
De
ompounding:an estimation problem for Poisson random sumsBoris Bu
hmann and Rudolf Gr�ubelTe
hnis
he Universit�at M�un
hen and Universit�at HannoverGiven a sample from a 
ompound Poisson distribution, we 
onsider estimation ofthe 
orresponding rate parameter and base distribution. This has appli
ationsin insuran
e mathemati
s and queueing theory. We propose a plug-in typeestimator that is based on a suitable inversion of the 
ompounding operation.Asymptoti
 results for this estimator are obtained via a lo
al analysis of thede
ompounding fun
tional.Short title: Poisson random sumsKeywords and phrases . Risk theory, queues with bulk arrival, 
ompound distribu-tions, plug-in prin
iple, asymptoti
 normality, delta method.1. Introdu
tion. The statisti
al problem to be dis
ussed in this paper is mo-tivated by appli
ations from insuran
e mathemati
s and queueing theory. In thestandard model of risk theory, see e.g. Beard, Pentik�ainen and Personen (1984)or Grandell (1991), 
laims of random size X1; X2; X3; : : : arrive at random timesT1; T1+T2; T1+T2+T3; : : :. The random variablesX1; X2; X3; : : : ; T1; T2; T3; : : : areassumed to be independent, the Xk, k 2 N , have distribution P and the interarrivaltimes Tk, k 2 N , are exponentially distributed with parameter �. In parti
ular,the 
laim arrival times are given by the points of a Poisson pro
ess with 
onstantintensity �. For all t � 0, St := Xk: T1+:::+Tk�tXk (1)is the total 
laim amount up to and in
luding time t. Similarly, in a queueing
ontext as dis
ussed e.g. in Asmussen (1987), if 
ustomers arrive at a servi
e pointin bulks of size X1; X2; : : : at the time points of a Poisson pro
ess then (1) givesthe total number of 
ustomers that arrive in the time interval (0; t℄.The assumptions imply that the distribution Q of S1 
an be written as a 
onvo-lution series, Q = 	(�; P ) with 	(�; P ) := e�� 1Xk=0 �kk! P ?k; (2)Q is the 
ompound Poisson distribution with rate � and base (or 
laim size or bulksize) distribution P . (Unfortunately, Poisson distributions with a random param-eter, i.e. mixed Poisson distributions, are often 
alled 
ompound in the literature.)1



Assume now that we observe the pro
ess S = (St)t�0 at equally spa
ed timepoints h; 2h, 3h; : : : ; nh. After res
aling if ne
essary we may take h to be equalto 1. Then the in
rementsYk := Sk � Sk�1; k = 1; : : : ; n;of the pro
ess are independent and have distribution Q. Is it possible to `re
over'P (and �) from su
h a sample of Q-observations? This only makes sense if P (Xi =0) = 0 as otherwise the fun
tion (�; P ) 7! Q is not one-to-one and an identi�abilityproblem arises, so we will assume this throughout the paper.The `dire
t' problem, from P to Q, has been 
onsidered by Pitts (1994a), whoused the plug-in estimator derived from (2),Qn := 	(�; Pn) = e�� 1Xk=0 �kk! P ?kn ; (3)where Pn denotes the empiri
al distribution fun
tion asso
iated with a sample ofsize n from P . The rate � was assumed to be known. Regarding P 7! Q = 	(�; P )as a nonlinear operator (fun
tional) on a suitable fun
tion spa
e one 
an thenuse the lo
al analyti
 properties of the fun
tional, su
h as 
ontinuity and di�er-entiability, to dedu
e statisti
al properties of Qn, su
h as 
onsisten
y, asymptoti
normality and asymptoti
 validity of bootstrap 
on�den
e regions, from the 
orre-sponding properties of Pn. A similar approa
h was used in Gr�ubel and Pitts (1993)and Politis and Pitts (2000) for nonparametri
 estimation in renewal theory, inPitts (1994b) for G/G/1 queues and in Gr�ubel and Pitts (2000) for nonparametri
estimation of perpetuities.In the 
ontext of the `inverse' problem, from Q to P , su
h a plug-in approa
hseems not to be feasible, at least on �rst sight. Compounding transforms a probabil-ity distribution into a probability distribution. Compounding 
an therefore easilybe applied to empiri
al distributions whereas in the other dire
tion, `de
ompound-ing' so to speak, we do not have an analogue of (2) in this stri
t sense. Indeed, asa rule empiri
al distributions are not in the range of the 
ompounding fun
tionalP 7! Q. Nevertheless, reasonable (in the sense of being algorithmi
ally feasibleand a

essible to asymptoti
 analysis) plug-in estimators 
an be 
onstru
ted ifwe are prepared to make some sa
ri�
es. In the dis
rete situation, by whi
h wemean that P (N ) = 1, we 
an pro
eed in a relatively straightforward manner as 	turns out to be lo
ally invertible if its domain is extended to general summablesequen
es. The dis
rete 
ase is of 
ourse the one that is of primary interest inqueueing appli
ations. In the general 
ase, whi
h is the natural frame for appli-
ations in risk theory, we fa
e the diÆ
ulty that, roughly speaking, the statisti
aland the algebrai
-topologi
al aspe
ts of the problem do not mat
h as well as in thedis
rete 
ase where the estimates on the Q-side 
onverge in total variation norm,a norm that relates well to 
onvolution. In the general 
ase the empiri
al distri-bution asso
iated with the Q-sample will only 
onverge in a weaker norm, su
has the supremum distan
e of the respe
tive distribution fun
tions, and the 
orre-sponding asymptoti
 normality result will lead to a limit pro
ess whose paths areno longer of bounded variation. The 
on
ession we make in this situation 
onsistsin swit
hing to a relatively weak norm; however, we still have uniform 
onvergen
eover bounded intervals for our general plug-in estimator.2



The paper is organized as follows. Se
tion 2 
ontains the main results, �rst forthe dis
rete 
ase and then for the general 
ase. Our results are stronger for thedis
rete 
ase. We restri
t ourselves to asymptoti
 normality whi
h, as indi
atedabove, follows from a di�erentiability property of a suitably 
hosen inverse map.We do not dis
uss 
onsisten
y as it is similarly related to the weaker property of
ontinuity. The asymptoti
 normality results 
an be used in the dis
rete 
ase toobtain asymptoti
ally 
orre
t 
on�den
e intervals for individual 
laim size proba-bilities by studentization, but in order to obtain 
on�den
e regions for the wholeprobability mass fun
tion or distribution fun
tion we would need the quantiles ofthe distribution of some fun
tional of an in�nite-dimensional Gaussian pro
ess.Bootstrap 
on�den
e regions are the pra
ti
al alternative and the di�erentiabilityproperties that we establish in the 
ourse of our proofs of asymptoti
 normality 
analso be exploited to prove the asymptoti
 validity of bootstrap 
on�den
e regions.The details of this argument have been 
arried out in Gr�ubel and Pitts (1993, 2000)and will not be repeated here.Se
tion 3 dis
usses algorithmi
 aspe
ts and gives some illustrative numeri
alexamples. Proofs are 
olle
ted in Se
tions 4 and 5. The last se
tion 
ontainssome remarks on possible extensions and other aspe
ts of our results. A di�erentapproa
h to de
ompounding, based on likelihood ideas, will be treated in a separatepaper.2. Main results. We �rst 
onsider the dis
rete 
ase, with P and Q relatedby (2) and P (N ) = 1, whi
h obviously implies Q(N 0) = 1. Let p = (pi)i2N0 andq = (qi)i2N0 with pi := P (fig), qi := Q(fig) be the respe
tive probability massfun
tions. The 
ompound mass fun
tion 
an be obtained re
ursively from the rateand the mass fun
tion of the base distribution byq0 = e��; qi = �i iXj=1 j pj qi�j for all i 2 N : (4)Formulas of this type arise quite generally in the 
ontext of dis
rete in�nite divisi-bility, see e.g. Johnson, Kotz and Kemp (1992), p.352. In insuran
e mathemati
s,(4) is known as Panjer re
ursion. The re
ursion 
an easily be inverted to give� = � log q0; pi = � qiq0 log q0 � 1iq0 i�1Xj=1 j pj qi�j for all i 2 N : (5)Now assume that Y1; : : : ; Yn are independent with 
ommon distribution Q. Theasso
iated empiri
al probability mass fun
tion qn = (qn;i)i2N0 is given byqn;i := 1n #�1 � m � n : Ym = i	 :We risk an ambiguity in order to keep the notation 
ompa
t: q with a single indexi or j refers to the 
omponents of q, q with index n to the empiri
al probabilitymass fun
tion. As in the step from (2) to (3) we de�ne the plug-in estimators �nand pn = (pn;i)i2N0 for � and p by �n = � log qn;0,pn;i = � qn;iqn;0 log qn;0 � 1iqn;0 i�1Xj=1 j pn;j qn;i�j for all i 2 N3



and pn;0 = 0. Degenerate 
ases su
h as qn;0 = 0 need separate 
onsideration. Wehandle this together with a similar aspe
t relating to pn: We are interested in sta-tisti
al properties su
h as 
onsisten
y and asymptoti
 normality, whi
h both referto a topology on some spa
e for the estimates. Weak 
onvergen
e for distributionson N 0 is equivalent to 
onvergen
e in total variation norm by S
he��e's theorem,whi
h leads us to 
onsider the spa
e`1 := na 2 RN0 : 1Xi=0 jaij <1oof absolutely summable sequen
es of real numbers together with the normkak1 := 1Xi=0 jaij :We write Æk = (Æki)i2N0 for the element of `1 that has Ækk = 1 and all otherentries equal to 0. Obviously, qn is a random element of `1 but a priori there isno guarantee that Panjer inversion stays inside this spa
e, i.e. we might well havepn =2 `1. In Se
tion 4 we will show thatlimn!1P �qn;0 = 0 or pn =2 `1� = 0:Hen
e, if we simply put �n = 1 and pn = Æ1 if qn;0 = 0 or pn =2 `1 then we 
an regardour estimates as elements of the spa
e R� `1. In our �rst result, weak 
onvergen
erefers to the produ
t topology on this spa
e that is generated by eu
lidean distan
eon the �rst and by k � k1 on the se
ond fa
tor. The 
ondition on p is dis
ussed inSe
tion 4 below.Theorem 1 Assume that P1i=1 p1=2i <1 and let (ri)i2N0 be de�ned re
ursivelyby r0 := 1q0 ; ri := � 1q0 iXj=1 qjri�j for all i 2 N : (6)Then �pn(�n � �);pn(pn � p)� 
onverges in distribution to a 
entred Gaussianrandom element ��; (Zi)i2N0� of R � `1 as n ! 1 with Z0 � 0 and 
ovarian
estru
ture E�2 = r0 � 1;E�Zi = 1��pi � ri � pir0) for all i 2 N ;EZiZj = 1�2�pirj + pjri + pipjr0 � pipj + iXl=0 rlrl+j�iqi�l�for all i; j 2 N with j � i � 1: (7)
4



We now turn to the general 
ase. For simpli
ity we assume that � is known. As inthe dis
rete 
ase we have P and Q related by (2) and Y1; : : : ; Yn independent withdistribution Q. Let F and G be the distribution fun
tions of P and Q respe
tively;Gn with Gn(x) := 1n nXm=1 1[0;x℄(Ym) for all x � 0is the empiri
al distribution fun
tion asso
iated with Y1; : : : ; Yn. (Here and in thefollowing 1A denotes the indi
ator fun
tion of the set A.) These fun
tions areelements of the spa
e D = D([0;1)) of fun
tions h : [0;1) ! R that are right-
ontinuous and have left-sided limits, we also require that limx!1 f(x) exists forelements of this spa
e. For any su
h fun
tion h we write hÆ for the fun
tionx 7! h(x)�h(0). If h is the distribution fun
tion of some probability measure thenthe transition from h to hÆ 
orresponds to the removal of the atom at zero of thismeasure. For example, GÆn(x) is the fra
tion of stri
tly positive Y -values that areless than or equal to x. We now de�ne an estimator Fn for F byFn(x) := 1Xk=1 (�1)k+1e�k�k �GÆn)?k(x) for all x � 0: (8)Of 
ourse, `?' 
ontinues to denote 
onvolution whi
h, however, is now de�ned onlyon a subset of D�D (details are given in Se
tion 5). Note that the absolute valuesof the 
oeÆ
ients in this series in
rease at an exponential rate, so it is not 
lear apriori that this de�nition makes sense|indeed, this will be part of our next result.It follows from Lemma 7 below and from the arguments given at the beginning ofSe
tion 4 that this new estimator is `ba
kwards 
ompatible' to the earlier estimatorfor the dis
rete 
ase.We need one more de�nition. For any � 2 R let D(�) be the spa
e of all fun
tionsf with the property that x 7! e��xf(x) is an element of D. On D we 
onsider thesupremum norm kfk1 := supx�0 ��f(x)�� for all f 2 D;whi
h makes D a Bana
h spa
e. Similarly, when equipped withkfk1;� := supx�0 e��x��f(x)�� for all f 2 D(�);D(�) be
omes a Bana
h spa
e. In our se
ond main result weak 
onvergen
e refersto these spa
es, where the �-�eld is the one generated by the open balls in therespe
tive norm.Theorem 2 Let � > 0 be su
h that R e��x F (dx) < (log 2)=�. Then pn(Fn�F )
onverges in distribution as n ! 1 with respe
t to �D(�); k � k1;�� to a 
entredGaussian pro
ess Z with 
ovarian
e stru
tureEZsZt = Z Z GÆ�(s� u) ^ (t� v)�H(du)H(dv) � e�2�HÆ(s)HÆ(t)for all s; t � 0, with H given byH(x) := 1� 1Xk=1(�1)k+1e�k (GÆ)?(k�1)(x):5



3. Algorithmi
 aspe
ts and numeri
al examples. The (in-)famous vonBortkewits
h data (see e.g. Quine and Seneta (1987)) give the number of deaths
aused by horse ki
ks in the Prussian army, for various 
orps and years. The values0 to 4 were observed 109, 65, 22, 3 and 1 time(s) respe
tively. The interpretationof a possibly 
ompound rather than simple Poisson distribution as horses killingmore than one soldier in one go is somewhat far fet
hed, but it seems interestingto see our pro
edures at work with a real data set.Plugging the q-values into the inverse Panjer re
ursion we obtain the estimates�n = 0:6069; pn;1 = 0:9825; pn;2 = 0:0396; pn;3 = �0:0365; pn;4 = 0:0207;all rounded to four de
imal pla
es. Note the o

urren
e of a negative value. The-orem 1 
an be used to obtain asymptoti
ally 
orre
t 
on�den
e intervals for theindividual estimators, using plug-in estimates (again) for the unknown asymptoti

ovarian
es. Estimates for r 
an be obtained from the q-estimates via (6), and (7)leads to the estimate � Z1 Z2 Z3 Z4� 0:8349Z1 0:4531 1:0926Z2 �0:5193 �1:5048 2:2433Z3 0:0468 0:4860 �0:9019 0:5674Z4 0:0456 �0:0591 0:1467 �0:1707 0:1171for the asymptoti
 
ovarian
e matrix. With n = 200 we obtain the values 0:0739,0:1060, 0:0533 and 0:0242 for the standard errors of the individual estimates, againrounded to four de
imal pla
es. The estimates for the mass fun
tion p are thereforeall within one standard deviation of p = Æ1, whi
h 
orresponds to an ordinaryPoisson distribution. Hen
e, on the basis of these 
al
ulations there is no reasonto assume that horses run amok.We now 
onsider a non-dis
rete example with simulated data. The right-handplot in Figure 1 displays the estimates obtained for two samples of size 1000 froma 
ompound Poisson distribution with rate 2, the left-hand plot shows the empiri-
al distribution fun
tions for the 
ompound data. The 
laim size distribution is amixture of the exponential distribution with parameter 1 and the distribution 
on-
entrated at the single value 1, with mixing 
oeÆ
ients 2/3 and 1/3 respe
tively;the 
orresponding distribution fun
tion is displayed as a dotted line. To obtain theestimates numeri
ally we dis
retized the data and then applied the inverse Panjerre
ursion given in (5). The arguments given in Se
tion 5 for the di�erentiabil-ity of the de
ompounding fun
tional 
an easily be adapted to obtain a version of
ontinuity that justi�es this approximation, hen
e the 
hoi
e of the dis
retizationparameter is not a major issue here. We mention in passing that using Panjerre
ursion instead of transform methods avoids problems that may arise with thelatter if the Fourier transform of the q-sequen
e winds about 0; see Embre
hts,Gr�ubel and Pitts (1993), Gr�ubel and Hermesmeier (1999) and the referen
es giventhere for FFT based 
al
ulation of 
ompound distributions and Bu
hmann (2001)for the homotopy problem. Using re
ursion rather than transform methods alsomakes it possible to 
al
ulate a �nite initial segment of the distribution fun
tionsof interest. 6
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Figure 1: Two estimates for the total and theindividual 
laim size distribution (n = 1000, � = 2)While the two 
ompound empiri
al distribution fun
tions are relatively 
lose to ea
hother, this is not the 
ase for the two estimates of the base distribution fun
tion.Figure 2 shows that in
reasing the sample size improves the estimate, but thatin
reasing the rate leads to a deterioration.
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Figure 2: Estimates for the individual 
laim size distribution(left: n = 10000, � = 2, right: n = 10000, � = 5)We noti
e that the estimates for the base distribution are not distribution fun
tionsas they are, as a rule, not in
reasing; see Se
tion 6.3 for possible modi�
ations. Theestimates 
apture the jump at 1. Also, the pre
ision seems to de
rease for in
reasingx-values, in a

ordan
e with our results.7



4. Proof of Theorem 1. In the dis
rete 
ase the basi
 
onvolution inequalityka ? bk1 � kak1 kbk1 for all a; b 2 `1
an be used to transfer the familiar power series 
al
ulus to `1. In parti
ular,exp(a) := 1Xk=0 1k! a?kis well-de�ned on the whole of `1 and writingâ(z) := 1Xi=0 aizi; �1 < z < 1;for the generating fun
tion asso
iated with a = (ai)i2N0 2 `1 we haveb̂(z) = exp�â(z)� for b := exp(a)(it should always be 
lear from the 
ontext whi
h spa
e the exponential fun
tionrefers to). This implies ddz b̂(z) = � ddz â(z)� b̂(z);whi
h upon 
omparing 
oeÆ
ients leads tob0 = exp(a0); ibi = iXj=1 jajbi�j for all i 2 N :This shows that Panjer re
ursion 
an be regarded as an algorithm that implementsthe exponential fun
tion on `1 (in fa
t, on even larger spa
es).We require two more properties of the exponential fun
tion on `1, both are easilyveri�ed with the help of generating fun
tions. First,exp(a+ b) = exp(a) ? exp(b) for all a; b 2 `1;se
ond, using the fa
t that we deal with real ve
tor spa
es throughout,exp(a) = exp(b) ) a = b for all a; b 2 `1:As a �rst appli
ation of these rules we obtain that q = exp��(p � Æ0)� has a
onvolution inverse given by q?(�1) = exp���(p� Æ0)�. Comparing 
oeÆ
ients inq?(�1) ? q = Æ0 shows that q?(�1) = r with r as in the statement of Theorem 1; inparti
ular, r 2 `1. Let �; p; q and �n; pn; qn be as in Se
tion 2.8



Lemma 3 If kqn � qk1 < krk�11 then(�n � �)Æ0 + �p� �npn = 1Xk=1 1k �r ? (q � qn)�?k:Proof: The series an := 1Xk=1 1k �r ? (q � qn)�?k
onverges in `1 be
ause of

r ? (q � qn)

1 � krk1 kqn � qk1 < 1 :We know that � log(1� z) = 1Xk=1 1k zk; �1 < z < 1;whi
h results in exp��ân(z)� = r̂(z) q̂n(z):This means that we have found an element bn := �(p�Æ0)�an of `1 su
h that qn =exp(bn). As explained above, the 
omponents of qn 
an be obtained re
ursively fromthose of bn. Inverting the re
ursion, using the fa
t that the exponential fun
tion isone-to-one on `1 and using the de�nition of �n and pn in Se
tion 2 we �nally seethat an = �(p� Æ0) � �n(pn � Æ0)whi
h implies the statement of the lemma. �Our next auxiliary result 
an be regarded as a di�erentiability property of afun
tion 
losely related to dis
rete de
ompounding. Convergen
e refers to k � k1.Proposition 4 If pn(qn � q)! a as n!1 for some a 2 `1 thenpn(�� �n)Æ0 + pn(�npn � �p) ! r ? a:Proof: As the 
ondition implies qn ! q we may assume be
ause of Lemma 3that (�n � �)Æ0 + �p� �npn = 1Xk=1 1k �r ? (q � qn)�?k:This in turn impliespn(�� �n)Æ0 +pn(�npn � �p) = r ? �pn(qn � q)� + bnwith bn := �pn 1Xk=2 1k �r ? (q � qn)�?k:As 
onvolution is 
ontinuous we obtain the limit r ? a for the �rst term in thede
omposition, hen
e it remains to show that bn tends to 0 in `1. This however isobvious fromkbnk � 

pn(q � qn)

1 krk1 1Xk=1 1k + 1�krk1 kq � qnk1�kand kqn � qk1 ! 0. �9



On �rst sight it seems that this proposition is of little use as we do not havepointwise 
onvergen
e of the random quantities pn(qn � q), where qn denotes theempiri
al mass fun
tion asso
iated with a sample of size n from q. What we dohave is the following 
onsequen
e of the Borisov-Durst theorem, see e.g. Dudley(1999), Theorem 7.3.1.Proposition 5 If P1i=0 q1=2i <1 then pn(qn� q) 
onverges in distribution toa 
entred Gaussian pro
ess V = (Vi)i2N0 with 
ovarian
e
ov(Vi; Vj) = Æijqi � qiqj for all i; j 2 N 0:Further, if pn(qn � q) 
onverges in distribution then P1i=0 q1=2i <1.To see that P1i=0 q1=2i <1 follows from the 
ondition P1i=1 p1=2i <1 in Theo-rem 1 we note that the fun
tion �,�(a) := 1Xi=0 jaij1=2;has the properties�(a+ b) � �(a) + �(b); �(�a) � j�j1=2�(a); �(a ? b) � �(a)�(b):Using these and monotone 
onvergen
e we obtain1Xi=0 q1=2i � 1Xk=0�e���kk! �1=2 � 1Xi=1 p1=2i �k;whi
h gives the desired impli
ation. In fa
t, the two 
onditions are equivalent,the other dire
tion being immediate from qi � �e��pi, hen
e P1i=1 p1=2i < 1 is ane
essary 
ondition in Theorem 1.The Skorohod representation theorem provides the 
onne
tion between the dis-tributional result in Proposition 5 and the pointwise statement in Proposition 4:We 
an 
onstru
t a probability spa
e (
0;A0; P 0) 
arrying random sequen
es V 0,q0n, n 2 N , su
h that L(V 0) = L(V ), L(q0n) = L(qn) for all n 2 N , andlimn!1pn�q0n � q�(!0) = V 0(!0) for all !0 2 
0(we write L(X) for the distribution of the random quantity X). Within this 
on-stru
tion we 
an use Proposition 4 to obtainpn�(�� �0n)Æ0 + (�0np0n � �p)�(!0) ! r ? V 0(!0) for all !0 2 
0;where (�0n; p0n) depends on q0n exa
tly as (�n; pn) depends on qn, that is, via (5).Swit
hing ba
k to the original quantities and using the distributional equalitiesbuilt into the 
onstru
tion we obtainpn(�� �n)Æ0 + pn(�npn � �p) ! W in distribution;10



with W := r ? V , V as in Proposition 5. (This is one of the standard methodsfor proving weak 
onvergen
e, known as the in�nite-dimensional delta method; seeGr�ubel and Pitts (1993,2000), Pitts (1994a,b), Politis and Pitts (2000) and thereferen
es given in these papers for a similar treatment of estimation problems inother areas.) The distributional 
onvergen
e implies �n ! � in probability. Usingthis and pn(pni � pi) = 1�n �pn(�npni � �pi) + pipn(�� �n)�together with some standard rules for weak 
onvergen
e we obtain�pn(�n � �);pn(pni � pi)� ! (�; Z) in distribution;with � := �W0, Z0 � 0 andZi := 1��Wi + piW0� for all i 2 N :The steps transforming V into Z are bounded linear operators on `1, hen
e Z is a
entred Gaussian pro
ess. It remains to 
al
ulate the 
ovarian
e stru
ture. We dothis for the intermediate pro
ess W ; the formulas for � and Z then follow easilyfrom the above de�nitions of these quantities in terms of W .Using r ? q = Æ0 we obtainEW 20 = E(r0V0)2 = r20EV 20 = r20q0 � r20q20 = r0 � 1;and similarly, for i � 1,EW0Wi = Er0V0 iXj=0 rjVi�j= r0 iXj=0 rj(q0Æ0;i�j � q0qi�j)= r0riq0 � r0q0(r ? q)i = ri:The same arguments lead toEWiWj = iXl=0 rlrl+j�iqi�l for j � i � 1:5. Proof of Theorem 2. We put D(1) := S�>0D(�). Let Dm(1) � D(1)be the subset of those fun
tions that have �nite variation on all intervals [0; x℄,x > 0. We will use 
apital letters F;G;H for elements of Dm(1). Equivalently,Dm(1) 
an be 
onsidered as the spa
e of signed measures � (hen
e the index `m')with the bound j�j�[0; x℄� = O�e�x� as x!111



for some � = �(�) < 1 on the in
rease of the total variation, the 
onne
tionbeing provided by H(x) = �([0; x℄). These measures in turn 
an be 
hara
terizedby the 
ondition that the measure �� with �-density x 7! e��x is a �nite signedmeasure on the Borel subsets of the non-negative halfline for some � < 1. (Ourarguments here and below use exponential tilting in a somewhat impli
it manner.)The measure asso
iated with a fun
tion H 2 Dm(1) is non-negative if and only ifH is (weakly) in
reasing, let D+m(1) denote the 
orresponding subset of Dm(1).We write Dm, Dm(�) and D+m, D+m(�) for the interse
tion of D, D(�) with Dm(1)and D+m(1) respe
tively.Elements of Dm(1) are 
hara
terized by their Lapla
e transform,~H(�) = Z e��xH(dx) for all � > �(�):If H 2 D(�) then the integral is �nite for all � > � . Convergen
e with respe
tto k � k1;� of a sequen
e (Hn)n2N in D+m(�) to some H 2 D+m(�) implies vague
onvergen
e of the 
orresponding tilted measures, whi
h in turn implies ~Hn(�) !~H(�) as n ! 1 for � > � . An alternative and more dire
t argument for thisfa
t 
an be based on ~H(�) = � R10 e��yH(y) dy, � > 0, whi
h follows from anintegration by parts.Lower 
ase letters f; g; h denote generi
 elements of D(1) that might have in�-nite total variation on �nite intervals. For the 
onvolution produ
t to be de�nedwe need some variation 
ondition for at least one of the fa
tors; this is dis
ussedin some detail in Gr�ubel and Pitts (1993). The situation here is simpler as we dealwith the `one-sided' 
ase only, i.e. all measures are 
on
entrated on [0;1), so we
an simply write g ? H(x) = Z g(x� y)H(dy) for all x � 0;whi
h should be self-explanatory in view of the notational 
onventions introdu
edabove. Two useful properties of 
onvolution are 
olle
ted in the following lemma.Lemma 6 (a) If H;Hn 2 D+m are su
h that limn!1 kHn �Hk1 = 0, thenlimn!1 kg ? (Hn �H)k1 = 0 for all g 2 D:(b) If H 2 D+m(1) then kg ? Hk1;� � kgk1;� ~H(�) for all � > 0.Proof: (a) The statement is easily 
he
ked for g = 1[0;a), 0 < a � 1, andthen immediately generalizes to fun
tions g0 that 
an be written as �nite linear
ombinations of su
h indi
ator fun
tions. It is not diÆ
ult to show that the latter
lass is dense in D (see also Billingsley (1968), p.110), hen
e the assertion followsfromkg ? (Hn �H)k1 � kg0 ? (Hn �H)k1 + kg � g0k1�Hn(1) +H(1)�;together with a standard �-Æ-argument. 12



(b) kg ? Hk1;� = supx�0 e��x���Z[0;x℄ g(x� y)H(dy)���� supx�0 Z[0;x℄��e��(x�y)g(x� y)�� e��yH(dy)� kgk1;� Z e��yH(dy): �The following auxiliary result takes over the role of Lemma 3 in the dis
rete 
ase.Note that we again use the fa
t that our transforms are real-valued.Lemma 7 If G is a distribution fun
tion with fGÆ(�) < e�� then the series�(G) := 1Xk=1 (�1)k+1e�k�k (GÆ)?k
onverges in D(�). Further, �(G) = F if G = 	(�; F ).Proof: Using Lemma 6 (b) together with the obvious inequalitykfk1;� � kfk1 for all f 2 Dwe obtain kH?kk1;� � ~H(�)k�1 for all k 2 N ;if H is the distribution fun
tion for some (sub-)probability. This implies the 
on-vergen
e of the series.The series 
an obviously be written as the di�eren
e of two in
reasing fun
tionsand is therefore an element of Dm(1). The asso
iated Lapla
e transform isg�(G)(�) = 1Xk=1 (�1)k+1e�k�k fGÆ(�)k = 1� log�1 + e�fGÆ(�)�; � > �;hen
e the �nal statement of the lemma follows on usingexp�� ~F (�) � �� = ~G(�); fGÆ(�) = ~G(�) � e�� for all � > 0;and the identi�ability of elements of Dm(1) by their Lapla
e transforms. �For all H 2 D+m(1) we have fHÆ(�) ! 0 as � ! 1 by dominated 
onvergen
e,hen
e the 
ondition on G in Lemma 7 and the following proposition, whi
h servesas the analogue of Proposition 4 in the dis
rete 
ase, is satis�ed if � is 
hosen largeenough. 13



Proposition 8 Let G, Gn (n 2 N ) be elements of D+m with G(0) = 0 andGn(0) = 0 for all n 2 N . Ifpn(Gn �G) ! h as n!1with respe
t to k � k1 for some h 2 D and if � is su
h that ~G(�) < e�� thenpn��(Gn)� �(G)� ! h ? H as n!1with respe
t to k � k1;� , with H := 1� P1k=1(�1)k+1e�kG?(k�1).Proof: We haveG?kn �G?k = (Gn �G) ? Hn;k with Hn;k := k�1Xj=0G?jn ? G?(k�1�j);whi
h leads to the basi
 de
ompositionpn��(Gn)� �(G)� � h ? H = A(N;n) +B(N;n) + C(N;n) �D(N)with A(N;n) := 1� 1Xk=N+1 (�1)k+1e�kk pn(Gn �G) ? Hn;k;B(N;n) := 1� NXk=1 (�1)k+1e�kk �pn(Gn �G)� h� ? Hn;k;C(N;n) := 1� NXk=2 (�1)k+1e�kk �h ? Hn;k � kh ? G?(k�1)�;D(N) := 1� 1Xk=N+1(�1)k+1e�k h ? G?(k�1);valid for all n;N 2 N (be
ause of Hn;1 = G?0 = 1[0;1) it is enough to start withk = 2 in the third term). For a given � > 0 we need an n0 2 N su
h that for alln � n0 the sum of the norm of the four terms is less than �, where we may 
hoosean appropriate N .Using Lemma 6 (b) as in the proof of Lemma 7 we obtainkA(N;n)k1;� � 1� kpn(Gn �G)k1 1Xk=N+1 e�kk ~Hn;k(�) :Let � < 1 be su
h that ~G(�) < �e��. Sin
e ~Gn(�) ! ~G(�) as n !1 we 
an �ndan n1 <1 su
h that ~Gn(�) � �e�� for all n � n1. But then~Hn;k(�) = k�1Xj=0 ~Gn(�)j ~G(�)k�1�j � k�k�1 e��(k�1)14



so that limN!1 supn�n1 1Xk=N+1 k�1e�k ~Hn;k(�) = 0:Convergen
e of pn(Gn�G) implies that the sequen
e is bounded, hen
e we obtainlimN!1 supn�n1 kA(N;n)k1;� = 0:The same arguments work with the fourth term, resulting inlimN!1 kD(N)k1;� = 0:The number of terms in B(N;n) and C(N;n) is �nite for any given N , hen
e itis enough to show that these 
onverge to 0 individually as n ! 1. For thosein B(N;n) this follows from the assumptions of the theorem, the boundedness of~Hn;k(�), n 2 N , and Lemma 6 (b). In order to deal with the terms in C(N;n) we�rst note that, for k � 2,Hn;k � kG?(k�1) = k�1Xj=0�G?jn ? G?(k�1�j) �G?(k�1)�= k�1Xj=1�G?jn ? G?(k�1�j) �G?(k�1)�= k�1Xj=1�G?jn �G?j� ? G?(k�1�j)= (Gn �G) ? k�1Xj=1Hn;j ? G?(k�1�j) :Together with Lemma 6 (b) this yieldskh ? (Hn;k � kG?(k�1))k1;� � kh ? (Gn �G)k1 k�1Xj=1 ~Hn;j(�) ~G(�)k�1�j� kh ? (Gn �G)k1 k(k � 1)2 �k�2 e��(k�2)with � and n as in the bounds for A(N;n). Lemma 6 (a) yields kh?(Gn�G)k1 ! 0as n!1. Hen
e we havelimn!1 kB(N;n)k1;� = limn!1 kC(N;n)k1;� = 0for any �xed �nite N 2 N .A routine argument now 
ompletes the proof: Given � > 0, we 
an �nd integersn1 and N su
h that kA(N;n)k1;� + kD(N)k1;� < �=2 for all n � n1. For this Nwe 
an �nd an n2 su
h that kB(N;n)k1;� + kC(N;n)k1;� < �=2 for all n � n2.This shows that the sum of the norm of the four terms in the de
omposition is lessthan � for all n � n0 := maxfn1; n2g. �15



For the proof of Theorem 2 we now pro
eed as in the dis
rete 
ase, with thefun
tion spa
es D, D(�) repla
ing the sequen
e spa
es that we used in Se
tion 4.Convergen
e in distribution in these fun
tion spa
es is a te
hni
ally mu
h more
ompli
ated issue: For details we refer the reader to one of the ex
ellent re-sear
h monographs and textbooks on this subje
t, su
h as Dudley (1999), Pol-lard (1984), Shora
k and Wellner (1986) and van der Vaart and Wellner (1996);Billingsley (1968) is the 
lassi
 in this area.The analogue of Proposition 5 is the empiri
al 
entral limit theorem, see e.g.p.97 in Pollard (1984). In the present setting this theorem states that pn(Gn�G)
onverges in distribution to a res
aled Brownian bridge B ÆG, whi
h is a 
entredGaussian pro
ess with 
ovarian
e fun
tion given by
ov�(B ÆG)(s); (B ÆG)(t)� = EB(G(s))B(G(t)) = G(s ^ t)�G(s)G(t)for all s; t � 0. As h 7! hÆ is a measurable and 
ontinuous linear operator on Dthis implies that pn(GÆn �GÆ) 
onverges in distribution to V := (B Æ G)Æ, whi
his again a 
entred Gaussian pro
ess. A straightforward 
al
ulation shows that the
ovarian
e stru
ture of V is given by
ov�V (s); V (t)� = GÆ(s ^ t)�GÆ(s)GÆ(t)for all s; t � 0. The distribution of the limit pro
ess is 
on
entrated on the set ofthose fun
tions in D that have their dis
ontinuities at the jumps of GÆ, a sepa-rable subspa
e of D. We may therefore apply the Skorohod representation in theform given on p.71 in Pollard (1984). In 
omplete analogy with the dis
rete 
asedis
ussed in Se
tion 4, now with Proposition 8 instead of Proposition 4, this leadsto the 
onvergen
e in distribution in D(�) ofpn(Fn � F ) = pn��(GÆn)� �(GÆ)�to Z := V ?H , with H as in the statement of the theorem. Again, Z arises from Vby a deterministi
 linear transformation and therefore is again a 
entred Gaussianpro
ess. Its 
ovarian
e stru
ture is given by
ov�Z(s); Z(t)� = E V ? H(s)V ? H(t)= Z[0;s℄ Z[0;t℄EV (s� u)V (t� r)H(du)H(dr)= Z[0;s℄ Z[0;t℄�GÆ((s� u) ^ (t� r))�GÆ(s� u)GÆ(t� r)�H(du)H(dr)= Z[0;s℄ Z[0;t℄GÆ((s� u) ^ (t� r))H(du)H(dr) � GÆ? H(s)GÆ? H(t):Together withHÆ = 1� 1Xk=2(�1)k+1e�k (GÆ)?(k�1) = �e�� 1Xk=1(�1)k+1e�k (GÆ)?k = �e�GÆ ? Hthis 
ompletes the proof. 16



6. Comments. In 6.1 we dis
uss the 
onne
tion to other sto
hasti
 pro
esses,6.2 explains a testing appli
ation. Two variants of the plug-in estimator are brie
y
onsidered in 6.3. The �nal subse
tion 
ontains some 
on
luding remarks.6.1 In the previous se
tions we have seen our basi
 problem as an inferen
eproblem of the 
lassi
al type, where the observations are a sample from a �xeddistribution with a spe
i�
 stru
ture. We brie
y point out that the above 
an alsobe seen as an inferen
e problem for sto
hasti
 pro
esses; in fa
t, we have alreadymentioned in the introdu
tion that the sample typi
ally arises from observing some
ompound Poisson pro
ess S = (St)t�0 at equally spa
ed time intervals. Thepro
ess S 
an also be regarded as a marked point pro
ess, these and their statisti
sare treated in Karr (1986). This embedding of the de
ompounding problem alsopoints towards several generalizations of our basi
 setup. Some of these are oftheoreti
al interest and have 
onsiderable potential for appli
ations, e.g. pro
esseswith non-
onstant rate su
h as doubly sto
hasti
 or Cox pro
esses. Among these,Poisson pro
esses with a Markov modulated intensity have re
eived 
onsiderableinterest over the years, see e.g. Asmussen (1989). On overview of the literature onthe statisti
al analysis of queueing systems is given in Bhat et al. (1997).6.2 For Poisson distributions, i.e. with the base distribution 
on
entrated at thesingle value 1, the asymptoti
 
ovarian
e stru
ture of the plug-in estimator givenin Theorem 1 
an be further evaluated, resulting inE�2 = e� � 1; E�Z1 = ��1(1 + �e� � e�);EZ21 = ��2��2e� � �e� + e� � 1�;E�Zi = ���1ri; EZ1Zi = ��2ri(1� i� �) for i � 2;EZiZj = ��2(�1)jrimi;j for 1 � i � j;with ri = e� (��)ii! ; mi;j = iXl=0 �il� �l+j�i(l + j � i)! for 1 � i � j:This displays the limit distribution as a fun
tion of the rate parameter � and 
anbe used to obtain asymptoti
ally 
orre
t 
riti
al regions of tests for Poissonity, if� is estimated by e.g. the mean of the data. It would be interesting to 
omparethe power of the resulting test with the power of other tests of Poissonity proposedin the literature, see e.g. Klar (1999) and the referen
es given there, espe
ially for
ompound Poisson alternatives.6.3 It is immediate from (3) (or, more probabilisti
ally, from the interpretationof 
ompound distributions as random sums) that qi > 0 for all i in the additivesemigroup generated by the support of p. As a 
onsequen
e probability massfun
tions asso
iated with 
ompound distribution 
annot have bounded support,whi
h means that the empiri
al mass fun
tion qn 
annot be the mass fun
tion of a
ompound Poisson distribution. In parti
ular, even if the Panjer inversion appliedto qn yields an element of `1 with high probability if n is large, this sequen
ewill always have negative entries. Therefore, the plug-in estimator needs somemodi�
ation in order for the estimates to be probability distributions. In thedis
rete 
ase a straightforward remedy is to simply repla
e the negative entries by17



0 and then to normalize to keep the sum of the entries to be equal to 1. This 
hangesthe plug-in estimate pn into �(pn), say. It is easy to see that � is 
ontinuous atp, whi
h means that 
onsisten
y is not lost by applying �. However, a similarlystraightforward transfer of asymptoti
 normality by a delta method argument is notpossible as � is not di�erentiable at p. A 
loser analysis, 
arried out in Bu
hmann(2001), shows that we still have 
onvergen
e in distribution of pn��(pn)� p�, butthat the limit is no longer Gaussian.A se
ond modi�
ation of the plug-in estimator is motivated by the observationthat the sample y1; : : : ; yn from the 
ompound distribution 
annot possibly 
ontainany information about the base probabilities pk with k � zn := maxfy1; : : : ; yng.It therefore seems natural to stop the Panjer inversion at zn, as we have done inthe horse ki
k example in Se
tion 3. It is shown in Bu
hmann (2001) that thismodi�
ation does not 
hange the distributional asymptoti
s.In the 
ontinuous 
ase we have the similar phenomenon that the plug-in estimatorfor the distribution fun
tion of the individual 
laims is itself not a distributionfun
tion (see the right-hand plot in Figure 1, and Figure 2). We 
ould asso
iatewith any F that de�nes a signed measure distribution fun
tions F (1), F (2) viaF (1)(x) = inf�F (y) _ 0 : y � x	; F (2)(x) = sup�F (y) ^ 1 : y � x	;but at present we do not know the e�e
t of these modi�
ations on the asymptoti
distribution of the estimators.6.4 The theorems in Se
tion 2 show that the de
ompounding problem 
an besolved on the usual n�1=2-level, a fa
t that we 
ontinue to �nd slightly surprising.At least in the general 
ase we were initially regarding the problem as `ill-posed',with the 
orresponding 
onsequen
es su
h as a rate lower than n�1=2 for the esti-mates. Of 
ourse, the 
lassi�
ation of a problem as ill-posed or inverse et
. dependson the 
hoi
e of topologies, so our results may be rephrased as saying that there arestatisti
ally meaningful 
hoi
es for the latter where de
ompounding 
an be 
onsid-ered to be a perfe
tly regular problem. However, numeri
al experiments su
h asgiven in Se
tion 3 remind us of the fa
t that a good rate is not a guarantee for highpre
ision: Comparing the left-hand and the right-hand plot in Figure 1 shows thatthe `
onstant in front of the rate' may be rather high. This e�e
t be
omes morepronoun
ed with in
reasing rate �. Indeed, we know from the 
entral limit theo-rem for random sums that the pre
ise form of the individual 
laim size distributionbe
omes irrelevant as �!1 and that only the �rst two moments survive.A
knowledgements. We would like to thank both referees and Editor JonA. Wellner for their 
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ular fordrawing our attention to several referen
es that we had overlooked.
18



Referen
esAsmussen, S. (1987) Applied Probability and Queues. Wiley, Chi
hester.Asmussen, S. (1989) Risk theory in a Markovian environment. S
and. A
tuarial J., 69-100.Bhat, U.N., Miller, G.K. and Rao, S.S. (1997) Statisti
al analysis of queueing systems.Chapter 13 in Frontiers in Queueing (Dshalalow, J.H., ed.), CRC Press, Bo
aRaton.Beard, R.E., Pentik�ainen, T. and Personen, E. (1984) Risk Theory: The Sto
hasti
 Basisof Insuran
e. (3rd ed.) Chapman and Hall, London.Billingsley, P. (1968) Weak Convergen
e of Probability Measures. Wiley, New York.Bu
hmann, B. (2001) De
ompounding: An Estimation Problem for the Compound PoissonDistribution. Do
toral thesis, Universit�at Hannover.Dudley, R.M. (1999) Uniform Central Limit Theorems. Cambridge University Press, Cam-bridge.Embre
hts, P., Gr�ubel, R. and Pitts, S.M. (1993) Some appli
ations of the fast Fouriertransform algorithm in insuran
e mathemati
s. Statisti
a Neerlandi
a 47, 59-75.Grandell, J. (1991) Aspe
ts of Risk Theory. Springer, New York.Gr�ubel, R. and Hermesmeier, R. (1999) Computation of 
ompound distributions I: aliasingerrors and exponential tilting. ASTIN Bulletin 29, 197-214.Gr�ubel, R. and Pitts, S.M. (1993) Nonparametri
 estimation in renewal theory I: theempiri
al renewal fun
tion, Ann. Statisti
s 21, 1431-1451.Gr�ubel, R. and Pitts, S.M. (2000) Statisti
al aspe
ts of perpetuities. J. Multivariate Anal.75, 143-162.Johnson, N.L., Kotz, S. and Kemp, A.W. (1992) Univariate Dis
rete Distributions, 2ndedition. Wiley, New York.Karr, A.F. (1986) Point Pro
esses and Their Statisti
al Inferen
e. Dekker, New York.Klar, B. (1999) Goodness-of-�t tests for dis
rete models based on the integrated distri-bution fun
tion. Metrika 49, 53-69.Pitts, S.M. (1994a) Nonparametri
 estimation of 
ompound distributions with appli
a-tions in insuran
e. Ann. Inst. Stat. Math. 46, 537-555.Pitts, S.M. (1994b) Nonparametri
 estimation of the stationary waiting time distributionfun
tion for the GI=G=1 queue. Ann. Statist. 22, 1428{1446.Politis, K. and Pitts, S.M. (2000) Nonparametri
 estimation in renewal theory. II. Solu-tions of renewal-type equations. Ann. Statist. 28, 88-115.Pollard, D. (1984) Convergen
e of Sto
hasti
 Pro
esses. Springer, New York.Quine, M.P. and Seneta, E. (1987) Bortkiewi
z's data and the law of small numbers. Int.Statist. Rev. 55, 173-181.Shora
k, G.R. and Wellner, J.A. (1986) Empiri
al Pro
esses with Appli
ations to Statis-ti
s. Wiley, New York.van der Vaart, A.W. andWellner, J.A. (1996)Weak Convergen
e and Empiri
al Pro
esses.Springer, Berlin.Mathematis
he StatistikTe
hnis
he Universit�at M�un
henD-80290 M�un
hene-mail: bbu
h�mathematik.tu-muen
hen.deInstitut f�ur Mathematis
he Sto
hastikUniversit�at HannoverPostfa
h 60 09D-30060 Hannovere-mail: rgrubel�sto
hastik.uni-hannover.de19


