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Abstract

Scattered radiation represents a major source of image degradation in industrial X-ray
cone-beam computed tomography (CBCT) leading to the formation of scatter artifacts
in the reconstructed volume. These artifacts include cupping artifacts, streaks between
high-contrast details, and a general loss of contrast. They hamper qualitative and quanti-
tative analysis in industrial nondestructive inspection tasks: Reduced contrast decreases
detectability of flaws such as cracks and voids while the cupping artifact as well as streaks
affect dimensional measurements. This motivates the correction of scatter artifacts in in-
dustrial CBCT.

In this work, we investigate two novel experimental methods for a-posteriori correction
of scatter artifacts in CBCT: first the beam-hole array technique, and second a different
approach that is based on temporal primary modulation.

The beam-hole array technique is considered as complementary in experimental practice
to the better-known beam-stop array technique: The beam-hole array is manufactured
as a sheet of a highly absorbing material such as lead with small apertures for measuring
primary signals at a number of sampling points in a first scan. In a second scan without
beam-hole array, for each pixel, the total signal is measured. Pixel-wise subtraction of
the primary signal from the total signal yields scatter estimates at the sampling points.
Subsequently, spline interpolation is used in order to compute entire scatter images which
are subtracted from original CT projections.
Comparison measurements between the new beam-hole array and the more established
beam-stop array technique generally show good agreement of both techniques. However,
they also indicate that with the beam-stop array technique, scatter-to-total ratios are
constantly larger by 1-2%-points at object-covered sampling points. This is due to scat-
tered radiation from a support plate which is only to be used in the beam-stop array
technique. From this point of view, the beam-hole array is particularly suited for series
CT scans whereby scattered radiation, and hence noise can be reduced.
We successfully demonstrate scatter correction by the beam-hole array technique applied
to the CT of an industrial, ceramic specimen. In this application, scatter artifacts can be
eliminated in certain regions within the reconstructed volume. Furthermore, in contrast
to the common assumption that the scatter distribution is of low spatial frequency con-
tent, we observe high spatial frequencies contained within the calculated scatter images.
We attribute this observation to a strong scatter contribution from detector-internal X-
ray scatter and light spread effects. From basic experimental investigations, we deduce
that these effects amount to one fifth of the total measured signal in a typical CT situation
(220 kVp polychromatic X-ray spectrum).

Scatter correction by temporal primary modulation is the second method which we have
developed and experimentally studied. This method offers two important advantages over
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other techniques: First, it can be performed without additional scan time, and second, it
offers high spatial resolution for sampling scatter data. From a theoretical point of view,
the resolution is only limited by the detector.
For scatter estimation, the primary fluence is temporally amplitude-modulated in small
pixel clusters which are phase-shifted to each other whereas the total scatter distribu-
tion virtually remains constant. This enables a separation of modulated primary signals
and unmodulated scatter signals by coherent demodulation afterwards. The assump-
tion of a virtually constant scatter distribution is supported by Monte-Carlo simulations
and requirements concerning the spatial modulation pattern are derived in a theoretical
analysis.
For modulation of the primary fluence, we use a so-called primary modulator, a spatially
repetitive attenuation pattern in front of the object which imprints its pattern on the
primary fluence. Temporal modulation is realized by moving the attenuation pattern and
recording a number of modulated projections. In our experimental investigations, we em-
ploy a checkerboard pattern with 99× 99 squares as primary modulator which is shifted
or slided, respectively, by one square length within two modulated projections. The pro-
posed method of temporal primary modulation is verified in a comparison measurement
with the standard beam-stop array technique. Scatter estimates from both methods are
generally in good agreement, i.e. deviations are less than 6% at direct sampling points of
the beam-stop array.
Additionally, we demonstrate the application of the proposed method for the correction
of scatter artifacts within a single CT scan of an aluminum test phantom. For this
scan including scatter correction, no additional scan time is necessary and the scatter
images are sampled at 95 × 95 points within the region of interest. Scatter artifacts
are greatly suppressed and almost eliminated compared to a normal CT scan without
scatter correction. For example, the contrast of specific slits cut in the test phantom is
enhanced whereby deviations of contrast values to ideal contrast values of a simulated
CT decrease from about 35% to 10% and less. Furthermore, the cupping artifact is
completely removed, i.e. line profiles in the corrected CT slices show an almost perfect
rectangular shape.

In summary, we present two novel experimental methods for scatter correction in CBCT
whereby scatter artifacts can be greatly suppressed. Particularly, temporal primary mod-
ulation has been shown to be a favorable method for scatter correction since it offers high
spatial resolution and does not extend scan times.
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Chapter 1

Introduction

Over the last two decades, X-ray cone-beam computed tomography (CBCT) has become a
well-established technique in nondestructive testing (NDT) for the precise visualization of
both external and internal structures of a test component. CBCT enables true, isotropic
3D inspection of an object with a spatial resolution down to 1µm and less. Therefore, it
is used in many different fields in industry for defect detection, failure analysis, as well as
for dimensional measurements (metrology). Applications include the testing of industrial
components, ranging from small parts such as electronic devices to rather big parts such
as massive components of gas turbines.
In modern CBCT scanners, digital flat-panel detectors (FPD) are widely used. They pro-
vide instantaneous and complete 2D image data acquisition. Developed in the late 1990s,
they represent a technological breakthrough in the history of both medical and industrial
CT. Looking at the development of medical CT systems starting with pencil-beams and
further evolving to scanners with fan-beam geometry, the step to cone-beam geometry
represented the next consequent extension. The driving force for that development is the
more efficient exploitation of X-rays produced by the X-ray tube. Since pencil-beam and
fan-beam scanners use pin-hole and slit collimators, respectively, for reshaping the origi-
nal beam, they are less efficient in utilizing produced X-ray photons than their cone-beam
counterparts. The improved exploitation of the X-ray photon flux which is available with
CBCT scanners reduces scanning times and increases the signal-to-noise ratio (SNR) in
CT projections, respectively, both of which represent a major advantage of CBCT over
other geometries.
However, the advantages of increased volume coverage come along with an increase of
artifacts caused by scattered radiation. From scientific work in the past, it is well-known
that scattered radiation gives rise to unwanted secondary signals and thereby leads to
the formation of scatter artifacts in the reconstructed CT volume. These artifacts were
already known to occur with fan-beam scanners where only small volumes are irradiated
at a time. With increasing cone angles as in CBCT, and hence, with large irradiated
volumes, scatter artifacts become even more significant. Typical scatter artifacts include
streaks, inhomogeneities known as cupping artifact, and, in general, a loss of contrast.
In industrial CT, all of them hamper the detection of defects such as cracks and voids
which naturally are of low-contrast if they are small-sized. Furthermore, dimensional
measurements are negatively affected by scatter since it blurs sharp edges and renders flat
surfaces curved in the surface detection step. Also in medical CT, scatter artifacts hamper
a reliable medical diagnosis: Streaks may lead to misinterpretation, while inhomogeneities
cause incorrect readings of attenuation coefficients (CT numbers or Hounsfield units in
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Chapter 1: Introduction

medical CT) which serve as basis for interpretation and quantitative analysis. Thus,
there is a need for a correction of scatter-related artifacts, both in medical and industrial
CT.
Many different techniques and methods for suppression and correction of scatter-related
artifacts have been proposed in the past three decades, most of them for medical CT
systems. All of them have certain drawbacks in CBCT, e.g. insufficient scatter artifact
compensation observed with suppression techniques and analytical correction methods,
or too much computational effort in methods relying on Monte-Carlo simulations. On
the other hand, in experimental methods such as in the well-known beam-stop method, it
may become necessary to perform a second scan implying additional dose and additional
scan time. Additional dose is not acceptable in medical CT, and additional scan time is
a serious drawback in both medical and industrial CT. For these reasons, the complete
correction of scatter artifacts in CBCT is still considered an open problem in scientific
research.

Based on these considerations, the motivation for our work is to initially propose, test, and
advance methods and techniques suitable for complete correction of scatter artifacts in
CBCT. Also, we aim at devising new approaches where the above mentioned limitations
are overcome.
The present work focuses on industrial CBCT applications; we are examining three ex-
perimental scatter correction methods. First, the beam-stop array (BSA) method is a
well-established technique and serves as reference herein. Second, we test a complemen-
tary technique which we call beam-hole array (BHA) method and which has not been
applied to industrial CBCT to the best of our knowledge. Comparison measurements
between BSA and BHA method reveal distinct differences. Successful scatter correction
employing the BHA method is demonstrated by a CT of an industrial part.
Third, we present a new scatter correction method which is based upon temporal modu-
lation of primary signals, denoted as temporal primary modulation (TPM) method. We
devised the TPM method when experimenting with a similar technique which relies on
the spatial modulation of primary signals. Both these methods feature the great advan-
tage that they measure scatter data within the normal CT scan. This renders a second
CT scan unnecessary while dose and scanning time remain the same as before. We give
a theoretical introduction to TPM scatter correction, as well as a verification for an es-
sential underlying assumption that is made in the derivation of the TPM method. Initial
measurements employing the TPM method are compared to scatter data obtained by the
BSA method and show excellent agreement with them. Finally, we perform TPM scatter
correction in a CT with a test phantom in order to demonstrate its potential to correct
for scatter artifacts within the normal CT scan.
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Chapter 2

Fundamentals of Computed

Tomography

In this chapter, we want to briefly introduce the most important aspects of computed
tomography (CT) as a comprehensive basis for the following work. First, in section 2.1,
the fundamental physical interactions between X-rays and matter are discussed. They
represent the key mechanisms which constitute the underlying principle of absorption
CT.
In section 2.2, CT scanners both in medical and industrial applications are presented.
From that point on, we will focus on cone-beam CT scanners (CBCT). The most relevant
basics of CBCT are discussed consecutively, comprising the hardware components, X-ray
tube and flat-panel detector, as well as the reconstruction algorithm on the software
side. Finally, the reconstructed CT volume can be visualized by displaying CT slices, or
further processed for 3D rendering and tasks in nondestructive testing (NDT) such as
dimensional measurements.
We will conclude this chapter in section 2.3 with an overview of (i) beam-hardening
artifacts, (ii) ring artifacts, and (iii) scattered radiation artifacts. Although there exist
other commonly encountered CT artifacts, we limit our discussion to these three since
they occur in the experiments performed in this work, and hence, are the most relevant
for our considerations.

2.1 Physics of X-Radiation

Even though X-radiation is known for its strong capability of penetrating matter and
thereby irradiating objects, it still gets attenuated in this process. In fact, radiation in-
tensity decreases exponentially while X-ray photons travel through matter. This is due to
the fact that some of the photons interact with the atoms within this material, either by
the process of absorption or by the process of scattering. In this section, first we want to
explain the general law of attenuation, i.e. the Beer-Lambert law. Second, the underlying
physical interaction processes between X-ray photons and matter that are relevant to our
work, i.e. the photoelectric absorption process, Rayleigh scattering, and Compton scat-
tering, are discussed briefly. The following sections dealing with the physical aspects that
occur in computed tomography are inspired by the illustrations given in the textbooks
of Buzug [Buz08], Evans [Eva55], and Podgorsak [Pod10]. Especially the latter offers a
very detailed derivation and discussion of the following topics.
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Chapter 2: Fundamentals of Computed Tomography

Figure 2.1: Schematic illustration of attenuation of incident radiation intensity I0 through
a thin slab of homogeneous material with the mass attenuation coefficient µ/ρ.
Different interaction mechanisms such as absorption and scattering may alter the
state of incident photons. Photons that do not interact are left unaltered and are
called primary photons or primary radiation. Scattered photons have a different
direction of propagation and/or different energy.

2.1.1 X-Ray Attenuation and Beer-Lambert Law

Let us consider a very narrow and monochromatic X-ray beam passing through a thin
slab of homogeneous material as illustrated in Fig. 2.1. The X-ray beam may be seen
as a stream of particles, namely photons. While passing through the material, each
individual photon has a certain probability to interact with the material by one of the
interaction processes described in the following sections 2.1.2, 2.1.3, and 2.1.4. Each
of the interaction processes fundamentally alters the photon state, e.g. by changing its
energy and/or momentum or it completely eliminates the photon. As soon as a photon
has undergone an interaction process with the material, we do not call it a primary,
unaltered photon any more. While this represents interactions of individual photons in
the corpuscular sense, altogether it corresponds to loss of primary photons, and thereby,
to attenuation of the X-ray beam.
The attenuation of intensity of the monochromatic, narrow X-ray beam is described by
an exponential attenuation law called Beer-Lambert law:

I(x) = I0 · e−µ(E,Z) ·x . (2.1)

Here, I0 denotes the incident X-ray intensity, I(x) the intensity of the X-ray beam after
having passed a penetration length x within the slab, and µ(E,Z) is the energy- and
material-dependent linear attenuation coefficient. Instead of the linear attenuation coef-
ficient µ(E,Z), in present tabulations, we frequently find the mass attenuation coefficient
µ/ρ, with ρ being the density of the absorber material. In the context of cross sections
describing the probability of interaction, the mass attenuation coefficient is also given as

µ/ρ = σtot/uA , (2.2)

where u is the atomic mass unit, A is the relative atomic mass of the target element,
and σtot is the total cross section for an interaction by the photon. Referring to the
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2.1 Physics of X-Radiation

corpuscular image described above, the total cross section can be expressed as the sum
over contributions from the principal photon interactions,

σtot = τPE + σcoh + σincoh (+ σpair + σtrip + σph.n.)︸ ︷︷ ︸
omitted

, (2.3)

where τPE is the cross section for the atomic photoelectric effect, and σcoh and σincoh are
the coherent Rayleigh and the incoherent Compton scattering cross sections, respectively.
In this equation, we may ignore other interaction mechanisms such as pair and triplet
production as well as the photonuclear effect. They are omitted as pair production
processes only occur at energies at least twice as high as the rest mass energy of an
electron, 2mec

2 = 1.02MeV; triplet production only at E > 4mec
2; and photonuclear

effects also have thresholds of the order of a few MeV. As we consider standard X-ray
tubes in this work, only photon energies well below 1MeV occur.
As indicated by Eq. (2.3) there are three interaction mechanisms that are relevant to
our work: the photoelectric effect, Rayleigh scattering (coherent) and Compton scat-
tering (incoherent). These are to be discussed separately in sections 2.1.2, 2.1.3, and
2.1.4. Figure 2.2 shows how the individual contributions together give rise to the mass
attenuation coefficient µ/ρ and, according to Eq. (2.2), to the total cross section σtot.
Mass attenuation coefficients are displayed for the elements carbon (black solid curve),
aluminum (blue), copper (green), and lead (red). As we can deduce from Fig. 2.2, they
are governed by the contribution from the photoelectric effect (dashed curves) for lower
energies in the range of 1− 10 keV (hydrogen), and 1− 200 keV (lead), respectively. For
higher energies in the range of about 100 − 1000 keV, the Compton interaction (dotted
curves) dominates. This explains the inflection point observed in mid-regions of the solid
curves where dominance changes from photoelectric effect to Compton scattering. In
general, solid curves displayed in Fig. 2.2 for elements with lower Z, e.g. carbon (Z=6),
exhibit smaller mass attenuation coefficients than those with higher Z, e.g. lead (Z=82).
Data displayed in Fig. 2.2 are provided by NIST database XCOM [Ber+10]. In this
database, we also find that Rayleigh scattering is typically less dominant in the energy
range that is of interest to our work, i.e. 30− 225 keV. Thus, Rayleigh scattering is not
shown explicitly in Fig. 2.2.

2.1.2 Photoelectric Effect

The photoelectric effect is an interaction between an incident photon of energy hν and
a tightly bound orbital electron of the absorber atom. Figure 2.3 shows a schematic
illustration of the photoelectric effect, colloquially often referred to as photoeffect. During
this interaction the photon is completely absorbed and the orbital electron is either
excited or it is ejected from the atom as a so-called photoelectron with kinetic energy
Ekin. Thus, the photoelectric effect represents an ionization process. Its energy balance
reads

hν → Eion(atom+) + Ekin(e
−) . (2.4)

Equation (2.4) implies that the photoelectron leaves the atom with the kinetic energy
Ekin = hν − EB, where EB denotes the binding energy of the electron to the atom.
The described energy uptake by the photoelectron may be insufficient for its complete
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2.1 Physics of X-Radiation

Figure 2.3: Schematic illustration of the photoelectric effect. (a) An incident X-ray photon is
absorbed and its energy hν is transferred completely, to both the electron, which
mostly is an inner-shell electron, and to the lattice. The so-called photoelectron is
ejected. Its vacancy is filled by a higher orbit electron whereas either a character-
istic fluorescence photon is emitted (b) or another photoabsorption process occurs,
known as Auger process (c).

ejection from the atom (atomic ionization process), but it may be sufficient to raise the
photoelectron to a higher orbit (atomic excitation process). The vacancy left by the
photoelectron when it gets emitted is filled by an electron from a higher shell. As a result
of this recombination process, the transition energy will be emitted either as characteristic
X-ray fluorescence photon (Fig. 2.3(b)) or as an Auger electron (Fig. 2.3(c)), respectively.
Auger electrons are created if the radiation energy of the recombination process for the
electron vacancy is sufficient for a subsequent photoabsorption by another electron from
an outer shell. Sometimes this process is referred to as radiation-free transition or internal
conversion.
For incident photon energies between 1 keV and 1MeV, the dashed curves in Fig. 2.2
display the atomic cross section for the photoelectric effect τPE (absorption coefficient) for
a number of different elements ranging from Z=6 (carbon) to Z=82 (lead). The curves
exhibit a sawtooth-like profile with sharp discontinuities, which are called absorption
edges and which appear whenever the incident photon energy corresponds to the binding
energy of one of the electron shells. The highest absorption edge coincides with the
K-shell electron binding energy.
Occurrence of these absorption edges can be explained by the fact that, if the energy
of the incident photon is smaller than the binding energy related to a certain electron
shell, the energy is not sufficient to lift the electron to an excited, quantum mechanically
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allowed state. Thus, this photon cannot induce photoelectric absorption processes with
electrons from this specific shell. On the other hand, incident photons with energies equal
or greater than the binding energy are able to induce the photoelectric effect, thereby
causing a steep increase in the cross section. For greater wavelengths, i.e. smaller energies,
the occurrence of absorption edges for L and M shells is explained analogously. The fine
structure of shells above the K-shell is due to LS coupling and jj coupling (for heavy
atoms) and gets reproduced in the absorption spectrum (Fig. 2.2).
A complete theoretical prediction concerning the atomic cross section for the photoelectric
effect (absorption coefficient) τPE is complex [Eva55, p. 696], particularly in the vicinity
of absorption edges. However, a useful approximation is given as follows [Pod10]:

τPE = α4(eσTh)Z
n

√
32

ε7
, (2.5)

where ε = hν/mec
2 is the normalized photon energy, α is the fine structure constant,

Z the atomic number of the absorber, eσTh the Thomson electronic1 cross section,
cf. Eq. (2.7), and n the power for the Z dependence ranging from n = 4 at relatively
low photon energies to n = 4.6 at high photon energies. For comparison, in Fig. 2.2, we
have added a plot of the rough approximation τPE ∝ (hν)−3.5 given by Eq. (2.5). Note
that in general there is a good agreement between approximation and measured data of
absorption coefficients. The strong increase of the probability of photoelectric absorption
with atomic number Z of the absorber, also expressed in Eq. (2.5), is a primary criterion
for the usage of lead (Z=82) or tungsten (Z=74) as absorber material employed for X-ray
shielding or as lamellae in anti-scatter grids, cf. section 3.3.1.

2.1.3 Rayleigh Scattering

The process of Rayleigh scattering is of elastic and coherent nature, i.e. energies of the
incident and scattered X-ray photon are the same, hν = hν ′, and their phases are corre-
lated. However, they have different directions of propagation, which is expressed through
a scattering angle θ. Before describing the Rayleigh scattering process involving the en-
tire atom with its strongly bound electrons, we first discuss Thomson scattering, which
is a form of elastic scattering on quasi-free electrons shown in Fig. 2.4.
In a non-relativistic classical picture, the process of Thomson scattering can be described
by an incident electromagnetic wave with wavelength λ and associated energy hν which
passes an atom with quasi-free electrons. As depicted in Fig. 2.4, the oscillating electrical
field of the incident wave sets each of the quasi-free electrons into a forced resonant
oscillation. This represents an induced dipole oscillation of the electrons and leads to
re-emission of electromagnetic radiation which can be calculated by classical theory of
electrodynamics, cf. [Pod10, pp. 291–295]. In this model, the differential electronic cross
section per unit solid angle for Thomson scattering deσTh/dΩ is derived as

deσTh

dΩ
=

r2e
2

(
1 + cos2 θ

)
, (2.6)

1Here and in the following, the pre-subscript indicates whether the cross section refers to the electronic
(e) or atomic (a) cross section.
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2.1 Physics of X-Radiation

Figure 2.4: Schematic illustration of elastic scattering: By classical theory, the field of the
incident X-ray induces a dipole oscillation by coherently driving quasi-free electrons
of the atom up and down (Thomson scattering). One can calculate the cross section
for re-emission of electromagnetic radiation.

where re denotes the electron radius.
The total electronic cross section eσTh for Thomson scattering can then be simply ob-
tained by integration over the whole solid angle Ω:

eσTh =

∫
deσTh

dΩ
dΩ =

8π

3
r2e . (2.7)

This is a remarkable result as the classical Thomson cross section for quasi-free electrons
does not contain energy-dependent terms, i.e. it yields a constant value regardless of the
incident photon energy.
Returning to Rayleigh scattering and the correct calculation of its cross section, one
has to take into account that the electrons are not quasi-free, but bound to the atom
with distinct binding energies. Therefore, the differential Thomson cross section from
Eq. (2.6) is weighted by an atomic form factor yielding the differential Rayleigh atomic
cross section per unit solid angle:

daσR

dΩ
=

deσTh

dΩ
{F (q, Z)}2 = r2e

2

(
1 + cos2(θ)

)
{F (q, Z)}2 , (2.8)

where F (q, Z) is the atomic form factor for Rayleigh scattering with the atomic number
Z of the absorber, and the momentum transfer2 is given by ~q, where

q =
4π

λ
sin(θ/2) , (2.9)

2In the scattering process, the momentum transfer to the electrons is given by ~q = ~(k′ − k), where
~k is the momentum of the incident photon and ~k′ of the emitted photon. k and k′ are the wave
vectors of incident and emitted wave, |k| = |k′| = 2π/λ.
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Figure 2.5: Angular distribution daσR/dΩ of Rayleigh scattering on an aluminum atom (Z=13)
for three different incident photon energies in a polar plot. Scatter distributions are
strongly forward peaked and become even more so as the photon energy increases.
1 barn = 10−24 cm2.

where θ is the scattering angle, and λ is the wavelength of the incident photon in angstrom
(Å). Atomic form factors F (q, Z) are based on atomic wave functions and can be calcu-
lated analytically only for the hydrogen atom. For all other elements, approximations
and atomic models, such as the Thomas-Fermi, Hartree and Hartree-Fock model are used
for calculation of F (q, Z). Tabulations of the atomic form factor can be found in several
publications using different models, e.g. [Sch+83].

Using Eq. (2.8) and the form factors tabulated in [Sch+83], Fig. 2.5 exemplarily shows
the angular distribution of Rayleigh scattering on an aluminum atom (Z=13) for three
different energies in a polar plot. As we can see, scatter distributions are strongly forward
peaked and become even more so as the photon energy increases. Compared to Comp-
ton scattering, scattering angles for Rayleigh scatter events are relatively small. Thus,
although Rayleigh scattering is less probable to occur than the other two interaction
mechanisms as it was concluded from the discussion regarding Fig. 2.2, it is yet relevant
to our considerations since a great amount of photons with Rayleigh interaction will be
scattered onto the detector, cf. section 2.3.3.

By substitution of dΩ = 2π sin θ dθ in Eq. (2.8), we obtain the Rayleigh differential atomic
cross section per unit scattering angle as

daσR

dθ
=

daσR

dΩ
dΩ
dθ

= πr2e sin θ
(
1 + cos2 θ

)
{F (q, Z)}2 . (2.10)

The Rayleigh atomic cross section σcoh from Eq. (2.3) is either given by the area under
the appropriate curve shown in Fig. 2.5 (for the example of aluminum) or, in general, it
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2.1 Physics of X-Radiation

Figure 2.6: Schematic illustration of a Compton scattering process. The incident X-ray photon
transfers a part of its energy to an orbital electron. The photon is scattered with
a scattering angle θ and carries less energy than before, hν ′ < hν. The remaining
energy is transferred to the Compton recoil electron, which typically gets ejected
from the atom.

may be calculated by integration of Eq. (2.10) over all possible scattering angles θ from
0 to π:

σcoh = πr2e

π∫

0

sin θ
(
1 + cos2 θ

)
{F (q, Z)}2 dθ . (2.11)

2.1.4 Compton Scattering

The third important interaction mechanism between X-ray photons and atoms that we
want to discuss is the process of Compton scattering, which is also known as incoherent
scattering. It is schematically illustrated in Fig. 2.6. In a Compton scattering process, an
incident X-ray photon collides with a quasi-free, i.e. loosely bound, orbital electron of the
absorber material. The incident photon of energy hν is scattered on the weakly bound
electron under a certain scattering angle denoted as θ. During this collision event, the
photon transfers not all of its energy to the electron as in the photoelectric absorption
process, but only a part of it. Thus, the energy balance for Compton scatter processes
reads as follows:

hν → Ekin(e−) + hν ′ . (2.12)

The right-hand side of Eq. (2.12) indicates that Compton scattering has two outcomes:
First, a scattered photon with energy hν ′ that is less than that of the incident photon,
and second, a Compton recoil electron that carries the transferred energy Ekin = h(ν−ν ′)
which usually is large enough to eject the electron from the atom. Subsequent ionization
and scattering processes involving the scattered photon and/or the Compton electron are
possible.
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2.1.4.1 Compton Wavelength-Shift Equation

A relationship between the wavelength of the incident and the scattered photon was
derived by Compton3 in 1923 [Com23]. In his work, he assumed corpuscular nature of
the photon and applied conservation laws of energy and of momentum as well as the
relativistic energy-momentum relation E = mc2 to arrive at the well-known Compton
wavelength-shift equation:

∆λ = λ′ − λ =
h

mec
(1− cos θ) . (2.13)

Here, λ′ is the wavelength of the scattered photon, λ is the wavelength of the incident
photon and θ denotes the scattering angle for the photon. The Compton equation states
that the shift in wavelength depends solely on the scattering angle θ and does not depend
on the energy of the incident photon.

2.1.4.2 Klein-Nishina Formula

In 1928, Otto Klein and Yoshio Nishina derived a formula for the differential cross section
of Compton interactions. The Klein-Nishina formula was one of the first results obtained
from the studies of quantum electrodynamics. It takes into account relativistic and
quantum mechanical effects and accurately describes the experimentally observed X-ray
scattering from a single free electron. The differential Klein-Nishina electronic cross
section per unit solid angle for Compton effects is given as follows [Pod10, p. 309]:

deσ
KN
C

dΩ
=

r2e
2

(
ν ′

ν

)2{
ν ′

ν
+

ν

ν ′
− sin2 θ

}
=

deσTh

dΩ
FKN(hν, θ) , (2.14)

where ν is the frequency of the incident photon and ν ′ the frequency of the scattered pho-
ton. In the last equation, the differential electronic cross section for Thomson scattering
from Eq. (2.6) is inserted. Hereby, one obtains the Klein-Nishina form factor FKN(hν, θ)
as:

FKN(ε, θ) =
1

[1 + ε (1− cos θ)]2

{
1 +

ε2(1− cos θ)2

[1 + ε(1− cos θ)] (1 + cos2 θ)

}
, (2.15)

where ε = hν/(mec
2) is the normalized energy of the incident photon. Figure 2.7 shows

a polar plot of the differential cross section deσ
KN
C /dΩ for Compton scattering on a

single target electron as a function of scattering angle θ. This represents a number-
versus-angle distribution of scattered photons. Plots are given for five different ε, εi =
{0, 0.1, 0.5, 1, 5}, which corresponds to energies Ei = {0, 51, 255, 511, 2555} keV.
For very small energies ε ∼ 0, i.e. for FKN ∼ 1, the differential Compton cross section
approximates the differential Thomson cross section as we can deduce from Eq. (2.15). As
shown in Fig. 2.7, this case encompasses the largest area under the curve deσ

KN
C /dΩ, which

exhibits two maxima at scattering angles of θ = 0◦ and θ = 180◦. With increasing energy,
the area under the curve deσ

KN
C /dΩ decreases while the curve itself becomes increasingly

asymmetrical and only exhibits a single maximum in forward direction. Corresponding

3Compton was awarded the Nobel Prize in Physics for his discovery in 1927.
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2.1 Physics of X-Radiation

Figure 2.7: Angular distribution of photons that are Compton scattered on a single free elec-
tron, given for five different normalized energies ε of the incident photon, and given
by the differential electronic cross section per unit solid angle, deσ

KN
C /dΩ. Comp-

ton scatter cones are relatively broad for energies relevant in the present work,
i.e. 30− 225 keV. 1mbarn = 10−27 cm2.

plots for angular energy distribution would even be more sharply peaked due to the
variation of hν ′ with θ [Eva55, p. 690], as implied by the Compton wavelength-shift
equation (2.13).
In order to arrive at the total atomic cross section for Compton interaction σincoh = aσ

KN
C ,

one has to consider two steps.
First, one can integrate Eq. (2.14) over the whole solid angle yielding the total electronic
cross section for Compton scattering on a free electron, eσ

KN
C . This is equivalent to

determining the area under one of the curves in Fig. 2.7 for a specified energy. Assuming
a linear relationship between the cross sections for single free electron and whole atom,
one obtains:

aσ
KN
C = Z · (eσKN

C ) . (2.16)

While this is in good agreement with experimental data for very high photon energies,
for smaller photon energies discrepancies occur due to electronic binding effects. These
have to be taken into account in the next step.
Second, electronic binding effects are incorporated into the model by a multiplicative
correction with the incoherent scattering function S(q, Z) which has been developed by
John Hubbell (National Institute of Science and Technology, USA). The application of
this binding energy correction method involves multiplying the differential electronic cross
section from Eq. (2.14) with the incoherent scattering function S(q, Z) [Hub+75]:

daσ
KN
C

dΩ
=

deσ
KN
C

dΩ
S(q, Z) , (2.17)

where the momentum transfer is given by ~q, q = 4π/λ · sin(θ/2), see Eq. (2.9) above.
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With this correction the total Compton atomic cross section σincoh = aσ
KN
C from Eq. (2.3)

is given by integration of Eq. (2.17) over the whole solid angle:

σincoh =

∫
S(q, Z)

deσ
KN
C

dΩ
dΩ . (2.18)

In analogy to Eq. (2.11), for Rayleigh scattering, by substitution of dΩ = 2π sin θ dθ, one
obtains the total Compton atomic cross section σincoh:

σincoh = πr2e

π∫

0

sin θ
(
1 + cos2 θ

)
S(q(θ), Z)FKN(hν, θ) dθ . (2.19)

Compton scattering is the dominant interaction for photon energies used in industrial
CT and for many of the materials under study, see Fig. 2.2. Furthermore, from the
scatter cones shown in Fig. 2.7, we deduce that Compton scatter leads to a broad spatial
distribution of scattered photons. It is for these two reasons that Compton scattering
plays a key role in the formation of scatter artifacts that may severely degrade CT image
quality, as we will see in chapter 3.

2.1.5 Small-angle X-ray Scattering (SAXS)

Besides the atomic scattering interactions described in sections 2.1.2, 2.1.3 and 2.1.4,
also interference phenomena such as X-ray diffraction and small-angle X-ray scattering
at larger structures (e.g. pores, macromolecules etc.) exist.
Small-angle X-ray scattering (SAXS) is a technique which builds on the elastic scattering
of X-rays into a small angular range (typically 0− 10◦) by mesoscopic (nanometer range)
structures within the sample. SAXS is used in various fields such as materials science,
metallurgy, biophysics, and polymer science for probing the size of grain boundaries,
precipitations in alloys, micro defects and pores [Hau92; Gui94].
Figure 2.8 schematically illustrates the principle of SAXS: An incident plane wave with
wave vector k, k = 2π/λ, is elastically scattered by the atoms of the sample. The
scattered wave with wave vector k′ is detected under a small scattering angle θ and the
measured intensity I is proportional to the differential cross section dσSAXS/dΩ describing
SAXS.
In section 2.1.3, we have derived that the differential Thomson cross section of a single
electron that scatters the incident wave elastically is given by Eq. (2.6). For small angles θ,
θ → 0, it approaches

deσTh

dΩ
(θ → 0) = r2e = 7.94 · 10−30 m2 . (2.20)

Analogous to Eq. (2.8) describing the differential cross section for elastic Rayleigh scat-
tering of one atom, in order to derive the differential cross section for SAXS, here we
consider an ensemble of N identical atoms (or, more generally, N identical atomic sets:
molecules, cells, or particles) which coherently scatter the incident wave, cf. Fig. 2.8:

dσSAXS

dΩ
= r2e ·

∣∣∣∣∣

N∑

n=1

Fn(q, Z) · exp(iqrn)
∣∣∣∣∣

2

. (2.21)
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Figure 2.8: Schematic illustration of the elastic scattering of X-rays incident on an ensemble
of n = 1 . . . N identical atoms (or, more generally, N identical molecules, cells, or
particles). The incident wave with wave vector k is scattered at a small scattering
angle θ which lends its name to this technique called small-angle X-ray scattering
(SAXS).

Equation (2.21) represents the summation of all N single atomic scatter contributions,
each given by its atomic form factor Fn(q, Z), cf. Eq. (2.8). The phase factor exp(iqrn)
takes account of the topological structure of the ensemble distribution by atom (or par-
ticle) positions rn. Here, the scattering vector q is given by

q = k′ − k; q =
4π

λ
sin(θ/2) . (2.22)

For obtaining a substantial SAXS contribution, i.e. constructive interference in Eq. (2.21),
it is necessary that the sample under study contains structures with dimensions R of the
order of R ≈ 2π/q.
Considering the X-ray CT setup used for the experiments described in this work, in
typical applications we encounter a mean X-ray photon energy of 100 keV and a minimum
detectable scattering angle θmin ≈ 10−4 rad, if we assume a pixel pitch of 200µm and a
distance between scattering site and detector pixel of 1m. For these specific values, we
can estimate qmin ≈ 108 m−1, as well as a maximum structure size that is detectable as it
scatters into the nearest neighboring pixels:

Rmax =
2π

qmin

≈ 60 nm . (2.23)

Of course, it depends on the sample under study whether its topology contains structures
of the specified dimension Rmax or smaller. However, from this estimation and assuming
a sample that contains these very small structures, we can deduce that SAXS will be
limited to a small pixel range surrounding the direct-beam (pencil-beam). Since large
volumes are irradiated at once in the cone-beam X-ray CT setup described in section
2.2, the central diffraction peaks of SAXS are not separable from direct beams; it is
rather a convolution that is recorded of each of the many incident single pencil-beams
with a diffuse, but narrow SAXS scatter contribution. Furthermore, the polychromatic
nature of the X-ray spectrum will lead to a superposition of SAXS diffraction patterns
of individual scattered photon energies.
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2.2 Basics of CT

In the history of computed tomography, different scanner generations have been devel-
oped. From a very general point of view, systems have evolved from pencil-beam geom-
etry in the early days, to fan-beam and then to cone-beam geometries, both of which
are employed nowadays. Figure 2.9 gives an overview of modern, commercially available
CT scanners used for applications in the medical field, on the left-hand side, and for
industrial applications on the right-hand side. The systems are also grouped in fan-beam
geometry, found in the top row, and cone-beam geometry in the bottom row. Cone-beam
CT scanners represent the logical extension of fan-beam CT scanners providing isotropic
magnification as well as shorter scan times. In the clinical field, they are used for interven-
tional imaging in angiography and surgery (Fig. 2.9(b)) since they provide better patient
access than the fan-beam CT scanner (helical CT, Fig. 2.9(a)). Furthermore, in radiation
therapy they are used for guiding, cf. Fig. 2.9(c). In industrial applications, they prove
to be advantageous as they enable CTs with very high magnification (micro-tomography,
Fig. 2.9(e)) and also reduce scan time.
For the considerations in the present work, the distinction between cone-beam geometry
and fan-beam geometry is of greater importance than the distinction of the application
fields, i.e. medical or industrial. Thus, from here on we want to focus on cone-beam CT
(CBCT) systems as they are more affected by impinging scattered radiation than their
fan-beam counterparts, see chapter 3 also. All experiments presented in this work were
performed on the industrial lab CBCT scanner that is shown in Fig. 2.9(e).
We briefly summarize the most important parameters relevant to imaging with a CBCT
scanner. For this purpose, Fig. 2.10 schematically illustrates the CBCT setup from a
top view. The X-ray source emits X-radiation in the form of a cone-beam. The X-
rays irradiate the test component that is located on the rotation stage with its center of
rotation at a source-object-distance, denoted as SOD. X-rays passing the test component
are subsequently detected by the flat-panel detector (FPD) behind, which is located at a
source-detector-distance called SDD. The sample is rotated equiangularly and a sequence
of 2D projection images is recorded within the full revolution. As can be deduced from
Fig. 2.10, details of the test component are projected with a magnification M that is
given by

M =
SDD
SOD

. (2.24)

From this, it follows that, at the object plane, details can be resolved with a spatial
resolution ∆xObj given by

∆xObj =
∆xDet

M
, (2.25)

where ∆xDet denotes the pixel resolution of the detector. Equation (2.25) also indicates
the nominal resolution of the three-dimensional CT volume. In order to achieve a high
magnification M with CBCT, also a small focal spot size of the X-ray source is required
due to the penumbra blurring effect, cf. section 2.2.1.
After the acquisition of the CT projections, a reconstruction algorithm is used for cal-
culation of the CT volume based on the projection data. Finally, the reconstructed CT
volume may be displayed as cross sections, also known as CT slices, or it can be further
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Figure 2.9: Overview of different CT scanners used in the medical and industrial field (see
columns). Further distinction is made by the scanner geometry, i.e. fan-beam ge-
ometry in the top row versus cone-beam geometry for scanners shown in the bottom
row. (a) Helical CT scanner with multi-slice arced detector. (b) C-arm scanner for
angiography. (c) Radiation therapy system including mega-voltage CBCT imag-
ing. (d) Industrial CT scanner with line detector. (e) Industrial CBCT scanner
used for experiments throughout this work. Left-hand side photographs (a)–(c)
by courtesy of Siemens AG. Photograph (d) by courtesy of YXLON International
GmbH.
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Figure 2.10: Schematic illustration of the cone-beam CT scanner geometry (top view).

processed by rendering algorithms and may be displayed as virtual 3D object. Dimen-
sional measurements are possible once the component’s surface has been detected within
the 3D CT volume by appropriate algorithms.
The following sections will briefly explain the working principle and the most important
parameters of the key elements in the acquisition and reconstruction chain of a CBCT
setup, i.e. the X-ray tube, the flat-panel detector, the reconstruction process, and finally
the step of visualization and of dimensional measurements.

2.2.1 X-Ray Source

X-radiation is part of the electromagnetic spectrum with energies ranging roughly from
0.1 keV to a few MeV. Furthermore, it is a form of ionizing radiation, i.e. it is capable of
ionizing matter, which may be harmful, particularly to living tissue. Gamma radiation
is also a form of electromagnetic radiation and equivalent to X-radiation at the same
energies. Gamma- and X-rays are distinguished by their origin: X-rays are generated
by high-energetic electrons outside the nucleus, while gamma rays are emitted by the
nucleus.
For the generation of gamma radiation, different sources are available. Radioactive iso-
topes such as Cobalt-60 or Iridium-192 which emit gamma rays are also used in NDT
applications. X-rays can be produced by acceleration and deceleration processes of elec-
trons according to classical electrodynamics. Exploiting this fact, large-scale synchrotrons
produce synchrotron light up to 100 keV, while linear accelerators (short: linac) and X-ray
tubes generate polychromatic X-ray spectra of the order of 1− 15MeVand 30− 800 keV,
respectively. The latter two belong to the class of electron impact X-ray sources where
mainly bremsstrahlung from the deceleration of electrons in a target contributes to the
emitted X-ray flux. Only X-ray tubes are relevant to the work presented in this thesis.
In the following, we will focus on them and briefly describe their working principle.
Modern X-ray tubes originate from the design of Coolidge tubes from 1913, also called
hot cathode tubes. Here, in a vacuum tube, free electrons are generated through the
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Figure 2.11: Measured X-ray spectra for four different acceleration voltages, data taken from
[Ank00]. The continuous bremsstrahlung spectrum is superimposed by discrete
lines originating from characteristic radiation (see text for details).

thermionic effect by heating a tungsten filament, the cathode. By applying a high voltage
potential between cathode and anode, the electrons get accelerated by the electrical field.
Their velocity, and hence, their kinetic energy increases. The maximum energy Emax

they may gain is given by the potential U of the electrical field applied, Emax = e ·U
with e being the electronic charge. Strongly accelerated electrons hit the anode target
and interact with the atoms of the target material. Essentially, most of the energy the
electrons impart is converted into heat, whereas only about 1% of the energy is converted
into X-rays. Electrons may be slowed down by Coulomb interaction when they are close
to an atomic nucleus or orbital electrons. This deceleration produces bremsstrahlung,
a continuous spectrum of X-radiation shown in Fig. 2.11. The highest energy of an
X-ray photon present in this spectrum is given by the maximum energy which can be
transferred from an electron in a single process, i.e. Emax. Thus, the acceleration voltage
determines the upper energetic limit of emitted X-ray quanta, as can be deduced from
the four different spectra in Fig. 2.11. Measured X-ray spectra are provided by the
Physikalisch-Technische Bundesanstalt (PTB) in [Ank00].

The continuous bremsstrahlung spectrum is superimposed by characteristic radiation
which is emitted when an incident electron collides with an inner orbital electron from
an atom in the target material and liberates it. The hole which is left by the orbital
electron is filled by an electron from an outer shell whereby characteristic radiation is
emitted. This explains the characteristic X-ray line spectrum shown for a tungsten target
in Fig. 2.11. The characteristic X-ray lines are material specific, i.e. they are found at
energies which correspond to the differences of binding energies of electrons from different
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shells. In Fig. 2.11 this is 59 keV for an electron from the tungsten L-shell filling a hole
in the K-shell (Kα line), and 67 keV for an electron from the M-shell (Kβ line).
Ideally, the X-ray tube’s focal spot size would be infinitely small and, at the same time,
the X-ray photon flux could be adjusted arbitrarily high. From a technical point of view,
this poses the problem that all electrons deposit their energy in a very small area of the
target whereby they generate heat which soon exceeds a critical limit, i.e. the melting
point of the target material. Thus, a tradeoff between focal spot size and photon output
of the X-ray tube has to be achieved. Technically, we distinguish between two different X-
ray tube designs: On the one hand, the transmission target design, and on the other hand,
the side-window tube design. The first is mainly used for NDT applications requiring
high magnification whereby high resolutions in the reconstructed CT volume are realized
(CBCT micro-tomography of small parts, see above). The latter often employs a rotating
anode (for heat load distribution) and is very common in the medical field, but also for
NDT applications that do not require extremely small focal spot sizes.
In the experiments described in this work, we employ a micro-focus tube particularly
designed for high-resolution NDT applications. Built in transmission target design, it
features a thin target (5µm of tungsten) which allows for focal spot sizes of down to about
2µm. While enabling high-resolution imaging, such tubes are limited in their electrical
power which is of the order of 100W, and consequentially, in their X-ray photon flux.

2.2.2 Detector

X-ray detection has evolved from the beginnings more than 100 years ago when simple
photographic plates and films were used to modern digital flat-panel detectors (FPD)
used nowadays. FPDs employ either a photoconductor for direct conversion of X-rays to
electrical charge, or a scintillator for indirect conversion from X-rays to visible wavelength
photons which are subsequently converted into electrical charge. In both the direct and
indirect detection form, initially energetic photoelectrons are produced by the interac-
tion mechanisms described in section 2.1 that initially produce energetic photoelectrons.
In direct conversion, the photoelectrons cause further ionization and, thereby, create
electron-hole pairs on their passage through matter. Subsequently, these charge carri-
ers are detected, e.g. by an active matrix array (thin-film transistor technology, TFT)
coupled to the photoconductor.
Here, we want to describe FPDs with scintillation screens for indirect conversion in more
detail since it is a FPD that is used in the experiments carried out in this work. Moreover,
it is the most common type of detector employed in industrial CBCT. In Fig. 2.12(a), the
working principle of a FPD using a scintillator is illustrated schematically. As with direct
conversion, incident X-rays are interacting with the lattice of the scintillator material in
a multi-step process, mainly featuring photoelectric absorption and Compton scattering
events. As a consequence, many electron-hole pairs arise and thermalize in the conduction
and valence bands. They migrate through the scintillation material for a short distance
before they recombine at so-called luminescence centers, i.e. dopants specifically added
to the lattice of the crystal as activator. In this recombination process, visible light is
emitted. A typical value is that for a 60 keV absorbed X-ray photon only about 3300
green-light quanta (E = 2.4 eV) are released in a CsI:Tl scintillator [Beu00], for example.
The rest of the photon energy is converted in non-radiative energy loss mechanisms.
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Figure 2.12: (a) Schematic cross-section of a flat-panel detector that employs a scintillation
screen for indirect conversion of X-ray photons to visible wavelength photons.
These are detected by a TFT active matrix array coupled to the scintillator.
Figure adapted from Ref. [Beu00]. (b) Scanning electron microscope (SEM) mi-
crograph of microcolumnar CsI:Tl scintillator (thallium-doped cesium iodide).
Photograph by courtesy of Radiation Monitoring Devices, Inc. (RMD).

As shown in Fig. 2.12(a), the scintillator is in close contact to the underlying active matrix
array with its photosensitive storage elements. Emitted light photons are detected here
and generate electrical charge whose magnitude is proportional to the detected light
intensity, and hence, to X-ray intensity absorbed in the close neighborhood of the pixel.
By TFT technology, switching elements enable a line-by-line scanning for read-out of the
photosensitive storage elements. Electrical signals are amplified and digitized for further
processing.

A critical aspect we mention here briefly, concerns the tradeoff between light spread within
and X-ray stopping power of the scintillation material. Most generally, a thick scintillation
layer is desirable in order to have a high X-ray stopping power, and hence, efficient visible
light output yields. However, this is in conflict with the demand of high spatial resolution
since a thicker scintillation layer consequentially leads to a greater lateral spread of light.
This can be remedied by microstructured materials, such as CsI:Tl, which is shown in
a SEM micrograph in Fig. 2.12(b). Here, the CsI:Tl is grown in a columnar structure
where the needles act similar to fiber-optic light guides and prevent photons from passing
on to adjacent pillars. Micro-structuring is available only for a few scintillation materials
with their own drawbacks, e.g. long and persistent afterglow [Kno89, p. 242]. Thus, it
does not represent a universal solution. It rather depends on the type of application
and its requirements concerning X-ray detection which scintillation material is the most
appropriate and best choice. Besides the mentioned columnar-grown CsI:Tl, other widely
used scintillation materials are powders, such as e.g. Gd2O2S:Tb (called Gadox or GOS),
which feature a high refraction index and are incorporated within a non-radiative, but
optically transparent binder layer of lower refraction index. Thereby, light photons tend
to get reflected at neighboring grain surfaces due to the mismatch between the index of
refraction between the binder and the phosphor grains [Beu00].

As we will see in chapter 3, light spread and other diffusion mechanisms within the
detector play a key role in the measurements of secondary signals. In fact, they are the
cause for high spatial frequencies detected within the scatter images, cf. section 3.1.3
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and 4.3. Even if they are not directly avoidable, a comprehensive understanding of these
effects is worthwhile.

2.2.3 Reconstruction Algorithms

In this section, we want to review the step of reconstruction of the CT volume, which
follows CT data acquisition. The theory of tomographic data reconstruction is exten-
sively covered in scientific literature and many different approaches exist. Most generally,
one can classify reconstruction algorithms to be either Fourier-transform based [KS88],
algebraic [Kac37; GBH70], or statistical [SV82]. Here, we want to focus on the Fourier-
transform based filtered back-projection (FBP) method, which is most common and also
used throughout the experiments and simulations described in this work. FBP methods
owe their popularity to the fact that they can be performed with much less computa-
tional effort than algebraic or statistical algorithms. However, the latter two may reduce
certain artifacts that occur with FBP, e.g. beam-hardening artifacts, cf. section 2.3.1. In
the future, those methods might become more widely used as computational power is
continuously growing.
The brief introduction to FBP reconstruction presented here is only meant to describe
the most important aspects of the underlying mathematical foundation. It follows the
line of similar, but more detailed treatments in the textbooks by Kak and Slaney [KS88]
and by Buzug [Buz08]. Thorough presentations and discussions also concerning the vari-
ety of other available reconstruction algorithms and implications to their computational
implementation can be found in these textbooks.

2.2.3.1 Radon Transform and Fourier Slice Theorem

In order to illustrate the process of FBP reconstruction, let us consider an ideal situation
with parallel-beam geometry and only a single two-dimensional slice of an object for the
moment, as shown in Fig. 2.13(a). Let us assume that the X-ray source is monochromatic,
and thereby, µ = µ(E=const.) in Eq. (2.1). Furthermore, we assume that scattered radia-
tion does not exist. Instead of a thin slab as in section 2.1.1, we here consider an arbitrary
object with initially unknown distribution of material, i.e. attenuation coefficient µ. In
this situation, the Beer-Lambert law may be rewritten to

I(n) = I0 e−
∫
L
µ(l) dl , (2.26)

where L represents one of the parallel rays in Fig. 2.13(a), I0 the incident intensity, and
I the measured intensity in the corresponding detector pixel n. We express Eq. (2.26)
as a line-integral measurement by normalization (I(n)/I0) and subsequent application of
the negative logarithm:

p(n) = − ln

(
I(n)

I0

)
=

∫

L

µ(l) dl . (2.27)

Since ideal conditions without beam-hardening effects and without scattered radiation
are assumed, Eq. (2.27) yields a linear relationship between projection integral p and the
measured beam attenuation.

22



2.2 Basics of CT

Figure 2.13: Illustration of the Fourier slice theorem, adapted from Ref. [Wie07].

The tomographic data acquisition scan provides us with a set of θ = 1 . . . Nθ angular
projections, each consisting of n = 1 . . . Npix individual line-integral measurements of
the scanned object. For a more general discussion, let us rewrite Eq. (2.27) formally by
replacing the distribution of attenuation values µ(x, y) by a general function f(x, y), and
by expressing the integration over beam path L through an equivalent delta function:

pθ(n) =

∞∫

−∞

∞∫

−∞

f(x, y)δ(x cos θ + y sin θ − n) dx dy . (2.28)

Here, the subscript θ enumerates the different angular steps, and n represents the distance
from the projected center of rotation, as can be seen in Fig. 2.13(a). pθ(n) is called the
Radon transform of the function f(x, y) and is a first important result in the derivation.
The complete 2D set of measured data, i.e. projection integrals pθ(n) with θ = 1 . . . Nθ

and n = 1 . . . Npix, represents the so-called Radon space.
However, it is the inverse problem that has to be solved as one is interested in finding the
original function f(x, y) = µ(x, y) based on the measurement data pθ(n). This problem is
solved by the Fourier slice theorem that states: The one-dimensional Fourier transform
of the (parallel) projection profile, F1(pθ)(ρ), can be identified with a radial line in the
two-dimensional Cartesian Fourier space of the object, F2(f)(u, v), drawn at the angle
of the corresponding measurement [Buz08], cf. Fig. 2.13:

F1(pθ)(ρ) = F2(f)(u, v)|u=ρ cos θ
v=ρ sin θ

(2.29)

This represents the most important result for all Fourier-transform based reconstruction
methods. The relationship also implies that Fourier transforms of parallel projections
from an angular interval of length π cover the two-dimensional Fourier space of the
object completely. Taking the two-dimensional inverse Fourier transform of Eq. (2.29),
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f(x, y) = F−1
2 (F2(f)) (x, y), and expressing the volume element in R

2 as ρ dρ dθ using
polar coordinates instead of Cartesian du dv, one obtains

f(x, y) =

2π∫

0

∞∫

0

F1(pθ)(ρ)e
2πiρ(x cos θ+y sin θ) ρ dρ dθ , (2.30)

and after some simplifications (see e.g. [Tur01]):

f(x, y) =

π∫

0

(pθ ∗ g)︸ ︷︷ ︸
filtering

(x cos θ + y sin θ) dθ

︸ ︷︷ ︸
back-projection

. (2.31)

Here, g denotes the so-called ramp filter [Buz08]:

g(n) =

∞∫

−∞

|ρ|e2πiρn dρ . (2.32)

Equation (2.31) is the solution to the initial problem. Giving rise to the name of this
method, filtered back-projection (FBP), the process can be divided into two steps: first
the filtering of each set of projection data, and second, a back-projection of the filtered
projection data over all projection angles. Sometimes, the last step is colloquially also
perceived as ‘smearing back’ the filtered projection values over the entire image plane
along corresponding beam paths.
The mathematical derivations so far have been for two-dimensional slices of an object
scanned in a setup with parallel beam geometry. In the case of fan-beam geometry,
certain geometric adoptions have to be performed, leading to a weighted reconstruction,
cf. section 3.4 in [KS88]. As long as the projection data covers an angular interval of
π + fan-beam angle, this method is still exact.

2.2.3.2 Three-dimensional Reconstruction Algorithms

For cone-beam geometry and three-dimensional object data to be reconstructed as it is
the case for the experiments described in this work, one has to switch to three-dimensional
reconstruction algorithms. Here, a major distinction concerning the type of data acqui-
sition and reconstruction comes into play. Within the variety of different Fourier-based
approaches that exist, cf. chapter 8 in [Buz08], one distinguishes approximate from exact
3D volume reconstruction methods.
In this work, the CT experiments and simulations are performed as circular trajectories
of X-ray source and detector, or equivalently, as full rotation of the sample whereas source
and detector are stationary. For this kind of data acquisition, only approximate recon-
struction is possible due to the fact that data sampling in Radon space (for definition,
see above) is incomplete4, cf. [Buz08, p. 366]. This also becomes obvious if one considers

4Data sampling with a circular scan trajectory can only fill a torus-shaped region within the 3D Radon
space. Thus, so-called shadow zones along the axis of rotation, z, exist which make an exact recon-
struction of the 3D object impossible.
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the Tuy-Smith sufficiency condition [Tuy83] which states that exact reconstructions of
an object are possible if all surfaces intersecting the object intersect the trajectory of the
X-ray source at least once. Only for the central axial plane where the inclination angle
is zero, this condition is met and exact reconstruction is feasible. For all other object
points in off-centered axial planes with inclination angles 6= 0, so-called cone artifacts
arise. In this scenario, where the acquisition provides insufficient Radon data, only an
approximate reconstruction of the object volume is achievable.
The most frequently used method for approximate reconstruction of 3D object volumes
based on cone-beam projections taken with a planar detector is the algorithm proposed
by Feldkamp, Davis, and Kress [FDK84]. This state-of-the-art method, which is also
often referred to as FDK method, is used throughout the CT experiments described in
this work. Related to our simple derivations above describing the principle nature of
filtered back-projection, the FDK method represents its extension to the 3D situation.
As mentioned, its main shortcoming is the rise of cone artifacts.
Referring to exact methods, a number of different acquisition protocols are available that
fulfill the Tuy-Smith sufficiency condition. For example, appropriate trajectories are
provided by a helical acquisition [Kat03], or by a short-scan circle plus line [Kat04] or
plus arc [Kat05].

2.2.4 Visualization and Dimensional Measurements

After the reconstruction process, the 3D CT volume can be viewed by appropriate soft-
ware, e.g. VGStudio MAX for industrial CT data [RGP11]. The reconstructed CT volume
essentially is a 3D cuboid of single volume elements, called voxel (in analogy to pixel), rep-
resenting the local attenuation coefficients. Therefore, three orthonormal cross-sectional
views of the CT volume, also called CT slices, are a common viewing presentation as
illustrated in Fig. 2.14(a). Visualization of the CT volume enables most of the NDT
tasks, i.e. one can visually evaluate detected cracks, pores, voids, etc. in the CT slices.
Besides qualitative visual inspection, several other quantitative evaluation tools are avail-
able, such as dimensional measurements, wall thickness analysis, porosity analysis, and
nominal-actual comparison. For these, first, the object surface has to be detected by
gray-value thresholding routines such as e.g. the marching cubes algorithm. Once the
surface is detected, further processing and 3D rendering of the CT volume is possible.
Figure 2.14(b) shows an example of a nominal-actual comparison displayed in the ren-
dered 3D model. Dimensional measurements may be achieved with an accuracy of about
1/10 of the voxel size [RGP11].

2.3 CT Artifacts

2.3.1 Beam-hardening Artifacts

X-ray tubes used in industrial CT as well as in medical CT are electron-impact X-ray
sources as described in section 2.2.1. They exhibit a continuous spectrum of brems-
strahlung and several characteristic emission lines, as shown in Fig. 2.11. For this reason,
in our derivations of the line-integral and the mathematical process of reconstruction in
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Figure 2.14: (a) Three orthonormal views of a reconstructed CT volume called CT slices,
from top left to bottom: axial/transverse, sagittal, and frontal/coronal plane.
(b) 3D visualization of CT volume by rendering the detected surface within the
CT volume. Colors encode nominal-actual comparison.

section 2.2.3, considering the X-ray source being monoenergetic has been a simplification.
The X-ray tube rather features a polychromatic X-ray spectrum Ĩ0(E) which has to be
taken into account in our derivations. When integrated over the maximum energy range,
Ĩ0(E) yields the total incident intensity I0:

I0 =

Emax∫

0

Ĩ0(E) dE . (2.33)

Furthermore, in section 2.1 we discussed that the radiation attenuation does not only
depend on the path length, but also on the physical interaction processes (photoelectric
effect, Rayleigh and Compton scattering) with the material which in turn are energy-
dependent. Regarding the polychromatic nature of the X-ray sources and the fact that
attenuation coefficients are energy-dependent, Eq. (2.1) is no longer valid. It has to be
replaced by the following relationship that also incorporates the energy-dependence:

I(s) =

Emax∫

0

Ĩ0(E) e
−

s∫

0

µ(l,E) dl
dE . (2.34)

Consequentially, the projection integral from Eq. (2.27) has to be extended to

p(n) = − ln


 1

I0

Emax∫

0

Ĩ0(E) e−
∫
L

µ(l,E) dl dE


 . (2.35)
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Figure 2.15: Simulated attenuation curves using a monochromatic spectrum of 80 keV (red
curve) and a 225 kVp polychromatic spectrum for a tungsten target (black curve).
An aluminum wedge as object sample is simulated and attenuated signals I are
registered behind. The polychromatic spectrum leads to a non-linear attenuation
curve due to the effect of beam hardening. If left uncorrected, this leads to
artifacts in the reconstructed CT volume. The linearization approach corrects
projection integrals that are measured with polychromatic spectra by mapping
them onto the monochromatic case (see arrow).

Equation (2.35) implies that the measured projection integral p and the path length
of the material have no longer a linear relationship as in Eq. (2.27). So-called beam-
hardening artifacts are a consequence of this non-linearity. The name of beam hardening
originates from the following consideration: The polychromatic incident X-ray spectrum
changes along the beam path while it penetrates material. More specifically, low-energy
photons are more likely to be absorbed or scattered than high-energy photons due to
their different attenuation characteristics, as illustrated in Fig. 2.2. As a consequence,
the X-ray photon flux loses more low-energy than high-energy photons while penetrating
the material. Hence, the X-ray spectrum changes as its mean energy increases. Thereby,
it becomes more penetrating in the following – or in other words, the X-ray spectrum
gets hardened.
As the mean energy of radiation increases due to the beam-hardening (BHD) effect in the
course of X-rays passing the material, the probability of interaction will decrease. Obvi-
ously, the strength of this effect depends on penetration lengths. As shown in Fig. 2.15,
the longer the penetration length, the greater the non-linearity becomes. As a conse-
quence, the measured intensities for the individual projections are not consistent from
different angular directions. Out of this inconsistency beam-hardening artifacts arise.
They include streaks in the CT volume at strongly attenuating structures as well as a so-
called cupping artifact, where homogeneous regions of material appear inhomogeneous,
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i.e. a line profile across these regions shows a sagged line. Several techniques exist in
order to reduce or correct beam-hardening effects.
First of all and very common in most modern CT scanners, a reduction of BHD effects
is reached by beam filtration when the X-rays leave the X-ray tube. A thin plate of
aluminum or copper (a few millimeters, at most) may be used for filtering out soft X-ray
photons whereby the spectrum is effectively narrowed and hardened before it reaches the
sample or the patient, respectively. In practice, a tradeoff between sufficient filtering and
large enough dose rate has to be found if scan times are not to exceed a certain level.
Second, a theoretically exact and complete correction of BHD effects for single material
objects is possible through the so-called linearization approach. As shown in Fig. 2.15,
this approach aims at mapping the measured signals (represented by black curve) to sig-
nals one would measure in an ideal, monoenergetic case for the same path lengths (red
curve). Therefore, a linear relationship between corrected signals and measured path
lengths is restored. The mapping function can either be found experimentally [Her79] or
by simulations with polychromatic spectra [HM98], as it was done in Fig. 2.15. In the
medical field, this approach is also known under the name of water correction [Hsi03;
Buz08]. As mentioned before, this pre-processing method (applied before reconstruction)
can be correct only for single material objects, since, for objects composed of multi-
ple materials, measured projection integrals represent unknown mixtures of attenuation
contributions from the different materials of the sample passed by the beam.
Third, in order to avoid the problem of multi-material samples, a number of itera-
tive schemes incorporating forward-projectioning exist as post-processing methods [JS78;
MMS90; Hsi+00].
Fourth and last, the dual-energy approach represents theoretically the most elegant BHD
correction [AM76] but it requires two scans with different X-ray tube voltages.

2.3.2 Ring Artifacts

Defect detector channels or a gain miscalibration of detector pixels may cause the for-
mation of ring artifacts in the CT volume. Since X-ray source and detector are installed
stationary relative to each other in medical CT, and completely stationary in industrial
CT, a pixel with non-linear response causes a wrong signal at the same location in each
CT projection. During the back-projection step in the reconstruction process, cf. section
2.2.3, this consistently erroneous reading will form concentric rings in axial planes in the
CT volume due to the circular sampling process. Figure 2.16 shows typical ring artifacts
encountered in an axial CT slice from a CT where detector calibration is insufficient. Be-
sides issues with imperfect detector behavior, also stationary objects in the projections,
other than the test component under study which is rotated, may lead to the formation
of ring artifacts as we will investigate in chapter 5. Suppression of ring artifacts in CT is
possible by several different post-acquisition algorithms [SP04; KPK09; Tit+09].

2.3.3 Scattered Radiation Artifacts

Scattered radiation is another well-known source of severe CT artifacts, but – in con-
trast to the above mentioned artifacts – it is still considered an unresolved problem in
CBCT [Yan+10; WMS10; ZBF06; ZSF05; PLB08].
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Figure 2.16: Ring artifacts in an axial CT slice arising due to insufficient detector calibration.

Figure 2.17: Schematic illustration of a cone-beam CT setup where incident primary radiation
(green) partially is scattered by the sample. A part of this scattered radiation
(red) reaches the detector where it gives rise to scatter signals. Representing
an additional signal contribution that is uncorrelated with the attenuation of
straight primary X-rays, scatter signals lead to the formation of scatter artifacts
in reconstructed CT volumes.
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Figure 2.17 schematically illustrates the origin of scatter artifacts: Primary radiation is
attenuated by the sample, either by complete absorption (cf. section 2.1.2) of primary
photons or by Rayleigh (section 2.1.3) or Compton scattering (section 2.1.4). In fact, as
we discussed in section 2.1, for energies used in industrial CT, a great part of the incident
X-ray photons is scattered. After interaction, they still exist (as scattered photons) and
exhibit a different travel direction and possibly different energy as before. Scattered
photons that reach the detector plane give rise to scatter signals. These represent an
additional signal contribution which does not correlate with the attenuation of straight
primary X-rays and thereby violates Eq. (2.27) by the nonlinearity it introduces to the
scan process. As a result, scatter artifacts arise in the CT volume. Although different
in its physical origin, the appearance of scatter artifacts is similar to artifacts caused by
beam-hardening, e.g. streaks and cupping, as described above in section 2.3.1.
Since the subject of the formation of scatter artifacts and of its contributing sources is
extensive, we leave a more detailed discussion of these topics to the next chapter.
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Chapter 3

Origin and Correction of Scatter

Artifacts in Cone-Beam CT

In both medical and industrial cone-beam CT scanners (CBCT), modern flat-panel de-
tectors are used. They provide instantaneous and complete 2D data acquisition while
maintaining a high isotropic spatial resolution. Compared to fan-beam CT scanners, the
extended volume coverage reduces the scan time significantly and makes much better
usage of the X-ray flux produced by X-ray tubes. However, it also leads to an increased
contribution of scattered radiation to the total detected signal. It is generally accepted
knowledge [JY82; JS82; Glo82; Kan+85; SJ01] that scattered radiation represents a ma-
jor source of image degradation in cone-beam CT systems, resulting in artifacts such as
cupping in homogeneous regions of material, reduction of contrast, and streaks between
regions of high contrast. Additionally, image noise increases when scattered radiation is
detected. Dimensional measurements performed in industrial CT are negatively affected
in the surface detection step since scatter blurs sharp edges and renders flat surfaces
curved.
In section 3.1, we will study the sources of scatter that contribute to the total detected
signal through different mechanisms. This is important for the understanding of the
experimental results described in chapter 4. Section 3.2 will then give an overview of
different scatter artifacts by demonstration of a simulated, ideal CT where we can ‘switch
on and off’ scatter contribution in addition to the desired and correct primary signals.
Finally, in section 3.3, we will give a brief review of the most important existent methods
and techniques to avoid scatter artifacts that are found in the literature. Some of them are
also accepted standards and implemented in commercially available medical CT scanners.

3.1 Sources of Scatter

Reconstruction algorithms, as we introduced them in section 2.2.3, are based on the
assumption that only primary radiation Iprim reaches the detector and thus, ideally, P (n)
is the only contribution to the total detected signal T (n):

T (n) = P (n) = c · Iprim(n) . (3.1)

Here, c is a linear conversion factor between the incident radiation intensity and the
output signal. For simplicity’s sake, here, we only consider a one-dimensional detector
with n = 1...Npixels. Further detector rows can be treated analogously.
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Besides the primary signals P , also several secondary events S contribute to the total
detected signal at each pixel n of the detector:

T (n) = P (n) + S(n) . (3.2)

S(n) comprises all secondary signals registered at pixel n, consisting of scattered X-ray
and fluorescence radiation, as well as non X-ray scatter and spread effects in the detector
(detector internal effects), termed SDet(n). Scattered radiation contributions may stem
from different scatter mechanisms and consist of components originating from the object,
from the environment and from detector internal scatter events:

S(n) = c · (IObj(n) + IEnv(n) + IDet(n)) + SDet(n) . (3.3)

Here, IObj, IEnv, and IDet represent scattered X-radiation (Compton and Rayleigh scatter
events) caused by the sample, by environmental structures within the CT lab, including
the mechanical CT system structure, and by the internal mountings within the detector,
respectively. SDet(n) signifies an additional signal at pixel n originating from adjacent
pixels which may contribute by non X-ray scatter mechanisms such as optical light spread
in the detector. This additional signal is also related to IObj, IEnv, and IDet from other
pixels. To list in a formal way all different sources of secondary signals, here we have
strictly distinguished between their origins. In the sections 3.1.1, 3.1.2, and 3.1.3, we will
discuss in more detail the three different sources of scatter, i.e. sample, environment, and
detector.

3.1.1 Scattered Radiation from the Sample

The scatter contribution originating from the sample is the most manifest and the first we
want to discuss here. Incident X-rays coming from the X-ray tube may interact with the
atoms in the sample by one of the interaction mechanisms discussed in section 2.1, i.e. the
photoelectric effect, Rayleigh and/or Compton scattering. Scattered photons have new
directions of propagation and those that reach the detector plane give rise to secondary
signals usually at locations that are uncorrelated with the primary photon’s beam path.
In general, the amount of scattered radiation from the sample that actually is detected
and that contributes to total signals, is dependent on (i) the atomic number Z and
on (ii) the size of the sample, as well as on (iii) the distance between the scattering
sample and the detector plane (air gap, cf. section 3.3.1). Referring to (i) the atomic
number Z, Compton scattering dominates over Rayleigh scattering for photon energies
relevant in industrial CT, as described in section 2.1.1. Figure 2.2 illustrated that in this
energy range elements with lower atomic numbers typically show greater cross sections
for Compton scattering than higher Z elements, which is due to the incoherent scatter
function S(x, Z) describing electronic binding effects (cf. section 2.1.4).
Regarding (ii) and (iii), the size of the sample and its distance to the detector are
solely geometric parameters. As predicted, it is found by Monte-Carlo simulation [Kal81;
Kan+85] and experimental investigation [JY82] that scatter-to-primary ratios (SPR) in-
crease with bigger samples and also by decreasing the distance between sample and
detector.
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Figure 3.1: (a) Setup for Monte-Carlo simulation stating the simulation parameters and set-
tings. (b) Simulated scatter image formed by object scatter, and (c) corresponding
line profile. Cast object shadows are indicated in (b) and (c).

Precise knowledge of the signal contribution due to scattered radiation from the sample,
also termed object scatter IObj, has been the objective of many research activities in
the past decades [Kal81; CD83; BS88; HKK91; CB04; NTC04; Mal+05; KRK06; ZB06;
ZBF06; Mic+07; PLB08; WMS10; Yan+10]. In fact, since scattered radiation from the
sample is the dominating part of total scatter signals in many CT systems, in the lit-
erature, object scatter often is the only source of scatter considered. A well-established
method to simulate object scatter is given by the Monte-Carlo method [Kal81; CD83]. In
Monte-Carlo simulations, the repeated computation of random flight paths of individual
photons on their passage through a scattering medium is performed. For each simulated
photon trace, the type of interaction, scattering parameters etc. are chosen according to
the physical properties of the simulated matter. This yields expectation values of scat-
tered photons on the virtual detector plane as soon as the desired number of hits has
been registered.
Representing a typical situation found in industrial CT, Fig. 3.1 exemplifies a Monte-
Carlo simulation for a radiographic projection of a rectangular solid made of aluminum
that scatters X-rays incident in cone-beam geometry. In Fig. 3.1(a), the simulation
scenario is schematically depicted, in (b), the simulated scatter image at the detector
plane is given, while in (c), the corresponding line profile for a horizontal line across
the mid-plane in the scatter image is shown. Besides the noise due to the statistical
distribution of simulated photon tracks, the scatter image contains low spatial frequencies
which is a common assumption of object scatter found in the literature [Glo82; BS88;
NTC04; ZBF06].
The circumstance that the sample under investigation is scattering incident radiation is
unavoidable. However, even if unavoidable, at least there exist techniques to reduce the
amount of detected scatter fluence which we will briefly discuss in section 3.3.1.

3.1.2 Scattered Radiation from the Environment

Besides scattered radiation from the sample, we also expect a certain contribution from
the CT scanner surroundings, i.e. mechanical structures nearby, that we term environ-
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mental scatter contribution IEnv. Only in an idealized scenario, within a Monte-Carlo
simulation, conditions can be defined such that solely the sample is scattering incident
radiation. In real-world experiments, however, it is difficult to eliminate environmental
scatter completely as the CT scanner unit, the lab structures and even the detector itself
are made of scattering material.
First, we want to examine the environmental scatter contribution in our standard CT
setup. Second, we demonstrate a few techniques that reduce detected scatter from the
environment. For this purpose, a simple experiment is carried out which yields the
approximate ratio of scatter contribution from environmental structures normalized to
the total signal in (unobstructed) direct-beam regions:

STR :=
SEnv

Tdirect-beam

. (3.4)

This quantity shall be termed scatter-to-total ratio (STR). Figure 3.2(a) schematically
presents the experimental setup. We use a micro-focus X-ray tube operated at 220 kVp
with a 4mm copper filtering, as well as a flat-panel detector with a 40.96 × 40.96 cm2

scintillation layer of Gd2O2S:Tb (cf. section 2.2.2). A 10mm thick lead block is positioned
at different source-object-distances (SOD) consecutively and the signal is measured as
mean within two regions-of-interest (ROIs) in the projected shadow of the lead block,
see marked regions in the projection shown in Fig. 3.2(b). Since the primary radiation,
i.e. the direct-beam is absorbed by the lead block here, we only measure secondary signals
IEnv and IDet.
In a first series, the measurement is conducted with the CT scanner in its standard setup,
i.e. without collimating aperture, with the X-ray tube, sample, and detector in a lower
position, i.e. their centers 32 cm above the scanner base, and with a 0.4mm thick carbon-
fiber-reinforced plastic (CFRP) plate in front of the detector for protective shielding. The
detector is at SDD = 120 cm. Starting with the lead block positioned right in front of
the CFRP-shielding at SOD = 117 cm, we decrease SOD and measure signals behind the
lead block. Measurement results are given as black curves in Fig. 3.2(c) where the box-
markers indicate ROI 1 and the bullet-markers ROI 2 measurements. Decreasing SOD
from 117 cm to 100 cm, note the leap in the measured STR from about 1.5% to more
than 5%. This can be explained by an increasing accessibility of the ROIs to scattered
radiation particularly coming from the granite scanner base below and sideways. In this
setting, without collimating aperture, the X-ray cone-beam is covering an area larger
than the detector area and radiation is incident on the scattering scanner base, too.
When further decreasing SOD, the measured STR starts to decrease again. This is
explained by increasingly larger portions of incident radiation absorbed by the lead block
as its enclosing cone angle becomes larger.
The situation may be greatly improved by a proper collimating aperture that limits the
cone-beam to the detector plane as well as by an elevated scanner position where X-ray
tube, sample and detector are 50 cm above the scattering scanner base (upper position).
We conduct the same measurement by moving the lead block to vary SOD and obtain
the measurement results shown as red curves in Fig. 3.2(c). In this setting, measured
STRs are close to 1.5% for all SODs.
Finally, we have identified the CFRP plate mounted right in front of the detector as
protective shielding to be another source of environmental scatter. The third series
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3.1 Sources of Scatter

Figure 3.2: (a) Schematic view of experimental setup for demonstrating different steps to re-
duce environmental scatter. (b) Radiographic projection of lead block at source-
object distance SOD = 117 cm with tagged ROIs. (c) Experimental results for
signals measured in ROI 1 and 2 for three different CT scanner settings, cf. legend
and details in the text.
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Chapter 3: Origin and Correction of Scatter Artifacts in Cone-Beam CT

of measurements is conducted without this CFRP shielding, however with the same
parameters and settings as before. Measurement results are given as green curves in
Fig. 3.2(c). Note that with these steps the STR could be reduced to about 1.0% and less
for all SODs.
In principle, the proposed steps can be performed in order to reduce environmental scat-
ter, however they are subject to experimental conditions. Nevertheless, we expect a
scatter contribution from the environment IEnv to occur in experiments described in the
following parts. Particularly, in situations when a scattering sample is placed into the CT
setup, we expect multiple scattering involving both sample and surrounding structures
which will lead to increased scatter contributions IEnv from the environment.

3.1.3 Detector-Internal Scattering and Veiling Glare

As a last contribution to the total scatter signal S from Eq. (3.3), we consider detector-
related scatter and blur mechanisms IDet and SDet. Again, in a simple experiment, we
examine the contribution of both. The experimental setup is illustrated in Fig. 3.3(a)
whereas the hardware equipment is the same as described above in section 3.1.2. In
a series of projections, collimators of different aperture sizes are employed in order to
irradiate detector regions of different sizes. For smaller aperture sizes, we expect less
detector-internal scattering contributing to the measured signal, and hence, lower signals
than with larger aperture openings. In this specific setup without sample and with the
measures taken that reduce environmental scatter as described in the last section, we have
eliminated scattered radiation from the sample, IObj, and we may neglect environmental
scatter IEnv. Thus, only secondary contributions that are detector-related are examined
here.
Decreasing the aperture size such that its shadow shrinks from about 108 × 90 = 9720
pixels down to 4× 4 = 16 pixels, we measure the signal in a small region at the center of
the collimator’s projected shadow. Experimental results are shown in Fig. 3.3(b). Note
that the signal is rapidly decreasing as the aperture size approaches small openings of the
order of a few pixels. In fact, we observe a signal drop of 22% for the smallest aperture
size compared to the open field-of-view (FOV) signal at the same location on the detector
plane when collimating apertures are omitted. On the other hand, the total open FOV
signal is approached when the aperture size increases: irradiating an area of almost 10000
pixels, which represents 0.2% of the total detector sensitive area, constitutes 96% of the
total open FOV signal already.
We assume that the true, unbiased signal is the one measured within a very small aper-
ture shadow and that additional signal contributions in projections with larger aperture
openings are due to detector-related scatter and blur mechanisms, cf. [PLB08]. From this
perspective, the open FOV signal is too large by about 30% if the smallest aperture signal
is considered to be 100% primary signal without additional scatter contribution.
In the indirect conversion process described in section 2.2.2, a number of different possible
scatter and blur mechanisms have to be considered as responsible for the observed effect:
First, incident X-rays may be scattered by any material that is in the vicinity of the
detection layer, e.g. the detector housing, mountings, structures behind etc., or even by
the detection layer itself. Furthermore, K-fluorescence X-ray photons may be reabsorbed
at locations different than their origin, i.e. at the primary detection site. Analogous to
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3.1 Sources of Scatter

Figure 3.3: (a) Schematic side view of experimental setup for demonstration of the influence
of the detector-related scatter component. In this setup, we assume that object
scatter does not exist and environmental scatter is negligible. (b) Experimental
results of measured signals in the aperture shadow for variable aperture sizes.

the above-mentioned X-ray scatter contributions IObj and IEnv, we denote these detector-
related X-ray scatter and fluorescence contributions as IDet. The resulting spatial blurring
of (otherwise) sharp sample edges due to scatter has been studied before experimentally
in Refs. [ZOE03; Bub+07] and theoretically in Ref. [HKG05], and for X-ray fluorescence
in Ref. [Boo+99].

Second, after the X-ray photon has been converted to several thousands of photons in the
visible spectrum, those may spread and further scatter optically which causes blurring,
also known as veiling glare. Its magnitude mainly depends on the thickness of the de-
tection layer and on the scintillation material characteristics (microstructured, powder,
etc.), cf. section 2.2.2 and [Bad03]. The veiling glare is solely caused by photons in the
visible spectrum. Hence, we separate it formally from the X-ray scattering mentioned
before by denominating it as SDet.

Third, even further sources of blurring exist as defined by Rowlands in Ref. [Beu00,
p. 234–236]: geometrical and migration range of electron-hole pairs. These are consid-
ered as intrinsic sources of blurring. Geometrical blurring refers to the fact that inclined
incident X-rays may be absorbed at different depths within the scintillation layer, and
hence, give a different response on the surface. This effect depends on the angle of inci-
dence and on the thickness of the scintillation layer. Blurring due to electron range results
from electrons freed by radiation interaction and their subsequent migration through the
medium depositing energy. However, their potential migration range is specified to be
10 − 30µm at 50 − 100 keV in typical X-ray detection media [Beu00]. Since the width
and height of a pixel in our experiment is 200µm, we assume that the electron range is
only of little significance here.
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Chapter 3: Origin and Correction of Scatter Artifacts in Cone-Beam CT

3.2 Demonstration of Scatter Artifacts by Model

Simulation

Scattered radiation, whether it is originating from the sample, the environment, or from
the detector material itself, respectively, represents a secondary signal contribution to the
total detected signals in each projection. In radiographic projections, this merely reduces
image contrast, since it contributes additively, cf. Eq. (3.2). However, it is well-known
that scattered radiation represents a major source of image degradation in CT resulting
not only in a loss of contrast, but also in a number of other artifacts. Their consideration
is more complicated than in the case of a 2D projection, as the log operation in the
reconstruction process is non-linear (cf. section 2.2.3): log(P + S) 6= logP + log S.
Thus, in this section, we demonstrate the different typical artifacts commonly encountered
in both medical and industrial CT. For this purpose, we perform a model simulation in
order to provide an ideal CT reconstruction free from any artifacts. We compare this
with a CT reconstruction based on ideal projections where we deliberately add a constant
offset representing the scatter contribution. Hereby, an exclusive study of scatter-induced
artifacts in the CT volume is made possible while all other sources of artifact, particularly
beam-hardening artifacts which have similar appearance, are excluded by the simulation
settings chosen accordingly.

3.2.1 Model and Simulation

We perform a direct-ray simulation (DRASIM1) where a simple geometrical object, e.g. a
rectangular solid, is virtually transmitted by calculating the X-ray attenuation according
to Eq. (2.1) along irradiated beam paths within the object. Irradiated path lengths are
geometrically calculated as direct-rays by the software, and linear attenuation coefficients
µ(E,Z) are taken from a database2 that is provided with the simulation package.
Resembling a typical scenario in industrial CT, we create a model for the simulation as
follows: A cone-beam CT (CBCT) setup is modeled with an ideal X-ray tube, i.e. the
focus is infinitesimally small and the tube is emitting monochromatic radiation with a
photon energy3of Emono = 130 keV. Thereby, we eliminate the effect of beam-hardening.
Additionally, noise is disabled as the simulation exactly calculates expectation values
based on irradiated path lengths. The flat-panel detector which has dimensions of 40.96×
40.96 cm2 and 2048×2048 pixels, is located at a source-detector-distance (SDD) of 90 cm.
Furthermore, the detector is idealized too, i.e. it has a detective quantum efficiency
(DQE) of 100% and neither internal scattering nor blurring. The tomographed object is
defined as rectangular solid made of aluminum (Z=13) with dimensions 8× 4× 18 cm3.
We insert some structures in three different transversal planes of the rectangular solid
(cf. Fig. 3.4), i.e. thin slits aligned frontally and laterally, as well as holes, by declaring
them geometrically as regions within the object where X-rays do not interact with matter

1Siemens simulation package for direct-ray simulation of radiographic projections, cf. [Sti93].
2DRASIM uses the EPDL97 database from the Lawrence Livermore National Laboratory (LLNL),

cf. [CHK97].
3E = 130 keV corresponds approximately to the center-of-mass energy of a 225 kVp spectrum filtered

with 3mm of copper that is typically used in industrial CT.
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3.2 Demonstration of Scatter Artifacts by Model Simulation

(virtual vacuum). The object is virtually placed at a source-object-distance (SOD) of
75 cm and rotated, while a total number of 1080 projections are simulated.
In a first CT reconstruction based on the simulated projections, an ideal CT volume is
reconstructed. In a second run, we add a constant offset of 3000 gray values to each
projection which represents the simplest form of scatter contribution. This corresponds
to a scatter-primary-ratio (SPR) of 10% in direct-beam regions, which is realistic in
magnitude and comparable to ratios measured in the experiments described in chapter 4
and 5.

3.2.2 Simulation Results

Figure 3.4 shows axial CT slices extracted from the two simulated CT volumes with
and without scatter contribution as well as corresponding CT slices from a real scatter-
contaminated CT, which is described in more detail in section 5.6. The top row shows
three CT slices from the ideal CT, i.e. the CT where ideally simulated CT projections
were used and no additional scatter offset was added. The middle row depicts simulated
CT slices from the reconstructed volume where projections with constant scatter offset
were used. Thereby, scatter-related artifacts are visible here which shall be discussed
in the following. For comparison, the bottom row in Fig. 3.4 shows CT slices from a
real CT where scattered radiation and other secondary signals result in scatter artifacts
that are very similar to those encountered in the simulation (middle row). Even though
the simulated CT is different from the real CT in quite a few parameters (spectrum,
detection characteristics, etc.), their similarity is remarkable, indicating that mainly the
scatter offset is relevant to the appearance of scatter artifacts and that other parameters
are less dominant.
Let us discuss the most prominent scatter artifacts typically encountered in industrial
CT, always referring to the middle row in Fig. 3.4 and comparing this to the ideal CT in
the top row:

Cupping artifact The so-called cupping artifact is noticed, i.e. inhomogeneities in re-
gions of homogeneous material. Note that in all scatter-contaminated CT slices central
regions within the object appear darker while boundary regions are very bright at half of
the side length. In Fig. 3.5, this gray-value difference can also be found quantitatively in
the corresponding line profiles (red and black curves) for the scatter-contaminated CTs
while the ideal CT shows an almost perfect rectangular profile here (green curve). In the
latter, the small overshoots noticed at some of the sharp edges of the slits represent an
artifact that is due to the high spatial image frequencies encountered in a perfect simu-
lation setting. Signals including these high frequencies are band-limited when filtered in
the reconstruction process and this may cause ringing artifacts.
Cupping artifacts may arise due to the scattered radiation, but also due to beam-
hardening effects, cf. section 2.3.1. In fact, both artifacts – although different in their
physical origin – lead to measured signals that are larger than they should be according
to the attenuation law given in Eq. (2.1). Hereby, inconsistencies arise in the angular
projection sampling as the linearity between measured projection integral p and pene-
trated path length integral in Eq. (2.27) is no longer existent. In addition, a difference
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3.2 Demonstration of Scatter Artifacts by Model Simulation

Figure 3.5: Line profiles for the CT slices shown in Fig. 3.4 in the middle column, as indi-
cated. (a) The ideal CT shows an almost perfect rectangular profile with small
overshoots, see text for details. (b) A strong cupping artifact and reduced contrast
at the slits are noticed in the line profile of the simulated CT with constant scatter
contribution. Also, the background is non-zero and rises slowly towards the sample
edge. (c) The corresponding line profile from a real CT is given for comparison.
Similar artifacts appear as in the simulated CT.

arises between central regions of the object where beam path lengths are longer than for
regions near the object boundaries where beam path lengths are short. For the first, the
effect of non-linearity is stronger since signals are smaller here. In the reconstruction
process, this leads to the observed cupping artifact.

Loss of contrast is noticed at slits and holes in the scatter-contaminated CT slices.
This can be seen in Fig. 3.4, but also quantitatively in the corresponding line profiles
shown in Fig. 3.5. Scatter introduces loss of contrast in the CT scan process at the stage
of CT projections already. Here, a constant offset is added and leads to a loss of contrast
in the projections that evolves to the observed final loss of contrast in the CT volume.
Loss of contrast is a very critical scatter artifact, particularly in nondestructive testing
(NDT), since tiny cracks and flaws which are of low contrast naturally become even more
difficult to be detected and visualized.

Streaks represent another scatter artifact and hamper a uniform appearance of other-
wise homogeneous material, cf. regions highlighted by red and yellow arrows in Fig. 3.4.
Here, dominant dark spikes (red arrows) along the long sides of the object elongate to
the outside and disturb the corner regions. Also inside the object, we notice bright and
dark streaks starting from high-contrast details, i.e. holes and slits, indicated by yellow
arrows. Streak artifacts may lead to misinterpretation and they may superimpose true
defects.

Effect on dimensional measurements As a result of the cupping artifact and the
artifact-affected corner regions, dimensional measurements that are routinely performed
in industrial CT (cf. section 2.2.4) show deviations from true dimensions that we defined
for the simulated object and which can be measured in the ideal CT. In our example,
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Chapter 3: Origin and Correction of Scatter Artifacts in Cone-Beam CT

the outer dimensions of the rectangular solid object severely deviate from their correct
values as the detected object surface (after the calibration step, cf. section 2.2.4) gets
rendered bulbous. In general, scatter artifacts hamper correct and reliable dimensional
measurements in industrial CT.

Incorrect CT numbers are also a consequence of the cupping artifact, i.e. reconstructed
attenuation coefficients differ from their true values. This is of major importance for
medical diagnosis where the so-called CT numbers or Hounsfield units serve as a basis
for interpretation and quantitative analysis. In medical and industrial CT as well, it is
difficult to set the grayscale scale appropriately in order to visualize fine details because
the intensity varies strongly over the region of interest.

Noise represents another negative aspect of the scattered radiation in CT that is not
an artifact by itself. It is established understanding that scattered radiation enhances
the noise in each projection and thus may affect low-contrast detectability [End+01;
ZWX09]. When scatter is corrected by any of the post-processing methods discussed in
section 3.3.2, noise is left uncorrected and the signal-to-noise ratio decreases even further
as the estimated scatter function is subtracted from the original CT projection.

Returning to the CT slices shown in Fig. 3.4(g)–(i), revealing scatter artifacts in a real
CT, we will revisit this exemplary CT in section 5.6 and demonstrate how scatter artifacts
can be corrected. The ultimate goal is to attain a corrected version that resembles the
idealized CT without scatter artifacts depicted in the top row in Fig. 3.4.

3.3 Review of Existing Methods for Scatter

Suppression and a posteriori Correction

From the beginning of clinical CT scans in the early 1970’s, almost another ten years
passed until scattered radiation as a source of CT artifacts became an active topic in
scientific research. In 1982, almost simultaneously, three scientific articles were published
dealing with the issue of how scattered radiation affects CT image quality [JY82; JS82;
Glo82]. Reference [Glo82] was the first to identify the scatter-to-primary ratio (SPR)
as crucial quantity that determines the nature and intensity of scatter artifacts. In the
following years, up to the present day, numerous articles have been published, mostly for
medical CT, that propose various measures for suppression of scattered radiation reaching
the detector, and for comprehensive a posteriori correction of scatter-related artifacts,
respectively. With this distinction of being either a suppression technique or a correction
method, we review the most important ones in the following. We also include techniques
and methods that were initially proposed for CT systems employing a line detector (or
multi-slice at most) rather than flat-panel systems. In these cases, we will discuss their
possible migration to CBCT systems and resulting consequences thereof.
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Figure 3.6: Schematic illustration of anti-scatter grid with focused lamellae of highly absorbing
material, e.g. lead. Scattered photons are hampered from reaching the detector
plane as they have different angles of incidence than primary photons. This reduces
scatter contribution on the detector plane.

3.3.1 Suppression Techniques

First, suppressing or at least reducing the amount of scattered radiation reaching the
detector can be achieved by very simple means, e.g. by increasing the distance between
the scattering sample or patient, respectively, and the detector plane. This technique is
known in the literature as air gap [SF85; Nei92] and is very efficient as radiation intensity
behaves proportional to 1/r2 where r is the distance between radiation point source and
detection site. However, when increasing the air gap by relocating the detector further
afar from the scattering sample, this also reduces the primary radiation intensity.
In section 3.1.2 describing the environmental scatter contribution, we found that an ele-
vated position of tube, sample and detector from the scattering CT scanner base reduces
scatter. This is equivalent to an increased air gap between detector plane and environmen-
tal structures beneath. In contrast to air gaps that increase the source-detector-distance
(SDD), the air gap by an elevated scanner position does not result in a decrease of primary
radiation intensity since the SDD remains the same.

A second suppression technique is the anti-scatter grid that is installed after the sam-
ple/patient and right in front of the detector, see Fig. 3.6. Anti-scatter grids are stan-
dardly fabricated as 1D lamellae of highly absorbing material (lead or gold) that are
aligned in parallel and optionally each individually inclined, such that the majority of
primary photons may pass while scattered photons are rejected, see Fig. 3.6. They are
routinely used in conventional [CHD85; Bar91; Nei92] and digital radiography [CLW90]
and lead to an improved SNR there.
However, their migration to CBCT, both medical and industrial, has to be evaluated
critically. Recent publications that studied the use of standard fluoroscopy anti-scatter
grids in medical CBCT scenarios [Sie+04; KK07; Wie07] came to the conclusion that –
only under specific circumstances – they may reduce scatter artifacts to a certain degree
but cannot eliminate them. A successful migration to industrial CBCT seems to be even
more unlikely when considering that usually higher energies are used in industrial CT
which render the lamellae of the anti-scatter grid less effective in absorbing scattered
radiation. Also, the scanning geometry is fixed when a focused anti-scatter grid is used.
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This represents a drawback as it reduces the flexibility which is of great importance in
many industrial CBCT scanners.
Third, it is possible to employ beam-shaping attenuators, so-called bow-tie filters, in
order to reduce the amount of scatter. Mainly used in medical CT, they are built in the
form of a bow-tie based on the objective of achieving uniform fluence through a – more
or less – cylindrical object (patient’s head or torso) by attenuating peripheral radiation
more than central radiation. This reduces the dose delivered to the patient as well as
emergence of scattered radiation [Gra+07]. In industrial CT, where samples are less often
of uniform (cylindrical) shape, the benefit of using bow-tie filters is yet unresolved.
Again, while the discussed techniques may be able to reduce the amount of scatter that is
detected, they do not eliminate it completely. Therefore, in the following we will consider
correction methods which offer a complete elimination of scatter artifacts in theory.

3.3.2 A posteriori Correction Methods

By contrast, scatter correction methods can be applied a posteriori to subtract the scat-
ter contribution from the total detected signal. If performed correctly, this subtraction
represents an overall correction of scatter as its contribution to the total signal is ef-
fectively reversed, cf. Eq. (3.2). In this case, the corrected total signal is linear to the
incident primary radiation. Thus, a comprehensive scatter correction requires precise
knowledge of the scatter distribution in each projection. The scatter distribution can
either be estimated by software-based methods or it can be measured experimentally.

Several scatter estimation methods exist which can be divided into calculations based
on analytical scatter models [BS88; SB88; HKK91; OFKR99], Monte-Carlo simulations
[Kal81; CD83; CB04; Mic+07], and hybrid methods [KRK06]. Analytical models rely on
an approximated, global model which describes the physical scatter buildup as consistent
as possible with experimental data. Point-spread functions (PSF) describing the scat-
tering of a pencil beam are simulated or measured, and subsequently they are convolved
with the weighted measured projections [OFKR99] or used for deconvolution of projec-
tions [SB88]. Usually, the models are adopted to a specific (medical) imaging task by
setting their relevant parameters (tube voltage, object size, air gap distance from object
to detector, etc.) according to experimental [HKK91] or simulated scatter data [BS88].
Analytical methods may reduce scatter artifacts – however, they fail to provide entirely
correct scatter estimates with respect to all possible CT scenarios.
Monte-Carlo simulations are based on repeated tracking of individual photons undergoing
scattering events. While presenting a powerful tool to explore scattering development
(scatter production and buildup), the drawback of Monte-Carlo simulations lies in the
statistical nature of the simulation. A high number of photons have to be simulated,
involving time-consuming computation, in order to yield a sufficiently smooth scatter
image, which is a prerequisite for an accurate scatter correction. A reduction of the
computational effort can be achieved by only simulating a small number of photons
and consecutively denoising scatter images using the Richardson–Lucy algorithm [CB04].
Since the actual electron distribution in 3D is initially unknown, it is proposed to use
MC simulations in an iterative manner, i.e. to start the simulation with an object model
taken from a first reconstructed CT volume that is scatter-contaminated and then iterate
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through a number of reconstructions where scatter-corrected projections are subsequently
used [ZB06]. Monte-Carlo based scatter correction for diagnostic radiology is investigated
in Refs. [Kal81; CD83], for medical cone-beam CT (CBCT) in Refs. [CB04; ZB06], and
for industrial CBCT in Ref. [Mic+07].
Hybrid methods aim at reducing computational efforts by calculating first-order scatter
deterministically, which is much faster than a Monte-Carlo simulation. Scattering of
higher order is either assumed to have spatially uniform distribution and, therefore,
is taken into account by a uniform background, or it is estimated by a Monte-Carlo
simulation using a small number of photons [KRK06].

Apart from the software-based approaches, a few experimental methods exist which aim
at measuring the scatter signal at a number of sampling points. A more thorough dis-
cussion of these will follow in the next two chapters.
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Chapter 4

Scatter Correction by Use of

Beam-stop Array and Beam-hole

Array

In chapter 3, we have demonstrated that secondary signals such as scattered radiation
degrade CT image quality by introducing several scatter artifacts. We have also given
a brief review of existent methods for a posteriori corrections of scatter artifacts, i.e.
after scattered radiation has contaminated the CT projections. As described, besides
purely software-based approaches there exist a few experimental methods which directly
measure the scatter signal at a number of sampling points. Since the software-based
approaches rely crucially on a realistic modeling of all scatter sources in order to yield
accurate scatter estimation, the measurement-based methods are more appropriate for
our purpose of initial scatter correction in CBCT.

Thus, in this chapter, two of the measurement-based methods are presented and compared
to each other experimentally: the beam-stop array (BSA) and a complementary method
using apertures which we call beam-hole array (BHA) method. The BSA method uses
beam-stoppers to block primary radiation, thereby secondary signals can be measured
in their shadows directly. The BHA method is complementary to the BSA method as
it aims at measuring the sampled primary signal in a first projection by using a lead
sheet with small apertures and the total signal in a second, open-field projection. The
scatter signal can be determined indirectly by subtraction. While the BSA method is
considered an established scatter correction technique, the BHA method is less popular
and has been used only in a different form for densitometric measurements so far. This
motivates a thorough experimental comparison of both methods.

In section 4.1, the concepts of both the BSA and BHA method will be presented from a
theoretical point of view. Section 4.2 will describe two comparison measurements of BSA
and BHA where geometric effects and scatter-to-total ratios are investigated. Besides
the comparison itself, these initial measurements reveal scatter signals exhibiting strong
detector-internal scatter contributions. In section 4.3, the proposed beam-hole array
method is successfully applied to a strongly scattering industrial sample. Finally, section
4.4 discusses differences between BSA and BHA method and evaluates their performance
for different possible application scenarios.
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4.1 Background of Beam-Stop Array and Beam-Hole

Array Methods

As described in section 3.1, the total measured signal T (n) in each pixel n is the sum of
the primary signal P (n), that carries the desired information, and of secondary signals,
cf. Eq. (3.3), which together are expressed by a single secondary quantity S(n):

T (n) = P (n) + S(n) . (4.1)

While in chapter 3 we have strictly distinguished between different origins of scattered ra-
diation and of other secondary effects (e.g. detector-internal effects), by using the methods
presented in this chapter, we only measure the total sum of all secondary effects. Thus, we
denote the total sum by S and term it secondary signal or scatter signal interchangeably
if not noted otherwise.
Looking at Eq. (4.1), it can be inferred how the scatter signal S can be measured: A
first and direct way is to blind out the primary signal P by appropriate means. This
is realized with the beam-stop array (BSA). Representing a second possibility to get
hold of the scatter signal S indirectly, we may measure total signals and primary signals
separately and then subtract them from each other to yield S, as it is pursued in the
beam-hole array method (BHA).

4.1.1 Beam-Stop Array

In the beam-stop array (BSA) method, highly absorbing elements, such as small lead
cylinders arranged on a regular grid, are placed between source and object as illustrated
in Fig. 4.1. Acting as beam-stoppers, total attenuation of the primary signal behind these
cylinders is assumed1. P (n) from Eq. (4.1) vanishes for shadowed pixels n and, for those,
the detected signal only measures the secondary signal S comprising all secondary effects
at once. More specifically and referring to Eq. (3.3), scattered radiation originating from
both the object and environmental structures, as well as from detector-internal scatter
effects (X-ray scatter and light spread) together give rise to the signal measured in the
shadows of the beam-stoppers (Fig. 4.1). The BSA method represents a direct measure
of the scatter signal SBSA(n) at a number of sampling points.
For CT, a second projection without the BSA is necessary to obtain the total image
consisting of scatter plus primary image. Beam-stop based scatter correction is a standard
method for experimental scatter correction and has been established for a long time.
One of the first publications that systematically analyzed scatter-to-primary ratios in
medical CT scanners already embarked on this technique [JY82]. Regarding more recent
publications investigating the BSA method, we refer to [NTC04] for the medical field and
to [PLB08] for industrial CT.

1 Here, we neglect diffraction effects, such as e.g. the Poisson spot, a bright spot which can be observed
behind an ideal beam stopper for wavelengths in the visible spectrum due to diffraction at the beam
stopper. In our case using X-rays, the wavelengths are very small (λ ≈ 10−11 m) compared to
characteristic sizes of the object, such as the diameter d of the beam stopper (d ≈ 1mm). This is

expressed by the Fresnel number F = d
2

L ·λ ≈ 105 where L is the distance between object and detector
(L ≈ 1m). For Fresnel diffraction, F & 1 needs to be fulfilled, while geometrical optics are valid for
F ≫ 1.
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Figure 4.1: Schematic illustration of the working principle of scatter estimation with the beam-
stop array (BSA). The BSA is placed between sample and source where it totally
blocks incident primary radiation at a number of sampling points. Therefore, any
signal detected in the shadows of the lead cylinders of the BSA is considered to be
scattered radiation or detector-internal effects. As shown, scattered radiation can
originate from the object, from the environment and from detector-internal X-ray
scattering and light spread (not shown in this schematic). Altogether, this gives
rise to the secondary signal SBSA which can be measured at the given sampling
points.

4.1.2 Beam-Hole Array

The beam-hole array (BHA) method is complementary to the beam-stop array method
as it aims at measuring primary signals at given sampling points in a first projection
and total signals in a second. It can be considered also as inverse technique to the
BSA as the sampling of primary signals is achieved by means of a lead sheet with small
apertures, i.e. the beam-hole array, placed in between source and object as shown in
Fig. 4.2(a). The sample is only irradiated at very few and small spots. Therefore, almost
no scattering occurs from the object and environmental structures. The same holds true
for detector scatter events since most of the sensitive area of the detector is kept dark.
In this configuration, only primary signals P (n) are detected behind the apertures.
In a second projection without the BHA, the total signal T is detected, as illustrated
in Fig. 4.2(b). Referring to Eq. (4.1), subtraction of P from T yields the scatter signal
SBHA at the given sampling points:

SBHA(n) = T (n)− P (n) . (4.2)

The BHA method is considered an indirect method for estimation of secondary signals as
it is a differential measurement. This technique has initially been explored in the medical
field for densitometric measurements [MM98; ZMM99]. For medical diagnostics, the BHA
is advantageous compared to the BSA method since it reduces the dose exposition to the
patient. To the best of our knowledge, no publications exist which cover beam-hole array
scatter correction in the industrial environment.

At this point, let us mention an important experimental difference between both methods.
For the beam-stop array method, an acrylic plate (PMMA plate) serves as support for
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Figure 4.2: Schematic illustration for scatter estimation employing the BHA method: (a) In
a first measurement with the BHA in place, almost all incident primary radiation
is blocked except for very few and small apertures in the BHA. At these sam-
pling points, it is assumed that only the primary signal is measured. In the first
approximation, this is true, since in this configuration, both object scatter and
detector-internal scatter effects are low due to the strongly reduced incident radi-
ation. Environmental scatter, as illustrated, is also strongly reduced since most
of it is blocked by the BHA. In order to estimate the scatter contribution at the
given sampling points, (b) a second, open-field projection is necessary. Here, the
total signal, consisting of scatter plus primary signal, is measured at the same
points. Subtraction of the primary signal from the total signal then yields the
scatter estimate.
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Figure 4.3: Definition of the scatter-to-total ratio STR(n) at pixel n, illustrated with the ex-
ample of a beam-stop array projection showing a large-scale aluminum sample. For
details see text.

the lead cylinders. This acrylic plate is fully irradiated, and hence, it presents additional
material that absorbs and scatters X-rays. On the one hand, this leads to smaller primary,
and consequently, total signals as compared to the beam-hole method where an acrylic
support is not necessary. On the other hand, we expect an additional scatter contribution
IPMMA from the acrylic plate, extending Eq. (3.3) in case of the beam-stop method into

SBSA(n) = c · {IObj(n) + IEnv(n) + IDet(n) + IPMMA(n)}+ SDet(n) . (4.3)

Taking into account the formerly mentioned effect of attenuation caused by the acrylic
plate which is only present in one of the two methods, it is necessary to introduce a
quantity that renders the comparison measurements described in section 4.2 independent
of this effect. As illustrated in Fig. 4.3, we define the scatter-to-total ratio (STR), also
denoted as scatter fraction, as the ratio of scatter signal S in a small circular region
around pixel n on the detector to the total signal in an unobstructed-beam region (direct-
beam), Tdirect-beam, typically an outer region of the detector field where the object casts
no shadow:

STR(n) :=
S(n)

Tdirect-beam

. (4.4)

With this definition, scatter fractions of both methods can be compared directly, even
though their absolute signals (scatter and direct-beam) differ due to absorption and
scattering by the acrylic plate within the beam-stop method which is not present in the
beam-hole method.

4.2 Comparison Measurements between BSA and

BHA

From a theoretical point of view, the BSA and BHA methods are complementary in
respect of measuring total scatter contributions directly (BSA) and indirectly (BHA).
If neglecting the additional PMMA plate used within the BSA method, both methods
theoretically should yield equivalent scatter data. In this section, we put this assumption
to the test in two comparison measurements and we will learn about specific differences
between the two methods.
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4.2.1 Experimental Setup

4.2.1.1 Imaging System Specifications

Our cone-beam CT setup consists of an X-ray tube, a sample rotation stage and a flat-
panel detector (FPD). A photograph of the scanner setup is shown in Fig. 2.9(e). The
X-ray source is a micro-focus transmission tube, model XT9225-TED manufactured by
Viscom AG (Hannover, Germany). It is operated at 220 kVp, 320µA current, and with
prefilters of 3mm copper and 0.5mm tin employed in order to harden the spectrum. In
this configuration, the focus of the tube is below 10µm in diameter.
The flat-panel detector, a PerkinElmer XRD1621 AN14, is equipped with a DRZ-Plus
(Gd2O2S:Tb) scintillation screen; it has a resolution of 2048 × 2048 pixels with 200µm
pixel size. The image is encoded in 16 bit gray values. Frame times amount to 1000ms.
The acquired images are all corrected for defect pixel and dark current as well as detector-
and beam non-uniformity. The latter two are known as offset and (multi-)gain correction;
all corrections are processed by the frame grabber board.
Additionally, X-ray dose is measured for each projection in both beam-hole measurements
(open-field and with BHA) with a dosimeter (Diados T11003, PTW Freiburg, Germany)
installed between source and BHA, but outside the field of view. This is necessary in
order to detect fluctuations in the X-ray tube output and to compensate for them when
subtracting the primary from the total signal in the BHA method. Therefore, all sampled
measurements are normalized to an average dose. Any uncompensated fluctuation would
lead to a deviation in the estimated scatter contribution.

4.2.1.2 Definition of BSA and BHA

In our setup, we use a commercially available beam-stop array produced by QRM (Qual-
ity Assurance in Radiology and Medicine, Möhrendorf, Germany). Figure 4.4(a) shows a
photograph of the BSA. A matrix of 8× 10 parallel aligned lead cylinders with an inter-
spacing of 20mm is pressed into drilled holes in the support, a 240×240mm2 acrylic plate
of 6mm thickness. The lead cylinders are 3mm in diameter and also 6mm long, which
yields an attenuation factor of 5 × 10−3 for 220 keV X-ray quanta [Ber+10]. When the
BSA is used for scatter correction in a complete CT, an acrylic plate without cylinders
of same thickness has to be used in the second CT scan where the BSA is absent (normal
CT projections). This becomes necessary as the acrylic plate of the BSA absorbs and
scatters X-rays itself and those conditions have to be reproduced in the second scan.
A Monte-Carlo simulation has been conducted to quantify attenuation and scattering
of an acrylic plate with the specified dimensions placed 20 cm in front of the detector.
All other X-ray parameters were chosen as specified in section 4.2.1.1, including a poly-
chromatic filtered X-ray spectrum. The acrylic plate was the only object included in
the scenario. For the central detector region, where simulated object scatter is maximal
(section 3.1.1), the attenuation amounts to 10.0% and scatter contribution results in a
scatter-to-primary ratio (SPR) of 2.7% and a scatter-to-total ratio (STR) of 2.6%.
As depicted in Fig. 4.4(b), the beam-hole array is a 6mm thick plate of lead manufactured
to order with apertures arranged in the same way as the lead cylinders are on the beam-
stop array: apertures are also 3mm in diameter and their spacing amounts to 20mm.
For comparability, the total size of the BHA is the same as the BSA’s.
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Figure 4.4: Photographs of (a) the beam-stop array (BSA) and (b) the beam-hole array (BHA).
Both have the same dimensions and 8 × 10 parallel aligned cylinders (BSA) and
apertures (BHA), respectively, representing the sampling points.

Attention has to be paid to dimensions and interspacing between lead cylinders and
apertures, respectively, as well as to their number [ZMM99]. The reason is that the
beam-stoppers (BSA) shall not block too much of the incident radiation since this results
in less radiation irradiating the sample, thus to less scattering, and hence, to underesti-
mation of scatter. This applies to aperture sizes within the BHA method analogously.
In our investigations, the total shadowed area by the BSA lead cylinders amounts to
less than 1.5% of the total sensitive area of the detector in a typical CT situation, so
underestimation of scatter in this respect is negligible. Analogously, this is true for the
BHA.

4.2.2 Experimental Investigations and Results

4.2.2.1 Comparison Measurement without Sample

In the following initial comparison of both methods depicted in Fig. 4.5, no other object
apart from beam-stop and beam-hole array, respectively, is imaged. At first, the BSA is
placed at a source-to-object distance (SOD) of 50 cm with the detector at a source-to-
detector distance (SDD) of 100 cm and an image is taken (Fig. 4.5(a)). Note that, in this
configuration, the outermost lead cylinders are traversed by X-rays with a tilt angle of
12◦ and thus will be imaged tilted and with a bigger shadow than the central cylinder.
Exactly the same parameters, including SOD and SDD, are used in the projection with the
beam-hole array (Fig. 4.5(b)) and the corresponding open-field projection. Additionally,
X-ray dose is measured for each projection with a dosimeter as described in section 4.2.1.1.
For both methods, the scatter-to-total ratio (STR, Eq. (4.4)) is calculated. In this step,
the scatter signal S is determined by taking the mean gray value in a small circular area
with a diameter of 10 pixels in the shadow of a cylinder or aperture, respectively, whereas
the total incident signal is taken as mean gray value in an open-field region. Measured
STRs for each cylinder and aperture are reported in Fig. 4.5(c), where the numbering
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Figure 4.5: Open-field projections with (a) BSA and (b) BHA. Off-centered lead cylinders are
traversed by X-rays under a tilt angle and their shadows become larger while corre-
sponding aperture shadows become smaller. This can be clearly seen at outermost
cylinders (a) and apertures (b). (c) BSA and BHA methods are compared without
any sample: The STRs are reported for each BHA aperture and each BSA cylinder
(numbering as above). For central apertures and cylinders, STRs of both methods
are approximately the same. Off-centered apertures exhibit higher STRs than their
BSA counterparts which is explained in the text.
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is as given above in panels (a) and (b). The two measurements show that scattering
occurs and amounts to 10–15% of the total incident signal, even in this situation where
no sample is imaged.

4.2.2.2 Comparison Measurement with Aluminum Sample

In a second comparison measurement, the scatter-total ratios (STRs) of both methods are
examined in an imaging situation with a large-scale sample. Figure 4.6(a) shows the first
projection of the sample plus beam-stop array. The dimensions of the aluminum block
are 185× 185× 40mm3; notches are laterally cut. In this comparison measurement, the
object is at SOD = 65 cm, the detector at SDD = 100 cm, and the BSA/BHA is placed
right in front of the object, i.e. at xBSA/BHA = 55 cm, as shown in Fig. 4.6(a) and (b). The
scatter measurements are conducted in the same way as described above. In Fig. 4.6(c),
the STR is reported for all cylinders and apertures within this first projection (projection
angle 0◦). We find a different behavior of STRs for sampling points that are (i) shadowed
by the sample and those that are (ii) direct-beam. In the first case, BSA-measured STRs
are higher than those from BHA measurements, while in the second case, it is vice-versa,
i.e. BHA-measured STRs are greater than BSA-measured ones.
Thus, we conduct a study of the STRs behavior for two exemplary sampling points
over the course of a complete rotation, i.e. the object is rotated and a total number
of 360 projections are recorded in 1◦-steps. The results are shown in Fig. 4.7 where
exemplary sampling points are highlighted and the axis of rotation indicated in panel
(a). Sampling point no. 1 is the outermost, top-left sampling point which is in the
direct-beam (unobstructed incident radiation) in all 360 projections. On the other hand,
sampling point no. 41 represents the central cylinder and aperture for both the BSA and
BHA method that is permanently covered by the projection of the sample. For these two
sampling points, STRs are plotted over the course of 360 projection angles as displayed
in panels (b) and (c), respectively.

4.2.3 Interpretation

Referring to the results from the comparison measurement without sample displayed in
Fig. 4.5, the dependence of the scatter-total ratio (STR) on shadow size of the aper-
ture/cylinder can be clearly recognized. For the central apertures (BHA) and cylinders
(BSA), i.e. no. 35 and 45, the cast shadows are of the same size. In this case, both
methods yield nearly the same STR as it is also expected from a theoretical point of
view. However, on the one hand, the more displaced a cylinder (BSA) is from the center
(meaning its shadow size increases), the smaller the STR becomes. On the other hand,
the contrary holds for the BHA method as the imaged apertures become smaller when
increasing their tilt angle with respect to the traversing X-rays. A relationship between
aperture size (BHA) and detected signal has been investigated in section 3.1.3. Similar
results for both blocker and aperture sizes are found in the literature as well [MM98;
ZMM99; GG02].
Furthermore, we note that a considerably large amount of scatter is detected in both
methods although there is no scattering sample present. From the basic investigations
concerning environmental and detector scatter presented in sections 3.1.2 and 3.1.3, we
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Figure 4.6: First projection (0◦-projection angle) of a large-scale aluminum sample (with
notches cut laterally) behind (a) BSA and (b) BHA, respectively. (c) Compar-
ison of BSA and BHA method for the first projection. Measured scatter-to-total
ratios (STRs) are reported for each cylinder and aperture of BSA/BHA as shown
in panels (a) and (b). First, note the prominent difference in STRs between direct-
beam sampling points and those which are shadowed by the sample. Second, a
quantitatively different behavior between BSA and BHA methods is observed. See
text for explanation.
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Figure 4.7: (a) First projection (0◦-projection angle) of a large-scale aluminum sample (with
notches) behind BSA, for reference. The sampling points under investigation are
highlighted. The axis of rotation is indicated. (b) Measured STRs for top-left cylin-
der/aperture (no. 1) which is in the unobstructed, direct beam in all projections:
The measured STRs are larger within the BHA measurement which is due to the
geometric effect (smaller size of aperture). (c) Central cylinder/aperture (no. 41)
which is shadowed by the sample in all projections: The measured STRs, in gen-
eral, are higher within the BSA measurements which is due to a greater amount
of scattered radiation by the PMMA plate (directly and indirectly scattered onto
the detector). See text for further interpretation.
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conclude that most of the detected scatter signal is due to secondary events in the detec-
tor, i.e. IDet (X-ray scatter) and SDet (electronic and light spread) in Eq. (3.3), and less
due to environmental scatter IEnv. These findings are in good agreement with the results
published by Peterzol et al. [PLB08].
In the BHA measurement, differences in the STR between apertures are greater than
in the BSA measurement indicating that the STR is more accurately measured at small
apertures and underestimated at bigger apertures whereas the BSA-based STRs are all
underestimated by tendency. Smaller apertures/cylinders would improve the accuracy
of scatter estimation. However, the geometric effect always leads to underestimation of
scatter with the BSA in off-centered lead cylinders whereas with the BHA method the
accuracy of scatter estimation increases for off-centered apertures.
In order to reduce this purely geometric effect, a focused BSA/BHA with lead cylin-
ders/apertures aligned in parallel to the X-rays may be used. This is possible, but
limited to certain imaging geometries (SOD, SDD), thus representing a non-universal
BSA/BHA, which is also more difficult to manufacture.

Let us now discuss the results from the comparison measurement where a scattering
sample is present. Figure 4.6(c) shows the measured STRs for the first projection (pro-
jection angle 0◦). First of all, note that measured STRs are strikingly higher for sampling
points in regions of unobstructed impinging radiation (direct-beam) than for those that
are shadowed by the sample. Direct-beam STRs are of the order of 14% for BSA and
15–16% for BHA, while for sample-shadowed sampling points we only measure STRs of
8–10% of total intensity. Representing a key result from our experimental studies, this
STR behavior is contrary to Monte-Carlo simulations which we conducted considering
only object scatter. In such a simulated scenario, the maximum scatter level is found at
the center of the object, cf. section 3.1.1.
We explain the observed effect as follows: Taking into account the strong magnitude
of detector-internal scatter (IDet and SDet) that we quantified in section 3.1.3, as well
as the narrow spreading of detector-internal scatter given by its point-spread function
(PSF), the measured scatter signals contain a large portion of detector scatter from
adjacent pixels. Thus, direct-beam regions with high total signals exhibit larger STRs
since detector scatter stemming from the surrounding pixels is high. In contrast, object-
covered sampling points exhibit lower STRs due to smaller total signals in the vicinity.
We can deduce from Fig. 4.6(c) that several adjacent sampling points (such as, e.g. no. 10
and 11) may exhibit STRs quite different in magnitude. This will cause steep gradients
in the interpolated scatter images in those regions, as we will see in section 4.3.
A second finding concerns the different STRs obtained for BSA and BHA methods. As
illustrated in Fig. 4.6(c), the STRs measured with the BSA are greater than in the BHA
measurement for all sampling points that are shadowed by the sample, and vice versa for
direct-beam sampling points (i.e. sampling points 1–9, 10, 18–19, 27–28, 36–37, 45–46,
54–55, 63–64, 72). From the measurement without sample (Fig. 4.5), we would expect
that all STRs measured by the BSA method are less than or equal to BHA-measured
ones. We conclude that additional scatter IPMMA from the PMMA plate used within the
BSA method (cf. Eq. (4.3)) is the cause for the increased STRs in the BSA case.
This conclusion is also confirmed by the STR study of two exemplary sampling points
highlighted in Fig. 4.7(a) over the complete course of a rotation of the sample. In
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Fig. 4.7(b), the BHA-measured STR for the top-left sampling point no. 1, where the
geometric effect that we described above is maximum, in general is higher by about 3%-
points compared to its BSA counterpart. On the other hand, as depicted in Fig. 4.7(c) for
the central sampling point no. 41, where geometric effects are negligible, the BSA method
produces in general STRs that are 1 − 2%-points higher than in the BHA method. We
can ascribe this behavior to additional scatter from the PMMA plate. Particularly, the
difference in STRs between the two methods is largest in those projections where the ob-
ject is rotated 90◦ and 270◦, respectively, i.e. where scattered radiation from the PMMA
plate is less hindered by the object to reach the detector. In a CT of this specific sample,
these projection angles would be important in respect of being maximally scatter-free
and noise-reduced since the primary signal is low at these length scales of penetrated
material (here: minimally 185mm of aluminum).
In another aspect, Fig. 4.7(c) clearly shows the changing scatter contribution stemming
from the object. The STR curves resemble a sinusoidal function and reflect the angular-
dependent size of the sample’s front area facing the focus while the sample is rotated. It
is highest for projection angles 0◦, 180◦ and 360◦, and lowest when the sample’s narrow
side is facing the focus in projections at angles 90◦ and 270◦. The observed effect is due
to the fact that a larger sample front area facing incident radiation produces more scatter
events than a smaller area.
Finally, the scatter estimates by the BHA method show a higher noise level than those
measured with the BSA, which can be clearly recognized in Fig. 4.7(b) for the STR of a
permanent open-field region. Since, in the BHA method, high-level signals are subtracted,
cf. Eq. (4.2), the corresponding noise level, given by

∆SBHA(n) ∝
√

(∆T (n))2 + (∆P (n))2 , (4.5)

is consequently higher than in the situation of a BSA measurement where the scatter
estimate is measured directly and the signal itself is much lower. Here, the noise level is
assumed to be dominated by quantum noise, i.e. Poisson-distributed, and thus propor-
tional to the square root of the signal, ∆SBSA(n) ∝

√
SBSA(n) for the BSA case. In order

to improve the signal-to-noise ratio (SNR) for BHA-measured scatter estimates, one has
to average over more projections. This is more time-consuming, but poses no general
constraint to this method.

4.3 Experimental Demonstration of Beam-Hole Array

Scatter Correction

In section 4.2, we compared the proposed BHA method experimentally to the more
established BSA with respect to scatter-to-total ratios (STRs). We found a few prominent
differences, e.g. smaller STRs with the BHA method at critical projection angles due
to absence of an additionally scattering PMMA plate. This may represent a (small)
advantage of the BHA over the BSA method. Thus, in this section, we show a first
demonstration of the proposed BHA scatter correction method applied to the CT of a
highly scattering, industrial sample, i.e. a ceramic specimen used in power generation
technology.
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Figure 4.8: Photograph of the tomographed ceramic specimen that is used in power generation
technology. Samples such as the one shown here are to be inspected for inner
cracks, voids, and dimensional tolerances with CT. The specimen’s dimensions are
192× 190× 38mm3.

4.3.1 Experimental Setup

A photograph of the tomographed sample is presented in Fig. 4.8. The dimensions of
the specimen are 192× 190× 38mm3, it is manufactured from an aluminum-oxide based
ceramic. Samples such as the one examined here are to be inspected for inner cracks,
voids, and dimensional tolerances with CT. These inspection tasks require a high-quality
CT in terms of spatial resolution and contrast, but also in terms of adequate suppression
of any artifacts such as those caused by scatter.
We use the CBCT scanner as described in section 4.2.1.1. Here, SOD is set to 80 cm and
SDD to 100 cm. In the first scan, the beam-hole array is put in front of the specimen
at xBHA = 60 cm. The specimen itself is mounted on the rotating table as shown in the
0◦-projection in Fig. 4.9, i.e. tilted by approximately 45◦. By this tilting, the top and
bottom region of the specimen expose less material to the imaging X-ray cone-beam and
are thus better penetrated in those CT projections where long penetration lengths occur
in central regions of the specimen, i.e. around projections angles of 90◦ and 270◦. For
these projections, the tilting results in relatively high primary signals in the mentioned
regions of the specimen compared to a situation where it is not tilted and penetration
lengths are critical, yielding only extremely small primary signals for the entire object.
The tilted imaging configuration in combination with our 225 kV X-ray tube allows for
good inspection of at least the regions of interest indicated by red boxes in Fig. 4.9. A
second CT with the specimen rotated by 90◦ would be necessary to also tomograph the
remaining regions of interest, i.e. the other two notch-halves. Generally, irradiation can
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Figure 4.9: First projection (0◦ angle) from the CT of the ceramic specimen demonstrating
the tilted mounting in order to obtain shorter penetration lengths in the top and
bottom region of the specimen, indicated by red boxes. Here, primary signals are
relatively high and these regions can be reconstructed with very little artifacts –
after correction of scatter and beam hardening effects. In central regions however,
penetration lengths become too long in projections around 90◦ and 270◦ to measure
a reasonably high primary signal. Consequently, these regions show severe artifacts
in the reconstructed CT volume. The blue dashed line indicates the position of
the reconstructed CT slices presented in Fig. 4.11.
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Figure 4.10: (a) Interpolated, smoothed scatter image for first projection (0◦) and (b) the
corresponding line profile (red graph). Scatter signals resemble primary signals
(blue graph). The scatter-primary-ratio (SPR, green curve) amounts to 78% in
the object center.

be improved and penetration lengths increased when employing X-ray tubes with higher
voltage.
CT reconstructions are computed by an FDK algorithm (cf. section 2.2.3.2), which is im-
plemented as a part of our own X-ray CT software. Here, a linearization-based correction
of beam-hardening effects is employed as it was described in section 2.3.1.

4.3.2 Experimental Investigations and Results

In order to generate scatter images, a total of 3×2 equidistantly horizontally and vertically
shifted BHA-sets, each comprising 360 projections, have been recorded. Shifting the
BHA yields a finer sampling grid of primary signals. This is necessary in order to detect
the high spatial frequency content in the scatter distribution which we expect from our
initial comparison measurements discussed in section 4.2.3. The total signals at the
given sampling points are extracted from the set of 1080 projections of the second CT
scan (without BHA), whereby scatter estimates according to Eq. (4.2) can be calculated.
For all measurements, the dose is recorded as described in section 4.2.1.1 to be able to
compensate for dose fluctuations.
We use a bicubic spline interpolation algorithm in order to generate scatter images based
on the BHA-measured scatter data. Scatter images are smoothed by a median filter
afterwards. In Fig. 4.10, both the interpolated scatter image for a projection angle of
0◦ and the corresponding line profile – as indicated in the scatter image – are shown.
As can be seen in Fig. 4.10(b), the scatter signal resembles the primary signal, including
high spatial frequencies where object edges are present. The calculated scatter-to-primary
ratio (SPR) along the given line profile is 75–80% in central regions covered by the object,
whereas it can exceed 450% in critical projections around 90◦ and 270◦.
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Figure 4.11: (a) Axial CT slice (cf. Fig. 4.9, blue dashed line) from the BHA scatter-corrected
CT volume of the ceramic specimen, (b) shows the corresponding slice from the
uncorrected CT volume. Corresponding line profiles are indicated and shown in
(c).

We subtract the interpolated, smoothed scatter images from the original CT projections.
Two different volume reconstructions are performed, one with the uncorrected projections
and the other with the scatter-corrected projections. For comparison, an axial slice
extracted from each of the volumes is presented in Fig. 4.11: in panel (a) for the beam-
hole array scatter-corrected CT and in panel (b) for the uncorrected CT. The indicated
line profiles are given in panel (c).

4.3.3 Interpretation

First, note that the BHA-calculated scatter image depicted in Fig. 4.10 remarkably differs
from common expectations about scatter functions. Usually, relatively low-frequency
scatter functions are assumed [BS88; NTC04; ZBF06]. In fact, a Monte-Carlo simulation
with similar parameters as in our CT scan and a rectangular box-shaped object produces
a scatter function as depicted in Fig. 3.1(b) with its maximum near the center and slowly
decreasing flanks. However, here we notice high spatial frequencies present in the scatter
images close to projected sample edges. The occurrence of high frequencies is caused by
a strong contribution from detector-internal scatter events IDet and SDet (cf. Eq. (3.3)).
Our findings from the comparison measurements as well as from the CT scan with BHA
scatter correction are in good agreement with results published recently for the BSA
method by Peterzol et al. [PLB08]. They also attributed high frequencies to detector-
internal scattering.
Second, we performed a BHA scatter correction in an industrial CT scan of a strongly
scattering ceramic specimen. The uncorrected volume shown in Fig. 4.11(b) exhibits
strong artifacts such as cupping and streaks. Note the particularly dark streaks along
the corners and a bright streak along the notch region. These vanish almost completely
in the scatter-corrected volume, as can be seen in Fig. 4.11(a). Also, overall contrast is
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enhanced as can be seen in the corresponding line profiles in Fig. 4.11(c). Here, e.g. in the
mid-region, local contrast of the void (see red arrows) is increased by 24%-points from
70% to more than 94%. This will also improve the ability to detect smaller cracks within
the reconstructed notch regions of the specimen. Furthermore, while reconstructed voxel
gray values outside the object in the corrected CT are almost zero as they should be,
they are not close to zero in the uncorrected CT, cf. the long tail of the line profile (red
curve) inside the notch region in Fig. 4.11(c). For dimensional measurement tasks, this
leads to deviations in the surface detection process. Finally, edge sharpness is improved
significantly in the scatter-corrected volume, see Fig. 4.11(c).

4.4 Discussion

In this chapter, two experimental scatter correction methods, the beam-stop array (BSA)
method and the beam-hole array (BHA) method, have been compared to each other. The
BHA method can be considered an alternative and inverse technique to the more estab-
lished BSA method. Although equivalent from a theoretical point of view, in practice,
the BHA and BSA methods differ in certain aspects which have been addressed in section
4.2. First, the observed geometric behavior which is different for projected, off-centered
apertures (BHA) and beam stops (BSA), leads to a more accurate scatter estimate within
the beam-hole method. Second, no additional scattering material as in the beam-stop
method has to be used, which has been shown to reduce overall scatter. This is important
for large industrial samples where primary signals are often weak in certain projections
and where it is thus preferable to reduce noise as well as scatter-to-primary ratios. For
these reasons, the proposed BHA method offers specific advantages over the BSA method
under certain conditions.
An example for such conditions, where the BHA method is particularly suited, is the series
inspection of ceramic samples used in power generation technology. The NDT inspection
task is to ensure that (i) no cracks exist above a threshold size, (ii) voids do not exceed a
specified volume size, and (iii) that dimensions of the part are within specified tolerance
ranges. This necessitates a high-quality CT free from artifacts. Since the ceramic samples
represent large-scale parts which lead to large scatter contributions, and hence, to the
formation of significant scatter artifacts in CT, a suitable scatter correction such as
provided by the BHA method is necessary. In order to create accurate scatter images, a
greater effort compared to the BSA method is needed, since scatter estimation with the
BHA represents an indirect method and is thus more sensitive to dose fluctuations as well
as quantum noise within the image. For this reason, dose recording and a higher level
of averaging are necessary. However, the initially greater effort is worthwhile in series
measurements since the BHA method reduces overall scatter and noise by not having to
insert an additional acrylic plate in the series CT scans as it would be necessary when
employing a BSA.
For this specific sample, we have successfully shown the performance of the BHA method.
Additionally, the CT was corrected for beam-hardening. The reconstructed CT volume
allows for inspection tasks in the regions of interest, i.e. the notches of the specimen
marked by red boxes in Fig. 4.9. These regions are almost free of scatter artifacts in
the CT. However, the method fails to correct artifacts in central regions of the sample,
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i.e. in mid-slices in between the red boxes. This is due to low primary signals, and hence,
to bad scatter-primary-ratios (SPR). In this situation, the total measured signal mainly
consists of scatter contribution that must be estimated very accurately in order to avoid
new errors to the corrected CT. In general, regions with high SPRs are very sensitive to
scatter correction by signal subtraction since the scatter signal may be overestimated,
and hence, the primary signal underestimated, resulting in pronounced (bright) streaks
along corresponding projection angles.

In respect of microtomography being predestinated for scanning small and tiny samples,
placing the BHA or BSA in front of the sample is practically impossible. However, we can
use the BHA also for scatter correction with small samples by placing the BHA behind
the sample. An equivalent positiong of beam-stoppers behind the sample for scatter
measurement is not possible since it blocks scattered radiation in part. Hence, the BHA
method offers another advantage over the BSA concerning small samples.

From a more general point of view, both the BSA and BHA method can be successfully
applied for scatter correction in industrial CBCT. However, both require at least a second
scan which implies additional scan time and dose. In the CT demonstration employing
the BHA method presented in section 4.3, even six different BHA-sets were recorded
in order to obtain a higher sampling rate. This is necessary due to the expected high
spatial frequencies within the scatter images. As presented in this chapter, both BSA and
BHA method are inefficient in terms of scan time and dose. Thus, there is a motivation
to integrate these measurements into a single, normal CT scan without extending scan
times.

Concluding this chapter, we want to remark that there exist a few, very recent publica-
tions which use moving beam-stopper techniques [ZSF05; WMS10; Yan+10]. They aim
at measuring scatter data simultaneously to the normal CT scan. Here, missing primary
information (in the shadows of the beam-stoppers) is a major challenge and the proposed
schemes attempt to interpolate missing primary data [ZSF05; Yan+10], or to omit it
locally in an adapted reconstruction process [WMS10]. A different approach for scatter
correction which also requires only a single CT scan will be presented in chapter 5.
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Chapter 5

Scatter Correction by Temporal

Primary Modulation

In the last chapter, we have discussed and compared two experimental scatter correction
methods employing beam-stop and beam-hole arrays. Both techniques represent robust
and reliable methods that have proven their capability to improve CT image quality
significantly. However, as these methods belong to the class of blocker-based measure-
ments, a certain amount of primary X-rays get totally blocked, at least in a fraction of
CT projections. This loss of primary data either means a loss of information or additional
scan time and dose that are necessary to obtain the missing primary data. Usually, a
second scan is performed in which the blockers are either displaced by a certain distance
or completely removed.

In the light of these limitations of blocker-based methods, recently, two groups, Maltz
et al. and Zhu et al., have theoretically proposed and preliminarily tested a new method
for scatter correction [Mal+05; ZBF06]: the scatter measurement by spatial primary mod-
ulation (SPM). With their proposed method, only a single CT scan is required which both
contains the normal projection data as well as the sampling of scatter data. In SPM,
the primary photon fluence is spatially amplitude modulated by a fine, repetitive pattern
before irradiating the sample. The pattern can either be sinusoidal or rectangular. While
the imprinted modulation pattern is preserved by primary photons, it is ‘smeared out’
by scattered photons, and hence, the scatter contribution at the detector plane will not
exhibit this pattern. Hereby, a separation of primary and scatter fluence in the 2D spatial
image frequency space is possible afterwards.

Inspired by this work, we devise a scatter correction method in which the primary fluence
is amplitude modulated in the time domain. We call this temporal primary modulation
(TPM): In a simple gedankenexperiment, as illustrated in Fig. 5.1, we assume that we are
able to temporally modulate the amplitude of the primary fluence for each detector pixel
individually. In such a situation, each detector pixel n, continuously recording incident
radiation, would yield a total signal containing a single primary fluence contribution P (n)
of the frequency f0 unique for this particular pixel. Additionally, there are many other
contributions S1, S2, . . . from scattered radiation with different modulation frequencies
f1, f2, etc. Building on lock-in techniques, we would be able to separate the signal at
unique frequency f0 for this particular pixel from the rest of signal contributions. Hence,
in our situation, this would enable a separation of the primary from the scatter signal
contribution. Moreover, we could even infer the origins and their specific contributions
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Figure 5.1: Gedankenexperiment illustrating the key idea of scatter correction by temporal
primary modulation (TPM). For each detector pixel, the primary fluence P gets
amplitude-modulated at a unique modulation frequency, e.g. for the particular pixel
n, at frequency f0. Besides the primary signal P , the total signal T measured at
this pixel also contains scatter contributions S1, S2, . . . from all over the sample,
but they exhibit different modulation frequencies. Thus, a separation of primary
and scatter signals is possible by adequate band-pass filtering (lock-in technique).

of scatter for each pixel separately by analyzing the other frequency contributions f1, f2,
etc.

Due to technical limitations in experimental practice, we cannot perform a pixel-wise
modulation as in the gedankenexperiment. Thus, a simplified, yet practical form of TPM
with just a single modulation frequency for primary fluences and assumingly constant
scatter contributions is realized experimentally. While maintaining the advantage of
SPM requiring only a single scan, the TPM method proposed in this chapter avoids some
of the inherent limitations and problems that occur with SPM as we will see below.

In this chapter, we will describe the theoretical background of scatter correction by
TPM in section 5.1. Here, different forms of experimental realization employing so-called
primary modulators will be discussed, too. In the following section 5.2, a series of Monte-
Carlo simulations as well as a theoretical analysis will show that the key assumption in
TPM, i.e. temporally constant scatter contributions, is dependent on the dissimilarity
between frequencies in the spatial modulation pattern and the spatial image frequencies
of the sample. In section 5.3, we present a beam-hardening correction based on the
linearization approach that we employ within the TPM method for compensation of
beam-hardening effects caused by the primary modulator. Section 5.4 will describe the
experimental implementation of TPM. We present two key results from the experimental
investigations concerning TPM: First, in section 5.5, a comparison between TPM- and
BSA-obtained scatter data is performed. Second, in section 5.6, we demonstrate the
successful application of the proposed TPM method for scatter correction within a single
CT scan. Finally, section 5.7 summarizes our work and critically compares the TPM
method to the SPM scatter correction.
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Figure 5.2: Basic principle of temporal primary modulation (TPM): Each angular CT projec-
tion is subdivided into a number Nmod of modulated projections j, e.g. Nmod = 500.
In this process, for an arbitrary pixel (x′, y′), the primary signal P0 (green) is tem-
porally modulated yielding P (tj) (red). Since – in practice – the modulation of the
primary signal P0 can only be performed by appropriate attenuation, P (tj) ≤ P0

applies. The scatter signal S (black) is assumed to be constant. Both signals,
P (tj) and S together, give rise to the total signal T (tj) (blue).

5.1 Scatter Estimation by Temporal Primary

Modulation

5.1.1 Basic Concept

In order to describe the concept of temporal primary modulation (TPM), let us consider
a standard CBCT setup comprising an X-ray tube and a detector with pixels (x, y),
x = 1 . . . xmax, y = 1 . . . ymax. We assume that it is possible to amplitude modulate
the primary fluence incident on the object by some means. Thereby, we postpone the
question how this could be realized technically. Ideally, we would be able to manipulate
the primary X-ray fluence for each pixel (x, y) individually as presented above in the
gedankenexperiment. However, here, we want to limit our considerations to the case
where only one modulation frequency ωmod exists for modulating the primary fluence
while the total scatter contribution at each detector pixel is assumingly constant at the
same time and under certain conditions. The latter represents a key assumption for the
TPM method and we will discuss it in detail in section 5.2. This scenario of modulated
primary and constant, i.e. unmodulated, scatter signal is depicted in Fig. 5.2. Subsequent
separation of the modulated primary and the constant scatter signal is possible by AM
demodulation as described in the following.
In a formal framework, we divide each angular CT projection into j = 1 . . . Nmod sub-
projections, also denoted as modulated projections, in which for each pixel the primary
fluence is amplitude modulated in the time domain while the object under investigation
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remains stationary. Furthermore, let us consider an arbitrary pixel (x′, y′) and, for sim-
plification, omit its mentioning in the following equations. The primary signal P0 of this
pixel is temporally modulated by multiplication with a modulation function fmod(tj),

P (tj) = P0 · fmod(tj) , (5.1)

where the modulation function can be formally defined as

fmod(tj) = 1 +
A

2
(cos(ωmod · tj)− 1) , (5.2)

with A being the modulation strength and ωmod the modulation frequency. We choose
this definition of fmod, since – in experimental practice – the modulation of the primary
signal P0 can only be performed by appropriate attenuation (P (tj) ≤ P0). The primary
fluence from Eq. (5.1) is superimposed by a scatter signal S(tj). As described by Eq. (3.2)
in section 3.1 and illustrated in Fig. 5.2, both of them together yield the measured total
signal

T (tj) = P (tj) + S(tj) (5.3)

for pixel (x′, y′). As mentioned above, the key assumption in TPM is that the scatter
fluence S(tj) remains virtually unaffected by temporal primary modulation, i.e. S(tj) ≃
const. With the modulation only being present in the primary signal, we are able to
extract this part exclusively from the measured total signal by AM coherent demodu-
lation [Shm06]. We obtain the primary signal by multiplication with the carrier signal
A
2
cos(ωmod · tj) (time-dependent term in Eq. (5.2)) and subsequent lowpass-filtering (here:

averaging),

P0,est =
4

A ·Nmod

Nmod∑

j=1

T (tj) · cos(ωmod · tj) . (5.4)

For a detailed derivation of the demodulation process, refer to appendix A. Substitution
of the estimated primary signal from Eq. (5.4) into Eq. (5.1) yields Pest(tj). Subsequently,
the estimated scatter fluence for pixel (x′, y′) can be calculated as

Sest =
1

Nmod

Nmod∑

j=1

[T (tj)− Pest(tj)] . (5.5)

Extending this calculation over all pixels (x, y) yields an estimated scatter image. For each
modulated CT projection j, the scatter fluence is corrected by subtraction of the scatter
estimate. Primary modulation patterns still existent in the projection can be eliminated
by division with the corresponding flat-field projection where no object is present and
primary modulation is the same as in the modulation projection j. In order to improve
the signal-to-noise ratio (SNR), we calculate the mean from these Nmod projections to
obtain a scatter- and modulation-corrected angular CT projection.

5.1.2 Experimental Realization using Primary Modulators

Both in spatial (SPM) and temporal primary modulation (TPM), the primary fluence
has to be amplitude modulated by some means. For this purpose in SPM, Maltz et al.
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Figure 5.3: (a) Both in SPM and TPM, a primary modulator is placed in between X-ray source
and sample to amplitude modulate the primary photon fluence. Different spatial
arrangements are possible for the primary modulator such as (b) a 1D rectangular
profile or (c) a checkerboard pattern. These two have been tested in SPM and can
be used also for TPM. Additionally, (d) radial profiles (rotating chopper wheel)
are conceivable for TPM.

have suggested a 1D attenuation grating with spikes [Mal+05], and Zhu et al. have im-
plemented a 1D rectangular [Zhu+09] as well as a checkerboard-like attenuation profile
[ZBF06]. These so-called primary modulators are spatially varying, repetitive attenu-
ation patterns inserted between X-ray source and sample as illustrated in Fig. 5.3.
On the one hand, if installed stationary, primary modulators can be used for SPM as they
imprint a distinct spatial attenuation pattern on the primary fluence while the scatter
fluence does not exhibit this imprint. Thereby, from a single projection, a separation of
primary and scattered signals is possible by adequate filtering algorithms, cf. [Mal+05;
ZBF06].
On the other hand, by installing primary modulators movable, distinct attenuation
functions that exhibit a temporal modulation for each pixel can be realized by transla-
tional – or rotational – steps of the primary modulator. Depending on the application,
the moving of primary modulators may be implemented in a discrete (stepping) or in a
continuous fashion (sliding). Either way, a sequence of j = 1 . . . Nmod modulated projec-
tions is recorded representing a set of temporally modulated total signals for all pixels.
Subsequently, these data can be used for scatter estimation as described in section 5.1.1.
The bottom part of Fig. 5.3 summarizes different forms of before-mentioned modulation
patterns: Besides the 1D profile rectangular profile (Fig. 5.3(b)) and the checkerboard
pattern (Fig. 5.3(c)), a rotating chopper wheel is also conceivable for TPM, see Fig. 5.3(d).
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Figure 5.4: Schematic illustration of two-point temporal primary modulation by stepping the
primary modulator back and forth for each CT projection. While primary signals
are temporally amplitude modulated from projection j=1 to j=2, scatter fluence
S is assumed to remain constant.

We would like to concretize one specific implementation of TPM realization relevant for
considerations in the following sections. This involves the primary modulator with a
checkerboard pattern, cf. Fig. 5.3(c). Aiming at a two-point modulation with Nmod =
2, we suggest a discrete stepping of the primary modulator by half of a period, i.e. by one
square length, as illustrated in Fig. 5.4. Moving the checkerboard pattern can be done
either in vertical or horizontal direction.
From the two modulated projections j=1, 2 taken at the end positions of the stepping
process of the primary modulator, the primary signal is given by

P0,est =
|T (t1)− T (t2)|

A
. (5.6)

In the following, we assume that we do not need the absolute value function in Eq. (5.6)
as the correct sign is given by the modulation strength A. We assume T (t1) > T (t2) and
A > 0 from now on and simplify Eq. (5.6) to:

P0,est =
T (t1)− T (t2)

A
. (5.7)

This corresponds to Eq. (5.4) for Nmod = 2 where the pre-factor of 4 is replaced by
2, which is due to the fact that we consider a two-point modulation rather than a full
cosine-like modulation (which exhibits zero-crossings half the time in case of four and
more sampling points). As a result, Eq. (5.5) simplifies to

Sest =
T (t1) + T (t2)

2
−
(
1− A

2

)
T (t1)− T (t2)

A
(5.8)

= T (t1)−
T (t1)− T (t2)

A
. (5.9)
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5.1.3 Noise Analysis

In experimental practice, the measured TPM signals will exhibit noise. In order to
obtain the error in TPM scatter correction, in the following, we apply a propagation
of uncertainty calculation. In a first step, we calculate the propagation of noise in the
estimated scatter signal from Eq. (5.9):

∆Sest =

√

(∆T (t1))
2

(
1− 1

A

)2

+ (∆T (t2))
2

(
1

A

)2

. (5.10)

As the X-ray photon statistics follow a Poisson distribution, it can be derived (see
e.g. [Buz08]) that

µ = σ2 . (5.11)

This means that the expectation value equals the variance of the random variable, or
equivalently, i.e., the standard deviation is given by the square root of the expectation
value, σ =

√
µ. Thus, with ∆T (t1,2) =

√
T (t1,2), we can rewrite Eq. (5.10) as:

∆Sest =

√

T (t1)

(
1− 1

A

)2

+
T (t2)

A2
. (5.12)

From Eq. (5.12), we deduce that a small modulation strength A will lead to considerable
amplification of the noise in the scatter estimate Sest. Thus, in experimental practice, we
perform averaging over pixel clusters, comprising Npix pixels:

Savg
est =

1

Npix

Npix∑

k=1

Sest(k) . (5.13)

If we assume that Sest does not vary in the (small) region of averaging, then Eq. (5.12)
will result in:

∆Savg
est =

1√
Npix

∆Sest (5.14)

=
1√
Npix

√

T (t1)

(
1− 1

A

)2

+
T (t2)

A2
. (5.15)

The total signals T (t1,2) can be expressed as sum of primary and of scatter signals:

T (t1) = P0 + S = P0 · (1 + SPR) (5.16)

T (t2) = P0 · (1− A) + S = P0 · (1− A+ SPR) , (5.17)

where in the last steps we have introduced the scatter-to-primary ratio (SPR) defined
by SPR = S/P0. Thus, uncertainty in the total signals T (t1,2) is given by X-ray photon
statistics as

∆T (t1) = ∆P0 ·
√
1 + SPR (5.18)

∆T (t2) = ∆P0 ·
√
1− A+ SPR . (5.19)
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By using Eqs. (5.16) and (5.17), we can rewrite Eq. (5.15) as

∆Savg
est =

∆P0√
Npix

√

(1 + SPR)

(
1− 1

A

)2

+
1− A+ SPR

A2
. (5.20)

In a second step, for TPM scatter correction, the estimated and averaged scatter image
Savg

est is subtracted from the modulated projections T (ti) (cf. section 5.1.1) to yield primary
signals

PTPM
est =

1

Nmod

Nmod∑

i=1

T (ti)− Savg
est

fmod(ti)
, (5.21)

where the scatter-corrected, modulated projections are divided by fmod(ti) in order to
reverse the modulation (flat-field correction). For the practical case of Nmod = 2 where
bright (fmod(t1) = 1) and dark squares (fmod(t2) = 1 − A) are used for modulation,
Eq. (5.21) yields:

PTPM
est =

1

2

[
T (t1)− Savg

est +
T (t2)− Savg

est

1− A

]
. (5.22)

From Eq. (5.22), we can now derive the uncertainty of the TPM scatter-corrected signal
PTPM

est by propagation of error as

∆PTPM
est =

1

2

√

(∆T (t1))
2 + (∆Savg

est )
2 ·
(
1 +

1

1− A

)2

+ (∆T (t2))
2 ·
(

1

1− A

)2

. (5.23)

By inserting Eqs. (5.18), (5.19) and (5.20) into Eq. (5.23), we obtain the relative error
∆PTPM

est /∆P0 as

∆PTPM
est

∆P0

= . . .

1

2

√√√√1 + SPR +

[
1 + SPR
Npix

(
A− 1

A

)2

+
1− A+ SPR

Npix ·A2

](
2− A

1− A

)2

+
1− A+ SPR

(1− A)2
.

(5.24)

Equation (5.24) yields the relative noise in the TPM scatter-corrected primary signal
PTPM

est in dependence of the modulation strength A, the scatter-to-primary ratio SPR, and
the number of pixels Npix of the average region. Figure 5.5 illustrates these dependencies
by two graphs where in panel (a) the number of averaged pixels is Npix = 400, while
in panel (b) it is Npix = 36. Each graph displays curves for scatter-to-primary ratios
from SPR = 0.0 up to SPR = 2.0 in steps of 0.1. For illustration, the parameter in
Fig. 5.5(a), i.e. Npix = 400 = 20 × 20 pixels, is chosen according to the conditions given
in the experimental investigations presented in sections 5.5 and 5.6.
In the graphs depicted in Fig. 5.5, we find local minima in ∆PTPM

est /∆P0 which are marked
by blue crosses. Thus, for a given size Npix of the average region, an optimum range of
the modulation strength A exists and is highlighted in Fig. 5.5 by green zones. In the
situation depicted in Fig. 5.5(a) for example, an optimum range is found for modulation
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Figure 5.5: (a) Relative error ∆PTPM
est /∆P0 of TPM scatter-corrected primary estimate PTPM

est ,
plotted in dependence of modulation strength A while the number of averaged
pixels is constant, Npix = 400. The red curves show different scatter-to-primary
ratios (SPR) of which some are labeled. Blue crosses indicate local minima. The
green zone defines the optimum range of modulation strength A. (b) Corresponding
graphs as in (a) for Npix = 36.

strengths A = 0.22− 0.26 and for expected scatter-to-primary ratios of SPR = 0.1− 2.0.
The optimum range shifts to higher modulation strengths A if the size of the average
region, Npix, is decreased, as can be deduced from Fig. 5.5(b). But, even with a stronger
modulation A, the relative error ∆PTPM

est /∆P0 increases for smaller average regions.
The relative errors ∆PTPM

est /∆P0 depicted in Fig. 5.5 exhibit a steep rise towards high
modulation strengths A. This is due to the flat-field correction 1/(1 − A), i.e. the third
term in Eq. (5.22). In fact, by omitting the summation over the second modulated
projection, noise could be reduced to

∆PTPM
est =

√
(∆T (t1))

2 + (∆Savg
est )

2 (5.25)

in those cases where the modulation A is very strong.
In general, Eq. (5.24) gives a correlation between the modulation strength A and the
size of the average regions, Npix. Hereby, an optimum between the two experimental
parameters A and Npix can be derived for any given setting.

5.2 Verifying the Assumption of Constant Scatter

A key assumption with temporal primary modulation, as introduced in section 5.1, is that
the total scatter contribution at each detector pixel is not affected by the modulation
process. In other words, it has to be temporally constant during modulation of the
primary fluence:

S(t1)
!
= S(t2) = const. (5.26)

⇒ ∆S :=S(t1)− S(t2)
!
= 0 . (5.27)
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In the following, ∆S is denoted as difference in scatter fluences also. We expect errors in
the TPM scatter estimation if the requirement expressed in Eq. (5.27) is not met, i.e. if
∆S 6= 0.
In this section, we are going to verify the key assumption ∆S = 0 by a Monte-Carlo
simulation first, and second, append a theoretical analysis that investigates at which
point the scatter fluences start to change. In both studies, we will see that this addresses
the issue of how (dis)similar the image frequencies of the projected sample are compared
to the spatial frequencies found in the primary modulation pattern.

5.2.1 Monte-Carlo Simulation

We perform two runs of Monte-Carlo simulations: In a first run, we simulate primary
modulators with checkerboard-like pattern and different numbers of squares which corre-
sponds to a variation of the spatial modulation frequency. In the second run, the modu-
lation strength A is varied. We choose the simulation settings close to the experimental
setup described in section 5.4. In particular, we focus on simulating checkerboard-like
patterns which are shifted by one square length, i.e. by half a period, in order to realize a
temporal primary modulation as described in section 5.1.2. For all simulations described
here, a Monte-Carlo simulation package developed by Siemens is used [Sti93].

5.2.1.1 Variation of Spatial Modulation Frequency

Let us consider a simulation setup found in a typical industrial CT setting with an
ideal, point-like X-ray source emitting a 225 kVp polychromatic spectrum as cone-beam
radiation, prefiltered by 3mm of copper. An ideal flat-panel detector with 512×512 pixels
and dimensions of 40× 40 cm2 is set at a source-detector-distance (SDD) of 100 cm. The
sample is a pure aluminum block of 20 × 20 × 4 cm3 placed at a source-object-distance
(SOD) of 80 cm. Different primary modulators, each with side lengths of 94 × 94mm2,
are simulated as 2D checkerboard patterns with different numbers of square fields, i.e.
with 2n × 2n squares, n = 0 . . . 5. Simulation of greater n with tolerable noise leads to
excessively long simulation times. Each dark square arises from beam attenuation by
0.7mm copper which transmits 82% of primary radiation, i.e. modulation strength is
homogeneously at A = 0.18. The primary modulator is placed 23.5 cm away from the
X-ray source. Using the definition from above, we set Nmod = 2. A first projection j=1
is simulated in this setting and a second j=2 in the inverse setting where the modulator
is translated horizontally by one square length, i.e. primary modulation is maximally
phase-shifted by 180◦ for all pixels.
As reference for the situation without modulator (n = 0), Fig. 5.6 depicts both the
simulated primary and scatter fluences in the projection of the sample, as well as cor-
responding line profiles. For simulated primary modulator configurations from 2× 2 up
to 32 × 32 squares (n = 1 . . . 5), Fig. 5.7 shows the primary projection P(t1) in the top
row. The difference of scatter fluences between the two modulator positions, ∆S, down-
sampled to 32 × 32 pixels, is shown in the middle row and corresponding line profiles
across indicated sampling points in the bottom row. The number of simulated photons
was 8 · 108 in the projections for configurations with 1×1 to 16×16 squares (n = 0 . . . 4),
and 6.4 · 1010 in the case of 32× 32 (n = 5) squares.
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5.2 Verifying the Assumption of Constant Scatter

Figure 5.6: Monte-Carlo simulation of a radiographic projection of an aluminum sample with-
out primary modulator for comparison. (a) The simulated primary image, (b) the
corresponding scatter image, and (c) corresponding line profiles.

For configurations with 2 × 2 to 16 × 16 squares, note that the depicted differences
∆S = S(t1)−S(t2) partly resemble the spatial modulation pattern. Here, bright regions
mark areas where S(t1) > S(t2), i.e. in primary modulator configuration at time t1 more
scattered radiation reaches the detector than in the configuration at time t2. Comparing
∆S with P (t1) indicates that these regions are

(i) either behind dark squares at time t1, where no part of the object is projected
(direct beam), or,

(ii) that they are behind bright squares at time t1 if part of the object gets projected
too.

This can be explained as follows:
For case (i), it is assumed that the dark square of the primary modulator at time t1 it-
self scatters radiation in forward directions which reaches the detector mainly in regions
that are directly accessible, i.e. regions that are not shaded by the object. For time t2,
dark squares (material) and bright squares (air) are interchanged. Thus, the former dark
square becomes a bright square (air), which does not interact with radiation.
Case (ii) can be constituted by a higher contribution of forward scattered radiation orig-
inating directly from the projected region of the sample. Since this region of the sample
is irradiated with more intensity in the configuration at time t1 (bright square) than in
the inverse configuration at time t2, and hence, more scattered radiation is generated,
this makes case (ii) plausible.

While in modulator settings from 2× 2 to 16× 16 squares, i.e. as the spatial modulation
frequency increases, the difference between scatter fluences ∆S steadily decreases, it
cannot be resolved for 32 × 32 squares any more. Here, noise is more dominant. The
difference between scatter fluences ∆S is less than ±7 gray values whereas the scatter
signal ranges between 1400 and 3700 gray values as can be deduced from Fig. 5.6.
The observed effects can be explained by the relatively broad spatial distribution of
Compton scattered X-ray photons for photon energies found in industrial CT (cf. sec-
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5.2 Verifying the Assumption of Constant Scatter

tion 2.1.4). Also, multiple scattering events will further smear out any incident primary
radiation pattern and lead to even broader cones of scattered radiation.

5.2.1.2 Variation of Modulation Strength

Small differences ∆S = S(t1)−S(t2) may be obtained also by a decrease of the modulation
strength A as we found from another series of Monte-Carlo simulations. Figure 5.8
exhibits the simulation results. The simulation was conducted in the same way as for
the analysis of varying spatial modulation frequencies presented above. In Fig. 5.8, from
left to right, the modulation strength decreases from A = 0.27, A = 0.18, A = 0.09
down to A = 0.04 for the primary modulator configuration with 4 × 4 squares. A
decreasing modulation strength goes along with a decrease of scatter fluence differences
∆S as expected. However, as explained in section 5.1.3, smaller modulation strengths
will lead to larger errors in the scatter estimate. So, an optimum has to be found for the
modulation strength A.

5.2.2 Theoretical Analysis

In the last section, by using Monte-Carlo simulations, we have demonstrated that dif-
ferences between the scatter fluences in the two modulator positions, S(t1) and S(t2),
become (negligibly) small, if the number of squares is large, i.e. if the spatial modulation
frequency is high, and if the modulation strength is moderate. These findings from the
Monte-Carlo simulations are a proof for the validity of TPM under certain constraints.
In this section, we want to carry out a formal error analysis of the scatter estimation
process by TPM using a simple model. Hereby, we address the following two questions:

1. What is the origin of non-vanishing differences between scatter fluences, ∆S =
S(t1)− S(t2)?

2. How does such a difference ∆S affect the scatter estimation? How large is the
resulting systematic error?

5.2.2.1 Non-vanishing Differences between Scatter Fluences

Since the Monte-Carlo simulations in section 5.2.1.1 have shown that the difference in
magnitude of the scatter fluences, ∆S = S(t1) − S(t2), is dependent on the spatial
frequency of the modulation pattern, we will focus on this aspect here. For a formal
analysis, let us consider a 2D model of a parallel-beam scanner for taking radiographic
line projections with a one-dimensional detector. According to Eq. (3.2), each pixel x of
the one-dimensional detector yields a total signal

T (x, tj) = P (x, tj) + S(x, tj) , (5.28)

where P (x, tj) = P0(x) · fmod(tj), fmod(tj) = 1 + A
2
(cos(ωmod · tj)− 1) according to Eqs.

(5.1) and (5.2). Thereby, we limit our considerations to the practically relevant example
of TPM with Nmod = 2 as described in section 5.1.2.
For an arbitrary pixel x′, the scatter signal S(x′, tj) can be interpreted as the sum of
contributions from a number NSSS of single scatter sources (SSS), si(x′, tj), which are
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5.2 Verifying the Assumption of Constant Scatter

Figure 5.9: Schematic illustration of equi- and paraphase single scatter sources for an arbitrary
pixel x′. The total signal at pixel x′ consists of the modulated primary part, plus
the summation over equi- and paraphase single scatter sources which are modulated
themselves.

spatially spread all over the sample. Here, single scatter sources si(x
′, tj) are to be

understood as the locations of initial scatter events (first order scatter events), even
for scatter processes of order greater than one. Although spatially uncorrelated, they
altogether give rise to the total scatter signal S(x′, tj) detected at pixel x′. With regard
to this interpretation, we rewrite Eq. (5.28) as

T (x′, tj) = P0(x
′) · fmod(tj) +

NSSS∑

i

si(x
′, tj) . (5.29)

Scattered photons of single scatter sources si descend from primary X-rays originally,
which in turn are temporally modulated. Thus, each of the single scatter sources individ-
ually gets temporally modulated itself as well. Regarding the example with Nmod = 2, we
can divide the total set of single scatter sources into subsets of equiphase and paraphase
initial scatter sources in respect to the modulation state of the pixel under consideration.
The distinction of equi- and paraphase single scatter sources is illustrated schematically
in Fig. 5.9 for an arbitrary pixel x′ at time tj. In this illustration, this specific pixel
x′ is behind a dark square of the modulator. Thus, illustrated as red scatter cones,
equiphase single scatter sources are from regions within the sample that are irradiated
by primary radiation that has also passed dark squares. On the other hand, marked by
green scatter cones, paraphase single scatter sources originate from regions where inci-
dent primary radiation is modulated with phase-shift of π with respect to the pixel x′

under consideration.
With this distinction, we rewrite Eq. (5.29) as

T (x′, tj) = P0(x
′) · fmod(tj) +

equiph.∑

i

si(x
′) · fmod(tj) +

paraph.∑

i

si(x
′) · fmod(tj±1) , (5.30)

where the first summation is over equiphase and the second over paraphase single scatter
sources. Note that for single scatter sources in paraphase, the modulation is phase-shifted
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Chapter 5: Scatter Correction by Temporal Primary Modulation

by π, i.e. j ± 1 in the second sum. Since only a fraction A of the primary radiation is
modulated, we can split Eq. (5.30) into a stationary and a modulated part:

T (x′, tj) =

(
1− A

2

)
·
[
P0(x

′) +

equiph.∑

i

si(x
′) +

paraph.∑

i

si(x
′)

]
+

A

2
· cos(π · tj)

[
P0(x

′) +

equiph.∑

i

si(x
′)−

paraph.∑

i

si(x
′)

]
.

(5.31)

From the second term, i.e. the modulated part, the TPM method calculates an estimated
primary signal P0,est(x

′) as described in section 5.1.1. There, we argued that the total
scatter signal for pixel x′ must not be modulated temporally during primary modulation
if the TPM calculation of P0,est is to be correct. Looking at the second term in Eq. (5.31),
note that this requirement is only fulfilled if contributions from equi- and paraphase single
scatter sources have the same magnitude and cancel out each other. Thus, for correct
primary estimation by TPM, the following has to apply:

equiph.∑

i

si(x
′)−

paraph.∑

i

si(x
′)

!
= 0 . (5.32)

The last equation represents a fundamental requirement for correct scatter estimation
with TPM: Single scatter sources need to be equally distributed and of same magni-
tude between the two modulation phases, e.g. bright and dark squares, when using a
checkerboard-like primary modulator. In practice, Eq. (5.32) will not be fulfilled ex-
actly. There will be rather some amount of imbalance between contributions from the
two subsets which we denote as

∆s(x′) :=

equiph.∑

i

si(x
′)−

paraph.∑

i

si(x
′) . (5.33)

The greater the imbalance ∆s(x′) is, the greater the error in primary signal estimation,
and hence, in scatter signal estimation becomes, as we will describe below.

Within this 2D model description, we are going to address the question of how the
imbalance correlates with the spatial distribution of scatterers, and more precisely, with
the spatial frequencies of the object. For this purpose, we make use of the Fourier
analysis, by which we are able to decompose a given object function into its constituting
(spatial) frequencies. In our case, we compress an arbitrary 2D object function into a 1D
object function (line) where the scatter originates from. Subsequently, this 1D object can
be decomposed into single frequencies, which are here represented as object grids with
different periods. The primary modulator is represented by a 1D modulator grid as well.
We conduct a simulation where the pitch of the primary modulator grid is constant,
dMod=const., while the object grid is varied in its pitch dObj. For each pitch of the object
grid, we calculate the scatter distributions deterministically for both positions of the
primary modulator. From this, we obtain the difference in scatter fluences ∆S between
the two positions in dependence of the grid width of the object.
The simulation setup is schematically shown in Fig. 5.10(a). Without loss of generality,
we make the following simplifying assumptions with respect to scatter build-up:
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5.2 Verifying the Assumption of Constant Scatter

Figure 5.10: (a) Schematic illustration of the simulation setup for studying the change in
scatter fluences between the two positions of the primary modulator depending
on spatial frequencies of the object. (b) Exemplary model signals calculated for
the situation shown in (a). For details see text.
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Chapter 5: Scatter Correction by Temporal Primary Modulation

• First, the simulation is limited to only first-order scattered radiation by the object.

• Second, although the object is extended in 2D, scattering occurs only at a single
line within the object, e.g. the central line.

• Third, scattered X-ray photons originate from structures within the sample which
can be analyzed separately, i.e. for each spatial frequency within the object plane
individually as in Fourier analysis.

• Fourth, in order to be able to easily calculate the signals, we consider parallel-beam
geometry and a discretized 1D detector of 1024 pixels.

The initial intensity from the X-ray source is given by I0 = 1. The primary modulator
grid fMod,j with modulator pitch dMod is defined by

fMod,j(x) =

{
1, if ⌊ x

dMod
⌋ is even (j=1)/odd (j=2),

1− A, if ⌊ x
dMod

⌋ is odd (j=1)/even (j=2),
(5.34)

where A is the modulation strength. The intensity Ij behind the primary modulator grid
is given by

Ij(x) = I0 · fMod,j(x) . (5.35)

Furthermore, we define the 1D object function fObj in a similar way as the modulator
function:

fObj(x) =

{
0.5, if ⌊ x

dMod
⌋ is even,

0, if ⌊ x
dMod

⌋ is odd,
(5.36)

representing a grid with pitch dObj. For both modulator positions j=1 and j=2, the
primary signals Pj(x) are calculated from the incident radiation intensity Ij(x) (incident
on the sample) and the object function fObj(x):

Pj(x) = Ij(x) · (1− fObj(x)) . (5.37)

In our model, scatter functions are simulated by convolution of single scatter sources,
given by Ij(x) · fObj(x), with a scatter kernel function Skernel(x),

Sj(x) = (Ij(x) · fObj(x))⊗ Skernel(x) . (5.38)

For pixels x = 1 . . . 1024, we define the scatter kernel as the sum of angular distributions
of Rayleigh and Compton single-scattered photons:

Skernel(x) ∝
daσR(θ)

dΩ
+

daσ
KN
C (θ)

dΩ
, where θ = arctan (x/512pixel − 1). (5.39)

Here, daσR/dΩ and daσ
KN
C /dΩ denote the differential atomic cross sections for Rayleigh

and Compton scattering, respectively, as defined before in Eqs. (2.8) and (2.17). Each
of the differential cross sections indicates the probability (per unit solid angle) that an
incident photon is scattered at scattering angle θ. We obtain the scatter kernel Skernel

for parameters which are chosen close to our experimental conditions. Figure 5.11(a)
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5.2 Verifying the Assumption of Constant Scatter

Figure 5.11: (a) Schematic illustration of the calculation of the angular scatter distribution
described by scatter kernel Skernel(x). (b) Linear plot of scatter kernel Skernel(x),
calculated as the sum of coherent Rayleigh-scattered and incoherent Compton-
scattered photons. For details see text.

shows schematically the assumed setup: a monochromatic pencil beam, i.e. X-ray pho-
tons with a photon energy of 100 keV (which is close to the average energy of a poly-
chromatic 225 kVp X-ray spectrum), is scattered by a thin sheet of aluminum (Z=13).
The angular distributions of Rayleigh- and Compton-scattered photons is calculated us-
ing Eq. (2.8), Eq. (2.17) and the atomic form factors F (q, Z) as well as the incoherent
scattering functions S(q, Z) listed in Ref. [Hub+75]. The scattered photons are registered
by a one-dimensional detector which forms an angle of 90◦ with the scattering site (i.e.
the scattering site is at a distance which equals half the detector length, cf. Fig. 5.11(a)).
Hereby, the scatter kernel Skernel(x), plotted in Fig. 5.11(b), is obtained.

Finally, the total signals are given by

Tj(x) = Pj(x) + Sj(x) . (5.40)

All signals are exemplarily illustrated in Fig. 5.10(b). In a simulation run where dMod =
15 (pixel) and dObj is varied from 1 to 1024 (pixel), we obtain the scatter functions Sj(x)
for both modulator positions j = 1, 2. For each dObj, we are interested in the mean
relative deviation (RelDev) between the two scatter functions obtained,

RelDev =
1

A
meanx

(
∆S(x)

Stot(x)

)
. (5.41)

Thereby,

Stot(x) =
1

2
(S1(x) + S2(x)) ·

1

1− A/2
(5.42)
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is introduced, i.e. the TPM-undisturbed total scatter signal1, for normalization of the
scatter difference ∆S(x). Looking back at Eq. (5.31), we see that

∆S = S1(x)− S2(x) = A ·∆s(x) , (5.43)

giving a correlation to earlier considerations concerning imbalances between the two sets
of single scatter sources in equi- and paraphase described by ∆s(x). Thus, we can rewrite
Eq. (5.41) as mean normalized imbalance N.I. between these two sets:

N.I. = meanx

(
∆s(x)

Stot(x)

)
(5.44)

= meanx

(∑equiph.
i si −

∑paraph.
i si∑equiph.

i si +
∑paraph.

i si

)
. (5.45)

Figure 5.12 exhibits the simulation results in which the normalized imbalance N.I. is
plotted against the ratio dMod/dObj. While we find approximate balances for most of the
ratios, there are distinct peaks for ratios dMod/dObj = (2n + 1)±1 = 1, 3±1, 5±1, 7±1, . . .,
n ≥ 0. This can be most easily explained for the example dMod/dObj = 1. Here, the
pitch of the object grid is the same as the pitch of the modulator grid, therefore, in each
of the two modulated projections single scattering sources either lay all behind dark or
all behind bright squares, respectively. This is due to the fact that the object model is
just a copy of the modulator grid. In this case, the imbalance is maximum, i.e. all single
scatter sources are either completely equi- or paraphase, cf. Eq. (5.45). Thus, N.I. = −1
for this example. The occurrence of the other peaks can be explained analogously, but
with different ratios equi- to paraphase. In fact, for cases where the ratio dMod/dObj is
an odd integer, the normalized imbalance N.I. can be expressed as:

|N.I.| =
{

dMod

dObj
, if dMod ≤ dObj,

dObj

dMod
, if dMod > dObj.

(5.46)

A few of these cases are marked in Fig. 5.12. On the other hand, we find the small-
est normalized imbalances in equi- and paraphase single scatter sources for even ratios
dMod/dObj = (2n)±1, n ≥ 1.

1

Stot =
1

2
(S1 + S2) ·

1

1−A/2

=
1

2

{(
1− A

2

)(equiph.∑

i

si +

paraph.∑

i

si

)
+

A

2

(
equiph.∑

i

si −
paraph.∑

i

si

)
+ . . .

(
1− A

2

)(equiph.∑

i

si +

paraph.∑

i

si

)
− A

2

(
equiph.∑

i

si −
paraph.∑

i

si

)
+

}
· 1

1−A/2

=
1

2

(
2 ·
(
1− A

2

)(equiph.∑

i

si +

paraph.∑

i

si

))
· 1

1−A/2

=

equiph.∑

i

si +

paraph.∑

i

si
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5.2 Verifying the Assumption of Constant Scatter

Figure 5.12: Simulation result plot of normalized imbalance N.I. against the ratio of the mod-
ulator grid pitch over object grid pitch, dMod/dObj, on a logarithmic scale. The
imbalance between equi- and paraphase scatter sources is small except for ratios
which yield an odd number or its reciprocal.

The analysis so far yields normalized imbalances in scatter fluences for model objects
with a single spatial frequency. As stated at the beginning of the model simulation, more
complex objects can be created by combining different object grids. The results obtained
here can be transferred to this case since, in the simplified model, scatter contributions
from different object structures behave additively, i.e. different structures do not impede
scatter contributions from others (no effect of depth, no multiple scattering). Thus, in a
simulation run where we combine two grids, e.g. with dMod/dObj,1 = 1 and dMod/dObj,2 = 3,
we obtain a normalized imbalance of (−1 + 0.33)/2 = −0.33, cf. Fig. 5.12. Here, the
single normalized imbalances are summed up and then divided by the number of scatter
contributing structures.
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5.2.2.2 Systematic Errors in TPM Scatter Estimation

In the last section, we have described the origin of any imbalances between equi- and
paraphase single scatter sources. Here, we are going to address the question how such an
imbalance affects the scatter estimation procedure. Looking at the model for Nmod = 2,
with Eq. (5.31) we find in a simplified notation for tj = 1, 2 and omitting coordinate x′:

T1,2 =

(
1− A

2

)
·



P0 +

equiph.∑

i

si +

paraph.∑

i

si

︸ ︷︷ ︸
Stot



± A

2


P0 +

equiph.∑

i

si −
paraph.∑

i

si

︸ ︷︷ ︸
∆s


(5.47)

=

(
1− A

2

)
· [P0 + Stot]±

A

2
[P0 +∆s] (5.48)

By inserting this expression for T1,2 in Eq. (5.9) for scatter estimation, we obtain

Sest =

(
1− A

2

)
[P0 + Stot − (P0 +∆s)] (5.49)

=

(
1− A

2

)
[Stot −∆s] . (5.50)

This result can be interpreted as follows: the scatter estimation is perfect within noise
limits if ∆s = 0, i.e. if equi- and paraphase single scatter sources are balanced in magni-
tude. Otherwise, their imbalance will lead to a systematic error in the scatter estimate
Sest. Returning to the analysis of single frequencies of the object from above, for the
extreme case dMod/dObj = 1 where all single scatter sources are either completely equi-
or completely paraphase, and hence, normalized imbalance = ∆s/Stot = ±1, we find:

Sest =

(
1− A

2

)
·
{

0, all SSS are equiphase,
2 ·Stot, all SSS are paraphase.

(5.51)

This situation is shown in Fig. 5.13(a). The TPM-calculated scatter signal (black curve)
exhibits a strong pattern originating from the modulation profile. Generally, by dividing
Sest of Eq. (5.50) by Scorrect =

(
1− A

2

)
Stot, we obtain the relative scatter estimation

error:
Sest

Scorrect

= 1± ∆s

Stot︸︷︷︸
N.I., cf. Eq. (5.44)

. (5.52)

With this simplified model analysis, we conclude that it is essential for correct TPM scat-
ter estimation that for each pixel scatter contributions from equi- and paraphase scatter
sources are equally strong in magnitude. If this requirement is not or only insufficiently
fulfilled, the resulting imbalance will lead to a spatial pattern remaining in the estimated
scatter images that reproduces the spatial modulation pattern.
By the theoretical analysis given here, we can interpret the results from the Monte-Carlo
simulation of section 5.2.1.1. There, we obtained difference maps ∆S (Fig. 5.7) which
resemble the modulation pattern in the same way as the exaggerated situation depicted

88



5.2 Verifying the Assumption of Constant Scatter

Figure 5.13: (a) Simulated signals for the situation dMod/dObj = 1. In this extreme case, the
calculated scatter signal (black curve) shows a strong imprint by the modulation
pattern. (b) The ratio Sest/Scorrect alternates between 0 (equiphase regions) and
2 (paraphase) as described by Eq. (5.52).

in Fig. 5.13. Both are a result of an imbalance between equi- and paraphase modulated
regions which contribute scatter. Furthermore, this imbalance decreases, and hence, ∆S
decreases, as the modulation pattern becomes finer. The latter corresponds to decreasing
the pitch of the modulator grid, dMod, while the pitch of the pre-dominant grid within the
object function remains the same. This corresponds to the situation that, in Fig. 5.12,
we move to the left towards smaller normalized imbalances.

Regarding applications in industrial CBCT, we typically find samples that can be decom-
posed into constituting frequencies yielding a broad spectral distribution. The same holds
true for most applications from the medical field. In general, we expect that the critical
frequencies that we investigated in Fig. 5.12 are contained within this spectrum of object
frequencies. As derived here, this results in a spatial modulation pattern remaining in
the estimated scatter image. However, considering the typically broad distribution of
spatial frequencies, critical frequencies are only of minor importance in the overall spec-
trum. As a result, the modulation patterns remaining in the estimated scatter images
exhibit only small magnitudes, as also supported by the Monte-Carlo simulation using
fine modulation patterns.
For unfavorable situations where the pre-dominant object frequency is the same as the
primary modulator frequency (or odd integers, or their reciprocals), we can improve the
TPM scatter estimation by:

• Averaging: From Fig. 5.13(a), we see that averaging over two adjacent modulated
regions that are phase-shifted (equi- and paraphase) yields the correct scatter es-
timate Sest whereby Sest/Scorrect = 1 in Fig. 5.13(b). Averaging will reduce the
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Chapter 5: Scatter Correction by Temporal Primary Modulation

spatial resolution of TPM scatter estimation. However, in experimental practice,
the frequency of the primary modulation pattern can be chosen sufficiently high,
whereby a spatial resolution reduced by factor of two is compatible.

• Filtering: We can use notch-filtering in order to suppress the frequency of the spatial
pattern of primary modulation. Thereby, we are unable to detect this specific
frequency within the scatter image. A second primary modulator with different
spatial modulation frequency could be used in order to gain information about this
blind spot.

5.3 Beam-hardening Correction Combined with TPM

For spatial as well as temporal modulation of the primary fluence, the primary radi-
ation has to be modulated in small clusters or pixels within the field of view (FOV).
Several possible implementations in form of primary modulators have been presented in
section 5.1.2. A primary modulator imprints a specific spatial pattern on beam intensities
within the FOV. Since this spatial imprint is technically realized as attenuation of X-rays
by matter, beam hardening (BHD) effects may occur (cf. section 2.3.1). The BHD effect
leads to different penetration capabilities of radiation behind bright and dark squares:
The radiation that passes bright squares without (or with less attenuating) matter is not
beam-hardened unlike the radiation that passes dark squares with strongly attenuating
matter. At two different stages within the scatter correction method using TPM, this
effect has to be taken into account:

1. Before scatter calculation, in order to correctly estimate the amount of scatter: Let
us consider how BHD affects the scatter calculation process by TPM. Since the
radiation behind dark squares is beam-hardened, i.e. it has stronger penetration
capabilities than without the BHD effect, it will give rise to primary signals higher
than without BHD when irradiating the sample. During the demodulation process,
this leads to the underestimation of primary signals, cf. Eq. (5.7). Thus, the TPM
scatter estimate will result in scatter signals which are too large, cf. Eq. (5.9).

2. BHD effects have also to be taken into account after scatter subtraction from the
modulated projection and before division by flat-field modulated projection, in
order to obtain correct pattern removal by flat-field division.

In the literature concerning spatial primary modulation (SPM), BHD effects have been
described [ZBF06; Zhu+09; Gao+10], but have not been taken into account until very
recently. Gao et al. proposed to reduce BHD effects by selection of an ‘optimal material’
for the dark squares of the primary modulator [GZF10]. Here, optimal material refers to
choosing an element which has one of its absorption edges close to the mean energy of
the system spectrum whereby inconsistencies caused by BHD are minimized. Regarding
medical applications operating at 120 kVp, the optimal material was found to be erbium
[GZF10].
Alternatively and focused on industrial applications operating at greater voltages, we
have implemented a beam-hardening correction (BHC) based on the linearization ap-
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5.3 Beam-hardening Correction Combined with TPM

Figure 5.14: (a) Attenuation curves calculated for two different spectra incident on an alu-
minum wedge. For the bright squares of the primary modulator, we assume a
spectrum prefiltered by the tube prefilter of 2.0mm copper (red curve), while,
for the dark squares, the prefilter is effectively enlarged to 2.7mm (black curve)
due to the additional material (0.7mm copper). (b) From the difference between
the two attenuation curves in (a), we construct a lookup table which maps each
signal measured behind a dark square, T ′, to a correction value fBHC(T

′).

proach that corrects BHD effects occurring at the dark squares. This correction algo-
rithm is adopted from a BHC applied to entire CT projections in the course of CT volume
reconstruction, cf. section 2.3.1. The original approach is presented in Ref. [HM98]. A
limitation of the linearization approach relates to the fact that it is theoretically cor-
rect only for single-material samples, i.e. samples that can be described by one mass
attenuation coefficient µ/ρ (cf. Eq. (2.2)).

We will describe our approach to correct BHD effects occurring at the dark squares of
a primary modulator. For this purpose, let us assume that the primary modulator only
comprises regions with two different mass attenuation coefficients, e.g. bright and dark
squares as with the checkerboard pattern. Furthermore, we assume that bright squares
have a negligible BHD effect on incident X-radiation. Hence, the task is to correct the
signals that have been measured behind dark squares since they arise from X-rays affected
by BHD.
For a given tube voltage (e.g. 200 kVp) and prefilter setting (e.g. 2mm of copper), we
calculate two attenuation functions for X-rays penetrating a continuous wedge made
of a single material (e.g. pure aluminum). These two attenuation curves are shown in
Fig. 5.14(a) on a logarithmic scale for I/I0. Assuming a plain prefilter of 2mm copper for
bright squares, we obtain the red attenuation curve bbright(x), where x is the penetration
length within the wedge. For X-rays that have to pass dark squares, and consequentially
have to penetrate additional material (e.g. 0.7mm of copper), we calculate the black
attenuation curve bdark(x) by extending the prefilter correspondingly. Thus, in this case,
a total prefilter of 2.7mm copper is assumed.
As anticipated, the beam-hardened radiation (dark squares) experiences less attenua-
tion while traversing the wedge than the non-hardened radiation (bright squares), thus
bdark(x) is higher than the corresponding curve bbright(x), cf. Fig. 5.14(a). We calcu-
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late the difference between both attenuation curves which yields the correction function
fBHC = bbright−bdark, depicted in Fig. 5.14(b). Each originally measured, scatter-corrected
signal T ′ from regions shadowed by dark squares is mapped to a correction value fBHC(T

′).
Before the projections are processed with respect to scatter calculation by TPM, we per-
form a BHD correction for all pixels (x, y) shadowed by dark squares. This involves the
following steps:

1. Given a total signal T (x, y), subtract a scatter estimate Sest(x, y), e.g. by using
the calculated scatter image from the CT projection before: T ′(x, y) = T (x, y) −
Sest(x, y).

2. Use T ′(x, y) as lookup value in the lookup table fBHC; this yields a (negative) correc-
tion value which is added to T ′(x, y), yielding: T ′

corr(x, y) = T ′(x, y)+fBHC[T
′(x, y)].

3. Undo subtraction of the scatter estimate to yield the BHD-corrected signal Tcorr for
pixel (x, y): Tcorr(x, y) = T ′

corr(x, y) + Sest(x, y).

Using this beam-hardening correction, we can compensate BHD effects occurring at dark
squares. This is a prerequisite for correct estimation of scatter signals by TPM. After
the scatter image is calculated and subtracted from the original modulated projection
and before the latter is divided by its corresponding flat-field modulated projection, we
apply this correction step again in order to remove the modulation pattern correctly.

5.4 Experimental TPM Implementation

In the experiments demonstrating the proposed TPM scatter correction method, the
industrial CBCT scanner setup as described in section 4.2.1.1 is used. Before we discuss
the experimental investigations in sections 5.5 and 5.6, let us present the TPM specific
part of the experimental setup.

5.4.1 Primary Modulator

Our experimental implementation of TPM constitutes a two-point modulation employing
a checkerboard pattern which we either step or slide by one square-length as described
in section 5.1.2. For this purpose, a primary modulator was manufactured to order as a
printed circuit board (PCB) where the checkerboard pattern is realized by PCB etching.
Fig. 5.15(a) shows a photograph of the primary modulator mounted within a frame. It is
fabricated as a ten-layer PCB with 99× 99 square fields, arranged by the etching process
as 2D checkerboard pattern with bright squares (PCB base material) and dark squares
(copper), each with side lengths of 1 × 1mm2. The copper fields have a total thickness
of 0.7mm. With the tube voltage of 200 kV and a source prefilter of 2mm of copper, we
measure a mean transmission of 82% for the copper squares, i.e. the modulation strength
is A = 0.18 if detector-internal scattering is not considered and not corrected. If we
take into account contributions from detector-internal scattering (5500 out of 39000 gray
values), cf. section 3.1.3, the modulation strength is A = 0.21. This is in good agreement
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5.4 Experimental TPM Implementation

Figure 5.15: (a) The primary modulator, manufactured to order, is arranged as checkerboard
pattern and mounted within a frame. (b) Motorized linear translation stage
installed in front of X-ray tube for discrete stepping or continuous sliding of the
primary modulator.

with simulations which we carried out using a direct-ray simulation tool2: Here, we found
the target modulation strength of A = 0.2 for a design thickness of 0.7mm with copper
squares.

Choosing a specific modulation strength A for the primary modulator includes the fol-
lowing opposing considerations: according to Eqs. (5.12) and (5.15), on the one hand,
a stronger modulation A minimizes noise in the scatter estimate. On the other hand,
smaller modulation strengths necessitate less material for attenuation, and thereby mini-
mize beam-hardening effects for signals measured behind dark squares. Furthermore, we
conclude from Monte-Carlo simulations in section 5.2.1 that, besides high spatial frequen-
cies of the modulation pattern, a smaller modulation strength lowers systematic errors
in the scatter estimation process.

Consequently, a tradeoff between improved scatter estimation and reduced perturbation
of the original projection has to be reached. In section 5.1.3, we have derived a correlation
(Eq. (5.24)) between the size of averaging regions, Npix, and the modulation strength A.
Aiming at averaging regions which correspond to the 99 × 99 squares of our primary
modulator, we obtain Npix = 20 × 20 pixels = 400. For this specific case, Fig. 5.5(a)
indicates that an optimum range of modulation strengths with respect to a minimum
relative error ∆PTPM

est /∆P0 is given by A = 0.22 − 0.26. Therefore, the modulation
strength A = 0.2 of our manufactured primary modulator is very close to the specified
optimum range.

2Siemens simulation package for direct-ray simulation (DRASIM) of radiographic projections, cf. [Sti93].
DRASIM uses the EPDL97 database from the Lawrence Livermore National Laboratory (LLNL),
cf. [CHK97].
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5.4.2 Temporal Primary Modulation Unit and Variants of
Modulation

From a technical point of view, we consider two possible variants for moving the primary
modulator: (i) the discrete stepping by one square length and (ii) the continuous slid-
ing. In both cases, we employ a linear translation stage (PI-Physik Instrumente, model
M-126.PD2) that is installed close to the X-ray tube, cf. Fig. 5.15(b). The primary
modulator is mounted onto the linear translation stage and moves horizontally.
In descriptions and illustrations of TPM in section 5.1.2 and particularly in Fig. 5.4, up
to this point, we have used discrete stepping where the primary modulator is stepped
by one square length in between the two modulated projections. As a result, a complete
inversion of the modulation for each detector pixel, i.e. bright to dark squares and vice-
versa, is obtained. In this case, the modulation strength A is theoretically homogeneous
over the entire FOV, assuming parallel-beam geometry and an ideal primary modulator.
Thus, in principle, we are able to calculate the scatter signal for each detector pixel
individually yielding maximum resolution.
However, in experimental practice, due to imperfections in the fabrication of the primary
modulator (bright and dark squares do not have same side lengths) and due to the cone-
beam geometry, the modulation is not completely homogeneous. Figure 5.16(a) shows a
small section (120× 120 pixels out of 1024× 1024) of the modulation map A(x, y) where
the modulation strength is calculated by

A(x, y) =
|P1(x, y)− P2(x, y)|

max [P1(x, y), P2(x, y)]
. (5.53)

where P1,2 are modulated flat-field projections, i.e. without object, and hence, without
scattered radiation. These reference projections are recorded only once for a CT setup;
they represent modulated primary signals after exact subtraction of the detector-internal
scattering contribution (cf. section 3.1.3).
As can be deduced from Fig. 5.16(a), for most pixels (x, y) the modulation strength A
is about 20%, except for a grid-like structure of pixels where the modulation is close to
zero due to different side lengths of bright and dark squares of the modulator. According
to Eq. (5.12), scatter estimation for small modulation strengths A exhibits large errors.
Thus, for TPM scatter estimation, we limit the calculations to regions with A > 16%.
Additionally, spatial averaging is performed in the experimental TPM investigations de-
scribed in sections 5.5 and 5.6. Averaging over pixel clusters of the size of one projected
square of the primary modulator strongly improves the signal-to-noise ratio on the one
hand, cf. Eq. (5.15), but on the other hand, reduces scatter resolution from 2048× 2048
down to 99× 99.
An important disadvantage of discretely stepping the primary modulator lies in the fact
that a certain amount of time (here: 0.4 s) is needed for the motor shifting process. This
is the reason for implementing and testing also another variant: the continuous sliding,
which we will describe in the following.

If the primary modulator is continuous sliding, it is possible to take the two modulated
projections consecutively, i.e. without interruption, and hence, without loss of time. This
implies changes to the primary modulation since – in this situation – we cannot realize a
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Figure 5.16: Modulation maps A(x, y) of 120 × 120 pixels (out of 1024 × 1024 pixels) for
(a) discrete stepping and (b) continuous sliding of the primary modulator. In
both cases, the primary modulator is horizontally translated by one square length
per modulated flat-field projection P1,2 (reference projection). Corresponding line
profiles are given below.

complete inversion of modulation for the entire FOV as before3. In the experiments, we
slide the primary modulator at constant speed v = 0.2mm/s, i.e. one square length per
frame time of one modulated projection (cf. Table 5.1 below). As shown in Fig. 5.16(b),
this leads to a horizontal sawtooth-like modulation profile with a frequency equal to
the spatial frequency of the modulation pattern. Analogous to the variant of discrete
stepping, for TPM scatter calculation we only consider pixels (x, y) where A(x, y) > 7%
here.

The distinction between the two variants, discrete stepping and continuous sliding of
the primary modulator, is of technical nature. However, since, in view of industrial
applications, the sliding variant is the more interesting of the two, we will focus on this
variant in the following.

3 In case of the continuous sliding primary modulator, theoretically homogeneous modulation over the
entire FOV could be implemented by increasing the number of modulated projections to Nmod =
no. of detector pixels

no. of squares per row
(or greater). As a result, we would obtain a finer temporal sampling of the signals

and get hold of the modulated primary signal for each detector pixel. Let us remark that we have
not implemented this technique into the experiment yet.
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5.5 Experimental Verification of TPM Scatter

Estimation: Comparison of TPM with BSA

Scatter Images

Representing a key result of our experimental TPM investigations, we compare scatter
estimates of the proposed TPM method with scatter data obtained from the established
beam-stop array (BSA) method. The latter has been proven to be robust and reliable
for directly measuring scatter signals, see chapter 4.

5.5.1 Experimental Investigations and Results

We perform a CT scan employing the TPM variant with a continuous sliding primary
modulator (see section 5.4.2 above). CT parameters applied for this scan and also for
the scans described in section 5.6 are given in Table 5.1. The tomographed sample
is an aluminum phantom which we specifically designed for demonstration of scatter
artifacts. Its dimensions are 8 × 18 × 4 cm3. Furthermore, it has thin slits cut laterally
and transversally as well as drilled boreholes in different planes. It is positioned 8 cm off
the axis of rotation, i.e., for the projection angle 0◦ it is further afar from the detector
than for projection angle 180◦.

X-ray anode voltage 200 kVp
X-ray tube current 375µA
Prefilter 2.0mm copper
Source-object distance (SOD) 75.3 cm
Source-detector distance (SDD) 90.0 cm
Integration time (per angular step) 2× 5.0 s
No. of angular projections 1080

Table 5.1: CT scan parameters for demonstration of TPM scatter estimation using a primary
modulator with a checkerboard pattern.

The primary modulation unit is mounted 21 cm in front of the X-ray tube whereby a
total of 95 × 95 squares is projected onto the detector. Before the actual CT scan,
we record flat-field modulated projections P1,2(x, y) in order to generate a modulation
map A(x, y) as shown in Fig. 5.16(b). The actual CT scan comprises two modulated
projections for each angular step which form the basis for scatter estimation by TPM. In
the TPM algorithm, first we apply the beam-hardening correction as specified in section
5.3. However, we do not consider bright and dark squares, but weight the correction value
fBHC(T

′) according to the individual modulation strength A(x, y) for each pixel (x, y).
Subsequently, the BHD-corrected modulated projections are used for TPM calculation of
the scatter estimate Sest(x, y) according to Eq. (5.9). This yields a scatter image which
is further processed by downsampling to 95× 95 points (cf. sections 5.1.3 and 5.4.2).

Furthermore, besides the TPM scan, we conduct a reference measurement to obtain
scatter images with an established method that directly measures the scatter signals.
Therefore, a short-scan comprising 360 projections is performed where we employ the
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beam-stop array method (BSA, cf. section 4.1.1). In this measurement, the CT setting
is identical to the CT scan where TPM scatter correction with the continuous sliding
primary modulator is applied. Additionally, the BSA is placed into the setup with the
primary modulator. The signal decrease due to the attenuation by the PMMA support
plate of the BSA is compensated by readjusting the X-ray tube current. Two scans are
performed where – after the first scan – the BSA is shifted diagonally by 1.41 cm (half of
a diagonal period) in order to obtain a finer sampling grid. From the obtained projection
data, BSA scatter images are generated by applying bicubic spline interpolation to the
sampled scatter data, analogous to the BHA procedure described in section 4.3.2.

In order to give an overview of the comparison study between TPM and BSA method,
Fig. 5.17 displays nine ratios between the BSA and the TPM scatter images. More
specifically, it shows color-coded quotient images obtained by pixel-wise division of the
BSA generated scatter image by the corresponding TPM scatter image (BSA/TPM-ratio)
for the nine projection angles αi = 45◦ · i, where i = 0 . . . 8. Here, small bullets mark the
sampling points of the two sets of BSA scans. The green color indicates BSA and TPM
scatter signals of equal magnitude. Dark red and dark blue shaded regions represent a
deviation of +30% and −30% (and larger), respectively, of the BSA scatter signal relative
to the TPM signal.
For a large part of regions in the quotient images, we find that BSA/TPM-ratios max-
imally deviate from one by ±10% (light blue to light orange in quotient images). This
represents a fairly good agreement between the two methods in general. However, we also
notice strong deviations between TPM and BSA scatter signals in regions close to the
edges of the sample, particularly on the top edge (all quotient images affected) and along
the lateral edges of the sample. By tendency, in these prominent regions, BSA scatter
signals are larger than TPM (ratio > 1) when the region is covered by the sample, as in
the two examples just mentioned, and smaller (ratio < 1) in regions outside. Examples
for the latter can be particularly noticed in quotient images no. 0, 90, 270, and 360 as
long blue strips parallel to lateral edges and outside of the sample.

In the following, we limit the comparison of BSA and TPM scatter estimates to repre-
sentative sampling points of the BSA in which the scatter signal is directly and ‘truly’
measured, i.e. it is not interpolated. For that purpose, in Fig. 5.18(a), scatter signals
estimated by the TPM method are plotted as a function of the projection angle as solid
curves. For comparison, the dashed curves show the results from the corresponding BSA
measurement. In both cases, the three different curves represent three vertically aligned
sampling points which are located in a central region of the scatter images, see markers
in the insets of Fig. 5.18(a). Generally, scatter signals obtained from both methods are
quantitatively in good agreement over the course of projection angles: Deviations are
±6% at maximum for sampling points 2 and 3 and most of sampling point 1 (except for
projection angles around 140◦ and 325◦).
Analogously, Fig. 5.18(b) shows experimental results from the corresponding comparison
of TPM and BSA estimated scatter signals for three horizontally aligned sampling points
in the center of the scatter images. The sampling points are marked in the inset which
depicts the TPM estimated scatter image for the projection angle 270◦. In the graph, blue
and green curves represent the outer sampling points which are covered by the sample in
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5.5 Experimental Verification of TPM Scatter Estimation

Figure 5.18: Comparison of scatter signals obtained with the TPM method (solid curves) and
the BSA method (dashed curves) over the course of 360 projection angles. (a)
Scatter signals are given for three vertically aligned sampling points marked in
TPM scatter images in the insets. (b) Scatter signals are given for three hor-
izontally aligned sampling points indicated in the TPM scatter image no. 270
depicted in the inset. For details see text.
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Figure 5.19: (a) Comparison of scatter signals obtained by the TPM method without beam-
hardening correction (solid curves) and corresponding BSA-measured scatter sig-
nals (dashed curves), comparison analogous to Fig. 5.18(a). (b) Difference plots
(solid curves) of TPM-calculated scatter signals STPM,w/o BHC − STPM,w BHC il-
lustrating the effect of beam-hardening correction as pre-processing step. Down-
scaled total signals are given for reference (dashed curves). For details see text.

projections 90◦ and 270◦, respectively. Again, TPM and BSA measured scatter signals
agree well.

Influence of Beam-hardening Correction within TPM Method

In order to demonstrate the effect of the beam-hardening correction (BHC) within the
TPM method (section 5.3), here we calculate TPM scatter images without BHC for
comparison. For this purpose, the same TPM projection data as presented above are used
and scatter images are calculated whereas the pre-processing step which compensates for
beam-hardening effects, i.e. prior BHC, is omitted. Analogous to Fig. 5.18(a), TPM-
calculated scatter signals without BHC are compared with BSA-measured scatter signals
in Fig. 5.19(a). Plots are given over the course of 360 projection angles and for the same
three sampling points analyzed in Fig. 5.18(a). TPM-calculated scatter signals without
prior BHC are considerably larger than BSA-measured scatter signals as expected from
the discussion in section 5.3.
In Fig. 5.19(b), the corresponding difference plots of TPM-calculated scatter signals with-
out prior BHC and with prior BHC are given as solid curves. For reference, the corre-
sponding down-scaled total signals are also given for the same sampling points and they
exhibit a similar trend as compared to the difference plots. More precisely, the difference
in TPM calculated scatter signals without and with prior BHC is dependent on the total
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signal since the BHC algorithm takes the latter as input parameter for determining the
correction value, cf. Fig. 5.14 in section 5.3. This also explains why the largest differ-
ences between TPM scatter signals without and with prior BHC are found in intervals of
projection angles where total signals coincide with gray values of about 17000: At this
point, the BHC correction value is maximum, cf. Fig. 5.14.
For projection intervals 0◦−25◦, 160◦−200◦, and 335◦−360◦ where the vertically aligned
sampling points are covered by the sample shadow, we find differences of 1000−1200 gray
values between TPM scatter signals without and with prior BHC. Corresponding to an
increase of about 35%, this overestimation of the TPM scatter signal without prior BHC
would lead to significant errors in the CT reconstruction process. Thus, we conclude that
the BHC pre-processing of TPM projection data is essential for accurate TPM scatter
estimation and correction.

5.5.2 Interpretation

The experimental results shown in Figs. 5.17 and 5.18 demonstrate a generally good
agreement of estimated scatter images between the TPM and BSA method. Employing
the proposed TPM method, we obtain scatter estimates which are within a ±10% range
to the scatter data measured using the established BSA technique. This proves that the
TPM method is able to measure the scatter distributions very accurately.
However, we noticed a few prominent deviations between the two methods in Fig. 5.17
above. These can be explained by a different sampling and interpolation process between
BSA and TPM method. Note that all prominent regions, which are colored dark red
and dark blue, lie exactly in between BSA sampling points. Regarding this, it appears
that – compared to the TPM method – the scatter data sampling with the BSA is not
sufficiently fine. We only measure the scatter signals directly at 16× 20 sampling points
with the BSA (cf. markers in the quotient images) and apply bicubic spline interpolation
in between. Thus, high frequency changes in the scatter signal are not appropriately
detected with the BSA using a coarse sampling. In contrast, the TPM sampling grid
is 95 × 95 sampling points for the FOV, and hence, a five- to sixfold finer sampling is
obtained with the TPM method.
The observed deviations arising from different sampling resolutions are illustrated exem-
plary in Fig. 5.20. Here, the central horizontal line profiles of the TPM (green curve)
and the BSA (red curve) scatter images for angular step no. 90 are displayed, cf. marked
line profile in Fig. 5.17 also. Red circles indicate sampling points where scatter sig-
nals are directly measured with the BSA. Additionally, the ratio of the BSA- over the
TPM-measured scatter signal is given as black curve (SBSA/STPM-ratio). Although, in
general, the scatter estimates from both methods agree well (SBSA/STPM-ratios close to
one), we notice that in regions where the scatter signal exhibits steep changes (in the
vicinity of sample edges as described in section 4.3.3), the SBSA/STPM-ratio deviates from
one. Marked by blue and red arrows in Fig. 5.20, this corresponds and illustrates the
occurrence of dark blue and dark red prominent regions close to sample edges in Fig. 5.17.
While this explains the observed behavior for regions where the BSA method does not
directly measure but interpolates the scatter signal, we still have to consider the promi-
nent dark red regions enclosing BSA sampling points in Fig. 5.17, since, here, the scatter
signal is truly measured with the BSA. Note that this mostly concerns the red regions
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Figure 5.20: Horizontal line profiles in scatter images no. 90 of TPM (green curve) and BSA
method (red curve), see also indicated line in quotient image no. 90 in Fig. 5.17.
The black curve gives the ratio of BSA-measured scatter signal SBSA divided by
TPM-calculated scatter signal STPM. Red dots indicate sampling points where
scatter signals are directly measured within BSA method. Pixel size is 200µm.
See text for further explanation.

observed in the quotient images for projection angles 90◦ and 270◦. Also, this applies to
the sampling point marked by a red arrow in Fig. 5.20. Analogous to the comparison re-
sults obtained for the BSA and BHA methods in section 4.2, here BSA-measured scatter
signals are larger than the corresponding TPM-measured signals due to additional scat-
ter from the PMMA support plate of the BSA. This characteristic behavior can also be
observed in the graph shown in Fig. 5.18(b): The solid curves indicate that TPM scatter
signals are considerably smaller than BSA scatter signals (dashed curves) at projection
angles 90◦ and 270◦ for object-covered sampling points.
In another aspect, graphs in Fig. 5.18 suggest that BSA- and TPM-measured scatter
signals are smaller for regions covered by the sample than for direct-beam regions. In
accordance with the results presented in section 4.3 demonstrating the BHA scatter
measurement in a CT scan, this is due to detector-internal scattering, cf. interpretation
given in section 4.3.3.
Furthermore, in Fig. 5.18(a), scatter signals are higher for projection angles around 180◦

than at 0◦. This is due to the sample positioned 8 cm off the axis of rotation. Hence, the
amount of object scatter detected is larger when the sample is closer to the detector at
projection angles around 180◦.

5.6 Experimental Demonstration of Scatter

Correction by Temporal Primary Modulation

As a second key result from the experimental TPM investigations, we demonstrate the
successful application of the proposed TPM scatter correction to the CT of a test phan-

102



5.6 Experimental Demonstration of Scatter Correction by TPM

tom. A comparison of TPM scatter-corrected CT slices with uncorrected, normal CT
slices of the test phantom is performed. Hereby, we prove the capability of the novel
TPM method to correct scatter-related artifacts within the reconstructed volume by ne-
cessitating only a single CT scan.

5.6.1 Experimental Investigations and Results

In addition to the CT scan where TPM is applied with a continuous sliding primary
modulator and which is described in detail in section 5.5.1, we perform a reference CT
as normal scan without scatter correction means. In the following, we refer to these two
scans as TPM (scatter-corrected) CT and normal (uncorrected) CT. The normal CT
is acquired under the same conditions and with the same parameters as the TPM CT
(see Table 5.1). In both scans, the tomographed sample is the test phantom specifically
designed for demonstration of scatter artifacts that is also described in more detail in
section 5.5.1 above.
For scatter correction of the acquired TPM CT, we use the TPM scatter images that have
already been calculated for comparison with BSA scatter data as described in section
5.5.1. A detailed description of the exact procedure of calculating TPM scatter images
is given there. In order to correct scatter in the acquired TPM projections, we perform
the following steps for each projection angle i:

1. From the two modulated TPM projections j = 1, 2, we subtract the corresponding
TPM scatter image which has been calculated before. This yields two scatter-
corrected, modulated projections.

2. For both scatter-corrected modulated projections, we correct beam-hardening ef-
fects by the approach described in section 5.3 while the first and last step are
omitted. Due to the fact that we already have subtracted the estimated scatter
contribution we can omit the first step, and we do not add scatter at the end
of the procedure (last step). This yields scatter- plus beam-hardening corrected,
modulated projections.

3. For each scatter- plus beam-hardening corrected, modulated projection, we undo
the modulation through division by the corresponding flat-field modulated pro-
jection (reference projection). This yields scatter- and beam-hardening corrected,
unmodulated projections, i.e. completely corrected projections.

4. Since Nmod = 2, we obtain two completely corrected projections for each angular
step i. In order to improve the SNR, we average over these two and obtain the
corrected CT projection i that is used for reconstruction.

In Fig. 5.21, a comparison is shown that illustrates the effect of beam-hardening correction
(BHC) in step 2, which we also call post-BHC due to its application after the TPM scatter
correction. Figure 5.21(b) shows a scatter- plus beam-hardening corrected projection j=1
(unmodulated) from the TPM scan after we have performed steps 1–3. The modulation
pattern is not visible any more. Furthermore, the corresponding line profile, which is given
as green curve in Fig. 5.21(d), indicates that the modulation has been removed. However,
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Figure 5.21: (a) Corrected CT projection i=15 (out of 1080) of aluminum test phantom where
slits are cut for scatter artifact demonstration purposes. Panel (b) displays object
regions of the scatter- plus beam-hardening corrected projection j=1 where gray-
level windowing is set to a small range in order to make potential patterns visible.
In panel (c), beam-hardening correction has been omitted. (d) Corresponding line
profiles for indicated lines in (b) and (c).

if we omit the post-BHC, the modulation pattern will not be completely removed by the
flat-field division as can be seen by the corresponding projection j=1 in Fig. 5.21(c)
where only steps 1 and 3 have been applied. Also, the corresponding line profile, which is
given as red curve in Fig. 5.21(d), clearly exhibits modulation patterns. If these were left
uncorrected in the final CT projections, this could lead to the formation of ring artifacts
in the reconstructed CT volume. We conclude that the post-BHC, performed in the
second step, is essential for correct elimination of the modulation pattern in the third
step.

For both the TPM CT and the normal CT scan, reconstructions are computed by an
FDK algorithm (cf. section 2.2.3.2). Here, a beam-hardening correction for entire CT pro-
jections based on the linearization approach is applied within the reconstruction process
(cf. section 2.3.1). Exemplary axial slices of the reconstructed CT volumes are shown
in Fig. 5.22, where panels (a)–(c) display the TPM scatter-corrected CT while panels
(d)–(f) show normal CT slices that are left uncorrected. Corresponding line profiles are
given beneath in panels (g)–(i).

For further analysis, Table 5.2 lists the contrast values of the 15 slits found in the axial
CT slices in Fig. 5.22(f) for the uncorrected CT (fourth column in Table 5.2) and in
Fig. 5.22(c) for the scatter-corrected CT (fifth column). Here, the numbering is as indi-
cated in Fig. 5.22(c). The table is sorted in ascending order of ratios of the slit widths
to the voxel size, which is 335µm.

5.6.2 Interpretation

We discuss the results obtained from the TPM scatter-corrected CT and from the normal,
uncorrected CT, as illustrated in Fig. 5.22 for comparison. For a more detailed discussion
of scatter artifacts in general, we refer to section 3.2.
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Chapter 5: Scatter Correction by Temporal Primary Modulation

Ratio slit
width to
voxel size

Slit
no.

Contrast
simulated
CT [%]

Contrast
uncorr.
CT [%]

Contrast
TPM-corr.

CT [%]

Deviation
uncorr. CT

to Sim.
[%-points]

Deviation
corr. CT
to Sim.

[%-points]
0.5 9 31 24 30 -7 -1
0.5 10 31 24 31 -7 0
1.5 5 78 43 70 -35 -8
1.5 6 77 50 64 -27 -13
1.5 11 94 60 77 -34 -17
1.5 12 94 60 80 -34 -14
2.4 3 100 64 89 -36 -11
2.4 4 100 67 90 -33 -10
3.0 7 100 64 91 -36 -9
3.0 8 100 65 91 -35 -9
3.0 13 100 70 91 -30 -9
3.0 14 100 67 91 -33 -9
6.0 1 100 71 97 -29 -3
6.0 2 100 69 97 -31 -3
12.0 15 100 79 99 -21 -1

Table 5.2: Contrast values of the 15 slits in axial CT slices, given for simulated, ideal CT
(cf. section 3.2), for the uncorrected CT and for the TPM scatter-corrected CT, see
Fig. 5.22(f) and (c), (c) also for numbering. Deviations of the uncorrected CT and
the TPM scatter-corrected CT to the simulated, ideal CT are given in the last two
columns. Voxel size is 335µm.

First of all, note a prominent visual difference in scatter-corrected and uncorrected CT
slices, i.e. the sample in the uncorrected slices appears to have bulging bright edges and a
rather dark central region which renders the appearance of the sample to a bulbous form.
This scatter artifact is called cupping artifact and it is particularly evident from corre-
sponding line profiles (red curves): here, although the sample is made from homogeneous
material, the red line profiles show a strong downside-bending (cupping). In contrast, the
scatter-corrected CT slices do neither show this artifact visually nor quantitatively in the
line profiles (black curves). Instead, the line profiles exhibit a nearly perfect rectangular
shape in this case. Also, note when considering edge sharpness, that the uncorrected CT
line profiles show a slow and smooth increase at the bottom part of the line profiles. This
will negatively affect dimensional measuring tasks if left uncorrected.

Second, the sample features different slits and holes for contrast studies. Note the im-
proved visibility of the slits and holes in the corrected CT slices due to larger contrast.
This is also illustrated by the corresponding line profiles which clearly show gain in
contrast. Quantitatively, Table 5.2 lists contrast values for the 15 slits displayed in
Fig. 5.22(c) and (f), where the numbering is as indicated in Fig. 5.22(c). For comparison,
contrast values are also given for the simulated, ideal CT of the same object which we
have used as model for demonstration of scatter artifacts in section 3.2. Furthermore,
deviations of contrast values of the uncorrected CT and of the TPM scatter-corrected CT
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5.6 Experimental Demonstration of Scatter Correction by TPM

to the simulated CT are given in the last two columns of Table 5.2. As indicated by the
simulated CT contrasts, nine slits with a ratio of slit width to voxel size of 2.4 or greater
are wide enough to exhibit full contrast (100%). For these slits, we find contrast values
of 65− 70% for the uncorrected CT, while the corresponding contrast values of the TPM
scatter-corrected CT are 90% or greater. In other words, deviations of about 30−35% in
the uncorrected CT can be reduced to 10% and less in the corrected CT. Similar results
are obtained for the transversally cut slits (Fig. 5.22(a) and (d)). Generally, a higher
contrast improves detectability of small structure details, such as cracks, flaws etc.

Third, note another typical scatter artifact, i.e. the occurrence of streaks between high-
contrast elements or along edges and corners. In the uncorrected CT slices in Fig. 5.22(d)–
(f), some of the occurring streak artifacts are marked by bright and dark arrows. On
the other hand, streaks are greatly suppressed in the scatter-corrected CT slices in
Fig. 5.22(a)–(c).

When employing a modulation device such as the primary modulator within each CT pro-
jection, concerns arise that spatial modulation patterns might remain in final projections
used for CT reconstruction. This may lead to the formation of pronounced ring arti-
facts. In section 5.6.1, we have analyzed that the flat-field division successfully removes
modulation patterns from projections used for reconstruction.
However, in the scatter-corrected CT slices shown in Fig. 5.22(a)–(c), we notice moderate
occurrence of ring artifacts. In contrast, we cannot visually recognize any ring artifacts in
the reference CT slices from the normal CT scan without scatter correction. This raises
the question of whether TPM scatter correction causes the formation of ring artifacts.
In order to investigate this issue, we perform the following comparison: A reference
CT reconstruction based on BSA scatter-corrected and unmodulated CT projections is
performed whereby TPM is completely excluded from the process. Here, BSA scatter
images are taken from the comparison measurements described in section 5.5. We note
that the reference CT without TPM also exhibits ring artifacts which are of the same
magnitude as in the TPM scatter-corrected CT slices shown in Fig. 5.22(a)–(c). Thus,
we conclude that ring artifacts do not originate from TPM. The detector calibration has
been performed within the standard experimental preparation, but it seems to cause ring
artifact formation. Advanced methods for detector calibration should be investigated in
order to reduce the formation of ring artifacts in both BSA- and TPM-corrected CTs.
Moreover, ring artifacts only become visible in the scatter-corrected CT slices, either by
TPM or by BSA, and are not visible in the uncorrected CT (Fig. 5.22(d)–(f)). This is due
to two reasons: First, the cupping artifact introduces a steep gradient in the line profile
superimposing the fluctuations from the ring artifacts. This makes them less clearly
visible. Second, projection signals are larger if scatter is not corrected, thus a detector
miscalibration is less prominent compared to the situation when scatter is corrected by
subtraction.

At this point, let us remark that we have also implemented the TPM variant where the
primary modulator is discretely stepped (section 5.4.2) and that we have performed an
analogous comparison of TPM scatter-corrected CT to normal CT as shown in Fig. 5.22.
The CT results for this variant are given in the appendix B. Concerning the correction of
scatter-related artifacts, our results indicate that TPM scatter correction with the variant
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of a discrete stepping primary modulator are almost identical as with the continuous
sliding primary modulator which has been presented here. However, an import technical
difference is given by the motor shifting times in the discrete stepping variant which
necessitate longer total scan times. Shifting times amount to 0.4 s per step. In contrast,
for the TPM CT scan with continuous sliding primary modulator and the corresponding
normal CT without scatter correction presented here, scan times were exactly the same.

Concluding this section, we have successfully demonstrated that the proposed TPM
method eliminates scatter-related artifacts in the reconstructed CT. Moreover, with the
TPM method employing a continuous sliding primary modulator, scatter correction is
possible without additional scan time and without additional dose.

5.7 Discussion

In chapter 5, we have presented a novel method for scatter correction based on temporal
primary modulation (TPM). The distinct feature of TPM scatter correction compared to
other techniques lies in the fact that it can be performed without additional scan time,
i.e. it can be integrated into the normal CT scan. This represents a major advantage
over other scatter correction methods, e.g. beam-stopper based methods that we have
discussed in chapter 4.
Moreover, based on the theoretical considerations from sections 5.1.1 and 5.1.2, we con-
clude that the TPM method – in principle – offers spatial resolution only limited by
the resolution of the detector. In experimental practice, however, a high noise level in
the scatter estimates, as derived in section 5.1.3, may necessitate spatial averaging over
pixel clusters, which lowers spatial resolution but can be arbitrarily adjusted. A different
approach for reducing noise in the scatter estimates is extending the integration time of
each modulated projection which yields an improved SNR in the measured signals.
For the experimental investigations presented in sections 5.5 and 5.6, we have essentially
downsampled the resulting TPM scatter image to a frequency equal to the primary mod-
ulator’s spatial modulation frequency. The latter is given by the primary modulator
which features 99 × 99 squares in our case. Even with strong spatial averaging in the
described situation (downsampling from 2048 × 2048 to 95 × 95 pixels), we are able to
calculate scatter images by TPM – without extra scan –that exhibit a five- to sixfold
finer resolution than two sets of combined BSA measurements.
In another aspect, the comparison of TPM- and BSA-measured scatter data presented
in section 5.5 shows good agreement between the two methods at sampling points where
the BSA truly and directly measures the scatter signal. Deviations between the TPM-
and BSA-measured scatter signals are of the order of 6% or less. This represents an
experimental verification of the proposed TPM method with a standard technique for
measuring scatter contributions which has been established for a long time.
In section 5.6, we have successfully demonstrated the application of TPM scatter cor-
rection in a CT scan of a test phantom. In comparison to uncorrected CT slices from a
normal CT scan without scatter correction, the TPM scatter-corrected CT clearly shows
elimination, or at least very good suppression of scatter-related artifacts. Here, the cup-
ping artifact is eliminated, streaks are greatly suppressed and the contrast of slits cut
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in the test phantom is enhanced. As a result, the deviations of contrast values to ideal
contrast values of a simulated CT could be lowered from about 30 − 35% to 10% or
less. As demonstrated, this is performed without extending the scan time of the normal
CT scan. The experimental demonstration of TPM scatter correction in a CT scan pre-
sented here, which comprises the implementation of two-point modulation, a continuous
sliding primary modulator as well as a beam-hardening correction for modulated regions,
constitutes a further verification of the TPM method.

As explained in the beginning, we have devised the scatter correction method based
on temporal primary modulation (TPM) when we performed experiments with a simi-
lar technique: the scatter correction by spatial primary modulation (SPM). Since both
methods are related to each other, and SPM scatter correction also offers the advantage
to measure scatter contributions within the normal CT scan, a comparison of both meth-
ods is worthwhile. Thus, the remainder of this discussion is a theoretical and contrasting
juxtaposition of SPM and TPM methods. For this purpose, first we are going to give
a concise overview of SPM. For a detailed description of SPM scatter correction, we re-
fer to the conceptual and theoretical considerations by Maltz et al. [Mal+05] and the
experimental demonstration of SPM scatter correction by Zhu et al. [ZBF06].
The key idea in SPM is that in each single CT projection the primary fluence is spatially
amplitude modulated while the scatter fluence is not. Zhu et al. insert a stationary
primary modulator with checkerboard pattern between X-ray tube and sample/patient
in order to imprint a spatially repetitive modulation pattern onto the primary fluence.
As a result, in the spatial frequency domain, primary signals are replicated as they are
convolved with the modulation function which (theoretically) is a delta function at a
frequency given by the reciprocal period of the modulation pattern. Thus, in the spatial
frequency domain, we find a broad background of unmodulated signals (primary and
scatter) superimposed by the spectral copies that only contain primary signals. This
process is illustrated in Fig. 5.23(a) showing a radiographic projection without, and in
Fig. 5.23(c) with the primary modulator in place. Figure 5.23(b) and (d) display the
corresponding spatial frequency domains where the amplitude is color-coded on a loga-
rithmic scale. If we assume that the spectral copies of the primary signals are not affected
by unmodulated signals, i.e. they do not overlap, a theoretical exact reconstruction of
primary signals is possible. Hereby, the maximum restorable primary frequency is given
by half of the modulation frequency due to cut-off filtering that is used for separation of
modulated from unmodulated signals.
To summarize this overview, note that SPM and TPM build on the same hardware in
order to manipulate the primary photon fluence, but that they have different domains of
modulation, and consequently, of demodulation: the spatial versus the temporal domain.
We are now able to compare the SPM and TPM scatter correction methods from a
theoretical point of view and to comprehend some of the inherent limitations of SPM
that are overcome by TPM.
First of all and most important, in practice, with SPM, spectral copies of the primary
signals overlap with the unmodulated spectrum in frequency space (Fig. 5.23). Arising
from high spatial frequencies present in the image, particularly from edges and high con-
trast regions of the sample, this spectral overlapping leads to an inaccurate estimation of
primary signals, as illustrated in Fig. 5.24(a). Here, an SPM-calculated primary estimate
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Figure 5.23: Conceptual illustration of spatial primary modulation. (a) In a normal CT pro-
jection, without primary modulator, total signals are composed of primary and
scatter signals, T = P +S. (b) Fourier-transform of this projection yields the 2D
log power spectrum where primary and scatter signals overlap, particularly near
the center where scatter signals are concentrated. (c) The same CT projection
as in (a), but with primary modulator placed in front of object. The spatially
repetitive pattern of the primary modulator is imprinted onto the primary flu-
ence. (d) In Fourier space, this leads to spectral copies of only primary signals
around modulation frequencies fmod and higher harmonics.
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Figure 5.24: Primary estimate calculated by (a) the method of spatial primary modulation
(SPM), and (b) by the method of temporal primary modulation (TPM). (c) Cor-
responding line profiles.

clearly exhibits ringing artifacts close to high contrast details such as sample edges, cor-
ners, etc. Ringing artifacts also spill into the object-covered projection regions, as can be
deduced from the corresponding line profile in Fig. 5.24(c) (black curve). For SPM calcu-
lation of the primary estimate, we have used a modulated projection from the TPM scan
(with discrete stepping primary modulator) and the procedure described in Ref. [ZBF06],
except the border detection routine. This routine attempts to suppress high frequencies
in the projection image by smoothing projected sample edges, etc. However, conflicts
may arise in distinguishing between sample edges and edges originating from the spatial
modulation pattern. The intrinsic issue of spectral overlapping remains unresolved in the
SPM method.
Errors in SPM primary estimation directly affect scatter estimation. While this is a
known problem with SPM and may be partly suppressed by the mentioned algorithm,
the issue of spectral overlap does not exist in the TPM method at all. Therefore, the
corresponding primary estimate calculated by TPM that is shown in Fig. 5.24(b) does
not suffer from ringing artifacts. This represents a major advantage of TPM over SPM.

Second, in SPM, the maximum frequency which can be restored in the scatter image is
given by half of the spatial frequency of the primary modulation pattern as explained
above. By contrast, for TPM, the maximum frequency is theoretically only limited by
the detector resolution. Practically, due to high noise levels in the experimental investi-
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gations described in this chapter, we employ spatial averaging and thereby decrease the
spatial resolution (downsampling). The averaging process is adaptable in terms of target
downsampling size: here, we have downsampled to a frequency given by the primary
modulator’s spatial modulation frequency. This implies that the spatial resolution of the
TPM method is greater by a factor of two (at least) than the SPM method.

Third, a stationary primary modulator as used in SPM may lead to pronounced ring
artifacts due to modulation patterns still remaining in the final projections used for CT
reconstruction. A possible reason for modulation patterns remaining in the projections
is insufficient correction of scatter fluence and of beam-hardening effects. However, a
stepping or continuous sliding modulator as it is used with TPM and the subsequent
averaging over the two modulated projections leads to a balanced spatial distribution of
modulation patterns such as bright and dark squares. Hereby, ring artifacts are greatly
suppressed in the TPM method.
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Chapter 6

Conclusion and Outlook

In this work, we have developed and studied two methods for correction of scatter-
related artifacts in X-ray cone-beam CT (CBCT): the beam-hole array (BHA) technique
and a different approach that is based on temporal primary modulation (TPM). When
developing these methods, we have focused on industrial applications.

Motivating our work, we have demonstrated the formation of scatter artifacts in CBCT
and how they impair tasks in nondestructive testing such as flaw detection and dimen-
sional measurements (chapter 3). For basic demonstration purposes, we have added a
constant scatter background to simulated, otherwise ideal CT projections. The typi-
cal appearance of scatter artifacts occurring in the reconstructed CT volume has been
discussed, comprising the cupping artifact, streaks and loss of contrast.
Furthermore, we have identified and investigated different sources of scatter contribut-
ing to the total scatter background: the irradiated sample, the lab environment, and
detector-internal effects. While scattered radiation from the sample is unavoidable, we
have proposed basic measures to reduce the scatter contribution from the lab environ-
ment. Appropriate collimation of the beam and an elevated position for acquisition above
the CT scanner base are the most fertile measures. Detector-internal scatter includes X-
ray scattering at structures within the detector as well as non X-ray spread and diffusion
mechanisms such as light spread in indirect-conversion detectors. We do not further dis-
tinguish between these two components but summarize them as detector-internal scatter
contribution. Referring to basic investigations in chapter 3, we have determined that
detector-internal scatter already amounts to 22% of the total detected signal in a fully
irradiated flat-field projection with typical parameters for industrial CT (220 kVp X-ray
spectrum).

In chapter 4, two experimental methods for scatter correction in CBCT have been pre-
sented and compared to each other: the beam-stop array (BSA) and its complementary,
above mentioned technique, the beam-hole array (BHA). While the BSA is a long estab-
lished method for scatter correction in CT, the BHA method has only been employed
in a different kind of measurement (densitometric) in the medical field so far. From a
theoretical point of view, both methods should yield the same scatter estimates.
However, in our experimental investigations comparing the two methods, a few prominent
differences between BSA and BHA scatter measurements have been revealed. The most
important difference concerns an additional scatter contribution caused by the acrylic
support plate that is only – but unavoidably – present in the BSA method. Thus, in
typical acquisition scenarios, the scatter-to-total ratio measured with the BSA is about 1−
2%-points larger than in the corresponding BHA measurement. Based on this comparison
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measurement, we conclude that the BHA represents an alternative to the BSA technique
for specific application scenarios. The BHA method particularly seems to be suited for
industrial series measurements. Here, an initially greater effort in measuring scatter
contributions with the BHA is worthwhile since scattered radiation is reduced (by not
having to insert a scattering acrylic plate) in the series measurement itself. This decreases
scatter-to-primary ratios and increases signal-to-noise ratios in the CT projections.
An example for such series measurements, which we have studied, are CTs of an industrial
part used in power generation technology that is to be inspected for inner cracks and
dimensional tolerances. Exemplary, we have applied the BHA scatter correction method
to the CT of such a specimen and successfully demonstrated elimination of scatter-related
artifacts.
When we calculated the scatter images with the BHA method, we observed an important
characteristic: high spatial frequencies are contained within the measured scatter images.
In contrast to common expectations about the scatter distribution to be mainly of low
frequency content [BS88; NTC04; ZBF06], we noticed a steep signal drop/rise in scatter
image regions close to projected sample edges. Our observations are in good agreement
with experimental results published by Peterzol et al. [PLB08]. From our former results,
we conclude that detector-internal scatter causes the high frequencies that are present in
the obtained scatter images.
Since both the BSA and BHA method belong to the class of blocker-based techniques,
a certain amount of primary signals gets blocked within the projections, and hence, an
additional scan is required in order to obtain the missing primary data. Consequentially,
additional scan time and/or additional dose are necessary with BSA/BHA methods. In
industrial applications, particularly the first represents a serious drawback of these two
methods and was the reason for us to develop a new scatter correction method.

In chapter 5, we have presented this novel scatter correction method which is based on
temporal primary modulation (TPM). With the TPM method, the scatter distribution
is measured simultaneously within the normal CT scan by temporal modulation of the
primary fluence while the total scatter fluence is assumed to be temporally constant.
Thus, a separation is possible afterwards by demodulation of the primary signals. In
addition to its time-efficiency, the TPM method – in principle – offers maximum spatial
resolution in the estimation process of the scatter distribution and only is limited by the
fixed resolution of the detector.
We have presented the basic concept and variants of experimental realization of TPM.
Furthermore, Monte-Carlo simulations and a theoretical analysis have shown that errors
in the scatter estimation will occur if scatter contributions from equi- and paraphase
modulated regions within the sample are not balanced. Hence, the more the spatial
frequencies of the projected sample resemble the spatial modulation frequency that is
imprinted on the primary fluence, the larger the systematic error in the scatter estimation
will become. In experimental practice, it is thus advisable to use a primary modulator
with a very fine spatial modulation pattern.
When comparing the proposed TPM method and the established BSA technique in an
experimental investigation with respect to the accuracy of measured scatter contribu-
tions, we observed the following: At sampling points where the BSA directly measures
scatter signals, both methods are in good agreement, i.e. deviations are 6% or less. This
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represents a verification of the novel method.
Additionally, we have successfully demonstrated the application of the proposed TPM
method for correction of scatter-related artifacts in a CT of an aluminum test phantom.
Scatter artifacts could be eliminated – or at least greatly suppressed. For example,
contrast values of specific slits cut into the test phantom have been enhanced whereby
the deviations of contrast values to ideal contrast values of a simulated CT could be
reduced from about 30 − 35% to 10% and even less. In nondestructive testing, this
improves detectability of flaws, such as tiny cracks etc.

Here, we have proven the feasibility and accuracy of the novel TPM method. In general,
this method presents the greatest potential for future developments. It offers advantages
over other scatter correction methods since, without extending scan times, it directly
measures scatter contributions within the specific experimental setup and ultimately
provides high spatial resolutions in the scatter estimation process.

Further experiments should investigate whether the TPM scatter correction method can
also be used in situations where samples consisting of multiple materials are tomographed.
In this work, we have limited our considerations and investigations to single-material
samples where we could apply a beam-hardening correction based on the linearization
approach. The latter is theoretically exact only for single materials. However, more
complex methods for beam-hardening correction including iterative schemes are available
[JS78; MMS90; Hsi+00].
A further goal could be to resolve whether the TPM method can be successfully applied
in medical applications also. A critical issue for medical applications lies in the fact that
primary signals change temporally due to patient movement. However, if it is possible
to implement TPM with the modulation of the primary fluence being on a different time
scale (i.e. faster) than the change in primary signals due to patient movement, a migration
of the TPM method to the medical field seems feasible.
Returning to the gedankenexperiment from the beginning of chapter 5, which aims at
individual pixel modulation with different modulation frequencies, advanced forms of
primary modulators should be investigated. For example, instead of a checkerboard
pattern, multiple rows with horizontal, sinusoidal attenuation patterns featuring differ-
ent spatial frequencies could be used for a line-wise varying modulation of the primary
photon fluence when the primary modulator is moved horizontally (Fig. 6.1(a)). The
combination of two of these line modulators – whereas the second is aligned vertically,
i.e. with sinusoidal columns, and is moved vertically – would even enable a pixel-wise
modulation as suggested by the gedankenexperiment (Fig. 6.1(b)). In this situation, one
could infer the origins of the detected scatter contributions and use this information for
advanced reconstructions incorporating spatially resolved scatter data.
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Figure 6.1: (a) Primary modulator with 10 rows of sinusoidal attenuation patterns, each row
featuring a different spatial frequency fi. This line modulator allows a line-wise
varying modulation. (b) Combination of two line modulators, the first aligned and
moved horizontally, the second aligned and moved vertically. The combination of
two line modulators enables a pixel-wise modulation.
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Appendix A

AM Coherent Demodulation for

TPM

In the following, we are going to prove that

P0,est. =
4

A ·Nmod

Nmod∑

j=1

T (tj) · cos(ωmod · tj) (A.1)

is a correct estimation of the primary signal P0.

As described in section 5.1, the total signal is the sum of modulated primary P (tj) and
unmodulated, i.e. constant, scatter signal S(tj) = S = const.:

T (tj) = P (tj) + S(tj) (A.2)

= P0 · fmod(tj) + S , (A.3)

where, in the last step, the undisturbed primary signal P0 is modulated by the modulation
function

fmod(tj) = 1 +
A

2
(cos(ωmod · tj)− 1) , (A.4)

with ωmod being the modulation frequency and A the modulation strength.

Given the total signal in Eq. (A.3), we can extract the modulated primary signal by
AM coherent demodulation. Therefore, we (i) multiply the total signal with the time-
dependent term of the modulation function, i.e. A

2
cos(ωmod · tj), and (ii), we apply low-

pass filtering which is realized by averaging over the Nmod modulated projections. Thereby,
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Appendix A: AM Coherent Demodulation for TPM

we obtain the demodulated primary signal Pdemod as

Pdemod =
1

Nmod

Nmod∑

j=1

T (tj) ·
A

2
cos(ωmod · tj) (A.5)

=
1

Nmod

Nmod∑

j=1

[
P0

(
1 +

A

2
(cos(ωmod · tj)− 1)

)
+ S

]
· A
2
cos(ωmod · tj) (A.6)

=
1

Nmod

Nmod∑

j=1

[
P0

A

2
cos(ωmod · tj) + P0

A2

4
cos2(ωmod · tj)− . . .

P0
A2

4
cos(ωmod · tj) + S

A

2
cos(ωmod · tj)

] (A.7)

=
1

Nmod

Nmod∑

j=1

cos(ωmod · tj)
[
P0

A

2
− P0

A2

4
+ S

A

2

]
+ . . .

1

Nmod

Nmod∑

j=1

cos2(ωmod · tj)P0
A2

4
.

(A.8)

In the last equation, the first sum vanishes due to cosine oscillations, and in the second
sum, we apply cos2(. . .) = 1

2
+ 1

2
cos(2 · . . .), hence:

Pdemod =
1

Nmod

Nmod∑

j=1

P0
A2

4

(
1

2
+

1

2
cos(2 ·ωmodtj)

)
(A.9)

=
1

Nmod

Nmod∑

j=1

P0
A2

8
+

1

Nmod

Nmod∑

j=1

P0
A2

8
cos(2 ·ωmodtj) . (A.10)

Again, the sum over the cosine term vanishes, and we obtain

Pdemod =
1

Nmod

Nmod∑

j=1

P0
A2

8
(A.11)

= P0
A2

8
. (A.12)

Thus, the result of the demodulation process is P0
A2

8
. We obtain the original, undisturbed

primary signal P0 by multiplication with the inverse of the prefactor. Thus, the primary
estimate P0,est. reads as follows:

P0,est. =

(
A2

8

)−1

·Pdemod = P0 . (A.13)

If we insert Pdemod from Eq. (A.5) here, we obtain

P0,est. =
4

A ·Nmod

Nmod∑

j=1

T (tj) · cos(ωmod · tj)
(A.13)
= P0 . (A.14)

which was to be shown.
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Appendix B

TPM Scatter Correction with

Discrete Stepped Primary Modulator

Analogously to the experimental investigations presented in section 5.6, we have also per-
formed TPM scatter correction with a discrete stepped primary modulator (cf. section
5.4.2). In contrast to the TPM scatter correction with continuous sliding primary mod-
ulator, here we obtain a modulation map that is nearly homogeneous (Fig. 5.16(a)). On
the other hand, scanning times are also extended due to motor shifting times in between
the two modulated projections.
Two scans are performed: a first scan with TPM scatter correction implemented by
discrete stepping primary modulator, and the second as a normal CT scan without scatter
correction. Scan parameters are given in Table 5.1. However, here frame times amount to
2 s per modulated projection. Hence, the total integration time for projections is 72 min.
Due to rotation of the object and synchronization with the frame grabber, the total scan
time is 104 min for the normal CT scan. In case of the TPM scan with discrete stepping
primary modulator, it is 144 min since motor shifting times (1080 · 0.4 s ≈ 7 min) are
added and cause, for technical reasons, even longer synchronization times.
In both scans, the tomographed sample is the test phantom specifically designed for
demonstration of scatter artifacts that is described in more detail in section 5.5.1. It is
positioned centrally on the rotation table, i.e. aligned with the axis of rotation.
Scatter images are calculated using the TPM method correspondingly to the procedure
described in section 5.6.1. Here, we average calculated scatter signals over pixel clusters
which correspond to the spatial modulation grid, i.e. with 94× 94 squares in the region
of interest. As discussed in section 5.4.2, the modulation map is nearly homogeneous
and we can perform averaging over a larger region than in the case of the sawtooth-like
modulation pattern (Fig. 5.16(b)) used in the TPM variant of the continuous sliding
primary modulator. Hereby, noise is reduced in the scatter estimate.

Figure B.1 shows a comparison of TPM scatter-corrected CT slices (top row) to the
corresponding slices from the uncorrected, normal CT (middle row). Line profiles as
indicated in the CT slices are given in the bottom row. Note the different scatter artifacts
discussed in section 3.2 within the uncorrected CT slices: streaks are marked by black and
white arrows, and the cupping artifact as well as loss of contrast for slits and the central
hole can be inferred from the corresponding line profiles. These artifacts are greatly
suppressed in case of the TPM scatter-corrected CT (Fig. B.1(a)-(c)). The performance of
the TPM scatter correction in respect to eliminating scatter artifacts is highly comparable
to the results we obtain for the TPM variant with continuous sliding primary modulator,

119



Appendix B: TPM Scatter Correction with Discrete Stepped Primary Modulator

F
ig

u
r
e

B
.1

:
(a)–(c)

T
P

M
scatter-corrected

ax
ial

C
T

slices
(T

P
M

varian
t

em
p
loy

in
g

a
d
iscrete

step
p
ed

p
rim

ary
m

o
d
u
lator).

(d
)–(f)

sh
ow

th
e

corresp
on

d
in

g
C

T
slices

from
a

n
orm

al
C

T
w

ith
ou

t
scatter

correction
.

(g)–(i)
C

orresp
on

d
in

g
lin

e
p
rofi

les.
V

ox
el

size
is

335
µ
m

.
F
or

d
etails

see
tex

t.

120



cf. Fig. 5.22. Thus, for a more detailed discussion and interpretation of the experimental
results, refer to section 5.6.2.
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