8), so that we find in this study that NtDDT decreases again for Model IX and Model
X. We note that this behavior will also occur in Study II, if we increase the threshold value
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of Acrit to a certain extent.

From the described effects we conclude that strong turbulent intensity in weak defla-
grations may trigger DDTs, but the potential detonation area Adet(t) may often not ex-
ceed the required critical flame surface area Acrit for a DDT long enough for the initial-
ization of the detonation. The main reason is the unpredictable behavior of the strong
intermittency in weak deflagrations that becomes apparent in fast variations of the quan-
tity P (v′(`crit) ≥ 108 cm s−1)(t) with time that eventually prevents several DDTs. In con-
trast, the weaker turbulence in stronger deflagrations leads to lower values of the probability
P (v′(`crit) ≥ 108 cm s−1)(t) which, however, shows far less temporal variations in this case.
Together with the larger flame surface area A∗flame(t) in strong deflagrations we find steady
values of Adet(t) that can frequently exceed Acrit long enough to trigger DDTs. Hence we
find in strong deflagrations more time steps where DDTs occur. In models that have a very
small flame surface area that meets the DDT constraints or models that show only very
weak turbulence at the flame, the DDT criterion may sometimes not be met, leading to a
decrease of NtDDT in both cases.

6.3.4 Remarks on the eddy turnover time

In general, it is important to keep in mind that a significant part of the described results
is based on the inclusion of τeddy1/2

(`crit) that prevents direct detonations if Adet(t) ≥ Acrit

(or equivalently FDDT ≈ 1). We outline here that the application of τeddy1/2
(`crit) has an

additional physical effect. One can imagine that for a given value of A∗flame(t) in our DDT
model, the probability of the occurrence of DDTs becomes higher with stronger turbulence.
If, however, turbulence becomes too intense, the flame is in reality so heavily disturbed and
disrupted that potential DDT regions can be practically destroyed before they either grow
large enough or before fuel and ash within these regions are sufficiently mixed for a DDT.
In the simulated models, the most intense turbulence is found in local structures in weak
deflagrations, where the quantity Adet(t) (or equivalently P (v′(`crit) ≥ 108 cm s−1)(t)) shows
faster variations in successive time steps. If τeddy1/2

(`crit) is not included, these models will
experience a much larger number of DDTs, but here τeddy1/2

(`crit) acts as a quantity which
ensures that very intense turbulence leads to fewer DDTs. In addition, we note that very high
velocity fluctuations cause also very high fluctuations in the temperature and in the chemical
composition (and hence in the fuel fraction) at the flame. Since a DDT that is based on
the Zeldovich gradient mechanism requires a sufficiently shallow gradient of induction times
(see Section 3.3.1), too intense turbulence may lead to the effect that DDTs cannot occur
(see Niemeyer, 1999).

6.3.5 Unsuccessful DDTs

According to our DDT model, we argue that DDTs in sufficiently weak and strong defla-
grations may be in principle completely prevented. For the latter case, we note that there
are a few indications that pure strong deflagrations may be capable of explaining some of
the observed rare peculiar SN Ia events (see Section 2.3.3). For the former case, we showed
in Section 6.2.1 that for models with Nk ≤ 100 a pure deflagration cannot gravitationally
unbind the whole star anymore, leading to a lower mass of the ejecta and a compact bound
remnant in the central region. Whether these failed deflagrations may explain some of the
faint peculiar SN Ia events is uncertain (see also discussion in Plewa, 2007). In Model I which
constitutes a single off-center ignition of the deflagration, the flame burns only a marginal
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fraction of the fuel. If in this very weak deflagration no DDT occurs, the event is particularly
faint. However, this model may also transition into the GCD scenario (see Section 2.3.6)
in which a detonation occurs by a mechanism which is fundamentally different compared to
the classical delayed detonation scenario described in the Sections 2.3.4 and 3.3. Since in
this case the outer layers of the star may have expanded further prior to the initialization of
the detonation than in Study I, this model will most likely produce less 56Ni that would be
more consistent with the observed bright events of normal SNe Ia or the 1991T-like objects.8

Apart from the GCD scenario, the weak deflagrations may also evolve toward the pulsational
delayed detonation or pulsational reverse detonation model (see Section 2.3.7).

6.3.6 Dynamics of deflagrations and detonations

We see in Table 6.2 that in all pure deflagrations, a significant amount of fuel is left. In
simulations of delayed detonations we find that a major part of the remaining fuel is burned
to heavier elements (see Table 6.3). For weak deflagrations we see that most of this fuel is
burned in detonations to IGE, in particular to 56Ni. This confirms our expectations that
detonations in weak deflagrations burn the remaining unburned material at high densities.
In contrast, we see in strong deflagrations that detonations lead to an increase of the 56Ni
yield as well, but most of the fuel is burned to IME and 16O. Obviously the burning due to
detonations occurs predominantly ahead of the deflagration flame at relatively low densities.
Model II - Model IX follow this trend.

We further see in Table 6.2 the trend that the ratio of 56Ni to IGE decreases for stronger
deflagrations. This behavior is related to an enhanced neutronization in the early deflagra-
tion phase where the fuel is consumed at a high rate at high densities. Also simulations of
delayed detonations show a higher neutronization for a stronger deflagration phase (see Ta-
ble 6.3). The reason is that due to the expansion of the star, the fuel densities at t1st

DDT have
declined so far that an additional strong neutronization in the detonation phase is unlikely.
Therefore, the deflagration already provides the major contribution to the neutronization,
which also holds to a certain extent for weak deflagration phases. In Section 7.3 we will fur-
ther investigate the effects of neutronization in exploding white dwarfs which have different
initial central densities.

Interestingly, we can infer from the time evolution of the produced amounts of different
chemical species in the Figures 6.13 and 6.14 a behavior that is related to the dynamics
of the deflagration flame in the different models. We see in Model X that the deflagration
has almost ceased at t1st

DDT, since the slope of the curve of IGE is ≈ 0 at this time. Here
we can infer from Figure 4.1 that the entire burning occurs predominantly at relatively low
densities. In Study I for instance, a significant part of the deflagration flame is in the range
of fuel densities of 0.6 × 107 g cm−3 ≤ ρfuel ≤ 0.7 × 107 g cm−3 at the same time, which is
also confirmed by the curve shape and the large values of A∗flame(t) seen in Figure 6.6(b). We
can conclude that the deflagration flame has a high spherical symmetry in this model. In
contrast, the burning in the deflagration phase for weak deflagrations is far more incomplete
at t1st

DDT. Here the slope of the curve of IGE is still high and the burning of the fuel to IME
has just begun. This means that only a small part of the deflagration flame is in the range
of fuel densities of 0.6× 107 g cm−3 ≤ ρfuel ≤ 0.7× 107 g cm−3, whereas the rest of the flame
resides at higher densities. Obviously the flame has propagated asymmetrically.

8The detonation in the GCD model occurs most certainly later than t1st
DDT.

103



6 Application of the delayed detonation model in SN Ia simulations

6.3.7 Comparison with the resolution study

The comparison of A∗flame(t) in Model X of Study II in Figure 6.6(d) with Model X∗ in
Figure 5.11(c) from the resolution study in Section 5.4 shows that the values of A∗flame(t) are
in both cases of the same order of magnitude. However, in the latter case the chosen range
of allowed fuel densities for the DDT criterion is 1.5× 107 g cm−3 ≤ ρfuel ≤ 0.5× 107 g cm−3

and hence significantly higher than in the criterion used in Study II. Therefore, it seems
that the higher values of the parameters rk and dk of the ignition geometry of Model X that
constitutes a more compact and denser initial flame configuration than the setup of Model
X∗ have a significant effect on the flame propagation. There is obviously a relatively large
number of grid cells N∗flame(t) that meet the constraints concerning ρfuel in Model X at the
same time. With the described effect of the spherical symmetry of the flame propagation
in the context of the obtained values of A∗flame(t) we conclude that the compact ignition
geometry of Model X leads to a flame propagation with a high spherical symmetry.

In contrast to A∗flame(t), there is a difference in the quantity P (v′(`crit) ≥ 108 cm s−1)(t) in
Model X of Study II in Figure 6.7(d) compared to Model X∗ in Figure 5.13(a) from the res-
olution study in Section 5.4, where in the latter case P (v′(`crit) ≥ 108 cm s−1)(t) is partially
about one order of magnitude lower. Since the initial flame configuration is more compact
in Model X we would expect weaker turbulence in this model, but the opposite is the case.
Therefore, we can conclude that the probability P (v′(`crit) ≥ 108 cm s−1)(t) is significantly
higher for a range of lower fuel densities (see also the histograms in Figure 5.9(b) in Sec-
tion 5.2.6). A similar behavior can be found when comparing P (v′(`crit) ≥ 108 cm s−1)(t)
in the simulations of Study I and Study II, where for Study I, fuel densities not higher
than 0.7 × 107 g cm−3 are taken into account. In Figure 6.7 we see that the proba-
bility P (v′(`crit) ≥ 108 cm s−1)(t) is on average higher for the simulations of Study I.
We note that we also placed different constraints on the quantity Xfuel in both stud-
ies but we see in Figure 5.9(a) that the histogram of v′(`crit) (and hence the probability
P (v′(`crit) ≥ 108 cm s−1)(t)) seems to be largely independent of these constraints.

6.4 Conclusions

In this chapter the new SGS model for DDTs for simulations of delayed detonations in SN Ia
explosions has been applied with two different DDT criteria to ten ignition models that give
rise to different strengths of the deflagration. The decisive parameter of these ignition models
is the number of ignition kernels Nk from which the deflagration flame evolves. Apart from
one model which could not be analyzed due to insufficient data for the application of the
DDT model, the two DDT criteria were met in all simulations of delayed detonations. We
obtained a range of 56Ni yields in both studies that is consistent with the expectations from
observations of normal SNe Ia (e.g. Contardo et al., 2000; Stritzinger et al., 2006; Mazzali
et al., 2007).

We showed that in the performed simulations there are locally resolved large-scale struc-
tures of strong turbulence at the deflagration flame that becomes apparent in high velocity
fluctuations in more connected grid cells. Since the DDT model is designed to initialize det-
onations in the grid cells where the values of v′(`crit) are highest, it follows that also DDTs
frequently occur in regions that exceed more than one grid cell. For weak deflagrations, a
single DDT may be capable of burning most of the remaining fuel. In contrast, in strong
deflagrations, the large expansion of the white dwarf and the compact structure of the defla-
gration front may affect the propagation of the detonations, so that the number and times
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where DDTs occur may become important for the further 56Ni production.
The mechanism that causes DDTs is fundamentally different for weak and strong defla-

grations. In weak deflagrations the high velocity fluctuations at the flame that are induced
by strong shear instabilities trigger the DDT. In contrast, in strong deflagrations turbulence
is weaker, but the larger flame surface area that meets the DDT constraints and the lesser
temporal variations of the probability P (v′(`crit) ≥ 108 cm s−1)(t) of finding velocity fluc-
tuations v′(`crit) on the scale `crit of at least 108 cm s−1 at this flame surface area causes
DDTs. In both cases, DDTs may be completely prevented, leading either to a failed de-
flagration (that may further transition into a scenario where a detonation is triggered in a
different way or a pure strong deflagration. These scenarios, however, cannot explain the
whole observed variations in the brightness and/or some of the main characteristic features
of normal SNe Ia.

One problem that occurs in our analysis is that one model could not be analyzed. The
reason is that the available number of grid cells N∗flame(t) that meet the DDT constraints is
too small to construct and fit the histogram of v′(`crit) in the entire simulation. Therefore,
we are unable to determine a single value for the quantity P (v′(`crit) ≥ 108 cm s−1)(t). This
problem may occur generally for very weak deflagrations in combination with too restrictive
DDT criteria (see Section 5.3.3).

As in the resolution test of the SGS model in Section 5.4, the threshold values of the
individual DDT quantities in this chapter were chosen arbitrary, even if all threshold values in
the used two parameter sets are selected within in a physically sensible range. It is clear that
the uncertainties of the threshold values of the DDT quantities raise some questions. Since
we obtain in our analysis with two different DDT criteria a very similar result concerning the
56Ni yields one question is to what extent a change of the threshold values of one or several
DDT quantities has generally an effect on the brightness of an explosion. This problem will
be tackled within a detailed parameter study in the next chapter.
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From the results of the last chapter it becomes obvious that the interplay between several
quantities of the DDT model plays an important role in the question of whether or not the
necessary conditions for delayed detonations are met in SN Ia explosions. These quantities
are partially afflicted with large uncertainties and there will be a variety of possible combi-
nations of their threshold values where the same variation of the 56Ni yields can be obtained
as in the used parameter sets in Chapter 6. For this reason even a detailed parameter study
provides only some hints and cannot fully answer the question of whether there are certain
parameter sets for the DDT criterion that explain in simulations of delayed detonations the
observed properties of SNe Ia best.

On the other hand, a parameter study can retroactively provide valuable information
about individual DDT quantities by using a process of elimination. If, for instance, in all
simulations within a parameter study the initialized DDTs at a given fuel density lead to no
faint events with less than 0.4M� of 56Ni, we can conclude that delayed detonations at these
high densities cannot account for the whole observed variations in the brightness of normal
SNe Ia. In addition, a parameter study can reveal which of the quantities have the highest
impact on the degree of restrictiveness of the DDT criterion and the obtained brightness of
the explosion. We can further underpin the indicated correlation in Chapter 6.3.1 between
the strength of the deflagration and the obtained 56Ni yield, by applying the DDT model
with additional criteria to other various ignition models. Moreover, we will investigate
the influence of the secondary parameters of the ignition geometry (σ, rk and dk) of the
deflagration on the results of simulations of pure deflagrations and delayed detonations. An
open question that is particularly related to strong deflagrations was also whether the degree
of the expansion of the white dwarf prior to the first DDT is a good proxy to estimate the
explosion brightness, and to what extent this estimation is affected by the distribution of
DDT regions (see Section 6.3.1). With the following parameter study we can analyze which
effect dominates.

We first describe in Section 7.1 the setup of the DDT criteria and how the parameter
study is organized. The results of this study are discussed in Section 7.2. In Section 7.3
we vary the central density of the initial white dwarf model and investigate to what extent
this variation affects the 56Ni production in simulations of delayed detonations. Since we
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showed in Section 5.4 that the DDT model is largely resolution-independent we perform
all simulations in this chapter with a resolution of 2563 grid cells only, so that a relatively
large number of models and criteria can be analyzed. An exception are the higher resolved
simulations in Section 7.3 that are not directly connected to the parameter study.

7.1 Setups of the main DDT criteria and organization of the
parameter study

The initial white dwarf model is described in Section 4.2. Since there are too many quan-
tities within the DDT criterion to vary each of them to a large extent, we first perform
a preselection of threshold values of the individual DDT quantities. In the following list,
the physical range of each DDT quantity (see also Section 3.3.2) and the selected threshold
value(s) for the main study, in the following referred to as Study A, are summarized:

1. The range of fuel densities ρfuel in the grid cells is given by ρmin
fuel ≤ ρfuel ≤ ρmax

fuel .
Following Woosley (2007) we can choose ρmin

fuel = 0.5 × 107 g cm−3 and ρmax
fuel = 1.5 ×

107 g cm−3 for the DDT criterion. In this case, however, the obtained range of allowed
fuel densities is quite large and we use the following four smaller intervals for ρfuel,
where for all of them ρfuel ≤ 107 g cm−3 holds:

a) 0.8× 107 g cm−3 ≤ ρfuel ≤ 1.0× 107 g cm−3

b) 0.6× 107 g cm−3 ≤ ρfuel ≤ 1.0× 107 g cm−3

c) 0.6× 107 g cm−3 ≤ ρfuel ≤ 0.8× 107 g cm−3

d) 0.5× 107 g cm−3 ≤ ρfuel ≤ 0.8× 107 g cm−3

We will investigate the impact of higher fuel densities with ρfuel ≥ 107 g cm−3 in a
separate study.

2. The range of fuel fractions Xfuel in the grid cells is given by Xmin
fuel ≤ Xfuel ≤ Xmax

fuel .
Here we choose three intervals:

a) 0.1 ≤ Xfuel ≤ 0.9

b) 0.2 ≤ Xfuel ≤ 0.8

c) 0.3 ≤ Xfuel ≤ 0.7

3. For the minimum required velocity fluctuations v′crit for a DDT we choose the following
two values:

a) v′crit = 0.5× 108 cm s−1 (Woosley et al., 2009)

b) v′crit = 1.0× 108 cm s−1 (Lisewski et al., 2000)

We will vary v′crit between both values in an additional analysis.

4. The half eddy turnover time τeddy1/2
(`crit) is estimated by 0.5 · `crit/v

′
crit (equa-

tion (3.48)). With `crit = 106 cm and the above values for v′crit we find:

a) τeddy1/2
(`crit) = 0.5× 10−2 s

b) τeddy1/2
(`crit) = 1.0× 10−2 s

As described in Section 3.3.2 the eddy turnover time is afflicted with some uncertainties
and we will investigate the influence of a different value of τeddy1/2

(`crit) separately.
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5. For the critical flame surface area Acrit for a DDT we use the following two values (see
also Section 6.1):

a) Acrit = `2crit (DDT region has a smooth surface area.)

b) Acrit = `Dcrit (DDT region has a fractal dimension of D = 2.36.)

The different DDT criteria of Study A are given by all possible combinations of the chosen
threshold values of the DDT quantities, hence there is a total of 4 · 3 · 2 · 2 · 2 = 96 different
DDT criteria that are summarized in the Tables 7.1 and 7.2. We note that we estimated
τeddy1/2

(`crit) by 0.5 · `crit/v
′
crit (see Section 3.3.2). Since `crit is a fixed quantity, we could

in principle determine τeddy1/2
(`crit) with respect to v′crit and use the obtained value for

τeddy1/2
(`crit) in the corresponding criterion. However, due to the described uncertainties of

the eddy turnover time in Section 3.3.2, we treat here τeddy1/2
(`crit) as an independent and

free parameter (like the other DDT quantities).1

All 96 DDT criteria are applied to Model III, Model VIII and Model X of Table 4.1
that give rise to different strengths of the deflagration. From this study we can estimate
the range of 56Ni yields that can be obtained for each criterion. In Study B we construct
additional, partly more restrictive DDT criteria and apply them to six ignition models that
consist of the three models of Study A and Model VI and Model IX of Table 4.1 and Model
5 of Table 4.2. Here we vary some of the individual DDT parameters to a larger extent
than in Study A, while keeping the other parameters constant in a way that favors the
occurrence of faint explosions. If at some point the variation of an individual parameter
the simulations yield no event with approximately 0.4M� of 56Ni anymore, we can place
some constraints on this parameter. In addition, we investigate in this study under what
circumstances the DDT criterion cannot be met anymore. Here we can derive additional
necessary constraints for a DDT to occur in deflagrations of white dwarfs generally. In
Study C we finally choose four DDT criteria in which the obtained 56Ni yields cover a broad
range within the simulated ignition models used in Study A and Study B. These criteria
are applied to all remaining ignition models shown in the Tables 4.1 and 4.2, hence a total
of 46 different ignition setups are taken into account. With this study we can find out
whether the correlation between the strength of the deflagration and the obtained 56Ni yield
in simulations of delayed detonations of the different models and within the chosen DDT
criteria is maintained. We further investigate here the influence of the secondary parameters
of the ignition geometry σ, rk and dk (see Section 4.2.2) on the simulation results of both
pure deflagrations and delayed detonations. Finally, the number of all simulated delayed
detonations is sufficient to evaluate to what extent the expansion of the white dwarf prior
to the first DDT and the distribution of the DDT regions determine the brightness of the
explosion.

1One of the uncertainties mentioned in Section 3.3.2 concerns the isotropy of turbulence. However, we
assumed isotropic turbulence at the flame on the relevant scales, such as `crit (see Section 5.2.3), so that
this uncertainty may be ignored. However, it remains an open question of whether and to what extent
different turbulent intensities in combination with a certain intermittency affect τeddy1/2

(`crit) (see also
discussion in Section 3.3.2).
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7.1 Setups of the main DDT criteria and organization of the parameter study
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7 Parameter studies of delayed detonations

7.2 Results of the parameter study

7.2.1 Study A

The 56Ni yields obtained in Study A are summarized in Table 7.3. For each DDT criterion
we find the expected behavior that strong deflagrations (Model X) lead to faint events, while
bright explosions follow from weak deflagrations (Model III). However, we see clearly that
there are only a few criteria in which we obtain faint events from Model X with approximately
0.4M� of 56Ni (see Table 7.3). In contrast, simulations of Model III produce in most cases
bright explosions with a 56Ni yield of & 1.0M� which is slightly higher than the expected
56Ni yields of normal SNe Ia. Therefore, compared to observations, our ranges of 56Ni yields
are on average slightly shifted toward brighter explosions. But due to the uncertainties of
the ignition process, the question arises of whether and to what extent our modeled ignition
scenarios (like the setup of Model III or models with even less ignition kernels that lead to
bright explosions) are realized in white dwarfs generally. However, from the different DDT
criteria and the obtained 56Ni yields we can draw the following conclusions:

1. DDTs in regions that have a higher value of ρfuel lead to brighter explosions. This
behavior is obvious because the denser the material ahead of the detonation the more
material can be burned to IGE. In addition, detonations may occur significantly ear-
lier, where the pre-expansion of the white dwarf is smaller and the burning in the
deflagration phase is far more incomplete at some places, leading to a larger amount
of fuel that can be burned by ensuing detonations more efficiently to IGE than de-
flagrations. For the density ranges 0.6 × 107 g cm−3 ≤ ρfuel ≤ 0.8 × 107 g cm−3 and
0.5× 107 g cm−3 ≤ ρfuel ≤ 0.8× 107 g cm−3 no significant differences and trends of the
obtained 56Ni yields can be found.

2. For a larger range of allowed values forXfuel, the explosions become on average brighter.
The main reason is that N∗flame(t) is larger, since more grid cells meet the less stringent
constraints on Xfuel. This implies that A∗flame(t) is also larger, so that the DDT criterion
can be met easier. However, we note that the larger the allowed range of Xfuel the
more grid cells are taken into account that may not or only marginally be crossed by
the flame (see Section 5.1.1). Hence, for larger ranges of allowed values for Xfuel, the
number of grid cells in which the physical quantities represent mainly the conditions in
fuel and ash regions becomes larger. We emphasize that the restrictions on Xfuel have
a direct effect on the quantity A∗flame(t) but not on the quantity P (v′(`crit) ≥ v′crit)(t)
(see also Section 5.2.6 and Figure 5.9)(a)).

3. With the lower threshold value of vcrit = 0.5 × 108 cm s−1 the explosions become
brighter. The reason lies in a much higher probability P (v′(`crit) ≥ v′crit)(t), so that
the criterion can be met easier.

4. For τeddy1/2
(`crit) there is no evidence that a variation of the threshold value of this

quantity affects the explosion brightness. We will investigate in a following study
whether this is a general behavior by increasing the threshold value of τeddy1/2

(`crit).
2

2We have not considered threshold values for τeddy1/2
(`crit) lower than 0.5 × 10−2 s, because in that case

τeddy1/2
(`crit) would become comparable to the simulation time step (see Section 5.3.3). However, since the

obtained 56Ni yields are similar for the cases τeddy1/2
(`crit) = 0.5×10−2 s and τeddy1/2

(`crit) = 1.0×10−2 s,
we do not expect that even faster eddy turnover times lead to very different results.
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7.2 Results of the parameter study

Fig. 7.1: Deflagration (blue) and detonation level set (red) in the simulation of Model III using DDT
criterion 95, 0.05 seconds after t1st

DDT. The DDT occurs in a region that becomes enclosed by
the deflagration front which hinders the detonation to propagate further outward through
the unburned material. A small fraction of the fuel is burned by the detonation in the
interior of the star that can be seen in the transparent view in the right figure.

5. For a lower threshold value of Acrit the explosions become brighter, since Adet(t) ≥ Acrit

can be met easier and earlier.

We note that the found influences of the individual quantities on the explosion brightness
are more pronounced for Model VIII and Model X. This behavior can be explained with
the assumptions discussed in Section 6.3.1 where we argued that for stronger deflagrations
the number of DDTs may become important for the 56Ni production, since a single or a
few detonation front(s) may be incapable of propagating through a significant part of the
remaining fuel. In the context of this study, we can conclude that the more restrictive the
DDT criterion the fewer DDTs occur and the less detonation fronts evolve leading to fainter
explosions in the case of strong deflagrations. Moreover, the different distributions of the
few DDT regions lead to a certain variation of the 56Ni yield (and hence of the explosion
brightness) for strong deflagrations. This effect is analyzed in more detail in Section 7.2.3.

However, we also find a remarkable event in criterion 95 in the weak deflagration of Model
III, where a DDT occurs but almost no additional burning happens. The obtained 56Ni yield
is slightly higher than the amount of 56Ni produced in the simulated pure deflagration of this
model, which was approximately 0.2M� (see Table 6.2). The reason is a geometrical effect
which is visualized in Figure 7.1. Here a snapshot of the simulation is shown, 0.05 seconds
after t1st

DDT. A DDT (the only one in the entire simulation) occurs at a specific place at the
deflagration front, where the latter blocks the propagation of the detonation soon after the
DDT is initialized. Therefore, the detonation becomes trapped inside the exploding star
where it can only burn a minor part of the remaining fuel to 56Ni.

Finally, we find that Model III fails to meet the DDT criterion 93 in the entire simulation.
The reason is that the maximal time interval t(Adet(t) ≥ Acrit) where Adet(t) ≥ Acrit is approx-
imately 0.9 × 10−2 s. Hence, the constraint τeddy1/2

(`crit) = 1.0 × 10−2 s is never reached in
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7 Parameter studies of delayed detonations

this simulation. Except for a lower threshold value of τeddy1/2
(`crit) = 0.5× 10−2 s, criterion

69 and 93 have the same parameter set. As expected, a DDT is successfully initialized in
Model III using criterion 69, since τeddy1/2

(`crit) < 0.9 × 10−2 s. Apart from Model III us-
ing criterion 93, we find in Study A that the DDT criteria are all met at least once in the
corresponding simulations.

114



7.2 Results of the parameter study
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7 Parameter studies of delayed detonations

7.2.2 Study B

For Study B we construct new DDT criteria and try to obtain faint explosions with 56Ni
yields of . 0.4M� which were hardly found in Study A. At first we vary a single parameter,
while we keep the other parameters constant. For the latter we can infer from the results
of Study A which threshold values should be assigned to these parameters in order that
preferentially faint explosion are obtained. Afterwards we construct very restrictive DDT
criteria, where it is our intention to let some models fail to meet the DDT constraints in
the simulations. Here we can draw some further conclusions on the necessary constraints for
the occurrence of DDTs in deflagrations in white dwarfs. All DDT criteria of this study are
summarized in Table 7.4.

A. Necessary constraints for faint explosions

For the quantity Xfuel we face the problem that a much further reduction of the allowed
interval of this quantity than the most restrictive one used in Study A is not possible, since
we perform lowly resolved simulations where N∗flame(t) is generally small. Therefore, we do
not vary Xfuel further, but use in the following exclusively 1/3 ≤ Xfuel ≤ 2/3. This is
the most restrictive range for Xfuel where in all simulations of Study B enough data was
available for the application of the DDT model (see also Section 5.3.3). We found in Study
A that a different threshold value for τeddy1/2

(`crit) seems to have no effect on the produced
56Ni yields, so we use only τeddy1/2

(`crit) = 0.5 × 10−2 s. A variation of Acrit is related to

a variation of the fractal dimension D, where we always assume `crit = 106 cm. Since we
use a constant value for D we do not vary Acrit to a larger extent and use (except for one
criterion) Acrit = `Dcrit. Using these fixed threshold values for Xfuel, τeddy1/2

(`crit) and Acrit

that favor the occurrence of faint explosions, only ρfuel and v′crit are varied in the following.

Variation of the fuel density threshold

In Study A we found that DDTs in higher fuel densities produce brighter explosions. Here we
analyze whether DDTs in fuel densities of ρfuel ≥ 107 g cm−3 that have not been considered
so far can still lead to faint events. Since very strong deflagrations produce the faintest
explosions, we will only perform simulations with Model X. We further use v′crit = 108 cm s−1

where fainter explosions were obtained in Study A. We use four different density ranges which
correspond to criteria 97 - 100 in Table 7.4. The criterion 100 in which the full density range
according to Woosley (2007) is covered, equals the criterion used in Section 5.4 for the
resolution study where a similar ignition geometry (Model X∗) was used.

Variation of the threshold value of the minimum required velocity fluctuations

For v′crit = 0.5 × 108 cm s−1 it was hardly possible to obtain faint explosions in Study A.
Here we vary now v′crit from 0.5× 108 cm s−1 to 1.0× 108 cm s−1 in steps of 0.1× 108 cm s−1

which constitute the six criteria 101 - 106 in Table 7.4.3 We use for the range of allowed fuel
densities exclusively 0.5× 107 g cm−3 ≤ ρfuel ≤ 0.8× 107 g cm−3. We found in Section 6.2.3
that the behavior of the quantity P (v′(`crit) ≥ v′crit)(t) depends strongly on the evolution of
the turbulent deflagration. For this reason we cautiously apply the six DDT criteria to the
six ignition models described in Section 7.1.

3Due to the uncertainties of the eddy turnover time (see Section 3.3.2) we do not vary τeddy1/2
(`crit) for

each different threshold value of v′crit.
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7 Parameter studies of delayed detonations

Conclusions for ρfuel and v′crit from the simulation results

The obtained 56Ni yields are shown in the upper part of Table 7.4. We see that with
the criteria 97 - 100 no faint explosions with the very strong deflagration in Model X are
obtained. Therefore, according to our DDT model, we exclude that DDTs which occur
in regions with ρfuel ≥ 107 g cm−3 can account for the whole observed variations in the
brightness of normal SNe Ia. As expected we find with the criteria 101 - 106 an increase
of the 56Ni yield with decreasing v′crit. But for Model X we can still find faint events with
a 56Ni mass of approximately 0.4M� for threshold values of v′crit < 108 cm s−1. However,
for v′crit = 0.5 × 108 cm s−1 the explosion in Model X becomes principally too bright to be
consistent with the faintest observed explosions of normal SNe Ia. Therefore, according to
our DDT model, we find that if velocity fluctuations of 0.5×108 cm s−1 are already sufficient
for a DDT to occur, the observed faintest events of normal SNe Ia cannot be reproduced by
delayed detonations. This agrees also with study A where for v′crit = 0.5 × 108 cm s−1 the
lowest 56Ni mass is found to be 0.433M� (criterion 83 in Table 7.3).

B. Necessary constraints for a successful DDT

In the lower part of Table 7.4 the very restrictive DDT criteria 107 - 117 are shown which
are applied to the six ignition models described in Section 7.1. In the following analysis
and discussion the criterion 101 is included to complete the study consistently. We use
exclusively 1/3 ≤ Xfuel ≤ 2/3 and v′crit = 108 cm s−1 and vary the threshold values for
ρfuel, Acrit and τeddy1/2

(`crit). For ρfuel only the two ranges with the lower densities of

0.6× 107 g cm−3 ≤ ρfuel ≤ 0.8× 107 g cm−3 and 0.5× 107 g cm−3 ≤ ρfuel ≤ 0.8× 107 g cm−3

are taken into account where fainter events are obtained. We use Acrit = `2crit and Acrit = `Dcrit

for the critical flame surface area. Since we found for τeddy1/2
(`crit) no evidence that this

quantity has an effect on the 56Ni yield we use here a high value of τeddy1/2
(`crit) = 5×10−2 s

and analyze whether this behavior still holds. The criterion 107 equals the criterion of Study
II in Chapter 6.

Results

The 56Ni yields of these simulations are shown in the lower part of Table 7.4. We find
that even for Acrit = `2crit some faint explosions with 56Ni yields of less than 0.4M� can
be obtained. In most simulations Model III fails to meet the DDT constraints. Here in
the criteria where Acrit = `2crit, the condition Adet(t) ≥ Acrit cannot hold for high threshold
values of τeddy1/2

(`crit). For Acrit = `Dcrit even Acrit could frequently not be exceeded by
Adet(t). In Model IX which shows weak turbulence (see discussion in Section 6.3.2), the
condition Adet(t) ≥ Acrit can hold longer than 5× 10−2 s only in the case of Acrit = `2crit. In
Model X in which turbulence is even weaker than in Model IX the DDT criterion is met in all
cases where 0.5×107 g cm−3 ≤ ρfuel ≤ 0.8×107 g cm−3. For Acrit = `Dcrit, however, the DDT
criterion is never met for 0.6×107 g cm−3 ≤ ρfuel ≤ 0.8×107 g cm−3 in this model, regardless
of the value of τeddy1/2

(`crit). We may expect here that since for a larger allowed interval for
ρfuel there are more grid cells N∗flame(t) which meet the DDT constraints, also A∗flame(t) is
larger and the DDT criterion can be met easier. However, a wider impact has the probability
P (v′(`crit) ≥ v′crit)(t) which is much higher for 0.5 × 107 g cm−3 ≤ ρfuel ≤ 0.8 × 107 g cm−3

than for 0.6× 107 g cm−3 ≤ ρfuel ≤ 0.8× 107 g cm−3 (see also discussion in Section 6.3.7), so
that in the former case Adet(t) ≥ Acrit also holds for the higher threshold value of Acrit = `Dcrit.
The fact that both values of A∗flame(t) and P (v′(`crit) ≥ v′crit)(t) are lower for an allowed
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7.2 Results of the parameter study

density range of 0.6× 107 g cm−3 ≤ ρfuel ≤ 0.8× 107 g cm−3 (which makes it more difficult
for the models to meet the DDT criterion) leads to the effect that the produced 56Ni yields
are on average lower than for simulations with the same DDT constraints except for an
allowed density range of 0.5 × 107 g cm−3 ≤ ρfuel ≤ 0.8 × 107 g cm−3. The most restrictive
DDT criterion is obviously criterion 116 where 2/3 of the models fail to meet the DDT
constraints.

We find in Table 7.4 that the 56Ni yield of Model 5 which has Nk = 60 is often slightly
higher than Model VI which has only Nk = 40. When comparing both ignition setups in the
Tables 4.1 and 4.2 we see that the values of dk and σ (and hence R) are smaller for Model 5,
leading to a smaller and more compact region in the interior of the white dwarf in which the
deflagration commences. This probably leads to a slightly weaker deflagration phase prior
to the first DDT than in Model VI, which may explain why Model 5 produces in simulations
of delayed detonations on average slightly more 56Ni. We will investigate this behavior in
more detail in Study C by analyzing the impact of a variation of all parameters but Nk of
the ignition geometry on the simulation results.

C. Summary and remarks

With the performed simulations we can now place some further constraints on individual
DDT quantities. According to our DDT model, we find that if we allow DDTs to occur in
regions with fuel densities of ρfuel ≥ 107 g cm−3 no faint explosions are obtained. Moreover,
if velocity fluctuations v′crit of 0.5 × 108 cm s−1 are already sufficient for a DDT, than the
probability P (v′(`crit) ≥ v′crit)(t) is so high that DDTs are triggered frequently, leading to
no faint events. We further find that the narrower the range of allowed values for Xfuel the
fainter the explosions. The reason is that the DDT criterion becomes more stringent, since
there are less grid cells N∗flame(t) and hence a smaller flame surface area A∗flame(t) that meet
the DDT constraints. We note that the most restrictive range for Xfuel ensures that we
capture mainly the grid cells that are clearly traversed by the flame.

In the case of a successful DDT in simulations in which the DDT criteria vary only in
the threshold value of τeddy1/2

(`crit), there is no evidence whether this quantity affects the
explosion brightness. There are, however, two other closely related side effects that occur if
the chosen threshold value for τeddy1/2

(`crit) is high. First, it can happen that no DDTs occur
in weak deflagrations, since due to the fast variations of the quantity P (v′(`crit) ≥ v′crit)(t),
Adet(t) cannot exceed Acrit for a long time (see Section 6.2.3). The other effect appears
frequently in strong deflagrations, where we find that if the DDT criterion is met, DDTs
occur in a particularly large number of grid cells. The reason is that when the condition
Adet(t) ≥ Acrit is reached, the lesser variations of the quantity P (v′(`crit) ≥ v′crit)(t) and
the growing flame surface area A∗flame(t) that meets the DDT constraints may lead to a
continuous and uninterrupted increase of the quantity Adet(t) for τeddy1/2

(`crit). At t1st
DDT

eventually, Adet(t)� Acrit, hence FDDT is very large and detonations are now initialized in
various regions at the deflagration flame.

A higher threshold value of τeddy1/2
(`crit) leads further to the expected result that the

number of time steps NtDDT where DDTs occur becomes smaller. This, however, seems to
have no significant effect on the obtained explosion brightness that probably results from
the following compensating effect. For large τeddy1/2

(`crit), a large number of DDTs occur in
many places in one or a few time steps. In contrast, for small τeddy1/2

(`crit) detonations are
mostly initialized at a few locations only, but here the larger number of time steps where
DDTs occur leads to the effect that detonations are also found in a large number of different
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places in the end. In both cases, the burning due to detonations results in approximately
the same 56Ni mass. However, we find in the case of τeddy1/2

(`crit) = 5×10−2 s that DDTs in
weak deflagrations are prevented (consider Model III in Table 7.4). Hence, the required time
for mixing the fuel and ash in potential DDT regions in weak deflagrations must be shorter
than 5 × 10−2 s in order to trigger a DDT. If this is not the case, we cannot obtain bright
explosions with approximately 0.9 . . . 1.0M� of 56Ni anymore, so that delayed detonations
cannot account for the whole observed variations in the brightness of normal SNe Ia.

Apart from some very restrictive DDT criteria in Table 7.4 we obtain only faint events
for Acrit = `Dcrit, since Adet(t) ≥ Acrit is harder to meet (compare the results in Table 7.3).
However, the uncertainty of the geometrical structure of the DDT regions prevents us to
draw any strict conclusions here, even if the parameter study indicates that the assignment
of a fractal dimension to DDT regions leads to results that explain the observed variations in
the brightness of normal SNe Ia better. But we can also see in Table 7.4 that for Acrit = `Dcrit

in combination with very restrictive threshold values of the other parameters (e.g. criterion
116), no DDTs occur in most models. Here, either A∗flame(t) is too small in weak deflagrations
or turbulence is too weak in strong deflagrations to meet the DDT criterion.

From the parameter study we can further derive a feature of the DDT model, which
concerns the degree of restrictiveness of the DDT criterion. For the quantities Xfuel and ρfuel

we always use specific allowed intervals instead of one fixed threshold value. We already
indicated that for too narrow allowed ranges for these quantities the DDT criterion may
not be met in the entire simulation. This may have either a physical cause (for instance
Adet(t) may not exceed Acrit due to the stringent DDT constraints) or a lack of sufficient
data to construct and fit the histogram of v′(`crit). While both situations may appear
for a too narrow allowed range of Xfuel, the quantity ρfuel behaves here differently. The
reason is that the occurrence of high turbulent velocity fluctuations depends strongly on
ρfuel (see also Section 5.2.6). If we extend the interval of allowed values of ρfuel to lower
fuel densities, the DDT criteria become indeed easier to meet (compare for instance the
results of Model X in Table 7.4 obtained for different criteria). In contrast, if we extend
this range to higher fuel densities this effect is far less pronounced or the criterion becomes
even more restrictive. We find that an extension of the intervals will definitely always
lead to an increase of A∗flame(t), but in the latter case the probability P (v′(`crit) ≥ v′crit)(t)
can be significantly lower. A similar behavior was found by the comparison of Model X
in the analysis of Study II in Section 6.2 and the resolution study in Section 5.4. Here,
the probability P (v′(`crit) ≥ v′crit)(t) was higher in a narrower range of significantly lower
densities (see discussion in Section 6.3.7). In terms of the restrictiveness of the DDT criterion
we can summarize that if the range of allowed values for ρfuel is extended toward higher fuel
densities, the occurring lower values of P (v′(`crit) ≥ v′crit)(t) cannot be compensated by the
larger flame surface area A∗flame(t) that meet the DDT constraints, leading to a decrease of
the potential detonation area Adet(t) and eventually to a more restrictive DDT criterion.

Apart from lower values of P (v′(`crit) ≥ v′crit)(t) in regions with higher fuel densities4,
we showed in Study B that successful DDTs in regions with too high fuel densities are
mostly incapable of producing faint explosions. However, although we are able to place a
constraint on ρfuel for the occurrence of faint events in simulations of delayed detonations, we
unfortunately cannot place strict constraints on this quantity for a DDT to occur generally.

In our study we were hardly able to reproduce the observed faint explosions of normal
SNe Ia that yield approximately 0.4M� of 56Ni. Here we need very restrictive constraints

4That is also why model III in criterion 93 fails to meet the DDT criterion.
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for DDTs to occur where too restrictive DDT criteria cannot be met particularly by models
that have a weak deflagration phase. Therefore, the guarantee for a successful DDT in all
our different ignition models and the capability of obtaining faint events are contrary effects.

7.2.3 Study C

For Study C we choose the criteria 68, 85, 107 and 115 for the following reasons. The
corresponding simulations show a broad range of 56Ni yields in Study A and Study B.
Criterion 107 has already been applied to some different models in Chapter 6. Within the
chosen four criteria we find some of the faint events that are difficult to obtain and in which
detonations do not burn much fuel to 56Ni. Apart from two simulations of Model I, all
models meet the DDT criteria. Finally, the used parameter sets in the criteria are relatively
diverse. All four criteria are applied to all ignition models shown in the Tables 4.1 and 4.2.

A. Correlation between the strength of the deflagration and the explosion brightness

The obtained 56Ni yields of Study C are shown in Table 7.5. For comparison these tables
partially include the results of Study A and Study B and Chapter 6. The simulations of the
models which yield the highest and lowest amount of 56Ni for a given criterion are marked
in boldface. All models were also simulated as pure deflagrations, of which the 56Ni yields
are listed in the table as well. In Figure 7.2 we show the obtained 56Ni yields as function of
the number of ignition kernels Nk that set mainly the strength of the deflagration. For the
simulated pure deflagrations, a saturation of the 56Ni yield occurs at Nk ≈ 200, where for
stronger deflagrations the 56Ni yield begins to decrease again. This result is consistent with
those found in Chapter 6, even if we obtain marginally different 56Ni yields for equal models
(compare Table 6.2 with Table 7.5) where the reason is a slight resolution dependence. In
the simulated delayed detonations we see a clear trend that for a given DDT criterion the
events become fainter with increasing Nk. Again, we observe a saturation that occurs at the
compact Model X (where Nk = 1600). The explosion in the models with larger Nk produce
more 56Ni (where this behavior can be seen better in Table 7.5 than in Figure 7.2 since there
are more models with Nk = 1600, of which the data points are vertically scattered in the
figure). The reason is probably the less compact structure of the initial flame configuration
for models with Nk ≥ 3000. Therefore, Model X which was already used in Study A and
Study B provides the lowest 56Ni yield in simulations of delayed detonations in all four DDT
criteria. This means that for the criteria 68 and 85, where Model X produces more than
0.4M� of 56Ni, no event is obtained that may reproduce the faint explosions of normal
SNe Ia. We see that the 56Ni yields obtained from the criteria 85 and 107 are on average
higher compared to the other two criteria. For each criterion the highest 56Ni yield is not
obtained in Model I but in Model II, because for the criteria 107 and 115 the DDT model
could not be applied due to insufficient data, while for the other two criteria we obtain
a slightly higher 56Ni yield in Model II. Due to statistical uncertainties such incidents are
expected.5 However, particularly for the criteria 107 and 115 we obtain a range of 56Ni yields
that is fairly consistent with the observed variations in the brightness of normal SNe Ia (e.g.
Contardo et al., 2000; Stritzinger et al., 2006; Mazzali et al., 2007).

5We can for instance vary the distance of the single ignition kernel to the center of the white dwarf in
Model I or the distribution of the three ignition kernels in Model II several times and apply these new
ignition geometries to the four criteria. Then we would expect that Model I produces on average more
56Ni (provided the DDT criterion can be met), as in Study I in Chapter 6 (see Table 6.3).
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Model I II III IV V VI VII VIII IX X

Nk 1 3 5 10 20 40 100 200 1600 1600
56NiDEF 0.079 0.109 0.211 0.249 0.322 0.376 0.404 0.432 0.408 0.349
56Ni068 1.120 1.135 1.071 0.984 0.885 0.847 0.700 0.576 0.514 0.429
56Ni085 1.127 1.145 1.078 1.016 0.928 0.883 0.800 0.666 0.651 0.452
56Ni107 - 1.130 0.966 0.896 0.938 0.768 0.799 0.645 0.563 0.397
56Ni115 - 1.124 0.932 0.946 0.844 0.793 0.635 0.536 0.411 0.388

Model 1 2 3 4 5 6 7 8 9 10

Nk 5 30 40 50 60 60 80 125 150 175
56NiDEF 0.216 0.380 0.385 0.474 0.376 0.376 0.422 0.415 0.441 0.435
56Ni068 1.087 0.828 0.801 0.693 0.811 0.844 0.737 0.680 0.644 0.642
56Ni085 1.099 0.871 0.856 0.755 0.886 0.889 0.824 0.761 0.766 0.743
56Ni107 1.086 0.905 0.882 0.778 0.860 0.842 0.854 0.631 0.693 0.778
56Ni115 1.062 0.794 0.784 0.521 0.808 0.719 0.717 0.618 0.562 0.617

Model 11 12 13 14 15 16 17 18 19 20

Nk 200 200 200 200 200 200 200 200 200 200
56NiDEF 0.462 0.440 0.485 0.527 0.537 0.556 0.447 0.445 0.432 0.444
56Ni068 0.631 0.622 0.748 0.638 0.579 0.823 0.648 0.598 0.644 0.610
56Ni085 0.703 0.676 0.803 0.692 0.642 0.875 0.736 0.731 0.720 0.692
56Ni107 0.733 0.702 0.798 0.734 0.680 0.714 0.749 0.700 0.737 0.754
56Ni115 0.614 0.545 0.674 0.593 0.594 0.662 0.642 0.589 0.622 0.504

Model 21 22 23 24 25 26 27 28 29 30

Nk 200 250 300 350 400 500 600 700 800 900
56NiDEF 0.550 0.455 0.418 0.416 0.444 0.450 0.419 0.414 0.423 0.404
56Ni068 0.618 0.596 0.615 0.623 0.595 0.570 0.566 0.541 0.601 0.548
56Ni085 0.643 0.694 0.620 0.655 0.700 0.662 0.649 0.627 0.679 0.621
56Ni107 0.651 0.681 0.550 0.709 0.752 0.660 0.682 0.702 0.525 0.600
56Ni115 0.595 0.551 0.442 0.583 0.558 0.529 0.513 0.490 0.511 0.484

Model 31 32 33 34 35 36

Nk 1000 1200 1400 1600 3000 5000
56NiDEF 0.420 0.410 0.419 0.415 0.417 0.379
56Ni068 0.542 0.546 0.463 0.487 0.471 0.657
56Ni085 0.621 0.608 0.623 0.551 0.520 0.753
56Ni107 0.537 0.573 0.558 0.576 0.517 0.648
56Ni115 0.453 0.475 0.461 0.477 0.454 0.661

Table 7.5: Obtained 56Ni yields of Study C. Shown are the results of simulations of pure deflagrations
(56NiDEF) and delayed detonations (56Ni068, 56Ni085, 56Ni107, 56Ni115) using the DDT
criteria 68, 85, 107 and 115 after 100 seconds.

B. The influence of the secondary parameters of the ignition geometry of the
deflagration on the explosion brightness

With a fixed number of Nk = 200 we vary the other parameters of the ignition geometry,
where these setups correspond to the standard Model VIII in Table 4.1 and Model 11 - Model
21 in Table 4.2. The vertical scatter in the 56Ni yield at Nk = 200 seen in Figure 7.2 results
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Fig. 7.2: Obtained 56Ni yields after 100 seconds as function of Nk in simulations of pure deflagrations
and delayed detonations using four different DDT criteria.

from these different ignition models. Obviously the secondary parameters of the ignition
geometry affect the explosion brightness to a certain degree.

From the obtained 56Ni yields in Table 7.5 we can draw the following conclusions. With
increasing σ and hence a larger allowed distance from the center of the white dwarf for the
placement of the ignition kernels that is given by R = 2.5 · σ (see Chapter 4.2.2), pure
deflagrations become brighter. In particular for large σ, we obtain 56Ni yields higher than
0.5M� (e.g. Model 14 - Model 16). This behavior can be expected, since for higher σ
the ignition occurs in a larger area in the interior of the white dwarf. There are also some
isolated sources which are composed of a few merged ignition kernels in which thermonuclear
burning occurs decoupled from other sources for some time. However, from a physical point
of view we argue that the larger σ the more inappropriate are the thermodynamic conditions
for the ignition of the deflagration at R (e.g. Wunsch & Woosley, 2004; Zingale et al., 2009;
Nonaka et al., 2012). The behavior that the 56Ni yield rises with increasing σ does not hold
for simulations of delayed detonations.

We found no clear conclusion of how the parameters rk and dk affect the explosion bright-
nesses but we see that a variation of them leads to different 56Ni yields in the simulations
of pure deflagrations and delayed detonations. As indicated in Section 4.2.2 a variation of
both quantities lead to different initial perturbations at the deflagration flame, since these
quantities affect the time of the merger of the ignition kernels and the occurrence of different
kinks and bends at the flame from which instabilities may arise. This results in slightly other
evolutions of the deflagrations in which different masses of the fuel are burned to heavier
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elements. In simulations of delayed detonations this effect leads further to a different distri-
bution of DDT regions, where these distributions may vary strongly even for only slightly
different initial flame configurations of the deflagration like those considered here. This also
explains why in contrast to pure deflagrations no clear conclusion can be drawn of how the
parameter σ affects the produced amount of 56Ni in simulations of delayed detonations.

However, this behavior may change to a certain extent in a study of weaker deflagrations
with smaller Nk. For instance, we see in Table 7.5 that the 56Ni yields after 100 seconds of
the simulated pure deflagrations of Model 5 which has Nk = 60 and σ = 0.4 and Model VI
which has only Nk = 40 but σ = 0.6 are equal. In Study B it was found that Model 5 often
produces slightly more 56Ni than Model VI so that we may expect that at the time t1st

DDT

where the first DDT occurs, Model VI had a stronger deflagration phase than Model 5. In
addition, we may assume that the distribution of DDT regions has only a low influence on
the dynamics of subsequent detonations and on the explosion brightness in these relatively
weak deflagrations (see also Section 6.3.1). Therefore, we expect that the smaller Nk the
higher is the impact of the secondary parameters σ, dk and rk of the ignition geometry on the
deflagration strength and hence on the brightness of the explosion of both pure deflagrations
and delayed detonations. The different evolution of deflagrations for different distributions
of the ignition kernels within a given parameter set for the ignition geometry (e.g. Model
VI in Table 4.1 and Model 3 in Table 4.2) leads also to a variation of the 56Ni yields in
simulations of both pure deflagrations and delayed detonations.

C. The impacts of the expansion of the white dwarf at t1st
DDT and the distribution of the

DDT regions on the explosion brightness

In Section 6.3.1 we discussed two characteristics that determine the 56Ni production in the
detonation phase in simulations of delayed detonations. These characteristics are the degree
of the pre-expansion of the white dwarf prior to the first DDT and the distribution of the
DDT regions. With the performed parameter study we can investigate both effects in more
detail. As indicated in Section 6.3.1 the degree of expansion of the white dwarf in the
late deflagration phase can be estimated with the nuclear energy release Enuc. In a similar
way, we assume now that Enuc at t1st

DDT can also be considered as a proxy of how occurring
detonations affect the further 56Ni production. We show in Figure 7.3 the 56Ni yield after
100 seconds as function of Enuc at t1st

DDT for all performed simulations of delayed detonations
of the entire parameter study, where only simulations with successful DDTs are taken into
account.

We see the tendency that the obtained 56Ni yields decrease with higher values of Enuc at
t1st
DDT. Except for a few outliers this trend is more pronounced for weaker deflagrations, where
Enuc at t1st

DDT is low. Hence for weak deflagrations, Enuc at t1st
DDT can be used to estimate the

explosion brightness. For strong deflagrations where Enuc at t1st
DDT is high we see that the

corresponding data points in Figure 7.3 are significantly more vertically scattered, indicating
that for a given degree of expansion a large variation of the 56Ni yield can be obtained. This
confirms our assumption that the distribution of DDT regions at the deflagration flame
becomes more important for strong deflagrations. In this context, we described in Study
A a simulation in which a single DDT occurs but nearly no further burning happens after
the onset of the detonation (Model III using criterion 95). Here (even if this event occurs
in a weak deflagration) solely the location of the DDT region determines (or prevents) the
further 56Ni production, whereas Enuc at t1st

DDT cannot be used to estimate the explosion
brightness anymore. This event becomes apparent in the isolated data point in the lower
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Fig. 7.3: The obtained 56Ni yields after 100 seconds as function of the nuclear energy release Enuc

at t1st
DDT for all simulations of delayed detonations with successful DDTs.

left part in Figure 7.3. However, we also find for instance in several simulations of Model
IX which has a strong deflagration phase, that for very restrictive DDT criteria the few
initialized detonations burn only a very small part of the remaining fuel to 56Ni (compare
the 56Ni yields of Model IX of the simulated deflagration and delayed detonations in the
Tables 7.4 and 7.5).

7.2.4 Conclusions from the parameter study

In this section we described a parameter study of delayed detonations in which the newly
implemented DDT model of Chapter 5 was used. With a wide range of simulations with
different ignition models of the deflagration we showed that the DDT model leads to broad
variations of the 56Ni yields in several DDT criteria. From the result, whether for a given
DDT criterion predominantly bright or faint events can be obtained and whether specific
ignition models fail to meet some of our proposed DDT criteria we were further able to place
some constraints on certain DDT quantities. In particular, we found no faint explosions if
detonations occur at fuel densities higher than 107 g cm−3 and for the case that the minimum
required velocity fluctuations for DDTs are far lower than 108 cm s−1. For the occurrence of
DDTs in weak deflagrations that produce the bright explosions of normal SNe Ia, the mixing
time τeddy1/2

of fuel and ash has to be faster than 5× 10−2 s. In the case of a critical flame

surface area of Acrit = `2crit, we hardly found faint explosions that are far more frequently
obtained for Acrit = `Dcrit. However, for Acrit = `Dcrit in combination with too restrictive
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threshold values of the other DDT quantities, detonations will not occur in both weak and
strong deflagrations, because for the former A∗flame is too small and for the latter turbulence
is too weak to meet the DDT criterion.

We underpinned the correlation between the strength of the deflagration and the brightness
of the explosion in simulations of delayed detonations, where strong deflagrations lead to faint
events and vice versa. Within the modeled ignition scenario, the number of ignition kernels
Nk is the main parameter that sets the strength of the deflagration. In pure deflagrations,
however, we find that the larger the allowed radius R = 2.5·σ of the spherical region in which
a given number of ignition kernels is distributed the more 56Ni is produced. We find that the
stronger the deflagration (and hence the larger the pre-expansion of the white dwarf prior to
the first DDT) the higher is the impact of different distributions of the DDT ignition spots
on the dynamics of subsequent detonations. This behavior leads to an additional variation
of the 56Ni yields, and hence of the explosion brightnesses.

7.3 The role of the white dwarfs initial central density in
simulations of delayed detonations

The study described in this section is based on an analysis of highly resolved simulations of
delayed detonations that has been published by Seitenzahl et al. (2011). We described in
Section 2.3.1 that details of the final state in the simmering phase where the ignition of the
deflagration occurs at the end of the convection stage in the center of the white dwarf are
unknown. Therefore, the ignition scenario is generally parameterized. So far we investigated
the impact of different ignition models of the deflagration on the explosion brightnesses,
where only the distribution of ignition kernels was varied. This, however, is basically only
one of several parameters of the initial model of the white dwarf (see Section 4.2.1).

In this section we closely follow the arguments described in the paper of Seitenzahl et al.
(2011) and investigate the role of different central densities ρc of the white dwarfs at the time
of deflagration ignition on the explosion brightness in simulations of delayed detonations.
Using the new DDT model we perform 12 simulations with a resolution of 5123 grid cells.
To obtain different strengths of the deflagration phase we use the three ignition models of
Study A for the initial flame configuration. We carry out six simulations of Model VIII and
three simulations of Model III and Model X. Within each of these three simulation sets, the
white dwarf models vary only in the initial central density ρc. For the DDT model we choose
criterion 23 that is met in all simulations.

7.3.1 Introduction

Krueger et al. (2010) propose a connection between the age of the host stellar population
and the explosion brightness of SNe Ia. By considering the effect of a longer cooling time
on the central density of the white dwarf the authors investigated the impact of different
central densities at the time of deflagration ignition on the explosion brightness. Using
150 two-dimensional simulations of delayed detonations within the statistical framework
presented in Townsley et al. (2009), it was found that the total IGE yield seems to be
largely independent of ρc. However, the thermonuclear burning at higher densities leads to
a stronger neutronization that results from a higher rate of electron captures. Therefore,
with increasing ρc an enhanced production of stable isotopes of the iron group occurs, while
the fraction of 56Ni to the total IGE yield decreases. The stronger neutronization at higher
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densities, however, is only one of three partly opposed effects that have an impact on the
56Ni production in the delayed detonation scenario. These effects are summarized in the
following:

1. Under electron-degenerate conditions, electron capture rates on protons and iron group
isotopes increase strongly with density (Langanke & Mart́ınez-Pinedo, 2001). Hence,
at higher densities a distribution of nuclei in nuclear statistical equilibrium neutronizes
much faster (e.g. Seitenzahl et al., 2009b), leading to a lower 56Ni yield.

2. With increasing ρc Chandrasekhar-mass white dwarfs in hydrostatic equilibrium have
a smaller radius and a slightly higher mass, thus they are more compact and tightly
bound. Therefore, at the time when DDTs occur, the white dwarf may also be more
compact, leading to the burning of a larger part of the white dwarf to IGE in the
detonation phase, which raises the 56Ni yield.

3. White dwarfs that are more tightly bound have a higher gravitational acceleration. The
growth rate of the RT instability scales with

√
geff (see equation (3.8)). Consequently,

the evolution of turbulent deflagrations depends on geff (Khokhlov, 1995; Zhang et al.,
2007), and hence on the initial central density ρc. Different deflagrations in turn affect
the occurrence of detonations. Depending on the pre-expansion of the white dwarf
prior to the first DDT and the distribution of the DDT spots, the total produced 56Ni
mass in the detonation phase may either be lower or higher.

7.3.2 Remarks on the analysis

The simulations in the study of Krueger et al. (2010) were carried out in two dimensions,
where a large number of models could be analyzed. But in two-dimensional simulations the
question arises whether all physical effects, such as the propagation of turbulent flames are
treated properly. This is why we carry out three-dimensional full-star simulations. However,
the high computational demand to perform highly resolved three-dimensional simulations
prevents us to carry out a detailed statistic approach that would be comparable with those
of Townsley et al. (2009), Krueger et al. (2010) and Jackson et al. (2010). For ρc we choose
some specific values, so that the initial central densities cover the expected range due to
different cooling ages and differences in the accretion history (Lesaffre et al., 2006) (see also
Section 2.3.1). The DDT criterion in combination with the used ignition models is selected
in a way to obtain a range of 56Ni yields between ∼ 0.5M� and slightly more than 1.0M�
for a constant central density of ρc = 2.9 × 109 g cm−3 (see Table 7.3). Following Krueger
et al. (2010) we may expect that for ρc > 2.9 × 109 g cm−3, the 56Ni yields will be shifted
toward fainter explosions that would be more consistent with the observed variations in
the brightness of normal SNe Ia. We have to take into account, however, that the above-
mentioned 56Ni yields were obtained from lower resolved simulations of the parameter study.
Since the deflagration phase and particularly the distribution of DDT regions are resolution-
dependent (see Section 5.3.3) we expect a certain deviation of the obtained 56Ni yields for
the same initial central density of ρc = 2.9× 109 g cm−3. The white dwarf model meets the
model described in Section 4.2.1 with the only difference that the initial central density ρc

is varied between 1.0× 109 g cm−3 and 5.5× 109 g cm−3 (see Table 7.6).
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Model ρc t1st
DDT E

(t1st
DDT)

nuc ) ρ
(t1st

DDT)
c ρ̄(t1st

DDT)

[109 g cm−3] [s] [1051 ergs] [108 g cm−3] [107 g cm−3]

III 1.5 1.253 0.334 4.911 0.773

III 3.5 0.890 0.246 11.610 0.758

III 5.5 0.911 0.488 6.183 0.716

VIII 1.0 1.135 0.587 1.450 0.700

VIII 1.5 0.993 0.667 1.706 0.746

VIII 2.9 0.802 0.803 2.270 0.756

VIII 3.5 0.756 0.838 2.533 0.749

VIII 4.0 0.755 0.936 2.193 0.759

VIII 5.5 0.679 0.930 2.711 0.761

X 1.5 1.077 0.813 0.718 0.705

X 3.5 0.848 0.990 0.827 0.779

X 5.5 0.757 1.087 0.875 0.755

Table 7.6: Performed simulations of delayed detonations of Model III, Model VIII and Model X
with different initial central densities ρc at the time of deflagration ignition. Shown are

the time t1st
DDT of the first DDT and the corresponding nuclear energy release E

(t1stDDT)
nuc ,

the central density ρ
(t1stDDT)
c and the average density of the first DDT region(s) ρ̄(t1stDDT) at

this time (Seitenzahl et al., 2011).

7.3.3 Results

The lower expansion in weak deflagrations (Model III) leads to a higher central density at
t1st
DDT. Hence, a larger fraction of the total mass of the white dwarf is burned to IGE during

the detonation phase (see Table 7.7). The opposite behavior holds for strong deflagrations.
Therefore also for different initial central densities of the white dwarf, the strength of the
deflagration acts as a primary parameter that determines the brightness of the explosion in
simulations of delayed detonations (see Figure 7.4(a)).6 The comparison of the simulations
where ρc equals or is close to the value of our standard model with ρc = 2.9 × 109 g cm−3

reveals that the higher resolved simulations in this study yield higher 56Ni masses (compare
the 56Ni yields for criterion 23 in Table 7.3 with those in Table 7.7 for ρc = 2.9× 109 g cm−3

and ρc = 3.5 × 109 g cm−3). This results from the resolution-depending effects described
in Section 5.3.3. For our standard setup with ρc = 2.9 × 109 g cm−3 we see in Table 6.2
and 6.3 that stronger deflagrations show a higher neutronization. This trend is even more
pronounced for models with higher initial central density (see Figure 7.4(b) and Table 7.7).

For a given initial flame configuration we find that models with higher initial central
density show a significantly faster growth rate in the generation of turbulent energy Eturb

(see Figure 7.5), which in turn leads to the effect that already at relatively early times, high
turbulent velocity fluctuations occur.7 This can be explained by the difference of the effective

6We emphasize that a stronger neutronization and the associated enhanced production of stable isotopes of
the iron group affect the radiative transport processes, which in turn influences the explosion brightness
(see Section 2.1.1). Therefore, particularly for models with higher initial central density the obtained 56Ni
yields do not correlate with the explosion brightness very well.

7As discussed in Section 6.3.2 the different values of Eturb may also result to some extent from different grid
expansions. On the other hand, a faster grid expansion of models with a higher initial central density
retroactively implies a faster evolution of the turbulent deflagration.
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Fig. 7.4: Shown are the obtained 56Ni yields (a) and the mass fractions of 56Ni to the total synthe-
sized IGE (b) as function of Enuc at t1st

DDT for the different simulated models. We see that
the strength of the deflagration (estimated with Enuc at t1st

DDT) is a good proxy for the ratio
of 56Ni to IGE (Seitenzahl et al., 2011).

gravitational acceleration geff . For higher initial central densities there is a more compact
mass distribution, hence geff is higher. For the Rayleigh-Taylor unstable deflagration front,
the turbulent burning speed scales with

√
geff (see equation (3.27)). Therefore, for a given

instant of time (e.g. 0.3 s) models with higher initial central density have burned a much
larger amount of the stellar material than models with lower initial central density (compare
Figures 7.6(b) and 7.6(c)). It further follows that the higher the initial central density the
earlier the DDT criterion is met (see Table 7.6, but also note the outlier in Model III for
3.5×109 g cm−3). We see the tendency that models with a higher initial central density also
have a higher central density at t = t1st

DDT. The latter can be considered as a proxy of the
fraction of fuel that can be burned at sufficiently high densities to IGE due to the ensuing
detonations.

Within each of the ignition models we find that the total IGE yield increases with ρc,
while for Model III and Model VIII the 56Ni yield appears constant, independent of ρc (see
Figure 7.7 and Table 7.7). Only Model X shows the trend of a decreasing 56Ni mass with
increasing ρc (see Figure 7.7(b) and Table 7.7). In conclusion, our results are different from
the results obtained by Krueger et al. (2010), where the authors found that with increasing
ρc, the total IGE yield remains constant while the 56Ni mass decreases.

7.3.4 Discussion

A possible explanation of our obtained results concerning the 56Ni yield, is a simultaneous or
coincidental balance of opposing, partly suspending and competing effects that we indicated
in Section 7.3.1. The stronger neutronization at higher central densities is compensated
by the larger amount of produced IGE due to the compactness and higher gravitational
acceleration of the white dwarf and the associated faster evolution of the flame toward
DDT. The models with a higher initial central density show at early times a larger growth
rate of turbulent energy, leading to a faster increase of the flame speed. The deflagration
flame, still affected by strong turbulence approaches the low-density outer layers of the white
dwarf earlier. Hence, the DDT criterion is also met earlier, when the central density of the
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Fig. 7.5: Turbulent subgrid-scale energy Eturb as function of time for all six simulations of Model
VIII. We see that the growth rate of Eturb is faster for models with higher initial central
density ρc (Seitenzahl et al., 2011).

star is higher (see Table 7.6). In summary, we find that models with higher initial central
density yield more IGE but due to the enhanced neutronization the fraction of 56Ni to IGE
decreases. As a result, the obtained 56Ni mass appears to be approximately constant.

Model X with its compact dense initial flame configuration of the deflagration behaves
differently. Here the major part of the central area of the white dwarf is burned out before
the first DDT is triggered. The IGE that is synthesized in strong deflagrations provides
already a significant fraction of the total IGE yield (see Tables 7.7 and 6.3). Moreover, these
IGEs consist of a large fraction of neutron-rich stable iron group isotopes, since the electron
captures occur extensively behind the deflagration flame at high densities. This effect is
more pronounced in models with a higher initial central density. Therefore, the enhanced
production of IGEs in cases where the deflagration already provides the major fraction of
the total produced IGE mass does not result in a higher mass of 56Ni. Finally the large
expansion of the white dwarf in strong deflagrations lead to a very large decrease of the
central density at t1st

DDT. Therefore, occurring detonations are unable to burn sufficient fuel
to 56Ni to counteract to this trend. However, we note that explosions in which such large
amounts of neutron-rich IGE material is synthesized cannot explain the majority of SN Ia
explosions (e.g. Woosley, 1997).

Our study proposes a higher mass of IGE and a constant 56Ni yield with increasing central
density of the white dwarf at the time of deflagration ignition. This result is not in agreement
with the study of Krueger et al. (2010) where a decrease of the 56Ni yield and a constant
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Fig. 7.6: Shown are the deflagration level set (blue) and the detonation level set (red) for Model
VIII with the lowest (upper row, ρc = 1.0 × 109 g cm−3) and highest (lower row, ρc =
5.5× 109 g cm−3) initial central density. (a) Both simulations have the same initial flame
configuration. (b/c) At t = 0.3 s the deflagration of the model with the higher initial
central density has burned significantly more of the stellar material. (d/e) The time t1st

DDT

of the first DDT. Regions where DDTs occur are encircled. The first DDT happens much
earlier in the model with the higher initial central density. (f/g) The detonations evolve
from the DDT sources and propagate through the unburned material. Further detonations
occur as long as the DDT criterion stays fulfilled. Despite the differences in the temporal
evolution and the morphology of the explosion, both models yield approximately the same
56Ni mass (Seitenzahl et al., 2011).

IGE mass was found with increasing ρc. A possible explanation for the disagreement of the
trends between both studies is the difference of the method how the DDT is triggered. We
mentioned in Section 3.3.1 that in most delayed detonation models, DDTs are triggered per
hand, where commonly a certain density threshold is used at which the deflagration flame
transitions into a detonation. In a recent study of Jackson et al. (2010) it was found that there
is a quadratic dependence between the produced IGE and the logarithm of the transition
density. In our study we used no transition density but the DDT model from Chapter 5
that takes into account the effect of different evolutions of the turbulent deflagration on
the occurrence of DDTs. We emphasize again at this point that the decisive parameter for
the DDT is not a transition density but the turbulence properties at the deflagration flame.
In our simulations the DDT model begins to act at densities, just below 107 g cm−3. Here
Jackson et al. (2010) showed with a statistical set of simulations using such a transition
density that the variation of the 56Ni yields is relatively large (see Figure 3 in Jackson et al.
(2010)), which is in agreement with our range of obtained 56Ni yields.

In general, there are various other differences between our study and the one performed
by Krueger et al. (2010). For instance, the treating of the propagation of the flame and
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the nuclear energy release, the dimension (2D vs. 3D) as well as the numerical approach
(adaptive mesh refinement vs. co-moving grid technique) may contribute to deviations and
differences of the results.
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Fig. 7.7: Shown are the IGE yield (a) and the 56Ni yield (b) as function of the initial central density
ρc of the white dwarf. We see a trend that for each of the three ignition models the IGE
yield rises with increasing ρc. In contrast, the 56Ni yield seems to be independent of ρc

for Model III and Model VIII. Only Model X shows a decrease of the 56Ni yield with
increasing ρc. Obviously the ignition model (which sets the strength of the deflagration)
is the primary parameter that determines the 56Ni yield, while ρc is only a secondary
parameter (Seitenzahl et al., 2011).

7.3.5 Conclusions

In this section we described the analysis of 12 highly resolved three-dimensional simulations
of delayed detonationss in which we varied the ignition geometry of the deflagration as well
as the central density of the white dwarf at the time of deflagration ignition. In these
simulations we find a clear trend that for a given ignition model the synthesized IGE rises
with increasing initial central density. The reason is that the white dwarf with a higher
initial central density is more compact and the flame evolves significantly faster due to the
higher gravitational acceleration. In this case, DDTs occur earlier at a time when a relatively
large amount of fuel still resides above a density threshold of 107 g cm−3 where detonations
still burn the fuel to IGE (see Table 4.1). Despite the increase of the IGE yield, the stronger
neutronization at high densities during the deflagration in the models with a higher initial
central density leads to a smaller fraction of 56Ni to the total produced IGE. As a consequence
the 56Ni mass appears approximately constant and is therefore largely independent of the
initial central density. This result, however, does not hold for very strong deflagrations with
an associated large expansion of the star prior to the first DDT which produce the fainter
SN Ia events. Here, we find a trend that the 56Ni yield decreases with increasing initial
central density. This behavior is attributed to a strong neutronization in the deflagration
phase that cannot be compensated by ensuing detonation(s), since the fuel densities have
declined so far that detonations cannot burn much more fuel to 56Ni anymore.

However, compared to the effect of a variation of the ignition geometry, this trend appears
only of minor importance. Therefore, for a given ignition model the initial central density
affects the explosion brightness only as a secondary parameter. It seems that a similar be-
havior also holds for the chemical composition (like metallicity and the C/O ratio) (Townsley
et al., 2009; Bravo et al., 2010). Here, the analysis of high-quality V - and B-band light curves
of SNe Ia from the Carnegie Supernova Project indicates that the chemical composition and
the central density are indeed two independent secondary parameters for the SN Ia light
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curves (Höflich et al., 2010).
In view of the significance of the ignition geometry of the deflagration for the explosion

brightness, it is very important to establish how the central density at ignition time and
the metallicity affect the statistical properties (such as the number, size and position) of
the ignition kernels themselves, and not their individual direct effects on the result of an
explosion, once a random initial flame configuration is chosen. For this reason it should be
an aim to investigate the impact of the chemical composition, the cooling time and the ac-
cretion history on the ignition process, for instance by mapping them into an exponentiation
parameter in a stochastic ignition prescription (see Schmidt & Niemeyer, 2006). However, as
described in Section 2.3.1 there are still a number of uncertainties of the physics within the
simmering phase (including details of the convection, the effects of electron captures and the
mechanism of the URCA process) that eventually lead to the ignition of the deflagration.
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8
Summary

As far as we know today, Type Ia supernovae originate from the explosions of white dwarfs.
The details of the progenitor system and the explosion mechanism, however, remain highly
uncertain. One promising scenario are delayed detonations of Chandrasekhar-mass car-
bon/oxygen white dwarfs (Khokhlov, 1991a). When approaching the Chandrasekhar-mass
limit (for instance by mass accretion from a companion star) the carbon in the center of the
white dwarf may ignite that eventually leads to a thermonuclear runaway which marks the
birth of a flame. In the delayed detonation model it is assumed that the flame starts out
as a subsonic deflagration and transitions into a supersonic detonation in the late explosion
phase. Despite two decades of intensive research, the physics of the necessary deflagration to
detonation transition (DDT) in white dwarfs is not well understood. However, from various
studies in this field several necessary constraints on DDTs in SNe Ia can be derived. The
main goal of this thesis was to implement these constraints in a hydrodynamic simulation
code. Since the DDT quantities are not resolved in our studies we used a subgrid-scale (SGS)
modeling approach. In the introduction section of this work we raised a number of issues
and questions that will be summarized and sequentially answered in the following:

1. Are the properties of turbulence at the deflagration flame suitable for the occurrence
of DDTs?

According to Lisewski et al. (2000) and Woosley et al. (2009) high turbulent velocity
fluctuations at the deflagration flame are required for a DDT. In agreement with the
analysis of Röpke (2007), our study shows a non-vanishing probability of finding these
high velocity fluctuations at the flame for different deflagration models. This result may
indicate that there is a certain degree of intermittency in turbulence at the flame, which
is sufficient to trigger a DDT. But we note that the origin of the found high velocity
fluctuations remain somewhat uncertain, since there is yet no physical motivated model
that may explain their occurrence. However, since these fluctuations can be reproduced
with the resolved velocity field a significant turbulence- or flame modeling effect seems
unlikely.

137



8 Summary

2. How can the necessary physical constraints on delayed detonations be treated in a
numerical approach on unresolved scales properly? What are the requirements to keep
the constructed DDT-SGS model robust and resolution-independent?

Our DDT model is primarily based on the concept of the so-called Zeldovich gradient
mechanism (Zel’dovich et al., 1970) where it is assumed that a spontaneous ignition of
the fuel in a turbulently mixed region of hot burned material and cold fuel can lead to
a supersonic reaction wave that eventually transitions into a detonation. The mixed
regions have to exceed a critical length of approximately 106 cm (e.g. Khokhlov et al.,
1997; Seitenzahl et al., 2009a) and they occur only when the deflagration flame and the
burning dynamics are significantly affected by strong turbulent velocity fluctuations.
This holds particularly in the late deflagration phase at low fuel densities at the flame.

For the implementation, we first ensure that a sufficient number of grid cells at the flame
have a specific fuel fraction and a certain fuel density. Then we determine a suitable
flame surface area for DDTs from the number and size of these grid cells where we
assume that the turbulent flame can be considered as a fractal object. Simultaneously,
a histogram of the turbulent velocity fluctuations in these cells is constructed, where we
rescale these fluctuations from the simulation grid scale to the critical length of a DDT
region by assuming isotropic turbulence. The probability of finding high turbulent
velocity fluctuations that are required for the DDT is determined by applying a fit to
the histogram and integrating the obtained approximated probability density function.
This probability multiplied with the suitable flame surface area for DDTs constitutes
our potential detonation area which has to be compared with the critical flame surface
area for a DDT. The latter is estimated with the critical length where we assume that
the DDT region has either a smooth two-dimensional surface or a fractal structure.
Finally the potential detonation area has to exceed the critical flame surface area for at
least a half eddy turnover time to ensure that fuel and ash become sufficiently mixed.
If this condition is met detonations are initialized in the grid cells at the suitable flame
surface area for DDTs that contain the highest velocity fluctuations, until the number
of initialized detonations equals the ratio of the potential detonation area to the critical
flame surface area.

Since the physics of DDTs and hence the values of the DDT quantities are not well
known, we first applied a specific parameter set for the DDT criterion to the deflagra-
tion model of Röpke et al. (2007a). Here we find that the implemented SGS model
for DDTs is robust and largely resolution-independent, when using a resolution of at
least 2563 grid cells. However, there is a low possibility for very weak deflagrations in
combination with a very restrictive DDT criterion that the number of grid cells at the
flame that meet the DDT constraints is insufficient to apply the DDT model.

3. Can three-dimensional simulations of delayed detonations that use the new DDT-SGS
model reproduce the observed variations in the brightness of normal SNe Ia? What are
the effects of different ignition scenarios of the deflagration and the associated different
evolutions of the turbulent deflagration on the DDT model? What are the immediate
consequences for the dynamics of the ensuing detonation phase?

The explosion brightness of SNe Ia can be estimated with the produced amount of
56Ni which is in the range of approximately 0.4 . . . 0.9 solar masses for normal SNe Ia
(Contardo et al., 2000; Stritzinger et al., 2006; Mazzali et al., 2007). With two sets of
different threshold values of the DDT quantities, applied to ten ignition models that
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give rise to different strength of the deflagration, we obtain a range of 56Ni yields that
is fairly consistent with the observed variations in the brightness of normal SNe Ia.

According to our DDT model, we find that the mechanism which is responsible for
DDTs is fundamentally different for weak and strong deflagrations. In weak defla-
grations the high velocity fluctuations at the flame that are induced by strong shear
instabilities trigger the DDT. In strong deflagrations that show weaker turbulence,
the larger flame surface area that meets the DDT constraints and the lesser temporal
variations of the probability of finding sufficiently high velocity fluctuations at this
flame surface area causes DDTs. In all models we find resolved large-scale structures
of strong turbulence at the flame, which becomes apparent in the occurrence of high
velocity fluctuations in more connected grid cells. Therefore, it follows that also DDTs
occur frequently in regions that exceed more than one grid cell.

Within the performed simulations we reproduced the generally expected behavior that
the stronger the deflagration phase the weaker the additional burning due to detona-
tions and the fainter the explosion. For weak deflagrations, a single DDT may set the
brightness of the explosion, since most of the remaining fuel can be reached and burned
by already one or a few detonations. In strong deflagrations, the large expansion of the
white dwarf prior to the first DDT and the compact structure of the deflagration front
may affect the dynamics of ensuing detonations, so that here the distribution of the
DDT spots influences the further 56Ni production and hence the explosion brightness.

4. How can the explosion brightness be controlled with the DDT model? To what ex-
tent is a variation of the values of the DDT quantities or a different evolution of the
deflagration the decisive parameter that determines the explosion brightness? Can we
place any constraints on DDT quantities, so that the obtained range of brightnesses
in the simulations is largely consistent with the observed variations in the brightness
of normal SNe Ia? Can we further derive any necessary constraints for DDTs to occur
in deflagrations of white dwarfs generally?

In general, we find for a given deflagration model that more restrictive DDT criteria
tend to produce fainter explosions due to the less initialized detonations. This is
far more pronounced for a strong deflagration in which a few initialized detonations
may not reach a significant part of the remaining fuel. As indicated above, different
distributions of the DDT regions lead further to an additional variation of the 56Ni
yield in strong deflagrations. However, compared to a change of the restrictiveness of
the DDT criterion, we find that a variation of the strength of the deflagration has a far
higher impact on the explosion brightness. To some extent, the nuclear energy release
at the time when the deflagration is close to extinction and the first DDT occurs can be
used to estimate the brightness of the explosion. But we note that this characteristic
is partially affected by the distribution of DDT regions that determine the burning
dynamics of detonations, particularly in strong deflagrations.

We find that detonations in densities higher than 107 g cm−3 yield no events that can
reproduce the faint explosions that are found within the observed variations in the
brightness of normal SNe Ia. This holds also for the case that the minimum required
velocity fluctuations for triggering a DDT are far lower than 108 cm s−1. To reproduce
the observed bright events with delayed detonations, a DDT in a sufficiently weak
deflagration is required. Due to the higher temporal variations of the probability of
finding sufficiently high velocity fluctuations at the flame in weak deflagrations, DDTs

139



8 Summary

occur here only when the mixing of fuel and ash occurs faster than 5× 10−2 s. Based
on our fractal description, it seems that compared to a two-dimensional geometry, the
assignment of a fractal dimension for the DDT region explains the observed variations
in the brightness of normal SNe Ia better. However, depending on the restrictiveness
of the other DDT quantities we find in this case that the DDT criterion may often not
be met. The reason is that the suitable flame surface area for DDTs may be too small
in weak deflagrations, while turbulence may not be intense enough at the large flame
surface area in strong deflagrations to meet the DDT criterion.

Finally, we find that different initial central densities of the white dwarf at the time
of deflagration ignition have except for very strong deflagrations no effect on the 56Ni
yield. The reason is that a stronger neutronization at higher central densities that
decreases the 56Ni production is compensated by the larger amount of synthesized iron
group elements due to the compactness of the white dwarf and the earlier onset of the
DDT.

A weakness of the implemented DDT model is that it includes a global criterion, where all
grid cells that meet the necessary DDT constraints are taken into account. Therefore, we
have no information about the conditions in local areas and there are also no clues at which
locations DDTs should be initialized. Due to the grid discretization in combination with the
preselection of grid cells for the DDT model, a certain fraction of the deflagration flame that
may meet the necessary DDT constraints is not taken into account. The resulting underes-
timate of the occurrence of DDTs depends primarily on the restriction on the fuel fraction
in the grid cells, but not on the velocity threshold chosen for calculating the probability of
finding sufficiently high velocity fluctuations for a DDT. A further problem occurs for very
weak deflagrations, where insufficient data may prevent the application of the DDT model
in lowly resolved simulations.

The proposed DDT model is based on the properties of turbulence in the vicinity of the
deflagration flame. Details of the turbulent behavior in these regions, such as isotropy and
intermittency, are not well known. Therefore, we followed the suggestion of Röpke (2007) and
used an empirical approach to fit the histogram of the turbulent velocity fluctuations at the
flame in order to obtain an estimate of the probability of finding high velocity fluctuations.
However, since there exists no physically motivated model to explain intermittency in the
turbulence at the deflagration flame in an exploding white dwarf, some uncertainties of this
probability remain.

We further note that the properties of turbulence in the deflagration phase depend crucially
on the ignition process of the deflagration flame. Therefore, further studies of the ignition
properties of the deflagration can provide important information for the delayed detonation
scenario.

The DDT model itself can also be further improved. So far, this model appears mostly
static, since all threshold values of the DDT quantities are kept constant within a simulation.
However, the properties of turbulence and the flame structure change during the explosion
phase. Hence, we may take into account the temporal evolution of the turbulent quanti-
ties (such as the integral length scale, the transition length scale between Kolmogorov and
Rayleigh-Taylor instability driven turbulence and the eddy turnover time) and the fractal
dimension of the flame. Furthermore, the dependencies of these quantities among themselves
have not been considered so far. It would also be desirable to improve the link between our
DDT model to the microphysical nature of the DDT process. For a DDT which is based on
the Zeldovich gradient mechanism, a sufficient flat gradient of induction times is required.
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To investigate whether this prerequisite is fulfilled we need to find out how temperature
and fuel composition change over a certain length scale. This length scale is not resolved in
our study and both the fuel temperature and the fuel composition cannot be modeled on
unresolved scales within our SGS modeling approach consistently.

The discontinuity approach of the flame prevents us to determine the physical properties
of potential DDT regions precisely. Here the question arises, of whether the implemented
flame model is appropriate to investigate DDTs in detail. Our study indicates that the
obtained turbulent velocity fluctuations are not significantly affected by a flame modeling
effect. However, since the latter cannot be ruled out completely an important next step would
be to examine, whether and to what extent our results are based on the flame model in the
simulation code. Alternatively, a detailed analysis of the intermittent behavior in turbulence
at the flame can provide some clues, of whether the found high velocity fluctuations are of
physical nature. Such an analysis would also help to verify the capability of the implemented
DDT model to explain delayed detonations in SNe Ia properly.
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