
Technische Universität München
Lehrstuhl für Kommunikationsnetze

Locator/Identifier Split Based
Internet Architecture With Integrated

Security & Privacy

Dipl.-Ing. (Univ.) Oliver G. Hanka

Vollständiger Abdruck der von der Fakultät Elektrotechnik und Informationstechnik
der Technischen Universität München zur Erlangung des akademischen Grades eines

Doktor-Ingenieurs (Dr.-Ing.)
genehmigten Dissertation.

Vorsitzender: Univ.-Prof. Dr.-Ing. Ulf Schlichtmann
Prüfer der Dissertation: 1. Univ.-Prof. Dr.-Ing. Jörg Eberspächer (i.R.)

2. Univ.-Prof. Dr.-Ing. Klaus Diepold

Die Dissertation wurde am 20.02.2012 bei der Technischen Universität München
eingereicht und durch die Fakultät für Elektrotechnik und Informationstechnik am
15.10.2012 angenommen.

ii

Locator/Identifier Split Based
Internet Architecture With Integrated

Security & Privacy

Dipl.-Ing. (Univ.) Oliver G. Hanka

20.02.2012

TO JULIA AND MY PARENTS

Abstract

Due to its enormous growth and success the current Internet architecture is facing a
set of challenging aspects. These aspects mainly arise from the discrepancy between
the original design goals for the architecture and today’s Internet usage pattern. To
overcome those problematic issues, the locator/identifier separation paradigm was
introduced. This novel addressing scheme provides solutions to many of those chal-
lenging aspects. In this thesis a novel clean–slate Next Generation Internet architec-
ture based on the locator/identifier separation paradigm is developed and analyzed.
The HiiMap mapping system builds the core of this architecture and provides a trust-
ful mapping between identifiers and locators. Furthermore, it serves as a distributed
public key infrastructure based on threshold cryptography. This has the advantage
that no single point of trust within the architecture is required. The security frame-
work of the HiiMap architecture is completed by a smart card based client key man-
agement. A downside of the locator/identifier separation paradigm is its disclosure of
an end point’s location information. To overcome the location privacy issue, a proxy-
based mechanism is integrated into the architecture. The architecture was partially
implemented and deployed to the G-Lab experimental facility.

v

vi

Zusammenfassung

In dieser Arbeit wird eine neuartige Internet-Architektur basierend auf der Tren-
nung von Adressen und Bezeichnern (Locator/Identifier Split) entwickelt und un-
tersucht. Den Kern der Architektur bildet das HiiMap–Mapping–System, welches
eine vertrauensvolle Zuordnung zwischen Adressen und Bezeichnern bereitstellt.
Des Weiteren dient das Mapping System als Public Key Infrastruktur unter Verwen-
dung von Threshold–Kryptographie. Dies bietet den Vorteil, dass kein zentraler Ver-
trauenspunkt in der Architektur benötigt wird. Auf Benutzerseite wird das Schlüs-
selmanagement der HiiMap-Sicherheitsumgebung mit Hilfe von kryptographischen
Chipkarten bewerkstelligt. Ein Nachteil der Locator/Identifier–Split–Adressierung
besteht darin, dass der Aufenthaltsort eines Teilnehmers jederzeit offengelegt ist. Die
Architektur wird daher durch einen Mechanismus komplettiert, der die ortsbezogene
Privatsphäre von Teilnehmern gewährleistet. Die Architektur wurde teilweise im Ex-
perimentalnetz G-Lab implementiert.

vii

viii

Acknowledgements
After my last exam Prof. Dr. Jörg Eberspächer asked me whether I would be interested
in joining his research team at the Institute for Communication Networks. He easily
convinced me by offering the prospect to work on novel Internet architectures within
a joint research project of several universities and industrial partners. During my
four years at the institute and on the project I discovered the freedom and creativity
involved in investigating novel ideas and concepts. I grew fond of the research work
and never regretted to haven taken this step.
I am, therefore, deeply grateful to Prof. Dr. Jörg Eberspächer for having offered me
this position, supervising my thesis and including me in the G-Lab research project.
Thank you very much for being a great and helpful supervisor; giving me support and
guidance while at the same time leaving me enough freedom to follow and pursue my
own ideas.
I also want to thank Prof. Dr. Klaus Diepold, who already supervised my bachelor
and diploma thesis, for agreeing to be the second examiner of my thesis.
Furthermore, I want to thank all my current and former colleagues at the Institutes
for Communication Networks and Media Technology. Being part of the "LKN" was
a great experience. It not only meant to have colleagues to discuss research related
topics but also participating in after–work activities or spending tea breaks among
friends. For being able to discuss my work with and giving me advice I want to thank
Christian Merkle, Julian Lamberty, Dr. Gerald Kunzmann, Dr. Michael Eichhorn and
Dr. Moritz Kiese. In particular I want to thank Martin Pfannenstein for his advises
and for proofreading this thesis.
In addition to the colleagues at the institute I had the pleasure to get to know and to
work with other colleagues from the G-Lab project. I always enjoyed the conferences,
workshops and project meetings which provided the chance for interesting discus-
sions on various research topics as well as get–togethers afterwards. I am particularly
thankful to Hans Wippel, Dennis Schwerdel, Dr. Bernd Reuther and Prof. Dr. habil.
Michael Menth for the collaboration and fruitful discussions. Furthermore, I want to
thank the participants of the Doctoral Consortium at the 10th GENI Conference.
Another thanks goes to my graduate students. In particular the collaboration with
Wolfgang Fritz and Thomas Szyrkowiec provided much help in writing this thesis.
I am much obliged to my parents who always supported me, were there whenever
I needed them and enabled me to be where I am today. Without your support and
encouragement this thesis would have never happened.
Last but not least, I want to thank my wonderful, loving and encouraging girlfriend
Julia for all the time we spent together as well as the love and support she gave me.
Thank you so much!

Munich, Germany, February 2012 Oliver Hanka

ix

x

Contents

List of Figures xv

List of Tables xvii

1. Introduction 1

2. Motivation for a Novel Internet Architecture 3
2.1. Shortcomings of Today’s Internet Architecture 3

2.1.1. Design Principals of the Current Architecture 3
2.1.2. IPv4 Address Exhaustion . 6
2.1.3. Forwarding Information Base Growth 7
2.1.4. Lack of Security and Privacy . 10

2.2. Expectations Towards a Novel Architecture 12
2.2.1. Scalability . 12
2.2.2. Mobility . 13
2.2.3. Security . 14
2.2.4. Privacy . 14

2.3. Next Generation Internet Architecture . 15
2.3.1. Evolutionary vs. Clean–slate Approach 15
2.3.2. The HiiMap Next Generation Internet Architecture 17

3. Addressing and Mapping in a NGI architecture 19
3.1. State of the Art . 19

3.1.1. Locator/Identifier Separation Paradigm 19
3.1.2. Mapping . 23
3.1.3. Properties of a Mapping System 27

3.2. NGI Mapping Proposals . 29
3.2.1. Tree–Based Mapping . 29
3.2.2. Distributed Hash Table Based Mapping 30
3.2.3. Limitations/Evaluation of Existing Proposals 34

3.3. HiiMap Mapping System . 37
3.3.1. Concept . 37
3.3.2. Trust . 44
3.3.3. Evaluation . 45

3.4. Conclusion . 53

4. Integrated Security Architecture Based on Distributed Public Key Infras-
tructure 55

xi

Contents

4.1. State of the Art . 55
4.1.1. Public Key Cryptography . 55
4.1.2. Public Key Infrastructure . 56
4.1.3. Threshold Cryptography . 58
4.1.4. Internet Protocol Security . 59

4.2. Novel Security Concepts . 60
4.2.1. Cryptographic Namespace . 60
4.2.2. Public Key Distribution in Wireless Ad–Hoc Networks 65

4.3. HiiMap Security Framework . 67
4.3.1. Public Key Infrastructure . 67
4.3.2. Client Key Management . 72
4.3.3. Attack Scenarios . 79

4.4. Evaluation . 82
4.4.1. General Requirements . 83
4.4.2. Authentication Requirements . 84
4.4.3. Authorization Requirements . 84
4.4.4. Accounting Requirements . 85
4.4.5. Result . 86

4.5. Conclusion . 87

5. Location Privacy in Locator/Identifier Split Architectures 89
5.1. Problem Statement . 89
5.2. NGI Location Privacy Proposals . 91

5.2.1. HIP Location Privacy Framework 91
5.2.2. BLIND . 92
5.2.3. Limitations of Existing Privacy Proposals 93

5.3. HiiMap Privacy Service . 95
5.3.1. Privacy Service . 95
5.3.2. Proxy Selection . 99
5.3.3. Feasibility and Performance of the Proxy Service 105

5.4. Comparison of Location Privacy Frameworks 106
5.4.1. Cost Model . 106
5.4.2. Case Study for the Comparison . 108

5.5. Conclusion . 115

6. Realization Within the G-Lab Distributed Experimental Facility 117
6.1. G-Lab Experimental Facility . 117
6.2. Mapping Service . 118

6.2.1. HiiMap Protocol . 119
6.2.2. Global Authority . 119
6.2.3. Region . 120
6.2.4. Client . 121
6.2.5. Topology Monitor . 123

6.3. Public Key Infrastructure . 125
6.4. Privacy Service . 128

xii

Contents

7. Conclusion & Outlook 131

A. HiiMap Mapping System Protocol 133
A.1. Data Types . 133
A.2. Assigned Numbers . 133
A.3. Protocol Specification . 134

A.3.1. Protocol Header . 135
A.3.2. User Protocol Messages . 135
A.3.3. Mapping System Internal Protocol Messages 138
A.3.4. Backup System Protocol Messages 140
A.3.5. Privacy Service Protocol Messages 143

A.4. Topo Monitor Protocol (TMP) . 144
A.4.1. TMP Header . 144
A.4.2. TMP Messages . 144

A.5. Protocol Implementation Guide . 145

B. IPv6 to HiiMap Migration 147

Abbreviations 149

Bibliography 151

xiii

Contents

xiv

List of Figures

2.1. Address aggregation. 8
2.2. Forwarding Information Base (FIB) growth through provider indepen-

dent addresses. 9
2.3. FIB growth through multihoming. 9
2.4. FIB growth through traffic engineering. 10
2.5. HiiMap architecture overview. 18

3.1. Cisco LISP example. 21
3.2. Comparing the Internet Protocol (IP) and locator/identifier split ad-

dressing schemes. 22
3.3. Domain Name System tree. 25
3.4. DONA example topology. 30
3.5. Storage example in a Chord ring. 32
3.6. Example topology following the architecture in [HSKE09]. 33
3.7. Trust problem of global Distributed Hash Table (DHT)–based mapping

systems. 36
3.8. UID with regional prefix (RP). 38
3.9. Hierarchical structure of the HiiMap mapping system. 40
3.10. Internal structure of a DHT–based mapping region. 41
3.11. Message flow diagram of the HiiMap mapping resolution. 42
3.12. Message flow diagram illustrating the HiiMap relocation process. 44
3.13. Results of the DNS performance test. 49
3.14. Results of the HiiMap performance test. 50
3.15. Close up of the HiiMap performance test results. 52

4.1. Encrypting and signing a message with public key cryptography. 56
4.2. Hierarchical trust model of certificate authorities (CA). 57
4.3. Simplified geometric representation of Shamir’s Secret Sharing. 58
4.4. Cryptographic namespace based host verification. 60
4.5. Public key distribution in wireless ad–hoc networks. 66
4.6. Reconstructing the shared public key. 69
4.7. Determining key share storage locations. 70
4.8. Initial end node bootstrap process in the HiiMap security framework. . . 74
4.9. Flow chart for USR_LOCATION_UPDATE message processing. 76
4.10. Enabling unauthenticated USR_LOCATION_UPDATE messages. 77

5.1. Tracing a target. 90
5.2. Sample topology of the HIP Location Privacy Framework. 92

xv

List of Figures

5.3. Sample topology including the Hierarchical Internet Mapping Archi-
tecture (HiiMap) privacy service. 96

5.4. Message flow using the HiiMap privacy service. 98
5.5. Lessening the impact of triangular routing by proxy selection. 99
5.6. Privacy service migration. 100
5.7. Overview of the proxy selection mechanism with registration and query. 101
5.8. Message flow of the mapping system based proxy selection. 104
5.9. Comparison of medium response times (Domain Name System (DNS),

HiiMap and HiiMap + privacy service). 106
5.10. Total amount of used bandwidth (green) and number of users (red) in

the LRZ Eduroam access network. 110
5.11. Bandwidth per user in the LRZ Eduroam access network. 111
5.12. Transit fee cashflow. Fees need to be paid between customers and

providers. No fees are charged for peerings within the same tier level.
Peerings in the tier 1 level are always free of charge [The11]. 112

5.13. Communication path for location privacy mechanisms. 113
5.14. Total costs of the location privacy mechanisms based on the number of

users and additional required transit connections. 114
5.15. Influence of the required transit connections on the total costs per user. . 115

6.1. Shim layer employed in the HiiMap component’s network stack to em-
ulate a locator/identifier split addressing scheme. 118

6.2. Structure of the HiiMap protocol header. 119
6.3. Graphical user interface of the HiiMap client demo software. 122
6.4. Website screenshot of the HiiMap Seattle client. 123
6.5. Screenshot of the HiiMap topology monitor in overview mode. 124
6.6. Screenshot of the HiiMap topology monitor in close–up mode. 125
6.7. HiiMap client demo software with Public Key Infrastructure (PKI) ex-

tension. 126
6.8. Shares generation sub–window of the HiiMap client demo software. . . 127
6.9. Structure of the HiiMap privacy service test message. 128
6.10. HiiMap client demo software with location privacy extension. 129

B.1. Migration strategy: Shim layer in HiiMap operation. 147
B.2. Migration strategy: Shim layer in IPv6 operation. 148

xvi

List of Tables

3.1. Comparison between transparent and end node aware locator/identi-
fier split. 23

3.2. Comparison between tree and DHT–based mapping systems. 37
3.3. Scalability evaluation for the Global Authority. 47
3.4. Round Trip Times (RTTs) between the client and the queried server. . . . 51

4.1. Stored information on each entity in the HiiMap PKI structure. 71
4.2. Information stored on the smart card. 72
4.3. AAA general requirements qualifications. 84
4.4. AAA authentication requirements qualifications. 85
4.5. AAA authorization requirements qualifications. 85
4.6. AAA accounting requirements qualifications. 86

5.1. Comparison of existing location privacy mechanisms. 95
5.2. Comparison between the three different proxy selection methods. 103
5.3. Expenses considered in the cost model of the location privacy frame-

works comparison. 107
5.4. Summary of the parameters for the cost model. 107

xvii

1. Introduction

Within the last thirty years the Internet revolutionized the way people communicate.
The invention of the telephone, radio and computer set the stage for its world–wide
success. It evolved from a means to connect a couple of basement–filling super com-
puters to a global network of billions of nodes. The Internet is the foundation of many
business and drastically changed the way we distribute information, collaborate and
interact with each other.
This immense success, however, is the major problem of today’s Internet architecture.
The fundamentals were designed in the 70s and early 80s of the last century—first con-
cepts and prototypes even reaching back into the 1960s. The first TCP specification,
for example, dates back to the year 1974 (Request for Comments 675 [RFC0675]). Back
then, the personal computer was still unknown and the intention of the Internet was
to interconnect a couple of super computers located at bigger companies, government
sites or universities.
This highly contrasts with the usage pattern of the Internet today. While the protocols
mostly remained the same, we see billions of nodes—a growing percentage even be-
ing mobile. The architecture has to cope with a bandwidth several magnitudes higher
than the one in the beginning of the Internet. Further, nodes nowadays connect wire-
lessly to the network and communication partners can not be trusted anymore as in
the early days where everyone knew everyone within the community. While the first
Internet applications were destined to share research documents or duplicate data for
backup reasons in a quicker way, today we want to transfer huge multimedia files
across the globe. Packets were meant to be delivered in best effort manner, contrast-
ing with the demand for (almost) real-time traffic where a fraction of a second can
mean profit or loss of billions of dollars.
The first serious scalability concerns were raised in the early 1990s. Due to the rapid
growth of the Internet it became evident that the 4,294,967,296 addresses provided by
the deployed IPv4 protocol might not be sufficient in the future. Besides the exponen-
tial growth rate, a simple and obvious indicator for the address space exhaustion was
the world population. Already in 1987 it reached five billion people. Among other
reasons, this led to the specification of IPv6 which was proposed in 1995 (Request for
Comments 1883 [RFC1883]) and reworked in December 1998 (Request for Comments
2460 [RFC2460]). Yet, the migration to IPv6 is not completed up to today.
IP address exhaustion, however, is not the only problem of today’s Internet archi-
tecture. In Chapter 2 several other challenging aspects are described after a brief
overview of the original design goals and principals is given. Within the research
community it became evident that novel concepts to either extend the existing archi-
tecture or design a completely new one is inevitable (e.g., [RFC4984, GAB09]).
In this thesis, a novel clean–slate Internet architecture is introduced. It is based on the

1

1. Introduction

locator/identifier separation paradigm and has a strong focus on trust, security and
privacy. The contributions of this thesis are as follows:

• The first contribution is a scalable mapping system which maps identifiers to
locators. One of its key aspects is the partitioning of the mapping system into
regions. By assuring that the complete mapping system is not under a single
authoritative domain, it increases its trustworthiness. The mapping system is
DHT based, guaranteeing a reliable and highly extendable architecture which is
able to cope with billions of entries.

• As security plays a major role in any Next Generation Internet (NGI) architec-
ture, a security framework is introduced which is integrated into the mapping
system. It secures the mapping protocol and provides a trust anchor for higher
layer security protocols and applications. It is based on asymmetric threshold
cryptography and is not dependent on a single point of trust. Furthermore, the
framework provides a user–friendly client key management which is based on
cryptographic smart cards.

• The locator/identifier split addressing scheme discloses location information
about end systems to other peers. This is a problematic issue in regard to lo-
cation privacy. The NGI architecture introduced in this thesis is extended by a
privacy service which allows mobile nodes to conceal their location information.
This service is designed to affect the communication flow between two peers as
little as possible.

All of the architectural elements introduced in this thesis were evaluated in regard
to their performance, security requirements or financial aspects. Furthermore, each
element was prototypically implemented and their overall feasibility tested. The pro-
totypes were deployed to the G-Lab experimental facility which provides a large scale
testbed to evaluate Internet architecture concepts.

2

2. Motivation for a Novel Internet Architecture

Within the research community it is widely agreed that the Internet is facing certain
problems and challenges (e.g.„ [Han06, GAB09, RFC4984]). These problems mainly
originate in the contrast between the design goals of the Internet and today’s usage
pattern. Many researchers, therefore, believe that a change to the current architecture
is unavoidable.
To motivate the research towards a novel Internet architecture, the challenges of the
current one are outlined in this chapter after briefly discussing the original design
goals. Resulting from these challenges a set of expectations for a novel architecture is
defined, building the foundation of the Next Generation Internet (NGI) architecture
introduced in this thesis.

2.1. Shortcomings of Today’s Internet Architecture

The Internet as we know it has existed for roughly thirty years. While the architec-
ture mostly remained the same, the way we use the Internet drastically changed in
this time. This resulted in a set of problematic issues we encounter with the current
architecture. To better understand the challenges, the original design principals of
the Internet are briefly reviewed and, afterwards, problematic issues in the area of
scalability, mobility and security are discussed.

2.1.1. Design Principals of the Current Architecture

In the early 1970s, researchers tried to find ways to interconnect existing local area
networks. It soon became clear that a unified protocol suit was required which was
supported by all sites in order to allow for communication across several indepen-
dent networks. This is how the TCP/IP protocol suit (short for Transmission Control
Protocol/Internet Protocol) came into being. This protocol suit is still the foundation
of today’s Internet and has remained unchanged at its core since its flag–day deploy-
ment to the Internet in 1983 [Cla88].
Feldmann ([Fel07]) and Clark ([Cla88]) list the following design goals which protocol
designers were required to match while defining the protocol suit:

• Connect existing networks: Various local area or specific purpose (e.g., satel-
lite communication) networks existed. The main goal was to interconnect all of
these networks and enable nodes from different independent networks to ex-
change data.

• Survivability: Another key aspect was to design the network in a way that it
would remain functional even in case parts of it failed for whatever reasons. Of

3

2. Motivation for a Novel Internet Architecture

course, the failed parts would not be able to communicate anymore but the rest
of the network should not be affected by this.

• Support of multiple types of services: Contrary to the then existing telephone
network, the Internet should not be purpose–built for a single application (e.g.,
voice communication). The architecture should be open in a way that different
services could co-exist and be used in parallel over the same network.

• Accommodate a variety of physical networks: The local area networks which
the Internet should interconnect were built based on different technologies and
protocols. This, however, should not hinder end–to–end connectivity between
nodes of different physical networks. For example, a node attached via modem
over a telephone line should be able to exchange data with a node equipped
with a packet radio interface.

• Allow distributed management: As the various local networks were operated
and funded by different authorities, the interconnection between two different
networks should be realized by a mutual agreement between those two. The
management authority for the local networks, therefore, was required to remain
with its individual operators. Thus, the Internet should not rely on a single man-
agement entity but rather allow for distributed and independent management
of autonomous networks.

• Be cost effective: While an interconnecting network was highly desired, the
first participants consisted of research facilities mainly from the academic sector.
Equally to today, funds were limited and in forecast to allow the Internet to grow,
it needed to be designed as cost–effective as possible.

• Allow host attachment with a low level of effort: Attaching an additional node
should be relatively easy and not require high expenses or a tremendous amount
of programming/configuration. This goal was set to simplify the attachment of
new sites and support the growth of the Internet.

Resulting from these design goals, the following design principles were derived
which build the foundation of the TCP/IP protocol suit and, therefore, the architec-
ture of today’s Internet.

• Layering: The concept of layering was introduced to provide well–defined in-
terfaces between functional components. The idea was to create functional black
boxes which carry out a defined task. Other components relying on it do not re-
quire to know about the implementation specifics nor how the task is executed
in detail. A layer designed to forward bits from one node to another, for exam-
ple, needs to accept these from a higher layer and be able to hand over received
ones from a peer node. The higher layer, however, does not need to know about
the exact electrical encoding in which the bits are sent out on a copper wire or
how light pulses are generated to use a fibre optical connection. This principal
satisfies the design goals to support a variety of physical networks, the support

4

2.1. Shortcomings of Today’s Internet Architecture

of multiple services and also touches the goal of cost effectiveness and ease of
host attachment. It resulted in the creation of the Open Systems Interconnection
model (OSI model) which defines seven layers from a physical one up to the
application layer [ISO94]. The TCP/IP protocol suit uses a simplified four layer
model which concentrates layer one and two of the OSI model into the link layer
and number five to seven into a single application layer [RFC1122].

• Packet switching: This back then heavily debated design principle was about
how data is delivered between two nodes—either by using a dedicated con-
nection (like the telephone system) or by scrambling a data stream into pack-
ets which travel individually to their destination. The conclusion was to use
the packet switching approach to satisfy the survivability and cost effectiveness
design goals. A dedicated and pre–setup connection between two end nodes
would be fatally effected by a network component failure on its path and the
connection would be interrupted. By using individually routed packets, a small
number of packets is also affected by a network failure. Subsequent packets,
however, can be routed via a different route and still reach their destination.
In terms of caused costs, a dedicated connection allocates a certain amount of
bandwidth on a path even if no data is currently sent. The packet switching ap-
proach has the benefit that bandwidth is only required during the transmission
of the packet. In the meantime. i.e., between two packets, the bandwidth can be
utilized for packets of a different communication.

• A network of collaborating networks: This design principle resulted automati-
cally from the historical and political background of the then existing networks.
Individual networks, operated by different owners, already existed and the idea
of the Internet sparked from connecting these networks. It, however, was not de-
sired to bring the existing networks under a single authority which would have
meant to sign over a respective amount of investment for the old owners. Thus,
the design principal was set to interconnect the existing networks while leaving
the operational control with the individual operators. The networks would only
collaborate with each other and have mutual agreements with their neighbors to
interconnect. A global routing scheme ensures the path finding between all net-
works even if they are not directly connected. This further supports the design
goal of survivability and satisfies the goal to allow for a distributed management.

• Intelligent end systems: With each functionality placed within the network, it
would become more and more expensive. This contradicts the design goal to
be cost–effective. The principal, therefore, resulted in intelligent end systems
which handle as much functionality as possible. Only functionality which is re-
quired by any end system is placed within the network (e.g., path finding and
packet forwarding). Reliable packet forwarding, however, is not ensured by
the network. This would increase the costs of the network even though not all
applications benefit from it. Establishing reliable packet forwarding by retrans-
mitting lost packets, for example, would not increase the service quality of voice

5

2. Motivation for a Novel Internet Architecture

or video communication. The retransmitted packet might already been required
prior to its arrival by the audio or video codec.

• End–to–end argument: The design principle following the end–to–end argu-
ment is tightly coupled with the principle of intelligent end systems. It states
that functionality of a communication should range from end–to–end and is not
supposed to be interrupted or reimplemented along the way. An example is
TCP’s flow control and error detection [RFC0675]. The TCP functionality is nor-
mally handled at the end nodes while the intermediate network elements are
only required to deal with Internet Protocol (IP). It reduces the required func-
tionality stack in the intermediate network components and, therefore, also sat-
isfies the design goal of cost effectiveness. It further addresses the goal of sur-
vivability. By keeping complexity out of the network the probability of failure is
reduced. Furthermore, a general implementation of a specific functionality pro-
vided to all nodes might not meet the exact requirements of a specific applica-
tion and either introduces small errors to the application’s operation or requires
a reimplementation in the application itself [SRC84].

2.1.2. IPv4 Address Exhaustion

A problematic issue of today’s Internet architecture is the exhaustion of the IPv4 ad-
dress space. The IPv4 specification defines a fixed length of four octets (32 bit) for
the source and destination addresses in the packet header [RFC0791]. This limits the
address space to a theoretical maximum of 4, 294, 967, 296 unique addresses. Not all
of these addresses, however, can be allocated for routing in the public Internet. Some
addresses are reserved for special purposes such as private networks (~18 million
addresses) or multicast addresses (~270 million addresses). Additionally, each sub-
network has an own network and broadcast address which limits the amount of allo-
catable addresses even further.
To the designers of the Internet protocol, the amount of available addresses seemed
sufficient. They did not expect a very huge amount of participating nodes and consid-
ered the current architecture as an experimental network only [Cla88]. Contradicting
with these design goals is the huge success of the Internet today and its wide–spread
use. In February 2011, the Internet Assigned Numbers Authority (IANA) which over-
seas global IP address allocation assigned the address blocks out of its pool of unused
blocks to the Regional Internet Registries (RIR) [Hus11]. This means that no more free
address blocks are globally available. As soon as the RIR assign all of their addresses
to providers and independent customers, all addresses of the IPv4 address space are
taken and novel nodes cannot be connected to the Internet anymore without discon-
necting old ones1.
In the early 1990s, the rapid increase of assigned IP addresses raised the first concerns
that the 32 bit address space might not be sufficient and one day be exhausted. Al-
ready in 1987 the world population outgrew the number of 5 billion people and it be-

1This is a somewhat simplified statement, as other means like, e.g.„ Network Address Translation
allow multiple hosts to share a single public IP address.

6

2.1. Shortcomings of Today’s Internet Architecture

came obvious that in the future people might hold multiple devices which they want
to connect to the Internet. The development of a novel IP version, therefore, was fos-
tered and resulted in the specification of IPv6. The first proposal dates back to the year
1995 and a reworked version was published in December 1998 [RFC1883, RFC2460].
Among other changes to the protocol header, the fixed length of the address field was
increased to 128 bit (approx. 3.4 · 1038 addresses).
However, up to today, the migration from IPv4 to IPv6 is not completed. IPv4 is still
the dominantly used IP version although many devices already are capable of IPv6
and operate a dual network stack. Furthermore, mechanisms to use IPv6 as end–
to–end communication protocol do exist (e.g., tunneling IPv6 packets through a IPv4
network). The transition mechanisms and reasons why the migration is not completed
by now, however, are out of scope for this thesis.

2.1.3. Forwarding Information Base Growth

Each router in the so–called Default Free Zone (DFZ) of the Internet maintains a
Routing Information Base (RIB). In this RIB all known prefixes and the according
routes to the destination subnetworks are stored. This information is usually auto-
matically learned from the router’s neighbors or statically entered by the network
administrator. Additionally to the RIB, most of the routers also hold a Forwarding
Information Base (FIB). This table reflects the complete or parts of the RIB and is op-
timized for frequent read operations. Each incoming packet is matched against the
FIB and forwarded according to its entries. In former days, only a subset of the RIB
was cached in the FIB for fast access. Nowadays, however, router designer realized
that too much delay is introduced to a router’s forwarding plane in case an entry is
not found in the FIB and, therefore, needs to be fetched from the slower RIB. As both
information bases in up–to–date router designs hold basically the same information,
they are no further distinguished in this thesis and only referred to as FIB.
The FIB marks another grave problematic issue with today’s Internet architecture.
More specifically, the more than linear growth of the FIBs in the DFZ is raising con-
cerns [Hus11]. Today’s routers in the core network have over 300, 000 entries in
their FIB and need to parse it for each incoming IP packet2. Furthermore, the line
rate of the routers’ interfaces increases with each new generation which results in an
even smaller timeframe in which the lookup in the FIB needs to be performed. Al-
though the processing power of the router also increases, it can not cope with the
computational demand caused by the table growth and increased packet throughput
[RFC4984].
The research community has identified several reasons for the rapid growth of the
FIB [RFC4984]. The most obvious reason is linked to the IPv4 address exhaustion
described before. As more and more subnets are used, more entries in the FIB must
be stored as long as no address aggregation can be used. The solution to the address
exhaustion, IPv6, however, increases the FIB growths even further. IPv6 and its huge
address space also allows for several magnitudes more subnets which again increases

2Packets forwarded based on Multiprotocol Label Switching cause no lookup in the FIB.

7

2. Motivation for a Novel Internet Architecture

the amount of entries in the forwarding tables.
The more subtle reason for the FIB growth is address de–aggregation. The original
thought was to aggregate smaller subnets in the FIB into fewer bigger ones. This
means, instead of storing the same path for multiple /24, for example, only a single
entry for the matching /8 subnetwork is stored. This shrinks the FIB size drastically
and is a well–known mechanism from the telephone numbering plan [ITU05]. A call,
for example, originated in Germany with the country code of the destination being
+1 is always switched to North America, no matter what city the subsequent num-
bers indicate. The German telephone system only needs to store a single forwarding
entry for the complete North American continent instead of an entry for each city.
Analogous, /8 address blocks are assigned to the Regional Internet Registries (RIR)
and they assign smaller blocks to the provider in their region. The providers then
assign subnets to their clients. In that way, routes from other regions or providers can
be aggregated into bigger address blocks. Figure 2.1 illustrates a simplified example.
The 1.1.0.0/16 subnet is attached to Router 2 (R2) and two smaller (/24) subnets out of
this address block are in use. Router 1 (R1), however, only needs a single FIB entry in
order to forward a packet to either one of these subnets.

1.1.1.0/24

1.1.2.0/24

Core
R1 R2

Subnet via
1.1.0.0/16 R2

Figure 2.1.: Address aggregation.

This aggregation scheme, however, was broken due to multiple reasons. The three
major ones are provider–independent addresses, multihoming and traffic engineer-
ing. Provider–independent addresses are subnets which the RIR assigns directly
to end–user organizations. The end–user organization still needs a contract with a
provider to obtain routing of the subnet addresses but is able to change the provider
without having to assign different addresses to its nodes. This limits the provider
change barrier for a company as the costs associated with the change due to reconfig-
uration are marginal. For the network, however, this means that a small address block
cannot be aggregated with a bigger one anymore and requires a separate entry in the
FIB of the routers in the DFZ. The example in Figure 2.2 shows that an additional
entry in R1’s FIB is required compared to the example in Figure 2.1
In case of multihoming an end–user organization has a subscription with more than
one provider for fault tolerance reasons. The customer’s subnet is connected via at
least two uplinks with the rest of the Internet. Although one link might only be a

8

2.1. Shortcomings of Today’s Internet Architecture

1.1.1.0/24

1.1.2.0/24

Core
R1

R2

Subnet via
1.1.0.0/16 R2

R3

1.1.2.0/24 R3

Figure 2.2.: FIB growth through provider independent addresses.

backup link, a route via this link must be propagated to other routers in order to be
able to switch to the backup link in case of a failure of the main link. In case the
second link is only active for backup reasons, the FIB does not necessarily need to
grow—the RIB, nevertheless, does. Some end–user organizations, however, use the
additional links for load sharing. In this case the additional routes must be present in
the router’s FIB3 as depicted in Figure 2.3.

1.1.1.0/24Core
R1

R2

Subnet via
1.1.1.0/24 R2

R3

1.1.1.0/24 R3

Figure 2.3.: FIB growth through multihoming.

Traffic engineering is another cause for route de–aggregation. As these mechanisms
tend to be more complicated, only one example as shown in Figure 2.4 is given. The
1.1.0.0/16 subnet is reachable via router 2 (R2) from a router 1 (R1) perspective. Be-
tween router 3 (R3) and router 4 (R4), however, a direct peering is maintained and it
is agreed on that no transit fees are charged for any traffic passing this link. Traffic
forwarded via R2 into the core of the network is subject to transit fees. The owner
of the 2.2.0.0/16 subnet, therefore, is interested in forwarding all traffic destined for
the 1.1.2.0/24 subnet via R3, and not R2. This causes route de–aggregation and an
additional FIB entry for R1.

3Please note that it depends on the deployed routing protocol which route to store and select for
forwarding.

9

2. Motivation for a Novel Internet Architecture

2.2.0.0/16 1.1.2.0/24

Core

R1

R2

Subnet via
1.1.0.0/16 R2

R3

1.1.2.0/24 R3
1.1.1.0/24

R4

2.2.1.0/24

Figure 2.4.: FIB growth through traffic engineering.

2.1.4. Lack of Security and Privacy

Many security problems relate to the Internet’s weak notions of identity and the abil-
ity to easily spoof everything ranging from IP addresses to routing updates and email
addresses [RD10]. The Internet was originally designed to be an open network with
mutual trust relationships between participants. It was intended to have no central-
ized authority which controls identities or serves as a guard whether an aspirant is
allowed to join the network or not. This is why no natural trust anchor exists to build,
e.g.„ integrity, authenticity, non–repudiation and privacy upon. Rather than support-
ing security mechanisms, the open architecture is by design diametrically opposed
to a well–controlled system which would be ideal to provide security functionality
[SGP+07].
The non existing trust and security concept was not an issue during the Internet’s
design phase. This is the reason why none of the design goals and principles described
in Section 2.1.1 cover these aspects. This, however, changed drastically as soon as the
Internet faced an exponential growth rate and became more and more economically
relevant. Mechanisms were required in order to meet the emerging needs for secure
and trustful communications. The open and decentralized collaboration of networks
forming the Internet, however, does not support any kind of security or trustful links
across multiple operators.
Until today, the research community and security specialists are debating which core
security principles should be applied to the Internet’s architecture in order to com-
pensate for the initial lack. The principles taken are analogues from the information
security field and extended to network security. There is, however, no real consensus
about the specific principles included. In the following, only aspects are discussed
which are included in most publications and listed in [Eck06].

• Authentication: In communication systems it is desired to be able to identify
a person, legal entity or end–point. Access rights might be bound to a specific
identity, and the subject claiming to own this identity needs to be able to proof

10

2.1. Shortcomings of Today’s Internet Architecture

it. Furthermore, authentication can be applied in the context of transactions or
information in order to prove that they are genuine.

• Integrity: To protect the integrity of any information means that it cannot be
modified undetectably. Data exchanged between communication partners is re-
quired to arrive unchanged at the destination in order to be considered integer.

• Confidentiality: This principle covers the aspect of concealing information
against third parties. Information should only be accessible to authorized sub-
jects, and no unauthorized onlooker or intermediate forwarder should be able
to obtain full or parts of the transmitted information.

• Availability: In communication systems it is important that information is avail-
able and can be accessed by authorized subjects. Third parties should not be able
to prevent access to information by, e.g.„ interrupting communication channels
or concealing end–systems from the rest of the network. The difficulty is to
distinguish between security–relevant threads to availability or legit incidents
which limit it (e.g., congestion).

• Non–repudiation: A system is providing non–repudiation in case actions can-
not be denied afterwards by the subject initiating it. This means that a commu-
nication partner is not able to claim to neither have transmitted nor received a
transaction even though it was involved. This principle is especially important
in eCommerce systems and for accountability.

• Privacy: In order to provide privacy, any information which gives away clues
about a natural or legal person must be concealed. Thereby, two levels of privacy
can be defined. The first is to mask person–specific information to onlookers not
involved in a communication. The second is to conceal the identity even against
communication partners. The challenge, hereby, is to still allow for mutual au-
thentication.

To address the initial lack of security and to fulfill the above mentioned principles in
the Internet, novel protocols (e.g., IPsec, HTTPS, DNSSEC) were designed and pur-
pose built to secure a specific application. This, nevertheless, has not resulted in a
secure Internet. Combining secure components does not necessarily lead to an over-
all secure system. The weakest component still determines the security level of the
complete architecture [Fel07].
Usability is another problematic issue regarding security. Mechanisms are often too
complex for end–users to fully understand and utilize. This is worsened by having
individual approaches by different applications. The average user is often not aware
of the risks imposed by the lack of security. It is, therefore, common that the extra
effort required to establish secure communications is not taken.

11

2. Motivation for a Novel Internet Architecture

2.2. Expectations Towards a Novel Architecture

There are many expectations towards a NGI architecture which widely differ depend-
ing on the point–of–view of the observer/stakeholder. The European Future Internet
Assembly conference compiled a general list of aspects, properties and desired mech-
anisms they expect from a NGI architecture [GAB09]. Addressing all of these proper-
ties would certainly go beyond the scope of this thesis. The following properties are
only an excerpt and represent pressing challenges which are dealt with in this thesis.
This, however, does not mean that other aspects (e.g., cost–effective network manage-
ment, green–IT) are less important. Those properties not addressed were always kept
in mind while designing the proposed components in order to not foreclose them by
design.

2.2.1. Scalability

Scalability, besides security, is one of the most referred–to properties expected from a
NGI architecture. The term, however, is a bit ambiguous and often used to abstract
different characteristics. In the context of this thesis, scalability refers to an architec-
ture’s ability to support a large amount of participants while not disproportionately
increasing complexity. In Section 2.1.2 and 2.1.3 two scalability problems of today’s
Internet architecture are discussed which need to be addressed by a Next Generation
Internet architecture.
The first challenge is the address space exhaustion. A Next Generation Internet ar-
chitecture requires an addressing scheme which either does not limit the amount of
available addresses or provides a very large address space. The size of the address
space, however, must not only satisfy projected subscriber growth based on today’s
growth rates. It even needs to provide enough addresses for novel, yet unforeseen
usage patterns. This could, for example, be a novel class of Internet devices boost-
ing the amount of required addresses. Another scenario could be to not only address
end–systems but also services, persons and content in the future. A novel addressing
scheme, therefore, must be capable to support an enormous amount of end–points4.
The second challenge refers to the computational load of the intermediate network el-
ements. As discussed in Section 2.1.3, the FIB in the DFZ is growing at a much higher
pace than the development in hardware technology can keep up with. The reasons for
the FIB growth are mainly identified as the requirement for multihoming, provider–
independent addresses and the vast subscriber growth [BGT04]. These factors or re-
spectively the underlying causes are, however, desired aspects of a Next Generation
Internet architecture. Their benefit should not be restricted in any way. Contrariwise,
the novel architecture should provide native support for this functionality without the
downsides of today’s mechanisms.
While IPv6 is a solution for the first challenge, it does not address the second one
at all. It even worsens the FIB growth by supporting many more end–points. Fur-

4The term end–point, thereby, means any kind of addressable entity participating in or being affected
by the Internet.

12

2.2. Expectations Towards a Novel Architecture

thermore, the very large address space inveigles the lavishness of subnets amplifying
de–aggregation.
A Next Generation Internet architecture, therefore, must provide an addressing
scheme which features a very large address space but at the same time addresses the
route de–aggregation problem. Furthermore, the original design goals of the Internet:
cost effectiveness, host attachment with a low level of effort and survivability must still be
satisfied.

2.2.2. Mobility

Mobility of content, services and end systems is another important challenge a NGI
architecture has to support. During the initial design of the Internet, mobility was not
an issue at all. Network enabled end systems were large and heavy, and devices with
a mobile power supply were nearly non–existent. This drastically changed during the
last 20 years. Nowadays, lots of Internet–capable mobile devices exist and mobility
becomes more and more important.
On layer 2 of the OSI model, mobility is already addressed. Most Media Access Con-
trol (MAC) layer protocols are capable of roaming and support seamless handovers
between base stations, for example. Modern devices, such as smart phones, also sup-
port virtual seamless handovers between different access technologies (e.g., 802.11 vs.
UMTS). This is achieved by maintaining connections over both access technologies
and forwarding data over the faster one (e.g., 802.11). Whenever one access link be-
comes unavailable, the device forwards data on the remaining link, still providing
Internet connectivity without the requirement of user interaction.
Layer 3 mobility, however, is not supported by either the original design of the Inter-
net nor today’s devices. Each change of network attachment point which is beyond
the scope of the local subnet results in the assignment of a novel IP address (either stat-
ically or dynamically). This means that all connections based on the old IP address
are interrupted and need to be re–established using the new address. The architecture
does not support address changes for connections (or connectionless streams for that
matter), and functionality within the application layer must compensate for this lack.
Although mobility support for layer 3 has been specified to address this (MobileIP
[RFC5944]), it has not seen wide acceptance. A NGI architecture, therefore, must sup-
port layer 3 mobility without the disadvantages of MobileIP5.
In a future Internet, mobility, however, might not only be restricted to end–systems.
It is also feasible that virtual components and services migrate from device to device
while requiring a steady connection. An example would be a conference call service
which is executed on a sever as close as possible to the participants. In case partici-
pants join and leave the conference during the call, it might be useful to migrate the
service to another physical machine. This kind of mobility must also be supported by
a NGI architecture.

5One of the main disadvantages of MobileIP is triangular routing which is discussed in Chapter 5.4.

13

2. Motivation for a Novel Internet Architecture

2.2.3. Security

Security must be a key aspect and play a fundamental role in any NGI design. The
challenge is to find a good balance between an open architecture and a closed system
[SGP+07]. While the open architecture reflects the current Internet design, a closed
system is the ideal foundation for a strong security architecture. Please note that closed
system in this context does not mean proprietary mechanisms or protocols—they can
be open–source ones. It rather refers to accessibility of the network and strong control
mechanisms to grant or deny functionality within the network.
In [Han06] Handley argues that it will not be possible to find a single magic bullet to
fix all of the Internet’s security issues. Nor is it possible to foresee any future vulner-
ability. He states that security will always remain a race between attackers and those
trying to prevent the attacks. It is, therefore, impossible to design a security frame-
work which is able to withstand all of today’s and any future attack scenarios. Rather
than trying the impossible, the efforts should be put into designing a NGI architecture
which provides a strong foundation to build security mechanisms upon. Contrary to
a closed system, the architecture should remain open and extendable. An extendable
architecture can be adapted and extended with novel security mechanisms to counter
future vulnerabilities. It also does not contradict the original design goals of the Inter-
net.
Another important aspect of security is trust. This holds true for the security mecha-
nisms itself but also the basis on which the mechanisms are build upon. In case one
does not trust the starting point of a security chain, the rest of the chain becomes un-
trustworthy as well even if the links are sound and meet one’s security requirements.
The design goal in terms of security for a NGI architecture, therefore, must be to im-
plement a strong trust anchor. This trust anchor must enable security mechanisms
to provide the aspects described in Chapter 2.1.4 (i.e.„ authentication, integrity, confi-
dentiality, availability, non–repudiation, privacy). In order to introduce trust, the anchor
must not be controlled by a single authority. This contradicts the design principle of
distributed management, and no political, commercial or non–government organiza-
tion is unreservedly trusted by any Internet participant.

2.2.4. Privacy

Similar to security, privacy was not on the agenda while designing today’s Internet.
While being a subset of the security field, the aspect of privacy only raised more at-
tention in recent years. Especially social networks and companies collecting huge
amounts of personalized data brought privacy to the attention of the public [Coo11].
A user’s privacy is most likely violated by unauthorized collecting and combining of
personalized information of any kind. This, for example, could be data about one’s
habits, work related information, social relations or movement profiles. The infor-
mation leakage, thereby, can be intentional or unknowing and occur on all layers of
the OSI model. In recent privacy discussions, it is frequently stated that users often
voluntarily give away personal information. It, therefore, is unnecessary to research
or implement mechanisms to protect a user’s privacy [Coo11]. This can be outlined

14

2.3. Next Generation Internet Architecture

as the social network paradox. While users demand data confidentiality and privacy,
they voluntarily give away personal information without any hesitation.
The argument, however, neglects an important aspect. A user (or in this context more
suitable: person) should have the right to remain in control over which information
is made public and which not. Information should only be disclosed in case the user
is aware of it and intentionally does so. Gathering information without the user’s
knowledge should be prevented by the network architecture and the applications.
Considering location privacy, for instance: Gaining knowledge over a user’s current
whereabouts could be valuable for advertising reasons. Taking advantage of the lo-
cation information should be possible in case the user decides to reveal his Global
Positioning System (GPS) coordinates for whatever reason. It, however, should not
be possible to learn the user’s coordinates by other means, e.g., layer 3 address to
coordinate matching.

2.3. Next Generation Internet Architecture

The challenging aspects the Internet faces serve as motivation for a NGI architecture.
Many researchers agree that a change to the current architecture is necessary to be able
to address the challenges and meet the expectations [RFC4984]. How these changes
might look like, however, is not yet clear. Two approaches for a NGI architecture
design are discussed which are outlined in the following. This chapter ends with an
overview of the NGI architecture presented in this thesis.

2.3.1. Evolutionary vs. Clean–slate Approach

The research community is vividly debating whether it is necessary to address the
challenges listed in Section 2.1 by a completely new design or whether it is sufficient
to continually try to improve the current architecture. The evolutionary approach is an
evolvement of today’s Internet with incremental changes to the architecture to meet
the challenges. The so called clean–slate approach, in contrast, suggests to design a
novel architecture from scratch without the requirement to provide backward com-
patibility.

Evolutionary: The evolutionary approach aims at understanding the problematic
issues and its impacts on the current Internet. Afterwards, a design is proposed which
resolves the challenges with the constraints of backward compatibility and incremen-
tal deployment [RD10].
Advocates for this approach argue that there is no history of any large–scale de-
ployment of a clean–slate architecture so far. Revolutionary ideas have been well–
researched (e.g., active networks, CLNP, Nimrod). But even less radical and back-
ward compatible protocols which are not incrementally deployable (e.g., IPv6, S-BGP,
RSVP) have not been in large–scale productive use. Evolutionary elements (e.g., NAT,
CDN, DiffServ), in contrast, are widely deployed and became an integral part of to-
day’s architecture. Dovrolis states in [RD10] that economics forbids to replace even

15

2. Motivation for a Novel Internet Architecture

an inferior technology unless the additional benefits of the new protocol significantly
outgrow the high transition costs. The last fundamental change of the core protocols
date back to the year 1993 when Classless Inter Domain Routing (CIDR) was intro-
duced [Han06]. This change was only possible because of the pressing challenge of
class B subnet shortage. To realize this introduction, changes to end–systems were
postponed to the natural operating system upgrade cycle, and the majority of the
routers were from a single vendor (Cisco). The packet forwarding was largely re-
alized in software and could easily be changed by installing a new firmware. This
is in high contrast to the massive hardware acceleration implementations in today’s
routers manufactured by various vendors.
The last flag–day event—representing a clean–slate like protocol deployment—was on
the 1st of January 1983 when the transition to the TCP/IP protocol suit was carried out
[RFC0801]. Even back then the transition lasted three days although it was planned
to complete the switch within a single day. Attempting such a switch today would
result in a significant financial loss in regard to the Internet’s fundamental role in
today’s economics.
Furthermore, Dovrolis argues that the current architecture is "debugged" for over 30
years now. Even a very carefully designed revolutionary architecture will suffer from
software bugs and design flaws due to its complexity. A clean–slate architecture,
therefore, will not be better than today’s architecture with incremental improvement
applied to it.

Clean slate: The goal of the clean slate approach is to design an architecture which
is significantly better in regard to performance, security, scalability and other proper-
ties than the current Internet. This architecture should not be limited by constraints of
today’s Internet and the requirement to ensure backward compatibility.
While advocates of the evolutionary approach consider add–ons and enhancements to
be part of the solution, those favoring a clean slate approach see the incremental fixes
as part of the problem of today’s architecture. They argue that the old, fixed structures
limit the development of novel principles and a flexible architecture. Furthermore, the
constant bug fixing and enhancing of the architecture led to a complex patchwork of
protocols and add–ons. Not uncommon, some add-ons designed to solve a problem
conflict with another protocol introduced to deal with another limitation of the archi-
tecture (e.g., NAT vs. IPSec [Han06]).
Another problematic issue is the limited scope of some incremental enhancements as
described in [Han06]. In the mid-1980s, for example, the Internet suffered from a se-
ries of congestion collapses. The network was busy with forwarding a lot of packets
but a high percentage were retransmissions. The reason was that original packets did
not come through or were acknowledged after the retransmission timer expired. Con-
gestion is a network level problem and should be addressed at this level. It, however,
was not considered to be feasible to implement a novel layer at all network elements
and participants in a flag–day like manner, and an incremental solution was desired.
The bug–fix was to deploy a TCP congestion control mechanism which was back-
wards compatible. This transport–layer solution limits the congestions caused by TCP

16

2.3. Next Generation Internet Architecture

flows but does not address any other protocols also capable of provoking congestion.
It, furthermore, does not factor in traffic from other protocols into its algorithm.
So–called ossification is another problem which evolved from incremental enhance-
ments to the architecture. Some network elements (e.g., NATs and firewalls) were
introduced to provide a certain desired functionality. These middle–boxes, however,
do not fit into the layered IP architecture and operate at layer 4 or above. This violates
the end–to–end design principle as these boxes intercept network traffic without be-
ing either source or intended destination of the packets they process [Han06]. These
network elements are not transparent to higher layers. This means that the originally
intended flexible and layered architecture is broken (or ossified), and novel protocols
or applications require workarounds or additional bug–fixes to function properly. As
HTTP is a common and widespread used protocol, many novel applications mimic
HTTP traffic to communicate to be able to pass the middle–boxes. A clean slate ap-
proach could reintroduce a defined architecture which is flexible enough to provide
the desired functionality of the middle–boxes without its downsides.
In [Fel07], Feldmann et al. outline that pressing challenges of today’s architecture are
rooted deeply in early design decisions underlying the Internet. Some of these de-
sign principles, however, became obsolete or even contradict with today’s challenges
and usage patterns (e.g., TCP slow start mechanism vs. wireless access networks).
Sometimes even advances in technology may question some of the design principles.
Rexford [RD10] and Handley [Han06] describe in their works that the current architec-
ture was only designed to be a testbed and not intended for large scale productive use
as seen today. Advocates of the clean–slate approach, therefore, favor this approach
because they state that a novel architecture has the chance to be freshly designed,
analytically and practically evaluated and redefined before being deployed. This is
the way the ARPA net was build—no heavy constraints from previous architectures
limited the design.

2.3.2. The HiiMap Next Generation Internet Architecture

In this thesis, the Hierarchical Internet Mapping Architecture (HiiMap)—a Next Gen-
eration Internet architecture—is introduced which was developed at the Technische
Universität München. This architecture follows the clean–slate approach in order to
present an ideal concept which reflects today’s requirements and is flexible enough to
be adapted to unforeseen future usage patterns. The authors are aware, however, that
HiiMap will probably never replace today’s architecture in a flag–day like manner.
Rather, the idea behind the clean–slate approach is to research mechanisms and algo-
rithms benefitting from the green–field design without the ballast of old constraints.
Only environmental factors (e.g., scalability, technology advances and usage patterns)
are taken into account. In a first step, no backward compatibility to the current legacy
architecture needs to be considered. After having defined, analyzed and prototypi-
cally verified the novel architecture, elements can be back ported to the current Inter-
net architecture. The reason behind this approach is to set a goal in which direction the
current architecture should evolve. Therefore, an ideal proposal needs to be defined

17

2. Motivation for a Novel Internet Architecture

before further enhancing and pushing the current architecture in a specific direction.
The design goals of the HiiMap architecture were to provide end–to–end connectiv-
ity between peers while overcoming the problematic issues of today’s Internet archi-
tecture as described in Section 2.1. The main focus was to develop an architecture
which addresses the challenges of scalability, mobility, security and privacy. While
security and privacy can sometimes be seen as diametral views on the same aspect,
they also inflict with the challenges of scalability and mobility. Whenever scalabil-
ity is important—meaning a huge amount of users are involved—secure and trustful
means of communication and data sharing are required. HiiMap provides underlying
security mechanisms which are anchored in the architecture and can be employed by
higher layers. As a constraint, the architecture needs to be trustful in order for partici-
pants to be able to beneficially utilize the security mechanisms. This was considered
during the design of HiiMap. The aspect of mobility likewise raises security issues
and also introduces the challenge of privacy. The HiiMap architecture, therefore, pro-
vides means to ensure a mobile user’s location privacy.

Security
Framework

Mapping
System

Location
Privacy
Service

Locator/Identifier Separation Paradigm Based Addressing Scheme

HiiMap Architecture

Figure 2.5.: HiiMap architecture overview.

Figure 2.5 depicts the overall HiiMap architecture. There are three core components
which are introduced in this thesis. These components are the HiiMap mapping sys-
tem (Chapter 3), the integrated security framework (Chapter 4) and the location pri-
vacy service (Chapter 5). Following the introduction of these components, details of
the prototypical implementations used to verify the practicality of the components are
given in Chapter 6.

18

3. Addressing and Mapping in a NGI
architecture

The Hierarchical Internet Mapping Architecture (HiiMap) Next Generation Internet
(NGI) architecture is a clean–slate based approach. It is possible to build it around
a novel addressing scheme not backwards compatible with today’s Internet Proto-
col (IP) architecture. Although elements of the current architecture are reused, novel
concepts and ideas are introduced. In this chapter the novel addressing scheme—
the locator/identifier separation paradigm—is described, and the benefits of this ap-
proach are outlined. This addressing scheme, however, requires a novel entity within
the network, the so–called mapping system. This mapping system forms the core of
the HiiMap architecture and is the major scientific contribution of this chapter.

3.1. State of the Art

In this section, the locator/identifier separation paradigm and its two different vari-
ations are explained. For each variation a related work concept is briefly described
before evaluating the benefits and shortcomings of each approach. Subsequently, the
requirements of a mapping system for any locator/identifier split implementation are
outlined.

3.1.1. Locator/Identifier Separation Paradigm

To meet the requirements towards a Next Generation Internet architecture as de-
scribed in Chapter 2.2, the locator/identifier separation paradigm has been proposed
in the research community [FFML10, RFC4423], including the IETF and IRTF stan-
dardization and research bodies [RFC4984]. It was recognized that today’s IP address
assignment typically does not follow a topological but organizational structure, lead-
ing to the greater than linear growth rate of the Forwarding Information Base (FIB)
in the Default Free Zone (DFZ). The reason for this is the overloading of IP address
semantics.
In today’s IP–based architecture (IPv4 or IPv6), the IP address has two semantical
meanings. First, it serves as the address stating with whom we want to communicate
and, second, where this person or node is attached to the network. This overload of
meanings becomes problematic as soon as one of them changes. In case the attach-
ment point to the network changes, reflected by a different IP address assigned to the
node, the identity changes as well.
The locator/identifier separation paradigm, therefore, provides two disjunct ad-
dresses for each end point. An identifier, refecting the identity of the node and a

19

3. Addressing and Mapping in a NGI architecture

locator. The locator is used to determine a node’s attachment point towards the net-
work. This split between the naming and routing numbering space allows for a more
topology–driven assignment of a node’s routable address. As a benefit, a high level
of aggregation is possible, thus shrinking the FIB in the DFZ drastically by reduc-
ing the number of globally announced prefixes. Additionally, the paradigm enables
providers to handle multihoming elegantly by assigning multiple locators to a sin-
gle identifier or identifier–space. Each attachment point toward the network can be
addressed by an own locator while the node logically is only addressed by a single
identifier. Furthermore, the locator/identifier separation paradigm allows for a more
flexible traffic engineering by individually altering the identifier to locator mapping
[QIdLB07].
An important aspect of the locator/identifier split is the idea behind persistent iden-
tifiers. This means that once an identifier is assigned to an end system, it ought not
change other than specifically requested by the end system.
In the following, the two different variations of the locator/identifier separation pa-
radigm are explained.

Transparent Approach

In the transparent approach, the end node is not aware of the locator/identifier sep-
aration paradigm. Like in today’s IP architecture, the end-node uses only a single
address throughout layer 3 and above to identify a destination. The semantical sep-
aration between the logical identifier and routable locator is carried out within the
network. This means that the edge network is unaffected whilst the core of the net-
work experiences the major benefit of the locator/identifier split approach.

Locator/ID Separation Protocol One example for a transparent approach is the Lo-
cator/ID Separation Protocol (LISP) by Farinacci et al. [FFML10]. In this concept, only
a few nodes within the network are aware of the locator/identifier separation. The
end nodes and the core network are not affected by this approach. LISP introduces so–
called Endpoint Identifiers (EID) and Routing Locators (RLOC) which represent the
identifier and locator. Ingress Tunnel Router (ITR) and Egress Tunnel Router (ETR)
are involved in the locator/identifier split paradigm and keep the process hidden
from all other network elements. LISP is an evolutionary proposal based on today’s
IP architecture and is compatible with both IPv4 and IPv6. Figure 3.1 illustrates the
basic principle of LISP.
Whenever an end node wants to send a data packet to another end node not residing
in its own local network, it uses the destination’s EID as address. The EID is the
destination’s IP address assigned by its access provider. While the EID is routable in
the source and destination network, so–called LISP sites, it is not within the core of
the Internet. At the border of the LISP site, an ITR intercepts the packet and tunnels
it to the ETR of the destination LISP site. This tunneling is done by encapsulating the
original packet with an additional IP header. The destination address in this second
IP header is the RLOC of the ETR. The RLOC for a specific EID is found based on EID
prefixes which specify the LISP site which the EID node is attached to. A lookup in

20

3.1. State of the Art

a database system returns one or multiple RLOCs, and the ITR chooses one of these
RLOCs as the tunnel endpoint. RLOCs themselves are normal IP addresses which are
routed within the default free zone of the Internet. In case the destination end node is
attached to the same LISP site as the source, the packet is forwarded to the destination
solely on the EID.

Internet Core
LISP Site

11.12.3.0/24
LISP Site

16.34.6.0/24
ITR ETR

N3

N1

N2

EID: 16.34.6.2

EID: 11.12.3.4

EID: 11.12.3.9

RLOC: 7.4.2.8

Figure 3.1.: Cisco LISP example.

In this example (Fig. 3.1), N1 wants to send a packet to N2. It addresses the packet to
N2’s EID and sends the packet to its default gateway which is the LISP site’s ITR. The
ITR checks the destination address and initiates a lookup for the LISP site with the
network address 16.34.6.0/24. This returns 7.4.2.8 as the RLOC. Subsequently,
the ITR tunnels the original packet to the ETR with the corresponding RLOC by en-
capsulating it in a novel packet. The ETR strips off the outer packet and forwards the
original one into its attached LISP site. Forwarded within the LISP site, the packet
reaches its destination in the traditional way.

End Node Aware Approach

Contrary to the transparent approach, the end node aware one includes the nodes in
the locator/identifier addressing scheme. Each end node holds one or more identifier
and is assigned a locator for each network attachment point. Throughout the network
only locators are routable, and the end node is responsible for the identifier to locator
resolution. To obtain a locator for a specific identifier, the node needs to query a
database in its reach. In this approach, the intelligence is pushed from the network
to the edge and network components, e.g., router, do not need to handle identifier
during packed forwarding. Figure 3.2 illustrates the difference between today’s IP
addressing scheme and the end node aware locator/identifier split approach. Notice
how the identifier of node B in Figure 3.2b remains the same even when the network
attachment point of that node changes.

Host Identity Protocol An example of end node aware architectures is the Host
Identity Protocol (HIP) by Moskowitz et al. [RFC4423]. HIP introduces a novel name-
space on top of today’s IP address, called the Host Identity (HI). This HI fulfills the
role of the identifier of the locator/identifier separation paradigm while the IP address
is the locator. The HI represents a statistically globally unique name for any system
with an IP stack. In [RFC4423], the authors state that "any name that can claim to be

21

3. Addressing and Mapping in a NGI architecture

NetworkA

B

B
IP: 1.2.3.4

IP: 5.5.5.5

IP: 6.6.6.6

R
oa

m
in

g

(a) IPv4

NetworkA

B

B
ID: 12345

Loc: 1.2.3.4

ID: 55555
Loc: 5.5.5.5

ID: 55555
Loc: 6.6.6.6

R
oa

m
in

g

(b) locator/identifier split

Figure 3.2.: Comparing the IP and locator/identifier split addressing schemes.

statistically globally unique may serve as a Host Identifier”. They, however, strongly
recommend to use a public key of a public/private key pair as the HI, thereby intro-
ducing a cryptographic namespace. The cryptographic aspect is discussed in Chapter
4 while the focus in this chapter is on the locator/identifier split aspect of HIP.
Different public/private key algorithms use different key length, therefore, HIP intro-
duces a so–called Host Identity Tag (HIT). The HIT is a fixed 128 bit representation
of the Host Identity. It is created by cryptographically hashing the corresponding HI.
The HIT, therefore, is a 128 bit hash of the host’s public key. The size of 128 bit was
chosen to match the length of an IPv6 address. In a HIP packet, the HITs identify the
sender and recipient of a packet and are meant to look like IPv6 addresses to higher
layers.
Other proposals following this approach are [AAER06, KCC+07, FCM+09]. [AAER06]
and [FCM+09] focus on addressing end nodes while [KCC+07] takes the concept of
locator/identifier separation to the field of content addressing.

Comparison

While both approaches are designed to fix the most pressing downside of today’s IP
architecture—namely, the scalability issue in the core—, each has specific advantages
and disadvantages. Within the DFZ, both approaches can be treated as equal in terms
of countering the more than linear FIB growth rate due to aggressive aggregation of
routable addresses.
The transparent approach requires no change at the edge of the network. End nodes
are unaware of the locator/identifier separation paradigm. It, therefore, will be eas-
ier to migrate from today’s architecture to such an approach, compared to the end
node aware one. As a downside, however, this approach does not utilize the whole
potential of the separation paradigm. To provide end node mobility from an address
layer point of view, additional mechanisms like in today’s architecture are required
(e.g., MobileIP [RFC5944, RFC3775]). Furthermore, the tunnel routers, carrying out
the separation need to be very powerful in terms of computational power and cache

22

3.1. State of the Art

memory. Each packet needs to be processed and the header manipulated in addition
to the work of the forwarding plane. In case an identifier to locator mapping is not
present in the router’s cache, a query must be initiated to resolve the mapping. Until
the response is received, the data packet must either be cached or discarded. At this
point, no research has been carried out yet, whether the scalability problem is solved
by this approach or simply shifted from the router in the DFZ to the tunnel router.
The end node aware approach has the benefit of native mobility support without any
further mechanism. Additionally, it does not face the resource problem at the tunnel
routers (which do not exist in this approach). The major challenge of this concept is
the migration from today’s IP architecture towards the locator/identifier addressing
scheme. Each participating end node must be modified. The effort can be compared
to the current ongoing transition from IPv4 to IPv6.
Tabel 3.1 summarizes the strengths and weaknesses of both locator/identifier split
approaches. A “+” is used to mark that a specific feature is supported or a requirement
is fulfilled. “-” indicates that the requirement or feature is not met/supported and “o”
represents a partial coverage. This convention is used throughout the thesis.

Transparent End node aware
Counters FIB growth in DFZ + +
No additional network entity required - -
Inherent support for end node mobility - +
End node not required to be modified + -
Network entities not required to be modified - +
No add. packet dropping within the network - +
No migration efforts required o -

Table 3.1.: Comparison between transparent and end node aware locator/identifier
split.

Although the transparent approach has benefits in regard to migration efforts, the end
node aware one is chosen for the architecture introduced in this thesis. As discussed
in Chapter 2.3, the architecture is a clean–slate approach. The migration advantage of
the transparent locator/identifier separation paradigm, therefore, is not an important
aspect. Mobility support and no additional packet loss within the network, however,
are desired properties of a NGI architecture. These are inherently supported by the
end node aware approach.

3.1.2. Mapping

A crucial aspect of any locator/identifier split architecture is the mapping between the
identifier and locator plane. As described in Section 3.1.1, applications use identifiers
to address the destination in the end node aware approach. Within the network, how-
ever, data is forwarded based on locators. A node’s network stack, therefore, needs to
be able to resolve an identifier to the destination’s currently assigned locator. Before

23

3. Addressing and Mapping in a NGI architecture

discussing the required attributes for a mapping system in a future Internet scenario,
selected existing mapping processes in today’s Internet architecture are described.

Address Resolution Protocol (ARP) The Address Resolution Protocol is used for
resolution of network layer into link layer addresses [RFC0826]. Although not specifi-
cally designed according to the OSI model, its functionality can be described as being
positioned between layer 2 and 3. The ARP protocol can be employed with many
different layer 2 and 3 protocols but is most commonly found in an Ethernet and IP
scenario. In this scenario, ARP is used to map an IP address to a Media Access Con-
trol (MAC) address in a local area network. In case node A intends to send a packet
to node B, it sends out a broadcast ARP message requesting an answer for node B’s
IP address. In this message node A’s MAC address is included. Node B responds
with its own MAC address and sends the message to node A, using A’s MAC address
learned from the broadcast message. In this way, node A is aware of B’s MAC address
and able to send packets to node B. After the initial address resolution the learned
MAC addresses are cached at each involved host, eliminating the further need for
ARP messages1.
The ARP protocol is a well–established mapping mechanism in local area networks.
Due to its broadcast character, however, it does not scale in a global scope. ARP
broadcasts are only forwarded by layer 2 entities and not copied by layer 3 devices
(e.g., routers). A mapping mechanism for the locator/identifier separation paradigm
requires to be not only locally contained. Sending broadcast beyond local network
boundaries would clog the network with uncountable broadcast messages and, there-
fore, is not feasible.

Domain Name System (DNS) DNS is a hierarchically distributed mapping mecha-
nism to resolve human readable addresses (i.e., domain names) into machine readable
IP addresses [RFC1034, RFC1035]. DNS also serves other purposes which, however,
do not add to its mapping character and, therefore, are omitted in this context.
DNS is organized in a tree–like way resulting in a highly structured domain name-
space. The root of the domain space is ".". The next layer consists of so–called top
level domains (TLDs), for example, "com", "org" and "net". The levels below,
called subdomains, are not predefined and can be registered freely with the according
TLD authority. The example domain "example.com.", thus, represents a valid hier-
archical domain name under the "com" TLD. The root of the DNS tree is controlled by
13 logical root servers (A through M) [Ass11]. These root servers host a list of author-
ities responsible for the TLDs. Each individual TLD authority controls its part of the
DNS tree branch. It is, thereby, up to the authority to either resolve a domain by itself
or further delegate the resolution of a specific subdomain to another authority. The
latter is almost always the case, further extending the tree of domain name servers
and authorities. In a next step, the delegate for the "example.com." domain, for
example, might choose to register two additional subdomains under its own (e.g.,
"munich.example.com." and "frankfurt.example.com."). The resolution of

1Cache table aging, however, may result in novel ARP requests.

24

3.1. State of the Art

these novel subdomains might also be delegated to another authority. Figure 3.3 il-
lustrates a sample DNS tree wherein the right branch reflects the "example.com."
domain.

"."

"com""net"

"example"

"munich" "frankfurt"

"demo"

"berlin"

"xyz"

DNS root zone

Bob

Alice

"bob.berlin.demo.net."

"alice.munich.example.com."

Top level domains

Subdomains

Figure 3.3.: Domain Name System tree.

A client requesting the current valid IP address for a specific domain name (e.g.,
"alice.munich.example.com." sends his request to a domain name server of
his choice. This is most likely a server operated by his service provider. In case the
domain name server is responsible for the queried subdomain, it looks up the cor-
responding IP address and responds to the request. If the subdomain is not within
the domain name server’s responsibilities, it forwards the request up the tree to
its superior domain name server. Assuming that the client and his provider do-
main name server reside under the "net" TLD, the request gets forwarded to one
of the root domain servers. These report back the IP address of the correspond-
ing sever responsible for the "com" TLD. Once the request reaches the "com" do-
main name server, the subdomain "example" is looked up and the delegate for this
subdomain determined. The request is forwarded to the delegate and, thus, travels
down the branch of the DNS tree until the responsible domain name server for the
"munich.example.com." domain is found. This server then is able to resolve the
domain name into an IP address. Please note that the process of finding the responsi-
ble domain name server is sped up by the heavy use of caching in the domain name
servers. The provider’s domain server might directly contact the "example.com."

25

3. Addressing and Mapping in a NGI architecture

server in case neither itself nor one of its superior servers control part of the name-
space of the requested domain.
Contrary to ARP, DNS is a global mapping mechanism. Thus, its infrastructure could
be used to map identifiers to locators. Some researchers even proposed extensions to
DNS in order to use it as a mapping system [ABH08, JCAC+10]. Their proposals in-
clude to use domain names as identifiers. For example, "alice.munich.example.
com." would be the identifier of Alice and the domain name system would resolve
the identifier to Alice’s actual IP address. There are, however, two properties of DNS
which limit its usefulness as a mapping system.

• The first problematic issue is the strictly hierarchical nature of domain names.
In order to be able to traverse the DNS tree, each branch is unique and shares
nothing with its neighbors other than the predecessor part of the domain. This
is to ensure the global uniqueness of each full domain name. This, however,
is a problem in case an end system wants to change its position in the DNS
tree. Imagine this simplified example (cf. Fig. 3.3). Alice lives in Munich and
her domain name is "alice.munich.example.com.". Bob is a friend of Al-
ice and addresses packets always to her domain name (i.e., her identifier). As
a benefit of the locator/identifier separation paradigm, Bob is not required to
know Alice’s exact whereabouts in Munich as the domain name system takes
care of it during the domain name resolution. Whenever Alice roams within
Munich, she notifies the domain name system about her new network attach-
ment point and, thereby, her new IP address. The problem occurs when Al-
ice decides to permanently relocate to Frankfurt. Because of the city change
her identifier changes to "alice.frankfurt.example.com.". After the re-
location Alice is updating her IP address with the domain name server of the
"frankfurt.example.com." subdomain. In case Bob sends a packet to Al-
ice’s old identifier, the domain name server in Munich is not able to resolve the
mapping any more. In order to be able to send messages to Alice, Bob needs to
learn Alice’s new identifier.

This, however, heavily contradicts the locator/identifier separation paradigm.
Over a node’s lifetime, the identifier is expected to never change other than the
node’s specific request to obtain a novel identifier. This means, a node’s identity
should not change. Ignoring this principle obsoletes the whole separation be-
tween the identity and routing plane introduced by the locator/identifier split.
A solution to this problem without breaking the DNS tree structure would be
that Alice keeps her old identifier even in case she relocates to Frankfurt. This
would require the domain name server of the "munich.example.com." do-
main to still resolve her mapping even though she is not a citizen (i.e., customer)
anymore. In that way a provider would gain a lot of power over its customers.
Once signed with one provider, it could charge huge fees for maintaining a map-
ping entry in case the customer chooses to sign with another provider. Another
solution would be to deploy a global database which is aware of which domain
name can be resolved at which provider (e.g., "alice.munich.example.
com." at "frankurt.example.com."). This feasible solution, however, ob-

26

3.1. State of the Art

soletes the tree structure of DNS. There is no need to time–consumingly traverse
a tree while holding a direct pointer to the leaf of it.

• The time consuming lookup in the DNS tree structure is the second problem-
atic issue. Traversing a branch down from the root takes a notable amount of
time. This linearly increases with each new level introduced to the tree struc-
ture. In order for DNS to scale a lot of new levels are required. This is be-
cause each participant of the Internet requires his own entry within the domain
name system. DNS already faces the delay problem for each lookup today.
There is, however, a solution to it for the domain name use case. This solu-
tion is caching which means that domain name servers learn shortcuts between
branches. A single query, therefore, is not required to traverse the whole tree
in case a cached entry is found. Furthermore, domain name servers also hold
cache entries for previously resolved queries. This means, that Bob’s provider
in the "berlin.demo.net." branch already knows about Alice’s IP address
without being required to query the "frankfurt.example.com." domain
server. This solution, however, is only feasible for very static entries. Caching
only makes sense in case the cached information is valid for a certain amount of
time. Quickly outdating information retrieved from a cache is of limited use as
it might not be valid anymore upon retrieval. Domain name to IP address map-
pings are expected to change very rarely. Locator updates in a locator/identifier
split architecture, however, occur whenever a node roams. A node traveling in
a car or train might face many roaming events in which it changes its attach-
ment point towards the network in a short amount of time. With each novel
attachment point, a new locator might be assigned to the node, resulting in a
locator update in the domain name system. The locator information for each
identifier, therefore, needs to be considered as quickly outdating information
due to mobility. This means that caching in DNS must be disabled when used as
a mapping system for a locator/identifier split addressing scheme. As a result,
the tree structure of DNS causes a very huge lookup delay because caching can-
not be used. It is even further worsened by the requirement to provide a large
degree of levels in the tree. DNS used as a mapping system is required to handle
billions of entries, and only additional levels and branches in the tree are possi-
bilities to reduce the load of each domain. The lookup performance of DNS with
caching disabled is evaluated in Section 3.3.3.

3.1.3. Properties of a Mapping System

A mapping system’s primary task is to store locator information for each registered
identifier. It, therefore, needs some form of database entry for each identifier and
must be able to accept both queries and updates for these entries. A mapping sys-
tem can further be extended to fulfill additional purposes (e.g., security functionality,
cf. Chap. 4). The following list, however, only considers required properties of a
mapping system with regard to its elementary functionality.

27

3. Addressing and Mapping in a NGI architecture

• Scalable: Scalability is one of the major properties expected from a mapping sys-
tem. This mainly results from the experience with today’s architecture and the
projected subscriber growth. Two aspects, thereby, determine whether a map-
ping system is scalable or not. The first one is the amount of entries a map-
ping system is able to store. The complexity of the mapping system, thereby,
should not increase more than linearly in relation to the number of stored entries
(≤ O(N)). The size of the identifier address space forms the upper bound for the
amount of identifiers to store. This number in a 128 bit address space, however,
is probably hardly ever reached. The second scalability aspect is the mapping
system’s ability to cope with frequent updates of the mapping entries. Each
layer 3 roaming event of an end system results in a novel locator which causes
an update message sent to the mapping system. The challenge is to process these
messages and be able to provide the novel information almost instantly for all
subsequent queries regarding the updated mapping entry.

• Fast: This property is in regard to the caused lookup delay. Each query and up-
date takes time to be processed by the mapping system. For instance, a database
must be searched to find the corresponding mapping entry for a specific query.
Due to the amount of entries a mapping system has to handle, it is most likely
that the mapping dataset is split between multiple logical and physical entities.
This means that it is possible that a mapping request cannot be answered by the
recipient of a query. The recipient must forward the query to another entity of
the mapping system which either stores the mapping entry or is able to further
forward the request towards the storage location. In order to provide a min-
imal lookup delay, the amount of message forwards should be kept to a bare
minimum.

• Trustful: The complete architecture is dependent on the correct resolution of
identifiers to locators. Users, therefore, must be able to trust the mapping sys-
tem or need functionality to verify the response. Furthermore, in case the map-
ping system design is built around multiple independent authorities, these au-
thorities should not be required to rely on each other. Dependency means that
distrust between the involved authorities could break the functionality of the
mapping system or malicious information could be exchanged premeditatedly
between the parties.

• Persistent identifier: A design goal of the locator/identifier separation para-
digm is that an identifier should not change other than requested by its owner.
The mapping system must support this paradigm of persistent identifiers and
not require a change of identifier in any case. This could, for instance, be that
a customer decides to change provider subscriptions or the mapping system
is required to be reorganized for whatever reason. The paradigm of persistent
identifiers results from today’s challenging issue of de–aggregation in the IPv4
architecture (cf. Sec. 2.1.3).

28

3.2. NGI Mapping Proposals

3.2. NGI Mapping Proposals

Due to the lack of proper mapping technologies for a locator/identifier split architec-
ture, novel approaches have been proposed. These proposals can be categorized into
two main groups. The group membership, thereby, is determined by the structure of
the mapping system. The first group relies on a tree–based structure and the second
group utilizes Distributed Hash Tables (DHTs).

3.2.1. Tree–Based Mapping

In order to cope with the scalability issue, tree–based structures have been proposed.
A tree can easily be extended by another branch or level in case the existing resources
are not able to handle the load. Two different flavors of tree–based proposals exist
and are reflected in the address space of the identifier. The first is using a structured
identifier representing the tree hierarchy whereas the second uses flat identifiers.
Using a structured identifier, the identifier consists of several segments, each segment
representing a certain level of the mapping tree. The length of the identifier, thereby,
can be of fixed or variable size and extended as needed. An example for a structured
variable length identifier is DNS as described in Section 3.1.2. To resolve a mapping
for a structured identifier, the tree is traversed from the root according to the segments
of the identifier. The corresponding data record is stored at one of the leafs and can be
returned to the enquirer2 (cf. Fig. 3.3).
Various tree–based mapping system designs have been proposed. Variants with struc-
tured identifiers are, for example, [PJPSi10, ABH08, Jia06, JCAC+10]. [PJPSi10] uses
today’s DNS as a mapping resolver, and [ABH08] allows for a mix of mapping sys-
tems, one being DNS. [Jia06] proposes to group identifiers in realms which are highly
hierarchically structured for security reasons. [JCAC+10] uses a DNS based mapping
system to support the transparent locator/identifier split approach LISP.
Flat identifiers are not structured, and no information is given by the identifier in
which branch the corresponding mapping entry is stored. The information about
which mapping entry is stored in which tree must be propagated throughout the tree.
A leaf storing a new entry sends some kind of REGISTER message to its parent. This
message is processed and forwarded until it reaches the root of the tree. The root
knows which entries are stored in which branch of the tree and is able to forward a
query to the respective arm. Caching mechanisms, thereby, allow to store information
from previous queries in different branches. This cached information can be used as
shortcuts throughout the tree to take load off from the root. Furthermore, the map-
ping information for flat identifiers can be stored in multiple branches, contrary to the
structured ones.
[KCC+07] proposes an architecture with flat identifiers. It is briefly outlined as an
example flat identifier architecture in the following.

2Note that some architectures also store information on non–leaf nodes in the tree in case not all levels
are specified in the identifier (e.g., DNS)

29

3. Addressing and Mapping in a NGI architecture

Example tree–based Mapping Architecture Koponen et al. proposed A Data-
Oriented (and Beyond) Network Architecture (DONA) [KCC+07]. They use flat identifiers
which are based around principals. A principal is associated with a public key, and
each datum, service or other named entity is associated with a principal. The form
P :L denotes a valid identifier, where P represents the principal and L the datum or
content governed by the principal.
The mapping between a 〈P : L〉–tuple and the current associated locator is done by
so–called resolution handlers (RH). RHs are organized in a tree structure and reflect
the Autonomous System (AS) topology of the network. Each AS operates its own RH
and the RH of a higher tier provider is the superior to a lower tier provider’s RH. The
root of the tree is built by tier–1 RHs.

RH

RH

RH

RH RH

RHRH

CopyCopy

Tier-1
Search Path

Client

Figure 3.4.: DONA example topology [KCC+07].

Upon connecting to a network the nearest RH is advertised to the client, similar to
DNS today. To resolve a mapping the client issues a FIND message including the
〈P :L〉–tuple to its nearest RH (cf. Fig. 3.4). In case the RH cannot resolve the mapping,
it forwards the message to its superior RH. This process is repeated until either a RH is
able to resolve the mapping or the FIND message reaches a tier–1 RH. This tier–1 RH
knows in which branch a copy of the datum is stored and forwards the message down
the respective branch—given that the datum exists. The leaf RH is able to resolve the
mapping and points to the actual content. To speed up the lookup process, each RH
maintains a registration table that maps an identifier to the next–hop RH and the
distance to the copy. In that way direct peerings between RHs of different branches
can be used.

3.2.2. Distributed Hash Table Based Mapping

Using a DHT to realize the mapping database results in a highly scalable mapping
system. DHTs are mechanisms often used in structured peer–to-peer overlays. They

30

3.2. NGI Mapping Proposals

are designed to handle a huge load and proved to work with thousands of peers,
storing billions of entries [SMK+01, KBR06].
DHTs are data organizing structures which are based on hash functions. A hash func-
tion, thereby, is an algorithm which maps an input value to a defined output. For
DHTs a variable–length cryptographic hash function is used. This type of hash func-
tion takes a datum of variable length as input parameter and maps it to a fixed–size
hash space. The size of the hash space, thereby, is determined by the hash function.
To achieve this, the input datum is split into chunks the size of the hash space. Each
chunk is then combined with the previous one by a mathematical operation (e.g., xor).
Listing 3.1 shows an example implementation in pseudo code.

initialize(hash)
foreach chunk in datum do

hash ← hash ⊕ chunk
return hash

Listing 3.1: Sample hash function

One of the properties of a cryptographic hash function is that a minimal change in
the input datum results in a completely different and unrelated hash value. This is
important in order to achieve an even distribution over the complete hash space in
case the input datums are very similar to each other.
For a DHT two groups of input datums are hashed in order to realize the internal
data organization. Both datums, thereby, are hashed to a common m bit hash space.
As the resulting values are used as keys to find datums in the DHT, it is from here
on referred to as key space. The first group of input datums are the addresses of the
nodes participating in the DHT (i.e., peer). The second group are the identifiers of the
objects which are supposed to be stored in the DHT. The key space, thereby, must be
large enough to provide a nearly unique key for all peers and objects3.
In order to form the DHT, the peers and objects are arranged in a defined structure
according to their hash values. Depending on the protocol used the structure can be
a ring (Chord), a binary tree (Kademlia) or a d-dimensional torus (CAN). Each peer,
thereby, accepts responsibility for a defined part of the key space. Substitutionally for
them all, the Chord protocol which will play a role in the subsequent introduced NGI
mapping systems is briefly outlined in the following.

Chord

Chord is a structured peer–to–peer protocol based on DHTs [SMK+01]. A DHT stores
key–value pairs by assigning keys to different peers. A peer, thereby, stores all the
values corresponding to the keys it is responsible for. In Chord, the key space is
represented by a ring structure whereat the highest key is succeeded by the lowest
one, thus, forming a ring. To map information into the key space, the information is

3Note that variable–length hash functions usually are not so–called perfect hash functions and, there-
fore, collisions can occur.

31

3. Addressing and Mapping in a NGI architecture

hashed, resulting in a hash–value equaling the size of the key space. The information
can be retrieved at the peer responsible for a specific key subspace. This subspace is
determined by the node’s key itself and all preceeding keys which are not assigned to
another peer with a lower key.
In the following, a brief example of a Chord ring is given to clarify the protocol (cf.
Fig. 3.5). In this example, the key space has a size of 4 bit which means that 16 keys
are available. In the ring a peer with the key number 8 is present, and the peer with
a lower key value is peer number 4. This means that peer number 8 is responsible for
the key subspace 5 to 8. Any information which has a hash value falling into that key
subspace is stored at peer number 8. Analogous, information with the bash value 4
is stored at peer number 4. The information with the hash value 2, however, is not
stored at peer number 4 as peer number 3 is present in the ring and thus resonsibility
for this key value. In case a peer with the key value 6 joins the Chord ring, it takes over
the responsibly for the key subspace 5 to 6 from peer number 8. Thus, the information
with the hash value 5 is transferred to peer 6.

Chord ring
4 bit key space

8

4

0

12

1

2

3

5

6

79

10

11

13

14

15

10
9

11

0
15

2

4

7

5

Figure 3.5.: Storage example in a Chord ring.

32

3.2. NGI Mapping Proposals

Example Chord Based Mapping Architecture

As a predecessor to HiiMap, a chord based architecture was presented which used
a global DHT as basis for the mapping system [HSKE09]. In this architecture, the
network is—as today—divided into ASs, and each provider remains in control over
its subnets. The global DHT is hosted on so–called Core Network Routers (CNR)
which are located at the border of ASs. A mapping entry, consisting of the tuple
〈identifier, locator〉 for each subscriber, is stored in the global DHT. The CNRs can be
compared to BGP’s border gateway router and are responsible for forwarding traffic
in and out of their AS. As each provider requires CNRs, they automatically provide
resources for the global mapping system. Within each AS a local DHT is provided.
This local DHT stores mapping entries of all end points residing within the AS and is
hosted on so–called Local Network Routers (LNR). Additionally, cached entries from
the global DHT are stored in the local one. The LNRs are regular routers within the
AS which are powerful enough to host the local DHT. A sample topology is shown in
Figure 3.6.

AS 4 AS 5

AS 1

AS 2

 AS 3

Identifier: 1.001
Locator: 1.8.3.82

Identifier: 1.002
Locator: 5.7.2.22

Access
Router

Figure 3.6.: Example topology following the architecture in [HSKE09].

To resolve the mapping between an identifier and a locator, an end point first queries
the local DHT of the AS it is attached to. In case the identifier is listed within the
local DHT, the query can be answered, and a response is sent back to the end point.
An identifier can be listed in the local DHT due to either being a cached entry or the
corresponding end point is currently residing within the same AS. If the mapping can
not be resolved in the local DHT, the request is forwarded to the global one.

33

3. Addressing and Mapping in a NGI architecture

Other DHT–based approaches are [AAER06, FCM+09]. [AAER06], thereby, uses the
mapping information for a source routing approach. [FCM+09] uses multiple levels
of mapping resolvers (implemented as DHT).

3.2.3. Limitations/Evaluation of Existing Proposals

The main goal of a mapping system is to map identifiers to locators. Any of the pre-
viously mentioned mapping architectures is able to fulfill this task. They, however,
do not meet all of the requirements listed in Section 3.1.3 (scalable, fast, trustful and
persistent identifier).

Tree–based with structured identifiers: This approach is able to scale well in re-
gard to the amount of entries as well as to the update dynamic. In case the maximum
storage capacity or bandwidth of the existing leaf nodes in the tree is reached, the
tree can easily be extended by another branch or an additional level. Each new level
in the tree, for example, doubles the amount of mapping servers and, therewith, the
available storage capacity.
The initial lookup delay, however, is increased by each level of the mapping tree (cf.
Sec. 3.3.3). Initial, thereby, means that the client sending a request to the mapping sys-
tem has no cached information about the storage location of the identifier’s mapping
entry. In order to find the responsible node, the tree must be completely traversed
starting at the root. To avoid this long lookup delay for subsequent queries, each
client is required to maintain a cache which stores learned storage locations for map-
ping entries. The average lookup delay over all queries is determined by the aging
algorithm of the cache and the cache miss rate. This miss rate again is determined by
the relation between re–occurring and first time queries.
Tree–based mapping systems with structured identifiers provide the foundation of the
requirement to be trustful. A mapping is resolved at a leaf node which is responsible
for the subpart of the identifier (compare with DNS in Section 3.1.2). The leaf node,
thereby, is not dependent on any other node within the tree which stores the map-
ping entry. This means that the query can be answered by the responsible node and
does not need to be further forwarded to another authority. Additional mechanisms,
though, must be provided to enable the client to verify the correctness and integrity
of the response (e.g., cryptographic signatures).
The structured identifier, however, breaks the requirement of persistent identifiers.
This is important in order to allow for relocation of mapping entries without fostering
de–aggregation. Whenever a customer decides to subscribe with a novel provider,
it might involve that his identifier is required to be resolved in a different branch of
the mapping tree. As the tree organization is reflected in the identifier’s structure,
a branch change would mean that a novel identifier is assigned to the client. This
contradicts the property of the locator/identifier separation paradigm to assign life
time valid identifiers. The section discussing DNS as a mapping system features an
example of this problem (cf. Sec. 3.1.2).

34

3.2. NGI Mapping Proposals

Tree–based with flat identifiers: A similarity between this approach and the tree–
based one with structured identifiers is the possibility to increase the storage space by
adding branches or levels to the tree. Contrary, however, the lookup process does not
scale as well. The root of a flat identifier tree must be aware of all identifiers stored
in the tree. It is required to direct queries into the correct branch as the identifier
provides no hints about the storage location. Again, the complete mapping tree must
be traversed in order to find the leaf storing the mapping entry.
This approach is slightly inconclusive. Traversing a tree only makes sense in case
each level provides a piece of the storage location information (compare to DNS, root
-> TLD -> subdomain). The benefit of this system is that each level is only required
to store a limited set of information. In DNS, for example, the root server must only
be aware of all TLD and the responsible authorities. It does not need to store any
information about the subdomains prepending the TLD. With the flat identifier tree–
based approach, however, the root must already be aware of all identifiers and store
information in which branch the mapping can be resolved. Instead of only storing the
branch, it could directly store which leaf node holds the mapping entry. The interme-
diate levels, therefore, do not provide any benefits but add to the lookup delay.
The proposed tree–based mapping systems based around flat identifiers scale in re-
gard to dynamic updates of the mapping entries. An end system usually is aware of
which node in the mapping tree is holding its own mapping entry, and the update can
be directly sent to this node. The lookup delay, however, is longer compared to the
approach with structured identifiers or a DHT–based mapping system. Because the
proposed approaches implement mechanisms to reduce the query rate at the root of
the mapping tree. This is done by requiring a query to be directed to a leaf node near-
est to the issuing client. This leaf node then forwards the query up the branch. The
reason behind this procedure is to intercept all queries which can be resolved within
the own branch. The worst case, however, is that a query is first required to traverse
the mapping tree up and then down in another branch.
Similar to the approach with structured identifiers, this design provides a foundation
for a trustful mapping architecture. Again, the node storing the mapping entry is not
dependent on any other nodes. The mapping information is likely to be stored on a
node close to the customer’s home network and might even be under the authority of
the customer’s provider.
Flat identifiers satisfy the requirement of persistent identifiers. In case a customer
decides to change provider subscriptions, the mapping entry can be relocated to an-
other leaf node of the mapping tree. This change is propagated in the tree, and the
customer’s end system is still reachable under its old identifier.

DHT–based: A mapping system designed around a DHT is able to scale well in
regard to the amount of stored entries and the update frequency of its entries. In
case the existing mapping peers within the DHT are not able to cope with the load,
additional peers can be added without unproportionally increasing the complexity
[SMK+01].
One property of DHTs, however, is that an owner of an object cannot control where

35

3. Addressing and Mapping in a NGI architecture

in the key space his object is stored. The location is predefined by the hash value of
the object and the mapping between the peer and object key space. In terms of the
mapping system, this means that a provider is not able to control where the mapping
entries of its subscribers are stored. The consequence is a trust issue because the map-
ping entry of a provider’s customer might be stored outside its own responsibility.

Core

Provider A
Provider B

Provider C

Provider D

Provider E

Bob

Alice

Identifier: Bob

Locator: @provider A

MAPPING_QUERY(Bob)

Figure 3.7.: Trust problem of global DHT–based mapping systems.

In Figure 3.7 an example is given where Alice queries the mapping system for Bob’s
locator. Bob’s identifier is his name, and provider B is responsible for the key subspace
starting with the letter B. Once the query from Alice arrives at the mapping server
at provider B, the server searches its database for the corresponding mapping entry.
The entry lists Bob to be a customer of (and currently located at) provider A. The
correct behavior would be to return this information to Alice and thereby resolving
the mapping request.
In this example, however, provider A and B are assumed to be in a legal dispute and
do not act based on fair play. As a result, provider B could either drop the query,
respectively respond that the identifier is unknown, or return a wrong locator. In the
first case any communication with Bob would be prohibited which could force Bob to
change his provider. The second possibility represents a man–in–the–middle attack.
By providing a wrong locator, pointing to an end system controlled by provider B,

36

3.3. HiiMap Mapping System

any traffic between Alice and Bob would pass this third end system before being for-
warded to Bob. The latter can be lessened by using only encrypted communication.
The first, however, represents a serious trust issue which affects the mapping system.
The lookup delay of DHT–based approaches can be weighted as being neutrally de-
pending on the deployed DHT protocol. Using a one hop protocol (e.g., D1HT), a
mapping query can be resolved with a maximum of two hops. The first hop is the
peer which receives the query from a client, and the second hop already holds the
mapping entry.
Similar to the second tree–based approach, the flat identifier guarantees that a cus-
tomer is able to change his provider without requiring a new identifier. In that way
the design goal of the locator/identifier separation paradigm—identities should only
change if requested by the owner—is met.
Table 3.2 summarizes the aspects of the different mapping system architectures. The
table reveals that no approach satisfies all requirements. The HiiMap architecture in-
troduced in the next section, therefore, combines elements of all approaches to over-
come the outlined issues.

Tree–based Tree–based DHT–based
structured identifier flat identifier

Scalable (amount of entries) + o +
Scalable (dynamic updates) + + +
Fast o - o
Trustful + + -
Persistent identifier - + +

Table 3.2.: Comparison between tree and DHT–based mapping systems.

3.3. HiiMap Mapping System

The HiiMap NGI architecture is built around the locator/identifier separation para-
digm. It follows the end node aware approach due to the advantages summarized
in Table 3.1. The mapping system introduced in this section is a hybrid solution be-
tween the hierarchical and DHT–based mapping systems. A special property of the
mapping system is its trustful, distributed organization to overcome the limitations
of the global DHT–based approach. The work introduced in this section has been
published in [HKS+09].

3.3.1. Concept

Before outlining the details of the HiiMap mapping system, a few components and
abbreviations are introduced. The interaction between these parts will be explained
subsequently. The following subsection covers the trust aspect of the architecture.

37

3. Addressing and Mapping in a NGI architecture

• UID: The Unique Identifier (UID) is a flat, randomized, worldwide unique 128 bit
address. It serves the purpose of the identifier in the locator/identifier separa-
tion paradigm and therefore is a non–routable address. It is assigned for lifetime
and does not change, unless the end point requests a new UID.

• RP: In addition to the UID a Regional Prefix (RP) is provided. This 8 bit prefix
identifies the region in which the mapping for the corresponding UID can be
resolved. The notion of regions and the benefit of dividing the mapping system
into these will be explained later on. An important property of the RP is that,
contrary to the UID, it is allowed to change over an end point’s lifetime.The RP
is used as a shortcut throughout the hierarchical HiiMap mapping system. This
shortcut, however, is not mandatory, and a mapping is resolved solely based on
the UID. The RP only speeds up the process of finding the responsible mapping
region. Figure 3.8 illustrates the RP and UID combination.

RP 128 bit UID

Assigned for lifetimeAllowed to change
(change expected to be rare)

Figure 3.8.: UID with regional prefix (RP).

• Locator: In contrast to the UID, the locator is used to route and forward packets
to a specific end point. The address family of the locator is not defined by the
HiiMap architecture and can be of any feasible protocol (e.g., IPv4, IPv6). For
the sake of simplicity, the locator is assumed to be an IPv6 address from now
on. A locator is temporarily assigned to an end point from a provider’s address
pool upon connecting to a provider’s network. The locator is allowed to change
whenever the end point roams or the provider decides for whatever reason to
assign a novel locator.

• Region: As mentioned earlier, the mapping system is divided into multiple re-
gions. Each region, thereby, is responsible for the mapping entries of its member
end points. An end point’s affiliation with a specific region is based on its pri-
mary Internet Service Provider (ISP) subscription. This means that the respon-
sible region for an end point does not change even when the end point is tem-
porarily roaming to another region. The mapping responsibility only changes in
case an end point permanently relocates to another region, reflected by a change
in ISP subscription. The allocation of regions is outlined in Section 3.3.2 covering
the trust aspect of the HiiMap mapping system.

• GA: The Global Authority (GA) represents the root of the HiiMap mapping hier-
archy. It, however, does not store any mapping entries. The GA’s task is to store
the information in which region an UID’s mapping entry is stored. It, therefore,

38

3.3. HiiMap Mapping System

serves as a fallback component in case the current valid RP for a specific UID is
not known.

Although the GA logically represents a single point, it can be realized in a de-
centralized way. This is similar to the DNS root server architecture [Ass11]. A
group of servers host the same synchronized information and can handle queries
in parallel in order to provide resilience and scalability.

As the affiliation of end points (and, therefore, their UIDs) to regions changes
very rarely, the amount of update requests seen by the GA are expected to be
low. Additionally, the RP query rate for a specific UID is reduced by caching
〈RP,UID〉–tuples on end nodes, further decreasing the load of the GA servers.

• D1HT D1HT by Monnerat et al. [MA06] is a variant of the Chord protocol.
Similar to Chord it organizes the DHT key space in a ring form in which the
highest key is superseded by the lowest. The speciality of D1HT is its internal
routing database. In Chord each node is only aware of its predecessor and its
successor. Additionally, logarithmic fingers are known to take shortcuts through
the ring which results in a lookup complexity of O(logN) [SMK+01]. D1HT
maintains a full routing table. and each peer is aware of all other peers in the
ring. The lookup complexity of D1HT, therefore, reduces to O(1) at the cost of
additional update traffic within the ring. In case the ring faces a huge churn rate
of its peers, the update traffic produces a significant amount of overhead, and
the ring might even become unstable [SMK+01]. As the mapping servers hosting
the DHTs in the HiiMap architecture are dedicated servers and expected to be
very stable, churn rate is no concern. The lookup optimized D1HT, therefore, is
taken as the DHT protocol.

Hierarchical Mapping System

The HiiMap mapping system is a hybrid between a DHT–based and a hierarchical
mapping architecture. It is structured in three layers, wherein each layer stores differ-
ent information. The GA constitutes the root of the mapping system, representing the
top layer. The second layer is formed by independent regions, and the third is com-
prised by the end systems. The left part of Figure 3.9 illustrates a sample topology of
the HiiMap mapping system.
The live mapping information is stored in layer 2 of the mapping hierarchy. Whenever
a locator change occurs, the end point reports this change to the mapping instance of
the region it is associated with. The regions in layer 2, therefore, always hold the
most up–to–date mapping information. Layer 1 and 3 of the mapping system hold
information to speed up the lookup process and take load off from the second layer.
Layer 1, thereby, keeps track of which mapping is resolved in which layer 2 region,
and each end system in layer 3 caches mapping information from previous queries.
The right part of Figure 3.9 shows a simplified scheme illustrating which information
is stored at which layer. The bold printed entries, thereby, serve as the primary key.
Please note that additional information might be stored along with the ones shown
(e.g., multiple locators, timestamps, public keys).

39

3. Addressing and Mapping in a NGI architecture

Region 2Region 1

Provider
A

Provider
B Provider

C

Provider
D

Core

Global Authority

Level 1

Level 2

Level 3
End System 1 End System 2

hUID, Locatori

hUID, RP, Locatori

hUID, RP i

Figure 3.9.: Hierarchical structure of the HiiMap mapping system.

The independent mapping instances in the regions are most critical to the scalability of
the architecture. These instances are required to handle a huge amount of queries and
updates to the mapping information—contrary to the GA where the queries largely
outnumber the amount of updates. Although the HiiMap mapping system does not
specify a particular implementation of the layer 2 mapping instances, the use of DHTs
is advised. More specifically, the D1HT protocol provides a good tradeoff between the
caused lookup delay within the DHT and its signaling overhead for this application.
Nevertheless, the operator of a mapping instance may decide to employ other tech-
nologies or protocols. From here on, however, the usage of the D1HT protocol is
assumed in case the implemented protocol is important (i.e., performance measure-
ment). Figure 3.10 shows the internal structure of a region when using DHTs. The
figure also shows a load balancer which is in front of the DHT. Its purpose is to
evenly distribute the request and update load over the DHT peers while providing
a single entry point per region. Without the load balancer end systems would be re-
quired to know all addresses of the peers in the DHT and randomly choose one to
average the load over the whole DHT. This, however, would limit the flexibility of
the DHT operator to assign to and take off peers from the DHT.

40

3.3. HiiMap Mapping System

Regional DHT

Load Balancer

Figure 3.10.: Internal structure of a DHT–based mapping region.

Mapping and Lookup Process

Whenever an end system connects to the network, a two phase connection setup takes
place. The first, i.e., local, phase only involves the end system itself and the network
access point it wants to connect to. This phase involves admission control, billing
issues, etc. and is not covered in this thesis. The outcome of the first phase is an
assigned locator and network connectivity provided by the access point for the end
system. The second phase has a global scope in which the end system and the map-
ping system are involved. The end system is required to update its mapping entry
with the new locator in order to be reachable by other hosts. This is done by send-
ing a USR_LOCATION_UPDATE message towards the mapping region it is associated
with. This message contains the end system’s UID, one or more locator and optional
information to be stored in the mapping system. To prevent identity hijacking, the
message must be signed by the end system. The details about the cryptographic as-
pects are covered in more detail in Chapter 4 and have been published in [Han12].
The complete mandatory message has the following format (omitting optional fields):

USR_LOCATION_UPDATE(UID, locator, signatureUID,locator)

The message is verified by the mapping instance, and afterwards the corresponding
mapping entry is updated.
To resolve a mapping for a specific UID, at least the UID must be known. In case
the corresponding RP has not been cached or learned by other means (e.g., link on
a website, DNS entry), the GA must be queried in a first step. This will return the
responsible region for the queried UID. The following two messages are involved for
the request to and response from the GA:

USR_REGION_REQUEST(UID)

41

3. Addressing and Mapping in a NGI architecture

USR_REGION_RESPONSE(UID, RP, signatureUID,RP)

As the responsible region for a certain UID is expected to change very rarely, this
information can be cached to avoid further USR_REGION_REQUESTs for this UID. In
a next step, the responsible region is contacted to resolve the actual mapping. The
required messages are as follows (again omitting optional fields):

USR_LOCATION_REQUEST(UID)

USR_LOCATION_RESPONSE(UID, locator, signatureUID,locator)

Only the UID is required to be sent to the responsible region. The returning message
will contain the UID itself, the locator listed in the mapping entry and optional fields
also stored in the mapping system. Attached is also a signature from the mapping
instance to prove that the returned values have not been modified along the way. The
UID is also again included in the message in order to be able to identify responses in
case multiple request have been sent out.
In case no entry for a specific UID at neither the GA nor the responsible region was
found, an error message is returned in which the error_code lists NX_IDENT:

ERROR_MSG(UID, error_code, signatureUID,errorcode)

The complete resolving process is illustrated in the message flow diagram in Figure
3.11.

USR_REGION_REQUEST

USR_REGION_RESPONSE

USR_LOCATION_REQUEST

USR_LOCATION_RESPONSE

Global
Authority

Mapping
Instance
(Region)

End
System

Figure 3.11.: Message flow diagram of the HiiMap mapping resolution.

42

3.3. HiiMap Mapping System

End System Mobility

An important requirement for an NGI architecture is to support mobility as outlined
in Chapter 2.2. The locator/identifier separation paradigm addresses this function-
ality but the mapping system must also be able to handle mobility. To this end, the
HiiMap mapping system differentiates between two kinds of mobility. The first is
referred to as roaming and reflects any temporary connection towards the network
outside an end system’s home network. The second kind is called relocation. A relo-
cation occurs whenever an end system decides to change its home network (i.e., ISP
subscription), and the new home network is associated with another region.

Roaming Whenever an end system connects to an alien network outside of its home
network, a new locator is assigned to it. This locator must be updated in the map-
ping entry of the end system. To initiate this update the end system sends a signed
USR_LOCATION_UPDATE message to its responsible region. Each subsequent map-
ping query will return the new locator and the end system is reachable by other nodes.
The location update, therefore, does not differ from the one sent due to a novel as-
signed locator within an end system’s home network.

Relocation The more challenging aspect is relocation. This occurs whenever an end
system permanently changes its home network and associates with another region.
The challenge, thereby, is the expectation that the identifier of the end system should
not be required to change. This relates to the requirement of persistent identifiers.
One solution would be, once associated with a region that this region remains the
responsible region as long as the end point holds on to the identifier. In that way
the identifier is never required to change, and mapping for the identifier can always
be resolved. This approach, however, has a major drawback. The responsible region
would be required to charge the end system for hosting its mapping entry as the end
system might not be a customer of the region anymore. For the end system this means
that it is dependent on the region, and the region has a monopole over the identifier.
The end system would not be able to choose its mapping provider and has no ability
to associate its identifier with another region. The region, therefore, could increase the
mapping fees or set terms to the disadvantage of the end system which depends on its
identifier (e.g., because customers or applications rely on a service behind a specific
identifier).
In HiiMap, therefore, it is possible to associate an UID with a different region. This
process is called relocation and results in a change of the RP. In that way the identifier
(UID) remains the same while the mapping is resolved by a different region. To initiate
the relocation, a release of the UID is signed by the end system and sent to the old
region. The new region then can request a transfer of the UID, again authorized by
the end system. Finally, the mapping entry in the new region is created and the RP
at the GA updated to reflect the new region. The relocation process is illustrated in
Figure 3.12.
All communication partners caching the old 〈UID,RP 〉–tuple still send their map-
ping request to the old region due to the cache entry. The old region, however, re-

43

3. Addressing and Mapping in a NGI architecture

Global
Authority

Mapping
Instance

(old Region)
End

System

Mapping
Instance

(new Region)

USR_UID_RELEASE

USR_UID_TRANSFER
REG_UID_TRANSFER

REG_TRANSFER_ACK

delete
mapping
entry

REG_UID_UPDATE

REG_UID_ACK
USR_TRANSFER_ACK

create
mapping
entry

Figure 3.12.: Message flow diagram illustrating the HiiMap relocation process.

sponds with NX_IDENT, and the communication partners are required to query the
GA for the new RP.

3.3.2. Trust

The major disadvantage of the DHT–based mapping systems introduced in the pre-
vious section was the trust problem. A provider is not able to control on which peer
in the DHT its client’s mapping entry is stored and, therefore, can not guarantee its
resolution.
The goal for the HiiMap mapping system was to build a system which solves this
trust problem. This led to the introduction of regions which split the mapping space
into several subparts. These subparts on their own, however, are not a solution to the
trust issue. Rather, the design and setup of the regions help to overcome the problem.
In HiiMap, providers are grouped into regions based on their geographical location.
Each region, thereby, represents a country4, and providers of the same country work

4The term country in this context refers to a political state or territory acknowledged and recognized
by the United Nations [Uni06].

44

3.3. HiiMap Mapping System

together to fund the mapping system in their region. In case a provider operates in
multiple countries, it either registers all of its clients in its home region or splits the
affiliation based on its national subsidiaries. In either way, each provider is required
to fund a share of the mapping instance in its region based on the amount of its sub-
scribers. This guarantees a fair split of the mapping costs in each region.
In each region a non–profit organization operates the mapping system which also
collects the funds from the providers. The reason behind this approach is that no
provider should have direct access to the mapping servers. In that way no provider
is able to manipulate the mapping entries to the disadvantage of its competitors. An
example for a non–profit organization are the domain name registries DENIC in Ger-
many or Nominet in the United Kingdom.
There are two reasons as to why limiting a region to the boundaries of countries.
The first is the relatively stable state of countries. Although it does occur, it is rather
rare that a country vanishes or a novel one is constituted. This means that the re-
gion prefix table and the mapping system partition are not required to change often.
Furthermore, in case a country splits or is reunited, the change only affects the old
region/regions and non of the other regions. As of today (late 2011) 192 countries are
recognized by and are members of the United Nations [Uni06]. There are further few
countries which are recognized but not member–states. This means that the 8 bit-wide
RP is sufficient and also future country splits can be reflected without a change to the
architecture.
The second reason for the partitioning based on countries is the common legal system
within each country. A legal dispute between competing providers or the non–profit
organization can be solved by local law and does not require international contracts
or courts. It is also locally contained and does not affect other regions.
Contrary to the global DHT–based mapping system approach, this architecture intro-
duces three aspects in order to solve the trust problem. First, the mapping system
is not provided by commercially oriented providers. Second, disputes can be solved
based on a common law among the involved parties, and third, conflicts are con-
stricted to a single region and do not affect the global mapping hierarchy.
A downside of the country–based partitioning into regions is that the government of
a country might request to take control over the mapping instance. This would enable
the government to manipulate mapping entries and restrict the resolution of certain
mapping requests, rendering the affected end system unreachable. The government,
therefore, would be able to foreclose communication with specific end systems. Al-
though this is an undesired aspect, it does not open novel possibilities for a govern-
ment. Even in today’s Internet architecture, governments could filter network traffic
or cut–off end systems from the rest of the Internet.

3.3.3. Evaluation

In this section, the HiiMap mapping system is evaluated. The scalability aspect is
assessed analytically whereas the performance of the system is measured with the
help of a prototype. Information about the prototype design and the specification of

45

3. Addressing and Mapping in a NGI architecture

the HiiMap mapping system protocol are given in Chapter 6.2 and Appendix A.

Scalability

The HiiMap mapping system stores information in two different layers. The topmost
layer, represented by the GA, is required to store the mapping between all UIDs and
their responsible regions. The lower layer is formed by the regions which store the
actual mapping information between UIDs and locators. Due to the utilization of
DHTs within the regions, the storage capacity can be easily increased as new mapping
entries must be stored. Although it is not possible to add an unlimited amount of
peers, DHTs have been tested to be stable with a couple of thousand peers [SMK+01].
The GA, therefore, is the challenging element in the mapping hierarchy. There are
three constraints which determine the GA’s capabilities. These are:

• Storage capacity for the database

• Number of transactions per second in the database

• Network bandwidth

Storage capacity: The GA must store information for all registered UIDs. A single
entry in the GA’s database, thereby, consists of a 〈UID,RP〉–tuple. The HiiMap pro-
totype implementation (cf. Chap. 6.2) uses a SQL compatible database to store the
mapping information at the GA. To estimate the size of a single entry, the actual stor-
age requirement of the prototype is taken for the calculation. The UID entry serves as
a primary key and is stored in a VARCHAR(16) field5. In addition to the 16 byte of the
VARCHAR content, 2 byte are required for SQL’s internal organization of the data type.
This results in 18 byte per UID field. The RP is stored as a single byte in the database.
Each database entry at the GA, therefore, sums up to:

SGA_entry = SUID + SRP

= 19 byte
(3.1)

A prediction of the amount of registered UIDs for a future point of time is quite dif-
ficult. A linear projection of the latest subscriber growth, however, might serve as a
lower bound. Based on the growth rate according to the IPv4 address report by Huston
[Hus10], the amount of Internet participants will reach approximately 6 billion in 10 to
15 years. This would result in a minimum GA storage capacity requirement of 114GB.

Number of transactions: Various aspects of a database system determine the num-
ber of transactions a database system is able to process. The main factors are process-
ing power, memory capacity, harddisk speed and the size of the database. [Tra11] lists
the time it takes to retrieve an entry from a database in relation to its size on modern
database systems. Although HiiMap is designed as a NGI architecture and projected

5The prototype uses 128 bit UIDs.

46

3.3. HiiMap Mapping System

to be used in 10 to 15 years, this evaluation is based on technology available today6.
The highest ranking, non–clustered database system tested by [Tra11] is able to pro-
cess 101, 419 transactions per second in a 728.97GB database. This data is used in the
following.

Network bandwidth: Each request causes two network packets, i.e., the query from
the client and the response sent by the GA. Assuming a full–duplex connectivity,
only the larger of these two packets is relevant. The larger one is the response listing
the queried UID and the RP. Each packet of the HiiMap protocol features a 7 byte
header—1 byte protocol version, 1 byte command code, 4 byte payload length and
1 byte checksum (cf. App. A). The payload of the USR_REGION_RESPONSE packet
has a total size of 17 byte. This results in a packet length of 24 byte. Including the
IPv6 header (40 byte) and an Ethernet MAC frame (18 byte), 82 byte are transferred per
packet. A single 1GBit/s interface, therefore, is able to handle 1.52million requests per
second.

Analogous, the values for the peers in the DHT can be estimated. A peer’s storage
capacity, thereby, is dependent on the size of the DHT and thus not considered. To
calculate the number of requests in relation to the network bandwidth, two pack-
ets per peer must be considered. A peer of the DHT must accept and respond to
queries from clients and also be able to forward the query into the DHT in case it does
not store the corresponding mapping entry. The size of the two packets combined
(forwarding USR_LOCATION_REQUESTs and sending USR_LOCATION_RESPONSEs)
is 94 byte7. Table 3.3 summarizes the values for the GA and a single peer within the
region.

min. capacity transactions requests
(GB) (/sec) (/sec)

GA 114 101 · 103 1.52 · 106
DHT peer − 101 · 103 822 · 103

Table 3.3.: Scalability evaluation for the Global Authority.

The table shows that the limiting factor in terms of scalability is the number of transac-
tions the GA’s database is able to process. To verify whether the architecture in regard
to the scalability of the GA is feasible, values from today’s DNS system are taken.

6Projecting technology advancement over a 10 to 15 year time span is not very reliable. It, however, is
safe to say that today’s high performance systems are easily outperformed by future systems.

7Please note that USR_LOCATION_UPDATE messages are also sent to the peers in the region. This
message, however, contains less bytes then the others and, therefore, does not add to the worst case
calculation.

47

3. Addressing and Mapping in a NGI architecture

Feasability: Based on DNS traffic statistics as seen by the Leibniz Supercomputing
Center (LRZ) in 10/2011 [Lei11] (AS 12816; 1, 000 qps from approx. 40,000 nodes), ev-
ery node starts in average 0.025 DNS queries per second (qps). For the GA this means
that 6 billion subscribers would send 150 million USR_REGION_REQUEST messages
per second. Many DNS queries in the LRZ AS, however, do not reach an outside DNS
server. They can be answered by the LRZ’s own server due to the use of caching.
Jung et al. [JSBM02] analyzed the caching behavior of DNS resolvers and experienced
a 80 - 86% cache–hit–rate for an AS. Assuming a similar caching hit rate for a client’s
〈UID,RP〉–cache, the GA faces a query rate of 30 · 106/sec. This means that with to-
day’s database technology and a projected subscriber number of 6 billion, around 300
instances of the GA must be provided. This seems to be a feasible number, considering
that DNS maintains 257 root servers [Ass11].

Performance

To evaluate the lookup performance of HiiMap, the prototype implementation was
compared to today’s DNS. The HiiMap prototype was deployed within the G-Lab
experimental facility [TG09].

Domain Name System Usually DNS heavily relies on caching on each level of its
hierarchy to reduce the lookup time. As discussed in Section 3.2.3, however, a DNS
structure serving as mapping system cannot rely on caching as the entries are expected
to outdate rather quickly. The following test, therefore, was based on trace queries.
This means that the first query containing the queried domain was sent to one of the
DNS’ root servers. These servers answer with a referral to the next hierarchy, which
again is queried by the test program. This is repeated down the hierarchy until the
query can be resolved by one of DNS’ leaf nodes.
The test routine ran 5, 000 queries, randomly choosing between 30 different do-
mains for each query. The domains were all part of the G-Lab experimental fa-
cility and point to individual machines of the G-Lab cluster (glab010.i4.tum.
german-lab.de through glab200.i4.tum.german-lab.de and glab010.i4.
kit.german-lab.de through glab100.i4.kit.german-lab.de). To resolve
the queries, three referrals were issued by DNS before the fourth level was able to
answer the request. The authority chain, thereby, consisted of a root server, followed
by a DENIC server (responsible for the .de TLD), then a DNS server from the Uni-
versity of Kaiserslautern (authority for the german-lab.de domain) and either a
server from LRZ (*.tum.german-lab.de nodes) or from the Karlsruhe Institute of
Technology (*.kit.german-lab.de).
As the root server locations are spread all over the world, only root servers located
within Germany were selected for the tests in order to minimize the Round Trip
Time (RTT). These servers are A, C, I and J hosted in Frankfurt, F in Munich and G in
Stuttgart. For each query, a root server was randomly chosen from this list. Likewise,
the server of the next level was randomly drawn from the referral list in the higher
layer’s response. The test was conducted on a Friday at approximately 10 a.m.. Re-

48

3.3. HiiMap Mapping System

sults from test runs on other days, however, showed no significant difference. Figure
3.13 shows the results of the test.

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 0 1000 2000 3000 4000 5000

R
e
s
p
o
n
s
e

T
i
m
e

(
m
s
)

Query Number

Response Time
Average over all queries

Figure 3.13.: Results of the DNS performance test.

Although the average lookup delay was 106ms (blue line), the graph shows that dif-
ferent root servers introduced a different amount of lookup delay. At least three differ-
ent layers can be distinguished. The upper most crosses in the graph do not represent
another layer. They result from irregular delays across all queries. The fastest re-
sponses had a lookup delay of roughly between 50ms and 80ms. For the comparison
with HiiMap these values are taken from now on.

HiiMap Likewise to DNS, HiiMap was tested with 5, 000 queries. The setup for the
test featured a single GA pre–filled with 50, 000 entries and hosted in Kaiserslautern’s
part of the experimental facility. Furthermore, two regions were instantiated, each
hosting 25, 000 mapping entries. The regions equally consisted of a loadbalancer and
five peers in the DHT. The replication factor within the DHT was set to two. This
means that each peer stores two more datasets additionally to its own. One region
was hosted on machines located at the Karlsruhe Institute of Technology and the other
one at the Technische Universität München.
For the sake of comparability, caching was also disabled at the HiiMap client issuing
the queries. This means that for each query the GA has to be queried first in order
to retrieve the RP for the UID. Subsequently, the responsible region was queried to
resolve the mapping request. The 5, 000 UIDs for the queries were randomly selected

49

3. Addressing and Mapping in a NGI architecture

from the 50, 000 entries stored in the mapping system. Figure 3.14 shows the result
from the HiiMap test run.

 0

 20

 40

 60

 80

 100

 0 1000 2000 3000 4000 5000

R
e
s
p
o
n
s
e

T
i
m
e

(
m
s
)

Query Number

Response Time
Average over all queries

Figure 3.14.: Results of the HiiMap performance test.

The average lookup delay of HiiMap was 17.6ms (blue line). The two different layers
in the graph result from the different RTTs to the sites were the regions were hosted.

Comparison The results of the tests show greatly differing average lookup delay
values (106ms vs. 17.6ms). A conclusion, however, cannot be drawn from these val-
ues alone. There are multiple aspects which influence the measured times for both
systems. A handicap of DNS—increasing the lookup delay—is the productive use of
the system during the test. This means that the DNS server had to handle multiple
concurrent queries not related to the test whereas the HiiMap system was only pro-
cessing the queries generated by the test client. On the other hand, the DNS servers
were running a highly optimized software, implemented in native C code and exe-
cuted on dedicated hardware. Contrary, the HiiMap mapping system prototype is
implemented in Java and executed within a virtual machine. The nodes of the G-Lab
experimental facility are running the PlanetLab virtualization software [TPU03], and
multiple users run different experiments on each physical hardware. This means that
not the full hardware resources are dedicated to the HiiMap prototype, and the load
of the system can vary depending on other experiments conducted in paralell.
A further difference between both tests is the RTT between the test clients and the
queried server. For the HiiMap test, all nodes (client and mapping system) were con-

50

3.3. HiiMap Mapping System

nected via the Deutsche Forschungsnetz (DFN) which provides a dedicated network for
Germany’s academic and research institutes. Although the last two levels of the DNS
authoritative server are reachable via the DFN, the root and .de authoritative server
are outside the DFN, and RTTs are significantly higher. Especially the RTT between
the test client and the root server disproportionately increases the lookup delay. Table
3.4 lists the RTTs between the client and the different sites:

Sites RTT
Technische Universität München 0.5ms

DFNKarlsruhe Institute of Technology 8ms
University of Kaiserslautern 9.5ms
DENIC 10− 20ms externalroot server 10− 165ms

Table 3.4.: RTTs between the client and the queried server.

Comparing the measured results from Figure 3.13 and 3.14 with the RTT ping times
reveals an interesting aspect. The major part of the lookup delay is caused by the RTT.
The processing time at either the DNS server or HiiMap mapping nodes has only a
limited impact. Therefore, the limitations of the prototype implementation or the load
of the productive DNS servers do not play a major role and are rather insignificant
to the test results. This can best be seen on the results in Figure 3.14. The fastest
lookups in the HiiMap system took 11.5ms to 12.5ms. These were the queries where
the responsible region of the UID in the request was at the Technische Universität
München. Before querying the responsible region, a request for the RP was sent to
the GA, hosted at the University of Kaiserslautern. This means, the RTTs sum up to
10ms (9.5ms + 0.5ms). Compared to the total lookup delay of 11.5ms, it shows the
significant impact of the RTT.
Having identified the importance of the RTT for the lookup delay shows the advan-
tage of the HiiMap architecture over DNS in this regard. HiiMap requires no more
than two hops (levels) in order to resolve a query in case the RP was not cached or
learned otherwise (GA & region). DNS, in contrast, requires at least three levels (root
server, TLD server & domain server). Assuming that the DNS tree must be extended
by several layers in case it should be used as a mapping system, additional RTTs add
to the lookup delay.

Prototype Limitation Another important aspect is shown by the HiiMap measure-
ment result. This is shown in Figure 3.15 which is a close–up of the data set shown in
Figure 3.14.
The close–up reveals two different lookup speeds at each site. This is represented by
the two lines which are formed by the measurement points. Below the average (blue
line) all response times from the region hosted in Munich are located (except some
spikes). The lower and somewhat thicker line has its median at approximately 12ms
to 12.5ms. The median of Munich’s upper (a bit thinner) line is around 14.5ms. The

51

3. Addressing and Mapping in a NGI architecture

 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30

 0 1000 2000 3000 4000 5000

R
e
s
p
o
n
s
e

T
i
m
e

(
m
s
)

Query Number

Response Time
Average over all queries

Figure 3.15.: Close up of the HiiMap performance test results.

cause of these two lines and their relative thickness roots from the DHT used to store
the mapping entries. A query is sent to a region’s load balancer and then forwarded
to a random peer of the DHT. In case the peer is able to resolve the mapping request,
the response is sent back to the querist via the load balancer8. If the peer, however, is
not able to answer the query, it passes it on to the responsible one within the DHT.
As mentioned earlier, the replication factor within the DHT was set to two. Before
forwarding a query into the DHT, a peer checks its own dataset and also the replicas
it stores. In case the query can be answered based on the stored replicas, the query
is not forwarded and immediately resolved. The 2.5ms gap between the two lines is
the time it takes to forward the query within the DHT (RTT plus processing time at
the peer). The load balancer as well adds another 2.5ms to the total lookup delay—
although this cannot be derived from the graph. The difference in thickness can be
explained by the replication factor. In a five node and balanced DHT, each peer stores
3/5 of all entries. This means that only 2/5 of all queries must be forwarded to another
peer in the DHT.
As a productive HiiMap mapping system would require more than five nodes in the
DHT, the second line becomes the significant one. A goal for a real world implemen-
tation of the mapping system must be to shrink the gap between the first responder

8A direct response by the prototype implementation is not possible. The prototype HiiMap protocol
is based on UDP/IPv4, and the test client was situated behind a NAT gateway. Therefore, the load
balancer is required to answer the request in order for the response to be forwarded to the client (cf.
Chap. 6.2).

52

3.4. Conclusion

and the responsible peer within the DHT as well as between the load balancer and
the first responder. The hardware nodes at a single site of the G-Lab experimental
facility are interconnected by 1GBit/s Ethernet lines, and the RTT between two nodes
is approximately 0.2ms. This means that the major part of the additional delay in the
prototype setup is caused by the implementation and the virtualization of the nodes.
A native C implementation on dedicated hardware should significantly reduce the
additional delay.

3.4. Conclusion

In this chapter a novel addressing scheme for a NGI architecture was discussed. The
so–called locator/identifier separation paradigm solves several challenging issues of
today’s Internet architecture. This addressing scheme, however, requires a new entity
within the network, the so–called mapping system. After outlining the requirements
for such a mapping system, various proposals for a mapping architecture, ranging
from today’s mechanisms to completely novel concepts, were briefly described and
evaluated. The evaluation, however, showed that non of the proposals met all of the
requirements.
The major contribution of this chapter is the introduction and evaluation of the Hierar-
chical Internet Mapping Architecture (HiiMap). This approach combines the strength
of tree–based and DHT–based mapping systems and proved to meet the requirements
expected from a NGI mapping system (scalable, fast, trustful and persistent identifier).
The subsequent analytical and experimental evaluation of the concept showed the
resource requirements of the mapping architecture and revealed the concept’s perfor-
mance advantage over today’s Domain Name System. The practical evaluation was
carried out in the G-Lab experimental facility. In Appendix B a migration strategy is
described how to introduce the HiiMap architecture to the Internet.
Although this chapter did not focus on the security requirements of a mapping sys-
tem, the foundation to incorporate such functionality was laid out (i.e., the trust as-
pect). As security plays a fundamental role for a NGI architecture, this topic is dis-
cussed in the next chapter.

53

3. Addressing and Mapping in a NGI architecture

54

4. Integrated Security Architecture Based on
Distributed Public Key Infrastructure

Providing security functionality is an important aspect of any Next Generation Inter-
net (NGI) architecture. Contrary to today’s Internet design, the security functionality
must already be embedded in the architecture and not provided as an add–on. In this
chapter, the Hierarchical Internet Mapping Architecture (HiiMap) security framework
is introduced. Even though the description of the HiiMap architecture and the secu-
rity framework is split into two chapters, this does not mean that the architecture and
the framework are two separate parts. The security framework is an integral compo-
nent of the HiiMap architecture and is fully integrated.
Before introducing the framework, some state of the art fundamentals are summa-
rized and other novel security concepts are briefly discussed. The limitations of these
concepts are outlined before the elements of the HiiMap security framework are de-
scribed and evaluated.

4.1. State of the Art

In this section fundamental cryptographic concepts are briefly summarized. These
concepts are utilized by the novel security proposals and the HiiMap security frame-
work.

4.1.1. Public Key Cryptography

Traditional symmetric cryptography requires a shared secret between communica-
tion partners. This secret is used to en- and decrypt a confidential message. Albeit its
simplicity and elegance sharing the secret is not trivial. Prior to an encrypted com-
munication both partners must agree upon the secret. The problem arises as on the
Internet it cannot be assured that involved parties can meet physically or even know
each other beforehand to exchange the secret [Eck06, LOP05].
Contrary to symmetric, asymmetric cryptography does not require a pre–shared se-
cret. Asymmetric or public key cryptography is based on a two key mechanism. Two
separate but linked keys, thereby, are required. One for encrypting a plain text and
the other to decrypt the cypher text. The important aspect is that neither key will do
both functions. Furthermore, with the proper algorithm it is impossible to derive one
key from the other [Eck06].
The owner of a key pair creates a mathematically linked key pair (i.e., a public and a
private key) and publishes the public key. The private key must be kept secret and not
disclosed to anyone. By publishing the public key anyone holding a copy of it is able

55

4. Integrated Security Architecture Based on Distributed Public Key Infrastructure

to encrypt a plain text in a way that only the key owner is able to decrypt it (cf. Fig.
4.1(a)). The other way around is also possible. Encrypting a plain text with the private
key results in a message only decipherable by the public one. Though this does not
provide any confidentiality as the public key can usually be copied by anybody, it is
a proof to a public key holder that the message was encrypted by the key owner (cf.
Fig. 4.1(b)).

Plain
Text

F24AD
B71A9

Encrypt

Plain
Text Decrypt

Alice

Bob

Bob's
Public
Key

Bob's
Private
Key

(a) Using Bob’s public key to encrypt a mes-
sage only he is able to decrypt

Plain
Text

AG61B
58ZZE

Sign
(Encrypt)

Plain
Text Verify

(Decrypt)

Bob

Alice

Bob's
Private
Key

Bob's
Public
Key

(b) Using Bob’s public key to verify his signa-
ture

Figure 4.1.: Encrypting (a) and signing (b) a message with public key cryptography.

Several algorithms have been proposed to implement the public key cryptography
scheme. The two most prominent are integer factorization cryptography (e.g., RSA by
Riverst et al. [RSA83]) and elliptic curve cryptography (ECC) by Koblitz [Kob87]. Be-
side the mathematical principles, the difference between both mechanisms lies within
the required key length. Whereas for RSA a key length of 2048 bit and above is sug-
gested1, 160 bit are sufficient for ECC. Furthermore, ECC is less computational power
and memory consuming than RSA. It, therefore, is often used for low power devices
or smart cards [GPW+04].

4.1.2. Public Key Infrastructure

Today, the exchange of public keys is done via a Public Key Infrastructure (PKI), e.g.,
defined by the ITU-T standard X.509 [RFC 2459, RFC 3280]. All approaches have in
common that a particular user or node publishes his public key on a key server of

1This recommendation from the German Federal Network Agency (Bundesnetzagentur) is valid until
the year 2017. The lowest allowed key length for the year 2011 is 1976 bit [Woh11].

56

4.1. State of the Art

some sort from which it can be downloaded by other peers. After that, encrypted
and signed messages can be exchanged. The most common approach of PKIs is based
on so–called certificate authorities (CA). These authorities have two purposes. On one
hand, they distribute public keys and on the other, certify that a specific public key
belongs to a specific legal person (e.g., person, company, etc.). This is done by storing
a certificate on the key server instead of the public key alone. The certificate contains
the identity of the key owner and the public key. To prove its integrity, the certificate
is signed by the CA itself. This approach, however, implies that users have to trust
the CA. In case a key pair ever gets lost, it can be revoked by including it in the so–
called Certificate Revocation List (CRL) where all invalid keys and certificates are kept
[RFC 3280].

root CA

CA CA CA1 2 3

Figure 4.2.: Hierarchical trust model of certificate authorities (CA).

In order to cope with the load of serving and issuing certificates, multiple CAs are
used and a trust hierarchy among them is built. Figure 4.2 illustrates such a trust tree.
Except from the root level, all CAs are certified by their superordinate CA. The root
CA is self–certified. This means that it issued and signed its own certificate. In order
to verify an end system’s certificate, stored at a leave of the CA tree, the complete
certificate chain, beginning at the root, must be verified. By trusting the root and
following down a tree branch of CA certificates, therefore, the end system certificate
can be verified [RFC 2459, RFC 3280].
This approach of CA–based PKIs, however, has several problematic issues as identi-
fied by [ES00, LOP05, LB04]. These problems are in random order:

• As the root CA is self–certified, any end system is able to act as a root CA by
issuing a certificate for itself (self-proclaimed authorities). A user, therefore, can
not base the decision which root CA to trust on certificates. Other means to
establish a trust relation between the CA and a user are required.

• Certificates are usually not signed by the root CA itself. This means a trust chain
must be validated in order to verify a certificate. The complete chain, however,
is only as strong as its weakest link. By compromising a single CA, an attacker
can control the complete subbranch of the CA hierarchy.

57

4. Integrated Security Architecture Based on Distributed Public Key Infrastructure

• Multiple CAs exist, each having a different policy as to how certificate hold-
ers are required to identify themselves towards the CA before a certificate is
issued. Methods are, for example, online trust schemes, hand written signatures
or physically presenting a legal document to a CA’s employee. Yet, no consis-
tency over all CAs exists.

• CAs are usually owned and governed by open corporations. This means that
the CAs are subject to financial transactions and can be bought by third parties.
This can be a problematic issue for clients in case the CA they subscribed to is
sold to a competitor, for example.

Other problematic issues are related to a unified global namespace, certificate com-
plexity, liability and economical problems [ES00, LOP05, LB04].

4.1.3. Threshold Cryptography

Threshold cryptography is a mechanism to share a secret among different parties. The
secret, thereby, is split into multiple shares and distributed by a dealer to n participants.
The distinctive feature is that any group of at least k participants is able to reconstruct
the secret. The scheme is perfect if any group of fewer than k participants cannot
obtain any information about the secret. Threshold cryptography, therefore, is also
often referred to as (k, n)–threshold scheme.
To explain threshold decryption it is helpful to take a look to the principles of Shamir’s
Secret Sharing [Sha79]. Shamir requires one dealer which is trusted by all partici-
pants as he knows every part of the key and has to distribute them to the partici-
pants. Shamir’s scheme relies on the construction of a polynomial following the pat-
tern f(x) = s + a1x + a2x

2 + ... + at−1x
t−1 where s represents the secret. Hence, all ai

values can be chosen unrestrictedly by the dealer. Afterwards, the dealer can gener-
ate n arbitrary value tuples (x, f(x)) where x can be disclosed. As f(x) is a share of
the key, however, it must be kept as a secret. At least k value tuples are required to
calculate the polynomial by interpolation and consequently also the secret s.

f(x)

x

s

Figure 4.3.: Simplified geometric representation of Shamir’s Secret Sharing.

58

4.1. State of the Art

In Figure 4.3 a polynomial is shown where the y–value is marked with s at x = 0. This
is equivalent to the secret s in Shamir’s principle. The red marked points are basic val-
ues which are distributed to every single party by the dealer. The x–value of the basic
values are public, the corresponding f(x)–values are subject to non–disclosure and
are known only by the respective party and by the dealer. They represent the shares.
If there are enough (x, f(x))–pairs available, it is possible to solve the polynomial by
interpolation and calculate the secret s accordingly.

A problem of Shamir’s (k, n)–secret sharing scheme, however, is its computational
complexity. The interpolation to recover the polynomial requires addition, subtrac-
tion, multiplication and devision with huge integer values (e.g., 4k bit numbers).
Other threshold cryptographic schemes based on the same (k, n) principle, therefore,
have been proposed. These only require bit–concatenation and logical XOR opera-
tions (e.g., Kurihara et al. [KKFT08]).

4.1.4. Internet Protocol Security

Internet Protocol Security (IPsec) is a mechanism to provide security functionality on
the network layer [RFC4301]. This extension to the IP header and subsequent encryp-
tion of the IP payload was standardized in 19952. It provides end–to–end confiden-
tiality, integrity and authentication between peers. IPsec can seamlessly be integrated
into the layered architecture of the Internet as either extension to the IP layer or a so–
called bump layer above IP. It, thereby, satisfies the design principals of layering and
end–to–end argument (cf. Sec. 2.1.1).

During the connection setup phase certificates are exchanged between peers in order
to mutually authenticate each other. The peer’s public key acquisition, however, is not
covered by IPsec, and external PKIs are required. This means that although a peer can
be identified and authenticated, a link to a real or legal person cannot be established
without other means.

Another problematic issue of IPsec is its positioning within the OSI model. While
it integrates itself seamlessly into the layered architecture, non–transparent network
middle boxes, like firewalls and NATs, are not able to pass through an IPsec stream
without further add–ons [RFC3715]. The problem, thereby, is caused by the non–
standard conformity of the middle boxes. These, however, have been deployed in
enormous numbers before the large scale use of IPsec. In terms of the OSI model, all
layers from the transportation layer and above are encrypted when using IPsec and
can only be decrypted by the two end–points of a stream. NAT boxes, in order to
function properly, require information from the transportation layer (e.g., port num-
bers). Likewise, firewalls need access to higher layer information to match incoming
packets against filter rules.

2RFC4301 is the third revision of IPsec published in 2005.

59

4. Integrated Security Architecture Based on Distributed Public Key Infrastructure

4.2. Novel Security Concepts

Asymmetric cryptography is a key element in today’s and future security concepts
(e.g., cf. IPsec). Today’s PKIs, however, are not a satisfying solution to the problem
of how to trustfully distribute public keys [ES00]. Novel mechanisms, therefore, are
required to tackle this problem. In the following two different solutions, not requiring
a centralized authority, are briefly introduced and their strengths and weaknesses in
regard to a NGI architecture are analyzed.

4.2.1. Cryptographic Namespace

In an asymmetric crypto–system, users have a key pair, consisting of a public key
and an associated secret private key. PKIs use certificates to tie the public key to a
specific user or identifier, respectively. The concept of a cryptographic namespace was
initially developed by Shamir in 1985 [Sha85]. The idea is to replace certificates by
mathematically coupling a user’s address or identifier (from now on only referred to
as identifier) with his public key. One could, for example, simply use the public key
as an identifier which, however, is not practical as the key should be quite long for
security reasons. Thus, most implementations apply a cryptographic hash function
to the public key and use the output (hash) as an identifier3. The character of the
identifier is thereby depending on the application and could describe a user, a host in
a network or an object in a filesystem.
A cryptographic namespace allows for secure communication without the need of
any additional infrastructure elements, like a PKI. Figure 4.4 illustrates the necessary
steps to acquire the public key of a peer node.

public key

ID

hashing

Alice Bob

request key from node
with specific ID

send key public key

hash

hashing

ID=?

1

2

3

4create ID verify key

Figure 4.4.: Cryptographic namespace based host verification.

In a first step, Alice needs to hash her public key in order to generate her identifier.
The hash value can either be part of the identifier or already serve as the identifier on

3Note that Shamir did it the other way round as he used the identifier as public key and thus had to
apply some tricks to generate a matching private key.

60

4.2. Novel Security Concepts

its own. Afterwards, Alice is able to publish her new identifier (e.g., via a link on a
website, DNS, out–of–band). After learning Alice’s new identifier, Bob needs to send
a key request to Alice in order to obtain her public key. This request is responded
to by Alice by sending her public key back to Bob. Note that the communication
between Alice and Bob is not required to be encrypted so far. To verify that the host
behind the identifier Bob sent the key request message to is really in possession of the
corresponding public/private key pair, he needs to hash the public key and compare
the result to the identifier.
In the following, three addressing scheme proposals are briefly described which are
based on the cryptographic namespace principle.

Host Identity Protocol

In [RFC4423] Moskowitz et al. propose a new protocol layer, the so–called Host Iden-
tity Protocol (HIP). As already described in Chapter 3.1.1, HIP introduces a novel
namespace on top of IP following the locator/identifier split principle.
HIP renews the current TCP/IP architecture by suggesting a new namespace, the
Host Identity namespace. The new namespace consists of Host Identifiers (HI) and
fulfills the role of the identifier in the locator/identifier separation paradigm. The HI
represents a statistically globally unique name for any system with an IP stack. In
[RFC4423], the authors state that “any name that can claim to be statistically globally
unique may serve as a Host Identifier”. They, however, strongly recommend to use a
public key of a public/private key pair as the HI, thereby introducing a cryptographic
namespace.
Since different public/private key algorithms use different key lengths, a Host Iden-
tity Tag (HIT) is introduced. The HIT is a fixed 128 bit representation of the Host
Identity. It is created by cryptographically hashing the corresponding HI. The HIT,
therefore, is a 128 bit hash of the host’s public key. The size of 128 bit was chosen to
match the length of an IPv6 address. In a HIP packet, the HITs identify the sender and
recipient of a packet and are meant to look like IPv6 addresses to higher layers.

Accountable Internet Protocol

The Accountable Internet Protocol (AIP) by Andersen et al. [ABF+08] introduces a novel
two–level hierarchical addressing scheme. The two hierarchies are represented by,
first, the network part, the so–called accountability domains (ADs), and second, the
unique endpoint identifier (EID). The AD is a 160 bit value representing the domain
the node is currently attached to and globally visible in the wide–area routing pro-
tocol (such as a BGP prefix). In case the domain is internally organized hierarchi-
cally, multiple levels of the AD are allowed. Such an address would look like this:
AD1 : AD2 : AD3 : EID.
Both 160 bit values, the AD and EID, are computed by hashing the public key of either
the domain or the end–node into a 144 bit value. The leftmost 8 bits of the address
determine the crypto version of the used hash and/or key mechanism. This allows
for new algorithms to be used in case an old one is considered to be not secure enough

61

4. Integrated Security Architecture Based on Distributed Public Key Infrastructure

anymore. The rightmost 8 bits are used to identify the interface of the node or domain
in case it is attached via various ones.
The authors argue that a scalability issue may arise from the non–structured address
space but state, this might become insignificant in the future as computational power
increases over the years.

Cryptographically Generated Addresses

In his work, Aura introduced Cryptographically Generated Addresses (CGA) [Aur03]
which are based on IPv6. He uses the fact that the 128 bit long addresses are sepa-
rated into a subnet prefix and interface identifier. Both parts are 64 bit long and while
the subnet prefix is predetermined by the network topology, the end–node can freely
choose the interface identifier part.
Aura uses the 64 bit interface identifier to incorporate the hash of the node’s public key
into the IPv6 address. It contains three security parameters (3 leftmost bits) and the
"u" and "g" bits which are ignored for this proposal. The remaining 59 bits represent
the hash of the public key. The author, however, states that 59 bit may not be complex
enough for an attacker to compute a hash collision. To increase the costs of a brute–
force attack, a second hash is used. This hash is generated out of the public key and
a modifier which must be chosen to result in a hash with a certain amount of zeros as
leftmost bits. The number of zeros is indicated by the three security parameter bits in
the IPv6 interface identifier part.

Limitations of Existing Proposals

The cryptographic namespace design aims to provide secure communication without
the need of an additional infrastructure element. While there are some applications in
which this statement holds true (e.g., local networks), this is not the case for a scenario
where the cryptographic namespace is used as a novel addressing scheme in a NGI
architecture. In the following, four limitations of the cryptographic namespace are
outlined and discussed in regard to a NGI deployment. The work in this subsection
has been published in [HL11].

Key Identifier Binding The first shortcoming of the cryptographic namespace de-
sign is the tight binding between the address or identifier and the cryptographic pub-
lic key. As described in Section 4.2.1, the identifier of a node is computationally bound
to the public key. This means, whenever either the identifier or the key changes, the
other entity changes as well.
Normally, none of these two items is expected to change. There are, however, some
cases where it makes sense to replace either the identifier or the public key. Changing
the identifier, for example, could be useful for privacy reasons. A user might choose
to hold multiple identifiers and swap them periodically to complicate the creation of
a tracking record. Using self–certifying identifiers, the user is unable to use the same
key pair with the set of identifiers.

62

4.2. Novel Security Concepts

Another reason could be the change in server structure or topology. Imagine an on-
line shop or online banking service. In this scenario, trust and authentication should
be based on certificates and not on identifiers. In case the shop provider or bank
is forced to install new or additional hardware to cope with the load, the identifier
would change. By binding the public keys to identifiers, the keys as well have to
change, and customers are confronted with a completely new set of identifiers and
public keys. This is contrary to still relying on the old certificate and solely being redi-
rected to a new identifier, in case identifiers and public keys are not directly coupled.
The other way around is even more problematic. Today’s de–facto standard for asym-
metric encryption is RSA with a varying key length of 1024 to 4096 bit. There is no
mathematical proof, however, that the RSA algorithm cannot be cracked besides the
always possible brute–force method [RSA78]. While we assume RSA to be secure now,
this might not be the case at a future point in time. Shor has shown that prime factor-
ization is theoretically possible in polynomial time on quantum computers [Sho99].
Even if RSA might still be considered to be safe in a couple of years, the recommen-
dation for the minimum key length may change. Recently, the National Institute of
Standards and Technology (NIST) advised that key lengths of 1024 bit should not be
used after the end of 2010 [BBJ+09]. Whether a completely new algorithm or ’just’ a
longer key is required, being forced to change the public key immediately results in a
different identifier as well. This means that beside all the trouble caused by the swap
of algorithm or key length itself, we also have to deal with changing all identifiers
worldwide.
One fundamental design goal of the locator/identifier split is the property of the iden-
tifier to never change as long as the user does not request a new one. The locator,
instead, should be allowed to change frequently reflecting the different access points
towards the topology while roaming. By computationally binding the public key to
the identifier, however, this design goal is violated.

Lack of Key Revocation Another crucial point is that—by design—the cryptogra-
phic namespace does not allow for a key revocation mechanism. In current PKIs,
trusted Certification Authorities (CA) approve the relationship between an identifier
and a public key by signing a certificate [RFC 3280]. Revocation of a key (pair) is re-
quired in case a private key was destroyed, became public, was lost, compromised
or a certificate was issued improperly. The CAs hold so–called Certification Revoca-
tion Lists (CRLs) which can either be checked by the clients on demand or are pe-
riodically published to them. This enables a participant to detect compromised or
non–trustworthy parties.
As the previous section has outlined, the cryptographic namespace couples the iden-
tifier even tighter to its public key, meaning that any revocation scheme would re-
voke the identifier simultaneously and therefore interrupt communication until the
partners have exchanged the new identifier. Consequently, none of the presented ap-
proaches integrates a revocation mechanism leading to severe security issues.
If one client looses his private key, no reliable communication is possible under the
same identifier anymore. It might, however, be acceptable to change the identifier

63

4. Integrated Security Architecture Based on Distributed Public Key Infrastructure

under certain circumstances, but a more critical problem rises if the key is not only
lost but also found or stolen by a (malicious) third party. The private key enables the
attacker not only to decrypt messages dedicated to the righteous owner of the key
pair, but also to more or less automatically spoof his identifier and act as if he was the
legitimate addressee. This is possible until the previous communication partners are
notified that a new identifier has been issued. Moreover, the identifier update has to
be done out of band as another secure channel is required.
Furthermore, key pairs should have a limited lifetime and are to be renewed regu-
larly. Reasons, therefore, can be cryptographic algorithms that have turned out to be
insecure, increased computational power requiring longer keys4, or simply to make a
successful brute–force attack even more unlikely [BDR+96]. Currently, digital certifi-
cates have limited validity periods. Their lifetimes differ depending on their purpose,
the issuing CA’s guidelines, reputation of the client and other criteria. For example,
the CA/Browser Forum which many leading CAs are member of, recommends to
renew TLS/SSL certificates every 12 months [The10]. This would again result in a
change of the host’s identifier.

Additional Trust Entity Required The cryptographic namespace has been intro-
duced to support secure (encrypted) communication based solely on the identifiers
of the clients. No additional mapping between public key and identifier is required.
Two nodes contact each other by their IDs, and they exchange their public keys which
both parties can verify to match the IDs by hashing.
A problem arises in case the identifiers have not been transmitted over a secure chan-
nel in advance, e.g., if a client gets a faked identifier of his communication partner
from an untrusted source. This is because there is no way to prove the association
between the identifier, public key and the entity claiming to be its owner. This means,
HIP and other NGI protocols will nonetheless require an (PKI–like) additional party
that maps identifiers and keys to specific legal persons or entities. Today’s mapping
service, DNS, has suffered from recent attacks illustrating the need for a secure and
trusted mapping service. Consequently, the migration to DNSSEC [RFC4033] is a step
towards more security.
It should be mentioned that a cryptographic namespace based design can, from a
functional point of view, work without trusted entities. But in order to provide full
communication security (authentication and integrity), future concepts cannot get
along without a trusted ID mapping service.

Key Guessing The last reason seems to be statistically insignificant at first. It, how-
ever, becomes an important issue as more identifiers out of the flat identifier space are
used. This is relevant for any NGI architecture which uses globally unique identifiers.
It is possible for an attacker to generate a random triple of a public key, a private key
and an identifier. The attacker needs to generate a public/private key pair and hash
the public key. As a result, it holds a valid private key for a specific identifier. In a

4As a rule of thumb, the lifetime of a key should be much shorter than the estimated time it would
take to crack the key through brute–force.

64

4.2. Novel Security Concepts

last step, the attacker needs to check the mapping system whether this identifier is
already in use or not. In case the identifier is already in use by a node, the attacker can
either compromise any communication with that node or start new communication
flows pretending to be that node.
While the first attack—compromising a communication—poses a serious problem for
that random node, the second one questions any authentication supported by a cryp-
tographic namespace based concept. Any communication or message fails verifica-
tion and becomes deniable. This is because a signee can always argue that it was not
him who electronically signed the document.
It is possible to argue that it is very unlikely to hit a random address within a 128 bit
identifier space (e.g., used by HIP) by random key generation. This might be true for
today’s number of users currently roughly being around 4 billion nodes [Hus10]. In
that case, it would take an attacker several years until finding an identifier which is
already taken. First of all, he needs to generate 296 identifiers in average which is an
enormously huge number. Generating and hashing a 2048 bit RSA public key takes
270ms on an Intel Xeon 2.5GHz machine. This results in 7 × 1020 years for a single
machine, neglecting that it takes time to query the mapping system (this should take
less than 200ms and can happen in parallel to key generation).
The interesting figure in this equation is the number of used identifiers. This num-
ber might increase significantly in the future. Proposals for Next Generation Internet
architectures discuss to not only use identifiers for end nodes, but also for persons,
content and services.

4.2.2. Public Key Distribution in Wireless Ad–Hoc Networks

Public key distribution in wireless ad–hoc networks is a challenging task. Ad–hoc
networks are required to work without a centralized infrastructure and cannot rely
on steady connections between nodes [MM04]. Depending on the use case of the ad–
hoc network, it might be an isolated network without any connectivity to the Internet.
Traditional resources (e.g., X.509 following PKIs), therefore, cannot be utilized to dis-
tribute public keys.
Wireless ad–hoc networks are formed as nodes discover other ones within their own
radio range. Depending on the underlying protocol, they send discover messages
and maintain connections to their direct neighbors. The ad–hoc network is extended
as each node participates in routing by forwarding data for other nodes. The deter-
mination of which nodes forward data is made dynamically as well, based on the
network connectivity [MM04].
Another property of wireless ad–hoc networks is that nodes might loose connectivity
due to mobility or being switched off. This means that a wireless ad–hoc network
rarely is in a static state and normally experiences a churn rate among its partici-
pating nodes. It is even possible that a single ad–hoc network is split into several
subnetworks without connectivity among the subparts.
Due to a wireless ad–hoc network’s attributes a traditional PKI following the X.509
standard [RFC 2459, RFC 3280] is not applicable. Another solution to distribute public

65

4. Integrated Security Architecture Based on Distributed Public Key Infrastructure

keys among a known group of nodes is to use threshold cryptography introduced in
Section 4.1.3. Instead of providing a centralized PKI each node participates in the
key distribution. Nodes, thereby, store public key certificates of other ones. To this
extent, multiple copies of the same key certificate might exist within the network.
Contrary to today’s PKI, not a centralized instance issues the key certificates. Instead,
nodes collaborate based on a trust model (e.g., [BSD10]), and collectively issue and
sign public key certificates for other nodes. This means that a master key pair exists
which is used to sign and verify the certificates issued for nodes’ public keys. The
public key of that master key pair is distributed among all participants (e.g., upon
connecting to the network). The private key, however, is split into shares, and these
are distributed to various nodes. Preferably these nodes proved to be rather stable
and trustful in the past.
A new node joining the ad–hoc network is required to request a key certificate for its
public key and upload the key as well as the certificate to other nodes. The request to
issue the certificate will only be granted in case enough nodes trust the new one. This
means a specific threshold of nodes must be met. In terms of the threshold cryptogra-
phy scheme, at least k out of n nodes must trust the new node. In case enough trusting
nodes can be found, a certificate is collectively issued, using the shares of the k nodes.
The verification of the certificate is done using the free circulating public master key.
Figure 4.5 illustrates a sample ad–hoc topology.

A

1

2

3

4

5

6

72 3 7
=

5& & &

✓

✓

✓

✓

Figure 4.5.: Public key distribution in wireless ad–hoc networks.

In this example, node A wants to join the ad–hoc network and distribute its public
key among the other nodes. Nodes 2, 3, 5 and 7 trust node A and collectively sign
node A’s public key certificate.
Implementations of this distributed certificate authority scheme are, e.g., [KZL+01,
Kon11]. They mainly differ in the trust models used in the schemes. Further, the sec-
ond one groups nodes into clusters in order to increase the availability of the shares.

66

4.3. HiiMap Security Framework

Limitations for a NGI scenario

The introduced mechanism to distribute public keys based on threshold cryptography
and trust models is an interesting approach for wireless ad–hoc networks. The para-
meters of ad–hoc networks and a NGI architecture, however, drastically differ, and
the mechanisms cannot be applied one–to–one to the latter. Even though the thresh-
old scheme would theoretically be applicable to billions of nodes, the trust models are
not due to political and scalability reasons. It is not suitable that half the world must
trust a single node in order to issue a key certificate. The consequence would be to
build trust domains, reducing the amount of required trusting nodes. This, however,
would raise the question about how the individual domains could trust each other,
requiring an hierarchical sort of structure among the domains. The outcome would
be similar to today’s X.509 PKI architecture and, therefore, suffer from the same prob-
lematic issues (cf. [ES00]).
In the remainder of this chapter the HiiMap security framework is introduced. This
framework is also based on threshold cryptography for public key distribution but
does not require a master key to be shared.

4.3. HiiMap Security Framework

The HiiMap security framework is an integral element of the HiiMap NGI architec-
ture. It provides the foundation for any security–related mechanism or application
above the network layer. The framework is designed as a trust anchor to a chain of
security mechanisms built on top of it. In that way it is open to future applications
and protocols while at the same time securing the HiiMap protocol described in the
previous chapter.
The framework is built around asymmetric cryptography, and its core element is a
distributed PKI. Instead of providing an additional infrastructure, however, the PKI
is integrated into the HiiMap mapping system. In that way resources can be shared
among the functionalities, and overhead and maintenance can be kept lower com-
pared to operating separate services.
The work in this chapter has been partly published in [HEP+11, FH10, HF11, Han12,
LH10].

4.3.1. Public Key Infrastructure

In the HiiMap architecture each mapping entry consists of an identifier as the pri-
mary key and a set of locators by which the end system currently can be reached (c.f.
Sec. 3.3). Further, a timestamp of the last update and a flag, indicating whether the
location update was cryptographically signed by the end system or not, are stored.
Normally any location update must be signed to prevent identifier hijacking [Han12].
Some devices, however, might not have enough computational power to handle long
asymmetric cryptographic operations. To integrate these devices, the owner can re-
quest to send unsigned location updates. An unsigned location update is signaled by

67

4. Integrated Security Architecture Based on Distributed Public Key Infrastructure

a set flag, and peers can decide whether they want to start a communication with such
a device or not.
To combine the PKI with the mapping system, the public key of each node must be ad-
ditionally stored for each mapping system. The result is that no additional protocol or
infrastructure has to be provided for querying and storing public keys. As the public
key is a very static value and not expected to change frequently, the additional burden
for the mapping system is limited, and the public key databases can be optimized for
frequent read requests—contrary to frequent read and write requests for the locators.

Distributed Key Storage

By storing the public key at only one administrative domain (region) in the mapping
system, the user heavily depends on the trustworthiness of that particular region. In
case the mapping service provider collaborates with an attacker, it could send a wrong
or manipulated public key to the client. Therefore, any security functionality based
on the public/private key principle would be rendered useless. Even worse, the client
considers the connection to be secure while in fact talking directly to the attacker (i.e.,
man–in–the–middle attack).
To address this issue, the public key is divided into n shares and distributed to various
independent regions. To reconstruct the public key only k out of n shares are required,
using the threshold cryptography scheme, as summarized in Section 4.1.3. Figure 4.6
illustrates an example with n = 4 and k = 3. The client is able to reconstruct the public
key from a subset of the key shares. This means that not all shares must be obtained.
Untrustworthy or topology wise far away regions can be omitted, and the client can
choose which regions to query for the key shares. In that way, the key is not stored at
only a single region, and at least k regions must be queried to reconstruct the key.
In comparison to distributing full key copies to several regions, this approach has an
important benefit. In case a region stores the complete key and cooperates with an
attacker, it could swap the key with another one. This is obviously a problem in case
the requester relies only on a single region. Even if he queries multiple regions, the
result will be a set of non–matching keys. This means that he needs to base his trust
in the key on the majority principle by selecting one of them. Some requesters might
choose to cancel the connection setup because of the irregularities of the obtained key
set.

Determining the Storage Location

Another critical aspect of this approach is the mechanism how a client is able to de-
termine the storage location of the shares. Being required to retrieve this information
from the responsible region would allow a malicious region to manipulate this list.
Entries in the storage location list could be modified to point to allied regions. As
a result, a malicious key could be divided into shares and distributed to the allies.
Together with a malicious locator information from the responsible region, a client
would again be vulnerable to man–in–the–middle attacks. The goal for the mecha-
nism, therefore, must be to determine the storage locations without any additional

68

4.3. HiiMap Security Framework

Region 1

Region 3

Region 4

Region 2

1

2

3

4

1 2 4
pub key

& & =

Figure 4.6.: Reconstructing the shared public key.

information from the responsible region.
The algorithm to retrieve the storage location requires two input parameters. These
are the identifier the shares are associated with and a transformation directive from
the Global Authority (GA). In the HiiMap architecture up to 256 regions exist. This is
represented by the 8 bit Regional Prefix (RP) address space which plays a crucial role
in the algorithm. The algorithm is formalized as follows:

1. The identifier is hashed into a n · 8 bit value (H). For this operation, a cryptogra-
phic hash function, like SHA-1, is suggested.

2. H is then divided into n equal sized pieces of 8 bit, resulting in a group K =
{k1, k2, ..., kn}.

3. The group K is then transformed using a directive downloaded from the GA
(K→ K′).

4. The resulting group K′ = {k′1, k′2, ..., k′n} reflects the storage locations of the
shares wherein each k′i represents a RP.

5. To ensure that a region only stores the maximum of one share for a given identi-
fier, it must be guaranteed that k′i 6= k′j is met5. To satisfy this requirement, k′j of
a found k′i = k′j pair is increased by one. This process is repeated until k′i 6= k′j is
valid for the whole group K′.

5This could be the case as the ki pieces result from a truncation and transformation operation. The
hash valueH = 10011001 10011001 for n = 2, for example, would result in k1 = k2 = 10011001. The
transformation might as well map two different k values to the same k′ value.

69

4. Integrated Security Architecture Based on Distributed Public Key Infrastructure

Following these steps, a client is able to determine the storage locations of the key
shares associated with a specific identifier. The same algorithm is applied for up- and
downloading the shares. The transformation directive in step 3 is necessary as not all
256 regions might exist. The RP address space might not be full, and the directive en-
sures that shares are only stored at existing regions. Furthermore, the transformation
can be used to implement statistical load balancing between regions. Larger regions
might be capable of storing more shares (from different identifiers) than smaller ones.

Figure 4.7 illustrates the algorithm for n = 4. The identifier is hashed into a 32 bit
value (H : 4 · 8 bit) and afterwards truncated into four pieces. The group of four pieces
K is transformed into the group K′ following the directive downloaded from the GA.
As the directive is expected to change rarely, it can be cached at the client. To en-
sure each share is stored at a different region, the requirement from step 5 is enforced
wherein the second k′ value from a matching pair is increased by one until no other
k′ exists with the same value. Finally, the key shares can be up- or downloaded from
the regions identified by the k′ values.

Identifier

32bit Hash

8bit

hash(identifier)

split(hash)

47
6 3

35
4 2
3 1
2 1
1 1

Map to region

Request key piece
from region

8bit 8bit8bit

K K�

k�
i �= k�

j

Figure 4.7.: Determining key share storage locations.

70

4.3. HiiMap Security Framework

Retrieving a Public Key

To retrieve a public key from the HiiMap distributed PKI, several information is re-
quired. This information can be obtained from various entities in the mapping archi-
tecture. Table 4.1 lists an overview of the storage locations.

Entity Stored information

Global authority Transformation directive
ID→ RP

Responsible region

ID→ locator
ID→ n, k
ID→ key length
ID→ key algorithm (e.g., ssh-ecc, ssh-rsa)
ID→ key timestamp

Region ID→ share
Client cached(transformation directive)

Table 4.1.: Stored information on each entity in the HiiMap PKI structure.

In a first step, the transformation directive is downloaded from the GA. This directive
is expected to change rarely and can be cached at the client site. Therefore, it can be
omitted for subsequent public key queries. The second task is to determine the storage
location of the shares. This is done by executing the previously described algorithm.
After having determined the storage locations, at least k shares must be downloaded.
Ideally the topology wise closest k regions are queried. Another strategy would be
to query regions which previously provided reliable information to the client. With
k shares the secret s (i.e., the public key) can be reconstructed. To be able to validate
the public key, s does not only consist of the public key but also a checksum. In that
way, a client is able to verify the correctness of the public key and can conclude that
none of the shares was modified. In case the checksum does not match the public
key, the client is aware that at least one of the shares is either corrupted or was inten-
tionally modified. He, therefore, must request additional shares from the n regions
he did not obtain a share from before. The process of additional share downloading,
key reconstruction and verification is repeated until either the checksum matches the
public key or all n shares have been obtained and any possible k out of n combination
was used in the attempt to reconstruct the key. Please note, the case in which no key
reconstruction is possible is very rare and expected to never occur. Not being able
to reconstruct the key means that at least n − (k + 1) shares are either corrupted or
intentionally modified.
An addition to this scheme—not further investigated in this thesis—could be that a
client determines which downloaded share was corrupted. This could be done by
downloading k + 1 shares in case the initial reconstruction fails and rotate the indi-
vidual shares until a reconstruction is possible. The region from which the corrupted
share was downloaded could then be reported to the GA. In case the GA receives
multiple complaints about a specific region, it could take measures to deal with the

71

4. Integrated Security Architecture Based on Distributed Public Key Infrastructure

problem. Another approach would be that the GA itself conducts periodic random
tests to monitor all regions and the operation of the overall system. This again could
be indicated to clients in order to give a hint on each region’s credibility.

4.3.2. Client Key Management

Beside the distribution of the public key, the protection of the private one plays an
equally crucial role in asymmetric cryptography. The private key must be kept secret
at all times and must only be accessible by the rightful key owner. A disclosed private
key breaks the security chain of asymmetric cryptography and any security function-
ality built on top. It is, therefore, the user’s task to prevent unauthorized access to the
private key. The problem arises as soon as unskilled or untrained users are to use the
cryptographic scheme. In today’s systems the handling of the private key is rather
unintuitive, and users are often not aware of risks and ways a private key can be dis-
closed to third parties. A security framework in a NGI scenario, however, must be
easily usable and not depend on the technical knowledge of the users.
The security framework of the HiiMap architecture, therefore, relies on cryptographic
smart cards (from here on only referred to as smart card) to store a user’s private key.
In terms of usability, the abstract entity of the private key is coupled with the physical
entity smart card, hence, providing the user with a more natural and familiar security
token. The functionality of the smart card which is subsequently introduced could
also be fulfilled by a Trusted Platform Module (TPM). As this module is usually sol-
dered to the main board of an electronic device, it lacks the natural key like feature of
the smart card and further provides a less flexible solution.

Smart Card

The smart card stores the values listed in Table 4.2. The values in the left column,
thereby, can be retrieved from the card. The right column value is not accessible from
outside the card’s security architecture. Even the owner of the smart card has no
access to it.

Accessible information Non–accessible information
Public key Private key
Unique Identifier (UID)
Card ID

Table 4.2.: Information stored on the smart card.

Once the card is produced, a unique card ID as well as the UID are transferred to the
smart card in the initialization process. Afterwards, the card’s method to generate a
private/public key pair is triggered. After the key generation a fuse bit is automati-
cally set, disabling the method. This bit is only writeable once. This has the benefit
that the smart card generates the key pair itself, and it does not have to be transferred

72

4.3. HiiMap Security Framework

onto the card. The latter case would mean that the private key once was outside the
security environment of the smart card—a possibility to copy the key. The fuse bit is
set in order to ensure that no new key pair is generated by the card. The initial pair
should be valid for the remaining lifetime of the smart card.
The term smart card in this context refers to the generic device. The exact implementa-
tion is not specified for the HiiMap security framework, and multiple versions might
coexist. The variations might range from today’s mobile phone SIM cards via Mobile
Security Cards compatible with the microSD standard up to Internet capable smart
card tokens [Dev11]. Each version might be suitable for different use cases. The SIM
or Mobile Security Card, for example, could be used for personal devices such as
smart phones whereas the smart card token in the form factor of a USB flash drive
might be preferred for multiuser terminal devices. In the last case, the smart card
could be used to securely access a personal context and content stored in a cloud from
a generic non–personalized device. These use cases are based on the introduced secu-
rity framework but not further detailed in this thesis.
Although the physical aspect of the smart card adds to the usability of the security
framework, it also represents a drawback as the card can be lost or stolen. To pre-
vent unauthorized access to the smart card’s security functionality (e.g., signing of
messages), the card must be protected with a PIN/PUK mechanism6. Furthermore,
a lost or stolen card must be reported to the user’s provider. The provider issues a
new card and the old one is marked in the mapping system as out of use. Any further
USR_LOCATION_UPDATE sent from this card will be ignored. For this functionality,
each smart card requires a unique identification number. The card ID of the smart card
in use for a specific UID is stored in the mapping system. Each incoming message
attempting to alter a mapping entry is, additionally to the cryptographic signature,
checked whether it contains the correct smart card ID or not.

Bootstrap

An important aspect of the client key management is the initial bootstrap, i.e., the
first time a new end system, respectively a new UID, connects to the network. The
challenge is how the public key associated with the UID is entered and updated in the
mapping system. Sending the public key without any protection along with the first
USR_LOCATION_UPDATE message would allow an attacker to switch the key. The
mechanism of splitting the public key into shares and distributing them over several
regions would be rendered useless. A bootstrap mechanism, therefore, is required
which safely registers the UID and its associated public key with the mapping system.
Figure 4.8 illustrates the necessary steps specified by the HiiMap security framework.
Before being able to connect to the network, a user is required to request a new UID for
his end node. To do so, he authorizes his provider to request a new smart card from
the GA. The GA’s task is to provide the user with a smart card which is initialized
with an unused UID and on–card generated key pair. The manufacturing, initializing

6This mechanism can be considered as statistically safe. Assuming an implementation with a four
digit PIN and three attempts, the likelihood to find the correct PIN is 1

3333 (Digit range: 0-9, P ≈
3

10 · 10 · 10 · 10).

73

4. Integrated Security Architecture Based on Distributed Public Key Infrastructure

Request new smart card (RP)

Ship smart card

Register(UID,CardID,PubKey)

Smart
Card

End
Node

Global
Authority

Responsible
Region

Regions

USR_LOCATION_UPDATE(UID, CardID, locator)
sign

update
msg. USR_LOCATION_UPDATE(UID, CardID, locator,sig)

USR_LOCATION_UPDATE(UID, share)
sign

update
msg. USR_LOCATION_UPDATE(UID, share, sig)

new locator

Figure 4.8.: Initial end node bootstrap process in the HiiMap security framework.

and shipping of a smart card is logically in the responsibility of the GA. It, however,
might choose to delegate these tasks to trusted partners in order to cope with the load.
It is also conceivable that the GA commissions the provider to produce and initialize
a certain amount of smart cards for future usage. These smart cards are then shipped
to customers upon request. The process of requesting, initializing and shipping the
smart card serves two important aspects.

• With requesting a new UID/smart card, the user is required to identify himself.
This is similar to requesting a new SIM card for mobile phones. By providing
some sort of identification during the order process, the key pair on the smart
card is directly linked to a legal person. Thus, the problem of additional trust
entity required of the cryptographic namespace (cf. Sec. 4.2.1) and the concern
raised by Ellison et al. [ES00] about inconsistent identification process of today’s
PKIs are overcome.

• Before shipping the smart card to the user, the GA (or one of its delegates) trans-
fers the public key into the mapping system. The GA guarantees that a secure
channel is used (e.g., integer and encrypted connection between GA and the re-
sponsible region). In this way, the key is not initially transferred directly from
the unauthenticated user to the mapping system, eliminating the possibility of a
key swap by an attacker.

As the registration of the UID/key pair coupled with the requirement for legal iden-
tification may raise privacy concerns, the usage of unregistered UIDs and keys is also

74

4.3. HiiMap Security Framework

possible. Not all users wish to link their network identity with their real one. Unregis-
tered network participants, however, are marked as such and might be excluded from
certain services (e.g., e–commerce applications).
After the smart card is shipped to the user, the GA registers the new UID with the
responsible region for this UID. The RP of the responsible region the user wants to
join was included in the request of the smart card. Along with the UID, the user’s
legal information, the smart card ID (from here on only referred to as card ID) and the
public key are transferred. These values are stored by the responsible region although
not all of them are accessible to clients of the mapping system. The public key, for
instance, is stored for the region’s own usage. It requires the key to verify signatures
of location updates concerning that specific UID. In that way, the public key does not
have to be reconstructed from shares for each signature verification process by the
responsible region.
Once the user received the smart card, it can be used on any Internet–capable device.
Upon connecting to the network, the end node receives a new locator from its network
attachment point. The end node then constructs a USR_LOCATION_UPDATE message
containing the locator. Instead of sending this message to the mapping system, it is
transferred to the smart card. The smart card internally adds its own card ID, the
UID and cryptographically signs the update message. This signed message is then
sent to the responsible region. Not shown in Figure 4.8, this message also contains
the OPTION_FIELD (cf. App. A). This option field contains the configuration for the
threshold cryptography scheme. The configuration determines how many shares (n)
exist and how many are needed to reconstruct the key (k). In addition, the length and
used algorithm for the public key are sent along in the option field.
The region first verifies the signature and checks whether the included card ID is listed
as the current valid one. Afterwards, the mapping entry is updated. Subsequent to
the initial USR_LOCATION_UPDATE message, the end node constructs the public key
shares, and after being signed by the smart card these shares are sent to the regions
identified by the algorithm described in Section 4.3.1.
The regions storing shares of the public key query the responsible region for the public
key associated with the UID the update messages are from. In that way they are able
to verify the signature in the update message and the integrity of the share.

Location Updates

Location updates are straight forward, and the end system’s part is already de-
picted in Figure 4.8. Whenever a new locator is assigned to an end system, it
needs to notify the mapping system of the change. The end system constructs the
USR_LOCATON_UPDATE message containing its own UID, the card ID, the new loca-
tor and (not mandatory) some options. This message is cryptographically signed by
the smart card and then sent to the end system’s responsible region.
A different approach would be to issue location update messages by the access net-
work instead of the end system. This mechanism, however, has two drawbacks.
Firstly, it increases the computational burden of the access routers and, secondly, an
access network cooperating with an attacker could send forged update messages.

75

4. Integrated Security Architecture Based on Distributed Public Key Infrastructure

Upon receiving the update, the responsible region must verify the message. This pro-
cess is depicted in the flow chart in Figure 4.9. The first task is to fetch the correspond-
ing mapping entry for the UID listed in the message from the own database. In case
no such entry is found, an ERROR_MSG is returned to the end system. The next step
is to verify the signature enclosed in the message. In case the signature check fails,
the update process is aborted and again an error message returned. Afterwards, the
card ID included in the message is checked against the stored card ID in the mapping
entry. In that way the mapping system is able to verify that the update request was
sent from a legit smart card and not from a stolen one. In case all checks succeed, the
mapping entry is altered according to the information of the USR_LOCATON_UPDATE
message.

Search mapping DB
for UID

Verify signature

Update mapping entry Send ERROR_MSG

USR_LOCATION
_UPDATE
received

Mapping entry
found?

Signature OK?

Card ID OK?

No

No

No

Yes

Yes

Yes

Figure 4.9.: Flow chart for USR_LOCATION_UPDATE message processing.

76

4.3. HiiMap Security Framework

Unauthenticated Location Updates

Some Internet–capable devices might not be able to compute crypto challenges (e.g.,
sensors) or it might not be possible to interface them with a smart card (e.g., phys-
ically remote or inaccessible devices like satellites). The security framework, there-
fore, must provide a mechanism to connect these devices without compromising
the entire security architecture. Devices which are required to send unauthenticated
USR_LOCATION_ UPDATEmessages are marked as such and their mapping entry con-
tains a flag, signaling peers that the last location update might have come from an
untrusted source. It is the peer’s decision to decide whether to trust the mapping en-
try or not. A researcher querying sensor information, for example, might choose to
trust the unauthenticated location update from his device whereas a bank probably
requires its online customers to only connect with authenticated devices.
In order to disable authentication, the following process as depicted in Figure 4.10 is
required.

Sensor
Responsible
Region

Owner
(on other device)

Smart
Card

Unauth. Loc.
Update ok.

USR_LOCATION_UPDATE(UID, CardID, option)

USR_LOCATION_UPDATE(UID, CardID, locator)

USR_LOCATION_UPDATE(UID, CardID, option, sig)

USR_LOCATION_UPDATE(UID, CardID, locator)

ignore
update

accept
update

Figure 4.10.: Enabling unauthenticated USR_LOCATION_UPDATE messages.
The owner of the device requests a UID and smart card as usual—this might be in ad-
dition to his own personal smart card and UID. He uses any Internet–capable device
which is equipped with a smart card interface and starts the regular bootstrap pro-
cess. Afterwards he sends another USR_LOCATION_UPDATE message which contains
the request to disable authentication in its options field. This message is signed by the
smart card as usual, thus, authenticating the request for this specific UID. Upon re-
ceiving the message, the mapping system sets the flag in the corresponding mapping
entry. After the user configured the device (the one which is not capable of interfacing
a smart card) to use the correct UID, the device can send USR_LOCATION_UPDATEs
which do not include a signature. The smart card remains with the owner of the de-
vice. To reenable authentication for that specific UID, the user uses the smart card to
send another (signed!) USR_LOCATION_UPDATE message, requesting to clear the flag
in the mapping entry.

77

4. Integrated Security Architecture Based on Distributed Public Key Infrastructure

Key Revocation

Today’s PKI provides a means of key revocation. This means that a user is able to
declare a compromised or lost key pair. Before using a peer’s public key to either
verify a signature or encrypt a message for the recipient, the user is able to check
whether the key is still valid or not. A similar mechanism is implemented in the
HiiMap security framework. Only the key which is stored in the mapping system is
the current valid one for a specific UID. This means, in case the downloaded and a
cached public key differ, the cached one is most likely revoked and not valid any more.
The challenge is how to revoke a public key in case the smart card was lost or stolen.
Without the card, the user is not able to sign the USR_LOCATION_UPDATE messages
which are required to upload new shares into the mapping system. Furthermore, the
user cannot authenticate himself to his provider in order to report the loss of his card.
To circumvent this problem, two possibilities exist:

• As with today’s PKI, the first solution is based on revocation certificates. These
certificates state that the legitimate owner of the smart card—and, therefore, also
the UID and key pair—wants to revoke the key and delete the card ID from the
mapping entry. This revocation certificate must be signed with the smart card’s
private key in order for the mapping system to be able to verify its legitimacy.
As the certificate cannot be signed after the card is lost or stolen, it is advised to
sign the certificate shortly after receiving the smart card and storing it in a safe
place. In that way, the signed certificate can be sent to the responsible region
and a new smart card requested from the user’s provider.

• The second way is similar to reporting a lost credit card. The user is required
to phone a call center of the responsible region and authenticate himself. This
could be done by providing parts of a secret pass code, personal details about
the user (i.e., street address, mothers maiden name) or else. After successfully
identifying himself, the user is able to report the loss or theft of his smart card.
Afterwards the process is the same as with the revocation certificate. The old
card ID is deleted from the corresponding UID’s mapping entry, and any further
messages sent from the old smart card are ignored by the mapping system. A
new smart card is issued, and the new card ID and public key are transferred into
the mapping system (see Bootstrap). This second mechanism is also the fallback
solution—and overrules the revocation certificate—in case the certificate itself is
lost or disclosed to third parties.

An end system is required to query the mapping system in order to check whether the
cached public key of a peer is still valid or not. As downloading and reconstructing
the public key from shares each time a key is to be used is cumbersome, a timestamp
is included in each mapping entry. This key timestamp (cf. Tab. 4.1) is set to the last
time the public key was uploaded. In that way only the cached timestamp and the
one stored in the mapping system must be compared to determine whether the key is
still valid or not.

78

4.3. HiiMap Security Framework

4.3.3. Attack Scenarios

The HiiMap security framework builds the foundation for higher layer security func-
tionality (e.g., encryption, authentication, etc.). The framework itself, however, must
be resistant against attacks as well. The following feasible attacks concerning the
framework and the HiiMap architecture are considered and their countermeasures
described.

Private Key Attacks

To undermine the security framework based on asymmetric cryptography, an at-
tacker’s main goal is to compromise the private key of its target. Controlling the pri-
vate key means that the attacker is able to decrypt private messages, sign documents
in the name of the target as well as authenticating itself as the target towards third
parties. Employing man–in–the–middle tactics the target might even not be aware of
the attack. Gaining control over the private key, thereby, can be achieved in two ways.
The first and direct way is to gain possession of a target’s actual private key. The other
method is to manipulate the public key stored in the PKI. This indirect method aims
at exchanging the public key to match a private one the attacker is in possession of.
Peers of the target would use the altered public key to encrypt and verify messages
from and to the target. From here on, the various keys are distinguished as follows:

• Kt
D : The original private key of the target.

• Kt
E : The original public key of the target.

• Ka
D : A private key controlled by the attacker.

• Ka
E : A public key matching the private key controlled by the attacker.

Direct Private Key Control To control a target’s private key (Kt
E), the attacker re-

quires access to it by either copying or stealing it. As a result, the attacker is able to
compromise any secrets or authentication of the target until the target generates a new
key pair7. In the HiiMap security framework, the cryptographic smart card ensures
that no direct access to the public key is possible. Kt

E remains on the smart card and
cannot be copied. Any cryptographic operation involving the public key is computed
by the smart card’s own processor. The hardware of the smart card ensures that the
private key can not be copied even if the card is stolen, disassembled and challenged
in a laboratory (e.g., side channel attack, power analysis, etching). For this architec-
ture it is assumed that smart cards exist which do not disclose the private key even if
manipulated physically or chemically [RE03].
In case the attacker is able to steal the target’s smart card, the card is protected by the
PIN/PUK mechanism. Depending on the realization, an attacker has, e.g., three tries
to guess the four digit PIN code. The statistical chance to find the right combination is

7An attacker probably would ensure that it gains access to the newly generated key pair as well. This,
however, is not further considered as the goal is to initially deny access to the private key.

79

4. Integrated Security Architecture Based on Distributed Public Key Infrastructure

P ≈ 1
3333

(cf. Sec. 4.3.2). After three failed attempts to enter the correct PIN, the card is
disabled, and the correct personal unlocking code (PUK) is required. This multi digit
code may also only be entered up to three times. Failing to provide the correct code
initiates a self–destruct procedure of the card, including the deletion of the private
key.
Before stealing the card an attacker could try to gain knowledge of the PIN, e.g., with
the help of a key logger on the Internet capable device interfacing the smart card. A
countermeasure could be to equip the card with a keyboard to enter the PIN directly
or a display which provides the user with a random challenge. This challenge would
be based on the PIN but does not require all digits. In that way a key logger would not
be able to record the complete PIN. These mechanisms to protect the PIN, however,
are not further considered in this thesis8.

Indirect Private Key Control For the indirect approach, an attacker needs to alter
the public key in the mapping system. It needs to exchange the target’s public key
(Kt

D) with its own one (Ka
D). The first possibility would be to send a manipulated

USR_LOCATION_UPDATE message to the mapping system (either an intercepted mes-
sage from the target or a newly constructed one). This, however, will be recognized as
the signature attached to the message does not match its content. Sending a message
without a valid signature also fails verification as long as unauthenticated location
updates were not previously enabled. Only UIDs for which authentication has been
disabled are prone to these attacks. The mapping entries of these UIDs, however, are
marked as such (cf. Sec. 4.3.2).
The alternative to sending a forged update message is to collaborate with the mapping
system. A region being or allying with the attacker could manipulate the mapping
entries under its own authority. The goal would be to exchange Kt

D with Ka
D as well

as modifying the locator entry to point to an end system controlled by the attacker.
Having stored Kt

D beforehand the attacker can pose to the target’s peers as the target
itself while at the same time passing on messages to the target. This man–in–the–
middle attack requires the attacker to use both key pairs—its own and the target’s
one. A peer would download Ka

D and, for example, encrypt a message intended for
the target. Due to the forged locator in the target’s mapping entry the peer sends this
encrypted message to the attacker. The attacker is able to decrypt and read or modify
this message using Ka

E . Before forwarding the message, the attacker re–encrypts it
using Kt

D this time. Upon receiving the message, the target decrypts it using Kt
E .

This attack scenario is countered by using threshold cryptography. An end system’s
public key is stored at multiple regions, each being under a different authority. At least
k shares of the public key are required to be able to reconstruct it. This means, for a
successful attack, the attacker must collaborate with at least k regions. The parameters
k, n can be determined by the end system. The minimum configuration, however, is
k = 3 and n = 5. As the storage location of the shares is determined by the algorithm
introduced in Section 4.3.1, an attacker must collaborate with a minimum of three
semi–random regional authorities.

8For further reference on existing technologies see [RE03].

80

4.3. HiiMap Security Framework

As mentioned earlier, the bootstrap is a very critical process. An attacker could aim
at exchanging public keys before they are entered into the mapping system. This,
however, is prevented by copying the public key into the mapping system out of band
and signing subsequent location update messages (cf. Sec. 4.3.2). Simultaneously
with shipping the smart card, the UID, card ID and public key are transferred to the
responsible region. Other regions receiving a USR_LOCATION_UPDATE message to
store a share of the public key query the responsible region for the public key in order
to verify the message’s signature. A responsible region collaborating with an attacker
could send a malicious public key to the other regions upon request. This would
result in a failed signature check and no shares being stored at other regions. The
result would be that peers of the target are unable to retrieve the target’s public key
from the mapping system. However, it is not possible to distribute a manipulated
public key. By trying to download its own shares an end system would recognize—in
case an error can be ruled out—that its own region is or cooperates with the attacker.

Foreclosing Communication

Another goal of the attacker could be to not manipulate the private key but to foreclose
any secure communication between the target and its peers. Again, the attacker’s
possibilities can be split into stand alone and cooperative attacks.

Distributed Denial of Service (DDoS) A common way to disturb communication
is a Distributed Denial of Service attack. For this attack, a significant amount of clients
send requests to one target. The latter one then collapses from the sheer amount of
(unreasonable) requests. In the HiiMap architecture two goals for that attack are con-
ceivable. The first is the end system itself. This does not differ from today’s attacks
and is not addressed by the HiiMap security framework. The second target would
be the mapping system. By attacking a region, all mappings for the UIDs stored in
that region could not be resolved any more. This threat is addressed by storing all
vital information on multiple physical machines. The suggested architecture for the
regional mapping resolvers is a Distributed Hash Table (DHT) with replication (cf.
Chap. 3.3.1). This means that not a single but a complete set of nodes must be at-
tacked in order to foreclose the mapping resolution for a specific UID. By increasing
the replication factor, the effort for the DDoS is increased as well.

Cooperative Attacks The second scenario to foreclose communication is based on
the cooperation between regions and the attacker. To prevent a peer from retrieving
a target’s public key requires the same efforts as discussed in the before mentioned
Indirect Private Key Control paragraph (i.e., multiple semi–random regions must col-
laborate with the attacker). The responsible region, however, has more possibilities. It
can either respond to a USR_LOCATION_REQUESTwith either a wrong locator or with
a UID not found message (ERROR_MSG(NX_IDENT)). The first one can be detected by
the peer by starting a mutable authentication with the target based on the public key

81

4. Integrated Security Architecture Based on Distributed Public Key Infrastructure

retrieved from the mapping system. The peer is aware that the locator was incorrect
in case the authentication fails.
The second possibility—to respond with NX_IDENT—cannot be countered with any
mechanism. This means that the responsible region is able to foreclose any commu-
nication with a target under its authority. From a technical point of view, mecha-
nisms could be introduced to also address this attack scenario (e.g., end system en-
crypted mapping entries, storing mapping entries at multiple regions). These mech-
anism, however, would only complicate the architecture without providing any real
world benefit. It is suggested that the regional mapping authorities are controlled by
provider–funded non–profit organizations. These organizations are supposed to be
non–government ones as well. Some countries, however, might use these organiza-
tions to control the Internet connectivity of their citizens. Although this is obviously a
bad thing, it does not add to today’s capabilities of governments to limit and filter In-
ternet connectivity. A government or force determined to isolate a certain set of users
can take other measurements than altering mapping entries in order to reach their
goals (e.g., filter mechanisms, IP table manipulations). The important aspect, how-
ever, is that no encrypted communication between two peers can be compromised by
third parties9.

4.4. Evaluation

The HiiMap security framework was evaluated in two ways. One part was a proto-
type implementation which extended the existing HiiMap demonstrator. Again, the
prototype of the mapping system was deployed in the G-Lab experimental facility,
and a modified client, capable of handling shares, was run on various clients. The
outcome of this prototypical evaluation was the overall feasibility of the concept. A
showcase was constructed in which an external tool (e.g., ssh-keygen) generated a key
pair, and a text file was encrypted using the private key from this pair. Afterwards the
public key was loaded into the HiiMap client software which calculated the shares
and uploaded them to the mapping system. Another device was used to query the
mapping system for the first client’s UID and to download the shares. After recon-
structing the public key an external tool was used to decrypt the text file which was
copied to the second device via USB stick. This showcase proved that the HiiMap
security framework is operational sound and can be used as intended. More details
about the prototype can be found in Chapter 6.3.
The prototypical evaluation, however, does not allow to draw conclusions about the
security level provided by the framework. In order to assess the approach in regard
to its security strength, a qualitative metric was used. The framework was matched
against the requirements from the Authentication, Authorization and Accounting
(AAA) protocol evaluation guidelines [RFC2989].
These guidelines, assembled by the IETF, are considered to be suitable to assess an ar-
chitecture’s security level due to its broad requirement spectrum. The AAA principles

9This requires the implementation of the algorithms to be correct and no back–door implementation
enforced by law.

82

4.4. Evaluation

interfere with all security dimensions. This means that the aspects listed in Chapter
2.1.4, i.e., authentication, integrity, confidentiality, availability, non repudiation and privacy,
are covered. Fulfilling all requirements is a strong hint that mechanisms to provide
these aspects are integrated10. Furthermore, the AAA protocol evaluation guidelines
do not specify a certain set of security protocols. They only outline a collection of
conditions to be followed in order to progressively customize the security level of one
particular architecture. This means that NGI architectures can be assessed as well
although the guidelines were specified with today’s protocols in mind.
In the following the proposed HiiMap security framework is evaluated against the
requirements of the AAA protocol evaluation guidelines. Four levels of coverage are
taken as a metric to describe how the framework performs: The qualification levels
are “T” for total coverage, “P” for partial coverage, “F” for failed coverage and “OS”
for out of scope of this framework.

4.4.1. General Requirements

Table 4.3 lists all general requirements from the IETF AAA recommendation which
will be briefly discussed point by point in the following. The first two issues, scalabil-
ity and fail–over, are covered by the DHT–based architecture of the mapping system
(c.f. Chap. 3.3.3). A mutual authentication is done between the client and the map-
ping system based on the used asymmetric cryptography principle. Transmission
level security is generally supported if it is required by one party. It, however, has
to be noted that the proposed framework resides on layers below the transmission
layer. This means, it is transparent to eventually employed transmission layer secu-
rity mechanisms. Nevertheless, the functionality provided by the framework can be
used by higher layer mechanisms. Data object confidentiality is only partially cov-
ered as transmission can be secured but the mapping system is open to everyone.
This is because any client is able to initiate lookup requests. As signatures are used
to sign mapping responses within the framework, integrity of the data objects can
be regarded as fully covered (cf. Chap. 3.3.1). The transport of certificates is not re-
quired because the framework is not relying on certificates. This aspect, therefore, is
regarded as out of scope. All security–related data can be transmitted in a trustwor-
thy manner—encrypted and signed. The system, therefore, fulfills all AAA reliability
requirements. The HiiMap architecture is not limited to a single addressing scheme
used for the locators. IPv4 and IPv6 can be used as well as possible future network
layer protocols. Correspondingly, proxies are higher layer network elements and are,
therefore, fully supported. The requests and replies from and to the mapping system
are not supposed to be altered on their way. This is ensured by the integrity checks.
The auditability aspect, therefore, is considered to be out of scope. The framework
does not require a shared secret in terms of a common token—note the difference be-
tween shared credentials and Shamir’s shared secret. It solely relies on asymmetric

10Please note that no system or architecture can provide a 100% security level. This is why even fulfill-
ing all requirements of the AAA guidelines does not guarantee a failsafe and invulnerable architec-
ture.

83

4. Integrated Security Architecture Based on Distributed Public Key Infrastructure

cryptography. Similar to the support of future protocols (network layer and higher),
service specific attributes can seamlessly be included into the communication pattern
as this does not affect the proposed architecture.

Type Requirement Rank
General Scalability T

Fail-over T
Mutual authentication T
Transmission level security T*
Data object confidentiality P
Data object integrity T
Certificate transport OS
Reliable AAA transport mechanism T
Run over IPv4 T**
Run over IPv6 T**
Support proxy and routing brokers T
Auditability OS
Shared secret not required T
Ability to carry service specific attributes T

*If required **Not limited to

Table 4.3.: AAA general requirements qualifications.

4.4.2. Authentication Requirements

The first requirement of the authentication section is the support for network ac-
cess identifiers (NAI). These are inherently supported by the HiiMap architecture as
it is based on the locator/identifier separation paradigm. Thus, the identifier can
be utilized as NAI. As an authentication is not required to be authorized to resolve
endpoints from the mapping system, this aspect is regarded as fully covered. Re–
authentication is out of scope for the framework as connections to the mapping sys-
tem only consist of a single request and response message scheme. Higher layers,
however, may implement this mechanism. All other requirements concerning the au-
thentication are transparently supported as they reside on higher layers.

4.4.3. Authorization Requirements

A summary of all authorization requirements is given in Table 4.5. Support for static
and dynamic IP address assignment is possible if required. This as well as the support
for Remote Authentication Dial-In User Service (RADIUS) is covered correspondingly
to the IPv4/v6 support outlined in the general requirements Section 4.4.1. The frame-
work covers the capability to reject single participants, e.g., if they behave in a suspi-
cious way, due to the integration of signatures. Hence, also access rules could be ap-
plied. As this is not meaningful in the given scenario (everybody is entitled to retrieve

84

4.4. Evaluation

Type Requirement Qualification
Authentication Network Access Identifier (NAI) support T

Authorization without authentication T
Re–authentication on demand OS
Challenge-handshake authentication protocol support T*
Extensible authentication protocol support T*
Password authentication protocol/clear-text passwords T*

*If required

Table 4.4.: AAA authentication requirements qualifications.

mapping entries), this criteria is regarded as out of scope. Layer 2 Tunneling cannot be
prohibited. The mapping system, however, cannot be bypassed and, therefore, Layer
2 Tunneling has no benefit to an attacker in regard to the framework. Reauthorization
on demand is not required and, therefore, neglected. Queries from clients do not have
a significant influence on the system’s state, nor do they change them (as far as it is not
a malicious DDoS attack). Furthermore, the distributed self–organized nature of the
DHT–based mapping system guarantees a steady operable state. Unsolicited discon-
nects, i.e., a disconnect initiated by the mapping system, is regarded as not fulfilled (=
failed). The framework handles requests on an event–basis. To this extent, there is no
way for a server to disconnect an ongoing transmission.

Type Requirement Qualification
Authorization Static and dynamic IP address assignment T*

RADIUS gateway capability T*
Reject capability T
Preclude layer 2 tunneling OS
Reauthorization on demand OS
Support for access rules and filters OS
State reconciliation T
Unsolicited disconnect F

*If required

Table 4.5.: AAA authorization requirements qualifications.

4.4.4. Accounting Requirements

Accounting, in general, is not within the scope of this framework as an evidence of
who has requested which address at a given time is not practical nor applicable to
a global mapping system. The system puts a focus on integrity of the requests/re-
sponses in terms of validity rather than on monitoring each of them. Basic require-
ments, however, within the accounting section (Table 4.6) can be regarded as fulfilled

85

4. Integrated Security Architecture Based on Distributed Public Key Infrastructure

which is guaranteed delivery and accounting timestamps (for location and public key
updates, cf. Tab 4.1). Dynamic accounting which is regarded as out of scope, de-
notes multiple recordings of timestamps for a single session or transmission respec-
tively. The framework does not integrate sessioning, therefore, this has to be included
in higher layer services. Other requirements as real–time accounting, an obligatory
compact encoding, the possibility to extend the accounting records as well as a batch
accounting are not incorporated here.

Type Requirement Qualification
Accounting Real–time accounting OS

Mandatory compact encoding OS
Accounting record extensibility OS
Batch accounting OS
Guaranteed delivery T*
Accounting timestamps T
Dynamic accounting OS

*If required

Table 4.6.: AAA accounting requirements qualifications.

4.4.5. Result

Evaluating the overall results including general requirements, authentication, autho-
rization, and accounting aspects, the framework fulfills 92% of the requirements, par-
tially covers 4% and misses 4%. These results are obtained neglecting out of scope
aspects.
The interpretation of these results, however, is not straight forward. The percentage
of fulfilled requirements has only a limited significance. As the AAA protocol evalu-
ation guidelines are kept general and must be interpreted individually for each archi-
tecture, two architectures cannot simply be compared based on the number of fulfilled
requirements. It is more important to look at the partially fulfilled and failed require-
ments. As the HiiMap security framework fails to fully cover two requirements, these
two are discussed in more detail in the following.

• Unsolicited Disconnect: In the AAA protocol evaluation guidelines this require-
ment reflects an entity’s ability to disconnect a session upon request of an au-
thorization authority. The HiiMap architecture fails this requirement as no such
authorization authority exists. Although the GA is a logical entity supervising
the regional authorities, it has no ruling power as to which mapping request
to answer and which not. Furthermore, sessions between end systems and the
mapping system are limited to single request and respond cycles. These cycles
are not even broken in case authentication in the form of signature checks fails
(i.e., the session is completed by sending an error message where a response is
due).

86

4.5. Conclusion

Although the requirement is not covered by the architecture, it has no impact
on the overall integrity of the system. Any Internet participant is authorized
to query the mapping system, and the signature checks verify the legitimacy of
write request (i.e., location updates). Once the signature check passed, there is
no reason to abort the subsequent transaction in the database.

• Data Object Confidentiality: The HiiMap security framework only partially cov-
ers this requirement. Data objects sent between two end systems can be en-
crypted, and peers are enabled by the framework to authenticate each other.
This means that data object confidentiality is supported between end systems.
All data objects stored in the mapping system (i.e., mapping entries), however,
are not confidential. Any Internet capable device can be used to access all world
wide stored mapping entries. It is even one of the fundamental tasks of a map-
ping system to provide means of resolving mapping requests.

The lack of full data object confidentiality, however, reveals a weakness in regard
to privacy of the locator/identifier separation paradigm. This problematic issue
is described in the next chapter, and a solution for the HiiMap architecture is
presented.

4.5. Conclusion

In this chapter, the HiiMap security framework was introduced. Its core is the thresh-
old cryptography based public key infrastructure which uses the HiiMap mapping
system as a distributed resource. Contrary to other NGI security proposals extend-
ing the identifier address space with a cryptographic namespace, the HiiMap security
framework has several advantages. It does not suffer from the static key binding
and key guessing problem and inherently provides a distributed trust entity. This is
achieved by only loosely coupling an identifier and its security token (e.g., UID and
public key) whereas the cryptographic namespace is based on a static computational
coupling.
The HiiMap security framework provides a strong trust anchor within the architec-
ture. It secures the HiiMap mapping protocol and builds a foundation for other secu-
rity protocols and applications above the network layer. The client key management,
thereby, is based on cryptographic smart cards to increase security and usability. In
this chapter the operation of the framework was discussed, ranging from the crucial
initial bootstrap up to unauthenticated location updates for devices not strong enough
to compute cryptographic puzzles.
In the last section of this chapter the framework was evaluated after describing typi-
cal attack scenarios and the framework’s countermeasures. The evaluation showed by
means of a prototype the overall feasibility of the framework. The theoretical evalua-
tion against the AAA protocol evaluation guidelines showed that the framework covers
all important aspects except for one. This not yet covered aspect concerning data ob-
ject confidentiality, however, is dealt with in the next chapter.

87

4. Integrated Security Architecture Based on Distributed Public Key Infrastructure

88

5. Location Privacy in Locator/Identifier Split
Architectures

One of the requirements of a Next Generation Internet (NGI) architecture, as listed in
Chapter 2.2, is mobility. By using the locator/identifier split principle, combined with
the introduced HiiMap mapping approach, this requirement is satisfied. Beside its
benefits, however, the locator/identifier separation paradigm has a grave disadvan-
tage (cf. data object confidentiality, Chap. 4.4.1). The topological location of each end
device is disclosed within the architecture, enabling an attacker to localize any node.
Furthermore, by recording the whereabouts of a target over time, a tracking profile
can be established. The ability to trace a mobile node by an untrusted third party is a
direct violation of the mobile user’s privacy. It can cause serious damage to his per-
sonal, social, and professional life. In this chapter the location privacy problem is out-
lined and possible solutions are discussed. After analyzing the existing approaches a
novel concept is introduced. Finally, the various approaches are compared based on a
Capital Expenses (CAPEX) and Operational Expenses (OPEX) supported cost model.
As with the previous chapter, the terms attacker and target are used. The term target is
used to specify an entity whose privacy is threatened by an untrusted third party, the
attacker.

5.1. Problem Statement

Location privacy is the ability to prevent other parties from learning one’s current or
past location. In order to get such ability, the mobile node must conceal any rela-
tion between its location and the personal identifier [BS03]. This, however, heavily
contradicts the locator/identifier split principle. Each node is identified by a unique
address, and the mapping system establishes the link between the location informa-
tion and the identifier. Note that in this context the location information normally
refers to the topological location and not the geographical one. Quite often, however,
the geographical location can be extracted from the topological one up to a certain
granularity. A given mobile node’s address, out of an access point’s address space,
combined with the knowledge of its geographical location, limits the possible where-
abouts of the node to the coverage area of that specific access point.
The threat to location privacy can be divided into three steps:

• Identifying

• Locating

• Tracing

89

5. Location Privacy in Locator/Identifier Split Architectures

In a locator/identifier split architecture, an attacker can identify a target by its unique
address, the identifier. This step is an inherent feature of any communication protocol
which is not solely based on broadcast mechanisms. It requires that communication
partners specifically address a message to a certain node they want to communicate
with.
The next logical step after identifying a target is to localize it with maximum accuracy.
By querying the mapping system, an attacker is able to obtain the current valid locator
for any identifier currently in use by a connected end system. It is, therefore, using a
basic and fundamental feature of the locator/identifier split architecture to obtain the
target’s locator. To finally locate the target, knowledge of the address space structure
is required. Again, at this point, the locator/identifier split is in favor of the attacker.
To counter scalability issues, the structure of the locator address space is organized
in a strictly hierarchical manner (see Chapter 3.1.1). This simplifies the task to esti-
mate the geographical location out of the topological one as hierarchies will reflect
geographical, political and economical structures.
The third step consists of tracing the target while it is moving around the Internet.
This can be done by periodically locating the target. An attacker needs to query the
mapping system for a specific identifier and record the returned locator combined
with extracted geographical information and a time–stamp. Over time a movement
profile of the target can be created. Thereby, at least the recording of the locators must
be performed in real–time as the mapping system stores only currently valid and no
historical data. Figure 5.1 depicts the tracing process.

Core

Provider A
Provider B

Provider C

Mapping Service

Roaming
Target

Attacker

Provider D

M
ap

pi
ng

Re
qu

es
ts

1

2

3

1
2
3

at Provider B
at Provider C
at Provider D

Figure 5.1.: Tracing a target.

The gained information can be used for various interests. This ranges from legal ap-
plications, such as personalized advertisements, up to illegal actions, like stalking a
person. Depending on the application, the whole movement record can be relevant

90

5.2. NGI Location Privacy Proposals

or only a single whereabout to prove that the target was present at a specific place
at a specific time. Furthermore, studies showed that a node’s future location can be
predicted with a high accuracy based on historical data [SQBB10]. Rather than on
mathematical functions, this is based on the social behavior and acquired habits of
users. The daily routine of a person tends to be same for each day, e.g., going to work,
shopping and leisure activities.

5.2. NGI Location Privacy Proposals

Privacy protection is not a novel challenge and has been addressed prior to the up-
coming of the locator/identifier separation paradigm. So–called mix networks [Cha81]
are a common approach to allow nodes to anonymously send messages to peers. Lo-
cation privacy protection, however, is not about anonymity. While mix networks
might also provide location privacy, the following proposals do not try to hide a
node’s identity from its peers. They rather try to hide a node’s location informa-
tion while still allowing peers to contact the protected node. This is not possible with
mix networks. A node protected by a mix network is only able to receive data from
a correspondent node in case it previously addressed a packet to it to set up the path
through the mixes.
The proposals introduced in the following are all based on or are extensions to the
Host Identity Protocol described in Chapter 3.1.1.

5.2.1. HIP Location Privacy Framework

The HIP Location Privacy Framework [MSS+06] provides location privacy by intro-
ducing so–called Rendezvous Agents (RVA). A local network area accompanies a RVA
and is called protected area. These protected areas have similarities to Autonomous
System (AS) but are not limited to these in terms of size. A protected area, for exam-
ple, could span over several ASs.
RVAs are middle boxes which are located at the border of a protected and a public net-
work and forward packets in both directions. They, thereby, shield the nodes within
the protected area from the rest of the Internet and conceal actual locators of nodes
from outer ones. Similar to a NAT, a RVA administrates a pool of global locators and
leases these to nodes within its protected area. In case a node from within the pro-
tected area wants to send a packet to a correspondent node on the outside, the packet
is required to go through the RVA before leaving the protected area. The RVA swaps
the original source locator to the global one currently leased to the node before for-
warding the packet. It is, therefore, impossible to extract the exact location of the node
by means of the network layer. A packet sent to a node within the protected area lists
the leased global locator as the destination locator. The agent then looks up the inter-
nal locator of the destination node by querying an internal mapping. After replacing
the global locator with the destination node’s one in the packet, the agent forwards it
into the protected area. Figure 5.2 shows an example topology.

91

5. Location Privacy in Locator/Identifier Split Architectures

Protected
Area 1

Protected Area 2

Core

RVA1
RVA2

Protected Node Correspondent Node

RVS

Figure 5.2.: Sample topology of the HIP Location Privacy Framework.

In terms of mobility, a RVA supports two types of handovers. The internal handover
occurs whenever a mobile node roams within a protected area. In this case the RVA is
informed of the mobile node’s newly acquired internal locator. Correspondent nodes
on the outside do not recognize the handover event other then a potential change in
the round trip time. The second type of handover is required in case a mobile node
roams between two protected areas. In this case, the mobile node needs to inform
the old RVA (RVA1) about the change and register itself with the new RVA (RVA2).
RVA2 then updates RVA1 about the successful registration in order to complete the
handover. To reflect the new global address of the mobile node, HIP’s rendezvous
server (RVS) is updated by RVA2. Packets still addressed to RVA1 are forwarded to
RVA2 and then relayed to the mobile node. Contrary to the internal handover, corre-
spondent nodes are aware of the locator change and recognize the handover event.

5.2.2. BLIND

The BLIND Framework [YN06] was originally designed to provide identifier privacy
against third parties. This is done by using an enhanced two–round–trip Diffie–
Hellman key exchange mechanism. It substitutes the real identity of two peers with
so–called Blinded Host Identity Tags (BHIT). During the key exchange the two nodes
identify themselves to each other but onlookers only see the non–encrypted BHITs.
By using different BHITs for each communication, no conclusion can be drawn from
recorded traffic patterns.
To provide location privacy, BLIND introduces Forwarding Agents (FA) which, sim-
ilar to the HIP Location Privacy Framework’s RVAs, lease public locators to mobile
nodes. Two types of FAs, thereby, exist. Untrustworthy ones not requiring authenti-
cation from the client and trustworthy ones. The downside of untrustworthy FAs is
that they do not support node mobility. A node using the service of an untrustwor-

92

5.2. NGI Location Privacy Proposals

thy FA does not authenticate itself towards the FA. The FA distinguishes nodes based
on their locators. A roaming node changes its locator and, therefore, the FA is not
able to safely track a mobile node. Trustworthy FAs have other means to identify a
mobile node. They support node mobility, however, a mobile nodes identity must be
disclosed to the FA. This contradicts the initial BLIND objective.
The Enhanced Location Privacy Framework by Maekawa et al. [MO09] is based on
BLIND. It extends the BLIND framework with Temporary Host Identity Tags (THIT)
in order to fully support node mobility. The goal of the enhanced framework is to
fulfill the objective of identity privacy in combination with location privacy and node
mobility. They, therefore, introduce THITs which a mobile node creates. This THIT
is based on a node’s Host Identity Tag (HIT) but it is not possible to conclude from a
THIT to the node’s HIT. The THIT is used to authenticate a mobile node against a FA.
The FA stores the following values per registered mobile node: 〈THIT, IPreal, IPlease,
lease time〉. By authenticating, using the THIT, a mobile node is able to update its
locator (i.e., IPreal) in the FA’s forwarding database. Untrustworthy FAs do not exist
in the enhanced BLIND framework.

5.2.3. Limitations of Existing Privacy Proposals

HIP Location Privacy Framework The HIP Location Privacy Framework does not
offer full location privacy. While a mobile node’s exact location is concealed by the
RVAs, it still can be tracked on a protected area granularity. Whenever a node roams
from one protected area to another, it needs to lease a new global routable locator
out of the new RVA’s address pool. This change of global locator is advertised to the
RVS and correspondent nodes. Depending on the size of the protected areas, it is,
therefore, still possible to determine the cities or countries in which a specific mobile
node currently resides. A mobile node is also not able to use a foreign RVA (i.e., from
a different protected area) as its relay to obscure its actual location. This is due to the
locator assigned to the mobile node as it is not routable outside of the protected area.
A foreign RVA has no means to forward packets to an alien locator.
To address this problem, the authors in [MSS+06] suggest to establish rather large
protected areas which cover a large amount of ASs. As a result, the leaked information
with each global handover event is very coarsely grained, and a majority of roaming
occurs within the protected area. To achieve this, they position the RVAs very close to
or, respectively within the Internet’s core. The placement of the RVA, therefore, is very
inflexible, which introduces another downside in regard to transit costs. This aspect
will be covered in Section 5.4.

BLIND In the HIP architecture, the mapping between identifiers (i.e., HIT) and lo-
cators for mobile nodes is done by so–called rendezvous servers (RVS). A node may
register its HIT and current locator with a RVS in order to be reachable by other nodes
[RFC5204]. This RVS acts like a MobileIP home agent [RFC5944]. Upon receiving a
packet destined for a registered HIT, the RVS forwards the packet to the enlisted loca-
tor of that node. BLIND, however, breaks this mechanism [MO09]. Peers use different

93

5. Location Privacy in Locator/Identifier Split Architectures

BHITs for each correspondent node and communication flow. This means that the
RVS is not able to track a node using BLIND. It requires unblinded HITs to base its
forwarding decision on. Even enhanced BLIND does not solves this issue. The tempo-
rary HITs enable FAs to track a mobile node. In the same way RVS could track nodes
based on THITs. Correspondent nodes, however, only know the HIT of a node they
want to reach. The RVS for nodes using BLIND, therefore, is useless as no mapping
between THITs and HITS exists. Providing such a mapping would obsolete BLIND’s
objective to provide identity privacy. As a result, mobile nodes are not reachable by
correspondent ones.
The initial BLIND approach while providing full location privacy does not support
node mobility. This is due to the FA’s inability to track a node. Only trustworthy
FAs support this feature which on the other side, require a node to identify itself. En-
hanced BLIND, however, addresses this problem and introduces a mechanism to sup-
port node mobility. Not using FAs for the initial BLIND approach would allow node
mobility at the cost of no location privacy between the mobile and the correspondent
node.
Another downside of BLIND is that the correspondent node is required to know the
mobile node’s identity beforehand. During the so–called base exchange between the
correspondent and the mobile node, BHITs are established for the communication
flow, and mutual authentication is performed. As nodes using the BLIND framework
are not listed in RVSs or other global databases (due to identity privacy reasons), a
correspondent node must have learned the mobile node’s identity (e.g., public key,
fingerprint of the key) before the connection request. In a real world example this
would mean that an online shop must know all possible customers beforehand. An
out–of–band registration is required.
The placement of the FA is not covered in either BLIND or enhanced BLIND. While the
framework does not limit the flexibility in FA placement, the aspect is not discussed.

Importance of node reachability Several applications do exist, in which a node
other than a server needs to be contacted at an arbitrary point in time. These are,
for example, any kinds of push services (e.g., e–mail, instant messenger) or telephony
and video conferencing services. Even though mechanisms do exist in today’s Internet
architecture to overcome no reachability barriers like NAT, these are only bug–fixes to
the problematic side effects of the NAT or firewall solution. Designing a novel and
improved architecture should not incorporate old limitations and be required to rely
on the established add–ons to fix these. By providing full end–to–end reachability,
future applications might benefit from this without having to design a novel bug–fix
to overcome the old obstacles.

Conclusion Table 5.1 summarizes the attributes of the location privacy frameworks.
The HIP location privacy framework fulfills all aspects except for full location privacy
and RVA placement flexibility. Especially the first aspect renders the approach par-
tially obsolete. BLIND and its enhanced version support full location privacy. They,
however, fail to enable node reachability and do not allow for arbitrary connections.

94

5.3. HiiMap Privacy Service

This means that a protected node must be known to correspondent nodes a priori.
This limits the flexibility in communication possibilities as long as authenticated peers
are required. FA placement flexibility is an open topic in these frameworks.

HIP Location Privacy BLIND Enhanced BLIND
Full location privacy - + +
Node mobility + - +
Protected node reachability + - -
Arbitrary connections + - -
RVA/FA placement flexibility - o o

Table 5.1.: Comparison of existing location privacy mechanisms.

5.3. HiiMap Privacy Service

In order to support location privacy in the Hierarchical Internet Mapping Architecture
(HiiMap), a novel privacy service is introduced. It provides full location privacy while
overcoming the limitations of the discussed frameworks. A strength of the concept,
beside providing location privacy, is its possibility to organize its components to limit
the service’s costs. This is evaluated after the service is outlined. The work in this
chapter has been partially published in [Han10a, Han10b, Han11].

5.3.1. Privacy Service

The HiiMap privacy service is based on proxies which hide a protected node’s loca-
tion. The service is offered by third party providers, and a node is required to register
for an individual privacy service.
The presented approach, thereby, does not offer location privacy against the privacy
service provider. The service provider is aware of the node’s topological location at
any time. Contrary to MIX networks [Cha81], for example, the objective of the privacy
service is to conceal location information only towards third parties and not to all
network elements (including itself). The reason behind this design decision is that
a node’s whereabouts are always disclosed to some parts of the network as well as
the node’s internet service provider (e.g., for billing reasons). The efforts required to
conceal location information from the privacy service, therefore, are not justifiable. It
is the user’s task, however, to select a privacy service provider he trusts.

Components and Abbreviations

Before outlining the details of the HiiMap privacy service, a few components and
abbreviations are introduced in addition to the ones from Chapter 3.3.1 (Unique Iden-
tifier (UID), Regional Prefix (RP), locator and mapping system). The interaction between
these parts to provide location privacy will be explained subsequently.

95

5. Location Privacy in Locator/Identifier Split Architectures

• Care–of locator: The care–of locator is used to hide the real locator of a node.
It is, however, a valid locator which belongs to the address space of the privacy
service (defined below). It cannot be distinguished from any other locator.

• Mobile node: A mobile node is an end system which can change its point of
attachment to the Internet. It possesses at least one UID and locator. It wants to
roam freely without other nodes being able to track its location.

• Correspondent node: At least one partner is needed for communication. The
correspondent node can either be a fixed or a mobile node.

• Privacy service: A privacy service helps the mobile node to protect its location
privacy. It is located somewhere within the network, and several competing
services may exist.

Location Update

After registering for a privacy service, the service’s care–of locator is entered in the
mobile node’s mapping entry. All subsequent USR_LOCATION_UPDATES from the
mobile node are sent to the privacy service. Contrary to the operation of the HiiMap
mapping system without the privacy service, the service is now in charge of keeping
track of the mobile nodes’ topological location. In that way only the mobile node and
the privacy service are in possession of the mobile node’s location information. The
mapping system is not aware of the mobile node’s actual whereabouts. Figure 5.3(a)
illustrates the location update in case of a roaming event.

Mapping
Service

Correspondent
Node

Privacy
Service

Mobile
Node

Core

AS 1

AS 2
AS 3

Location
Update

Roaming

(a) Location update of the roaming mobile node.

Mapping
Service

Correspondent
Node

Privacy
Service

Mobile
Node

Core

AS 1

AS 2
AS 3

Location Request/
Response

DATA

DATA

(b) Data flow between the corresponding and mo-
bile node.

Figure 5.3.: Interaction between the proxy service, corresponding and mobile node.

96

5.3. HiiMap Privacy Service

Packet delivery

Figure 5.3(b) illustrates packet delivery to and from the mobile node. In order for
a correspondent node to send packets to the mobile one, it needs the mobile node’s
UID. The mapping system is as usual queried for the locator currently associated with
this UID. Upon receiving the request, the mapping system returns a USR_LOCATION_
RESPONSE message, containing the care–of locator. As this care–of locator does not
differ from other locators, the correspondent node addresses its data packets to this
locator. The privacy service, therefore, acts like a proxy and is transparent to the
correspondent node.
Upon receiving the correspondent node’s data packet, the privacy service retrieves the
destination UID from the packet header. It initiates a lookup in its internal mapping
database—which in its structure is similar to the one of the mapping system—and
forwards the data packet to the mobile node’s actual locator. This is done by en-
capsulating the original packet with a new header. This header contains the privacy
service’s locator (i.e., the care–of locator) as source and the mobile node’s current lo-
cator as destination address. This packet is then routed to the mobile node which
decapsulates the original packet and processes it as usual.
As the correspondent node is not aware of the privacy service1, it is not required to fol-
low another protocol when communicating with one of the service’s subscribers. Even
mutual authentication based on the HiiMap security framework is possible without
any extension as the privacy service only forwards packets based on network layer
information.

Return path

The response from the mobile to the corresponding node could be routed on two
different paths. The first possibility for the return path would be to send packets on
the direct path between the mobile node and the corresponding node. This approach
has two problematic issues as already identified for Mobile IP [RFC3775, Sch03].

• In order to conceal its topological location, the mobile node would be required
to use its care–of locator as the source address in the packet header. A network
middle box (e.g., firewall), however, might discard this packet. A packet filter
located at the edge of the AS the mobile node is currently residing in could rec-
ognize that the source address does not belong to the address space of the AS
and drop the packet.

• Using its actual locator as source address, however, would reveal the mobile
node’s location. Furthermore, an ingress packet filter at the corresponding
node’s network might drop the packet. This is because no outgoing connection
was established with this locator.

1Neglecting the detection of the privacy service due to the added delay and possible well–known
locator for the moment.

97

5. Location Privacy in Locator/Identifier Split Architectures

The second possibility for the return path is to tunnel the response packet back to
the privacy service. The privacy service decapsulates the response and forwards it to
the corresponding node. This has the advantage that the response passes all packet
filters without the risk of being dropped (in case no other irregularity is detected by
the filters). Figure 5.4 summarizes the data flow between the corresponding and the
mobile node.

Correspondent
Node

Mapping
System

Privacy
Service

Mobile
Node

USR_LOCATION_REQUEST(UID)

USR_LOCATION_RESPONSE(UID, locator, sig)

DATA

Response

tunnel(Response)

tunnel(DATA)

Figure 5.4.: Message flow using the HiiMap privacy service.

Triangular Routing

Although the data flow in Figure 5.4 might suggest otherwise, the detour of the pack-
ets, required to pass the privacy service, represent an unwanted side effect. This effect
is called triangular routing. It is a known negative effect and has, for example, also
been identified as a problematic issue for Mobile IP [Sch03].
Packets between the correspondent and the mobile node are not forwarded on the
direct path between the two nodes. They are required to be forwarded to another
network entity, the privacy service, first. This effect is called triangular routing as the
privacy service forms the tip of an imaginary triangular while the direct path between
the correspondent and the mobile node forms the base. Triangular routing has three
unwanted properties:

• Delay due to processing time in the additional network element.

• Delay due to the extended path.

• Traffic in parts of the network other than the direct path.

Contrary to Mobile IP’s home agent, however, the privacy service is not required to
reside at the mobiles node’s home network. Instead, it can be positioned anywhere

98

5.3. HiiMap Privacy Service

within the network. Combined with a privacy service provider’s possibility to operate
multiple proxies provide a possibility to lessen the impact of triangular routing. It is
called proxy selection and introduced in the following subsection.

5.3.2. Proxy Selection

Figure 5.5 illustrates a sample topology in order to explain the benefits of proxy se-
lection. There are two paths between the correspondent and the mobile node. The
upper path includes two hops (in terms of ASs) and the lower only one. On each path
a proxy is present which belongs to the privacy provider. Assuming that the metric
for a better connection between two end points is the amount of hops (the less the
better), the lower path is the preferable one. This means, by selecting proxy A instead
of proxy B, the negative impact of triangular routing can be lessened for the commu-
nication between the correspondent and the mobile node. In this example, triangular
routing is even non–existent for the lower path as it is the direct one.

Correspondent
Node

Mobile
Node

AS 3

AS 1 AS 2

Proxy A

Proxy B

1

2

Figure 5.5.: Lessening the impact of triangular routing by proxy selection.

The goal for a privacy service provider, in order to provide the best possible service,
therefore, must be to select a proxy which is as close to the direct path between two
peers as possible. The task of selecting the best proxy possible, however, is not trivial.
In the following, two mechanisms (one with a variant) are introduced and subse-
quently evaluated.

Privacy Service Migration

The first method uses the principle of service migration. A privacy service provider
operates multiple world wide distributed proxies. A mobile node which has a sub-
scription with the privacy service provider is assigned a conveniently located proxy
out of the provider’s pool. The proxy’s locator is entered in the mobile node’s map-
ping entry as the care–of locator. Please note, for the sake of comprehensibility the

99

5. Location Privacy in Locator/Identifier Split Architectures

authentication aspect towards the privacy service provider, the proxies and the map-
ping system is omitted in the description of this and the following mechanism. The
details concerning security, however, will be given subsequent to the evaluation of the
methods.
In case the mobile node roams, a new proxy is selected which better reflects the node’s
location. The node’s context is transferred from the old proxy to the new one, and
the care–of locator in the mapping system is updated. To a correspondent node the
process appears to be a regular roaming event. By following the mobile node with the
proxy, it is ensured that the proxy is relatively close to the direct communication path
between the mobile node and its peers2.
As the newly assigned proxy, at least partially, reflects the mobile node’s location,
an attacker will still be able to track the mobile node. A policy, therefore, must be
introduced which allows the owner of a mobile node to select a location privacy
granularity. The granularity determines as to which extent a proxy is allowed to fol-
low the mobile node. Different levels could be "non–following", "continent–based",
"country–based" or "city–based". The levels range from full to less location privacy
and in reverse order from heavy to less impact by triangular routing. A privacy ser-
vice provider might also charge differently for each level. A sample service migration
process is shown in Figure 5.6.

Core

AS 1 AS 2

Proxy A

Mapping Service

Proxy BMigrating
service

Mobile
Node

Roaming

Figure 5.6.: Privacy service migration.

In this example the mobile node holding the subscription to the privacy service roams
from AS 1 to AS 2. The previously assigned proxy was proxy A. Due to the roaming

2This, of course, heavily depends on the distribution of proxies.

100

5.3. HiiMap Privacy Service

event the mobile node’s context is transferred to proxy B. To reflect this change, a lo-
cation update message is sent to the mapping system, containing the locator of proxy
B.

Proxy Selection

This mechanism takes a different approach. Instead of selecting a proxy which is as
close as possible (in terms of location and policy) to the mobile node, a proxy is se-
lected which reflects the location of the correspondent node. This means, however,
that the proxy must be chosen individually for each of the mobile node’s commu-
nication flows. The advantage is that the location of the proxy does not reveal any
information about the mobile node’s whereabouts.

Core

AS 1

AS 2

Mapping
Service

Mobile
Node

Privacy
Service

Proxy A

Proxy B

Register

Location
Update

(a) Mobile node registers with the privacy service.

Core

AS 1
AS 2

Mapping
Service

Mobile
Node

Privacy
Service

Correspondent
Node

Proxy A
Proxy B

Location Request/
Response

(b) Correspondent node queries the mapping sys-
tem, and proxy B is selected for the communication
flow.

Figure 5.7.: Overview of the proxy selection mechanism with registration (a) and
query (b).

Similar to the privacy service migration approach, a mobile node has to register with
the privacy service first (cf. Fig. 5.7(a)). Instead of selecting a proxy and pushing
its care–of locator into the mapping system, however, a list of all proxy locators is
sent to the mapping system. Each mapping entry consists of a single UID and one
to multiple locators. This is intended to support multihoming, for example. In case
a mobile node subscribed to the privacy service, all available care–of locators of this
service are enlisted in the mapping entry. Whenever a correspondent node queries
the mapping system for the mobile node’s locator, the proxy, topology–wise closest
to it, is selected. For the corresponding node the care–of locator belonging to proxy

101

5. Location Privacy in Locator/Identifier Split Architectures

B is selected in the example shown in Figure 5.7(b). To this end, two variants of this
mechanism exist:

• Selection by the mapping system: In this variant, the mapping system chooses a
care–of locator which best matches the correspondent node’s one. This locator
is then returned as the only one in the USR_LOCATION_RESPONSE message.

• Selection by the end system: Contrary to the first variant, all care–of locators are
returned to the correspondent node in the location response message. It is then
the correspondent node’s task to select an appropriate proxy.

For both variants, the topological proximity between the mobile and the correspon-
dent node is calculated based on the locator. One of the benefits of the locator/iden-
tifier separation paradigm is the possibility to strictly structure the locator addressing
scheme (cf. Chap. 3.1.1). This eases the distance calculation between two locators.

Evaluation of Proxy Selection Methods

Both methods and the variants have their advantages and downsides. Table 5.2 sum-
marizes the most important aspects. The first method, privacy service migration, does
not provide full privacy due to its following character. The only policy supporting full
location privacy disables the selection of a suitable proxy and, therefore, does not help
to lessen the impact caused by triangular routing. The proxy selection methods, on
the other hand, provide full location privacy as an attacker is not able to conclude the
mobile node’s location from the selected proxy. The selection is always based on the
correspondent node and, therefore, no information of the mobile node is revealed.
Each method puts a different burden on the mapping system. The approach where
proxy selection is done by the mapping system introduces the highest amount of
complexity for it. Additional logic is required in the mapping system to compute
topology–wise proximities and to select the best matching proxy. The privacy ser-
vice migration method does not require any additional logic on the mapping system’s
side. Any proxy migration, however, results in a location update which needs to be
processed by the mapping system. The least burden on the mapping system is caused
by the approach in which the end system does the proxy selection. The mapping sys-
tem is only required to store the care–of locators. Mobile node roaming is handled by
the privacy service (this mechanism will be detailed in the next subsection), and no
location updates are sent to the mapping system.
The burden on the end system, however, is inverse to the mapping system’s one. The
end system proxy selection approach requires the algorithm of proximity calculation
to be executed on the end system. Both other approaches do not require any addi-
tional functionality on the end system side other the HiiMap mapping protocol. The
same evaluation holds true for the integrity of the system. While the migration al-
gorithm and the mapping system are expected to select the best possible proxy, it
cannot be guaranteed for the end system. An attacker could willingly choose a differ-
ent proxy in order to harm the system. This could be a distributed denial of service
attack against a single proxy or intentional network clogging. The end system based

102

5.3. HiiMap Privacy Service

approach has another disadvantage compared to the other ones. A change in the prox-
imity calculation algorithm is difficult to role out to each end system whereas only a
few network elements require a software update for the migration and mapping sys-
tem based methods.
The last characteristic is the introduced overhead in terms of additional network traf-
fic. The privacy service migration approach requires user contexts to be transferred
between proxies. These contexts, however, are expected to be of limited size. The
end system proxy selection method requires the full care–of locator list to be sent
upon each location request. This sums up to a significant amount of data for the com-
plete network. No additional network overhead is introduced by the mapping system
based proxy selection.

Migration Selection Selection
end system mapping system

Full location privacy - + +
Burden of the mapping system o + -
Burden of the end system + - +
Integrity of the system + - +
Algorithm change + - +
Network traffic o - +

Table 5.2.: Comparison between the three different proxy selection methods.

As a result of the evaluation (cf. Tab. 5.2) of the three different methods, the map-
ping system based proxy selection is considered the most suitable. The gravest dis-
advantage of the privacy service migration method is its lack of full location privacy
support. The downside of the end system proxy selection is that it is not transparent
to correspondent nodes. A standarized protocol, therefore, would be required which
needs to be supported by any end system. The mapping system proxy selection ap-
proach is completely transparent to the user while providing full location privacy,
even though it puts the most burden on the mapping system. In the following, the
operation of the mapping system based proxy selection method is detailed.

Mapping System Based Proxy Selection

After having registered for the privacy service with a specific provider, the mobile
node sends its USR_LOCATION_UPDATE messages to this privacy service instead of
the mapping system. The current locator of the mobile node, however, is not pushed
to all proxy locations of the service provider. It is stored at a logical central instance3.
This instance has a similar functionality like the mapping system. Yet, only proxies
are allowed to send encrypted requests.

3The implementation, however, could be Distributed Hash Table (DHT)–based or distributed in a
Domain Name System (DNS) root server alike way.

103

5. Location Privacy in Locator/Identifier Split Architectures

Inbound Connection Whenever a correspondent node wants to send packets to the
mobile node—inbound to the mobile node—, it queries the mapping system for the
mobile node’s locator. The mapping system looks up the UID in its database and
retrieves the mapping entry. Due to a set flag the mapping system is aware that the
mobile node is using a privacy service. Based on the correspondent node’s locator, it
selects a care–of locator from the mapping entry which has the smallest topological
distance to the correspondent node. This care–of locator is returned in the location
response message.

Correspondent
Node

Mapping
System

Selected
Proxy

Privacy
Service

Mobile
Node

USR_LOCATION_REQUEST(UID)

USR_LOCATION_RESPONSE(UID,COL)

select
proxy

DATA
LOC_REQ(UID)

LOC_RESP(UID,locator)

tunnel(DATA)

Figure 5.8.: Message flow of the mapping system based proxy selection.

As the privacy service is transparent to the correspondent node, the node sends the
data packet towards this care–of locator. The proxy receives the packet and checks the
enclosed destination UID against its table of open connections. In case no such con-
nection is found, the packet is cached, and the proxy queries the privacy service’s cen-
tral instance. This message and the central instance’s one are encrypted. Signatures
assure that only the service’s own proxies are allowed to request location information.
After having received the mobile node’s locator, the proxy forwards the data packet
to the mobile node. Figure 5.8 shows the complete message flow.

Outbound Connection Whenever the mobile node wants to contact a peer, it has
two possibilities. It can either send direct messages, thereby concealing its location or
again use the privacy service. As the latter is the more interesting (although possibly
the rarer) case, it is described in the following.
As usual, the mobile node is required to query the mapping system for its correspon-
dent node’s locator. In a next step, the mobile node requires a list of all the proxies
belonging to its privacy service. This list can be downloaded and cached from the

104

5.3. HiiMap Privacy Service

privacy service. Similar to the mapping system, the mobile node calculates the prox-
imity between the correspondent node’s locator and the care–of locators from the list.
The closest one to the correspondent node is selected and a service request sent. Af-
terwards, data packets are tunneled to this proxy. The service request includes the
mobile node’s legitimacy to use the privacy service and its peer’s locator. The legiti-
macy is proved by a token signed by the privacy service.
In case the correspondent node is using a privacy service itself, the data packets need
to pass two proxies. Furthermore, proxy selection must be done intelligently in order
to not increase triangular routing. The proposed mechanism, however, handles this
issues quite elegantly. A mobile node querying the mapping system for the locator
of a correspondent node, which as well uses a privacy service, is returned a care–
of locator as close as possible to its own location. At this point, it is important that
the mapping system based privacy service mechanism is transparent to the querying
end system. Hence, the mobile node assumes that the returned care–of locator is the
correspondent node’s real location and selects a proxy accordingly.

5.3.3. Feasibility and Performance of the Proxy Service

In order to prove the feasibility of the privacy service, a prototype was implemented.
This prototype extends the HiiMap mapping system with the selection functionality,
provides the central privacy service and the proxies (cf. Chap. 6.4). The client soft-
ware was extended to be able to enter the UID of the privacy service. Again, the ex-
tended mapping system, the privacy service and several proxies were deployed to the
G-Lab experimental facility. The proximity calculation, thereby, was based on the first
octet of the client’s and proxy’s locator (i.e., IPv4 address). This simplification was
necessary as today’s Internet Protocol (IP) address space is de–aggregated, and the
proximity between two complete IP addresses cannot easily be computed. Each site
of the G-Lab experimental facility, however, shares the same network address per lo-
cation. The prototype proved that the mapping system proxy selection based privacy
service is a practical approach. To evaluate the added latency due to the mechanism a
measurement was carried out. Figure 5.9 shows the measurement results in compari-
son to the plain HiiMap and DNS ones from Chapter 3.3.3. Please note that the chart
has a logarithmic y–axis as the upper bound of the DNS measurements tops 400ms.
The measurement of the privacy service started with requesting a locator and stopped
as soon as the data packet arrived at the mobile node. For this measurement, the cor-
respondent and the mobile node were on the same end system. The values, therefore,
include at least the delay from two complete roundtrips to the G-Lab experimental
facility and one internal roundtrip (cf. Fig. 5.8). These results, however, heavily de-
pend on the network topology, the roundtrip times between the network elements
and the location of the clients and proxies. This means that an overall performance
wise conclusion cannot be drawn from these measurement results. In order to gain re-
alistic and statistical average values, a globally operating privacy service and globally
distributed clients would be required.

105

5. Location Privacy in Locator/Identifier Split Architectures

 1

 10

 100

DNS HiiMap HiiMap+Privacy

R
e
s
p
o
n
s
e

T
i
m
e

(
m
s
)

Responding System

106

17.6

35.2

Medium Response Time

Figure 5.9.: Comparison of medium response times (DNS, HiiMap and HiiMap + pri-
vacy service).

5.4. Comparison of Location Privacy Frameworks

All of the introduced location privacy frameworks add latency to a protected con-
nection. The amount of delay, however, depends on various parameters of the im-
plementation. It might even be possible that the delay is not significant to a specific
usecase. Comparing different approaches based on the introduced delay, therefore, is
not a very good criteria.
In this section, the frameworks are compared based on the overall costs they cause. In
that way, not only a single service provider is considered but the costs for the entire
network (including the privacy service and internet service providers).

5.4.1. Cost Model

Before evaluating the different frameworks, the cost model for the comparison is
described in this subsection. The costs for each framework can be split into two
categories—the capital expenses (CAPEX) and operational expenses (OPEX). CAPEX,
thereby, are costs which only occur once. In a simplified model the expenses are spent
at the beginning, e.g., hardware and network equipment. Contrary, OPEX identifies
any costs which accumulate over time. Examples are the electricity bill and mainte-
nance costs. For the sake of simplicity any financial considerations, such as interest

106

5.4. Comparison of Location Privacy Frameworks

rates of held back CAPEX funds or required loans for one–time spendings, are neglec-
ted. Table 5.3 lists all considered expenses for this model. In the following, RVA and
FA are simply referred to as agent.

CAPEX OPEX

• Proxy/agent servers • Location/building rental
• Network equipment • Rack rental

• Internet connectivity
• Electricity
• Transit fees
• Staff
• Spare parts

Table 5.3.: Expenses considered in the cost model of the location privacy frameworks
comparison.

The aim for the cost model is to evaluate and compare the total costs of the frame-
works. The costs are calculated based on a monthly billing period. As CAPEX are a
one time investment, a linear project of the expenses over a three year amortization
period is used. The rest value of the equipment after that period is $0. To calculate
the total cost (Ctotal), a monthly share from that three year CAPEX projection is taken.
Analogically, all items of OPEX are monthly fees. All parameters required for the cost
model are listed in Table 5.4.

Name Description Range
Ctotal The overall cost for the system 0−∞
COPEX Operational Expenses 0−∞
CCAPEX Capital Expenses 0−∞

N Total number of nodes 0−∞
α Percentage of nodes using the privacy func. 0− 1
β Subset of N requiring full privacy (penalty) 0− 1
ω Transit cost multiplier 0−∞

Table 5.4.: Summary of the parameters for the cost model.

The capital expenses CCAPEX can be calculated as follows (Equation 5.1).

CCAPEX = Cgateway(α ·N) + Cnet. equip.(α ·N) (5.1)

Cgateway in the equation reflects the costs of the server hardware on which the agent
or proxy software is running. The costs are dependent on the number of users re-
quiring privacy protection. Equivalently, Cnet. equip. reflects the costs of the required
network equipment. For this calculation, the deployment of open–source software is

107

5. Location Privacy in Locator/Identifier Split Architectures

assumed, thus, causing no CAPEX and only maintenance staff costs (which is reflected
by OPEX).
As shown in Table 5.3, electricity, rack rental, Internet connectivity and building/lo-
cation rental are parts of the operational expenses. To be able to acquire accurate
numbers for these costs, these entries are subsumed into a single value. Server host-
ing can be booked on a monthly basis and covers all of these operational expenses.
Cco−location, dependent on the number of users, reflects this value. Furthermore, OPEX
consists of additional transit fees (Ctransit) caused by the triangular routing problem.
This value is again dependent on the number of users requiring privacy protection
and the transit cost multiplier ω which determines how many times transit fees have
to be paid additionally for a single connection flow. Cstaff and Cspare cover the costs
of the maintenance staff and spare parts, respectively.
The HIP location privacy framework does not provide full location privacy. Nodes
can still be tracked based on protected areas. To compensate for the lack of location
privacy in terms of costs, a penalty would be applied. The penalty would be cal-
culated by determining the additional costs which are generated by providing full
privacy for a subset of nodes (β). For this thesis, however, the penalty is not factored
in. Authentic numbers for β and the caused costs are quite difficult to determine. In-
stead, based on the author’s suggestion [MSS+06], the location information leakage
is minimized for this approach by assuming the protected areas to be very large. The
consequence is that the FAs need to be placed in the core network. Equation 5.2 shows
the OPEX calculation.

COPEX = Cco−location(α ·N) + Ctransit(α ·N,ω)
+ Cstaff (α ·N) + Cspare(α ·N)

+ Cpenalty(β ·N)

(5.2)

By adding up OPEX and CAPEX, the total cost (Ctotal) as shown in Equation 5.3 can
be calculated.

Ctotal = CCAPEX(α ·N) + COPEX(α ·N,ω, β) (5.3)

5.4.2. Case Study for the Comparison

The numbers taken for the comparison represent the average prices as of mid 2011 and
not any forecast. Even though the privacy solutions aim at Next Generation Internet
architectures, the numbers might change drastically, but the relations can be expected
to stay the same.

Capital Expenses

For all frameworks, the functionality—and, therefore, the costs—of the agent and
proxy servers are basically the same. The agent/proxy receives packets, initiates a
lookup in its internal database and forwards the packet to its destination. It, therefore,
can be compared to the functionality of today’s network address translation (NAT)

108

5.4. Comparison of Location Privacy Frameworks

boxes. To calculate the required computational power for the agents and proxies, the
capabilities of today’s NAT boxes are taken.
The Leibniz Supercomputing Centre in Munich, Germany [Lei12], provides the net-
work infrastructure for three universities and affiliated student housings. The net-
work is used by around 40,000 users which tend to generate more traffic compared
to the country–wide average. Most of the traffic has to pass the NAT boxes before
being forwarded to the Deutsches Forschungsnetz (DFN). A single machine serves
up to 2,000 users. The servers are standard 2U systems with the following specs: 2x
DualCore Opteron 2, 5GHz and 16GB RAM. Each machine is serving a one gigabit
connection (utilization 500 − 600Mbps). The servers are running a Linux system and
cost about $2,000.
To calculate the capital expenses, it is assumed that the servers are hosted in a 42U rack
where 2U are reserved for the network equipment. This means that 20 servers can be
hosted in a single rack serving up to 40,000 users. The network equipment consists
of a single switch per rack and the estimated costs are $2,000 as well. According to
the cost model, projecting CAPEX over a three year amortization period is required.
The costs of the servers and network equipment for a single rack (Cgateway +Cnet.equip),
therefore, total at $1,167 per month per 40,000 users.

Gateway Operational Expenses

Co–location offers for a single 42U rack including electricity, A/C and Internet con-
nectivity are around $1,500 per month [EGI10] (Cco−location). For the maintenance staff,
the fully allocated costs of an experienced single Full Time Equivalent (FTE), which
is $180,000 per year [Pay10], are assumed. To maintain and service a full rack, 75%
of a FTE is required. This results in $11,250 per month and 40,000 users (Cstaff). To
estimate the costs for spare and service parts, 15% of the monthly CAPEX are taken
(Cspare = $175.05/40, 000 user).

Transit Costs

To obtain realistic numbers for the transit fees is quite complicated. The current (mid
2011) rate charged, based on the 95 percentile, is $3.25 per Mbps [Nor10]. The chal-
lenge, however, is to estimate the average traffic caused by each user and how often
additional transit has to be paid because of the location privacy protection mechanism
(i.e., side effect of triangular routing).
The average traffic caused by a single user is the same for all frameworks. To obtain
real world numbers for the traffic per user, the LRZ’s Eduroam subnet was monitored
for a week in April 2011. The wireless Eduroam access network is used by students
and researchers with mainly mobile devices like laptops, tablets and smart phones
[TER12]. The traffic pattern, therefore, suits the use case of mobile nodes requiring
location privacy protection. During the week in April, the out- and inbound traffic
of the Eduroam subnet and the number of users as seen by the access points was
recorded. The recordings are shown in Figure 5.10.

109

5. Location Privacy in Locator/Identifier Split Architectures

 0

 50

 100

 150

 200

03/29 03/30 03/31 04/01 04/02 04/03 04/04 04/05 04/06
 0

 200

 400

 600

 800

 1000

T
o
t
a
l

T
r
a
f
f
i
c

[
M
B
i
t
/
s
]

U
s
e
r
s

Date (2011)

Bitrate
Users

Figure 5.10.: Total amount of used bandwidth (green) and number of users (red) in the
LRZ Eduroam access network.

Transit costs are usually charged based on the 95 percentile4 [Nor10]. Figure 5.11
shows the average used bandwidth per user over the week. The green line indicates
the 95 percentile which is at 0.244Mbps per user.
At this point, the transit costs per user are as shown in Equation 5.4.

Ctransit = $3.25 · 0.244Mpbs ·ω (5.4)

ω, thereby, reflects how many times additional transit fees have to be paid. This value
differs for each framework and is dependent on several aspects. These aspects are the
average path length (in terms of AS), the proximity between the correspondent and
mobile node and the positioning of the agent or proxy, respectively. The challenge,
thereby, is to estimate how many connections, rerouted via the agent/proxy, cause
transit fees in addition to the ones already caused by the direct path between the two
peers. As no serious number can be given, the result shown in the next subsection
varies this parameter. In order to get an understanding of the range, however, a sim-
plified model is used. This model takes two frameworks into account—the HIP loca-
tion privacy framework and the proxy–based privacy service. For BLIND (including
enhanced BLIND) no information is given as where to position the FAs. Additionally,
the authors of the framework do not specify whether a single FA per mobile node
must be used or the usage of multiple ones is possible. For the remainder of this com-
parison, therefore, BLIND is treated equally to the HIP location privacy framework.
The location of the RVAs and FAs is from here on only referred to as location of the

4The 95 percentile states that 95% of the time (e.g., during a billing period) the traffic was below this
amount. It is taken to cut off bursts like the one shown in Figure 5.11 for the 4th of April.

110

5.4. Comparison of Location Privacy Frameworks

 0

 0.5

 1

 1.5

 2

03/29 03/30 03/31 04/01 04/02 04/03 04/04 04/05 04/06

T
r
a
f
f
i
c

p
e
r

U
s
e
r

[
M
B
i
t
/
s
/
u
s
e
r
]

Date (2011)

Bitrate/User
95 percentile

Figure 5.11.: Bandwidth per user in the LRZ Eduroam access network.

agent. It should be noted, however, that enhanced BLIND might be extendable with
an intelligent proxy selection as proposed for the HiiMap privacy service. In that case,
the positioning of the FAs would compare to the ones of the proxies from the privacy
service framework.
The simplified network model is depicted in Figure 5.12. The network in the model
consists of three tier levels. For the sake of simplification and to estimate worst case
scenarios, the source and destination of a communication flow are always located at
the tier 3 level. In case a direct peering between two tier 3 providers is present (e.g.,
ISP D and E), no transit fees are caused by the communication flow. If no peering
exists, transit links to higher tier providers must be used and fees are charged. This
simplified model is not too far fetched as Ripe NCC states in their statistic report
[NCC10] that the average BGP path length includes 5.02 ASs.
The HIP location privacy framework requires all traffic to pass the core of the Internet.
This is regardless of the location of the source and destination of a communication
flow. As a result, each connection requires to pass four transit links, even if both
communication partners reside within the same AS. This is due to the requirement to
design large protected areas to keep location information leakage as small as possible
(even though it still occurs). In a best case, the source and destination are already
connected to a tier 1 provider, and no additional transit fees need to be taken into
account. The worst case, however, requires four additional transits to be paid for
(ω = 4). This is the case whenever the source and the destination are connected to the
same or different but interconnected tier 3 providers. As any traffic needs to pass the
core (which means a tier 1 provider), no direct free–of–charge peerings between two
providers can be utilized, and additional charges need to be paid.
For the privacy service in a single proxy scenario, the best and worst case in terms

111

5. Location Privacy in Locator/Identifier Split Architectures

ISP A

ISP B ISP C

ISP D ISP E ISP F

peer
peer

provider

provider
provider

provider

customer

provider

customer

customer customer customer
peer

peer

Cashflow
Peering

Tier 1 Provider

Tier 2 Provider

Tier 3 Provider

Figure 5.12.: Transit fee cashflow. Fees need to be paid between customers and
providers. No fees are charged for peerings within the same tier level.
Peerings in the tier 1 level are always free of charge [The11].

of required transits is the same compared to the HIP location privacy framework. By
providing multiple proxies and employing intelligent proxy selection as introduced
in Section 5.3.2, however, the number of required transits (ω) can be decreased. Fig-
ure 5.13 illustrates an example in which the selection of a proxy nearest to the direct
path between the two peers 5 avoids any additional transit costs. The agent–based
approach in this example includes four transit links.
In case no direct peering between ISP D and E in Figure 5.13 would exist, the peering
between ISP B and C would be used. The selected proxy would remain number 3 as it
is closest to the correspondent node. To evaluate the cost model with a realistic num-
ber ω for the proxy approach, detailed knowledge about how much traffic remains
in the local AS, is destined for a neighbor AS (with direct peering) or is addressed to
a far away AS would be necessary. This information, however, is not publicly avail-
able for either confidentiality reasons or because no widespread measurements have
been carried out so far. In the cost evaluation, therefore, a range for ω from zero to
four is used to evaluate the decrease in cost with each less required transit connec-
tion. Zero required transit links, thereby, are not unrealistic as content provider try to
push the content as close as possible to users via mechanisms like content distribution
networks or content caches.

5For privacy reasons located as close as possible to the source.

112

5.4. Comparison of Location Privacy Frameworks

ISP A

ISP B ISP C

ISP D ISP E

peer
peer

provider

providerprovider

customer

provider

customer

customer customer

peer peer

Proxy 3

Agent Flow
Proxy Flow

Tier 1 Provider

Tier 2 Provider

Tier 3 Provider

Proxy 2

Proxy 1

Correspondent
Node Mobile

Node

Agent

Figure 5.13.: Communication path for location privacy mechanisms.

Cost Evaluation

By substituting the given values in the cost model (equation 5.1, 5.2 and 5.3) the re-
sults as shown in Figure 5.14 can be obtained. For the number of total users (N) four
billion was chosen. This roughly represents the amount of nodes as seen of today
[Hus10]. The parameter α on the x–axis reflects the percentage of all nodes using the
privacy protection function. The red line shows the overall costs for the agent–based
framework as well as the privacy service with a single proxy (this means four transit
links). The grey lines represent the privacy service with proxy selection enabled (i.e.,
less additional transit links).

The graph shows that the overall costs of the HIP location privacy framework sum up
to $7.05 billion per month for a ratio of 50% of mobiles nodes. By only decreasing the
number of required transit links by one (and thereby the fees), this monthly bill goes
down by 23.66% to $5.46 billion. Requiring no additional transit at all, the overall costs
decrease to $0.7 billion per month. This shows the significant impact of the transit fees
on the overall costs. Figure 5.15 shows the costs itemized for a single privacy service

113

5. Location Privacy in Locator/Identifier Split Architectures

 0

 2

 4

 6

 8

 10

 12

 14

 16

 0 0.2 0.4 0.6 0.8 1

T
o
t
a
l

C
o
s
t
s

(
B
i
l
l
i
o
n

$

/

M
o
n
t
h
)

Fraction of Mobile Nodes

FA/PR - 4*transit
PR - 3*transit
PR - 2*transit
PR - 1*transit
PR - 0*transit

Figure 5.14.: Total costs of the location privacy mechanisms based on the number of
users and additional required transit connections.

subscriber depending on the required transit links, to further illustrate this relation6.
The comparison shows that the transit fees largely outgrow the gateway costs. In case
the average amount of generated traffic increases faster than the transit fees decrease,
this misbalance even worsens in the future. The conclusion which can be drawn from
these results is that an intelligent proxy selection is very important. From a financial
point of view it is beneficial to provide a lot of proxies in order to keep the caused
transit fees to a minimum.
The HIP location privacy framework does not offer a possibility to select proxies. It,
therefore, causes the maximum amount of additional transit fees. For the simplified
network model used in this comparison the worst case is four additional transit links
in the path from and to the FA. For this model, the monthly costs caused by the HIP
location privacy framework sum up to $3.52 per month and user (cf. left bar in Fig.
5.15).
Contrary to the HIP location privacy framework, the privacy service introduced in
this thesis provides full location privacy and allows to intelligently select a proxy
individually for each communication flow. This means that the costs can be kept lower
while at the same time providing more flexibility and privacy. Beside the financial
advantage of this approach the impact of other triangular routing related side effects
(e.g., delay) can also be lessened by the ability to select proxies.
Enhanced BLIND might also be extendable with a proxy selection mechanism as in-
troduced in this thesis. Similar to the privacy service, it also guarantees full location

6Please note that these costs only include the values from the introduced cost model and do not factor
in additional economic figures like marketing costs, desired asset gain, etc.

114

5.5. Conclusion

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

4 3 2 1 0

C
o
s
t
s

p
e
r

U
s
e
r

(
$

/

M
o
n
t
h
)

Number of Required Transit Connections

gateway costs
transit fees

Figure 5.15.: Influence of the required transit connections on the total costs per user.

privacy. It, however, has the disadvantage that mobile nodes, respectively any node
which requires privacy protection, is not reachable by other peers. It is only possi-
ble for these nodes to initiate communication flows but not be the destination of a
connection request.

5.5. Conclusion

The locator/identifier split addressing scheme solves many challenging aspects of to-
day’s IP–based Internet architecture. As a downside, however, it is possible to track
a node which uses this addressing scheme. This location privacy problem is an im-
portant aspect which must be solved in order for any locator/identifier split based
architecture to be considered as a successor to today’s Internet.
In this chapter, the location privacy problem in regard to the locator/identifier separa-
tion paradigm was outlined and existing proposals to overcome this problem briefly
discussed. These proposals, however, do either not provide full location privacy or
their mechanisms contradict the flexibility and connectivity desired of a NGI archi-
tecture. Subsequently the HiiMap privacy service was introduced. This framework
is based on proxies which enable mobile nodes to conceal their topological location
while at the same time being reachable by correspondent nodes. As any of the de-
scribed approaches (including the HiiMap privacy service) introduce negative side
effects to a communication flow—caused by triangular routing—, a mechanism was
presented to lessen the impact of these side effects. The so–called intelligent proxy
selection allows to select a proxy individually for each communication flow and,
thereby, to choose one which is located as close as possible to the direct communi-
cation path between two peers.

115

5. Location Privacy in Locator/Identifier Split Architectures

Three proxy selection mechanisms for the HiiMap privacy service were discussed and
compared with each other. The best one, i.e., mapping system based proxy selection,
was chosen and compared with the other location privacy frameworks. Rather then
focusing on delay, the comparison was based on financial costs of each mechanism.
The result underlined the significance of transit fees for the overall costs of the loca-
tion privacy solutions. This showed that an intelligent proxy selection mechanisms is
highly advised to be employed in a location privacy service.

116

6. Realization Within the G-Lab Distributed
Experimental Facility

In this chapter, the prototypical implementations of the Hierarchical Internet Map-
ping Architecture (HiiMap) are briefly discussed and their elements described. An
extensive description of all software components and details, however, would exceed
the page limit of this thesis. For each component, therefore, only a functional descrip-
tion and notable aspects are discussed. A prototype of the HiiMap mapping system
was shown as part of a joint demo at the Euroview Future Internet Workshop 20111.
First, the G-Lab experimental facility, to which the most components were deployed,
is introduced. Afterwards, the prototype of the mapping system and its security and
privacy extension are described.

6.1. G-Lab Experimental Facility

The G-Lab project is a research project funded by the Bundesministerium für
Forschung und Bildung (BMBF) [TG09]. Its main objective is to research and develop
Next Generation Internet (NGI) concepts and architectures. One part of the G-Lab
project is a distributed experimental facility. This facility provides the researchers
with the ability to test and evaluate novel protocols and architectural elements.
The initial testbed consisted of 175 physical nodes distributed over six sites in Ger-
many. Each site, thereby, hosts 25 nodes except the management site which oper-
ates 50 ones. Those six locations are the initial G-Lab partners and consist of the
following universities: Julius-Maximilians-Universität Würzburg, Technische Univer-
sität Kaiserslautern, Technische Universität Berlin, Technische Universität Darmstadt,
Technische Universität München and Karlsruher Insitut for Technology. In a second
phase, the testbed was extended to 190 nodes, spreading over 13 locations. The first
version of the experimental facility was initiated in January 2009.
All phase one sites (and several of the second phase sites) are interconnected by the
Deutsches Forschungsnetz (DFN) which provides a backbone for academic and re-
search facilities within Germany. The backbone only carries traffic from these insti-
tutes and does not face a normal load as commercial internet service provider. As a
result, the roundtrip time between the G-Lab sites ranges from seven to ten millisec-
onds (cf. Chap. 3.3.3). The DFN supports IPv4 and IPv6 routing in its backbone. Not
all G-Lab sites, however, offer IPv6 connectivity.
Each physical machine is virtualized in order to provide more flexibility and increase
the amount of available nodes. The initial virtualization software, thereby, was a mod-

1Deployment of Application–Tailored Protocols in Future Networks, Proceedings of the 11th Euroview Fu-
ture Internet Workshop, August 2001

117

6. Realization Within the G-Lab Distributed Experimental Facility

ified PlanetLab [TPU03] version. PlanetLab does only provide a semi–complete virtu-
alization which means that network resources are shared and layer 3 protocols cannot
be modified. In order to support experiments with different layer 3 protocols, Prox-
mox virtualization software was deployed. For the HiiMap prototype, however, the
PlanetLab installation was sufficient and, therefore, a description of the Proxmox vir-
tualization is omitted (more details can be found under [TG09]).

6.2. Mapping Service

The HiiMap NGI architecture is based on the locator/identifier separation paradigm.
This novel addressing scheme is intended to replace the current layer 3 protocol (IPv4
and IPv6 respectively). The Planetlab virtualization software, however, does not pro-
vide support for other layer 3 protocols beside the Internet Protocol (IP) without the
use of tunneling. To overcome this obstacle, the network stack of each HiiMap com-
ponent, except the topology monitor, was extended with a shim layer. This shim layer
is located between layer 3 and 4 of the OSI reference model. It contains addressing
based on identifiers while layer 3 provides network connectivity based on IP as usual.
To this end, the IP addresses represent the locator of the locator/identifier separation
paradigm. In that way, a locator/identifier split based addressing scheme is emulated
towards higher layers. Figure 6.1 illustrates the extended network architecture.

Transport Layer

Shim Layer

Network Layer

Datalink Layer

Locator: IPv4/IPv6 addresses

Identifier: 128 bit UID

Figure 6.1.: Shim layer employed in the HiiMap component’s network stack to emu-
late a locator/identifier split addressing scheme.

The prototype of the HiiMap mapping system consists of four components. These
components are the Global Authority (GA), the mapping regions (consisting of
Distributed Hash Table (DHT) peers and the load balancer), a client software and a
topology monitor. These components will be described subsequently.
All of the components, except the topology monitor, are implemented in Java. The
reason behind the programming language choice is the flexibility it provides. Com-

118

6.2. Mapping Service

ponents of the mapping system can be executed on various machines and operating
systems without the need to recompile them. This aspect was especially important as
in the beginning of the G-Lab experimental facility it was not certain that the Planet-
Lab software would be used during the complete project lifetime. Java, therefore, was
preferred over C++ even though C++ might have resulted in a prototype with faster
execution times. To measure execution times, however, was not the main objective of
the prototype.

6.2.1. HiiMap Protocol

Each component of the HiiMap mapping system contains a full HiiMap protocol
stack. The protocol stack is designed as an independent Java package which can be
linked to the program code of each component. The core of this protocol package is
built by the HiiMap header class. It defines the protocol header which is equal for
each protocol message. Its structure is depicted in Figure 6.2. The ver–field defines
the protocol version of the packet and cmd the payload type. length states the payload
length and cs is a one byte checksum to verify the packet.

0 1 2 3 4 5

ver cmd length

payload

cs

Figure 6.2.: Structure of the HiiMap protocol header.

The HiiMap header class provides a getter and setter method for the payload. Each
payload class, thereby, implements a payload_interface. In that way, the source code
of the packet handling modules are not required to know the specifics about the pay-
load types. The payload classes can be handled in a generic way up to the point where
information from the payload is processed. To cast the generic payload class to a spe-
cific one, the command code byte in the HiiMap header class is interpreted. This can
be seen in the sample client implementation in Listing A.1. To this end, the HiiMap
network components follow the design pattern of coding against an interface rather
than an implementation. The result is a very flexible protocol stack which can easily
be extended. This property of the prototype was a great asset when it was extended
with the security and privacy functionality.

6.2.2. Global Authority

The GA is implemented as a single instance although in the concept of HiiMap a
redundant design is suggested. This could either be realized by sharing resources of

119

6. Realization Within the G-Lab Distributed Experimental Facility

multiple machines or replicating and synchronizing an instance similar to the Domain
Name System (DNS) root servers. The prototype, however, was never expected to
face an enormous load and to provide high reliability as required from a productive
system.
One of the initial design decisions, therefore, was to use SQLite as database. During
stress tests of the mapping system, however, this database system turned out to be
unable to cope with even a moderate load. Update processing times became increas-
ingly high whenever the database grew to store several 10,000 entries. After a while
it clogged completely, and update as well as retrieval requests were dropped.
During stress tests, multiple badges of 5,000, 10,000 or 20,000 entries were pushed into
the mapping system, requiring the GA to store the Unique Identifier (UID) to region
mapping. Whenever a new UID was registered with a region, the region would send
an update to the GA in order to store the 〈UID region〉–tuple. Over time, multiples of
10,000 entries accumulated in the GA as it was not restarted between the tests. As a
consequence, the database system was changed to H2. Similar to SQLite, it is an inline
database were the database management functionality is linked into the program code
of the GA. A stand–alone database system (e.g., MySQL) was not chosen in order to
keep the prototype flexible. In that way, initiating a new instance of the GA on a
different machine does not require to set up a database system.

6.2.3. Region

The region is defined by two components. These are the load balancer and the DHT
peers. The core of the peers is formed by the Event Detection and Reporting Algo-
rithm (EDRA) of the D1HT protocol [MA06]. This algorithm distributes information
about the DHT ring structure among the peers and ensures its stability. Whenever
an event is detected (e.g., a peer joins or leaves), this information is distributed to the
other peers of the DHT. Such an event is detected by sending join and hello messages
to a peer’s successor. A hello timer is started after a hello message is received. In case
no such message is received before the timer expires, the predecessor is assumed to
have left the DHT. In order to factor in packet loss and delay, the timer is set to three
times the interval of the periodic hello messages.
Beside keeping the DHT ring structure intact, a peer must although store its share
of mapping entries. A peer, thereby, is required to store entries which fall into the
key subspace it is responsible for. In addition, it also stores entries of its predecessors
in the key space. The reason for this is to achieve resilience within the DHT. When
disconnecting from the DHT, a peer hands over its entries to its successor which then
extends its responsible subpart of the key space. In case, however, the peer fails and is
not able to transfer its mapping entries, these entries would be lost. Therefore, backup
copies are stored at multiple successors.
In the prototype implementation, each peer maintains two data tables. The first one
is used to store its own mapping entries. The second one stores the backups from
other nodes. An own algorithm is used to keep backups synchronized and organize
responsibilities of key subspaces in case a node joins or leaves the DHT. Whenever a

120

6.2. Mapping Service

peer receives a mapping request (i.e., USR_LOCATION_REQUEST), it first determines
whether the enclosed UID falls into its own key subspace or not. In case it does, the
query is resolved from the data table of own mapping entries (assuming an entry
for the UID exists). In case, however, the UID does not map to the own subspace, it
usually is forwarded to the peer in the DHT which is responsible. In order to speed up
the lookup process, it is checked whether the UID maps to the backup key subspace
or not before forwarding the request. In case the query can be answered from the
backup data table, it is not forwarded and the query is responded to directly. This,
however, requires the backup entries to be up–to–date at any time. The impact of
this respond from backup mechanism can be seen in the performance evaluation (cf.
Chap. 3.3.3). Figure 3.15 shows that approximately 3/5 of location requests could be
answered without the need to forward the request within the DHT. This is because
the replication factor—the amount of predecessor key subspaces are stored as backup
at a single peer—was set to two during the performance tests. This means that each
peer stored three datasets of mapping entries (its own one, the one from its direct
predecessor and the ones from its predecessor’s predecessor). The replication factor
within the DHT, however, can be configured.
The core of the peer’s software implementation is a message flow architecture. Each
information unit (e.g., network packet, database request, database object) passes the
main messages queues. These queues are also coded against interfaces and, therefore,
able to handle new information units not known to the system during its design. Each
information processing module is able to register for specific information units (e.g.,
network stack for network packets). Once an information unit appears in one of the
main message queues, all modules which registered for this specific information type
are notified—the architecture, thereby, follows the observer design pattern. In that
way the software can be extended with additional modules in order to fulfill new
tasks. The resilience/backup module, for example, was not included in the initial
version and added later one.

6.2.4. Client

Although there is only a single mapping system version, three different types of
clients were developed. Each one serving a different purpose. A fourth version was
developed at the Karlsruhe Institute of Technology and used in a joint demo held
at the Euroview Future Internet Workshop 2011 (based on [WHSM10]). This fourth
client, however, is not further detailed in this section.

Performance Test

The first set of clients are command line based tools to test and verify the mapping
system. Among protocol tests these clients were used to run stress tests against the
mapping system. The performance measurements presented in Chapter 3.3.3 and
5.3.3 were carried out by these clients.

121

6. Realization Within the G-Lab Distributed Experimental Facility

Graphical User Interface

The second type of client has a graphical user interface (GUI) and was used as a
demonstrator. Figure 6.3 shows the GUI of the client. It allows a user to enter or
randomly generate a UID. After setting a region number, the UID is registered with
the selected region of the mapping system. Please note that region selection is done by
the client for demonstrator purposes. In a real world deployment, the region would
be determined by the user’s provider.
Beside registering a UID, the user is able to initiate UID lookups. This can be done by
the text box and button at the top of the GUI. In Figure 6.3, a lookup for the UID begin-
ning with 30:c1 was sent. This UID was previously registered by the same client (text
boxes in the middle section) and, therefore, the locator (in this case an IPv4 address)
of the machine the client software was executed on was returned.

Figure 6.3.: Graphical user interface of the HiiMap client demo software.

The three text fields on the bottom of GUI show the clients cache states and a log win-
dow. The upper most text field of these three shows which UID→locator mappings
are currently cached by the client. The second one displays the region table down-
loaded from the GA. It includes all region numbers, the locator of the region’s load
balancer and a timestamp of the last update. It can be seen that the addressing scheme

122

6.2. Mapping Service

used for the locator is not limited to IPv4 for the prototype. The GA stores domain
names as region locators, for example.
The client can operate as webserver and -client in order to illustrate the locator/identi-
fier separation paradigm. By pushing the "Open Server Window" button a http–server
is started. Another client on another end system can request a website from the first
client. To request the site, the "Open Client Window" button is clicked and the UID of
the first client entered. The returned website contains the first client’s UID and actual
locator.

Real World Mobility Pattern

The third client version is developed in the Phyton scripting language and executed
in the Seattle distributed testbed [Cap12]. The Seattle testbed offers virtual slices to
developers on various end systems (stationary or mobile) in order to execute network
applications. Those end systems are real world devices and distributed world wide.
They can either be workstations in a university/company, privately owned laptops
or mobile phones/handheld devices. The HiiMap Seattle client is used to emulate
real world mobility patterns. Each client monitors the network connection(s) of its
host system. In case an IP change event occurs, a USR_LOCATION_UPDATE message
is sent to the HiiMap mapping system. During the test phase 150 randomly selected
slices on different end systems were assigned to the HiiMap experiment. These clients
were all registered with a single region.
Additionally to sending location update messages to the mapping system each client
provides a website displaying its UID, current locator and the number of locator
changes (cf. Fig. 6.4). During the initial test phase which lasted one week in December
2011, the number of locator changes varied drastically over all clients. It ranged from
zero up to 328 changes. The average, thereby, being around 11 changes per device.

Figure 6.4.: Website screenshot of the HiiMap Seattle client.

6.2.5. Topology Monitor

The topology monitor shows all active regions of the mapping system on a map. The
user is able to zoom into a region and check the status of its region’s peers. The

123

6. Realization Within the G-Lab Distributed Experimental Facility

topology monitor was developed for the joint demo at the Euroview Future Internet
Workshop 2011. Contrary to all other components of the prototype, it is developed
in Objective-C and executed on a tablet device. A tablet solution was chosen for its
flexibility. The joint demo showed a video use case based on application–tailored pro-
tocols and virtual networks. These protocols were individually selected and down-
loaded for each connection. Each protocol block and virtual network, thereby, was
registered with an own UID, and storage information could be retrieved from the
mapping system. Furthermore, the communication between the different nodes of the
showcase was based on a locator/identifier–split addressing scheme. As the show-
case required three different stations (protocol design, deployment and usage), the
tablet–based topology monitor could be brought along with each station, showing the
activity in the mapping system for each one. Figure 6.5 shows the GUI displaying a
map of Germany.

Figure 6.5.: Screenshot of the HiiMap topology monitor in overview mode.

For the demo six regions were initiated whereby each site of the G-Lab phase 1 part-
ners hosted one. Each region consisted of eleven peers in addition to the region’s load
balancer. The blue circles in the screenshot in Figure 6.5 represent the location of a
region. The number on the circle reflects the amount of stored mapping entries per
region. The GA is not shown in the overview.

124

6.3. Public Key Infrastructure

The topology monitor is connected with the load balancers of each region. They pro-
vide the monitor with the amount of peers within the region, the number of mapping
entries and the activity status of each peer. Figure 6.6 shows the close–up view of a
single region.

Figure 6.6.: Screenshot of the HiiMap topology monitor in close–up mode.

Each bar in the close–up view represents a peer in the DHT of the region. A green bar
signals an online—but currently inactive—peer. Blue indicates that a mapping entry
is currently queried, and red shows a peer which received an mapping entry update.
It could be shown during the demo that upon deploying or retrieving protocols the
mapping system was updated or queried and information was not statically entered
at the nodes.
Furthermore, the topology monitor helped to illustrate the architecture and operation
of the otherwise non–visible mapping system.

6.3. Public Key Infrastructure

After the initial version of the HiiMap prototype proved the overall feasibility of the
architecture, it was extended to incorporate the security framework (cf. Chap. 4).

125

6. Realization Within the G-Lab Distributed Experimental Facility

The complete functionality of the framework, however, is not implemented by the
prototype. The client key management, for example, is not based on smart cards, and
messages are not cryptographically signed. The objective for the prototype was to
prove the practicability of the distributed public key infrastructure. A prototypical
client implementation based on smart cards, therefore, would not have added much
value in regard to the costs of such a development.

Figure 6.7.: HiiMap client demo software with PKI extension.

Except for the GA, the components of the mapping system were not required to be
modified. The GA was extended to generate and provide the transformation direc-
tive to determine the storage locations of public key shares (cf. Chap. 4.3.1). In
a real world example, this directive can be used to implement load balancing be-
tween the regions. For the prototype, however, the possible storage location num-
bers were evenly distributed over all existing regions. The load balancer and DHT
peer software was not required to be extended as key shares are stored in the op-
tion list of each mapping entries. The protocol messages (USR_LOCATION_UPDATE,
USR_LOCATION_RESPONSE) already included the option list as well.

126

6.3. Public Key Infrastructure

The GUI–based client was extended to provide functionality to create, upload and
download shares of a public key as well as reconstructing one. Figure 6.7 shows the
modified GUI. In the top section two buttons were added. These allow the user to
retrieve the public key for the UID listed in the top text box and to store the key in
the ssh–rsa key file format. Furthermore, the "Open PK Configuration" button was
added. This button opens the public key configuration dialog shown in Figure 6.8.

Figure 6.8.: Shares generation sub–window of the HiiMap client demo software.

This dialog allows the user to either randomly generate a public key or to select one
from the file system. Furthermore, the user is able to select the number of shares to
generate (n) and the threshold of shares required to reconstruct the key (k). On the
right side of the window, the downloaded transformation directive is shown.
For the prototype, share generation and key reconstruction followed Shamirs secret
sharing scheme [Sha79] with a variable key length. To create the shares, a polynomial
with random supporting points is defined. Shares are then taken from this polyno-
mial. To reconstruct the public key, the polynomial must be calculated from the shares.
This is done using Neville interpolation in modular arithmetic. This means that the
set of BigInteger values (I)—which are required to handle numbers bigger than 232—
modular a prime number (p) form a field. This has two advantages. The modulo
operation limits the range of the field in x and y direction. The limitation in y direc-
tion, thereby, means that the size of the BigInteger values is limited and, therefore, the
computational effort is restrained (I = {x ∈ N0 |x < p}). By limiting the range of the
field in x direction, the likelihood of each value is more uniformly distributed.

127

6. Realization Within the G-Lab Distributed Experimental Facility

6.4. Privacy Service

The prototype of the privacy service required new components as well as the modi-
fication of the DHT peer and client software. The mapping system was extended to
support proxy selection. To do so, a new module was added to the DHT peer soft-
ware. This module is registered for any location request message which passes the
main message queues (cf. Sec. 6.2.3). To follow the observer pattern in the initial
software designe proved to be very valuable as the new module could be integrated
without the need to modify much of the existing code.
The privacy service’s central instance was implemented using a modified version of
the DHT peer’s source code. It was stripped off the EDRA algorithm and resilience
module. It is able to accept USR_LOCATION_UPDATE messages from mobile nodes,
maintains an own mapping database and can send USR_LOCATION_UPDATEs on be-
half of a mobile node, containing all of the service’s care–of locators. It further re-
sponds to location requests from its own proxies.

0 1 2 3 4 5

ver cmd length

destination UID

· · ·
source UID

· · ·
message length

text message

cs

Figure 6.9.: Structure of the HiiMap privacy service test message.

The proxy software is a completely new component. It parses inbound packets and
tries to resolve the enlisted destination UID in its internal cache. In case no entry is
found, a location request is sent to the privacy service’s central instance. After re-
trieving the destination locator (either from the cache or privacy service), the original
packet is encapsulated with a new header and sent to the mobile node. The test mes-
sage to be forwarded between a mobile and a correspondent node, thereby, consists in
addition to the HiiMap header of the destination and source UID and a text message.
Figure 6.9 shows the format of the test message (not encapsulated).
The GUI–based HiiMap client was extended to select whether to use a privacy service
and to specify the UID of the service’s central instance. Figure 6.10 shows a screen-
shot of the modified GUI. At the bottom of the middle section the UID of the privacy
service can be entered. By pressing the button "Update to CS" (CS = central service/in-
stance), a location update is sent to the privacy service.

128

6.4. Privacy Service

Figure 6.10.: HiiMap client demo software with location privacy extension.

By pressing the "Send Testpacket" button, the test message from the text box below is
sent to the UID entered in the top most text box. The locator shown below this UID
(beginning with 78:3f) is a care–of locator from a proxy. The test message, therefore,
is sent to the proxy instead of directly to the mobile node. After successfully receiv-
ing the test message, the client software at the mobile node shows an alert dialog,
containing the text message (not shown in the screenshot).

129

6. Realization Within the G-Lab Distributed Experimental Facility

130

7. Conclusion & Outlook

As the Internet revolutionized the way we communicate, our expectations towards
it changed accordingly. In the thirty years of its existence it evolved from a network
to interconnect a few nodes to a global infrastructure transferring information for bil-
lions of users. The result of this unprecedented growth, however, is that the initial
design principles do not match today’s usage patterns anymore. When the core archi-
tecture of the Internet was designed in the late 1970s and early 1980s, Internet–capable
mobile phones and almost real–time financial transactions, for example, were pure
science fiction. This is why the design goals did not include mobility, security or the
ability to scale to an enormous amount of subscribers.
As a result, the current Internet architecture faces various challenges which need to be
solved within the next years in order to keep up the growth rate. Novel architecture
proposals, therefore, are discussed in the research community. National and inter-
national research projects (e.g., G-Lab, 4WARD, Geni) are funded to research novel
concepts. The spectrum, thereby, ranges from novel addressing schemes up to ecolog-
ical considerations.
In this thesis, the aspects of scalability, mobility, security, trust and privacy were fur-
ther examined. Based on these properties a novel Internet architecture was introduced
and it was discussed how different mechanisms help to overcome the challenging as-
pects of today’s architecture. The architecture is based on the locator/identifier sepa-
ration paradigm, and its core is formed by a distributed mapping system. In addition
to the mapping system, a security framework as well as a privacy service is integrated.

Mapping System The challenge of a locator/identifier split based architecture is
how to map identifiers to locators. In this thesis, current mapping mechanisms as
well as Next Generation Internet (NGI) ones were discussed and their shortcomings
in regard to a NGI scenario outlined. As a consequence, a novel mapping system
was introduced in this thesis which eliminates these shortcomings. The proposed
system is called Hierarchical Internet Mapping Architecture (HiiMap) and designed
to meet the expectations towards a NGI architecture. The mapping system is split into
regions in order to provide the basis of a trustful mapping service. The reason behind
this approach is to limit the influence of a single authority over the mapping system.
Each region is controlled by an own authority to distribute the government–ship and
to establish a common law basis among the participants of a region. In order to cope
with the enormous load of the mapping system, an architecture based on Distributed
Hash Tables (DHTs) was introduced. This architecture is able to scale with the query
rate and amount of entries to store. To minimize lookup delays, caching hierarchies
and a one hop DHT protocol are used.

131

7. Conclusion & Outlook

Security Framework The presented security framework has two objectives. It se-
cures the operation of the HiiMap mapping system and, further, provides a trust an-
chor for higher layer security protocols and applications. It, thereby, is divided into a
Public Key Infrastructure (PKI) and client key management part. The public key dis-
tribution is integrated into the mapping system and based on threshold cryptography.
This has the benefit that users are not required to trust a single instance provided by a
third party. Public keys can even be retrieved in case parts of the mapping system col-
laborate with an attacker. The client key management is based on cryptographic smart
cards in oder to provide a secure and user–friendly solution. The concept, thereby, is
flexible enough to allow different types of smart cards purpose–build for various In-
ternet capable devices. To this end, the objective of the framework is to overcome the
limitations of today’s key management solutions as well as other proposed NGI secu-
rity concepts. In order to verify the integrity of the framework it was assessed against
the AAA protocol evaluation guidelines.

Privacy Service The locator/identifier separation paradigm allows nodes to be
tracked by providing real–time location information to attackers. The HiiMap archi-
tecture, therefore, integrates a privacy service which was presented in this thesis. The
service is based on proxies which conceal the topological location of an end system.
The advantage of the introduced privacy service over other proposals is its integration
with the mapping system. This enables the service to limit the side effects of triangu-
lar routing caused by the necessity to reroute packets to the proxies. This is done
by individually selecting a proxy for each communication flow. A proxy, thereby, is
selected which is as close to the correspondent node and the direct communication
path. This ensures that no location information is leaked, and triangular routing is
kept to a minimum. The subsequent economical evaluation of the concept showed
the importance of this selection mechanisms from a financial point of view as well.

The elements of the HiiMap architecture (i.e., mapping system, security framework
and privacy service) were evaluated in various ways. All of the components, how-
ever, have been implemented in order to prove the feasibility of the proposed mecha-
nisms. To this end, the prototypes and evaluations of the components showed that the
HiiMap NGI architecture is a practical solution to the challenging aspects of today’s
Internet architecture.
Nevertheless, it is not realistic to assume that the current Internet architecture is re-
placed by a clean–slate one in a flag–day like manner. Future research, therefore,
should concentrate on how elements from the introduced architecture can be back
ported to today’s Internet. The security framework (cf. Chap. 4), for example, is
not dependent on a locator/identifier split based addressing scheme and, therefore,
could easily be deployed in the current Internet architecture. Another approach be-
sides back–porting elements could be to operate both architectures—the current one
and HiiMap—in parallel and slowly migrate from one to the other. A sample migra-
tion strategy is roughly sketched out in Appendix B. Further research topics are to
integrate other NGI aspects into the architecture, like application–tailored protocols,
virtualization or cost–effective network management.

132

A. HiiMap Mapping System Protocol

This appendix lists the HiiMap protocol specification. The protocol messages are used
by the prototypes presented in Chapter 6. The HiiMap protocol is a classic binary
protocol. The current protocol version is 0x01 (hex). All bytes are sent in network
byte order.

A.1. Data Types

These are the data types used for this protocol.

Type Description Num. of bytes
byte signed byte 1
ubyte unsigned byte 1
int32 signed integer 4
uint32 unsigned integer 4
int64 signed long integer 8
uid 128 bit unique identifier 16
string int32 containing its length plus 0 or more

characters as bytes
4+

string list int32 containing its number of strings plus
0 or more strings

4+

IDSpace represents a certain part of the ID space.
Consists of two UIDs (start and end) and
one additional byte

33

data unspecified data field -

A.2. Assigned Numbers

Error codes used in the error message.

Symbolic name Error code (hex) Description
OK 0x00 ok
NX_IDENT 0x01 UID not known to the mapping system
NX_OPT 0x02 Requested options not available for the

UID
NX_REG 0x03 Contacting the wrong region

133

A. HiiMap Mapping System Protocol

Command codes used in the protocol header.

Symbolic name Command code (hex)
ERROR_MSG 0x00

REG_EDRA_PING 0x01
REG_EDRA_UPDATE 0x02
REG_EDRA_JOIN 0x03
REG_EDRA_LEAVE 0x04

GA_INSERT_REQUEST 0x21
GA_INSERT_RESPONSE 0x22
GA_DELETE_REQUEST 0x23
GA_DELETE_RESPONSE 0x24

USR_LOCATION_REQUEST 0x31
USR_LOCATION_RESPONSE 0x32
USR_LOCATION_UPDATE 0x33
USR_LOCATION_DELETE 0x34
USR_REGION_REQUEST 0x35
USR_REGION_RESPONSE 0x36
USR_REGTABLE_REQUEST 0x37
USR_REGTABLE_RESPONSE 0x38
USR_KSATABLE_REQUEST 0x39
USR_KSATABLE_RESPONSE 0x3a

LB_SYNCHRONIZE 0x51
LB_ALIVE 0x52

PRIVACY_LOC_UPDATE 0x61
PRIVACY_LOC_RESQUEST 0x62
PRIVACY_LOC_RESPONSE 0x63
PRIVACY_TUNNEL 0x64

RESILIANCE_MESSAGE 0x45
DATA_PACKET 0x11

A.3. Protocol Specification

The protocol description is split into five parts:

• Protocol header

• User protocol

134

A.3. Protocol Specification

• Mapping system internal protocol

• Backup system protocol

• Privacy service protocol

A.3.1. Protocol Header

The HiiMap header is used by any packet (except the Topology Monitor Protocol). It
consists of the following fields:

ubyte protocol version
ubyte command code
int32 payload length
data payload
ubyte checksum

The command code must be one of the numbers from Section A.2. To calculate the
checksum, all bytes of the packet excluding the checksum byte itself are added. The
checksum is the value of the sum discarding any overflow information (remainder
operation).

A.3.2. User Protocol Messages

ERROR_MSG

This message is used to communicate any error or status values to the client.

uid unique identifier
ubyte error code
string detailed error description (optional)
string locator used for forwarding (optional)

The uid indicates the request this message is a response for. In case the optional error
description is not set, the string length field (4 bytes) will be zero, and no character
bytes are appended.

USR_LOCATION_REQUEST

Mapping request sent by a client.

uid unique identifier
string option field
string locator used for forwarding (optional)

135

A. HiiMap Mapping System Protocol

USR_LOCATION_RESPONSE

Response from the mapping system to a mapping request.

uid unique identifier
string locator
string locator used for forwarding (optional)
string list options

USR_LOCATION_UPDATE

Message used to update an entry in the mapping system. Only possible to overwrite a
complete entry so far!

uid unique identifier
string locator
string list option list

USR_LOCATION_DELETE

Delete an entry from the mapping system.

uid unique identifier

USR_REGION_REQUEST

This message is used to request the region of an identifier.

uid unique identifier

USR_REGION_RESPONSE

The response to the request for an unknown region. It includes the identifier and the
corresponding region.

uid unique identifier
ubyte region

USR_REGTABLE_REQUEST

This request is used to update the table storing the region to locator mappings.

in64 timestamp of the latest entry

136

A.3. Protocol Specification

USR_REGTABLE_RESPONSE

The message contains the whole or one part of the region to locator table. The table
will be split into several packets if it does not fit into one message.

int32 number of packets
int32 number of entries in this packet
list region to locator entries

One region to locator entry is defined as follows:

int32 region
string locator

USR_KSATABLE_REQUEST

This message is used to request the transformation directive from the GA.

int64 timestamp of the current table

USR_KSATABLE_RESPONSE

This message contains the whole transformation directive. The regions are sorted in
ascending order starting with zero.

int64 timestamp of the table
list int32 regions (optional)

OPTION STRINGS

OPTION FIELD The option field contains a comma–separated list of keywords for
all the requested options. For example: KEY,DATE,VALID

OPTION LIST The OPTION LIST contains all requested options (each in a single
string). The string starts with the option keyword followed by an equal sign and the
option value itself. The list order may not match the request order. In case a requested
option is not stored in the mapping system, a plain value entry is returned.

KEY=7843258784303389502
DATE=
VALID=true

NOTE: In the example above, the value DATE was not found in the mapping system.

137

A. HiiMap Mapping System Protocol

A.3.3. Mapping System Internal Protocol Messages

The following messages are for region internal usage. They are used for the EDRA
algorithm to balance the DHT and for status messages between peers, load balancers
and the Global Authority (GA).

REG_EDRA_PING

Keep alive message of the EDRA algorithm.

int32 ttl
ubyte type

REG_EDRA_UPDATE

This message is sent between DHT peers to signal an event.

int32 ttl
ubyte type
uid responsibility UID
uid peer UID
string locator list
int32 port

REG_EDRA_JOIN

This message is sent by a peer joining the DHT.

uid responsibility UID
uid peer UID
string locator list
int32 port

REG_EDRA_LEAVE

A peer must send this message before gracefully leaving the DHT.

int32 ttl
ubyte type
uid responsibility UID
uid peer UID

138

A.3. Protocol Specification

LB_SYNCHRONIZE

Message sent by a peer to register with the load balancer.

byte region
int32 port
uid unique identifier
string locator

LB_ALIVE

Initializes the heartbeat connection and keeps it alive.

byte message code
int32 number of entries

Message codes:

Symbolic name Code (hex) Description
INIT 0x00 initialize connection
INITACK 0x01 acknowledge connection
REQUEST 0x02 heartbeat request
RESPONSE 0x03 heartbeat response

GA_INSERT_REQUEST

Request to enlist the responsible region for the UID.

uid unique identifier
byte region

GA_INSERT_RESPONSE

Response to an insert request.

uid unique identifier

GA_DELETE_REQUEST

Request to delete the responsible region entry for this UID.

uid unique identifier

139

A. HiiMap Mapping System Protocol

GA_DELETE_RESPONSE

Response to a delete request.

uid unique identifier

A.3.4. Backup System Protocol Messages

These messages are used by the DHT peer’s resilience module. All messages of the
resilience module are encapsulated in message of type RESILIENCE_MESSAGE. The
command code in the HiiMap header, therefore, is set to 0x45. The Backup system
protocol messages further use their own command codes.
Backup system protocol command codes for messages between the main and backup
node.

Symbolic name Command code (hex)

SETUP 0x01
ACK 0x02
RESIZE 0x03
FULL_DATA_UPDATE_T 0x04
DELETE_ENTRY 0x05
TERMINATE_T 0x06
HELLO_T 0x07
HASH_REQUEST 0x08
DATA_REQUEST_T 0x0A

Backup system protocol command codes for messages between the backup and main
node.

Symbolic name Command code (hex)

FULL_DATA_UPDATE_O 0x0C
OK 0x0D
TERMINATE_O 0x10
HELLO_O 0x11
INITIAL_HASH 0x12
DATA_REQUEST_O 0x14

140

A.3. Protocol Specification

SETUP

This message is used to initiate a backup connection and is usually answered by a OK
message. It is sent from the main node to the backup node to–be.

uid message origin
int32 handshake session number
IDSpace affected UID subspace
byte max. possible sessions
byte proposed num. of sessions
byteArray proposed session numbers

OK

This message is a positive answer to a SETUP message (sent from the backup to the
main node).

uid message origin
int32 handshake session number

ACK

This is the final message of a connection establishment process.

uid message origin
int32 handshake session number
byte session number

INITIAL_HASH

This message is used to determine whether the data on both sides of the backup con-
nection is synchronized. It contains all information about the data and parameters on
the backup node.

IDSpace affected UID subspace
int32 length of hash value
byteArray hash value of all UID entries in UID subspace
int32 num. of entries stored within the affected UID

subspace

141

A. HiiMap Mapping System Protocol

HASH_RESPONSE

This message equals the INITIAL_HASH message but usually only covers a part of
the whole ID space handled by a backup connection.

RESIZE

This message is used to tell the backup node that the UID subspace handled by the
connection has changed.

IDSpace affected UID subspace

FULL_DATA_UPDATE_O / _T

This messages are used to send a full data entry to the other side of the connection.

uid unique identifier
string locator
string
list

optionlist

DELETE_ENTRY

This message tells the backup node to delete a certain entry. NOTE: This message is
not used in the context of modified UID subspaces or the establishment or termination
of connections. It is only used in case the original entry is completely deleted from the
mapping data base.

uid unique identifier

DATA_REQUEST_O / _T

This request is sent to the other side of the backup connection to transmit all data
falling into the specified UID subspace.

IDSpace affected UID subspace

142

A.3. Protocol Specification

HELLO_O / _T

This message is used as a keep alive signal for the backup connection (between backup
and main node).

uid message origin
byte session number

TERMINATE_O / _T

This message is used to terminate a backup connection.

uid message origin
byte session number

A.3.5. Privacy Service Protocol Messages

PRIVACY_LOC_UPDATE

This message is used by a client to update its locator with the privacy service.

uid unique identifier
string locator

PRIVACY_LOC_REQUEST

This command is used by a proxy to request the real locator of a Unique Identifier
(UID) from the privacy service.

uid unique identifier

PRIVACY_LOC_RESPONSE

Response from the privacy service to a location request.

uid unique identifier
string locator

143

A. HiiMap Mapping System Protocol

A.4. Topo Monitor Protocol (TMP)

These protocol messages are used between a region’s load balancer and the topology
monitor iOS application.

A.4.1. TMP Header

The Topo Monitor Protocol (TMP) does not use the HiiMap header as specified in
Section A.3.1! An own header as follows is used:

ubyte TMP protocol version
ubyte TMP command code
int32 payload length
data payload

These are the command codes for the TMP protocol.

Symbolic name Command code (hex)
ERROR_MSG 0x00

TMP_PEER_LIST 0x70
TMP_PEER_STAT 0x71

A.4.2. TMP Messages

ERROR_MSG

This message is used to communicate any error or status values to the client.

ubyte error code
string detailed error description

TMP_PEER_LIST

This message contains a list with all peers in the region and their current number of
entries. This list may be sent at any time. It is assumed that all nodes in this list are
online. In case one peer is in the list but currently offline, a TMP_PEER_STAT message
with status offline must be sent immediately for the node.

int32 number of peers
{ int32 number of entries at the peer }

NOTE: The last entry is repeated as often as specified by ’number of peers’.

144

A.5. Protocol Implementation Guide

TMP_PEER_STAT

The status for a specific peer. The peer number in this message must correspond to
the list number of the TMP_PEER_LIST message sent last.

int32 peer number
ubyte peer status

Peer status Code (hex)
TMP_STAT_UPD 0x00
TMP_STAT_REQ 0x01
TMP_STAT_ONL 0x10
TMP_STAT_OFF 0x11

A.5. Protocol Implementation Guide

The following demo code shows a sample Java implementation of a client. It is shown
how to programmatically request and receive a mapping entry. Listing A.1 shows the
part of the sample client on how to request a mapping for a specific identifier (UID).
First, the request (USR_LOCATION_REQUEST) is constructed and then encapsulated
into a HiiMap header. Afterwards, the client waits for a reply from the mapping
system (with timeout). In a third step, the received response packet is parsed by the
HiiMap packet header class. Depending on the command code, the payload is either
interpreted (and parsed) as a ERROR_MSG or a USR_LOCATION_RESPONSE.

1 // The identifier we want to request the mapping for
2 Identifier id1 = new Identifier("80:00:00:00:00:00:00:00:00:00:00:00:00:00:00:00");
3

4 // Constructing the request (no options)
5 USR_Loc_Req request = new USR_Loc_Req(id1,"");
6 // Use the request as the payload for the HiiMap packet
7 HiiMapHeader header = new HiiMapHeader(Config.getProtocolVersion(),HiiMapPacketType.USR_LOCATION_REQUEST,

request);
8 // Send the packet
9 DatagramPacket pak = new DatagramPacket(header.getRawPacket(),header.getSize(),InetAddress.getByName(glab010.i4.tum.

german−lab.de),Config.getMappingPort());
10 socket.send(pak);
11

12 System.out.println("---REQUEST SENT---");
13

14 // Wait for the response
15 DatagramPacket resp = new DatagramPacket(new byte[1024],1024);
16 while(true) {
17 socket.setSoTimeout(5 ∗ 1000);
18 socket.receive(resp);
19 if (resp.getData()[0] != Config.getProtocolVersion()) {
20 System.out.println("[ConectionHeandler] " + resp.getAddress().getHostAddress() + " is using the

wrong protocol version: " + resp.getData()[0]);
21 } else {
22 break;
23 }
24 }

145

A. HiiMap Mapping System Protocol

25

26 // Parse the packet
27 HiiMapHeader respHeader = new HiiMapHeader(resp.getData(), resp.getLength());
28

29 // Interpret the packet
30 switch (respHeader.getCommand()) {
31 case HiiMapPacketType.ERROR_MSG: {
32 // Seems like the requested identifier isn’t stored in the mapping system
33 ERROR_msg error = (ERROR_msg) respHeader.getPayLoad();
34 System.out.println("Error code received: " + error.getCode());
35 break;
36 }
37 case HiiMapPacketType.USR_LOCATION_RESPONSE: {
38 // Read the returned values
39 USR_Loc_Resp data = (USR_Loc_Resp) respHeader.getPayLoad();
40

41 OptionList optList = data.getOptList();
42 System.out.println("ID: \t " + data.getUid().getStringID());
43 System.out.println("Locator: " + data.getLocator());
44 for (String opt : optList.getOptList()) {
45 System.out.println("OPT: \t " + opt);
46 }
47 break;
48 }
49 }

Listing A.1: "Requesting a mapping entry"

Below is the USR_LOCATION_REQUEST packet as seen by wireshark:

0000 01 31 00 00 00 14 80 00 00 00 00 00 00 00 00 00 .1...$..........
0010 00 00 00 00 00 00 00 00 00 00 c6

(red = protocol version, green = command code, blue = payload length, gray = uid, orange = number
of options, purple = checksum)

Below is the USR_LOCATION_RESPONSE packet as seen by wireshark:

0000 01 32 00 00 00 62 80 00 00 00 00 00 00 00 00 00 .2...r..........
0010 00 00 00 00 00 00 00 00 00 10 36 39 2e 31 37 2e69.17.
0020 31 31 36 2e 31 32 34 26 38 30 00 00 00 02 00 00 116.124&80......
0030 00 16 6e 6f 74 65 3d 49 5f 61 6d 5f 61 5f 74 65 ..note=I_am_a_te
0040 73 74 5f 65 6e 74 72 79 00 00 00 1c 72 77 3d 66 st_entry....rw=f
0050 65 65 6c 5f 66 72 65 65 5f 74 6f 5f 6f 76 65 72 eel_free_to_over
0060 77 72 69 74 65 5f 6d 65 cc write_me.

(red = protocol version, green = command code, blue = payload length, purple = checksum, or-
ange/darkblue = payload)

146

B. IPv6 to HiiMap Migration

In this appendix, a possible migration strategy from a plain IPv6 to the Hierarchical
Internet Mapping Architecture (HiiMap) architecture is sketched out. The address
space for the locator in the HiiMap architecture remains to be IPv6. This description
does neither claim to be complete nor to include all eventualities. For this migration
strategy it is assumed that all Internet subscribers as well as intermediate network
nodes (e.g., routers) support the IPv6 protocol and do not rely on IPv4 anymore.
The strategy is designed around a slow migration from one to the other architecture,
wherein both architectures coexist until the migration is completed. In the beginning
all end systems are only equipped with an IPv6 protocol stack and are not capable of
the HiiMap protocol. The first step, which starts the migration process, is to set up the
HiiMap mapping system (cf. Chap. 3) and its security framework (cf. Chap. 4). This
provides the infrastructure for end systems ready to switch to the new architecture.
New end systems (or older ones which are upgraded) are required to handle both
protocol stacks—the IPv6 and HiiMap one. Instead of operating two independent
protocol stacks, however, a shim layer is introduced which is transparent for IPv6
communication flows and adds additional functionality for HiiMap ones. Applica-
tions of dual–stack end systems solely use Unique Identifiers (UIDs) to address peer
applications—this is even in case the peer is only equipped with an IPv6 protocol
stack. Figure B.1 illustrates how the shim layer behaves in case both end systems
communicate via the HiiMap protocol.

Transport Layer

Shim Layer

Network Layer

Datalink Layer

Locator: 2001:4ca0:2203::fe2e

UID: 2001:db8::1428:57ab Mapping
Request

Figure B.1.: Migration strategy: Shim layer in HiiMap operation.

The shim layer in this case takes a UID as the destination address and translates it into
a locator by issuing a request to the mapping system. In case an entry for the UID is

147

B. IPv6 to HiiMap Migration

found in the mapping system, the peer’s current IPv6 locator is returned and used by
the network layer.
In case, however, the peer is not equipped with the HiiMap protocol stack, no entry
will be found in the mapping system. The shim layer then passes the UID to the
network layer which will interpret it as a regular IPv6 address as both addresses are
128 bit long (cf. Fig. B.2). The shim layer further does not encapsulate the application
data into the HiiMap header (which includes source and destination UIDs) before
passing it on to the network layer. Response packets are routed based on the end
system’s IPv6 locator.

Transport Layer

Shim Layer

Network Layer

Datalink Layer

IPv6: 2001:db8::1428:57ab

UID: 2001:db8::1428:57ab
Reuse

Figure B.2.: Migration strategy: Shim layer in IPv6 operation.

In that way, end systems operating a dual stack are able to initiate communication
flows with peers of both architectures. These end systems, however, are not reachable
by IPv6–only peers in case they roam. IPv6–only end systems are not aware of UIDs
and are solely able to address packets to IPv6 addresses. During the migration phase,
therefore, end systems which operate a dual protocol stack and want to offer services
to other end systems (e.g., servers) need to use their IPv6 locator as their UID. In that
way, a mapping request for the UID resolves to the end system’s IPv6 locator while
IPv6–only peers use the end system’s UID as a regular IPv6 destination address. In
fact, IPv6–only peers are not aware that the address they are using is an UID as it does
not distinguish from a regular IPv6 address. Hence, mechanisms like Domain Name
System (DNS) do not have to be altered to indicate whether the returned address is a
UID or IPv6 address.
The migration is completed after all nodes are upgraded to use the HiiMap architec-
ture. End systems offering a service are then able to change their locator as every peer
is able to issue mapping requests in order to learn the end system’s current locator.

148

Abbreviations

AS Autonomous System

CAPEX Capital Expenses

DFZ Default Free Zone

DHT Distributed Hash Table

DNS Domain Name System

FIB Forwarding Information Base

GA Global Authority

HiiMap Hierarchical Internet Mapping Architecture

IP Internet Protocol

ISP Internet Service Provider

LRZ Leibniz Supercomputing Center

MAC Media Access Control

NGI Next Generation Internet

PKI Public Key Infrastructure

RIB Routing Information Base

RP Regional Prefix

RTT Round Trip Time

OPEX Operational Expenses

UID Unique Identifier

149

Abbreviations

150

Bibliography

Publications by the author

[FH10] Wolfgang Fritz and Oliver Hanka, Smart card based security in
locator/identifier–split architectures, Networks (ICN), 2010 Ninth Interna-
tional Conference on (Les Menuires, France), April 2010, pp. 194 –200.

[Han10a] Oliver Hanka, Location privacy in Next Generation Internet architectures, In-
ternet Architecture Board Workshop on Internet Privacy (Boston, USA),
December 2010.

[Han10b] Oliver Hanka, A privacy service for locator/identifier–split architectures based
on mobile IP mechanisms, Advances in Future Internet (AFIN), 2010 Second
International Conference on (Venice/Mestre, Italy), July 2010, pp. 6 –10.

[Han11] Oliver Hanka, The cost of location privacy in locator/identifier–split architec-
tures, 30th IEEE International Performance Computing and Communica-
tions Conference - HotWiSec (Orlando, FL, USA), November 2011.

[Han12] Oliver Hanka, How to prevent identity fraud in locator/identifier–split archi-
tectures, International Conference on Computing, Networking and Com-
munications (ICNC 2012) (Maui, HI, USA), January 2012.

[HEP+11] Oliver Hanka, Michael Eichhorn, Martin Pfannenstein, Jörg Eberspächer,
and Eckehard Steinbach, A distributed public key infrastructure based on
threshold cryptography for the HiiMap Next Generation Internet architecture,
Future Internet 3 (2011), no. 1, 14–30.

[HF11] Oliver Hanka and Wolfgang Fritz, An holistic approach to public/private–
key based security in locator/identifier–split architectures, International Jour-
nal On Advances in Security 3 (2011), no. 3&4, 135–145.

[HKS+09] Oliver Hanka, Gerald Kunzmann, Christoph Spleiss, Jörg Eberspächer,
and Armin Bauer, HiiMap: Hierarchical Internet mapping architecture, Fu-
ture Information Networks, 2009. ICFIN 2009. First International Confer-
ence on (Beijing, China, P.R. China), October 2009, pp. 17–24.

[HL11] Oliver Hanka and Julian Lamberty, Security analysis of the cryptographic
namespace design in Next Generation Internet architectures, IEEE ICC 2011 -
4th International Workshop on the Network of the Future (Kyoto, Japan),
June 2011.

151

Bibliography

[HSKE09] Oliver Hanka, Christoph Spleiss, Gerald Kunzmann, and Jörg Eber-
spächer, A novel DHT–based network architecture for the next generation in-
ternet, Networks, 2009. ICN ’09. Eighth International Conference on (Can-
cun, Mexico), March 2009, pp. 332–341.

[HW11] Oliver Hanka and Hans Wippel, Secure deployment of application–tailored
protocols in future networks, 2nd IFIP International Conference Network of
the Future (Paris, France), November 2011.

[LH10] Bernhard Lichtinger and Oliver Hanka, Secure setup of inter–provider eth-
ernet services based on a novel naming schema, Network Operations and
Management Symposium (NOMS), 2010 IEEE (Osaka, Japan), April 2010,
pp. 886 –889.

[WHSM10] Hans Wippel, Oliver Hanka, Christoph Spleiss, and Denis Martin, Eval-
uation of future network architectures and services in the G-Lab testbed, Lec-
ture Notes of the Institute for Computer Sciences, Social Informatics and
Telecommunications Engineering, vol. 46, Springer, 2010, pp. 587–589.

General publications

[AAER06] B. Ahlgren, J. Arkko, L. Eggert, and J. Rajahalme, A node identity in-
ternetworking architecture, INFOCOM 2006. 25th IEEE International Con-
ference on Computer Communications. Proceedings (Washington, DC,
USA), IEEE Computer Society, April 2006, pp. 1–6.

[ABF+08] D. G. Andersen, H. Balakrishnan, N. Feamster, T. Koponen, D. Moon,
and S. Shenker, Accountable Internet protocol (AIP), Proceedings of the
ACM SIGCOMM 2008 conference on Data communication (New York,
NY, USA), SIGCOMM ’08, ACM, August 2008, pp. 339–350.

[ABH08] R. Atkinson, S. Bhatti, and S. Hailes, Mobility through naming: impact on
DNS, Proceedings of the 3rd international workshop on Mobility in the
evolving Internet architecture (New York, NY, USA), MobiArch ’08, ACM,
August 2008, pp. 7–12.

[Aur03] T. Aura, Cryptographically generated addresses (CGA), Information Security,
Lecture Notes in Computer Science, vol. 2851, Springer Berlin / Heidel-
berg, 2003, pp. 29–43.

[BBJ+09] E. Barker, W. Burr, A. Jones, T. Polk, S. Rose, M. Smid, and Q. Dang, Re-
commendation for key management - part 3, Special publication 800-57, NIST,
December 2009.

[BGT04] Tian Bu, Lixin Gao, and Don Towsley, On characterizing bgp routing table
growth, Computer Networks 45 (2004), no. 1, 45 – 54.

152

[BS03] A.R. Beresford and F. Stajano, Location privacy in pervasive computing, Per-
vasive Computing, IEEE 2 (2003), no. 1, 46 – 55.

[BSD10] Walter Bamberger, Josef Schlittenlacher, and Klaus Diepold, A trust model
for intervehicular communication based on belief theory, Social Computing (So-
cialCom), 2010 IEEE Second International Conference on, IEEE Computer
Society, August 2010, pp. 73–80.

[Cha81] David L. Chaum, Untraceable electronic mail, return addresses, and digital
pseudonyms, Commun. ACM 24 (1981), 84–90.

[Cla88] D. Clark, The design philosophy of the DARPA Internet protocols, SIGCOMM
Comput. Commun. Rev. 18 (1988), 106–114.

[Coo11] A. Cooper, Report from the Internet privacy workshop, Work in progress
(draft-iab-privacy-workshop-01), October 2011.

[Eck06] C. Eckert, IT–Sicherheit: Konzepte - Verfahren - Protokolle, Oldenbourg, 2006.

[ES00] Carl Ellsion and Bruce Schneider, Ten risks of PKI: What you’re not being told
about public key infrastructure, Computer Security Journal 16 (2000), no. 1,
1–7.

[FCM+09] A. Feldmann, L. Cittadini, W. Mühlbauer, R. Bush, and O. Maennel, HAIR:
Hierarchical architecture for Internet routing, ReArch’09 (New York, NY,
USA), ACM, December 2009.

[Fel07] A. Feldmann, Internet clean-slate design: what and why?, SIGCOMM Com-
put. Commun. Rev. 37 (2007), 59–64.

[FFML10] Dino Farinacci, Vince Fuller, Dave Meyer, and Darrel Lewis, Locator/ID
separation protocol (LISP), Work in progress (draft-ietf-lisp-09), October
2010.

[GAB09] Alex Galis, Henrik Abramowicz, and Marcus Brunner, Management and
service-aware networking architectures (MANA) for future Internet, Tech. re-
port, Future Internet Assembly, May 2009.

[GPW+04] Nils Gura, Arun Patel, Arvinderpal Wander, Hans Eberle, and Sheuel-
ing Chang Shantz, Comparing elliptic curve cryptography and RSA on 8-
bit CPUs, Lecture Notes in Computer Science, vol. 3156/2004, Springer,
Berlin/Heidelberg, Germany, 2004, pp. 925–943.

[Han06] M. Handley, Why the Internet only just works, BT Technology Journal 24
(2006), 119–129.

[ISO94] ISO, Information technology - open systems interconnection - basic reference
model: The basic model, ISO/IEC standard 7498-1:1994n, International Or-
ganization for Standardization, November 1994.

153

Bibliography

[ITU05] ITU, The international public telecommunication numbering plan, ITU-T Re-
commendation E.164, Telecomunication Standarization Sector of ITU,
February 2005.

[JCAC+10] L. Jakab, A. Cabellos-Aparicio, F. Coras, D. Saucez, and O. Bonaventure,
LISP–TREE: A DNS hierarchy to support the LISP mapping system, Selected
Areas in Communications, IEEE Journal on 28 (2010), no. 8, 1332 –1343.

[Jia06] Raj Jian, Internet 3.0: Ten problems with current Internet architecture and so-
lutions for the next generation, Military Communications Conference, 2006.
MILCOM 2006. IEEE, October 2006, pp. 1 –9.

[JSBM02] Jaeyeon Jung, Emil Sit, Hari Balakrishnan, and Robert Morris, DNS per-
formance and the effectiveness of caching, IEEE/ACM Trans. Netw. 10 (2002),
no. 5, 589–603.

[KBR06] Joseph S. Kong, Jesse S. A. Bridgewater, and Vwani P. Roychowdhury,
A general framework for scalability and performance analysis of DHT routing
systems, Dependable Systems and Networks, International Conference on
0 (2006), 343–354.

[KCC+07] T. Koponen, M. Chawla, B. Chun, A. Ermolinskiy, K. H. Kim, S. Shenker,
and I. Stoica, A data-oriented (and beyond) network architecture, SIGCOMM
’07: Proceedings of the 2007 conference on Applications, technologies, ar-
chitectures, and protocols for computer communications (New York, NY,
USA), ACM, August 2007, pp. 181–192.

[KKFT08] Jun Kurihara, Shinsaku Kiyomoto, Kazuhide Fukushima, and Toshiaki
Tanaka, A new (k,n)-threshold secret sharing scheme and its extension, Pro-
ceedings of the 11th international conference on Information Security
(Berlin, Heidelberg), ISC ’08, Springer-Verlag, 2008, pp. 455–470.

[Kob87] Neal Koblitz, Elliptic curve cryptosystems, Mathematics of Computation 48
(1987), no. 177, 203–209.

[Kon11] Elisavet Konstantinou, Efficient cluster-based group key agreement protocols
for wireless ad hoc networks, Journal of Network and Computer Applica-
tions 34 (2011), no. 1, 384 – 393.

[KZL+01] Jiejun Kong, Petros Zerfos, Haiyun Luo, Songwu Lu, and Lixia Zhang,
Providing robust and ubiquitous security support for mobile ad-hoc networks,
Network Protocols, 2001. Ninth International Conference on, November
2001, pp. 251 –260.

[LB04] J. Linn and M. Branchaud, An examination of asserted PKI issues and proposed
alternatives, 3rd Annual PKI R&D Workshop, March 2004, pp. 34–47.

154

[LOP05] Javier Lopez, Rolf Oppliger, and Ganther Pernul, Why have public key in-
frastructures failed so far?, Internet Research: Electronic Networking Appli-
cations and Policy 15 (2005), no. 5, 544–556.

[MA06] L.R. Monnerat and C.L. Amorim, D1HT: a distributed one hop hash table,
Parallel and Distributed Processing Symposium, 2006. IPDPS 2006. 20th
International, April 2006, p. 10 pp.

[MM04] C. Siva Ram Murthy and B.S. Manoj, Ad hoc wireless networks: Architectures
and protocols, Prentice Hall PTR, Upper Saddle River, NJ, USA, 2004.

[MO09] K. Maekawa and Y. Okabe, An enhanced location privacy framework with
mobility using host identity protocol, Applications and the Internet, 2009.
SAINT ’09. Ninth Annual International Symposium on, July 2009, pp. 23
–29.

[MSS+06] Alfredo Matos, Justino Santos, Susana Sargento, Rui Aguiar, João Girão,
and Marco Liebsch, HIP location privacy framework, Proceedings of first
ACM/IEEE international workshop on Mobility in the evolving Internet
architecture (New York, NY, USA), MobiArch ’06, ACM, December 2006,
pp. 57–62.

[PJPSi10] J. Pan, R. Jain, S. Paul, and Chakchai So-in, MILSA: A new evolutionary
architecture for scalability, mobility, and multihoming in the future Internet,
Selected Areas in Communications, IEEE Journal on 28 (2010), no. 8, 1344
–1362.

[QIdLB07] B. Quoitin, L. Iannone, C. de Launois, and O. Bonaventure, Evaluating the
benefits of the locator/identifier separation, Proceedings of 2nd ACM/IEEE
international workshop on Mobility in the evolving Internet architecture
(New York, NY, USA), MobiArch ’07, ACM, 2007, pp. 5:1–5:6.

[RD10] J. Rexford and C. Dovrolis, Future Internet architecture: clean–slate versus
evolutionary research, Commun. ACM 53 (2010), 36–40.

[RE03] Wolfgang Rankl and Wolfgang Effing, Smart Card Handbook, 3rd edition
ed., John Wiley & Sons, 2003.

[RFC 2459] R. Housley, W. Ford, W. Polk, and D. Solo, RFC 2459: Internet x.509 public
key infrastructure certificate and CRL profile, January 1999.

[RFC 3280] R. Housley, W. Polk, W. Ford, and D. Solo, RFC 3280: Internet x.509 public
key infrastructure certificate and certificate revocation list (CRL) profile, April
2002.

[RFC0675] V. G. Cerf, Y. K. Dalal, and C. A. Sunshine, RFC 675: Specification of Internet
Transmission Control Program, December 1974.

155

Bibliography

[RFC0791] Information Sciences Institute, USC, RFC 791: Internet protocol, September
1981.

[RFC0801] J. Postel, RFC 801: Ncp/tcp transition plan, November 1981.

[RFC0826] David C. Plummer, RFC 826: An ethernet address resolution protocol,
November 1982.

[RFC1034] P. Mockapetris, RFC 1034: Domain names - concepts and facilities, November
1987.

[RFC1035] P. Mockapetris, RFC 1035: Domain names - implementation and specification,
November 1987.

[RFC1122] R. Braden, RFC 1122: Requirements for Internet hosts – communication layers,
October 1989.

[RFC1883] S. Deering and R. Hinden, RFC 1883: Internet Protocol, version 6 (IPv6)
specification, December 1995.

[RFC2460] S. Deering and R. Hinden, RFC 2460: Internet Protocol, version 6 (IPv6)
specification, December 1998.

[RFC2989] B. Aboba, P. Calhoun, S. Glass, T. Hiller, P. McCann, H. Shiino, G. Zorn,
G. Dommety, C. Perkins, B. Patil, D. Mitton, S. Manning, M. Beadles,
P. Walsh, X. Chen, S. Sivalingham, A. Hameed, M. Munson, S. Jacobs,
B. Lim, B. Hirschman, R. Hsu, Y. Xu, E. Campbell, S. Baba, and E. Jaques,
RFC 2989: Criteria for evaluating AAA protocols for network access, Novem-
ber 2000.

[RFC3715] B. Aboda and W. Dixon, RFC 3715: Ipsec–network address translation (NAT)
compatibility requirements, December 2005.

[RFC3775] D. Johnson, C. Perkins, and J. Arkko, RFC 3775: Mobility support in IPv6,
June 2004.

[RFC4033] R. Arends, R. Austein, M. Larson, D. Massey, and S. Rose, RFC 4033: DNS
security introduction and requirements, March 2005.

[RFC4301] S. Kent and K. Seo, RFC 4301: Security architecture for the Internet protocol,
December 2005.

[RFC4423] R. Moskowitz and P. Nikander, RFC 4423: Host identity protocol, May 2006.

[RFC4984] D. Meyer, L. Zhang, and K. Fall, RFC 4984: Report from the IAB workshop
on routing and addressing, September 2007.

[RFC5204] J. Laganier and L. Eggert, RFC 5204: Host identity protocol (HIP) rendezvous
extension, April 2008.

156

[RFC5944] C. Perkins, RFC 5944: IP mobility support in IPv4, revised, November 2010.

[RSA78] R. L. Rivest, A. Shamir, and L. Adleman, A method for obtaining digital sig-
natures and public-key cryptosystems, Commun. ACM 21 (1978), 120–126.

[RSA83] R. L. Rivest, A. Shamir, and L. Adleman, A method for obtaining digital
signatures and public–key cryptosystems, Communications of the ACM 26
(1983), no. 1, 96–99.

[Sch03] J. Schiller, Mobile communications, 2. ed., Addison Wesley, London, Great
Britain, 2003.

[SGP+07] M. Siekkinen, V. Goebel, T. Plagemann, K.-A. Skevik, M. Banfield, and
I. Brusic, Beyond the future Internet–requirements of autonomic networking ar-
chitectures to address long term future networking challenges, Future Trends of
Distributed Computing Systems, IEEE International Workshop 0 (2007),
89–98.

[Sha79] A. Shamir, How to share a secret, Communications of the ACM 22 (1979),
no. 11, 612–613.

[Sha85] A. Shamir, Identity–based cryptosystems and signature schemes, Advances in
Cryptology (George Blakley and David Chaum, eds.), Lecture Notes in
Computer Science, vol. 196, Springer Berlin / Heidelberg, 1985, pp. 47–
53.

[Sho99] P.W. Shor, Polynomial–time algorithms for prime factorization and discrete log-
arithms on a quantum computer, SIAM review 41 (1999), no. 2, 303–332.

[SMK+01] Ion Stoica, Robert Morris, David Karger, M. Frans Kaashoek, and Hari
Balakrishnan, Chord: A scalable peer-to-peer lookup service for Internet appli-
cations, SIGCOMM Comput. Commun. Rev. 31 (2001), 149–160.

[SQBB10] C. Song, Z. Qu, N. Blumm, and A. Barabasi, Limits of predictability in human
mobility, Science 327 (2010), no. 5968, 1018–1021.

[SRC84] J. H. Saltzer, D. P. Reed, and D. D. Clark, End–to–end arguments in system
design, ACM Trans. Comput. Syst. 2 (1984), 277–288.

[Woh11] Petra Wohlmacher, Bekanntmachung zur elektronischen Signatur nach dem
Signaturgesetz und der Signaturverordnung, Bundesanzeiger 85, Bundesnet-
zagentur für Elektrizität, Gas, Telekommunikation, Post und Eisenbah-
nen, May 2011.

[YN06] Jukka Ylitalo and Pekka Nikander, BLIND: A complete identity protection
framework for end–points, Security Protocols (Bruce Christianson, Bruno
Crispo, James Malcolm, and Michael Roe, eds.), Lecture Notes in Com-
puter Science, vol. 3957, Springer Berlin Heidelberg, 2006, pp. 163–176.

157

Bibliography

Cited websites

[Ass11] Root Server Technical Operations Association, DNS root server, http://
www.root-servers.org/, July 2011.

[BDR+96] M. Blaze, W. Diffie, R. Rivest, B. Schneier, T. Shimomura, E. Thompson,
and M. Weiner, Minimal key lengths for symmetric ciphers to provide adequate
commercial security, http://www.schneier.com/paper-keylength.
pdf, January 1996.

[Cap12] Justin Cappos, Seattle - open peer–to–peer computing, https://seattle.
cs.washington.edu/, January 2012.

[Dev11] Gieseke & Devrient, Giesecke & Devrient secure flash solutions, http://
www.gd-sfs.com/, December 2011.

[EGI10] EGIHosting, Colocation pricing, http://www.egihosting.com/
colocation.aspx, November 2010.

[Hus10] G. Huston, IPv4 address report, http://www.potaroo.net/tools/
ipv4/, August 2010.

[Hus11] G. Huston, The growth of the BGP table - 1994 to present, http://bgp.
potaroo.net/, March 2011.

[Lei11] Leibnitz Rechenzentrum, DNS statistics, http://dnsstat.
lrz-muenchen.de/cgi-bin/dns.cgi, October 2011.

[Lei12] Leibnitz Rechenzentrum, Leibniz supercomputing centre, http://www.
lrz.de, January 2012.

[NCC10] Ripe NCC, RIS statistics report (2010-05-07 - 2010-05-14),
http://www.ris.ripe.net/weekly-report/reports/
risreport-20100507-20100514.txt, May 2010.

[Nor10] William Norton, Internet transit prices - historical and
projected, http://drpeering.net/white-papers/
Internet-Transit-Pricing-Historical-And-Projected.php,
November 2010.

[Pay10] PayScale, Inc., Salary survey for industry: Network and communications
services, http://www.payscale.com/research/US/Industry=
Network_and_Communications_Services/Salary, May 2010.

[TER12] TERENA, Eduroam, http://www.eduroam.org/, January 2012.

[TG09] P. Tran-Gia, G-Lab, http://www.german-lab.de, October 2009.

158

[The10] The CA / Browser Forum, Guidelines for the issuance and manage-
ment of extended validation certificates, http://www.cabforum.org/
Guidelines_v1_3.pdf, November 2010.

[The11] The Cooperative Association for Internet Data Analysis, AS relation-
ships, http://www.caida.org/data/active/as-relationships/
index.xml, August 2011.

[TPU03] The Trustees of Princeton University, PlanetLab, http://www.
planet-lab.org/, January 2003.

[Tra11] Transaction Processing Performance Council, TPC–C - top ten performance
results - non-clustered - version 5 results, http://www.tpc.org/tpcc/
results/tpcc_perf_results.asp?resulttype=noncluster,
November 2011.

[Uni06] United Nations, Press release org/1469, http://www.un.org/News/
Press/docs/2006/org1469.doc.htm, July 2006.

159

