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Motivation and objectives

About supernovae

Supernovae are very luminous and compared to usual astrophysical time scales very short-
lived phenomena that are related to explosions of stellar objects. Due to observational
limitations only a few progenitor stars have been detected before they explode. Thus, a
supernova, which commonly constitutes a final phase in the stellar evolution, reveals that
a star has existed at this location. The brightness of a supernova may rise to such an
extent that its peak luminosity is of the same order of magnitude as its host galaxy (see
Figure 1.1). Supernovae are responsible for galactic chemical evolution. The reason are
the nucleosynthesis processes in the center of massive stars that lead to the production of
heavy elements which are released during the supernova explosion (Burbidge et al., 1957).1
In addition, the supernova breakout itself may lead to the production of heavy elements,
since physical conditions for thermonuclear reaction processes in the explosion are achieved
(e.g. Seeger et al., 1965; Arnett, 1971b; Woosley et al., 1973). It is also believed that star
formation can be triggered by supernovae. The pressure wave released from a supernova
may compress the surrounding interstellar medium, leading to a gravitational collapse in
molecular clouds that eventually induces star formation (e.g. Preibisch & Zinnecker, 1999,
2001; Prialnik, 2000). In this sense, there is a cycle between the destructions and births of
stars. Younger star generations, however, will consequently have a larger fraction of heavier
elements (metallicity) that were produced in the nucleosynthesis processes in older stars.
Moreover, a subclass of supernovae shows very homogeneous features that can be used for
applications in cosmology (Kowal, 1968; Colgate, 1979). Investigations of these supernovae
have led to the surprising conclusion that we are living in an accelerating expanding universe
(Perlmutter et al., 1999; Riess et al., 1998, 2004).

!The famous work of Burbidge et al. (1957) is also called the B*FH paper (named after the initials of the
authors).



1 Motivation and objectives

SN 2002bo

Asiago 1.82m + AFDS5C : tourtesy ESC

Fig. 1.1: The Type Ia supernova SN 2002bo, discovered in the spiral galaxy NGC 3190 in march
2002 (Benetti et al., 2004).

Historical Overview

In December 185 AD a guest star that suddenly appeared and slowly vanished was reported
by Chinese authors in the Hou Hanshu (Zhao et al., 2006).2 In April 1054 AD a new star
in the sky was described in several sources (mostly again in Chinese documents) where we
can observe the famous Crab Nebula today. In early modern Europe it was Tycho Brahe in
1572 and Johannes Kepler in 1604 who discovered new stars. Their publications about these
observations led to a revolution in the universally accepted opinion of the sky. Fritz Zwicky
and Walter Baade proposed in 1934 the term Supernova for these bright events (Baade &
Zwicky, 1934; Zwicky, 1940). Zwicky was also the first who suggested in 1938 that supernovae
are induced by a gravitational collapse. With Baade he pioneered the theory that supernovae
may produce neutron stars (Zwicky, 1938). Due to a continuous increase in observations it
was revealed that supernovae can have very different features. Therefore, they have been
subdivided into two classes (Minkowski, 1941). Type I supernovae show no hydrogen in their
spectra which is present in Type II supernovae. In contrast to Zwicky’s theory, no neutron

2The history of the later Han Dynasty



star could be identified in many Type I supernovae.? Instead, lines of intermediate mass
elements like silicon appeared in the spectra. Fred Hoyle and William Fowler proposed in
1960 that these events may result from thermonuclear explosions of white dwarf stars (Hoyle
& Fowler, 1960). Therefore, these supernovae that are called Type Ia supernovae (SNe Ia)
have a fundamentally different explosion mechanism than all other subclasses of supernovae.
For the latter it is commonly believed that these explosions originate from the gravitational
core collapse of massive stars.

SNe Ia seem to have remarkably homogeneous features. Charles Kowal was the first to
use the homogeneity in the brightness of these objects to measure cosmological distances
(Kowal, 1968). However, the improvements of observational methods and the associated
increasing number of observed supernovae revealed that there are some variations in the
spectra and light curves within the class of SNe Ia. Therefore, these events are further
subdivided into normal and peculiar SNe Ia (Branch et al., 1993), where the latter may
show pronounced anomalies in the spectra and light curves, so that they cannot be used
for cosmological distance measurements anymore. However, also the normal SNe Ia show a
certain degree of variations that affect the applicability to use them as cosmological distance
indicators. It is therefore desirable to understand the observed variations on a physical
basis. Since this issue remains unresolved to date, one tries to calibrate these variations with
specific correlations between peak luminosities, spectral properties and light curve shapes.
A particularly successful model is the Phillips relation that describes a correlation between
the peak luminosity and the decline of the light curve in the first 15 days after approaching
its maximum (Phillips, 1993). In 1999, investigations of the research groups HZT (High-z
Supernova Search Team) and SCP (Supernova Cosmology Project) showed independently
that the absolute brightnesses of SNe Ia in far away galaxies are dimmer than expected for
a matter-dominated universe. Their results lead to the discovery that our universe currently
undergoes an accelerating expansion (Perlmutter et al., 1999; Riess et al., 1998, 2004).# The
reason of this acceleration may be explained by the existence of a dark energy, of which
the properties are still controversially discussed (e.g. Huterer & Turner, 1999; Carroll, 2001;
Caldwell et al., 1998, 2003).

The delayed detonation model of Chandrasekhar-mass white dwarfs

Since SNe Ia have attained a crucial importance for cosmology, we need to understand the
physics of these objects. The biggest challenge in this context is to find a physically moti-
vated model for SN Ia explosions that can reproduce the homogeneous features, but has still
the capability of explaining the observed variations. In addition, a model has to account for
the observed correlation between the brightness of an event and the age of the host stellar
population (Gallagher et al., 2008) and it must predict the observed rate of SN Ia explosions
(e.g. Ruiter et al., 2009). There is a high probability that not all SNe Ia can be described
with a single scenario. To develop a reliable SN Ia model we need information about the
progenitor system. In contrast to some core collapse supernovae, a progenitor system for
a SN Ia explosion has not been identified yet, hence valuable knowledge of the origin of
SNe Ia is not available directly. Therefore, information of these explosions can only be in-
directly derived from the observed light curves and spectra. Several theoretical scenarios of
the progenitor system and the explosion mechanism have been proposed from these obser-
vations. One popular progenitor system invokes the so-called Chandrasekhar-mass explosion

3There are also some Type II supernovae where no neutron star has been found so far (e.g. SN 1987A).
4S. Perlmutter, B. P. Schmidt and A. Riess received the Nobel Prize in Physics in 2011 for this discovery.



1 Motivation and objectives

model. Characteristic for this model is that all white dwarfs have the same mass when they
explode, which may explain the main homogeneous features. For the explosion mechanism
in this model the delayed detonation scenario (Khokhlov, 1991a) is particularly successful
in explaining several main features of SNe Ia. Here a thermonuclear burning front (com-
monly described as a flame) starts out as a subsonic deflagration that propagates through
heat conduction processes. In the later explosion phase a physical mechanism leads to a
Deflagration-to-Detonation Transition (DDT), where the onset of a supersonic detonation
affects the further explosion dynamics.

Objectives and organization of the thesis

Despite the success of the delayed detonation model, the physics of the DDT is not well
understood. However, since the work of Khokhlov (1991a), many studies in this field have
been carried out from which we can derive necessary constraints for DDTs in SNe Ia. These
constraints are the starting point of this thesis. From the relevant quantities for a DDT we
develop a new model that includes the physics of a DDT according to our current knowledge.
This DDT model is implemented in a numerical hydrodynamic code and applied to three-
dimensional large-scale simulations that follow the explosion of the whole white dwarf on the
simulation grid. The main focus of the model are the properties of turbulence. Turbulence
occurs due to different instabilities during the deflagration phase and may play a fundamental
role in the mechanism that triggers a DDT. The DDT process is not resolved in our full-
star simulations, so that the DDT quantities have to be modeled on unresolved scales in
an appropriate way. The turbulent evolution depends strongly on the properties of the
deflagration which in turn depend on the unknown ignition process of the deflagration flame.
Therefore, different ignition scenarios of the deflagration have to be taken into account as
an additional model parameter within the studies of DDTs. The main issues and questions
on which this thesis focuses are given in the following:

1. An important basic question is whether the properties of turbulence at the deflagration
flame are suitable for the occurrence of DDTs. The analysis of Ropke (2007) indicates
that turbulence may be strong enough to trigger a DDT, but we intend to investigate
this issue in more detail.

2. Since we perform numerical simulations we need to find out how the necessary physical
constraints on delayed detonations can be treated in a numerical approach properly.
The DDT process is not resolved in our studies, so that these constraints are imple-
mented in a so-called subgrid-scale (SGS) model. What are the requirements to keep
this DDT-SGS model robust and resolution-independent?

3. Can three-dimensional simulations of delayed detonations that use the new DDT-SGS
model reproduce the observed variations in the brightness of normal SNe Ia? What are
the effects of different ignition scenarios of the deflagration and the associated different
evolutions of the turbulent deflagration on the DDT model? What are the immediate
consequences for the dynamics of the ensuing detonation phase?

4. Most of the values of the DDT quantities are not well known and we cannot deter-
mine these values in our large-scale simulations. However, we intend to find out how
the explosion brightness can be controlled with the DDT model. To what extent is a
variation of the values of the DDT quantities or a different evolution of the deflagra-
tion the decisive parameter that determines the explosion brightness? Can we place



any constraints on DDT quantities, so that the obtained range of brightnesses in the
simulations is largely consistent with the observed variations in the brightness of nor-
mal SNe Ia? Can we further derive any necessary constraints for DDTs to occur in
deflagrations of white dwarfs generally?

To address these issues, the thesis is organized as follows: In Chapter 2 our current under-
standing of SNe Ia is discussed. The properties of turbulence in the deflagration phase and
the known constraints on DDTs are described in Chapter 3. In Chapter 4 the hydrodynamic
code LEAFS that is used to carry out the simulations of this work and the initial white dwarf
model are explained. The implementation of the DDT model and the tests in simulations
are described in Chapter 5 where we will address the issues (1) and (2). In Chapter 6 we
tackle issue (3) where we apply the DDT model to different ignition setups of the deflagra-
tion and investigate the evolution of the explosions in simulations of pure deflagrations and
delayed detonations. To address issue (4) a detailed parameter study of DDT simulations is
performed, of which the results are discussed in Chapter 7. In Chapter 8 a summary of the
thesis and an outlook of further applications and projects are given.






Type la Supernovae

In this chapter the current knowledge of SNe Ia and the derived models are described. Since
the progenitor systems are not identified yet, theoretical models have been developed from
observational results. In Section 2.1 we summarize the main observational properties of
SNe Ia. The theoretical progenitor scenarios are given in Section 2.2. In Section 2.3 the
explosion models are discussed.

2.1 Observational properties of Type la Supernovae

SNe Ia are classified by the absence of hydrogen and the presence of silicon lines in the early
spectra. The observations reveal that apart from the homogeneous features there are also
events that show a higher degree of anomalies in the light curves and spectra. Therefore,
SNe Ia are subdivided into normal and peculiar SNe Ia (Branch et al., 1993). While in
the beginning of this separation 83 - 89% appeared to be of normal type, the improved
observations show that the fraction of peculiar SNe Ia is about 30% (Li et al., 2011).

2.1.1 Normal SNe la
Light curves

For a normal SN Ia there is a steep rise in the luminosity that approaches a maximum of
about Mp ~ My =~ —19.3mag! at about 20 days after the onset of the explosion (Riess
et al., 1999; Hillebrandt & Niemeyer, 2000). The bolometric luminosity at this time is
Lio ~ 10%erg s (Contardo et al., 2000). After maximum there is a steep decline of
about 3mag in the following 30 days. Normal SNe Ia obey the Phillips relation, hence for
brighter explosions, a slower decay of the luminosity after the maximum of the light curve is
observed (Phillips, 1993; Hamuy et al., 1996; Hoflich et al., 1996; Phillips et al., 1999). The
later evolution is characterized by a weak exponential decline with a rate of about 1 mag per
month. Observations in the infrared show a second maximum that appears approximately
20 - 30 days after the first one (e.g. Suntzeff, 2003; Contardo et al., 2000). The overall

!B = blue band (= 445nm), V = visible band (= 550 nm) (e.g. Johnson & Morgan, 1953)



2 Type Ia Supernovae

release of kinetic energy is of the order of 10%! erg (e.g. Khokhlov et al., 1993). There is no
appreciable emission of radio waves and X- and gamma rays.

Spectra

The spectra at the time of peak luminosity are dominated by blue-shifted lines of interme-
diate mass elements, such as Sill, Mgll, Call and OI. In particular, a deep absorption line
at a wavelength of about 615 nm that is attributed to singly ionized silicon, is a charac-
teristic feature for SN Ia spectra. Since the inner part of the star remains opaque at this
time we see the chemical composition of the outer expanding envelope. The expansion ve-
locities, determined from the Doppler shift of the blue-shifted spectral lines is of the order
of 10*km s~! (Filippenko, 1997). Two weeks after peak luminosity, the central part of the
star becomes optically visible. The spectra show now Fell lines and the intermediate mass
elements (except for Call) have gone. About one month after peak luminosity the supernova
enters the so-called nebular phase, where the outer layers become completely transparent
for optical radiation. Now the spectra are dominated by forbidden Fell, Felll, and Colll
lines (Axelrod, 1980). During the temporal evolution the Co lines lose intensity, while the
intensity in the Fe lines grows.

Occurrence

While core collapse supernovae occur only in spiral and irregular galaxies, and here predom-
inantly in spiral arms and HII regions, the SNe Ia are found in all types of galaxies. In
spiral galaxies they are also less concentrated in spiral arms or in the vicinity of HII regions
than core collapse supernovae. The rate of nearby SNe Ia is about 0.2 SNu? (Cappellaro
et al., 1999). Mannucci et al. (2005) showed that SNe Ia occur more frequently in spiral and
irregular galaxies than in elliptical galaxies.

Summary

From the observational properties one can conclude that the light curves of SNe Ia are pow-
ered by the decay chain 56Ni — Co — 56Fe (Truran et al., 1967; Colgate & McKee, 1969).
The half-life of 55Ni is approximately 6.1 days and of *°Co 77.3 days. Before approaching
peak luminosity the outer layers are so dense that due to high opacities the radiation from
the ®°Ni decay can hardly escape. By approaching peak luminosity at about 20 days, most
of the 55Ni has already decayed to *®Co, so that a significant part of the further decline of
the light curve is determined by the *Co decay (Kuchner et al., 1994). From light curves
and spectra we can estimate the amount of produced *Ni (Arnett, 1982; Arnett et al., 1985)
which is in the range of approximately 0.4...0.9 M@3 for normal SNe Ia (Contardo et al.,
2000; Stritzinger et al., 2006; Mazzali et al., 2007). From the °Ni yield one can further find
an explanation for the Phillips relation. Brighter SN Ia explosions produce more %°Ni that
also leads to an increase of the amount of iron group elements. The high densities of these
elements causes high opacities that in turn broaden the light curve (Mazzali et al., 2007).
It should be noted that a strong neutronization during the thermonuclear burning at high
densities leads to an enhanced production of stable isotopes of the iron group (e.g. Seiten-
zahl et al., 2009b) that in turn affects the opacities and hence the light curve. This is why

21 SNu = 1 supernova per century per 10'° LB® (where LB® ~5.2-10%? erg s~! is the solar luminosity in

the B-band)
}1Mg) = 1 solar mass ~ 1.989 - 10 g



2.1 Observational properties of Type Ia Supernovae

a relationship between the brightness of an explosion and the produced *°Ni holds only up
to a certain extent. For the second maximum seen in the infrared there are several theories,
but it is most probable that it results from ionization processes of iron group elements in
the outer ejecta (Kasen, 2006).

Since SNe Ia occur in all types of galaxies and stellar populations of very different ages,
the exploding stellar objects cannot be short-living massive stars. Due to the absence of a
compact remnant associated with the lack of radio waves and X- and gamma rays, neutron
stars and black holes seem not to originate from SN Ia explosions. From these considerations
it is generally believed that SNe Ia are the result of thermonuclear explosions of white dwarfs
as proposed by Hoyle & Fowler in 1960.

2.1.2 Peculiar SNe la
1991T-like objects

1991T-like objects (Phillips et al., 1992) contribute at least 9% to all SNe Ia (Li et al.,
2011). They are named after the prototype supernova SN 1991T and are characterized by
a higher brightness than those of normal SNe Ia. The peak luminosity of these events is on
average —19.6 mag and about 1 M) of %Nj is needed to power the light curve (Spyromilio
et al., 1992; Mazzali et al., 1995). These supernovae also obey the Phillips relation, hence
their light curves appear broader than those of normal SNe Ia. In the early spectra, neither
Sill nor Call lines are found (Phillips et al., 1992). In contrast, spectral lines of highly
excited Felll are identified (Filippenko et al., 1992b). In the later phase, the spectra tend
to adjust gradually to that of normal SNe Ia (Phillips et al., 1992). These supernovae seem
to produce more iron group and less intermediate mass elements than normal SNe Ia. They
are predominantly found in spiral galaxies in regions of recent star formation.

Superluminous objects

Rarer but even brighter than the 1991T-like objects are the so-called superluminous events.
They reach peak luminosities up to —20 mag (Yamanaka et al., 2009). The amount of *°Ni
needed to achieve such high luminosities is 1.2...1.7 M (Howell et al., 2006; Hicken et al.,
2007; Silverman et al., 2011; Taubenberger et al., 2011). They have a very slow decline
rate in the light curve which does not obey the Phillips relation anymore. Also the main
homogeneous features that are found in the spectra of normal SNe Ia are lost. There is some
evidence that superluminous events preferentially occur in regions of recent star formation
(Silverman et al., 2011).

1991bg-like objects

1991bg-like objects (Filippenko et al., 1992a; Leibundgut et al., 1993) named after the pro-
totypical supernova SN 1991bg, are faint events with peak luminosities in the range from
—16.9mag to —17.9mag. They merely produce about 0.1 Mg of %Ni (Mazzali et al., 1997).
At least 15% of all SNe Ia seem to fall into this subclass (Li et al., 2011). However, the real
number of these objects may be highly underestimated, since due to their low brightness an
uncertain fraction of them may elude detection. The light curves show a rapid decline that
does not obey the Phillips relation (e.g. Garnavich et al., 2004; Hicken et al., 2009). Charac-
teristic for their spectra is the absence of the second maximum in the infrared. The spectra
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show predominantly lines of intermediate mass elements and only weak lines of iron (Maz-
zali et al., 1997). There is a tendency for these objects to occur preferentially in elliptical
galaxies in old stellar populations (Sullivan et al., 2006).

Summary

From the observations of peculiar SNe Ia, there is no direct conclusion whether the majority
or at least some of them are just extreme outliers of normal SNe Ia, or if a part of these
events must be considered as an independent class with an own progenitor system. It is
remarkable that between the 1991bg-like objects and the normal SNe Ia there seems to be a
gap in the 55Ni yields of approximately 0.1...0.4 M. In this range only a few events have
been found so far, like SN 2005hk (see Phillips et al., 2007). The 1991bg-like objects seem to
have similar light curve and spectral properties (Garnavich et al., 2004; Taubenberger et al.,
2008) that are distinct from the normal SNe Ia. This may indicate that these objects have
a progenitor system and/or an explosion mechanism that is different from those of normal
SNe Ia. Also the superluminous events, where a large amount of °Ni has to be produced in
the explosion process may not be easily explained with the same scenario that is favored for
normal SNe Ia.

2.2 Progenitor systems

As described at the end of Section 2.1.1 it is believed that the cause of normal SNe Ia is a
white dwarf that undergoes a thermonuclear explosion. A white dwarf is a stable object of
high density where the pressure of the degenerate electron gas compensates for self-gravity.
A spontaneous explosion seems improbable, so that an isolated white dwarf will stay in this
equilibrium forever, where merely its temperature declines and density increases on very
long time scales (e.g. Lesaffre et al., 2006). Therefore, it is believed that SNe Ia occur only
in close binary systems, in which a companion star plays a crucial role in the evolution of
the white dwarf toward its explosion. Due to mass accretion from the companion onto the
white dwarf, the latter may become unstable until physical conditions are achieved that lead
to a thermonuclear explosion (see Section 2.3).

White dwarfs can be composed of pure helium or a mixture of carbon/oxygen or oxy-
gen/neon. The mass of helium white dwarfs is usually lower than 0.45 My, (Iben & Tutukov,
1985). Due to mass accretion the helium may ignite in which case the thermonuclear com-
bustion produces solely iron group elements and no intermediate mass elements (Nomoto &
Sugimoto, 1977; Woosley et al., 1986), inconsistent with observations. White dwarfs that
are composed of oxygen and neon show in numerical simulations that they preferentially
collapse to neutron stars (Saio & Nomoto, 1985; Nomoto & Kondo, 1991; Gutierrez et al.,
1996). In addition, these white dwarfs are probably not numerous enough to come into ques-
tion for SN Ia explosions (Livio & Truran, 1992). Therefore, carbon/oxygen white dwarfs
seem to be the most appropriate candidates for SN Ia explosions. The physical properties
and composition of the companion star, however, are highly uncertain. Depending on the
type of the companion, different theoretical models have been proposed.

2.2.1 Single-degenerate scenario

In the single-degenerate scenario (Whelan & Iben, 1973; Nomoto, 1982; Iben & Tutukov,
1984) the companion is either a main sequence star, a helium star or a red giant. The distance
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between both components is so close that the companion fills its Roche lobe, leading to a
continuous mass transfer of hydrogen or helium from the companion onto the surface of the
white dwarf. If the companion is a red giant the mass transfer may also occur by stellar
winds.

Hydrogen-accreting white dwarf and the Chandrasekhar-mass explosion model

In the case of the accretion of hydrogen-rich material, the hydrogen burns at the surface of
the white dwarf to helium first that further burns to carbon. In this way, the mass of the
white dwarf increases slowly. There is an upper limit for the mass of a white dwarf at which
the pressure of the degenerate electron gas cannot compensate for self-gravity anymore. This
mass is called the Chandrasekhar limit Mcy (Chandrasekhar, 1931) which is approximately
Mcu =~ 1.4 Mg for a non-rotating white dwarf. For masses M > Mgy a gravitational
collapse will turn the white dwarf into a neutron star. However, under certain circumstances
the white dwarf may explode just before its mass has reached Mcy. When approaching
Mcp, the central density increases rapidly above 10° g cm™3. The temperature becomes
high enough for the carbon ignition, which marks the beginning of the so-called simmering
phase (see Section 2.3.1). At the end of this phase, a thermonuclear runaway sets in that
eventually leads to the explosion and destruction of the whole white dwarf. This model is
called the Chandrasekhar-mass explosion model.

Since all white dwarfs have the same mass at the time of the explosion, this model can
explain some of the homogeneous features of SN Ia light curves and spectra. The observed
variations can be mainly explained by different ignition and explosion dynamics (see Sec-
tion 2.3) which in turn partially depend on the carbon/oxygen ratio, metallicity and rotation
of the white dwarf. The main weakness of the Chandrasekhar-mass explosion model is that
depending on the initial mass and rotation of the binary system, there is only a small win-
dow for allowed accretion rates at which the additional mass has to be transferred onto the
surface of the white dwarf. In the case of hydrogen transfer, Nomoto & Kondo (1991) give
an accretion rate of ~ 1077 Mg, per year. If the accretion rate is of this order, the accreted
material can burn in a stable way to heavier elements at the surface of the white dwarf.
The produced heat in this process slowly penetrates the interior of the white dwarf, so that
its center is continuously heated up to a point where conditions for the carbon fusion are
achieved just before Mcy is reached. If the mass transfer occurs too fast, carbon ignites at
the surface, which will turn the white dwarf into an oxygen/neon white dwarf, eventually
leading to a collapse to a neutron star. If the accretion rate is too slow a constant fusion of
the material at the surface of the white dwarf is not possible for a longer time and some of
the accreted material will be expelled as repeated novae breakouts.

The problem of the required accretion rates is related to the question of whether the
Chandrasekhar-mass explosion model can explain the observed SN Ia rates. Following Ruiter
et al. (2009) the observed SN Ia rates are several orders of magnitude higher than the ex-
pected rates from exploding hydrogen accreting Chandrasekhar-mass white dwarfs. Further-
more, it is expected that the nuclear hydrogen burning at the surface of the white dwarf will
release detectable soft X-rays (Kahabka & van den Heuvel, 1997). The X-ray emissions of
nearby elliptical galaxies, however, seem to be far too low to explain the observed SN Ia rates
with exploding hydrogen accreting Chandrasekhar-mass white dwarfs (Gilfanov & Bogdén,
2010).

Another question is whether the hydrogen itself should be detectable during the supernova
breakout. Since there are no hydrogen lines in SN Ia spectra one can conclude that the
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amount of hydrogen in the system must be so low that it eludes direct detection. However,
it is believed that when the ejecta of the exploding white dwarf collides with the companion
star, some of the hydrogen rich material in the outer layer of the companion is stripped off
and mixed into the ejecta (Marietta et al., 2000), which may have an effect on the spectra.
Pakmor (2010) showed that only 0.01 M, of hydrogen rich material is stripped off from the
companion by the impact and mixed into the ejecta, which is lower than the current detection
limit. There is also the possibility that the amount of hydrogen of the system at the time
where the supernova breaks out is only marginal. One can assume that apart from the mass
growth the white dwarf also gains a substantial amount of angular momentum during the
accretion process that may postpone the explosion (Di Stefano et al., 2011; Justham, 2011).
During this delay, the companion star may exhaust its hydrogen-rich envelope and shrink to
a certain degree, so that before approaching the explosion phase, the companion does not
fill its Roche lobe anymore (Justham, 2011). When the white dwarf eventually explodes, the
interaction between the ejecta and the shrunken companion is expected to be much lower.

Helium-accreting white dwarf and the sub-Chandrasekhar mass explosion model

In the case of helium accretion from a helium star (Woosley & Weaver, 1994), only the
helium needs to be burned to carbon. There is only marginal X-ray emission, since the
nuclear energy release of the fusion from helium to carbon is far lower than the fusion of
hydrogen to helium. Hence, these systems would be more consistent with the observations
of Gilfanov & Bogdan (2010), but the calculations of Ruiter et al. (2009) show that these
systems seem to be not frequent enough to explain the observed rates of SNe Ia. In this
scenario, however, there is the possibility that the white dwarf explodes at a time when its
mass is far below Mcy. In this sub-Chandrasekhar mass explosion model the helium is not
steadily burned, so that the white dwarf may be enveloped by a degenerate helium shell.
If the mass of this shell grows large enough, it may become dynamically unstable leading
to a detonation that spreads over the entire surface of the white dwarf. This in turn can
trigger a second detonation in the center of the carbon/oxygen core due to the convergence
of shock waves that originate from the detonation of the helium shell (Woosley & Weaver,
1994; Livne & Arnett, 1995).

To a certain extent, the sub-Chandrasekhar mass explosion model can also be applied to
systems where initially hydrogen is accreted that burns to helium at the surface of the white
dwarf (e.g. Cassisi et al., 1998; Piersanti et al., 1999, 2000). In contrast to the Chandrasekhar-
mass explosion model, a far lower mass has to be accreted from the companion star until the
explosion occurs, so that the sub-Chandrasekhar mass explosion model is more consistent
with the observed SN Ia rates. Fink et al. (2007) showed that a helium shell of only 0.1 M,
is already sufficient to trigger the carbon/oxygen detonation. Differences in the 56Ni yields
can be obtained from different masses and densities of the white dwarfs. In particular,
Fink et al. (2010) and Sim et al. (2010) showed that the sub-Chandrasekhar mass explosion
model can reproduce the whole observed variations in the brightness of normal SNe Ia.
However, radiative transfer calculations by Kromer et al. (2010) for these models showed
some discrepancies of the synthetic light curves and spectra with observations.

2.2.2 Double-degenerate scenario

In the double-degenerate scenario (Iben & Tutukov, 1984; Webbink, 1984) both components
of the binary progenitor system are white dwarfs. In the beginning (when the formation of
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the second white dwarf is completed) the distance between both white dwarfs is commonly
so large that mass transfer is impossible. However, the system loses angular momentum due
to emission of gravitational waves, leading to a continuous decrease in the distance between
both components. When one of the white dwarfs fills its Roche lobe, mass transfer sets in,
where the stability of the transfer depends strongly on the mass ratio of the white dwarfs.
If one component is a helium white dwarf, a similar scenario as in the sub-Chandrasekhar
mass explosion model may happen (Guillochon et al., 2010). If both components are car-
bon/oxygen white dwarfs (which we assume in the following) and if the total mass of the
system exceeds Mgy the system may behave similarly to the Chandrasekhar-mass explosion
model, but this has not been shown yet. However, this scenario is only possible if the mass
difference of the white dwarfs is sufficiently large, which ensures a stable mass transfer. If
this is not true, the less massive white dwarf will be disrupted due to tidal forces shortly after
mass transfer sets in (Benz et al., 1990; Yoon et al., 2007; Motl et al., 2007; Lorén-Aguilar
et al., 2009) and its material is accreted at such a high rate by the more massive white dwarf
that the carbon ignites at its surface (Saio & Nomoto, 1998). This will turn the white dwarf
into an oxygen/neon white dwarf that will further collapse to a neutron star.

However, during the merger of the white dwarfs conditions for a detonation may be
achieved, so that this scenario may lead to a SN Ia explosion (Pakmor et al., 2010, 2011).
Perhaps it is possible that during the merger process neither a detonation nor a conversion of
the white dwarf into a neutron star happens, in which case the mass accretion continues. Due
to conversion of angular momentum, the differential rotation of the white dwarf increases.
In this way, the mass of the white dwarf can grow up to 2 M (Yoon & Langer, 2004, 2005),
where an ensuing explosion in the interior of the white dwarf may proceed similar as in the
non-rotating Chandrasekhar-mass explosion model. However, as stated in Section 2.2.1 the
white dwarf may have to spin-down to a certain degree in order to explode.

Since the total mass in a double degenerate merger may exceed Mcy to a large extent
there are conjectures that the explosion of these super-Chandrasekhar mass objects may
explain the observed superluminous events. But calculations of Pakmor (2010) show that
within the most massive merger of two white dwarfs, the maximum mass of ®’Ni that can
be obtained is approximately 1 M), insufficient to explain superluminous events.

The main advantage of the double-generate scenario is that it easily explains the absence
of hydrogen lines in the spectra. Compared to the single-degenerate Chandrasekhar-mass
explosion model, there are no strict limitations of the accretion rates, since the accreted
material has not to be burned to heavier elements. In addition, from population synthesis
calculations one can derive that the frequency at which these systems occur can explain the
observed SN Ia rates better than any other progenitor system (Ruiter et al., 2009). The
results of Pakmor et al. (2010) and Pakmor et al. (2011) indicate that during the merger of
two carbon/oxygen white dwarfs with an individual mass of about 0.9 M and a sufficient
small mass difference, conditions for a detonation are reached. However, the produced *°Ni
yield in the simulations was only 0.1 M), i.e. far below the mass needed to explain the
brightness of normal SNe Ia. It is possible that these models are capable of explaining the
1991bg-like objects, since apart from the produced amount of °Ni also other features like
synthesized light curves and spectra seem to fit the observed properties of the 1991bg-like
objects quite well (Pakmor et al., 2010, 2011). However, a very recent study indicates that
more massive merger may produce a significant higher 6Ni yield that is comparable with
typical normal SNe Ia (Pakmor et al., 2012).
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2.2.3 Summary

All described and according to our current knowledge all potential progenitor scenarios have
individual strengths and weaknesses. It is likely that not all observed SNe Ia can be described
with a single progenitor scenario. This work is based on the Chandrasekhar-mass explosion
model. Despite the discrepancy of the predicted SN Ia rates, this model has had great success
in reproducing some of the main observed features of normal SNe Ia. In the following, the
ignition phase and theoretical explosion models of Chandrasekhar-mass white dwarfs are
discussed.

2.3 Explosion models

2.3.1 Simmering phase and ignition

The main physical processes leading to the ignition and explosion of the white dwarf are
highly uncertain. However, there is a widely accepted picture about the final phase directly
prior to the ignition that will be summarized here. When the mass of the white dwarf
approaches Mcy, its center is highly degenerate and thermodynamic conditions for the
carbon ignition are reached (Nomoto, 1982), which marks the beginning of the so-called
simmering phase. This phase can be subdivided coarsely into three stages. In the first stage,
carbon burning occurs only at a low rate, where neutrino losses alone are able to carry away
all of the produced nuclear energy (Arnett, 1971a; Nomoto et al., 1984; Woosley & Weaver,
1986; Winget et al., 2004). The nuclear energy release, however, depends strongly on the
temperature, so that a low temperature increase leads to a large growth of the nuclear
energy production rate. At some point, when the time scale for carbon fusion becomes
shorter than the time scale for neutrino losses, convection sets in, where the nuclear energy
excess is transported outward due to convective motions (Arnett, 1969, 1971a; Woosley &
Weaver, 1986). This leads to a rapid growth of a convective core, which is also called the
carbon-flash phase that may last for several hundred years. Within this phase the so-called
URCA-process is of high importance (Gamow & Schoenberg, 1941; Paczyriski, 1972; Barkat
& Wheeler, 1990; Aparicio & Isern, 1993; Lesaffre et al., 2005; Podsiadlowski et al., 2008;
Forster et al., 2010).* The concept of this process is based on the assumption that apart
from 2C and 90 there are traces of other heavier elements in the white dwarf®, of which
2Ne and 23Na play a major role here. In the vicinity of the center of the white dwarf it is
energetically favorable for a ?*Na nucleus to turn into a 2*Ne nucleus by electron capture.
Due to convection the ?Ne nucleus ascends up to a place, where it becomes energetically
favorable to emit an electron by B~ - decay. Hence, the ?*Ne nucleus converts back to a
23Na nucleus that now descends back to the center of the star. The described cycle can be

4The process was first discussed by George Gamow and Mario Schoenberg in a casino named Cassino da
Urca in Rio de Janeiro, where Gamow said to Schoenberg that “the energy disappears in the nucleus of
the supernova as quickly as the money disappeared at that roulette table” (see also Nadyozhin (1995) and
Haensel (1995) and references therein).

5These elements result mostly from the metallicity of the main sequence star from which the white dwarf
evolved. However, due to the high densities in the central region of the white dwarf, additional neutron-
ization effects may lead to a further increase of the metallicity in the simmering phase (Piro & Bildsten,
2008).
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summarized by the two following reactions:

BNa+e” — BNe+v, (2.1)
BNe - BNa+ e +7. (2.2)

We see that in every conversion of the nucleus an electron neutrino v or an electron anti-
neutrino 7 is emitted that is able to carry away energy without interaction with the stellar
material. Therefore, the URCA-process constitutes an enhanced cooling mechanism of the
central region in this phase that may delay the initiation of the explosion.

In the last stage of the simmering phase the time scale for carbon fusion becomes shorter
than the time scale of convective circulations. At this point efficient cooling mechanisms do
not exist any longer and the energy released from the carbon fusion cannot be transported
away from the central region. In addition, the white dwarf is unable to expand and to
cool, since due to the high degeneracy of the central area, the pressure is independent
of the temperature. Eventually the center of the star is heated up rapidly leading to a
thermonuclear runaway that marks the birth of a thermonuclear flame and the begin of the
explosion.

There are several parameters, like the initial mass, the accretion history, as well as the
cooling time of the white dwarf that determine the thermodynamic state in the interior
of the star. Lesaffre et al. (2006) derive a possible range of central densities from less than
2x10% g cm ™3 up to more than 5x 10° g cm™2 at ignition time of the flame. One uncertainty
in the evolution up to the ignition of the flame is the value of the screened 2C - 12C fusion
rate (Itoh et al., 2003; Gasques et al., 2005, 2007; Jiang et al., 2007). However, it seems
that the central density at ignition time depends only weakly on the exact value of this rate
(Cooper et al., 2009; Iapichino & Lesaffre, 2010). While metallicity has a high impact on the
brightness of the explosion (Timmes et al., 2003; Travaglio et al., 2005; Bravo et al., 2010),
the central density at ignition time also show only a weak dependence on metallicity as well
as the carbon/oxygen ratio (Lesaffre et al., 2006).

Remarkable efforts have been made to study the simmering phase in detail but there are no
clear conclusions yet about the physical properties and the geometry of the ignition region
(e.g. Garcia-Senz & Woosley, 1995; Hoflich & Stein, 2002; Woosley et al., 2004; Kuhlen
et al., 2006; Almgren et al., 2006; Piro & Bildsten, 2008; Piro & Chang, 2008; Zingale et al.,
2009; Aspden et al., 2011; Nonaka et al., 2012). In numerical simulations that do not follow
the pre-ignition evolution but start immediately at ignition time of the flame, a simple
single ignition or multiple ignitions in the vicinity of the center (Plewa, 2007; Ropke et al.,
2006, 2007a,b) or even time-dependent, stochastic ignitions (Schmidt & Niemeyer, 2006)
are frequently used. Woosley et al. (2004) propose a multispot ignition scenario where the
first ignition occurs at a distance of 150 — 200 km off-center. The diameter of an individual
ignition spot is expected to be of the order of a kilometer (Iapichino et al., 2006). Another
more recent study of Nonaka et al. (2012) suggests a single off-center ignition within a radius
of roughly 50 km.

As the ignition process, also the burning mode of the ignited flame is unknown. From
combustion theory, however, it is known that the flame can propagate either as a detonation
or as a deflagration.

2.3.2 Detonations

The first model to explain the explosion of a white dwarf whose mass is near the Chan-
drasekhar limit was proposed by Arnett (1969), where a detonation commences in the center
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of the white dwarf. A detonation occurs when the ignition leads to a strong pressure gra-
dient (commonly described as a shock) that propagates supersonically with respect to the
sound speed in the unburned carbon/oxygen material. The shock leads to a compression
and heating of the material up to a point where thermonuclear burning processes occur.
Hence, the shock wave and the flame are linked with each other and move with the same
speed through the white dwarf.

The one-dimensional model of Arnett (1969) showed that a detonation releases enough
energy to gravitationally unbind the star. However, due to the supersonic flame speed the
white dwarf cannot react with an expansion, so that the whole carbon/oxygen composition
is burned at high densities to heavy iron group elements. This is inconsistent with the
observed spectra, since the latter also show the presence of intermediate mass elements (see
Section 2.1). Hence, pure detonations of Chandrasekhar-mass white dwarfs are ruled out as
a viable scenario to explain SN Ia explosions.

2.3.3 Deflagrations

Apart from a shock-driven detonation the burning in a white dwarf may proceed by thermal
conduction. The burning speed is far slower than the sound speed in the unburned material.
This burning mode is called a deflagration.® While the flame propagates outward the white
dwarf reacts with an expansion, where the degree of this expansion depends strongly on the
nuclear energy release. Due to the expansion and the associated decline in the density, there
is a point at which the carbon/oxygen mixture cannot be burned to iron group elements any-
more, so that in the later explosion phase mainly intermediate mass elements are produced.
Thus in contrast to a pure detonation, a deflagration can explain the observed intermediate
mass elements (e.g. Nomoto et al., 1976, 1984).

An undisturbed deflagration of a white dwarf, however, would never be strong enough
to explain the main observed features of SN Ia explosions. The flame would propagate so
slowly that the burning ceases after a marginal fraction of the unburned material has been
converted to heavier elements. Moreover, the energy release would be too low to overcome the
gravitational binding energy of the white dwarf. However, as shown in Chapter 3, instabilities
occur during the deflagration that cause turbulent motions. The burning processes are highly
affected by the interaction with turbulence, leading to an acceleration of the flame and an
increase of the flame surface area, which in turn enhances the energy release.

The results of numerical simulations of pure turbulent deflagrations show that the released
energy is sufficient to unbind the white dwarf (Reinecke et al., 2002; Gamezo et al., 2003;
Ropke et al., 2007a). However, it should be noted that the dynamics of the turbulent
flame and the energy release in pure deflagrations crucially depend on the modeled ignition
scenario of the flame. Compared to pure detonations, pure turbulent deflagrations explain
the observed properties of SNe Ia much better. The main problem of pure deflagrations,
however, is that there are regions of unburned material left behind the flame in the central
part of the white dwarf. This would be visible in the late time spectra, which is not the case
for normal SNe Ia (Khokhlov, 2000; Gamezo et al., 2003; Kozma et al., 2005). Moreover,
even strong turbulent deflagrations produce usually no more than 0.4 M) of %Ni and also
the energy release tends to be too low compared to observations (Gamezo et al., 2003; Ropke
et al., 2007a). Therefore, pure deflagrations cannot account for the observed variations in
the brightness of normal SNe Ia. They may, however, explain some peculiar events, such as

5Sometimes this burning mode is also simply described as slow burning.
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the supernovae SN 2002cx and SN 2005hk (Jha et al., 2006; Phillips et al., 2007).

2.3.4 Delayed Detonations

The delayed detonation model, introduced by Khokhlov (1991a), can fix the major problems
of both pure deflagrations and pure detonations. The idea is that the explosion starts out as
a deflagration and in a later explosion phase, a physical mechanism leads to a Deflagration-
to-Detonation Transition (DDT) (Blinnikov & Khokhlov, 1986, 1987; Khokhlov, 1991a;
Khokhlov et al., 1997; Niemeyer & Woosley, 1997). Due to the onset of the detonation,
the explosion dynamics are drastically changed. The unburned material that is left behind
by the deflagration front may be reached and burned by the detonation. Hence, the amount
of iron group and intermediate mass elements are increased due to the additional burning
of the carbon/oxygen mixture. In summary, a chemical composition can be obtained in
the delayed detonation model that is in good agreement with observations (Gamezo et al.,
2005; Golombek & Niemeyer, 2005; Ropke & Niemeyer, 2007; Mazzali et al., 2007; Bravo &
Garcia-Senz, 2008; Kasen et al., 2009).

For the delayed detonation model, the strength of the deflagration is an important pa-
rameter that sets the brightness of the explosion. In general, weak deflagrations lead to a
low expansion of the star, so that a delayed detonation can burn a significant part of the
stellar material at high densities to ®*°Ni. Conversely, in strong deflagrations where the star
expands much further, most of the unburned material is at low densities, where a delayed
detonation burns less material to 9°Ni. Depending on the strength of the deflagration which
in turn depends strongly on the ignition properties of the deflagration flame, a broad range
of %Ni yields can be obtained from delayed detonation models that is consistent with the
observed variations in the brightness (e.g. Mazzali et al., 2007; Kasen et al., 2009).

The problem of the delayed detonation model is that the physics of DDTs is not well un-
derstood. A generally accepted picture of DDTs is that this process occurs in a mixed region
of a specific size that is composed of hot burned and cold unburned material.” A sufficient
mixing of both components in turn requires a certain turbulent intensity. Therefore, the
properties of turbulence play an important role in this explosion scenario which is discussed
in more detail in Section 3.3.3.

2.3.5 Explosion of differentially rotating white dwarfs

Differential rotation of the white dwarf can significantly affect the explosion characteris-
tics. The mass of differentially rotating white dwarfs may grow as large as 2 M (Yoon &
Langer, 2004, 2005). Pure deflagrations of these super-Chandrasekhar-mass models show
only a marginal burning and an aspherical flame propagation that is attributed to a cen-
trifugal expansion and to anisotropic buoyancy and mixing effects (Pfannes et al., 2010b).
In contrast, pure detonations lead to very bright explosions that are comparable with su-
perluminous events (Pfannes et al., 2010a). The nuclear energy release, however, is here so
high that the ejecta expands too fast compared to observations. In addition, also in pure
detonations the explosion evolves highly anisotropic, leading to an aspherical structure of
the ejecta that is observed preferentially for the faint 1991bg-like objects. In simulations of
delayed detonations of differentially rotating white dwarfs Fink (2010) found similar results
as for the pure detonations simulated by Pfannes et al. (2010a).

"A recent study of Poludnenko et al. (2011) also supports the idea that a DDT may happen in unconfined
media.
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2.3.6 Gravitationally confined detonation

In the gravitationally confined detonation (GCD) model (Plewa et al., 2004; Plewa, 2007,
Townsley et al., 2007; Jordan et al., 2008; Meakin et al., 2009) a delayed detonation is
triggered in the late deflagration phase, but the whole explosion dynamics are fundamentally
different compared to the delayed detonation model described in Section 2.3.4. The GCD
model is primarily based on a very weak deflagration that starts off-center in the form of one
or a few bubbles that burn aspherically toward the surface of the white dwarf. Turbulence
leads to an increase of the burning speed and the flame surface area. However, the overall
energy release is far too low to unbind the star gravitationally and only a marginal fraction of
the entire carbon/oxygen material is burned at the time when the flame breaks through the
surface of the white dwarf. The strong surface gravity forces the burned material to sweep
along the surface until it converges at the opposite side of the star. At this convergence
point unburned material is compressed and heated, leading to conditions where carbon
ignites. In this case, two jets may be formed, while an inwardly directed jet is susceptible
for shear instabilities, where eventually conditions for a detonation are achieved (Meakin
et al., 2009). Because of the massive amount of unburned material that additionally resides
at high densities, the detonation burns most of the material to iron group elements, where
commonly more than 1 Mg, of 5°Ni is synthesized (e.g. Meakin et al., 2009). Hence, the
GCD model produces exclusively bright events, like the 1991T-like objects.

2.3.7 Pulsational delayed detonation and pulsational reverse detonation model

The pulsational delayed detonation (PDD) model is similar to the delayed detonation model,
described in Section 2.3.4, but a DDT occurs after one or several pulsations of a gravitation-
ally bound white dwarf (Ivanova et al., 1974; Khokhlov, 1991a). A variant is the pulsational
reverse detonation (PRD) model, where a deflagration leads to an initial expansion of the
white dwarf that becomes damped before the gravitation is overcome. During the recollapse
a detonation sets in due to compression and heating in the center, after burned material
from the deflagration has ascended while new unburned material has descended to the cen-
ter of the star (Dunina-Barkovskaya et al., 2001; Bravo & Garcia-Senz, 2005, 2006). Within
the PRD model °Ni yields can be obtained that are consistent with normal SNe Ia (Bravo
& Garcia-Senz, 2006). However, synthesized spectra of PRD models show at the time of
maximum brightness carbon lines and at late times a considerable amount of iron group
elements in the outer layers that are inconsistent with the observations (Baron et al., 2008).

2.3.8 Summary

From the discussed explosion mechanisms in a Chandrasekhar-mass white dwarf, the delayed
detonation model described in Section 2.3.4 is a preferred model that is capable of explaining
several main features of normal SNe Ia. In particular, a recent study of Kasen et al. (2009)
and Blondin et al. (2011) showed that apart from the obtained °°Ni yields also synthetic
light curves and some spectral properties seem to be in good agreement with observations.
It is remarkable that the light curves seem to reproduce the Phillips relation quite well. The
uncertainty of the physics of the DDT process remains a problem to date. One main subject
on which this work focuses is the construction of a new model that includes the current
knowledge of the physics of DDTs. As already described, turbulence in the deflagration
plays a crucial role for the DDT, hence we need to understand the properties of turbulence
in this burning phase first.
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The burning processes in a deflagration of a white dwarf are accelerated by turbulence in such
a way that the associated increase in the energy release may be sufficient to gravitationally
unbind the star (e.g. Reinecke et al., 2002). However, for reasons described in Section 2.3.3
pure turbulent deflagrations cannot account for the observed variations of normal SNe Ia.
Here turbulence again may point to a way out, since it is believed that strong turbulent
velocity fluctuations constitute a necessary constraint for a delayed detonation (e.g. Woosley
et al., 2009). In this chapter the properties of turbulence in the deflagration phase and its
implications for the delayed detonation scenario are explained. Since the cause of turbulent
motions is the occurrence of instabilities during the deflagration in a white dwarf, we first
describe these instabilities in Section 3.1. In Section 3.2 the properties of turbulence itself
are discussed. Finally, the delayed detonation model is described in detail in Section 3.3 that
is based on our current knowledge and is a key part of this work. Since the burning speed
of the deflagration flame is much slower than the sound speed in the unburned material of
the white dwarf, we restrict all considerations of this burning phase to incompressible flows
in the following.

3.1 Instabilities in deflagrations of white dwarfs

We consider a system that has the length L, a mean flow velocity V and the kinematic
viscosity v. The flow characteristic can be estimated by the dimensionless Reynolds number
Re (Stokes, 1851; Reynolds, 1883)

Re = (3.1)

v
The Reynolds number is a measure of the ratio of inertial forces to viscous forces. For
sufficiently low Re effective external perturbations are suppressed and damped due to viscous
forces. The flow is characterized by a slow, regular and eddy-free motion that is called a
laminar flow. With growing Re viscous forces become less efficient and the flow is more
susceptible to external perturbations. The condition where a fluid becomes unstable to
perturbations is given by a critical Reynolds number Reci;. For Re > Regit occurring
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3 Turbulence and delayed detonations in SNe Ia

perturbations are not damped anymore and they will grow without restrictions. In this case,
the flow is characterized by an irregular and disordered motion with some pronounced vortex
structures, which is called a turbulent flow. If Re; is known, equation (3.1) can be applied
to get a first impression of the main flow characteristic for a given system. However, to
determine under what conditions a flow becomes unstable to a certain instability an analysis
of the instability is required, which is outlined in the following sections.

3.1.1 Stability analysis of incompressible flows

We consider an incompressible fluid with a constant kinematic viscosity v and density p that
is not exposed to external forces. Then the momentum balance reads

v _Vp
e +(v-V)v= Y + vAv (3.2)

with the incompressibility constraint
V.-v=0, (3.3)

where P and v denote the pressure and velocity. Equation (3.2) is the incompressible Navier-
Stokes equation (Navier, 1823) that constitutes the equation of motion for an incompressible
fluid (e.g. Landau & Lifschitz, 1991). In general, a fluid may become unstable against in-
finitesimal perturbations if Re &~ Recy, (e.g. Landau & Lifschitz, 1991). Then the onset of an
instability and Rect can be estimated with the following procedure. The stationary solution
of the Navier-Stokes equation (3.2) is superimposed by a small non-stationary perturbation.
For the resulting system of equations, an ansatz of the form exp(ikx + wt) is made. That
way we obtain a dispersion relation w(k) between the complex frequencies w and the wave
numbers k of the perturbation. If all possible w(k) have only negative real parts, all pertur-
bations will decay exponentially with time ¢t and Re < Rej; holds. For Re = Rec there
is exactly one w(k), of which the real part is zero. This limiting case is characterized by a
varying behavior between a laminar and turbulent flow. If there is only a single w(k) with
a positive real part, the perturbation will grow unrestrictedly with ¢t. Consequently the flow
is unstable to this instability, and Re > Re holds.

3.1.2 Instabilities of thermonuclear deflagration fronts

After the ignition, the deflagration flame propagates from the center outward toward the
surface of the white dwarf. The stellar material that is traversed by the flame is thermonu-
clearly burned to heavier elements. The energy release and the reaction rate depend on the
density and temperature as well as on the composition and the thermal conductivity of the
material which is currently burned. As long as the exothermic reactions release enough heat
to ignite the surrounding material the deflagration can spread further through the star.

The onset of certain instabilities may crucially affect the flame propagation. Hence, a
stability analysis is important to understand the impact of these instabilities on the explosion
dynamics in the deflagration. In the following, we first discuss the properties of laminar
burning, in which instabilities are neglected. Then the most important instabilities are
described that occur in the deflagration. All considerations of burning in this chapter are
restricted to premized flames, where it is assumed that all necessary reactants for the burning
are available in the fuel mixture.
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3.1 Instabilities in deflagrations of white dwarfs

Laminar Burning

In laminar burning there is a balance between thermal diffusion and energy generation.
The profile of the deflagration flame is composed a diffusion zone in which the fuel (here
the carbon/oxygen composition) is heated up to its ignition temperature, and a reaction
zone, in which the burning takes place (e.g. Mikhel’son, 1889). For the diffusion time scale
Taif ~ 62/k holds, where d is the flame width and & is the thermal d1ffusw1ty For the
nuclear burning time scale T,c ~ €/ S holds, where e is the specific energy and S the specific
energy generation rate. Since in equilibrium 7qig = Tyue, we find (Mikhel’son, 1889; Landau
& Lifschitz, 1991)
Ke

o[ (3.4)
In the time Ty, the flame progresses the distance 6. With equation (3.4) the laminar burning
speed Ujam = 0/Thuc results to

Ulgm =~ % (35)
The laminar burning constitutes an ideal case of an undisturbed deflagration that basically
does not occur in SN Ia explosions. However, the velocity in equation (3.5) is a good estimate
for the burning speed vgame in the early deflagration phase. A more detailed study of laminar
burning velocities was performed by Timmes & Woosley (1992). The authors applied a fit
to numerically calculated values of u,, in a carbon/oxygen white dwarf for a range of fuel
densities pgel Of 107 g cm ™3 < pruel < 100 g cm ™3, where wuj,y, is then given by

0.805 12 0.889
X
Ulap = 92.0 X 105< Phucl > [ ( C)] em s~ (3.6)

2 x 109 0.5

Here X (12C) denotes the specific mass fraction of 2C. The uncertainty of uj.y, in equa-
tion (3.6) is approximately 10% (Timmes & Woosley, 1992). Typical values for w4, and §
in the early explosion phase are uj, ~ 107 cm s™! and § = 107° cm (Timmes & Woosley,
1992). Therefore, the width of the flame is very thin compared to other characteristic length
scales of the white dwarf. Full-star simulations that follow the explosion of the whole white
dwarf are usually unable to resolve the flame width. This is why the flame is sometimes
treated as a sharp discontinuity in these simulations.!

The Landau-Darrieus instability

The Landau-Darrieus instability (LD instability) is a pure hydrodynamic instability. Dar-
rieus (1938) and Landau (1944) revealed surprisingly that planar laminar flames in the dis-
continuity approximation are generally unstable. The dispersion relation of this instability
is given by (Landau & Lifschitz, 1991)

n 1
kaD:kulam< 1+/L——1>, 3.7
) A (it 37)

'During the deflagration the laminar flame becomes broader up to several centimeters (Timmes & Woosley,
1992). However, at this explosion phase the flame is already strongly affected by turbulence which may
broaden the flame up to several kilometers (see Section 3.2.3). Hence, strictly speaking, a turbulently
broadened flame cannot be considered as a sharp discontinuity anymore.
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3 Turbulence and delayed detonations in SNe Ia

where (1 = pruel/pash is the ratio of the density in the fuel to the ash (the burned material).
Due to the high heat generation in the burning processes and the partial lifting of the electron
degeneracy pguel > pash- Hence, R(w(k)Lp) > 0 follows for all wave numbers, leading to an
uninterrupted growth of the instability. In the vicinity of the center of the white dwarf, the
high densities and the associated high degree of the electron degeneracy lead initially to the
effect that the burned material can hardly expand, so that here ;1 ~ 1. However, the density
declines continuously from the center outward, which is further amplified by the expansion
of the star during the deflagration. In summary, the outward propagating flame becomes
more unstable during the explosion process. The growth of the perturbations, however, is
limited by cusp formation in the nonlinear regime and the flame is stabilized in a cellular
structure (Zel’Dovich, 1966; Ropke, 2003). Consequently, the flame is only deformed slightly
and its surface is increased mildly. The burning speed remains almost unchanged. Therefore,
the LD instability in deflagrations plays a subordinate role in the generation of turbulent
motions.

The Rayleigh-Taylor instability

In the description of the LD instability we indicated that in the deflagration phase a stratifi-
cation occurs, where denser unburned material lies on top of less dense burned material. Due
to the gravitational field of the white dwarf a configuration develops in which the gradients
of gravitational acceleration g and density show in antiparallel directions. This unstable
configuration is called the Rayleigh-Taylor instability (RT instability). The stability analysis
shows that the dispersion relation of this instability is given by (e.g. Chandrasekhar, 1961)

w(k)rr = 4 [ lg el —Pash oAt = \/kgert, (3.8)

Pfuel T Pash
where gog = gAt is the effective gravitational acceleration and At = (pguel — Pash)/ (Puel + Pash)
the Atwood number. In our case, we conclude from pgie) > pash directly that R(w(k)rr) > 0,
hence the configuration is unstable for all wave numbers, leading to an unrestricted growth
of perturbations. Characteristic for the RT instability is the development and merger of
hot rising bubbles of burned material in the nonlinear regime. Conversely, unburned dense
material descends and mixes with burned material in the interior of the star. Moreover,
the flame front becomes highly deformed, leading to the formation of mushroom cap like
structures, which occur predominantly at the parts of the flame that have propagated farthest
toward the surface of the white dwarf.

In contrast to the LD instability, there is no effective stabilizing mechanism for the RT
instability. However, the latter is only effective on large length scales and it evolves predomi-
nantly parallel to the direction of gravity. On small length scales the RT instability becomes
suppressed due to the competition of the time scale of the growth rate of the perturbations
with the nuclear burning time scale 7,c. One can derive a minimum length scale A, at
which the flame front can be affected by the RT instability. This scale (sometimes called the
fire polishing length) is given by (Timmes & Woosley, 1992)
47Tu12am

(3.9)

)\min =

Jeff
With decreasing density the width of the flame § grows (see Timmes & Woosley, 1992),
while the quantity Api, decreases (e.g. Figure 1 in Zingale et al., 2005). Hence, in the course
of the deflagration the RT instability can disturb the flame on smaller and smaller length
scales.
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3.2 Turbulence in SNe Ia

The Kelvin-Helmholtz instability

For two fluids that are in contact and that move with different velocities tangentially to their
boundary layer, shear instabilities may arise.?. The dispersion relation of this instability,
also known as the Kelvin-Helmholtz instability (KH instability), depends on the tangential

relative velocity Av of the fluids and is given by (e.g. Landau & Lifschitz, 1991)

kA v/ Pfuel Pash (310)

w(k KH = .
( ) Pfuel + Pash

We easily see that analogously to the LD- and RT instability R(w(k)km) > 0 for all wave
numbers. However, in deflagrations of SNe Ia, the KH instability appears only as a result of
the RT instability, since the latter is responsible for the occurrence of boundary layers that
may move with different tangential velocities along each other. Therefore, the KH instability
acts as a secondary induced instability.

The KH instability leads to a rapid eddy generation in the vicinity of the tangential
discontinuity in the nonlinear regime. It should be noted that effective shear flows may
be able to suppress the stability mechanism of the LD instability (e.g. Niemeyer, 1995).
However, it is not known to what extent the turbulent behavior of a flame may be partly
the result of the suspension of the stabilizing mechanism for the LD instability through the
KH instability.

3.1.3 Summary

All three described instabilities are characteristic for deflagrations in SNe Ia.? The outward
propagating flame is substantially affected by the RT instability on the large length scales,
leading to the formation of pronounced mushroom cap like structures at the flame front. In
addition, secondary induced shear instabilities lead to a strong eddy generation along these
highly deformed structures at the flame. The lack of sufficient stabilizing mechanisms for
both the RT- and the KH instability in the deflagration leads to the generation of turbulent
motions. We can estimate the flow characteristic in an exploding white dwarf with the
Reynolds number. The typical size of a Rayleigh- Taylor bubble is of the order of L ~ 107 cm,
while for the average flow velocity V ~ 107 cm s™! holds. The shear viscosity 7 is of the
order of 10°g cm™! s7! (e.g. Nandkumar & Pethick, 1984), hence for a typical density of
10° g cm ™3 we find for the kinematic viscosity v = n/p ~ 1cm? s~!. Inserting these values in
equation (3.1) we find a huge Reynolds number of ~ 10 . Therefore, in an exploding white
dwarf we may assume Re > Regt. Such flows are commonly described as fully developed
turbulence, of which the properties are investigated in the following.

3.2 Turbulence in SNe la

In this section the turbulent phenomena are explained that are triggered by the described
instabilities in the preceding section. In general, there are several, partially mathematically

2Under the presence of a gravitational force that points in the direction normal to the contact interface one
can derive that the flow is stable, if the ratio of the buoyancy force to the inertia force (this ratio is also
called the Richardson number) is greater than 1/4 (Chandrasekhar, 1961).

3There are other instabilities, like the diffusive-thermal instability that, however, have no significant effects
on the flame propagation, since R(w(k)) < 0.
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3 Turbulence and delayed detonations in SNe Ia

sophisticated approaches to describe and investigate the properties of turbulence. For in-
stance, a study of the Navier-Stokes equation (3.2) reveals that the chaotic and turbulent
behavior of fluid motions arises from the nonlinear term (v-V)w. In three-dimensional objects
(like a white dwarf) also turbulence has to be treated as a three-dimensional phenomenon
(e.g. Mathieu & Scott, 2000). This is why all considerations and analyses of this work will be
three-dimensional. Turbulence is also part of chaos theory and turbulent structures may have
a fractal character on certain length scales. Due to its chaotic and unpredictable behavior,
statistical methods play an important role in the analysis of turbulent flows. In particular,
a statistical approach is useful in the case of Re > Reit, which is valid for turbulent defla-
grations of white dwarfs. Under this condition some important scaling relations of turbulent
velocity fields can be derived without challenging mathematical considerations. A pioneering
work in this field was performed by Andrei Nikolajewitsch Kolmogorov, who made major
contributions in the probability theory of turbulence. He was able to find important rela-
tions between characteristic quantities of a given turbulent system and summarized them in
his theory in the form of different hypotheses (Kolmogorov, 1941, 1991). The Kolmogorov
theory is only valid for incompressible flows.

3.2.1 Isotropic turbulence
The hypotheses of Kolmogorov

Similar to Section 3.1 we consider a fully developed turbulent and incompressible flow with
the kinematic viscosity v. We define now L as the integral length scale on which turbulence
is generated and 7 as the so-called Kolmogorov length scale, on which kinetic energy is
dissipated. Under these conditions the hypotheses of Kolmogorov apply that are summarized
in the following (see Pope, 2000; Frisch, 1995):

e Hi. Isotropy hypothesis: At sufficiently high Reynolds numbers a turbulent flow be-
haves on small length scales ¢ < L statistically isotropic.

e H2. First similarity hypothesis: Under the condition of HI the statistical properties
of turbulent flows on small length scales are explicitly given by the kinematic viscosity
v and the energy dissipation rate e.

e H3. Second similarity hypothesis: Under the condition of HI the statistical properties
of turbulent flows on a scale ¢ in the range of n, < ¢ < L are explicitly given by the
energy dissipation rate € and independent of the kinematic viscosity v.

Consequences of the Kolmogorov hypotheses

From the Kolmogorov hypotheses several interesting consequences can be inferred. By H1
the behavior of a turbulent flow on scales £ < L remains unaffected of possible anisotropic
effects on large scales £ ~ L. From a mathematical point of view this means that broken
symmetries of the Navier-Stokes equation by boundary effects or effects on large scales are
restored on smaller scales (Frisch, 1995). The specific kinetic energy exiy(¢) of a turbulent
system is proportional to v2(¢), where v/(f) are the turbulent velocity fluctuations on the
scale £. From H3 it follows that the average energy dissipation rate (¢) in the range of length
scales i, < £ < L, which is defined as the inertial range, is given by

d v2(0)  v3(L)

&) = e ~ oy = 71

= const e < £ <L L. (3.11)

24



3.2 Turbulence in SNe Ia

Hence, (€) is a constant and scale-independent quantity in the Kolmogorov theory that is
simply determined by the integral length scale and the velocity fluctuations on this scale.
Strictly speaking, equation (3.11) does not describe a dissipation of kinetic energy, since (€)
is by H3 independent on v in the inertial range. In fact, a transfer of kinetic energy from
larger to smaller length scales in the form of an energy cascade (also known as the Richardson
cascade (Richardson, 1922)*) occurs, without any interaction with viscous forces. In this
context, (€) complies with a constant energy flow of exin (¢)/Teddy (), Where Teqay (€) = £/V'(£)
is the so-called eddy turnover time. For fully developed turbulent flows a universal scaling
behavior of v/(¢) in the inertial range can be found that is given by

o (0) ~ 07, (3.12)

where « is a characteristic scaling exponent. In the case of Kolmogorov’s theory, we find
with equation (3.11) directly

V' (0) ~ 013 (3.13)

and we see & = 1/3. Using this relation we can estimate the Kolmogorov length scale 7. By
H2, on this scale the viscosity v leads to a dissipation of kinetic energy. With the turbulent
Reynolds number Rei(¢) = £ -v'(¢)/v we can write

/ 4/3 ; \1/3
. €
Rey(m) = B0 _ e {9 (3.14)

v 14

where in the second step equation (3.11) was applied. From the scaling behavior in equa-
tion (3.13) it follows that Re;(¢) decreases for smaller length scales. Hence, it is allowed to
set Rey(n) = 1 and we eventually find

M = ((Ve?;) 1/4- (3.15)

With v = 1ecm? s7!, L = 107cm and v(L) = 107 cm s~ (see Section 3.1.3) we find with
equation (3.11) that . is of the order of 1072 cm only. This further implies L/m ~ 100,
hence to study all turbulent effects of deflagrations in SNe Ia, one has to take 10 orders of
magnitude in length scales into account. In general, this estimate can also be made with the
Reynolds number only. In analogy to equation (3.14) we can write

Rey(L) LY (e)'/*
Req(nx) v 1733 <e>1/3.

(3.16)

With Rey(L) = Re = 10* (see Section 3.1.3) and Req(n) = 1 we find the useful relation
(see also Landau & Lifschitz, 1991)

L
s Re3/* ~ 101, (3.17)

‘L. F. Richardson originally summarized the interplay of large and small scales with the rhyming verse
"Big whirls have little whirls that feed on their velocity, and little whirls have lesser whirls and so on to
viscosity” (Richardson, 1922).
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3 Turbulence and delayed detonations in SNe Ia

From equation (3.11) and (3.15) it follows that the energy dissipation €, on the Kolmogorov
scale can be written as

(3.18)

Using equation (3.15) the velocity v'(nx) and eddy turnover time 7eqdy(nx) on the scale 7y
are given by

V) = (- en) P = (v en) ', (3.19)
B n B 1 1/2
oy () = s = (£ (3.20)

Dynamics of turbulent eddies

With equation (3.11) we also can write for v/(¢)

v'(0) ='(L) <£> 1/3. (3.21)

The time scale for the rotation of an eddy on the length scale ¢ can be derived with equa-
tion (3.13), where we find Teaay(£) = £/v'(£) o £%/3. Using equation (3.21) it follows

/3 2/3
Teday (0) = ,fg) _ UL/<L) 25 = 1oy (L) (ﬁ) . (3.22)

(%

From this equation we see that for smaller length scales, the dynamical eddy turnover time
decreases. Hence, turbulent structures can evolve faster on these scales. Here we find
again that the effects that are dominating on large length scales £ ~ L have no significant
influence on much smaller length scales, since structures on scales £ < L may have been
evolved already by several dynamical time scales.

Turbulent eddies can be further considered as a transport and mixing mechanism. In this
picture, two fluid elements in a turbulent flow that are separated by a distance ¢ can be
brought together in a half eddy turnover time

Teddy, ; (£) = 0.5 - £/0'(£). (3.23)

Hence, Teady, ,, (¢) is the minimum required time for the mixing of two different fluids on the
scale £.

Energy spectra and velocity structure functions

The statistical analysis of the turbulent velocity field in a fluid is a crucial method to derive
scaling and correlation properties on certain length scales of the turbulent flow. The major
task of such a statistical study is to obtain scaling exponents that may reveal the properties
of turbulence in the underlying fluid. Two commonly used methods will be presented in the
following.

From equation (3.12) we find for the specific kinetic energy the relation ey, (£) ~ £2¢. If
we change from real to Fourier space ey (k) ~ k=2 holds. From here we can derive a scaling
relation of the energy spectra E(k) that is given by

d

E(k) = %ekm(k) ~ k2ot (3.24)
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In the case of Kolmogorov’s theory, we find with o = 1/3 directly EX°! ~ k=5/3. This
is the scaling relation of the Kolmogorov energy spectrum that is valid for isotropic and
incompressible turbulence.

In the other method we first consider the absolute velocity difference dv(r, £) of two fluid
elements, whose distance is £ = |£|, where r is a position vector of one of the fluid elements.
We can write

ov(r, ) = |v(r+€) —v(r)|. (3.25)

From here we can obtain correlation properties of the turbulent velocity field by averaging
over a sufficient number of velocity differences of various fluid elements that have different
distances £. We define the velocity structure function Sy, of the order p as

Sp(0) = ((Do(r, £))F) ~ <. (3.26)

In the case of Kolmogorov’s theory, the scaling exponent ((p) of the first order is ((1) =
a = 1/3. For every successive order, ((p) increases by an additional 1/3, so that in general
CKOl(p) = «a - p = p/3 for isotropic and incompressible turbulence. The calculated scaling
properties of the turbulent velocity field are more convincing the higher the orders that can
be obtained from the analysis. However, to obtain reliable scaling exponents of very high
order the calculation of structure functions may become computationally too expensive.
From a statistical point of view one also needs a very large number of different point pairs
over that can be averaged.

It should be noted that the isotropy of turbulence can be further investigated by splitting
up the velocity field into different directions. An exploding white dwarf can be considered
as a spherical system, so that the turbulent velocity field can be split up into a radial and
an angular component (Ciaraldi-Schoolmann et al., 2009). For isotropic turbulence, the
corresponding radial and angular structure functions are equal (see Figure 2 in Ciaraldi-
Schoolmann et al. (2009)). If this is not the case, anisotropic effects in the turbulence have
to be taken into account.

Anisotropic Turbulence

According to H1, anisotropic turbulence may occur on large length scales. In particular,
the RT instability may cause anisotropic effects in the turbulent velocity field, since this
instability evolves anisotropic itself, mainly in the direction parallel to gravity. Similar to
the Kolmogorov theory we can find a specific scaling relation of the velocity field with the
length for the RT instability which is given by (Davies & Taylor, 1950; Sharp, 1984)

vRT = B/ gertl, (3.27)

where the constant B is approximately 1/2. Hence, for turbulence that is driven by the RT
instability, vry o £1/2 and thus o = 1 /2. Due to the different scaling properties we may
expect a transition from Kolmogorov to RT instability driven turbulence on a certain length
scale. Here Niemeyer & Woosley (1997) give an estimate for this length scale of

lkor/rr ~ 10° cm, (3.28)

which separates the Kolmogorov turbulence on scales ¢ $ fi,/r from the RT instability
driven turbulence on scales £ 2 fkq/rr- For considerations of radial velocity fluctuations
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that always point in the direction parallel to gravity, the described transition was found by
Ciaraldi-Schoolmann et al. (2009), where these calculations were based on an analysis of the
properties of turbulence in predominantly burned material. In analogy to the Kolmogorov
theory, we can derive useful scaling relations for the RT instability driven turbulence. With
equation (3.27) it follows for the structure functions S, ~ P2 with the scaling exponents

¢®T(p) = p/2. For the energy spectrum we find with a = 1/2 and equation (3.24) EXY (k) ~
k=03,

Summary

On the largest length scale L, kinetic energy is injected into the turbulent flow that becomes
apparent in the motion of the largest turbulent eddies. These eddies decay to smaller eddies
that further decay into smaller vortex structures. In this way, kinetic energy is transferred
due to a cascade process in the inertial range n, < ¢ < L from large to small length
scales. This behavior is illustrated in Figure 3.1, where a sketch of the energy spectrum is
shown. As long as turbulence is fully developed, incompressible and isotropic, the cascade
process appears as a power law in the energy spectrum that is given by E(k) k=5/3. In
the presence of the RT instability the anisotropy in the velocity field in the range of length
scales lko/rr S ¢ S L may lead to a change in the scaling properties of the turbulent flow
in the direction parallel to gravity. In this case, a power law of the form E(k) k—6/3
can be found (see also Figure 1 in Ciaraldi-Schoolmann et al., 2009). By approaching the
Kolmogorov scale n kinetic energy is converted to internal energy in the form of small
vortex structures due to effective viscous forces on these scales. The flow on these scales has
a laminar character.

3.2.2 Intermittency

Most studies of turbulent velocity fields that are based on computations of velocity structure
functions reveal that for sufficiently high orders ((p) < « - p. This anomaly is attributed to
the intermittent character of turbulent motions. An intermittent system has the ability and
affinity to change spontaneously between a periodic and chaotic behavior. The system has
regular and steady phases with approximate periodic time dependence that is superimposed
by sudden unpredictable, irregular and chaotic phases (e.g. Frisch, 1995).

The underlying cause of intermittent turbulence is not well understood, hence there are
several theoretical models that try to give a prescription for this phenomenon. Here, we
briefly summarize a basic picture of intermittent turbulence that is described in more detail
in Frisch (1995)(see also Frisch et al., 1978). A commonly used explanation for intermittency
is the spatial inhomogeneity in the energy dissipation. Illustratively the daughter eddies that
emerge from the mother eddy will fill less space, so that some part of the kinetic energy is
not transferred, but already dissipated in the inertial range due to eddy decays. In addition,
kinetic energy will not dissipate on the smallest scales in always exactly identical vortices,
but in different vortex structures. The different amount of dissipated kinetic energy in these
diverse structures in turn leads to a spatially inhomogeneous and intermittent distribution of
the turbulent intensity. This behavior becomes apparent in the occurrence of spontaneously
very high velocity fluctuations that may play an important role for the DDT in the delayed
detonation model (see Section 3.3).
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Fig. 3.1: Sketch of the turbulent energy spectrum that includes only radial velocity fluctuations
under the presence of the RT instability.

3.2.3 Turbulent deflagration
The flamelet and distributed burning regime

After we discussed the properties of turbulence we can now describe the different phases of
the deflagration of white dwarfs. With the ignition of the deflagration in the central area of
the white dwarf, a thermonuclear flame is born that starts to propagate outward toward the
surface due to heat conduction processes. In the very early stage, the characteristics of the
flame are approximately given by laminar quantities, since instabilities have not evolved so
far. Hence, for the burning speed vgame = Ujam holds.

During the deflagration the RT- and the KH instability appear, leading to turbulence
production that in turn affects the flame propagation. There are different types of turbulent
combustion that are usually summarized in a regime diagram (e.g. Abdel-Gayed et al., 1984,
1987; Borghi, 1985; Peters, 1986). Such a diagram is shown in Figure 3.2 in a slightly
modified version of Peters (1999). The degree of interaction of turbulence with the flame
can be estimated with a specific dimensionless number. The Karlovitz number

Tnuc
Ko= —7F-— 3.29
Teddy (1) (8.29)

measures the ratio of the burning time scale to the microscopic turbulent time scale of the
flow. As long as Ka < 1, turbulence is not able to affect the internal flame structure.
The interaction of the flame with turbulence on large scales is purely kinematic and the
microphysical processes on small scales within the flame remain unaffected by turbulence.
Illustratively the flame burns so fast through the large turbulent eddies that the latter cannot
sufficiently rotate to modify the flame on scales £ ~ §. This burning regime is the so-called
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Fig. 3.2: Regime diagram for premixed turbulent combustion, based on Peters (1999).

flamelet regime which can be divided further into two sub-regimes. With increasing ¢ the
velocity v'(¢) of the turbulent eddies grows (see equation (3.21)). As long as v'(£) < ujam
turbulence modifies the flame surface only marginally. This regime is called the wrinkled
flamelet regime. On larger scales ¢ > §, v'(£) may become comparable to or higher than
Ulam- The regime with Ka < 1 and v'(¢) 2 ujay, is the so-called corrugated flamelet regime
where turbulence significantly modifies the shape of the flame.

From equation (3.18) we find for the kinematic viscosity the relation

v=1v"(m) " k. (3.30)
The Schmidt number
v
Sec=— 3.31
-7 (331)

is defined as the ratio of viscous diffusivity to mass diffusivity D;. Following Peters (2000)
it seems useful for scaling purposes to assume equal diffusivities for all reactions. With a
Schmidt number of unity it follows v = D; and the flame width and the kinematic viscosity
can be written as (see Peters, 2000)

5= = (3.32)

V=3" Uam. (3.33)
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Inserting equation (3.18) in (3.20) and using equation (3.33) for v yields
1/2 AN 1/2 2
v
Teddy (k) = <> = <nk> _ e . (3.34)
€ -0
Then the Karlovitz number reads

Ka— Tnuc _ 0 ulam2' 0 _ iz
Teddy (nk) Ulam T M

(3.35)

Therefore, as long as n, > § the flame resides in the flamelet regime. The transition between
the burning regimes can also be described with the Gibson scale {4,s which is defined as
the length scale at which Teqdy ((gibs) = Tnue and equivalently v'(gins) = Ulam holds (Peters,
2000). For v'(¢) and L4, we conclude from the Kolmogorov theory with equation (3.21)

v'(0) = Ulam <z€> 1/3, (3.36)

gibs
Ulam \
(2o .
For ¢ = n we find with equation (3.18) and (3.33) for fgips
W \* _ U _ s Me T

Combining equation (3.35) with equation (3.38) yields another useful expression for the
Karlovitz number:

2 2 1/2
Ka=O -0 (0" (3.39)
M2 532 \Lgibs

gibs
Hence, an equivalent condition for burning in the flamelet regime is £gip,s > 9.

For Ka > 1 (resp. flgins < 0), turbulence is strong enough to modify the internal flame
structure and to distribute material within and around the flame. This is why this regime
is called the distributed burning regime. As described in Section 3.1.2 the flame is composed
of a diffusion and a reaction zone, while the latter may be much thinner than the former.
Therefore, the flame enters the thin reaction zone regime first, where turbulence will only
affect the diffusion zone which becomes broader, while the burning continues in the thinner
reaction zone. Eventually turbulence becomes able to affect the internal flame structure on
scales §, < 0 where &, denotes the reaction zone thickness. This is the regime of broken
reaction zones. We can replace § with ¢, in equation (3.35) and use a modified Karlovitz
number Kas, which is given by

52 52
_ Yr _ T
Kas, = = Kag. (3.40)

For Kas, =1 and a typical width of the reaction zone of §, ~ 0.1J we find Ka 2 100 in the
regime of broken reaction zones (e.g. Peters, 1999).
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Turbulent combustion and mixing in the deflagration phase

In the turbulent deflagration phase, the burning speed vgame 18 not given by w4, anymore,
but by the turbulent velocity fluctuations v'(¢) that are much faster at the prevailing low
densities. From equation (3.37) we see that Lgins scales with ujay to the third power. There-
fore, lqins declines with decreasing fuel density (see equation (3.6) and Figure 2 in Niemeyer
& Woosley (1997)). Since the density declines continuously in direction outward, which is
additionally enhanced by the expansion of the star, /g falls steeply during the explosion.
In summary, turbulence will affect the flame on an increasing range of length scales, leading
to an acceleration and growth of the width § of the flame with time.

For £gips < 0, Thuc is exclusively given by the fastest turbulent process that can transport
unburned material to the flame. The time scale for this process is determined by 7eqqy (¢).
The reason is that eddies in the vicinity of the flame are able to reach unburned material
faster than the flame itself, and mix it in a time of the order of £/v'(¢) into the reaction
zone. We follow the description of laminar burning in Section 3.1.2 but substitute now 7q;g
by Teddy(£). In equilibrium, Thue = Teddy(¢) and we find (e.g. Damkohler, 1940; Niemeyer,
1995)

o~ U,f@ and 5(0) = Toue - Vame () & £, (3.41)
where vgame(€) = v'(€) was used. It is remarkable that for ly,s < d, the burning time scale
Tnue 18 completely independent of the thermal diffusion. A further interesting consequence
is that the flame width may grow as large as the turbulent integral scale. In this case,
Toue depends only on the largest turbulent velocities v(L) and we easily find analogously to
the equations (3.41) the relations vgame(L) = v'(L), Thue & Teddy(L) ~ ﬁ, and § ~ L.
Under these conditions the behavior of the burning can be estimated with an additional
dimensionless number. The turbulent Damkdéhler number

Teddy (L)

Tnuc

Day = (3.42)
measures the ratio of the macroscopic turbulent time scale of the flow to the burning time
scale. Hence, the only difference between Ka and Day are the considered length scales of the
turbulent flow.? The regime with Da; < 1 is called the well-stirred reactor (WSR) regime
(Peters, 2000) and the regime with Day > 1 is the stirred flame (SF) regime (Kerstein, 2001).
Both regimes were studied in detail by Woosley et al. (2009) and Aspden et al. (2010) in
the context of turbulent combustion in SN Ia explosions. In the WSR regime, 6 > L holds.
Since Teddy (L) < Thue the material at the flame is mixed before burned. The burning occurs
on a well defined nuclear time scale (e.g. Woosley et al., 2009; Aspden et al., 2010). The
SF regime constitutes a very complex regime of turbulent burning. Here turbulence on the
integral scale cannot fully mix the material before it is burned by the flame. Consequently,
there exists no well-defined nuclear time scale anymore (e.g. Woosley et al., 2009; Aspden
et al., 2010).

Finally, in the late phase of the deflagration, the flame is propagated so far that at the
prevailing low densities the thermonuclear combustion ceases. In this phase, no more energy
is injected into the turbulent energy cascade on the scale L. The residual turbulent energy
in the inertial range is dissipated on the smallest scales in a time of approximately 7eqqy (L)
and the energy cascade vanishes, leading to the freeze out of turbulent motions.

5Sometimes Day is not related to a fixed macroscopic scale in literature, hence Da; — Da¢(l). With
equation (3.29) we find Dag () = Ka™* .
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3.2.4 Fractal description of the flame

In the inertial range n < ¢ < L, turbulent structures behave self-similar. Therefore, when
the flame is deformed by turbulence, its structure may be similar to that of fractals (e.g.
Gouldin, 1987; Kerstein, 1988; Woosley, 1990; Niemeyer, 1995). From a mathematical point
of view, however, the flame is no ideal fractal, since deformations and curvatures of the flame
are not sustained on very small length scales, which results particularly from the decrease of
the interaction of turbulence with the flame. The range of length scales at which a fractal
description of the flame seems appropriate is uncertain. It is generally agreed that the
largest scale is the turbulent integral scale L (e.g. Gouldin, 1987; Kerstein, 1988; North &
Santavicca, 1990). Peters (1986) and Kerstein (1988) propose that the smallest scale is lgibs
while Gouldin (1987), North & Santavicca (1990) and Giilder (1991) argue that this scale
should be 7. We will follow here Peters (1986) and Kerstein (1988) and assume that within
the range of length scales of £4,s < £ < L a fractal description of the flame can be applied.
A fractal F' can be defined as (Mandelbrot, 1983)

F o 0P, (3.43)

where 5 € [0;1] is the fractal excess. The flame can be considered as an object whose two-
dimensional extension scales in the three-dimensional space with the characteristic length
scale ¢ to the power of 5. The fractal dimension D is defined as

D=n—1+8, (3.44)

where n is the integer dimension of the space the fractal is embedded in. In our case, n = 3
holds, hence D € [2;3].° We can use the scaling relations of v'(£) to determine the fractal
dimension of the flame theoretically. If the speed of the turbulent flame is interpreted in a
geometrical way, so that v'(¢) oc F holds (e.g. Woosley, 1990; Niemeyer, 1995; Niemeyer &
Woosley, 1997), we find v/(¢) o« ¢%. When comparing this relation with equation (3.13), we
easily see § = 1/3 for the Kolmogorov theory. Using equation (3.44), the fractal dimension
reads

Dol = 2.33. (3.45)
Following Sreenivasan (1991) and Kerstein (1991) the fractal dimension for intermittent

turbulence can be written as

2

7
Dturb — § + (1 - D1/3)7 (346)

w

where Dy 3 is called the generalized dimension, of which the value was experimentally de-
termined to 0.96, leading to Dy, = 2.36 (Halsey et al., 1986; Sreenivasan, 1991). Finally, a
fractal dimension for large length scales can be determined where the RT instability is the
dominant process that drives the turbulent motions. With vry o< £1/2 (see Section 3.2.1) we
find

Dgr = 2.5. (3.47)

n general, D is not uniquely defined. From an experimental point of view D can be derived, for instance,
from the Hausdorff dimension, the self-similarity dimension or the box-counting dimension (e.g. Feder,
1988; Schroeder, 1991).
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It should be noted that the mere existence of the LD instability leads to the effect that the
flame has a fractal character (Blinnikov & Sasorov, 1996). However, compared to the RT-
and KH instability the influence of the LD instability on the flame characteristics appears
only marginal in the turbulent deflagration phase (see Section 3.1.2). But it has not been
strictly shown yet (and it is probably hard to examine) whether and to what extent the
fractal character of the flame in a turbulent deflagration is a result from effects of the LD
instability.

3.3 Theory of Deflagration-to-Detonation Transitions

3.3.1 Introduction

As indicated in Section 2.3.4, the delayed detonation model can reproduce some of the main
features of observed normal SNe Ia quite well. However, the mechanism that causes the
transition from a subsonic deflagration to a supersonic detonation is unclear and discussed
controversially. Even if some recent studies reveal that DDTs may happen in unconfined
media (Poludnenko et al., 2011) we use here the concept of the so-called Zeldovich gradient
mechanism (Zel’dovich et al., 1970) that is outlined in the following. We consider a region
at the flame front of a specific size with a rather uniform temperature and fuel fraction. This
can be translated to a spatial region that has a shallow gradient of induction times. In this
region a spontaneous ignition of the fuel may occur, leading to a supersonic reaction wave.
If the phase velocity of this wave matches a particular velocity (the so-called Chapman-
Jouguet detonation velocity (Chapman, 1899; Jouguet, 1905)), the wave may transition into
a detonation. Similar to the described detonation model in Section 2.3.2, the ignition will
build up a shock in this case that propagates through the white dwarf (Khokhlov et al., 1997;
Niemeyer & Woosley, 1997), where the compressed material is burned thermonuclearly to
heavier elements.

The gradient mechanism was first applied to SNe Ia by Blinnikov & Khokhlov (1986,
1987) and Khokhlov (1991a) and further investigated by Khokhlov (1991b), Khokhlov et al.
(1997) and Niemeyer & Woosley (1997). The results of their analyses show that the described
induction time gradient only occurs by a sufficient mixing of hot burned and cold unburned
material. This mixing in turn requires a strong interaction of turbulence with the flame,
hence the properties of turbulence in the deflagration phase are crucial for a DDT. Too intense
turbulence can also cause local fluctuations in the temperature and chemical composition
that may prevent the formation of sufficiently shallow induction time gradients, particularly
in the flamelet regime (Niemeyer, 1999; Niemeyer et al., 1999).

The major challenge for the investigation of DDTs in SNe Ia is that this process occurs
on microphysical length scales that are not resolved in full-star simulations which follow
the explosion of the whole white dwarf. Therefore, it is difficult to study the microphysical
properties of DDTs and its implications for the overall SN Ia explosion simultaneously. This
is why DDTs are analyzed separately in small-scale simulations which are able to take the
microphysics into account. However, in these studies the problem arises that the conditions
at which DDTs occur are determined by the dynamics on the large scales.

On the other hand, for large-scale simulations the question arises, how DDTs can be
modeled properly. Most of the developed DDT models so far include only one parameter
(Arnett & Livne, 1994a; Khokhlov et al., 1997; Hoflich et al., 1998; Livne, 1999; Gamezo
et al., 2005; Bravo & Garcia-Senz, 2008; Townsley et al., 2009; Jackson et al., 2010; Krueger
et al., 2010), commonly a certain critical fuel density perit that has to be reached by the
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3.3 Theory of Deflagration-to-Detonation Transitions

flame in order to trigger the DDT. The choice of pcit has a major impact on the produced
%6Ni masses, and hence on the brightness of the explosion. It was found that values of the
order of peit ~ 107 g cm™ may produce %5Ni yields that are consistent with observations
(e.g. Hoflich, 1995; Hoflich et al., 1998; Dominguez et al., 2001). At these densities the
deflagration is already close to extinction.

The problem of these one-parameter models is the fact that the mixing process of burned
an unburned material is given by turbulent quantities and not by a (sometimes arbitrarily
chosen) critical fuel density. If no further constraints are set in these models, a DDT will
always occur, since the simple constraint pgel < perit at the flame will practically always
be met during the deflagration. In specific deflagrations, however, the presence of relatively
weak turbulence may lead to an insufficient mixing of the burned and unburned material, so
that DDTs will in reality not occur. Finally, the constraint peie] < perit Will usually be met
first by the parts of the flame that are propagated farthest toward the surface of the white
dwarf. These parts are the heads of the mushroom cap like structures that occur due to the
influence of the RT instability. As shown later, turbulence is here significantly weaker than
alongside of these structures where strong shear instabilities occur.

From these considerations we argue that a criterion for a DDT should be based on tur-
bulent quantities. One necessary constraint for the DDT is the burning in the distributed
burning regime (Niemeyer & Woosley, 1997). This criterion has been applied to two- and
three-dimensional simulations by Golombek & Niemeyer (2005) and Répke & Niemeyer
(2007). In general, the two relevant quantities 6 and fgips for this criterion are not resolved
and have therefore to be modeled somehow in order to evaluate where distributed burning
sets in (see Section 3.2.3). However, based on the turbulence driving mechanism, Niemeyer
& Woosley (1997) and Niemeyer & Kerstein (1997) derived an upper threshold value for the
fuel density for distributed burning. In this context, the density is an important parameter
after all, since it can be qualitatively used to assess of whether the flame has already entered
the distributed burning regime (e.g. Niemeyer & Woosley, 1997). As shown in the following,
there are additional constraints for a DDT within this burning regime that also concerns the
fuel density.

3.3.2 Constraints on DDTs
Turbulence

For a detailed study of DDTs it is inevitable to analyze the microphysical nature of turbulent
flames in white dwarfs. Such studies were carried out extensively by Lisewski et al. (2000),
Aspden et al. (2008) and Woosley et al. (2009). Although their analyses provide no evidence
for DDTs, we can derive necessary constraints from these studies. The most important
constraint for a DDT is the occurrence of particularly high velocity fluctuations at the
flame. Here the question arises, of whether turbulence remains strong enough for a DDT
in the phase where the deflagration is close to extinction. The RT instability in the late
deflagration phase becomes weaker until the expansion of the star will freeze out all turbulent
motions (Khokhlov, 1995). From microphysical studies, Lisewski et al. (2000) argue that the
turbulent velocity fluctuations must be of the order of 10® cm s~! for a DDT, which is already
20 — 25% of the sound speed in the unburned material of the white dwarf. Ropke (2007)
found in numerical simulations of SNe Ia that these high velocity fluctuations, although
rare, may indeed occur at the flame. From a statistical point of view we can translate this
to a non-vanishing probability of finding these fluctuations. In addition, the study of Ropke
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(2007) was performed for some instants of time only. Hence, the occurrence of one or a few
of these fluctuations at the flame during the entire late deflagration phase may reach a high
probability. Recent studies of Woosley et al. (2009) show also that velocity fluctuations of
the order of 0.5 x 108 cm s~! maybe already sufficient to trigger a DDT.

The average velocity fluctuations at the flame in the turbulent deflagration phase are
approximately 107 cm s~! (e.g. Figure 1 in Ropke, 2007)). Turbulent velocity fluctuations
of 0.5x10% cm s™! or even 108 cm s~ are therefore statistically expected to occur much rarer.
The occurrence of these high velocity fluctuations can only be explained by intermittency,
of which the properties may be crucial for a DDT (Pan et al., 2008). Weak intermittency in
predominantly burned material of the white dwarf was found by Schmidt et al. (2010). This
analysis was based on the computation and fitting of characteristic scaling exponents of the
turbulent velocity field that were obtained from the calculation of velocity structure functions
up to the sixth order, using the data of a highly resolved deflagration model (Ciaraldi-
Schoolmann et al., 2009; Ropke et al., 2007a). The fact that Ropke (2007) also found high
velocity fluctuations in the same model may indicate that intermittency is also present at the
flame. But the analysis of Ropke (2007) has never been intended to study intermittency in
detail, hence some uncertainties about the origin of these high velocity fluctuations remain.
Anyway, we conclude that a certain degree of intermittency in turbulence at the flame is
necessary for a DDT to occur.

Fuel fraction and fuel density

The sole fact that high velocity fluctuations exist somewhere at the flame is not sufficient
for a DDT to occur. It is also important that these fluctuations are predominantly located
in the unburned material within the mixed region. The minimum amount of fuel Xf]?lgT that
is required for the ignition and development of a self-sustained propagating detonation wave
depends on many quantities, such as the fuel density pgue1, the chemical composition of the
local material as well as the fuel temperature (Arnett & Livne, 1994b; Khokhlov et al., 1997;
Seitenzahl et al., 2009a). In general, the ignition in a region that contains a too low amount
of fuel cannot build up the required shock strength for the detonation. Due to the described
dependencies, there is no general value for XEIBT for triggering a DDT. A detailed analysis
in this context is given in Seitenzahl et al. (2009a) for instance.

To estimate a value for pge for a DDT, we first ensure that burning takes place in the
distributed burning regime. Here Niemeyer & Woosley (1997) found that this condition is
approached for densities lower than 3 x 10" g cm™3. But there are further constraints for
detonations in the distributed burning regime. As long as a balance between turbulent mixing
and burning exists, DDTs may be prevented (Woosley, 2007). This balance is disturbed
when the flame width 0 approaches the integral scale L, where the unsteady nature of the
burning becomes important. The condition ¢ ~ L is met, when Day = 1 (see Section 3.2.3),
which is therefore an additionally necessary constraint for a DDT in the distributed burning
regime (Woosley, 2007).” For this case, Woosley (2007) derived a density range of ppe =
(0.5...1.5) x 10" g cm™3 at which DDTs are expected to occur. It should be noted that
Woosley (2007) assumes L ~ 10 km, which is of the same order of magnitude as i, /rr (see
Section 3.2.1). In the analysis of Ciaraldi-Schoolmann et al. (2009), L seems to be larger,
since kinetic energy is injected into the cascade on larger length scales, similar to the case

"Woosley et al. (2009) further argue that DDTs can only occur in the SF regime, where Da, > 1. However,

there is no clear conclusion yet at which value of Daiy DDTs are most probable. According to Woosley
et al. (2009) DDTs are expected for Day ~ 1...10.
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shown in Figure 3.1. However, at fkq/rr the isotropy in the turbulence is broken, hence
in the context of the study of Woosley (2007) we may define Lio = lko/rr as the integral
length scale for isotropic turbulence (see also discussion in Schmidt et al., 2010). Whether or
not Day 2 1 holds for the burning processes in the case of Lio < § < L under the influence
of an anisotropic turbulent velocity field is not known. However, as shown later, we have
to take into account the different scaling properties of the turbulent velocity field for length
scales smaller and larger than (i /gy for a modeling approach for DDTs.

Critical size and mixing of the DDT region

Finally, a region that meets the described constraints for the quantities v'(¢), Xf]igT and pruel

has to exceed a critical length scale f.; for a DDT (e.g. Khokhlov et al., 1997; Niemeyer
& Woosley, 1997; Dursi & Timmes, 2006; Seitenzahl et al., 2009a) that is approximately
10% cm (e.g. Khokhlov et al., 1997; Seitenzahl et al., 2009a). As shown later, the size of this
region has to be derived from the flame geometry, hence the fractal dimension of the flame
becomes important.

In Section 3.2.1 we introduced with the half eddy turnover time 7eday, ,,(¢) = 0.5 - £/v'(¢)
(equation (3.23)) a time scale which constitutes the minimum required time for the mixing
of two different fluids (like the fuel and ash in a DDT region) on the scale ¢. However,
as outlined in the following the eddy turnover time depends on the degree of anisotropy
and intermittency in the turbulent motions that are both not considered in equation (3.23).
For isotropic turbulence equation (3.22) holds. To account for anisotropic effects on certain
length scales the exponent of 2/3 in equation (3.22) has to be modified accordingly on
these scales, which consequently affects the eddy turnover time. Moreover, for the study of
DDTs we restrict the considerations to high turbulent velocity fluctuations that are mainly
attributed to intermittency. When we fully exclude the average velocity fluctuations that
occur far more frequently and obey well-defined statistical properties (see Section 3.2.1), the
picture of a steady and undisturbed energy cascade with a well-defined scaling relation breaks
down. This becomes even more obvious, when we consider that the high velocity fluctuations
may originate from inhomogeneous energy dissipation rates on different length scales due
to intermittency in the turbulent motions (see Section 3.2.2). The eddy turnover time in
equation (3.22) relies on a constant energy dissipation rate in the inertial range. Therefore,
the real eddy turnover time in a region with very high turbulent velocity fluctuations may
significantly deviate from the estimated value for Teqdy, ,(¢) With equation (3.23). As shown
later in Section 5.2 both the degree of anisotropy and intermittency in the vicinity of the flame
are difficult to estimate and not well known. In the following, we neglect the influences of
anisotropy and intermittency on the eddy turnover time and assume an undisturbed mixing
of the fuel and ash on the scale £.,it. Then we can estimate the time for the mixing process
with equation (3.23), where we assume that the fuel and ash can be mixed by a turbulent
eddy of size £ in a time of

Teddy, /o (ecrit) =0.5- gcrit/v/(gcrit)- (348)
With fege = 10°cm and v'(fergy) = 10%cm s™! (Lisewski et al., 2000) it follows
Teddy, j (lerit) = 0.5 x 10725, With v/(ferit) = 0.5 x 10%cm s (Woosley et al., 2009) we

find Teday, /2 (Cerit) = 1.0 x 10725, respectively. If eventually a region that meets the above-
mentioned constraints exceeds {qjt for at least Teqay, /2(€Crit), DDTs may occur.
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3.3.3 Summary

From the described constraints for a DDT it becomes obvious that a one-parameter criterion
is not capable of accounting for the detailed physics of the DDT process, even if such models
may lead to results that are consistent with observations. However, the latter has not been
strictly shown yet for multi-dimensional models. In two- and three-dimensional models DDT's
occur more frequently and the explosions become brighter than in one-dimensional models.
As a consequence, the threshold value of a relevant quantity for a DDT criterion (such as
perit for instance) has to be accordingly adjusted in dependence of the dimensionality in
order to obtain the observed explosion brightnesses. In this way, it may become very hard
to reproduce the observed faint events of normal SNe Ia in three-dimensional simulations.
In this work, a new DDT model is introduced and applied exclusively to three-dimensional
simulations, where the model is motivated by the described necessary constraints for a DDT
to occur. The following quantities have to be taken into account for the physics of a DDT
(in the following referred to as DDT quantities):

e Turbulent velocity fluctuations v’(¢) and the turbulent driving mechanism (Kolmogorov
or RT instability) at the flame

DDT
Xfuel

e Minimum amount of fuel and fuel density pge at the flame

e Fractal dimension D of the flame
e The size of the flame surface area and the DDT region
e The half eddy turnover time Teqqy, /2 (Lerit)

In general, a conclusive evidence for DDTs requires resolving the microphysical properties
of the DDT. As already described, the length scales where this process is expected to occur
are too small to be resolved in multidimensional full-star simulations. Therefore, we do
not address the question of whether or not DDTs occur here from a microphysical point
of view. Instead, we assume that they occur and devise a model to implement them into
large-scale SN Ia simulations taking into account all known constraints on the microphysical
mechanism.
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Numerical simulations of Type la supernova
explosions

The physical processes of an exploding white dwarf are very complex and constitute a major
challenge for numerical modeling. In particular, the hydrodynamic equations, including the
reaction equations of the thermonuclear burning in partially relativistic degenerate gases of
very high densities have to be taken into account. These equations are commonly imple-
mented in numerical hydrodynamic codes that run on supercomputers, sometimes for several
weeks or months. Despite the continuous improvements of numerical codes and the perfor-
mance of supercomputers it will probably never be possible to resolve all relevant length
scales of SN Ia explosions in full-star simulations. These length scales span a range of ap-
proximately 12 orders of magnitudes, if we assume that a typical white dwarf has a radius of
2000 km (which may additionally expand in a deflagration) and the Kolmogorov length scale
is smaller than a millimeter (see Section 3.2.1). Since physical processes occur on unresolved
length scales which determine the explosion dynamics, a corresponding modeling approach
is required. Several numerical methods have been developed in this context, including the
large eddy simulations (LES). In LES the largest turbulent structures are resolved on the
grid scale or above. Physical processes in smaller irresolvable turbulent structures are mod-
eled with a subgrid-scale (SGS) turbulence model. In this work, a hydrodynamic code is used
which complies with some basic concepts of LES. The main features of this code are outlined
in Section 4.1. The standard setup of the performed simulations that includes the initial
white dwarf model is described in Section 4.2.

4.1 LEAFS

For this work, the hydrodynamic code LEAFS (LEvelset based Astrophysical Flame
Simulations) is used. LEAF'S is a descendant of the PROMETHEUS code which has been
developed by Fryxell et al. (1989) (see also Reinecke, 2001). In this work, the code is used
to perform three-dimensional full-star simulations of delayed detonations of Chandrasekhar-
mass white dwarfs. In the following, the main features of LEAFS are discussed. For a
detailed description of the code we refer to Reinecke (2001). The SGS model is outlined
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separately in Section 5.2, where it is tested with respect to the implementation of the DDT
model.

4.1.1 Flame propagation via level set method

The numerical code uses two nested co-moving simulation grids (Ropke, 2005; Ropke et al.,
2006). While an outer inhomogeneous grid follows the expansion of the whole white dwarf,
the flame is tracked with an inner homogeneous Cartesian grid. Throughout this work it
is understood that A(t) belongs to the time-dependent resolution of the inner expanding
grid. The flame width § is very thin compared to the size of the white dwarf and treated
as a sharp discontinuity. This holds for both deflagration and detonation flames. For prop-
agating flames in white dwarfs in the discontinuity approach, the level set method has been
proven useful (Osher & Sethian, 1988; Smiljanovski et al., 1997; Reinecke et al., 1999). Here
the geometry I'(¢) of the flame front in a three-dimensional simulation is given by a two-
dimensional hyper surface. As shown later, this relation can be used to estimate the fractal
dimension of the deflagration flame. I'(t) is additionally associated with the zero point of
a scalar distance function G(7,t), where in burned material G(r,t) > 0 and in unburned
material G(r,t) < 0 holds. Therefore, for grid cells near the flame we find |G(r,t)| < A(t).
The propagation of the flame is determined by the temporal evolution of G(r,t). Here, we
have to take into account that the flame is advected by the fluid motion and it propagates
normal to the flame surface due to burning. The time evolution of G(r,t) is given by (see
Reinecke et al., 1999)

oG

ot = —(Vu + Vame, M) (—1|VG|) = (Vu - 7 + Vame, )| VG], (4.1)
where vy, Vgame, and m denote the velocity of the fluid in the fuel, the burning speed with
respect to the unburned material and the normal vector to the flame front that points toward
the unburned material, respectively.

4.1.2 The effective burning speed of the deflagration flame

In the very early deflagration phase the flame propagation is laminar, hence vgame equals
approximately the laminar burning speed wuy,, which is given by equation (3.6). In the
turbulent deflagration phase a correct determination of wvgame requires to resolve all the
wrinkles and curvatures of the flame front. But in our large-scale simulations these turbulent
flame structures are not fully resolved and the flame surface is smoothed artificially. However,
the burning speed can be estimated by assigning an effective turbulent flame speed vi(¢) to
the smoothed flame and relating this quantity to the laminar burning speed ., and the
turbulent velocity fluctuations v'(¢). Following Pocheau (1994) vy (¢) is given by

/ 2
w(A(H) = maw 142 ((A“”) , (4.2)

3 Ulam

where we used ¢ = A(t). The turbulent velocity fluctuations v'(A(t)) are provided by a
turbulence SGS model, of which the properties are discussed extensively in Schmidt et al.
(2006a,b).
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4.1.3 Hydrodynamics and equation of state

White dwarfs are self-gravitating degenerate gas masses that are in hydrostatic equilibrium.
For a complete physical description of these objects, one needs the hydrodynamic conserva-
tion laws for mass, momentum and energy and a thermodynamic equation of state (EOS)
for the degenerate material. In addition, for the SN Ia problem the properties of thermonu-
clear burning and the participating chemical species and reactions have to be included. The
resulting system of coupled partial differential equations are called the reactive Fuler equa-
tions. With gravitation as external force, these equations are given by (e.g Ropke & Schmidt
(2009)):

e mass conservation

dp
——=-V- 4.3
- (), (43)
e momentum balance
opv
ot —V - (pvv) — Vp — pVé, (4.4)
e species balance
pX;
gt = V- (pX;v) + pwy, i=1..N, (4.5)
e energy balance
dpeio
patt L=V (peorv) — V(pv) — pv - (V) + pS, (4.6)
with
p = fros(p; €int, Xi), (4.8)
T = feos(p, €int, Xi), (4.9)
S = S(wyx,), (4.10)
A¢ = 47 Gp. (4.11)

In these equations is p the mass density, v the velocity, p the pressure, ¢ the gravitational
potential, X; the specific mass fraction of the i-th chemical species, wx, a corresponding reac-
tion rate, eyor the specific total energy, ej, the specific internal energy, fros an appropriate
EOS, T the temperature, S a source term for the energy release due to the reactions and G
the gravitational constant. The EOS of white dwarf matter that determines the pressure and
energy, consists of the non-relativistic ion gas, the electron gas that may be both degenerate
and relativistic, the thermal photon gas, as well as a contribution from the generation of
electron-positron pairs. For the individual components, the pressure and energy density e
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are given by (see Cox, 1968; Shapiro & Teukolsky, 1983)

X;
Pion = PRTZ M’ (412)
167+/2 3

e = 05t [Fy )+ 185505 (4.13)
Pphoton = %O—BT47 (414)

16 3 |~ 1 -
peeser = 082wt Ry )+ 3P4 (4.15)
€ion = 3/2pion7 (4'16)
o = T2 mt8E [Fy(n. ) + APy 0. 5)]. @.17)
€photon = 3pphot0n7 (418)
oot = T2t 5% [Fy (n,8) + B3 (0.9)] . (4.19)

where R is the gas constant, M; the molar mass of the i-th chemical species, h the Planck
constant, me the electron mass, ¢ the speed of light, og the Stefan-Boltzmann constant and
Fy and Fy are the relativistic Fermi integrals defined as

oo 1
2% (1+ 1pz)2
F(n, B) :/de k> -1, (4.20)
0
~ 2
Fi(n, B) = Fx(n, B) + Fi <n ~ 5 ﬁ) : (4.21)
The parameters n and 3 are further given by
_ Ep N kBT
T T and = me 422)

where Fr is the Fermi energy and kp the Boltzmann constant. 7 and S are a measure
for the degree of the degeneracy and the influence of relativistic effects, respectively. In the
dense center of the white dwarf Er is high enough that relativistic effects become important.
During the explosion process the degeneracy is partially lifted in the burned material due to
the high temperature increase.

The reactive Euler equations are treated numerically in a finite volume approach (Fryxell
et al., 1989) by the use of the Piecewise Parabolic Method (PPM) of Colella & Woodward
(1984). Since the Fermi integrals in the EOS are computationally too expensive to be
calculated during a simulation time step directly, the corresponding values are obtained
from a prior calculated table with bilinear interpolation.

4.1.4 Nuclear reaction processes

The complete nuclear reaction network to burn a carbon/oxygen mixture to iron group
elements includes more than 3000 reactions and hundreds of isotopes (e.g. Hix & Thielemann,
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1996; Burbidge et al., 1957). The use of such a sophisticated network in hydrodynamic
simulations would require a significant amount of computational resources. In LEAFS, only
a few effective reactions and chemical species are taken into account.

Depending on the density where burning currently takes place, the material is converted to
heavier elements: For sufficiently high densities, the material is mainly burned to a mixture
of ®°Ni and a-particles in nuclear statistical equilibrium (NSE). In this case, at each time step
the fractions of 5Ni and a-particles are adapted to the current thermodynamic conditions
of the white dwarf. Burning to NSE increases the overall fraction of iron group elements
(IGE) that is approximated by one representative. With decreasing density, the reaction
already ends with the production of intermediate mass elements (IME), of which the overall
fraction is also given by one representative. For lower densities, only '2C can still burn to
160 until at even lower densities no thermonuclear reactions occur anymore.

The required fuel densities to burn the carbon/oxygen composition to heavier elements,
additionally strongly depend on the burning mode. In the case of a shock-driven detonation,
fuel at relatively low densities can be still sufficiently compressed to be burned, which does
not hold for deflagrations. In Figure 4.1 the obtained mass fractions of the chemical species
that are used in LEAFS are shown as function of the fuel density for a deflagration and a
detonation (see also Fink et al., 2010), where the fuel is assumed to be consisted of carbon
and oxygen in equal amounts by mass.

The described simplified reaction network consumes only marginal computational re-
sources in the hydrodynamic simulation and leads already to a good estimate for the energy
release during the burning (or equivalently for the source term S). However, we are also able
to obtain mass fractions of individual elements and isotopes by performing a post process-
ing step with tracer particles that are implemented in LEAFS. The tracer act as artificial
particles that are passively advected by the flow, whereby they collect certain information
along their trajectories during the SN Ia simulation (see Travaglio et al., 2004; Seitenzahl
et al., 2010a,b).

4.2 The initial white dwarf model

The initial model of the white dwarf that is set up in the numerical simulation includes
some parameters, of which the values are not well known (see Section 2.3.1). In particu-
lar at ignition time, the central density p. and temperature 7., the chemical composition
(metallicity and carbon/oxygen ratio) of the white dwarf, as well as the physical properties
of the ignition region from which the flame evolves are highly uncertain. Furthermore, the
rotation of the star can be included in which case the white dwarf may also have a higher
initial mass than Mcy (see Section 2.3.5).

4.2.1 The standard initial conditions of the white dwarf

In the following, the standard setup of the initial white dwarf model is described that is
frequently used in the simulations of this work. We assume isothermal, cold and non-rotating
Chandrasekhar-mass white dwarfs in hydrostatic equilibrium with p. = 2.9 x 10° g cm ™3 and
T. = 5 x 10°K. The chemical composition is 50% '2C and 50% O which is distributed
homogeneously throughout the star. The electron fraction Y, of a given composition can be
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Fig. 4.1: Mass fractions of chemical species from thermonuclear burning as function of the fuel
density peyel in detonations (Fink et al., 2010) (solid lines) and deflagrations (dashed lines).

defined as

P
Y= 3 X (423)

where X;, P; and A; denote the specific mass fraction, the proton number and the nu-
cleon number of the i-th chemical species in the composition, respectively. Hence, for
X(12C) = X(1%0) = 0.5 we find Y, = 0.5. The initial chemical composition is fixed in
the current implementation of the code. However, we can take a certain metallicity of the
white dwarf into account by determining Y, with a slightly different chemical composition.
In our case, we replace a certain amount of the carbon/oxygen mixture with 22Ne and adjust
the value of Y, accordingly. We assume that the progenitor star of the white dwarf has solar
metallicity, which corresponds to a ?*Ne mass fraction of about X (??Ne) = 0.025.! With

1 X (*Ne) = 0.025 has been used by Nomoto et al. (1984) in a famous deflagration model (called W7).
We outline here, how X (22Ne) can be estimated roughly under the assumption of solar metallicity. The
metallicity Z can be defined as the mass ratio of chemical species with a proton number of P > 3 to the
overall chemical species. For the Sun, Anders & Grevesse (1989) give a value of Z ~ 0.020, while Asplund
et al. (2005) propose a far lower metallicity of Z =~ 0.012. Here we make a compromise and simply
take the average, which yields Z = 0.016. We further assume that most of the metals (isotopes with
P > 3) are found within the CNO cycle in which continuously *N is produced. Thereby the metallicity
stays approximately constant. During the ensuing helium burning phase 2?Ne is synthesized from 4N by
two captures of a-particles and a subsequent 7- decay. As a result the metallicity now increases up to
A(**Ne)/A(*N) - Z = 0.025 (Seitenzahl, 2012).
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X(12C) = X (1°0) = 0.5 — (0.5 - 0.025) = 0.4875 we find with equation (4.23)

6 8 10
Y, = 0.4875 - — + 0.4875 - — +0.025 - — = 0.4 4.24
o= 04875 - > +0.4875 - = +0.025 - - = 0.49886 (4.24)

which is our standard value for Y, of the initial white dwarf model.

4.2.2 The ignition geometry of the deflagration

The main difference in the models in most of the performed simulations of this work is
the ignition geometry of the deflagration. As indicated in Section 2.3.1 there are no clear
conclusions about the location(s) and size(s) of the ignition region(s). Therefore, the ig-
nition geometries in our models are not directly motivated by physical assumptions, but
constructed in a way to obtain different evolutions of the deflagration flame. As pointed out
in Section 2.3.4 for the delayed detonation scenario the strength of the deflagration plays
an important role for the brightness of the explosion. It is known that off-center ignitions
of the deflagration flame yield mainly weak deflagrations (e.g. Ropke et al., 2007b). Here
an ensuing detonation commonly leads to bright explosions only (e.g. Meakin et al., 2009).
Therefore, for the delayed detonation scenario centrally ignited deflagration flames are re-
quired if the delayed detonation scenario should account for the whole observed variations
in the brightness of normal SNe Ia. For our ignition models we follow Plewa (2007), Ropke
et al. (2006) and Ropke et al. (2007a,b) and perform single and multiple spot ignitions in the
vicinity of the center of the white dwarf. In Table 4.1 the ten standard ignition models with
specific values of the parameters of the ignition geometry are summarized. These models
are frequently used in the following studies.

The primary parameter of the ignition geometry is the number of spherical ignition kernels
Ny from which the deflagration flame evolves. This parameter sets mainly the strength of
the deflagration (Ropke et al., 2006) which in turn determines the energy release and hence
the expansion rate of the white dwarf. Two additional parameters are the radius 7 of the
kernels and the minimum distance dy that the center of these kernels have to maintain.

For each ignition geometry exclusively one uniform value for r, and di is chosen. The
radius of an individual kernel in multiple spot ignition scenarios may be of the order of
10° cm (e.g. Woosley et al., 2004; Iapichino et al., 2006). This value is below our initial
grid resolution and we use 7, = 10%cm. The value of dj is chosen arbitrarily. Since we
use a constant value for ry for all ten standard models, the parameter di can be seen as a
measure of how fast the flame kernels become merged in the explosion. This in turn has
an effect on the occurrence of different kinks and bends at the flame that are the seeds
for instabilities to arise. We note that for large Ny, dx < 7, indicating that kernels may
partially overlap, so that instabilities may arise quickly after the onset of the explosion. The
effect of a variation of r, and dy within an ignition geometry on the simulation results is
investigated in Section 7.2.3.

For all ignition geometries, the kernels are placed spherically symmetric in the central
region of the white dwarf. They are mostly concentrated in the vicinity of the center, while
their number declines outward, following a Gaussian distribution. A fixed cutoff R is set,
which defines the maximum distance for the ignition kernels from the center of the white
dwarf. We use R = 2.5-0, where o is the variance of the Gaussian distribution. ¢ is chosen in
a way that we obtain (except for Model I) values for R that agree with the study of Woosley
et al. (2004). However, there is no physical consensus on how the ignition kernels should be
distributed generally. For ignition geometries with small Ny, we note that the arrangement of

45



4 Numerical simulations of Type la supernova explosions

the kernels cannot be considered as a real Gaussian distribution anymore. In particular, for
Ny =1 (Model I), where R = o, the setup can be described as a simple off-center ignition
scenario. A further special ignition model is Model X that is based on a configuration used
in a highly resolved simulation of a pure deflagration, performed by Répke et al. (2007a).
By the generation of this setup also R = ¢ holds. Furthermore, individual ignition kernels
are removed and newly arranged, until a very compact and dense initial flame configuration
of high spherical symmetry is obtained.

In Figure 4.2 we show the ignition geometries from Table 4.1, except for the single spot
off-center of Model I. In the figures an isosurface is drawn that corresponds to a density
of 2.2 x 10° g em™ which is about 2.5 x 107 cm away from the center of the white dwarf.
For the generation of the ignition geometries, a Monte-Carlo based program is used that
produces the ignition setups from the input of the required parameters in the form of a table
that includes the position and the uniform size of ignition kernels. It should be noted that
in general for a chosen set of parameters for an ignition setup, more than one realization is
possible which are different in the spatial distribution of the ignition kernels.

In this work, a detailed parameter study is performed, where a large number of additional
ignition geometries of the deflagration is used, of which the parameters are summarized in
Table 4.2. Some setups may appear twice in Table 4.2 or equal a standard setup of Table 4.1.
Here another realization of the corresponding setup was chosen.
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| Model | Ny [ o [107cm] | ry [10%cm] [ dy [10° cm] |

1 1 0.36 1.00 -

11 3 0.50 1.00 3.00
III 5 0.60 1.00 1.00
v 10 0.60 1.00 1.00
\% 20 0.60 1.00 0.60
VI 40 0.60 1.00 1.00
VII 100 0.60 1.00 0.30
VIII | 200 0.75 1.00 0.30
IX 1600 1.00 1.00 0.05

X 1600 1.80 1.00 0.05

Table 4.1: Setups of the ten standard ignition geometries of the deflagration flame.

Model Nk g Tk dk Model Nk g Tk dk
[107cm] | [108cm] | [106 cm] [107 cm] | [10%cm] | [10° cm)]
1 9 0.60 1.00 1.00 19 200 0.75 1.00 0.10
2 30 0.60 1.00 1.00 20 200 0.75 1.00 0.34
3 40 0.60 1.00 1.00 21 200 2.00 1.00 0.50
4 50 0.60 1.00 0.80 22 250 0.80 1.00 0.23
5 60 0.40 1.00 0.40 23 300 0.80 1.00 0.23
6 60 0.40 1.00 0.40 24 350 0.90 1.00 0.20
7 80 0.60 1.00 0.50 25 400 1.00 1.00 0.10
8 125 0.60 1.00 0.40 26 500 1.00 1.00 0.17
9 150 0.60 1.00 0.35 27 600 1.00 1.00 0.13
10 175 0.60 1.00 0.30 28 700 1.00 1.00 0.12
11 200 0.75 1.00 0.30 29 800 1.00 1.00 0.08
12 200 0.66 1.00 0.30 30 900 1.00 1.00 0.08
13 200 1.00 1.00 0.30 31 1000 1.00 1.00 0.07
14 200 1.50 1.00 0.30 32 1200 1.00 1.00 0.06
15 200 2.00 1.00 0.30 33 1400 1.00 1.00 0.05
16 200 3.00 1.00 0.30 34 1600 1.00 1.00 0.05
17 200 0.75 0.50 0.30 35 3000 1.40 1.00 0.03
18 200 0.75 1.10 0.30 36 5000 1.60 1.00 0.02
Table 4.2: Setups of the ignition geometries of the deflagration flame for the parameter study in

Chapter 7.
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Poo = 2269 glcm® Pre = 2269 glcm® Pre = 2269 glcm®

(a) Model II (Ny, = 3) (b) Model III (Ny = 5) (¢) Model IV (Nj = 10)

Pre = 2.269 glem’ Pou = 2.2€9 glcm® P = 2.2€9 glem’

(d) Model V (Ny = 20) (e) Model VI (Nj = 40) (f) Model VII (N;, = 100)

Pre = 2-269 glcm® =2.2e9 glcm® Pre = 2269 glcm®

pfuel

(g) Model VIII (N, = 200) (h) Model IX (Ni = 1600) (i) Model X (Ny = 1600)

Fig. 4.2: Ignition geometries of the deflagration of Model II - Model X. Shown are the arranged igni-
tion kernels (red spheres) and a transparent blue isosurface where pgel = 2.2 x 10% g cm™3.
The distance from the center of the white dwarf where p. = 2.9 x 10°g cm™3 to this
isosurface is approximately 2.5 x 107 cm. Only in Model IX, some ignition kernels may
approach this distance. Model X obviously has a very compact and dense arrangement of
the ignition kernels, resulting in a setup of high spherical symmetry.
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To resolve a DDT region that has a length of e ~ 10°cm we need at least 1024° grid
cells in LEAFS. The microphysical processes within a DDT region occur on much smaller
scales that cannot be resolved in our full-star simulations. With the currently available
computational resources, simulations with 10243 grid cells are already very expensive and
take a significant amount of time. This work, however, is designed to run many simulations
in order to perform detailed parameter studies, which is motivated by the fact that most of
the values of the DDT quantities that are summarized in Section 3.3.3 are not well known.
Therefore, many low resolved simulations with 2563 grid cells are performed in which the
length of the grid cells A(t) is larger than f.; during the entire late deflagration phase.
For the implementation of a DDT model in LEAFS this means that an appropriate SGS
approach is required to model the DDT quantities on unresolved scales. In this chapter
the construction and the tests of this DDT-SGS model (in the following simply referred
to as DDT model) are described. In Section 5.1 we first determine the flame surface area
that meets certain constraints for a DDT. The already existing SGS model in LEAFS
that calculates the turbulent velocity fluctuations v'(¢) in the deflagration phase is tested
in Section 5.2 where we explicitly evaluate, whether this model is capable of modeling the
important high velocity fluctuations for a DDT properly. In Section 5.3 we formulate the
DDT model and the criterion for DDTs. The resolution dependence of the DDT model is
tested in Section 5.4. Here we are also able to derive a value for the fractal dimension of the
flame. Section 5.5 gives a summary of the DDT model.

5.1 Determination of the flame surface area

First we determine the grid cells that meet the necessary constraints for a DDT. To capture
all regions at the flame we take into account only grid cells where |G(7,t)] < A(t) (see
Section 4.1.1). Furthermore, as stated in Section 3.3.2 a specific amount of fuel XBEIT, a
certain fuel density pge; and high velocity fluctuations v/(¢) at the flame are required for
a DDT. Here the question arises how these constraints can be implemented in a model in
which a DDT region is not resolved. A further complication is that the flame is treated

as a sharp discontinuity that prevents us to determine values of physical quantities at the
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flame precisely. Hence, the value of Xf?lgT, prael and v'(¢), as well as the mixing processes
within a DDT region at the flame cannot be determined directly. We also have to take into
account that due to the grid discretization the flame can be found in all possible regions
within a grid cell. The values of the physical quantities of a grid cell represent the physical
properties at the flame best, when the flame approximately splits the grid cell into two parts
of equal size. Therefore, we will perform a preselection of the grid cells in which the flame
propagates on average through their centers. We note that in principle DDTs may occur
at all suitable places at the deflagration flame that meet the necessary DDT constraints,
regardless of whether the flame propagates through the central part of a grid cell or whether
a grid cell is hardly intersected by the flame. The latter will be skipped in our analysis, since
this cell mainly represents the physical properties in ash or fuel regions. The preselection of
grid cells implies that a certain fraction of the deflagration flame that may meet the necessary
DDT constraints is not taken into account in our study. In the context of the DDT model,
this will eventually lead to an underestimate of the occurrence of DDTs. However, as shown
later the flame surface area that meets the DDT constraints is not the only (and often not
the most important) quantity that is relevant for the DDT criterion. In the following, we
describe the method, how our study can be restricted to grid cells that seem appropriate for
a DDT.

5.1.1 Constraints on the fuel fraction in the grid cells

We define the fuel fraction Xp,e in a grid cell as the fraction of the carbon/oxygen com-
position to the overall chemical species, hence Xgye € [0;1]. In the performed simulations
a value of Xy,e is always given for the entire grid cell, of which the length is larger than
leit- Hence, for the implementation of a DDT model the analysis should be restricted to
the vicinity of the flame on a sub scale £y < A(?).

For grid cells with X1 &~ 0 and X1 & 1 (these cells are not or hardly intersected by the
flame) we mainly analyze the physical properties of ash and fuel regions that are far away
from the flame and therefore inappropriate for the DDT model. To estimate the physical
properties at the flame we employ with Xfrggf and X%* two free parameters for the minimum
and maximum fuel fraction and take for the analysis only grid cells into account in which
XN < X < XD For now we set Xt = 1/3 and X% = 2/3 but these threshold
values are varied later in the following studies to analyze the influence of a variation of these
parameters on the simulation results. The average fuel fraction in the grid cells is expected
to be Xyl = 1/2 - (Xfrﬁgf + Xpa¥) = 1/2. This also holds if no restrictions on Xgye would
have been set but now we find that the flame (resp. the level set) propagates on average
through the central part of the grid cells. Under these conditions, we argue that a DDT
region should also be localized in the central part within a grid cell, since at this place there
is an enhanced probability that both fuel and ash are found on a sub scale £, while in
other places there will be mostly pure fuel or ash.

From the viewpoint of DDTs that occur in the centers of grid cells we note that in most
cases where Xp,o > Xp3¥, there is pure fuel on a sub scale £ in the center of the cor-
responding grid cell, whereas for X1 < Xp' there will be most often exclusively burned
material. In both cases, a DDT in the center of the corresponding grid cell is unlikely to
occur, since the distance between the flame and the DDT region is too large. At some local
places, however, strong turbulence may deform the flame in a way that the value of X, on
a sub scale . in the center of the grid cells can be still quite high or low, even if the fre-
quency at which these cells occur is significantly reduced due to the introduced restrictions
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A Icrit

Fig. 5.1: Sketch to illustrate the effect of the restrictions on Xp,e in the case of A(t) & 4 - leyit in
two-dimensional view. In the center of the grid cells a square with the edge length of £t
is shown in white. Within the cells, the fuel is shown in blue and the ash in red, where
both components are separated by the flame that is shown as a yellow curve. In grid cell
I the flame propagates through the center and since X;ng < Xuer < X55° this cell obeys
the constraint concerning Xy, in our approach. In grid cell IT the flame misses the center
and in addition Xp.er > X3¢, Consequently this cell is not taken into account for further
considerations. The inaccuracy of the described method is illustrated in the grid cells IIT
and IV. In the former, the flame propagates through the center and there may be in addition
sufficient fuel for a DDT on the sub scale ¢, but since Xgo1 > X8, this cell is skipped
in our study. In the latter, the fuel fraction is in the range of Xg;gf < Xpuel < X3 so that
this cell will not be skipped. However, the flame misses the center of the cell. We note
that in particular the cases in the grid cells III and IV only appear if the flame propagates
in a strong unusual serpentine like way through the grid cells. In reality the curvatures
of turbulent flames are less pronounced in the level set approach in LEAFS than in the
shown sketch here (see for instance Figure 6.15).

on Xfuel. This behavior is illustrated in Figure 5.1.

We further find that due to the various curvatures of the flame and the implemented co-
moving grid technique, X, deviates from 1/2 to a certain degree. In addition, the value
of Xyel varies for different ignition models of the deflagration. Both effects are shown in
Figure 5.2 where Xy, determined from all grid cells with |G(r,t)| < A(t) is plotted as
function of simulation time ¢ for five ignition models of Table 4.1 that give rise to different
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Fig. 5.2: Average fuel fractions in the grid cells at the flame as function of simulation time ¢ for five
ignition models of the deflagration of Table 4.1.

strengths of the deflagration. The resolution of the simulations of these pure deflagrations
was 2562 grid cells. We see that X g, initially declines below 1 /2 for all models, indicating
that in the DDT model preferentially grid cells are captured that have less than 50% of fuel.
Only in the very late deflagration phase where no more DDTs occur X g, approaches 1/2.

If we increase the resolution, but let the threshold values for Xfrggf and Xp5* constant, the
number of grid cells that have a low or a high fraction of fuel on a sub scale £, in the center
is further reduced. A similar result can be achieved by placing more stringent constraints on
Xtuel, where a higher value for ng;gf always implies a lower value for X{5*, since the flame
should cross on average the central part of the grid cells. Here the problem arises that for
the application of the DDT model, a certain number of grid cells is required, so that much
more stringent constraints on Xpye than X0 = 1/3 and X8 = 2/3 are hardly possible
for simulations with 2563 grid cells.

We can summarize that there is no accurate way to determine the physical properties of
DDT regions at the flame precisely. The main reasons are that these regions are not resolved

and that the flame is treated as a sharp discontinuity. However, with two parameters Xfrﬁgl‘

and X5 we can restrict the analysis to the vicinity of the flame and additionally ensure

that there is on average some fuel for a DDT. We emphasize that Xfrfllgf and Xg5* are not
in any way related to the required fuel fraction XPDT for a DDT (see Section 3.3.2). The
lack of a sufficiently accurate modeling approach for XflagT on scales eyt < A(t) prevents
us to judge whether there is indeed enough fuel for a DDT. This is also why we cannot

take into account that Xfll)lgT additionally depends on various other quantities as outlined
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5.1 Determination of the flame surface area

in Section 3.3.2.

5.1.2 Constraints on the fuel density in the grid cells

The second constraint a grid cell has to meet is that the flame in this cell is in the distributed
burning regime. Furthermore, the constraints for detonations in this burning regime, de-
scribed by Woosley (2007) and Woosley et al. (2009) have to be taken into account. In anal-
ogy to the quantity Xg,e, we define two threshold values p?&le‘f and pfiaF as the minimum and
maximum fuel density and take only grid cells into account where pg‘lgf < Pruel < Phyay - For
now, we follow Woosley (2007) and use pfil = 0.5x 10" g em™ and pi& = 1.5x 107 g cm 3.
Similar to Xye1, these threshold values will be varied later, since the allowed range of pguel

with the above values seems to be quite large.

5.1.3 The flame surface area

We define the number of all grid cells that are located in the vicinity of the flame (hence the
cells in which |G(r,t)| < A(t)) at the time ¢t as Name(t) and the grid cells that additionally
obey the DDT constraints concerning Xg,e1 and pruel as Ng,,,.(¢). In the same context, we
define the entire flame surface area as Agame(t) and the part of the flame that additionally
meets the DDT constraints as Aj, (), respectively. In general, Ng, .(t) < Ngame(t)
and hence A, (f) < Apame(t). To estimate the flame surface area we have to relate

flame
the quantities A(t) and Nfame(t) to Afame(t). Here we assume that due to the nature
of turbulence, the flame in the deflagration phase can be considered as a fractal object
that has a fractal dimension D. As indicated in Section 3.2.4 the fractal description of
turbulent flames is only an approximation, since the wrinkled and folded flame structures
become smoother on smaller length scales, which is not valid for a fractal. However, for fully
developed turbulence we expect that in the range of length scales £4,s < £ < L a fractal
description can be applied to the flame (Peters, 1986; Kerstein, 1988). In our analysis we
may assume that due to the co-moving grid technique (see Section 4.1.1) and the fact that
Lgins decreases significantly during the explosion (see Section 3.2.3), fgins < A(t) for the late
turbulent deflagration phase, where we may expect DDTs. However, it is uncertain, whether
at the same time A(t) < L holds. With L = Lk, ~ 10km (see Section 3.3.2) we always
find A(t) > L for the late deflagration phase, hence the entire inertial range of isotropic
turbulence is not resolved. Following Ciaraldi-Schoolmann et al. (2009) L is much larger,
where for length scales larger than 10km the angular velocity fluctuations still obey the
Kolmogorov scaling, whereas the radial velocity fluctuations follow a scaling law of the RT
instability (see Section 3.2.1). As described in Section 3.2.4 different scaling behaviors of the
turbulent velocity field have an effect on the fractal dimension of the flame. In the case of
A(t) < L we further have to take into account that due to the grid expansion the range of
length scales /41, < ¢ < L that can be resolved on the grid scale continuously decreases until
eventually A(t) > L (even for high values of L). These uncertainties and problems prevent
us to perform detailed considerations and studies (such as in Gouldin (1987), Kerstein (1988)
and North & Santavicca (1990) for instance). Instead, we will use a more general method
to determine the fractal dimension of the flame and compare our results with the expected
values for D that are indicated in Section 3.2.4. As described in Section 4.1.1 the turbulent
flame is numerically treated as a sharp discontinuity which propagates as a thin interface
through the grid cells. Since this holds for all chosen grid resolutions we assume that the
flame surface behaves self-similar for different resolved length scales and that the quantity
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5 Modeling delayed detonations

Afiame(t) is resolution-independent. Then we can calculate the self-similarity dimension that
is defined as (e.g. Feder, 1988; Schroeder, 1991)

log N
D= 5.1
Tog e (5.1)

where N is the number of self-similar pieces and e the reduction or zoom factor. For our
purposes we need the number of grid cells Ngame, (t) and Ngame, () from two simulations
with different resolutions A (¢) and Ag(t) that are performed with the same initial white
dwarf model. Then D is given by

. log(]\[ﬂame2 (t)/Nﬂamm (t))

P o8 (0/20) )
From here it follows
Niame, () + (A1(1))” = Nitame, (£) - (A2 (1))” (5.3)
and since Agame(t) should be equal for both simulations we identify
Afame(t) = Naame(t) - (A(t)) (5.4)

as the flame surface area (see also Sreenivasan, 1991; Niemeyer, 1995). The calculation of D
will be performed together with a resolution study of the DDT model in Section 5.4. If D is
determined, A} (¢) can be calculated with N  (¢) and D by applying equation (5.4).!

flame flame

5.2 Testing the turbulence SGS model for DDTs

For the construction of a DDT model that is based on the properties of high turbulent
velocity fluctuations, the already implemented SGS model that calculates the turbulence in
the deflagration phase has to be tested. This SGS model was developed by Schmidt et al.
(2006a,b) and has been applied to numerical simulations of pure turbulent deflagrations in
white dwarfs (e.g. Ropke et al., 2007a). Ropke (2007) found that the SGS model generates
some velocity fluctuations at the flame that maybe sufficiently high for a DDT. However,
it was not explicitly tested, whether these high velocity fluctuations reveal the intermittent
behavior in turbulence or whether they constitute an artifact of turbulence modeling. For
the delayed detonation scenario that relies on the existence of high velocity fluctuations,
a correct modeling of turbulence, which also includes the intermittent behavior, may be
decisive for the success of this explosion scenario. Therefore, in this section we perform some
test calculations in order to assess, whether the SGS model can be used for the construction
of a DDT model. For a detailed description of the SGS model we refer to the work of Schmidt
et al. (2006a,b) and Schmidt (2004).

The most important quantity that we need from the SGS model are the turbulent velocity
fluctuations, where the model returns a value of v/(¢) on the time-dependent grid scale A(t).
Since we need a value of v'(£¢t) on the fixed length scale £, we have to investigate how
to rescale v'(A(t)) to v/ (Lerit ).

'Here it is assumed that both the entire flame as well as the region of the flame that meets the DDT
constraints have the same fractal dimension. Due to Nj,c(t) < Naame(t) there are not enough data to
derive a reliable value of D for Afj,n,.(t) directly.
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5.2 Testing the turbulence SGS model for DDTs

For testing the SGS model we will exclusively use the simulation data of pure deflagrations
with different resolutions of the model described in Répke et al. (2007a) which is a variant of
Model X and is referred to as Model X* in the following. Model X* that has been originally
performed with 10243 grid cells uses a finer resolved ignition geometry with r = 2.6 x 10° cm
and di = 5.2 x 10* cm. The properties of turbulence in burned regions of this deflagration
model were extensively analyzed by Ciaraldi-Schoolmann et al. (2009) and Schmidt et al.
(2010), which enables us to compare our results with these studies.

5.2.1 About probability density functions and histograms

To judge whether the SGS model is capable of reproducing the high velocity fluctuations
at the flame correctly, we first have to find out how often these fluctuations occur. One
commonly used statistical method is the calculation of a probability density function (PDF).
The probability P(a < X < b) that a random variable X takes on a value between a and b
is given by

Pla<X <b) = /f(:):) da, (5.5)

a

where f(x) is the PDF of the random variable X. The PDF is normalized by

o0

/ f(z) de = 1. (5.6)

By definition a PDF constitutes a continuous function but in most cases only discrete data
are available. Then the probability density can be estimated by sampling and sorting the
data into bins and constructing histograms. We define the relative frequency density as

h(z:) = L Number of data points in the i-th bin (5.7)
= Az Total number of data ’ ’

which constitutes the ratio of the number of data points in the i-th bin to the total number
of data, normalized to the bin width Az.? The normalization of the histogram is then given
analogously to equation (5.6) by

Z (h(x); - Ax) = Z Number of data points in the i-th bin _ 1 (5.8)

- - Total number of data
After a histogram is constructed, a continuous function can be used to fit the histogram.
The fit then constitutes an approximated PDF of the random variable.

Usually the data in histograms are presented by rectangles, but in our case this would
be somewhat impractical. The width of the rectangles (resp. the bin width Az) in the
histograms is so narrow that these rectangles are replaced by a simple data point which is
located at the half width of the corresponding rectangle. These data points are sometimes
additionally connected with lines.

2Here a constant bin width is assumed that holds within each constructed histrogram in our studies.
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5 Modeling delayed detonations

5.2.2 Testing the SGS model in reproducing the high velocity fluctuations

Répke (2007) calculated histograms of v/(¢) at the flame that contain the data of the SGS
model and used an empirical function to fit the data. The result shows clearly a slow decline
of the histogram toward higher velocity fluctuations. Therefore, there may be still a low
probability of the occurrence of velocity fluctuations that are high enough for a DDT. It is
not clear, however, whether the found slow decline of v'(¢) in the histogram appears due
to high intermittent turbulence or whether it is an artifact of turbulence modeling. To
investigate this we developed an algorithm that derives the turbulent velocity fluctuations
from the resolved velocity field of the hydrodynamic flow. This allows us to compare the
histogram that contains the data of the resolved fluctuations with the histogram that contains
the values v'(¢) of the SGS model.

Estimating the resolved velocity fluctuations on the grid scale

The resolved velocity field v(r) of the hydrodynamic flow is a superposition of the turbulent
velocity fluctuations and the bulk expansion of the white dwarf, where the latter contribution
points in radial direction. We have to subtract the bulk expansion from v(r) to obtain the
pure fluctuating part vgy,(r). This procedure is described in Ciaraldi-Schoolmann et al.
(2009). To compare vVgyh (7) = |Vurb| () with v’ (£) we have to take into account that the SGS
model returns a value on the scale A(t), so that the quantity vy, () has to be considered on
the scale A(t) as well. To ensure this we use a routine that is similar to the computation of
structure functions (see Section 3.2.1). Here, however, we choose a constant length scale of
¢ = |€] = A(t), hence the routine is based on the computation of averaged absolute velocity
differences |viub(A(t))| of neighboring grid cells. Using a Monte-Carlo based algorithm, a
random grid cell and N adjacent cells are selected. Then |viyb(A(%))] is given by

N
Tt A = 1 D [erues(r) — vt (46, (5.9)
=1

where vy (1) is the velocity fluctuation in the selected grid cell and vyyn, (7 + £) is the
velocity fluctuation in the i-th of the N adjacent grid cell. In our three-dimensional analysis
the number of all adjacent grid cells is N = 6.3 However, as shown in the following, not all
of these cells are always taken into account.

We further extend this analysis by performing the calculation with a fixed length scale of
¢ =4-A(t). For comparison with the result from the SGS model, we have to rescale the
values of v/(¢) from v'(A(t)) to v'(4 - A(t)). Following equation (3.12) the rescaling can be
performed with

V(4 A) =0 (A1) - W = 4% V' (A(2)). (5.10)

For sufficiently small length scales the scaling of the turbulent velocity field is given by the
Kolmogorov theory (see Section 3.2.1), where o = 1/3 and hence v/ (4-A(t)) = 41/3 v/ (A(t)).
With increasing length scales the turbulent velocity field becomes anisotropic, where in the
direction parallel to gravity a scaling behavior for RT instability driven turbulence is observed
(Ciaraldi-Schoolmann et al., 2009). In this case, & = 1/2 and hence v/(4-A(t)) = 2-v'(A(t)).

3The computational domain is far away from the edge of the simulation grid.
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5.2 Testing the turbulence SGS model for DDTs

The computation is performed for data in burned regions and for the data Ngame(t) in the
vicinity of the flame. For burned regions, G(r,t) > A(t) holds for the randomly selected grid
cell as well as for the N cells that are used for the calculation of |vg,,(A(2))| (equation (5.9)).
This applies to both cases £ = A(t) and £ = 4 - A(t). All grid cells are far away from the
flame and N = 6 always holds.

For regions at the flame, |G(r,t)] < A(¢) holds for the randomly selected grid cell but
this is frequently not automatically true for adjacent grid cells and particularly for the more
distant cells in the case of £ = 4 - A(t). Here we exclude all grid cells with Xg,e > 0.5
for the calculation of |vgyp(A(t))| (equation (5.9)). Therefore, we ensure that only grid
cells are taken into account that are located either at the flame or in burned regions (in
which Xpe) &~ 0). As a consequence, we frequently find here for the number of grid cells
that are used for the calculation of |viyh(A(t))], N < 6. The routine is always applied to
a total number of 10 different randomly selected grid cells, where for a larger number we
find no change in the results anymore. After the calculation, a histogram of |viyn(A(¢))] is
constructed.

Comparison of the histograms of |vi,1,(A(t))| and v'(A(t))

In the Figures 5.3 and 5.4 the histograms of |v, (A(%))| and v’ (A(t)) that contain the data in
burned regions and in the vicinity of the flame are shown, where for the performed simulation
a resolution of 5123 grid cells was used. The simulation time is ¢ ~ 0.8 s corresponding to the
late deflagration phase, where turbulence is strong and therefore affects the structure and
propagation of the flame significantly. In the case of £ = A(t) no scaling procedure has to be
performed for the SGS model, while for £ = 4 - A(t) the results of both rescaling operations
— Kolmogorov- and RT instability driven turbulence — are shown in the plots.

In all figures we see a qualitative agreement of the histograms, where the histogram of
|veurb (A(t))] shows a stronger scatter than the SGS model. The main reason lies in the
algorithm for determining |viy,n(A(?))| that is based on averaging over a few (maximum
six) grid cells only leading to a poor statistic. This becomes particularly apparent for high
velocity values in the half-logarithmic plot. However, we see a slow decline in all plots at
the right side of the histogram of |viyh,(A(t))| that is in an adequate agreement with the
histogram of v'(A(t)). This is a first hint that the found high velocity fluctuations of the
SGS model are no artifact of turbulence modeling but may reveal the intermittent behavior
of turbulence.

For the length scale ¢ = 4- A(t) we unfortunately cannot obtain any conclusion, of whether
the behavior of the velocity fluctuations can be explained by either the Kolmogorov theory or
the influence of the RT instability. While the maximum of the histograms seems to fit better
with the Kolmogorov theory, the high velocity fluctuations seen in the half-logarithmic plots
fit better with a scaling behavior of the RT instability.

In Figure 5.5 we show a comparison of the resolved velocity fluctuations |vgyn,(A(t))| for
both length scales ¢ = A(t) and ¢ = 4 - A(t) with the data Ngame(t). Apart from the fact
that the probability of finding high velocity fluctuations is obviously higher for the length
scale £ = 4 - A(t), we see a similar slope of the right part of both histograms toward higher
velocity fluctuations. This result is not trivially expected, since in the case of ¢ = 4 - A(t)
a major part of the grid cells are not located in the vicinity of the flame but in the burned
material. Even if the resolved velocity fluctuations show a strong scatter the agreement of
the slopes of both curves indicates that the occurrence of high velocity fluctuations at the
flame and in burned regions near the flame may be similar. This behavior will be further
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Fig. 5.3: Histograms of |vgy,n ()| and v'(£) for the fixed length scales £ = A(t) and £ = 4 - A(¢) in
burned regions at ¢t ~ 0.8s.

investigated with the data of the SGS model in Section 5.2.4.

Conclusions and comparison with other studies

Since we found in burned regions as well as at the flame front a slow decline in the histogram
of v/(A(t)) toward high velocity fluctuations that can be additionally reproduced from the
resolved velocity field, it is very likely that the SGS model does not calculate artificially
high velocity fluctuations, but can reproduce the intermittent behavior in turbulence. This
preliminary conclusion, however, should be further reinforced by an appropriate intermit-
tency model that can explain the occurrence of the found high velocity fluctuations. For
burned regions, a detailed analysis of intermittency was performed by Schmidt et al. (2010),
where the same SGS model was used in the simulation. Here an intermittency model of Kol-
mogorov (1962) and Oboukhov (1962) was applied that assumes that the turbulent velocity
profile follows a log-normal distribution. The result indicates weaker intermittency than
predicted by the Kolmogorov-Oboukhov model. In contrast, the analysis of Ropke (2007)
revealed that the slow decline in the histogram that contains the data of the SGS model
at the flame cannot be explained by a log-normal fit, since the latter declines faster toward
higher velocity fluctuations than the histogram of v/(¢). Hence, the results of Répke (2007)

o8



5.2 Testing the turbulence SGS model for DDTs

Murb@®)] —— 1e-07 Vb @O —— 7
14607 viam — | viam) ——
> 1.2e-07 4 > 1e-08
2 3
= c
S 1.0e-07 | g g
o 7 1e-09
§ 8008 {1 8
g g 1e-10
S 6.0e-08 | 4 5 e
2 g
K k<t
©  4.0e-08 | 1 2 te-11
2.0e-08 q
1e-12
0 . )
1e7 2e7 3e7 4e7 5e7 6e7 0 1e7 2e7 3e7 4e7 5e7 6e7
v [cm s'1] v [cm s'ﬂ]
(a) £ = A(t), Flame (b) £ = A(t), Flame
Viurp(4AMH)] —— 1e-07 1
8.0e-08 V'(4A(t) [a = 1/3] ——
V(4A) [a = 1/2]
> 5 1608 . 1
Z k7
& 6.0e-08 - ] g
© hel
> > 1e-09
o o
® 5]
- g
g 40e08 | 1 & o0 y
o o
2 2
© k]
[ [
= 2.0e-08 4 = 1e-11 - B
Viurp (4B ——
V(@AAY) [a = 1/3) ——
% 1e-12 VI(@AAD) [a = 1/2) 1
0 L L L
0 1e7 2e7 3e7 4e7 5e7 6e7 3e7 4e7 5e7 6e7
v [cm s'1] v [cm s'w]
(c) £=4-A(t), Flame (d) £=4-A(t), Flame

Fig. 5.4: Histograms of |vgy,n(£)| and v'(€) for the fixed length scales £ = A(t) and £ = 4 - A(¢) in
the vicinity of the flame at ¢t ~ 0.8s.

and Schmidt et al. (2010) are different. Since an incorrect modeling of turbulence seems un-
likely according to the analysis presented above, a possible explanation is that intermittency
at the flame is much stronger than in burned reg