
Deompounding:an estimation problem for Poisson random sumsBoris Buhmann and Rudolf Gr�ubelTehnishe Universit�at M�unhen and Universit�at HannoverGiven a sample from a ompound Poisson distribution, we onsider estimation ofthe orresponding rate parameter and base distribution. This has appliationsin insurane mathematis and queueing theory. We propose a plug-in typeestimator that is based on a suitable inversion of the ompounding operation.Asymptoti results for this estimator are obtained via a loal analysis of thedeompounding funtional.Short title: Poisson random sumsKeywords and phrases . Risk theory, queues with bulk arrival, ompound distribu-tions, plug-in priniple, asymptoti normality, delta method.1. Introdution. The statistial problem to be disussed in this paper is mo-tivated by appliations from insurane mathematis and queueing theory. In thestandard model of risk theory, see e.g. Beard, Pentik�ainen and Personen (1984)or Grandell (1991), laims of random size X1; X2; X3; : : : arrive at random timesT1; T1+T2; T1+T2+T3; : : :. The random variablesX1; X2; X3; : : : ; T1; T2; T3; : : : areassumed to be independent, the Xk, k 2 N , have distribution P and the interarrivaltimes Tk, k 2 N , are exponentially distributed with parameter �. In partiular,the laim arrival times are given by the points of a Poisson proess with onstantintensity �. For all t � 0, St := Xk: T1+:::+Tk�tXk (1)is the total laim amount up to and inluding time t. Similarly, in a queueingontext as disussed e.g. in Asmussen (1987), if ustomers arrive at a servie pointin bulks of size X1; X2; : : : at the time points of a Poisson proess then (1) givesthe total number of ustomers that arrive in the time interval (0; t℄.The assumptions imply that the distribution Q of S1 an be written as a onvo-lution series, Q = 	(�; P ) with 	(�; P ) := e�� 1Xk=0 �kk! P ?k; (2)Q is the ompound Poisson distribution with rate � and base (or laim size or bulksize) distribution P . (Unfortunately, Poisson distributions with a random param-eter, i.e. mixed Poisson distributions, are often alled ompound in the literature.)1



Assume now that we observe the proess S = (St)t�0 at equally spaed timepoints h; 2h, 3h; : : : ; nh. After resaling if neessary we may take h to be equalto 1. Then the inrementsYk := Sk � Sk�1; k = 1; : : : ; n;of the proess are independent and have distribution Q. Is it possible to `reover'P (and �) from suh a sample of Q-observations? This only makes sense if P (Xi =0) = 0 as otherwise the funtion (�; P ) 7! Q is not one-to-one and an identi�abilityproblem arises, so we will assume this throughout the paper.The `diret' problem, from P to Q, has been onsidered by Pitts (1994a), whoused the plug-in estimator derived from (2),Qn := 	(�; Pn) = e�� 1Xk=0 �kk! P ?kn ; (3)where Pn denotes the empirial distribution funtion assoiated with a sample ofsize n from P . The rate � was assumed to be known. Regarding P 7! Q = 	(�; P )as a nonlinear operator (funtional) on a suitable funtion spae one an thenuse the loal analyti properties of the funtional, suh as ontinuity and di�er-entiability, to dedue statistial properties of Qn, suh as onsisteny, asymptotinormality and asymptoti validity of bootstrap on�dene regions, from the orre-sponding properties of Pn. A similar approah was used in Gr�ubel and Pitts (1993)and Politis and Pitts (2000) for nonparametri estimation in renewal theory, inPitts (1994b) for G/G/1 queues and in Gr�ubel and Pitts (2000) for nonparametriestimation of perpetuities.In the ontext of the `inverse' problem, from Q to P , suh a plug-in approahseems not to be feasible, at least on �rst sight. Compounding transforms a probabil-ity distribution into a probability distribution. Compounding an therefore easilybe applied to empirial distributions whereas in the other diretion, `deompound-ing' so to speak, we do not have an analogue of (2) in this strit sense. Indeed, asa rule empirial distributions are not in the range of the ompounding funtionalP 7! Q. Nevertheless, reasonable (in the sense of being algorithmially feasibleand aessible to asymptoti analysis) plug-in estimators an be onstruted ifwe are prepared to make some sari�es. In the disrete situation, by whih wemean that P (N ) = 1, we an proeed in a relatively straightforward manner as 	turns out to be loally invertible if its domain is extended to general summablesequenes. The disrete ase is of ourse the one that is of primary interest inqueueing appliations. In the general ase, whih is the natural frame for appli-ations in risk theory, we fae the diÆulty that, roughly speaking, the statistialand the algebrai-topologial aspets of the problem do not math as well as in thedisrete ase where the estimates on the Q-side onverge in total variation norm,a norm that relates well to onvolution. In the general ase the empirial distri-bution assoiated with the Q-sample will only onverge in a weaker norm, suhas the supremum distane of the respetive distribution funtions, and the orre-sponding asymptoti normality result will lead to a limit proess whose paths areno longer of bounded variation. The onession we make in this situation onsistsin swithing to a relatively weak norm; however, we still have uniform onvergeneover bounded intervals for our general plug-in estimator.2



The paper is organized as follows. Setion 2 ontains the main results, �rst forthe disrete ase and then for the general ase. Our results are stronger for thedisrete ase. We restrit ourselves to asymptoti normality whih, as indiatedabove, follows from a di�erentiability property of a suitably hosen inverse map.We do not disuss onsisteny as it is similarly related to the weaker property ofontinuity. The asymptoti normality results an be used in the disrete ase toobtain asymptotially orret on�dene intervals for individual laim size proba-bilities by studentization, but in order to obtain on�dene regions for the wholeprobability mass funtion or distribution funtion we would need the quantiles ofthe distribution of some funtional of an in�nite-dimensional Gaussian proess.Bootstrap on�dene regions are the pratial alternative and the di�erentiabilityproperties that we establish in the ourse of our proofs of asymptoti normality analso be exploited to prove the asymptoti validity of bootstrap on�dene regions.The details of this argument have been arried out in Gr�ubel and Pitts (1993, 2000)and will not be repeated here.Setion 3 disusses algorithmi aspets and gives some illustrative numerialexamples. Proofs are olleted in Setions 4 and 5. The last setion ontainssome remarks on possible extensions and other aspets of our results. A di�erentapproah to deompounding, based on likelihood ideas, will be treated in a separatepaper.2. Main results. We �rst onsider the disrete ase, with P and Q relatedby (2) and P (N ) = 1, whih obviously implies Q(N 0) = 1. Let p = (pi)i2N0 andq = (qi)i2N0 with pi := P (fig), qi := Q(fig) be the respetive probability massfuntions. The ompound mass funtion an be obtained reursively from the rateand the mass funtion of the base distribution byq0 = e��; qi = �i iXj=1 j pj qi�j for all i 2 N : (4)Formulas of this type arise quite generally in the ontext of disrete in�nite divisi-bility, see e.g. Johnson, Kotz and Kemp (1992), p.352. In insurane mathematis,(4) is known as Panjer reursion. The reursion an easily be inverted to give� = � log q0; pi = � qiq0 log q0 � 1iq0 i�1Xj=1 j pj qi�j for all i 2 N : (5)Now assume that Y1; : : : ; Yn are independent with ommon distribution Q. Theassoiated empirial probability mass funtion qn = (qn;i)i2N0 is given byqn;i := 1n #�1 � m � n : Ym = i	 :We risk an ambiguity in order to keep the notation ompat: q with a single indexi or j refers to the omponents of q, q with index n to the empirial probabilitymass funtion. As in the step from (2) to (3) we de�ne the plug-in estimators �nand pn = (pn;i)i2N0 for � and p by �n = � log qn;0,pn;i = � qn;iqn;0 log qn;0 � 1iqn;0 i�1Xj=1 j pn;j qn;i�j for all i 2 N3



and pn;0 = 0. Degenerate ases suh as qn;0 = 0 need separate onsideration. Wehandle this together with a similar aspet relating to pn: We are interested in sta-tistial properties suh as onsisteny and asymptoti normality, whih both referto a topology on some spae for the estimates. Weak onvergene for distributionson N 0 is equivalent to onvergene in total variation norm by She��e's theorem,whih leads us to onsider the spae`1 := na 2 RN0 : 1Xi=0 jaij <1oof absolutely summable sequenes of real numbers together with the normkak1 := 1Xi=0 jaij :We write Æk = (Æki)i2N0 for the element of `1 that has Ækk = 1 and all otherentries equal to 0. Obviously, qn is a random element of `1 but a priori there isno guarantee that Panjer inversion stays inside this spae, i.e. we might well havepn =2 `1. In Setion 4 we will show thatlimn!1P �qn;0 = 0 or pn =2 `1� = 0:Hene, if we simply put �n = 1 and pn = Æ1 if qn;0 = 0 or pn =2 `1 then we an regardour estimates as elements of the spae R� `1. In our �rst result, weak onvergenerefers to the produt topology on this spae that is generated by eulidean distaneon the �rst and by k � k1 on the seond fator. The ondition on p is disussed inSetion 4 below.Theorem 1 Assume that P1i=1 p1=2i <1 and let (ri)i2N0 be de�ned reursivelyby r0 := 1q0 ; ri := � 1q0 iXj=1 qjri�j for all i 2 N : (6)Then �pn(�n � �);pn(pn � p)� onverges in distribution to a entred Gaussianrandom element ��; (Zi)i2N0� of R � `1 as n ! 1 with Z0 � 0 and ovarianestruture E�2 = r0 � 1;E�Zi = 1��pi � ri � pir0) for all i 2 N ;EZiZj = 1�2�pirj + pjri + pipjr0 � pipj + iXl=0 rlrl+j�iqi�l�for all i; j 2 N with j � i � 1: (7)
4



We now turn to the general ase. For simpliity we assume that � is known. As inthe disrete ase we have P and Q related by (2) and Y1; : : : ; Yn independent withdistribution Q. Let F and G be the distribution funtions of P and Q respetively;Gn with Gn(x) := 1n nXm=1 1[0;x℄(Ym) for all x � 0is the empirial distribution funtion assoiated with Y1; : : : ; Yn. (Here and in thefollowing 1A denotes the indiator funtion of the set A.) These funtions areelements of the spae D = D([0;1)) of funtions h : [0;1) ! R that are right-ontinuous and have left-sided limits, we also require that limx!1 f(x) exists forelements of this spae. For any suh funtion h we write hÆ for the funtionx 7! h(x)�h(0). If h is the distribution funtion of some probability measure thenthe transition from h to hÆ orresponds to the removal of the atom at zero of thismeasure. For example, GÆn(x) is the fration of stritly positive Y -values that areless than or equal to x. We now de�ne an estimator Fn for F byFn(x) := 1Xk=1 (�1)k+1e�k�k �GÆn)?k(x) for all x � 0: (8)Of ourse, `?' ontinues to denote onvolution whih, however, is now de�ned onlyon a subset of D�D (details are given in Setion 5). Note that the absolute valuesof the oeÆients in this series inrease at an exponential rate, so it is not lear apriori that this de�nition makes sense|indeed, this will be part of our next result.It follows from Lemma 7 below and from the arguments given at the beginning ofSetion 4 that this new estimator is `bakwards ompatible' to the earlier estimatorfor the disrete ase.We need one more de�nition. For any � 2 R let D(�) be the spae of all funtionsf with the property that x 7! e��xf(x) is an element of D. On D we onsider thesupremum norm kfk1 := supx�0 ��f(x)�� for all f 2 D;whih makes D a Banah spae. Similarly, when equipped withkfk1;� := supx�0 e��x��f(x)�� for all f 2 D(�);D(�) beomes a Banah spae. In our seond main result weak onvergene refersto these spaes, where the �-�eld is the one generated by the open balls in therespetive norm.Theorem 2 Let � > 0 be suh that R e��x F (dx) < (log 2)=�. Then pn(Fn�F )onverges in distribution as n ! 1 with respet to �D(�); k � k1;�� to a entredGaussian proess Z with ovariane strutureEZsZt = Z Z GÆ�(s� u) ^ (t� v)�H(du)H(dv) � e�2�HÆ(s)HÆ(t)for all s; t � 0, with H given byH(x) := 1� 1Xk=1(�1)k+1e�k (GÆ)?(k�1)(x):5



3. Algorithmi aspets and numerial examples. The (in-)famous vonBortkewitsh data (see e.g. Quine and Seneta (1987)) give the number of deathsaused by horse kiks in the Prussian army, for various orps and years. The values0 to 4 were observed 109, 65, 22, 3 and 1 time(s) respetively. The interpretationof a possibly ompound rather than simple Poisson distribution as horses killingmore than one soldier in one go is somewhat far fethed, but it seems interestingto see our proedures at work with a real data set.Plugging the q-values into the inverse Panjer reursion we obtain the estimates�n = 0:6069; pn;1 = 0:9825; pn;2 = 0:0396; pn;3 = �0:0365; pn;4 = 0:0207;all rounded to four deimal plaes. Note the ourrene of a negative value. The-orem 1 an be used to obtain asymptotially orret on�dene intervals for theindividual estimators, using plug-in estimates (again) for the unknown asymptotiovarianes. Estimates for r an be obtained from the q-estimates via (6), and (7)leads to the estimate � Z1 Z2 Z3 Z4� 0:8349Z1 0:4531 1:0926Z2 �0:5193 �1:5048 2:2433Z3 0:0468 0:4860 �0:9019 0:5674Z4 0:0456 �0:0591 0:1467 �0:1707 0:1171for the asymptoti ovariane matrix. With n = 200 we obtain the values 0:0739,0:1060, 0:0533 and 0:0242 for the standard errors of the individual estimates, againrounded to four deimal plaes. The estimates for the mass funtion p are thereforeall within one standard deviation of p = Æ1, whih orresponds to an ordinaryPoisson distribution. Hene, on the basis of these alulations there is no reasonto assume that horses run amok.We now onsider a non-disrete example with simulated data. The right-handplot in Figure 1 displays the estimates obtained for two samples of size 1000 froma ompound Poisson distribution with rate 2, the left-hand plot shows the empiri-al distribution funtions for the ompound data. The laim size distribution is amixture of the exponential distribution with parameter 1 and the distribution on-entrated at the single value 1, with mixing oeÆients 2/3 and 1/3 respetively;the orresponding distribution funtion is displayed as a dotted line. To obtain theestimates numerially we disretized the data and then applied the inverse Panjerreursion given in (5). The arguments given in Setion 5 for the di�erentiabil-ity of the deompounding funtional an easily be adapted to obtain a version ofontinuity that justi�es this approximation, hene the hoie of the disretizationparameter is not a major issue here. We mention in passing that using Panjerreursion instead of transform methods avoids problems that may arise with thelatter if the Fourier transform of the q-sequene winds about 0; see Embrehts,Gr�ubel and Pitts (1993), Gr�ubel and Hermesmeier (1999) and the referenes giventhere for FFT based alulation of ompound distributions and Buhmann (2001)for the homotopy problem. Using reursion rather than transform methods alsomakes it possible to alulate a �nite initial segment of the distribution funtionsof interest. 6
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Figure 1: Two estimates for the total and theindividual laim size distribution (n = 1000, � = 2)While the two ompound empirial distribution funtions are relatively lose to eahother, this is not the ase for the two estimates of the base distribution funtion.Figure 2 shows that inreasing the sample size improves the estimate, but thatinreasing the rate leads to a deterioration.
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Figure 2: Estimates for the individual laim size distribution(left: n = 10000, � = 2, right: n = 10000, � = 5)We notie that the estimates for the base distribution are not distribution funtionsas they are, as a rule, not inreasing; see Setion 6.3 for possible modi�ations. Theestimates apture the jump at 1. Also, the preision seems to derease for inreasingx-values, in aordane with our results.7



4. Proof of Theorem 1. In the disrete ase the basi onvolution inequalityka ? bk1 � kak1 kbk1 for all a; b 2 `1an be used to transfer the familiar power series alulus to `1. In partiular,exp(a) := 1Xk=0 1k! a?kis well-de�ned on the whole of `1 and writingâ(z) := 1Xi=0 aizi; �1 < z < 1;for the generating funtion assoiated with a = (ai)i2N0 2 `1 we haveb̂(z) = exp�â(z)� for b := exp(a)(it should always be lear from the ontext whih spae the exponential funtionrefers to). This implies ddz b̂(z) = � ddz â(z)� b̂(z);whih upon omparing oeÆients leads tob0 = exp(a0); ibi = iXj=1 jajbi�j for all i 2 N :This shows that Panjer reursion an be regarded as an algorithm that implementsthe exponential funtion on `1 (in fat, on even larger spaes).We require two more properties of the exponential funtion on `1, both are easilyveri�ed with the help of generating funtions. First,exp(a+ b) = exp(a) ? exp(b) for all a; b 2 `1;seond, using the fat that we deal with real vetor spaes throughout,exp(a) = exp(b) ) a = b for all a; b 2 `1:As a �rst appliation of these rules we obtain that q = exp��(p � Æ0)� has aonvolution inverse given by q?(�1) = exp���(p� Æ0)�. Comparing oeÆients inq?(�1) ? q = Æ0 shows that q?(�1) = r with r as in the statement of Theorem 1; inpartiular, r 2 `1. Let �; p; q and �n; pn; qn be as in Setion 2.8



Lemma 3 If kqn � qk1 < krk�11 then(�n � �)Æ0 + �p� �npn = 1Xk=1 1k �r ? (q � qn)�?k:Proof: The series an := 1Xk=1 1k �r ? (q � qn)�?konverges in `1 beause ofr ? (q � qn)1 � krk1 kqn � qk1 < 1 :We know that � log(1� z) = 1Xk=1 1k zk; �1 < z < 1;whih results in exp��ân(z)� = r̂(z) q̂n(z):This means that we have found an element bn := �(p�Æ0)�an of `1 suh that qn =exp(bn). As explained above, the omponents of qn an be obtained reursively fromthose of bn. Inverting the reursion, using the fat that the exponential funtion isone-to-one on `1 and using the de�nition of �n and pn in Setion 2 we �nally seethat an = �(p� Æ0) � �n(pn � Æ0)whih implies the statement of the lemma. �Our next auxiliary result an be regarded as a di�erentiability property of afuntion losely related to disrete deompounding. Convergene refers to k � k1.Proposition 4 If pn(qn � q)! a as n!1 for some a 2 `1 thenpn(�� �n)Æ0 + pn(�npn � �p) ! r ? a:Proof: As the ondition implies qn ! q we may assume beause of Lemma 3that (�n � �)Æ0 + �p� �npn = 1Xk=1 1k �r ? (q � qn)�?k:This in turn impliespn(�� �n)Æ0 +pn(�npn � �p) = r ? �pn(qn � q)� + bnwith bn := �pn 1Xk=2 1k �r ? (q � qn)�?k:As onvolution is ontinuous we obtain the limit r ? a for the �rst term in thedeomposition, hene it remains to show that bn tends to 0 in `1. This however isobvious fromkbnk � pn(q � qn)1 krk1 1Xk=1 1k + 1�krk1 kq � qnk1�kand kqn � qk1 ! 0. �9



On �rst sight it seems that this proposition is of little use as we do not havepointwise onvergene of the random quantities pn(qn � q), where qn denotes theempirial mass funtion assoiated with a sample of size n from q. What we dohave is the following onsequene of the Borisov-Durst theorem, see e.g. Dudley(1999), Theorem 7.3.1.Proposition 5 If P1i=0 q1=2i <1 then pn(qn� q) onverges in distribution toa entred Gaussian proess V = (Vi)i2N0 with ovarianeov(Vi; Vj) = Æijqi � qiqj for all i; j 2 N 0:Further, if pn(qn � q) onverges in distribution then P1i=0 q1=2i <1.To see that P1i=0 q1=2i <1 follows from the ondition P1i=1 p1=2i <1 in Theo-rem 1 we note that the funtion �,�(a) := 1Xi=0 jaij1=2;has the properties�(a+ b) � �(a) + �(b); �(�a) � j�j1=2�(a); �(a ? b) � �(a)�(b):Using these and monotone onvergene we obtain1Xi=0 q1=2i � 1Xk=0�e���kk! �1=2 � 1Xi=1 p1=2i �k;whih gives the desired impliation. In fat, the two onditions are equivalent,the other diretion being immediate from qi � �e��pi, hene P1i=1 p1=2i < 1 is aneessary ondition in Theorem 1.The Skorohod representation theorem provides the onnetion between the dis-tributional result in Proposition 5 and the pointwise statement in Proposition 4:We an onstrut a probability spae (
0;A0; P 0) arrying random sequenes V 0,q0n, n 2 N , suh that L(V 0) = L(V ), L(q0n) = L(qn) for all n 2 N , andlimn!1pn�q0n � q�(!0) = V 0(!0) for all !0 2 
0(we write L(X) for the distribution of the random quantity X). Within this on-strution we an use Proposition 4 to obtainpn�(�� �0n)Æ0 + (�0np0n � �p)�(!0) ! r ? V 0(!0) for all !0 2 
0;where (�0n; p0n) depends on q0n exatly as (�n; pn) depends on qn, that is, via (5).Swithing bak to the original quantities and using the distributional equalitiesbuilt into the onstrution we obtainpn(�� �n)Æ0 + pn(�npn � �p) ! W in distribution;10



with W := r ? V , V as in Proposition 5. (This is one of the standard methodsfor proving weak onvergene, known as the in�nite-dimensional delta method; seeGr�ubel and Pitts (1993,2000), Pitts (1994a,b), Politis and Pitts (2000) and thereferenes given in these papers for a similar treatment of estimation problems inother areas.) The distributional onvergene implies �n ! � in probability. Usingthis and pn(pni � pi) = 1�n �pn(�npni � �pi) + pipn(�� �n)�together with some standard rules for weak onvergene we obtain�pn(�n � �);pn(pni � pi)� ! (�; Z) in distribution;with � := �W0, Z0 � 0 andZi := 1��Wi + piW0� for all i 2 N :The steps transforming V into Z are bounded linear operators on `1, hene Z is aentred Gaussian proess. It remains to alulate the ovariane struture. We dothis for the intermediate proess W ; the formulas for � and Z then follow easilyfrom the above de�nitions of these quantities in terms of W .Using r ? q = Æ0 we obtainEW 20 = E(r0V0)2 = r20EV 20 = r20q0 � r20q20 = r0 � 1;and similarly, for i � 1,EW0Wi = Er0V0 iXj=0 rjVi�j= r0 iXj=0 rj(q0Æ0;i�j � q0qi�j)= r0riq0 � r0q0(r ? q)i = ri:The same arguments lead toEWiWj = iXl=0 rlrl+j�iqi�l for j � i � 1:5. Proof of Theorem 2. We put D(1) := S�>0D(�). Let Dm(1) � D(1)be the subset of those funtions that have �nite variation on all intervals [0; x℄,x > 0. We will use apital letters F;G;H for elements of Dm(1). Equivalently,Dm(1) an be onsidered as the spae of signed measures � (hene the index `m')with the bound j�j�[0; x℄� = O�e�x� as x!111



for some � = �(�) < 1 on the inrease of the total variation, the onnetionbeing provided by H(x) = �([0; x℄). These measures in turn an be haraterizedby the ondition that the measure �� with �-density x 7! e��x is a �nite signedmeasure on the Borel subsets of the non-negative halfline for some � < 1. (Ourarguments here and below use exponential tilting in a somewhat impliit manner.)The measure assoiated with a funtion H 2 Dm(1) is non-negative if and only ifH is (weakly) inreasing, let D+m(1) denote the orresponding subset of Dm(1).We write Dm, Dm(�) and D+m, D+m(�) for the intersetion of D, D(�) with Dm(1)and D+m(1) respetively.Elements of Dm(1) are haraterized by their Laplae transform,~H(�) = Z e��xH(dx) for all � > �(�):If H 2 D(�) then the integral is �nite for all � > � . Convergene with respetto k � k1;� of a sequene (Hn)n2N in D+m(�) to some H 2 D+m(�) implies vagueonvergene of the orresponding tilted measures, whih in turn implies ~Hn(�) !~H(�) as n ! 1 for � > � . An alternative and more diret argument for thisfat an be based on ~H(�) = � R10 e��yH(y) dy, � > 0, whih follows from anintegration by parts.Lower ase letters f; g; h denote generi elements of D(1) that might have in�-nite total variation on �nite intervals. For the onvolution produt to be de�nedwe need some variation ondition for at least one of the fators; this is disussedin some detail in Gr�ubel and Pitts (1993). The situation here is simpler as we dealwith the `one-sided' ase only, i.e. all measures are onentrated on [0;1), so wean simply write g ? H(x) = Z g(x� y)H(dy) for all x � 0;whih should be self-explanatory in view of the notational onventions introduedabove. Two useful properties of onvolution are olleted in the following lemma.Lemma 6 (a) If H;Hn 2 D+m are suh that limn!1 kHn �Hk1 = 0, thenlimn!1 kg ? (Hn �H)k1 = 0 for all g 2 D:(b) If H 2 D+m(1) then kg ? Hk1;� � kgk1;� ~H(�) for all � > 0.Proof: (a) The statement is easily heked for g = 1[0;a), 0 < a � 1, andthen immediately generalizes to funtions g0 that an be written as �nite linearombinations of suh indiator funtions. It is not diÆult to show that the latterlass is dense in D (see also Billingsley (1968), p.110), hene the assertion followsfromkg ? (Hn �H)k1 � kg0 ? (Hn �H)k1 + kg � g0k1�Hn(1) +H(1)�;together with a standard �-Æ-argument. 12



(b) kg ? Hk1;� = supx�0 e��x���Z[0;x℄ g(x� y)H(dy)���� supx�0 Z[0;x℄��e��(x�y)g(x� y)�� e��yH(dy)� kgk1;� Z e��yH(dy): �The following auxiliary result takes over the role of Lemma 3 in the disrete ase.Note that we again use the fat that our transforms are real-valued.Lemma 7 If G is a distribution funtion with fGÆ(�) < e�� then the series�(G) := 1Xk=1 (�1)k+1e�k�k (GÆ)?konverges in D(�). Further, �(G) = F if G = 	(�; F ).Proof: Using Lemma 6 (b) together with the obvious inequalitykfk1;� � kfk1 for all f 2 Dwe obtain kH?kk1;� � ~H(�)k�1 for all k 2 N ;if H is the distribution funtion for some (sub-)probability. This implies the on-vergene of the series.The series an obviously be written as the di�erene of two inreasing funtionsand is therefore an element of Dm(1). The assoiated Laplae transform isg�(G)(�) = 1Xk=1 (�1)k+1e�k�k fGÆ(�)k = 1� log�1 + e�fGÆ(�)�; � > �;hene the �nal statement of the lemma follows on usingexp�� ~F (�) � �� = ~G(�); fGÆ(�) = ~G(�) � e�� for all � > 0;and the identi�ability of elements of Dm(1) by their Laplae transforms. �For all H 2 D+m(1) we have fHÆ(�) ! 0 as � ! 1 by dominated onvergene,hene the ondition on G in Lemma 7 and the following proposition, whih servesas the analogue of Proposition 4 in the disrete ase, is satis�ed if � is hosen largeenough. 13



Proposition 8 Let G, Gn (n 2 N ) be elements of D+m with G(0) = 0 andGn(0) = 0 for all n 2 N . Ifpn(Gn �G) ! h as n!1with respet to k � k1 for some h 2 D and if � is suh that ~G(�) < e�� thenpn��(Gn)� �(G)� ! h ? H as n!1with respet to k � k1;� , with H := 1� P1k=1(�1)k+1e�kG?(k�1).Proof: We haveG?kn �G?k = (Gn �G) ? Hn;k with Hn;k := k�1Xj=0G?jn ? G?(k�1�j);whih leads to the basi deompositionpn��(Gn)� �(G)� � h ? H = A(N;n) +B(N;n) + C(N;n) �D(N)with A(N;n) := 1� 1Xk=N+1 (�1)k+1e�kk pn(Gn �G) ? Hn;k;B(N;n) := 1� NXk=1 (�1)k+1e�kk �pn(Gn �G)� h� ? Hn;k;C(N;n) := 1� NXk=2 (�1)k+1e�kk �h ? Hn;k � kh ? G?(k�1)�;D(N) := 1� 1Xk=N+1(�1)k+1e�k h ? G?(k�1);valid for all n;N 2 N (beause of Hn;1 = G?0 = 1[0;1) it is enough to start withk = 2 in the third term). For a given � > 0 we need an n0 2 N suh that for alln � n0 the sum of the norm of the four terms is less than �, where we may hoosean appropriate N .Using Lemma 6 (b) as in the proof of Lemma 7 we obtainkA(N;n)k1;� � 1� kpn(Gn �G)k1 1Xk=N+1 e�kk ~Hn;k(�) :Let � < 1 be suh that ~G(�) < �e��. Sine ~Gn(�) ! ~G(�) as n !1 we an �ndan n1 <1 suh that ~Gn(�) � �e�� for all n � n1. But then~Hn;k(�) = k�1Xj=0 ~Gn(�)j ~G(�)k�1�j � k�k�1 e��(k�1)14



so that limN!1 supn�n1 1Xk=N+1 k�1e�k ~Hn;k(�) = 0:Convergene of pn(Gn�G) implies that the sequene is bounded, hene we obtainlimN!1 supn�n1 kA(N;n)k1;� = 0:The same arguments work with the fourth term, resulting inlimN!1 kD(N)k1;� = 0:The number of terms in B(N;n) and C(N;n) is �nite for any given N , hene itis enough to show that these onverge to 0 individually as n ! 1. For thosein B(N;n) this follows from the assumptions of the theorem, the boundedness of~Hn;k(�), n 2 N , and Lemma 6 (b). In order to deal with the terms in C(N;n) we�rst note that, for k � 2,Hn;k � kG?(k�1) = k�1Xj=0�G?jn ? G?(k�1�j) �G?(k�1)�= k�1Xj=1�G?jn ? G?(k�1�j) �G?(k�1)�= k�1Xj=1�G?jn �G?j� ? G?(k�1�j)= (Gn �G) ? k�1Xj=1Hn;j ? G?(k�1�j) :Together with Lemma 6 (b) this yieldskh ? (Hn;k � kG?(k�1))k1;� � kh ? (Gn �G)k1 k�1Xj=1 ~Hn;j(�) ~G(�)k�1�j� kh ? (Gn �G)k1 k(k � 1)2 �k�2 e��(k�2)with � and n as in the bounds for A(N;n). Lemma 6 (a) yields kh?(Gn�G)k1 ! 0as n!1. Hene we havelimn!1 kB(N;n)k1;� = limn!1 kC(N;n)k1;� = 0for any �xed �nite N 2 N .A routine argument now ompletes the proof: Given � > 0, we an �nd integersn1 and N suh that kA(N;n)k1;� + kD(N)k1;� < �=2 for all n � n1. For this Nwe an �nd an n2 suh that kB(N;n)k1;� + kC(N;n)k1;� < �=2 for all n � n2.This shows that the sum of the norm of the four terms in the deomposition is lessthan � for all n � n0 := maxfn1; n2g. �15



For the proof of Theorem 2 we now proeed as in the disrete ase, with thefuntion spaes D, D(�) replaing the sequene spaes that we used in Setion 4.Convergene in distribution in these funtion spaes is a tehnially muh moreompliated issue: For details we refer the reader to one of the exellent re-searh monographs and textbooks on this subjet, suh as Dudley (1999), Pol-lard (1984), Shorak and Wellner (1986) and van der Vaart and Wellner (1996);Billingsley (1968) is the lassi in this area.The analogue of Proposition 5 is the empirial entral limit theorem, see e.g.p.97 in Pollard (1984). In the present setting this theorem states that pn(Gn�G)onverges in distribution to a resaled Brownian bridge B ÆG, whih is a entredGaussian proess with ovariane funtion given byov�(B ÆG)(s); (B ÆG)(t)� = EB(G(s))B(G(t)) = G(s ^ t)�G(s)G(t)for all s; t � 0. As h 7! hÆ is a measurable and ontinuous linear operator on Dthis implies that pn(GÆn �GÆ) onverges in distribution to V := (B Æ G)Æ, whihis again a entred Gaussian proess. A straightforward alulation shows that theovariane struture of V is given byov�V (s); V (t)� = GÆ(s ^ t)�GÆ(s)GÆ(t)for all s; t � 0. The distribution of the limit proess is onentrated on the set ofthose funtions in D that have their disontinuities at the jumps of GÆ, a sepa-rable subspae of D. We may therefore apply the Skorohod representation in theform given on p.71 in Pollard (1984). In omplete analogy with the disrete asedisussed in Setion 4, now with Proposition 8 instead of Proposition 4, this leadsto the onvergene in distribution in D(�) ofpn(Fn � F ) = pn��(GÆn)� �(GÆ)�to Z := V ?H , with H as in the statement of the theorem. Again, Z arises from Vby a deterministi linear transformation and therefore is again a entred Gaussianproess. Its ovariane struture is given byov�Z(s); Z(t)� = E V ? H(s)V ? H(t)= Z[0;s℄ Z[0;t℄EV (s� u)V (t� r)H(du)H(dr)= Z[0;s℄ Z[0;t℄�GÆ((s� u) ^ (t� r))�GÆ(s� u)GÆ(t� r)�H(du)H(dr)= Z[0;s℄ Z[0;t℄GÆ((s� u) ^ (t� r))H(du)H(dr) � GÆ? H(s)GÆ? H(t):Together withHÆ = 1� 1Xk=2(�1)k+1e�k (GÆ)?(k�1) = �e�� 1Xk=1(�1)k+1e�k (GÆ)?k = �e�GÆ ? Hthis ompletes the proof. 16



6. Comments. In 6.1 we disuss the onnetion to other stohasti proesses,6.2 explains a testing appliation. Two variants of the plug-in estimator are brieyonsidered in 6.3. The �nal subsetion ontains some onluding remarks.6.1 In the previous setions we have seen our basi problem as an infereneproblem of the lassial type, where the observations are a sample from a �xeddistribution with a spei� struture. We briey point out that the above an alsobe seen as an inferene problem for stohasti proesses; in fat, we have alreadymentioned in the introdution that the sample typially arises from observing someompound Poisson proess S = (St)t�0 at equally spaed time intervals. Theproess S an also be regarded as a marked point proess, these and their statistisare treated in Karr (1986). This embedding of the deompounding problem alsopoints towards several generalizations of our basi setup. Some of these are oftheoretial interest and have onsiderable potential for appliations, e.g. proesseswith non-onstant rate suh as doubly stohasti or Cox proesses. Among these,Poisson proesses with a Markov modulated intensity have reeived onsiderableinterest over the years, see e.g. Asmussen (1989). On overview of the literature onthe statistial analysis of queueing systems is given in Bhat et al. (1997).6.2 For Poisson distributions, i.e. with the base distribution onentrated at thesingle value 1, the asymptoti ovariane struture of the plug-in estimator givenin Theorem 1 an be further evaluated, resulting inE�2 = e� � 1; E�Z1 = ��1(1 + �e� � e�);EZ21 = ��2��2e� � �e� + e� � 1�;E�Zi = ���1ri; EZ1Zi = ��2ri(1� i� �) for i � 2;EZiZj = ��2(�1)jrimi;j for 1 � i � j;with ri = e� (��)ii! ; mi;j = iXl=0 �il� �l+j�i(l + j � i)! for 1 � i � j:This displays the limit distribution as a funtion of the rate parameter � and anbe used to obtain asymptotially orret ritial regions of tests for Poissonity, if� is estimated by e.g. the mean of the data. It would be interesting to omparethe power of the resulting test with the power of other tests of Poissonity proposedin the literature, see e.g. Klar (1999) and the referenes given there, espeially forompound Poisson alternatives.6.3 It is immediate from (3) (or, more probabilistially, from the interpretationof ompound distributions as random sums) that qi > 0 for all i in the additivesemigroup generated by the support of p. As a onsequene probability massfuntions assoiated with ompound distribution annot have bounded support,whih means that the empirial mass funtion qn annot be the mass funtion of aompound Poisson distribution. In partiular, even if the Panjer inversion appliedto qn yields an element of `1 with high probability if n is large, this sequenewill always have negative entries. Therefore, the plug-in estimator needs somemodi�ation in order for the estimates to be probability distributions. In thedisrete ase a straightforward remedy is to simply replae the negative entries by17



0 and then to normalize to keep the sum of the entries to be equal to 1. This hangesthe plug-in estimate pn into �(pn), say. It is easy to see that � is ontinuous atp, whih means that onsisteny is not lost by applying �. However, a similarlystraightforward transfer of asymptoti normality by a delta method argument is notpossible as � is not di�erentiable at p. A loser analysis, arried out in Buhmann(2001), shows that we still have onvergene in distribution of pn��(pn)� p�, butthat the limit is no longer Gaussian.A seond modi�ation of the plug-in estimator is motivated by the observationthat the sample y1; : : : ; yn from the ompound distribution annot possibly ontainany information about the base probabilities pk with k � zn := maxfy1; : : : ; yng.It therefore seems natural to stop the Panjer inversion at zn, as we have done inthe horse kik example in Setion 3. It is shown in Buhmann (2001) that thismodi�ation does not hange the distributional asymptotis.In the ontinuous ase we have the similar phenomenon that the plug-in estimatorfor the distribution funtion of the individual laims is itself not a distributionfuntion (see the right-hand plot in Figure 1, and Figure 2). We ould assoiatewith any F that de�nes a signed measure distribution funtions F (1), F (2) viaF (1)(x) = inf�F (y) _ 0 : y � x	; F (2)(x) = sup�F (y) ^ 1 : y � x	;but at present we do not know the e�et of these modi�ations on the asymptotidistribution of the estimators.6.4 The theorems in Setion 2 show that the deompounding problem an besolved on the usual n�1=2-level, a fat that we ontinue to �nd slightly surprising.At least in the general ase we were initially regarding the problem as `ill-posed',with the orresponding onsequenes suh as a rate lower than n�1=2 for the esti-mates. Of ourse, the lassi�ation of a problem as ill-posed or inverse et. dependson the hoie of topologies, so our results may be rephrased as saying that there arestatistially meaningful hoies for the latter where deompounding an be onsid-ered to be a perfetly regular problem. However, numerial experiments suh asgiven in Setion 3 remind us of the fat that a good rate is not a guarantee for highpreision: Comparing the left-hand and the right-hand plot in Figure 1 shows thatthe `onstant in front of the rate' may be rather high. This e�et beomes morepronouned with inreasing rate �. Indeed, we know from the entral limit theo-rem for random sums that the preise form of the individual laim size distributionbeomes irrelevant as �!1 and that only the �rst two moments survive.Aknowledgements. We would like to thank both referees and Editor JonA. Wellner for their omments on the �rst version of this paper, in partiular fordrawing our attention to several referenes that we had overlooked.
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