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Abstract

Telepresence and teleaction (TPTA) systems enable a human operator to execute complex
tasks within an inaccessible, dangerous, and/or scaled environment. Their goal is to
provide a local and realistic immersion of the remote environment. In this context, the
communication of haptic signals (velocity and force) plays an important role. As the
exchange of haptic information over the communication channel closes a global control
loop between the human and the remote environment, the design and the development
of methods for perceptual haptic communication must be carefully adapted to expected
communication latency and network performance.

This dissertation presents a broad spectrum of methods for the perceptual communication of
haptic signals. Challenging in this context is the design of an accurate psychophysical model
of human haptic perception. It enables the mapping of neural excitements to a perception
sensation in the human brain which can be used to reveal absolute and relative perception
thresholds. This allows for controlling the intensity of compression artefacts in order to keep
them below human haptic perception thresholds. Accordingly, the integration of additional
findings from psychophysics into the perceptual model promises improved adaptation to the
haptic discrimination thresholds which can be exploited in the context of perceptual haptic
data compression. In addition, the application of environment models in haptic communi-
cation is proposed. Specifically, the bidirectional nature of haptic communication in TPTA
systems enables the estimation of the geometry and impedance characteristics of the remote
surface in contact. This enables the decoupling of the global haptic control loop which al-
lows for improved transparency and compression performance. In addition to real-time
communication of haptic signals, the development of offline compression methods is also
of great interest. To this end, a perceptual haptic offline compression scheme is proposed
which exploits knowledge about pending perception bounds resulting in an additional en-
tropy minimization of the compressed data. Furthermore, to enable a theoretical analysis
of the proposed methods for perceptual haptic communication, a mathematical framework
based on stochastic models of haptic signals is discussed. Additionally, the impact of com-
munication uncertainties such as communication latency and packet loss is addressed. Here,
a modified control scheme for time-delayed haptic communication is presented which en-
sures stable operation and an efficient utilization of the haptic communication channel. Fur-
thermore, a novel low-delay and perceptually-motivated haptic communication scheme is
proposed, which is robust to data loss on the haptic channel. In order to manage and control
TPTA sessions, as well as to facilitate the integration of the developed perceptual communi-
cation methods into the haptic communication system, a flexible communication framework
is proposed which is based on standard Internet communication protocols. All developed
methods and architectures are validated in experimental user studies.
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Kurzfassung

Telepräsenz- und Teleaktionssysteme (TPTA) ermöglichen einem menschlichen Operator
das Ausführen komplexer Manipulationsaufgaben in einer unerreichbaren, gefährlichen
und/oder skalierten Umgebung. Zentrale Aufgabe dieser Technik ist es, eine möglichst
wirklichkeitsnahe Immersion der entfernten Umgebung lokal zu erzeugen. Dabei spielt
die Kommunikation haptischer Datenströme (Bewegung und Kraft) eine zentrale Rolle.
Da der Austausch von haptischen Sensordaten über die Kommunikationsstrecke hinweg
einen geschlossenen Regelkreis darstellt, ergeben sich strenge Anforderungen an die
Kommunikationslatenz und die Übertragungszuverlässigkeit.

In dieser Arbeit wird ein breites Spektrum von Methoden zur wahrnehmungsbasierten hap-
tischen Datenkommunikation vorgestellt. Eine wesentliche Herausforderung ist in diesem
Zusammenhang der Entwurf eines psychophysischen Modells der menschlichen haptischen
Wahrnehmung. Dieses erlaubt die Beziehung zwischen einem vorhandenem Stimulus und
der daraus resultierenden Reaktion im Gehirn darzustellen und ermöglicht somit, in Form
eines parametrisierten Instrumentes, den Grad der Wahrnehmbarkeit zu erkennen, zu detek-
tieren und zu bewerten. Auf diese Weise kann kompressionsbedingte Signalstörung kontrol-
liert unter haptischen Wahrnehmungsschwellen gehalten werden. Die Integration zusätzli-
cher psychophysischer Erkenntnisse in das psychophysische Model stellt somit zusätzliche
Leistungssteigerungen in Aussicht. Darüber hinaus wird der Einsatz von Umgebungsmo-
dellen in der haptischen Datenkommunikation untersucht. Diese erlauben eine Entkoppe-
lung des globalen haptischen Regelkreises, welche sich zur Effizienzsteigerung haptischer
Datenkompressionsverfahren erfolgreich ausnutzen lässt. Zusätzlich zur wahrnehmungs-
basierten Echtzeit-Kommunikation, werden auch Methoden zur Offline-Kompression hap-
tischer Datensätze untersucht. Dazu wird ein Verfahren vorgestellt, welches Wissen über die
angewendete Wahrnehmungsschwellen ausnutzt, um die Entropie der komprimierten hap-
tischen Datensätze weiter zu reduzieren. Zur theoretischen Analyse der entwickelten Kom-
munikationsmethoden wird darüber hinaus ein Framework vorgestellt, welches das Ver-
halten entwickelter Algorithmen im theoretischen Experiment simulieren lässt. Zusätzlich
werden die Auswirkungen von kommunikationsnetzinduzierten Unsicherheiten in Form
von Totzeiten und Paketverlusten betrachtet. Hierzu wird eine modifizierte Regelungsar-
chitektur untersucht, welche wahrnehmungsbasierte haptische Datenkommunikation bei
zeitverzögerter Kommunikation ermöglicht und auf diese Weise die Stabilität und effizi-
ente Ausnutzung des Kommunikationskanals im TPTA-System sicherstellt. Weiterhin wird
ein neuartiges Verfahren vorgestellt, das eine wahrnehmungsbasierte Kompensation von
Packetverlust auf der haptischen Kommunikationsstrecke ermöglicht. Zur Steuerung und
Verwaltung von TPTA Sitzungen, sowie zur Integration der entwickelten Methoden und
Verfahren wird darüber hinaus ein flexibles Kommunikationsframework vorgestellt. Al-
le entwickelten Methoden und Architekturen werden mittels experimentellen Studien vali-
diert.
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Notation

Scalars, Vectors, and Matrices

Scalars are denoted by upper and lower case letters in italic type. Vectors are denoted by
lower case letters in boldface type. Matrices are denoted by upper case letters in boldface
type.
x scalar

x vector

X matrix

f( · ) function

ẋ, ẍ equivalent to d
dtx, d2

dt2
x

| · | norm

Subscripts and Superscripts

xh value x associated with the human

xe value x associated with the environment

xm value x associated with the human-system interface (master)

xs value x associated with the teleoperator (slave)

xd desired value x

x̂ estimated/reconstructed value x

x mean of x

Symbols and Abbreviations

x Position signal

f Force feedback signal

h General haptic signal

p Predicted haptic signal

k Perceptual deadband parameter
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1 Introduction

The development of techniques for overcoming distances and gaining access to inaccessi-
ble real or even virtual environments has been addressed by engineers and scientists for a
long time. Various successful developments and products have been designed and many of
them strongly dominate our daily life. Starting with the development of the telescope (1593,
Galileo Galilei) providing the capability of observing from a distance, the telegraphy (1833,
Samuel Morse) allowing writing from a distance, the telephony (1860, Antonio Meucci /
1876, Alexander Bell & Thomas Watson) enabling talking from a distance, the television pro-
viding the capability of seeing from a distance (1883, Paul Nipkow), techniques for receiving,
transmitting and exchanging information between distant environments have always been
a subject of intensive research. The prefix tele origins from the Greek word "τηλε" meaning
"remote distance".

Over the past 50 years, research on overcoming distance has made significant efforts to
further improve such tele-technologies. In addition to the transmission of visual, audio and
text information, so called telepresence and teleaction (TPTA) systems provide the exchange
of haptic information. Haptic perception refers to the sense of touch consisting of the kines-
thetic and the tactile sense. The kinesthetic sense processes information about the position
and orientation of the human body as well as changes thereof (perception of velocity, ac-
celeration, forces and torques on joints, etc.). In addition, the tactile sense located on the
skin acquires information about contacts with the environment. Hence, the integration of
the haptic modality into TPTA systems enables physical access to environments that are dis-
tant, inaccessible, scaled to macro- or nano-dimensions or hazardous for human beings. In
this context, mechanical energy needs to be exchanged between a human operator and a
teleoperator that operates within a remote or virtual environment. R.C. Goertz was one of
the first researchers who developed an electro-mechanical TPTA system in 1954 at Argonne
National Lab (USA) to aid in the handling of nuclear material [112]. During the mid 1960’s,
teleoperation technology rapidly spread in the medical field. Wheelchairs for quadriplegics
were developed which can be commanded by the tongue and breath. In addition the power-
ful capabilities of TPTA systems in surgery scenarios were discovered. In 1966, the US Navy
designed a cable controlled underwater vehicle for bomb retrieval from the deep ocean.
Interestingly, experiments with time-delayed communication first revealed the critical insta-
bility problems of force reflection in 1965 [73, 74]. A comprehensive historical survey on
teleoperation systems can be found in [112].

TPTA systems enable a human operator to locally immerse into a remote and/or virtual
environment. Overcoming barriers such as distance or matter and gaining access to remote
environments open up many novel application scenarios where the possibility of remote
operation and remote task execution is of great relevance. Consequently, TPTA systems are
already established in many fields of application enabling a human operator to execute com-
plex tasks in reduced time, with lower costs, improved precision/performance and minor
risk of injury [112].

1



1 Introduction

This applies to TPTA on-orbit scenarios, where TPTA systems are operating in space which
is a hostile environment for human beings. Instead of performing costly manned space
travels, remotely controlled robots represent an alternative solution for space exploration,
on-orbit servicing (satellites, space stations), scientific experiments in space, etc. The first
space explorations of Mars were remotely performed by NASA with the planetary rovers
"Mars Pathfinder" (1997) and the "Mars Rover" (2006). Additional applications can be found
in underwater scenarios. For instance, the communication and oil industries require the
examination of pipes and cables under water. The challenging conditions of the water envi-
ronments such as high pressure and poor visibility constrain the performance of divers. In
contrast, underwater TPTA systems provide comprehensive access to the underwater world
and improve the performance of underwater operations.

Further interest can be found in the medical field [8]. Here, TPTA systems allow the surgeon
to virtually immerse into the human body. Multimodal feedback captured by the surgery
robot enables the intuitive control of laparoscopic equipments and navigation within the
human body. During contacts within surgery environments, haptic contact forces are sensed
and displayed to the surgeon, helping to reduce tissue damage, breaks of suture material due
to excessively high forces, etc. The availability of haptic feedback is particularly important
for the surgeon in identifying tissue characteristics, which are often the only information for
the detection of certain diseases. As the surgeon controls such a telesurgery system applied
to a physically separated patient, the surgeon and the patient do not have to be at the same
location and patients can access surgeons around the world without traveling beyond their
local hospital. In 2001, the first completely remote surgery on a human patient was per-
formed over a distance of 7000 km between Strasbourg (France) and New York (USA) with
a latency of 135 ms [134]. Also "minimally invasive" surgery procedures benefit from this
class of TPTA systems where the surgeon operates through small insertions in the human
body which affect reach and manipulation. The deployment of a TPTA system enables the
successful compensation of these spatial challenges for a surgeon. Furthermore, TPTA tech-
nology in the context of microsurgery operations, e.g. eye surgery and micro-assembling,
offers the possibility of scaling operator movements and corresponding contact forces. This
enables very precise operations with objects of small size, even in nanometer scale [173].

A variety of TPTA systems are applied in hazardous environments, particularly in the nu-
clear, chemical and military field. Possible applications are, for instance, the handling of
radioactive or chemical materials/objects, the inspection of dangerous environments, waste
disposal, ammunition disposal, etc. In the area of security as well, TPTA systems can serve
for protection purposes without putting human personnel at risk. Another important ap-
plication domain of TPTA systems is virtual reality (VR). Here, the human controls a virtual
teleoperator which interacts with virtual objects within a simulated environment. The detec-
tion of environment contacts and the calculation of contact forces are performed by a haptic
rendering engine combined with a physics engine to simulate the impact of applied forces to
virtual objects [160]. Virtual TPTA systems are highly relevant in training, teaching and sim-
ulation scenarios [32, 33]. They allow the human operator to immerse into a virtual training
scenario where possibly dangerous tasks can be simulated. For instance, flight simulation
systems can be considered to be virtual TPTA systems for operating in a virtual world where
possible pilot failures do not have immediate fatal impact.

TPTA can also be performed by multiple users interacting within a joint, collaborative envi-
ronment. By exchanging the multimodal sensory information among the participants, mul-
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Figure 1.1: Overview of addressed research areas in this dissertation.

tiple users are able to collaborate towards a common objective. In this context, haptically
enabled virtual multi-user environments are of particular interest in the gaming and enter-
tainment industry.

1.1 Main Contributions and Outline of the Dissertation

Haptic communication plays a key role in TPTA systems. As soon as the teleoperator is
located in a distant real or virtual environment, haptic signals consisting of motion com-
mands and force sensory data must be transmitted over a communication channel. As the
exchange of haptic information closes a global control loop between the human and the
remote environment, the design and the development of perceptual haptic data commu-
nication methods must be carefully adjusted to expected physical and algorithmic delay.
These constraints constitute a fundamental difference to standard streaming video and au-
dio applications, where media data is typically unidirectionally transmitted. Furthermore,
currently available TPTA systems deploy a large number of degrees of freedom (DoFs). As
the amount of bidirectionally transmitted haptic information increases with multiple DoFs,
strong interest in methods of compressing haptic data in a manner which is transparent to
the human user can be found.

This thesis focuses on improving the communication and the processing of haptic signals
in TPTA systems. Due to the highly interdisciplinary nature of this research topic, several
fields in research are addressed in this work, as illustrated in Figure 1.1.

The outline of this thesis is shown in Figure 1.2. The scientific background and related
work of perceptual haptic communication is presented in Chapter 2. It discusses the design,
control, and performance evaluation of TPTA systems. Furthermore, the consideration of
human haptic perception is of great relevance in the context of haptic communication. To
this end, psychophysical findings on haptic discrimination thresholds are discussed which
serve as the basis for the development of perceptual haptic data compression methods. Ad-
ditionally, a comprehensive overview of the state-of-the-art in haptic data compression is
given.

3
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Chapter 3 presents several contributions which allow for improving the performance of the
perceptual haptic data compression. They are briefly discussed in the following:

• Integrating findings from psychophysics into the perceptual haptic model: Perceptual hap-
tic data compression relies on a mathematical model of human haptic perception. It
is used to detect imperceptible signal content that can be discarded during encoding.
Accordingly, improved adaption to human haptic perception thresholds supports per-
ceptual haptic compression in a fundamental way, as discussed in Section 3.1. Here,
the concept of multi-DoF perception thresholds are introduced which exploit direc-
tional dependencies of human force-feedback perception. In addition, the influence
of simultaneous movements of the human operator on haptic perception thresholds is
discussed and experimentally evaluated.

• Model-mediated haptic data compression and prediction: During a TPTA session, motion
commands are executed by the TOP. In return, force feedback is reflected during con-
tact events with the remote environment. Hence, by associating the contact forces
with the position information of the TOP, the geometry and impedance characteris-
tics of the remote surface in contact can be estimated. In Section 3.2, the concepts of
model-mediated compression, prediction, and contact coding are introduced which all rely
on mathematical models of the remote environment. Deployed at the HSI, they can
be used to locally render haptic contact forces which allows for substituting the trans-
mission of the remote haptic sensory signals. Conducted experiments indicate that the
integration of environment models into methods for perceptual haptic communication
allows for improved compression performance and system transparency.

• Recording, playback, and offline compression of TPTA sessions: In addition to low-latency
online compression of haptic data streams, the development of perceptual offline com-
pression algorithms is also gaining in relevance. In several application scenarios, such
as in training, teaching, learning, entertainment, performance analysis as well as docu-
mentation applications, the recording and playback of TPTA sessions is of fundamen-
tal interest. As soon as haptic data has to be stored on a storage device for posterior
replay, the interest in offline compression for haptic data emerges. Due to relaxed
delay constraints, the design of an offline compression scheme can be addressed in
a fundamentally different way compared to haptic low-latency online compression,
as shown in Section 3.3. In this context, the concept of deadband-based differential
coding is presented which allows for exploiting knowledge about pending perception
bounds. Conducted experiments demonstrate a strong data compression ability of the

4



1.1 Main Contributions and Outline of the Dissertation

presented haptic offline compression scheme while keeping introduced coding arte-
facts within an imperceptible range.

• Theoretical analysis of perceptual deadband compression: The performance of perceptual
haptic communication techniques has been experimentally determined in several stud-
ies. In contrast to real-world experiments on TPTA systems, Section 3.4 presents a
framework for analytically evaluating the performance from a theoretical perspective.
This allows for mathematically determining the expected packet rates on the commu-
nication channel according to a stochastic model of haptic signals.

Perceptual haptic data compression methods successfully address the challenges of high
packet and data rates of haptic communication. Their performance, however, also depends
on the characteristics of the haptic signals to be exchanged between human operator and
teleoperator. In this context, the influence of the deployed control architecture, the perfor-
mance of the communication system, as well as the physical properties of the hardware
components play an important role. To address these important dependencies, the develop-
ment of haptic data compression techniques needs to be approached from a combined signal
processing, control engineering and communication point of view.

Chapter 4 addresses the impact of network errors on perceptual haptic data compression
and investigates its integration into established Internet-based communication frameworks.
Particularly, the following contributions are presented:

• Perceptual haptic compression with time-delayed communication: Already short latency on
the communication channel destabilizes the global control loop of a TPTA system.
The scattering theory is known to solve these stability issues by transmitting wave
variables instead of haptic signals over the communication channel. This, however,
impairs the application of perceptual haptic compression techniques as transmitted
wave variables do not directly represent haptic information anymore. In Section 4.1,
a modification of the wave variable control scheme is presented which takes advan-
tage of the stabilization ability of the wave variables while allowing the application of
perceptual communication schemes on the haptic channel. Furthermore, a modified
passivity-preserving signal encoding scheme for perceptual haptic data compression
is discussed.

• Error-resilient haptic communication: Unreliable networks (i.e. the Internet) introduce
several disturbing effects to the haptic communication system. Particularly, the com-
munication of perceptually compressed haptic signals is highly sensitive to packet loss.
The stronger haptic signals are compressed, the more vulnerable the transmitted bit-
stream becomes against losses. Section 4.2 addresses the issues of unreliable commu-
nication networks in TPTA scenarios. It presents a perceptually-motivated approach
for robust low-delay haptic communication. By employing a probabilistic model of
the receiver, its most likely state can be used to adaptively determine the amount of
redundancy which is required for compensating packet loss disturbances.

• Telepresence sessions control using the Session Initiation Protocol (SIP): The human-system-
interface and the remote teleoperator in a telepresence and teleaction system are highly
complex systems. To enable flexible and dynamic connections between multiple hap-
tic enabled interfaces and devices, detailed knowledge of the system parameters, func-
tional capabilities and requirements of the deployed hardware is essential. In order
to enable interoperability among heterogeneous TPTA systems and platforms, a flexi-
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ble framework leveraging Internet session and presence protocols for telepresence and
teleaction systems is presented in Section 4.3. It uses the widely adopted Internet-
based Session Initiation Protocol (SIP) to negotiate and establish real-time haptic data
transport streams and to enable session control.

The thesis is concluded in Chapter 5 with a summary and a discussion about future direc-
tions in this research field.

Parts of this work have been published in [2, 3, 4, 5, 6, 8, 9, 10, 11, 13, 14, 15, 16, 17, 18, 19,
20, 21, 23, 24, 25].
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2 Background & Related Work

2.1 Telepresence and Teleaction Systems

Telepresence and teleaction (TPTA) systems enable a human operator (OP) to operate within
a distant, scaled, inaccessible and/or hazardous environment. Their goal is to provide a local
immersion of the remote environment in order to enable the execution of remote explorative
and manipulative tasks.

2.1.1 System Overview

A TPTA system can be decomposed into three main subcomponents (see Figure 2.1): the
human OP connected to a human system interface device (HSI), a teleoperator (TOP) which
receives control commands for the execution of remote operations, and the communication
link which bidirectionally exchanges the haptic signals over a communication channel.

• Human system interface (HSI): The HSI device consists of both the input device for posi-
tion and orientation sensing and the output devices for displaying multiple modalities.
The latter uses haptic displays for presenting force and torque as well as vibrotactile
feedback, visual displays such as head-mounted displays, stereographic displays for
displaying stereo-video, etc. and headphones or speakers for audio feedback. As the
haptic display exchanges mechanical energy between the TPTA system and the hu-
man OP, it needs to be in physical contact with the OP. Haptic devices can provide
kinesthetic as well as tactile feedback. Kinesthetic force feedback can be generated
using high torque motors. Tactile feedback can be displayed with multi-pin displays
attached to the human skin (see [34, 42, 69, 177, 182]) or by using small vibrators for the
display of vibrotactile stimuli [52, 141]. Recent advances in tactile display technology
also deploy electroactive polymers, so called "dielectric elastomer actuators" [45, 135].
A comprehensive overview of haptic devices is presented in [94]. Further aspects of
the development and the control of haptic devices are discussed in [39, 95, 183]

• Communication system: The communication system transmits the multimodal sensory
data between the HSI and the TOP. In addition to well known media types like video
and audio streams which are mostly transmitted unidirectionally from the TOP to the
HSI, haptic data streams need to be bidirectionally exchanged between the HSI and the
TOP. They describe mechanic quantities like position, angle, velocity, angular veloc-
ity, acceleration, angular acceleration as well as force and torque feedback over time.
The performance of the communication system strongly influences the overall perfor-
mance of the TPTA system. Particularly, latency and data loss in the network quickly
impair task performance and system transparency. Accordingly, the operation of a
TPTA system over long-distance and/or wireless networks (using satellites, underwa-
ter modems, etc.) poses a particular challenge.
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Figure 2.1: Overview of the main components of a TPTA system: the human system interface device,
the communication system and the remote teleoperator (reproduced from [18]).

• Teleoperator (TOP): The TOP is a robot equipped with multiple sensors like contact
force and torque sensors, cameras, microphones, etc. for capturing multimodal sen-
sory information. In addition, it uses haptic actuators like grippers or other anthropo-
morphic limbs for physical interaction with its remote environment. In case the remote
environment is virtual, physical interaction is simulated to generate multimodal feed-
back. During a TPTA session, the TOP receives high-level motion commands from
the HSI. In complex TPTA scenarios with significant latency on the communication
channel, the TOP can be also equipped with autonomous features. Both the HSI and
the TOP apply a local control scheme for controlling the TOP movements and force
feedback display.

The communication channel closes a global control loop between the human connected to
the HSI and the TOP interacting with the remote environment. In order to maintain con-
trol loop stability, a global control scheme is of fundamental importance. One of the most
commonly applied control approaches for bilateral teleoperation is the velocity-force con-
trol architecture [29], as illustrated in Figure 2.2. In this scheme, the human manipulates the
HSI by moving the input device with velocity ẋh. The HSI senses and transmits its velocity
ẋm to the TOP. The exchange of velocity signals is favored over the exchange of absolute
position coordinates as it enables the decoupling of the coordinate systems at the HSI and
the TOP system. The TOP receives a desired velocity signal ẋd

s , which is delayed with a com-
munication delay T1. It is used to command a local control loop which controls the velocity
ẋe of the TOP robot. During contacts with the remote environment, an environment force
fe is measured. The resulting force sensory signal fs is transmitted from the TOP to the OP
with communication latency T2. The HSI receives the desired force-feedback information
fdm which becomes the reference for the local force feedback control loop at the HSI device.
Consequently, the output force fh is displayed to the human OP.

The haptic signals ẋm and fs tend to exhibit mostly low frequency components due to the
inertia and dynamics of the TPTA system. However, high sampling rates of ≥ 1000 Hz are
typically applied in order to encompass the bandwidth of human perception and to reduce
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Figure 2.2: Overview of haptic signals in a TPTA system with velocity-force control and haptic data
compression.

control loop instabilities originating from sampling-based discretization (see [127]).

2.1.2 Haptic Communication

Unlike the communication of audio and video signals, the haptic signals in TPTA systems
are bidirectionally exchanged between the HSI and the TOP which closes a global control
loop. Accordingly, any transmission delay on the haptic communication channel immedi-
ately impairs the stability of the global haptic control loop which significantly affects the
immersiveness of the TPTA system [29]. Hence, for the real-time transmission of haptic sig-
nals, the introduced end-to-end delay needs to be kept at an absolute minimum. Therefore,
the joint processing of haptic samples using block-based coding and transmission techniques
and/or filters introducing a group delay cannot be applied. A common strategy to address
this issue is to minimize the communication delay by transmitting haptic samples imme-
diately upon their generation. This, however, leads to high packet rates up to the applied
haptic sampling rates at the HSI and the TOP (typically 1000 Hz), which are particularly
hard to maintain in Internet-based communication [77, 133].

The Internet provides flexible, low-cost communication with world-wide coverage and is,
therefore, also of great interest in TPTA scenarios. Unfortunately, the high packet rates in
haptic communication typically increase network disturbances such as jitter and packet loss
effects which may destabilize the TPTA system. In addition, they lead to significant net-
work overhead due to increased packet header information to be transmitted. Depending
on the number of DoFs and the data type resolution (typically 16 bit floating point precision),
the typical payload per haptic packet is between 10 and 50 bytes. Taking into account the
UDP/IP header overhead of 24 bytes per packet (20 bytes IP, 4 bytes UDP), overall traffic is
considerably increased by 50%-100% due to additional packet header information.

In addition to the challenging high packet rates, haptic communication in TPTA scenarios
is also characterized by high data rates. In order to provide high manipulative flexibility and
haptic immersion, complex human body tracking with multi-DoF position sensors and force
feedback actuators is required for many joints. Modern TPTA systems therefore integrate a
high amount of degrees of freedom (DoF). For instance, the human hand exoskeleton system
CyberGrasp/CyberGlove by Immersion integrates 22 DoFs to enable the haptic modality
for a single human hand [118]. As each degree of freedom needs to be separately sampled
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and controlled, the amount of haptic data to be exchanged over the communication channel
quickly increases.

In order to address the challenges of high packet rates and high network load on the haptic
communication channel, compression methods that efficiently reduce packet and data rates
with minimum processing delay are of great importance. Furthermore, reduced packet rates
decrease possible packet congestion along the network route and enable haptic real-time
communication over rate-limited (i.e., wireless) communication networks.

2.1.3 Control & Stability

A TPTA system is a robotic system which exchanges mechanical energy between the human
OP and the remote environment. In this way, it closes a global control loop over the com-
munication system which can destabilize the TPTA system [188]. Already a short round-trip
delay of ≥ 100 ms leads to a noticeable lag in the position control [73] which significantly
affects the OP’s motion planning leading to decreased teleoperation bandwidth [187]. The
applied control architecture therefore has a significant impact on the system stability and
transparency. However, these two properties are typically conflicting goals as discussed in
[131].

2.1.3.1 Passivity-based Control

Several bilateral teleoperation control schemes focus on the energy-based concept of passiv-
ity which was first applied in [29]. Intuitively, a passive system consumes more energy than
it produces and, therefore, dissipates energy.

As long as a control loop reflects passive behavior by either storing or dissipating signal
energy, it is passive which guarantees stability. The power Pin entering a system can be
defined as the dot product between its input u and its output y. Accordingly, a passive
system obeys

Pin = uTy =
d

dt
S + Pdiss (2.1)

where S is an energy storage function and Pdiss is a non-negative power dissipation function.
If Pdiss = 0, the system is energetically lossless, as no energy is dissipated. As a passive
system cannot generate energy, its energy balance E(t) (assuming zero initial energy) at
time t > 0 is defined by :

E(t) =

∫ t

0
Pindτ = S(t) +

∫ t

0
Pdissdτ ≥ 0 ∀i > 0 (2.2)

It follows that, at any time, the energy balance of a passive system must be non-negative.
This can be easily investigated in a TPTA system by observing the energy of its input and
output.

Passivity-based control strategies for bilateral TPTA can be categorized into two different
classes [193]:

• The first class of control architectures inherently guarantees stability by their design.
In this context, the concept of wave variables constitutes an important framework. It
guarantees passivity in TPTA scenarios with arbitrary but constant communication
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Figure 2.3: A TPTA system can be divided into a cascade of one-port and two-port subsystems. If all
subsystems are passive, the overall TPTA system is proven to be passive which guarantees
global control loop stability. The human and the environment are considered to always
behave in a passive manner.

delay [142]. An extension of the "wave variable" approach for scenarios with time-
varying communication delay has been presented in [50, 199]. Furthermore, stability
issues due to packet loss during the transmission of wave variables are addressed in
[35, 36, 106].

• The second class describes control methods that actively observe the input-output en-
ergy balance of the TPTA system and immediately intervene as soon as an increase in
energy is detected. Typically, the system reacts with virtual damping in order to dissi-
pate the additional energy. In this context, Hannaford et al. propose a framework called
"Passivity Controller/Passivity Observer" which observes the relationship between the
incoming and outcoming energy flows at the HSI and TOP system [91]. Another stabil-
ity observation technique called "Haptic Stability Observer" is based on the frequency
of the motion of the HSI device [124]. As high frequency content within the HSI mo-
tion signals indicates instabilities within the TPTA system, a stability preserving vir-
tual damper can be adaptively controlled proportional to the detected oscillations of
the HSI device.

To facilitate the passivity analysis, the global TPTA system can be split into a cascade of
interconnected one-port and two-port subsystems [142, 153] as illustrated in Figure 2.3. The
human OP and the remote environment can be reflected by two separate one-port subsys-
tems. The HSI, the communication system and the TOP can be represented by individ-
ual two-port subsystems. As passive systems connected in either a feedback or a paral-
lel configuration are again passive in their global energy behavior [164], a TPTA system
operates in a passive manner, if all of its subsystems are showing a passive signal behav-
ior. Hence, in order to prove passivity within the global control loop, the energy balances
E(t)HSI

in , E(t)COM
in , E(t)TOP

in of all involved subsystems can be investigated, i.e., the HSI, the
communication (COM) and the TOP system, respectively:
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E(t)HSI
in (t) =

t∫
0

ẋT
h (τ)fh(τ)− ẋT

m(τ)fdm(τ)dτ ≥ 0 ∀i > 0 (2.3)

E(t)COM
in (t) =

t∫
0

ẋT
m(τ)fdm(τ)− ẋdT

s (τ)fs(τ)dτ ≥ 0 ∀i > 0 (2.4)

E(t)TOP
in (t) =

t∫
0

ẋdT
s (τ)fs(τ)− ẋT

e (τ)fe(τ)dτ ≥ 0 ∀i > 0 (2.5)

According to Hogan (see [111]), the interactions of a trained human being can be considered
to be passive. In addition, the dynamics of real-world environments can be considered to be
passive as well. Furthermore, the dynamics of the HSI device and the TOP robot are typically
known or can be well estimated. They can also be adaptively controlled in order to assure
energy consumption. The influence of the communication channel on the system’s energy
behavior still remains a critical factor in terms of passivity and, hence, of the stability of
the overall TPTA system. Particularly, the physical propagation time of transmitted signals
can quickly jeopardize the system stability of the global haptic control loop, especially in
long-distance TPTA applications such as on-orbit servicing.

Note that fulfilling the condition of passivity is not the only sufficient criteria in guarantee-
ing system stability. For instance, non-passive behavior can be accommodated by applying
strong system damping without losing the stability of the TPTA system. Similarly, controller
implementations working in discrete time are also known to violate the passivity property
due to signal discretization [56]. However, in typical TPTA systems with controller sampling
rates of ≥ 1 kHz, sampling related instability effects are considered to be negligible [127].

A detailed discussion of control architectures for bilateral teleoperation and their influenc-
ing factors can be found in the survey articles [107, 112, 131].

2.1.3.2 Model-mediated Control

Model-mediated control schemes address the stability issue of a TPTA system by deploying
models of the remote environment. These environment models are used to locally generate
haptic feedback which can be immediately displayed without being affected by network la-
tency. Consequently, the delay-critical global haptic control loop between the HSI and the
TOP becomes opened since the OP perceives locally rendered forces instead of remotely cap-
tured haptic sensory signals. Model-based control schemes have been intensively discussed
in literature. Their main concepts are briefly summarized in the following:

The first efforts to employ haptic models for decoupling the control loops at the HSI and
the TOP have been made in [89] by introducing the so called “bilateral impedance control”.
Here, estimated impedances of the human OP connected to the HSI and the TOP in con-
tact with the remote environment are bidirectionally exchanged and used for local feedback
generation. In [201], this approach is further investigated in the context of space teleopera-
tion, where significant communication latency is unavoidable and system stability of great
importance. Similarly, Hashtrudi-Zaad et al. propose to use a remotely configured mass-
sping-damper model for locally rendering environment forces [92]. The authors in [167]
present a similar approach called “model predictive control” which shows improved robust-
ness against communication uncertainties. Tzafestas et al. discusses “impedance-reflection
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control” which is based on the exchange of simple impedance models [181]. This scheme is
further extended by Achhammer et al. to enable six DoF haptic interactions by proposing
a multi-DoF impedance estimation technique [26]. The "stiffness reflecting controller" pre-
sented in [192] reflects estimated environment stiffness to an impedance controller deployed
at the HSI device. Furthermore, a model-mediated multi-operator and multi-teleoperator
TPTA controller based on exchanged haptic impedance models is presented in [149].

The idea of integrating a geometric model of the remote environment is firstly presented
in [144]. Here, the so called “predictive display” is proposed which consists of a virtual-
reality 3D simulation of the remote TOP and its environment that is overlayed onto the
remotely received and delayed visual feedback. This helps the human OP to predict the
motion of the TOP during his/her active positioning control which supports an intuitive
and stable operation of the TPTA system with increased fidelity and task performance. A
combination of a predictive display and impedance-reflection control is proposed by Huijun
et al. [114]. The authors in [140] suggest further improving this approach by integrating
a laser range finder in order to support the model generation process. Also haptic multi-
contact point sensors can be used to estimate the structure and orientation of the remote
surface in contact, as shown in [27]. These approaches may also be applicable to virtual TPTA
scenarios, where surface characteristics are directly obtained from the triangle in contact that
is used for rendering the haptic feedback.

With increasing complexity of the environment models, the amount of model parame-
ters to be estimated and, in consequence, the amount of required model training data in-
creases. Hence, the application of complex environment models adds an additional lag to
the haptic feedback. This drawback is an argument for the concept of model-mediated tele-
operation, which uses rudimentary geometry and impedance models with small parameter
sets [78, 138, 139]. To this end, Mitra et al. propose to keep the model as simple as possi-
ble by assuming fixed linear stiffness and only adapting the virtual model location to the
current TOP contact position [139]. The reduced parameter set guarantees frequent model
updates and quick adaptation to geometric changes of the remote surface structure. On the
downside, the simpler the haptic models become, the higher is the probability of incorrect
haptic predictions, leading to a trade-off between model complexity and feedback rendering
performance. In order to compensate for a possible discrepancy between the locally applied
environment model and the haptic properties of the remote surface in contact, the haptic
models need to be estimated and exchanged at a high rate. Nevertheless, certain disturbing
artifacts like “phantom walls” and “delayed contact feedback” cannot be avoided in scenar-
ios with significant communication latency. In this context, an experimental study presented
in [139] investigates the user preferences of different transition mechanisms for locally up-
dating the environment models at the HSI device. The presented results indicate that users
prefer an active slow fading from the currently applied model configuration to the updated
model parameterization and dislike abrupt or passive update strategies.

Experimental studies presented in [149, 181, 189] confirm significant benefits and improve-
ments of model-based control in terms of system transparency, i.e., increased fidelity and
improved perceived realism.
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2.1.4 Evaluation Methods

Methods for determining the quality of experience and task performance of a TPTA system
are instrumental for the development and design of the components of a TPTA system. In
the following, subjective and objective evaluation methods for multimodal TPTA systems
are briefly discussed.

2.1.4.1 Subjective Evaluation Methods

Subjective evaluation methods investigate so-called human factors which reflect a subjective
impression of the human OP on the perceived performance and quality of the TPTA system.
A subjective measure of presence can be estimated, for instance, via post-test questionnaires
containing different questions on the perceived degree of immersion and experienced qual-
ity of the displayed multimodal feedback (see [162, 195]). In contrast to direct “presence”
measurement, psychophysical experiments can be performed which focus on the detection
of absolute and/or relative discrimination thresholds and the identification of preferences
within displayed multimodal stimuli. The general assumption of such psychophysical eval-
uation is that the TPTA system provides a high-degree of immersion as long as the difference
between the remotely captured and the locally displayed stimuli or property stays within
human discrimination thresholds.

Several techniques exist for investigating perceptual discrimination thresholds. The method
of magnitude estimation is based on subjective ratings reflecting the intensity of perceived
stimulus’ deviation/distortion. Another method called method of constant stimuli is based
on a pairwise comparison of constant stimuli that are sequentially presented to the subject.
Furthermore, the method of adjustment allows the subject to directly control the intensity of
stimulus deviation in order to detect the discrimination thresholds in pending stimuli.

Table 2.1 illustrates the subjective rating scheme for the method of magnitude estimation that
is used in several experiments in this dissertation. It allows for a psychophysical evaluation
of the perceived intensity of introduced compression distortion during lossy haptic com-
pression. The detected discrimination thresholds can be used to perceptually adapt the sys-
tem to the fidelity of the human haptic perception system and/or the display capabilities of
the deployed feedback devices. As every human is characterized by individual perception
thresholds, a statistical analysis of the obtained subjective results is required to determine
conservative perception bounds that apply to the majority of humans. In addition to the
calculation of the expected mean and standard deviations, the univariate variance analysis
(ANalysis Of VAriance, ANOVA) is often applied to investigate statistical significance.

A comprehensive overview of subjective presence measurements is presented in [117].

2.1.4.2 Objective Evaluation Methods

Objective performance evaluation methods typically focus on the task performance of the
human operator. In this context, variables for an objective evaluation are for instance the
task completion time, error rates and the learning factor [44]. The task completion time
represents the time span from the beginning to the completion of a given task. The task
error rate describes the frequency, type and size of errors that occur during the execution
of a given task. Task repetitions usually lead to a decrease in task completion time and
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Description Rating

no difference 100

perceptible, but not disturbing 75

slightly disturbing 50

disturbing 25

strongly disturbing 0

Table 2.1: Rating scheme used for subjective evaluation.

error rate which can be reflected by a task learning factor. A statistical analysis of these
objective variables among all subjects allows for the determination of an objective rating of
system performance. Several studies show that the haptic modality has a significant impact
on the task performance of a TPTA system. Both the OP’s immersion as well as the task
performance may improve when the OP is provided with visual-haptic feedback as opposed
to visual feedback only (see [33, 55, 65, 68, 132, 180]).

Another important class of objective evaluation methods is based on the concept of trans-
parency. The term transparency describes the degree of immersion that is provided to the
human OP. If the OP feels like directly interacting with the remote real or virtual environ-
ment, the system is considered to be transparent (see [137, 168, 169, 192]). Several definitions
and metrics for describing the transparency of a TPTA system have been proposed. Accord-
ing to Handlykken et al., an ideal TPTA system should act as a massless and infinitely stiff
mechanical system connecting the human OP with the remote environment [88]. Similarly,
Yokokohji et al. propose an ideal TPTA system to be characterized by guaranteeing identical
positions and forces at the OP (xh, fh) and the TOP (xe, fe) side during the TPTA session
[200], hence

∀t :
{
xe(t) = xh(t)

fh(t) = fe(t)
(2.6)

Lawrence uses the displayed impedance of contacts with the remote environment as a met-
ric to define transparency [131]. Accordingly, the impedance felt by the human user Zh and
the environment impedance Ze must be identical in a fully transparent TPTA system.

Zh(t) = Ze(t) (2.7)

However, ideal transparency as defined in (2.6) and (2.7) is not achievable due to several
factors, such as the influence of system dynamics, a limited amount of degrees of freedom,
communication latency, unpredictable changes in system behavior, etc. In addition, TPTA
systems are constrained by a fundamental trade-off between stability and transparency (see
[90, 93, 131]). Therefore, a metric for transparency can only reflect the distance to an ideal
but unreachable degree of transparency. This distance to the ideal point of operation can be
used as an objective quality metric. It is typically obtained by integrating over the display
error in x, f and/or Z. However, this metric of TPTA performance does not incorporate any
characteristics of the human haptic perception system.
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To address this issue, so called perceived transparency as an perceptual objective metric has
been presented in [107]. It uses Weber’s Law of Just Noticeable Differences (JND) to per-
ceptually evaluate the difference between the environment impedance Ze and the displayed
impedance Zh (see also [64]). As long as the impedance Zh displayed to the human OP stays
within imperceptible bound defined by Zh ∈ [Ze − JND, Ze + JND], the TPTA system is
expected to be transparent to the human OP.

2.2 Human Haptic Perception

The development of haptically enabled systems requires a fundamental understanding of
the human haptic perception system. This enables the adjustment and optimization of the
performance and fidelity of haptic devices and haptic signal processing algorithms to ensure
compliance with the characteristics and limitations of the human haptic perception system.
In particular for the development of lossy haptic compression algorithms, detailed knowl-
edge about perceptual discrimination thresholds is of great relevance.

2.2.1 Human Haptic Perception System

Human haptic perception describes the human sense of feeling and the sense of touch. It
involves two separate perception systems, namely the kinesthetic sense (also called "propri-
oception") and the tactile sense (see [82]), which are briefly discussed in the following:

• The kinesthetic sense: The kinesthetic perception system refers to the sense of the posture
of limbs, limb movements and the perception of applied forces and torques stressing
on extremities. In addition, the kinesthetic sense provides information about stim-
ulus’ derivatives such as velocity, acceleration, force changes, etc. This enables the
identification of physical properties such as stiffness, viscosity and inertia of currently
touched objects. The kinesthetic sensory information is captured by mechanoreceptors
which are located at the muscle spindles. They respond to changes in muscle length
which allow for measuring muscle activity. Compared to the tactile perception system,
the amount of involved mechanoreceptors is much smaller and its density and distri-
bution depend on muscle size. A comprehensive overview of the human kinesthetic
perception system is presented in [121].

• The tactile sense: Tactile perception refers to the sense of touch located on the skin. Sev-
eral different types of mechanoreceptors enable the perception of tactile sensations,
such as temperature, roughness, geometry and slippage of touched objects. Addi-
tionally, the vibrotactile sense is able to detect vibrations (repetitive pressure stim-
uli) within the frequency range of 3-500 Hz [85]. Psychophysical findings reveal that
the sensitivity of tactile perception is not regularly distributed over the human body.
The frontal face and the hand regions have the highest density of mechanoreceptors
supported by a large amount of cortical space in the brain [120, 185]. Correspond-
ingly, maximal tactile sensitivity can be found at the lip borders and the fingertips
[79, 120, 170]. A detailed discussion on human tactile perception can be found in [161].
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2.2.2 Limitations of Human Haptic Perception

The human perception system maps physical stimuli to sensation effects in the brain. These
dependencies can be mathematically described with psychophysical functions for every
sense of the biological perception system. Psychophysical functions are further character-
ized by absolute and relative perception thresholds.

Absolute perception thresholds describe the minimum intensity level of a just detectable
stimulus. These thresholds often depend on temporal aspects of previously perceived stim-
uli and are therefore typically defined as a function of stimulus frequency. In addition, the
relative perception thresholds describe discrimination thresholds of changes in perceived
stimuli (see [59, 60, 190]). The German anatomist and physiologist Ernst Heinrich Weber
was one of the first researchers who systematically and experimentally examined the rela-
tive perception thresholds of the human perception system [190]. Weber’s research revealed
that over a large dynamic range, the perception of relative changes in stimulus is linearly
proportional to the stimulus intensity itself. This observation was found to apply to almost
every biological sense (see [28, 44, 81, 84, 170, 178, 190]). Later, Fechner proposed a log-
arithmic scale to map a physical stimulus to the perceived intensity of the corresponding
sensation in the brain [67]. Similarly, Stevens suggests using a power function to describe
corresponding psychophysical dependencies [174]. Interestingly, Dahaene finds the predic-
tions of the linear and the logarithmic model to perform essentially equivalently, and favors
the linear model due to its simplicity [66].

Research in psychophysics typically uses Weber’s Law of the Just Noticeable Differences
(JND) to model relative discrimination thresholds. It describes a constant ratio between the
intensity of a pending stimulus and the maximum change in intensity that is just not notice-
able. For example, during a strong force stimulus, a small absolute change in force intensity
might not be perceivable. But it becomes clearly perceivable during a smaller applied pend-
ing force stimulus.

Weber’s Law of the JND can be mathematically described by the following implication

ΔI

I
= κ = const. or ΔI = κI (2.8)

where I is the stimulus intensity, ΔI is the so called Difference Threshold or the JND and κ
is the constant Weber fraction (also called "relative difference limen" [170]). It describes the
smallest amount of change in stimulus I which can be detected just as often as it cannot be
detected.

2.2.2.1 Perceptual Limits of the Kinesthetic Perception System

Psychophysical experiments on absolute detection thresholds of limb position perception re-
veal different results if the limb is actively moved by muscle contraction or passively moved
by the experimenter [121, 148]. With active positioning, the position error of the outstretched
arms is on average 0.6◦, in contrast to an average position error of 2.0◦if the limbs are pas-
sively moved. These thresholds differ for other joints and limbs. For instance, Taylor et
al. report absolute detection thresholds of position changes of hand joints in a range of 4.4-
6.8◦[179]. Experimental studies presented in [53, 123] investigate the relative discrimination
thresholds for the perception of limb velocity. Their results reveal a Weber fraction of 8% for
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Variable Resolution Weber fraction

Limb movements 0.5-1◦(over 10-80◦/s range) 8% (range 4-19%)

Limb position 0.8-7◦(full range of motion) 7% (range 5-9%)

Force 0.06 N 7% (range 5-12%)

Stiffness Not available 17% (range 8-22%)

Viscosity Not available 19% (range 13-34%)

Inertia Not available 28% (range 21-113%)

Table 2.2: Perception thresholds of the kinesthetic sense (reproduced from [121]).

the elbow and finger joints meaning that only changes in limb velocity with at least 8% of
the magnitude of the limb movement can be perceived.

The human discrimination ability of force perception has also been intensively studied in
literature. Surprisingly, relative perception thresholds of force feedback seem to be not com-
pletely independent from the intensity of force being applied. Jones reports a Weber fraction
of 7-10% within large force dynamics from 0.5 N to 200 N and increased Weber fractions
within the range of 15-27% for forces with low intensity below 0.5 N [121] .

Interestingly, psychophysical studies of derived kinesthetic quantities such as environment
stiffness, viscosity, inertia, etc. also revealed the existence of absolute and relative perception
thresholds. For instance, experimental results presented in [64] reveal a Weber fraction of 8-
12% for the discrimination of environment stiffness.

An overview of the resolution and relative discrimination thresholds (i.e. Weber fraction)
for limb movement, limb position, force, stiffness, viscosity and inertia is illustrated in Ta-
ble 2.2 (from [121]). A comprehensive psychophysical study of the Weber fractions of human
force perception is presented in [113]. An additional collection of haptic perception thresh-
olds reported in literature can be found in [104].

2.2.2.2 Perceptual Limits of the Tactile Perception System

The absolute detection thresholds of a tactile stimulus is strongly affected by the frequency of
the stimulus (see [175, 186]). Figure 2.4(a) illustrates the absolute thresholds of vibrotactile
perception as a function of vibration frequency in a range from 10 to 1000 Hz [170]. The
results indicate low vibrotactile sensitivity within the frequency band from 10 Hz to 50 Hz.
The highest perceptual sensibility can be found around 250 Hz which quickly degrades with
rising frequency.

Figure 2.4(b) shows the relative perception thresholds (described by the Weber fraction) of
vibrotactile and constant skin pressure stimuli as a function of logarithmic sensation level
[170]. Interestingly, the Weber fraction for tactile stimuli varies under different conditions
and at different skin locations. For instance, Craig investigates the perception of pulsed
stimuli at the index finger and determines a Weber fraction of 0.2 (see [59, 60]). In contrast,
the human discrimination ability of static skin pressure under same conditions is character-
ized by a Weber fraction of 14 % [37].
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(a) Absolute perception thresholds as a function of
vibration frequency.

(b) Weber fraction of vibrotactile bursts and tac-
tile pressure pulses as a function of sensation in-
tensity.

Figure 2.4: Absolute and relative perception thresholds of tactile stimuli (reproduced from [61] and
[170]).

The authors in [119] show that also simultaneous masking effects influence human tactile
perception. Their results indicate that both, absolute and relative perception thresholds in-
crease as soon as a vibrotactile masker is simultaneously displayed. Their results show that
during masking conditions, the Weber fraction raises from 13%-38% and 14%-28% to 60%
and 46% for the vibrotactile and static pressure, respectively.

2.3 Haptic Data Compression

Methods to compress data for efficient storage and/or transmission have been investigated
for a long time. By encoding the desired information with fewer information units (bits)
than the corresponding not-encoded representation consumes, the amount of data can be
reduced without any loss of information. This can be achieved by reducing any type of
redundancy in the original signal representation, for instance by applying entropy coding
techniques (i.e., Huffman, arithmetic, runlength coding, etc.). As no information is lost dur-
ing this process, these compression methods are completely reversible; they are denoted to
be lossless. By contrast, in the field of compression methods for multimedia content, the
so-called lossy compression algorithms are attracting considerable interest and are widely
applied in modern multimedia applications. Here, not only redundancy is removed. These
systems explicitly detect and remove so called "irrelevant information" from the processed
data, which either is either not perceivable by the human perception system or cannot be
displayed to the human through integrated hardware and/or connected interfaces due to
hardware limitations. In this context, the availability of a perceptual model becomes highly
interesting. If compression is done without affecting the quality and without disturbing the
performance of the underlying system, the applied signal processing methods are consid-
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ered to be transparent. Perceptual lossy compression often achieves very high compression
rates.

Compared to the processing of audio and video signals, the real-time processing of haptic
signals is by far more sensitive to introduced latency. Due to the global control loop that is
closed by the communication system, the processing of haptic signals is restricted by hard
delay constraints. They disallow the use of block-based coding approaches, such as DCT,
DWT, Vector Quantization, etc., which are widely used in the field of audio and image/video
coding. In other words, common video and audio compression algorithm cannot be directly
applied on haptic signals.

2.3.1 Related Work

Early approaches to haptic data compression can be found in [78, 146, 165, 166], where adap-
tive sampling and quantization techniques for haptic signals are discussed and compared
with each other. In [39] and [38], predictive coding for haptic signals based on Differential
Pulse Code Modulation (DPCM) and Adaptive Differential Pulse Code Modulation (AD-
PCM) combined with Huffman coding are used to reduce the load on the haptic channel.
Similarly, a differential haptic encoding scheme with subsequent entropy coding is presented
in [126]. These differential coding approaches, however, only reduce the payload on the hap-
tic channel and do not address the challenging high packet rates of haptic communication.

First research specifically targeting the high packet rates in networked control loops can
be found in [147]. Here, the concept of deadband-based data reduction is proposed. In
this work, incoming sensor readings are compared to the most recently transmitted sensory
information. Only if the difference in magnitude exceeds a fixed threshold, a packet trans-
mission is triggered. Correspondingly, the signals to be transmitted are adaptively down-
sampled and transmitted at an irregular rate. The receiver reacts to dropped samples by re-
peating the most recently received sample (hold-last-sample, HLS). This approach has been
shown to successfully reduce network transmission during intervals of low frequent signal
trajectories. However, it does not specifically exploit limitations of the human perception
system.

First lossy perceptual compression for haptic data which explicitly incorporates a model of
human haptic perception have been presented in [98, 101, 103, 108, 110] and investigated in
terms of stability criteria in [50, 104, 105, 109, 108, 130]. In this work, the perceptual dead-
band (PD)-based compression approach (or in short "deadband approach") is introduced
which successfully combines a perceptual model with deadband coding. This enables the
adaptive control of the intensity of compression artifacts to ensure remaining below human
perception thresholds. The PD compression scheme significantly reduces the packet rates
on the haptic communication channel without adding any latency to the processed signals.
Early research on the PD compression focuses on haptic signals with a single-DoF. However,
most TPTA systems provide haptic interaction in multi-DoFs. An important step towards
the integration of PD-based compression in multi-DoF TPTA scenarios is presented in [100].
Here, the authors propose the construction of an isotropic deadzone which is explained in
detail in Section 2.3.3.

The performance of PD compression has been evaluated in a number of real-world and
simulated TPTA systems. Conducted experiments in [103] reveal a packet rate reduction
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Figure 2.5: Illustration of perceptual predictive coding.

of up to 85% for a single-DoF TPTA system. Even higher reduction rates of up to 90% are
reported for multi-DoF TPTA scenarios, reported in [98]. A detailed discussion of the PD
compression approach can be found in Section 2.3.3.

In [54, 99, 158, 159], the PD compression approach is combined with several signal predic-
tion algorithms. A performance comparison of haptic prediction approaches in the context
of PD compression is presented in [203]. Further improvements in haptic signal prediction
can be achieved if sensor noise is removed with the help of a Kalman filter, as shown in [102].
The use of an adaptive reconstruction filter for improved upsampling of PD-encoded haptic
signals is discussed in [15].

A comprehensive discussion on perceptual haptic compression and communication is pre-
sented in [4, 5, 97, 98, 130].

2.3.2 Perceptual Predictive Compression Scheme

Detailed knowledge about human haptic perception is essential for determining the degree
of perceived distortion when coding haptic signals in a lossy way. To this end, findings on
haptic discrimination thresholds from the field of psychophysics are instrumental in percep-
tually evaluating changes in haptic signals (see Section 2.2.2). They can be used to construct a
mathematical model of human haptic perception which combines multiple perceptual func-
tions across different domains and modalities. In case of parallel and simultaneously inter-
fering stimuli, masking effects can be integrated as well. In line with common lossy compres-
sion algorithms from audio and video coding, a perception model of the human haptic sense
can be used to control the intensity of coding artifacts in order to keep them continuously
within imperceptible ranges, as shown in the following.

The principle of perceptual predictive haptic data compression is illustrated in Figure 2.5. It
consists of two key components: a psychophysical model deployed at the encoder and two
signal predictors which are used at the encoder and the decoder. The prediction algorithm
estimates incoming haptic samples based on previously transmitted haptic data. Both pre-
dictors at the encoder and the decoder run in parallel and are both being fed with identical
signal information in order to keep them strictly coherent. At the encoder, the prediction er-
ror is psychophysically evaluated with the help of a psychophysical haptic model. As long
as the difference between the incoming and the predicted haptic samples stays within im-
perceptible bounds, no network transmissions are required and the predicted sample at the
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decoder can be output. If the difference between the incoming and the predicted haptic sam-
ple exceeds the applied perception thresholds at the encoder, additional signal information
is sent over the network which also updates the predictors.

2.3.3 Perceptual Deadband Approach

Research by Hinterseer et al. has shown that a simple yet effective psychophysical model
of human haptic perception suitable for haptic real-time communication can be built based
on Weber’s Law of JND (see [98, 103, 108] and Section 2.2.2). It is based on perceptual dead-
bands (PD) which describes haptic discrimination bounds according to Weber’s Law of JND.
In this context, the PD parameter k, which closely relates to the Weber threshold parame-
ter κ, is introduced. It defines the relative size of the perceptual bounds. Deployed in the
previously discussed perceptual predictive compression scheme, it enables to perceptually
communicate the haptic signal in a lossy but to the human user imperceptible manner.

As long as incoming haptic samples hi do not violate the applied perception thresholds
around the predicted samples pi, the prediction error is assumed to be imperceptible. Hence,
the input sample hi can be discarded and the predicted sample at the decoder pi is output
ĥi = pi. Correspondingly, if hi violates applied perception thresholds, it is considered to be
relevant for transmission and used to update the predictors and the output at the decoder
ĥi = hi. The output of the PD compression approach can be defined by

||pi||2 · k
{
< ||pi − hi||2 transmit haptic input sample hi and output hi

≥ ||pi − hi||2 discard haptic input hi and output predicted sample pi

(2.9)

In multi-DoF scenarios with multidimensional haptic sample vectors, (2.9) corresponds to
the construct of an isotropic perceptual deadzone located at the tip of each haptic sample
vector [100]. In the two-DoF case, this results in a circular perceptual deadzone. Likewise,
the three-DoF case leads to a spherically shaped perceptual deadzone. Similar to the single-
DoF perceptual compression approach, the volume of the radius of the circular/spherical
deadzone in the multi-dimensional case is defined by the amplitude (i.e., intensity) of the
haptic sample vector.

Figure 2.6 illustrates the multi-DoF PD for two-DoF and three-DoF scenarios. The size of
the circular/spherical PD is a function of the length of the haptic vector. As long as incoming
haptic sample vectors fall within the circular PD or spherical PD (as shown in Figure 2.6(a)
and Figure 2.6(c), respectively), the change in haptic signal is expected to be imperceptible.
In contrast, as soon as a deadband violation occurs, a perceptually noticeable change in the
haptic signal is assumed, as illustrated in Figure 2.6(b) and Figure 2.6(d).

As only the samples which violate the PD bound are considered for transmission, the PD
compression scheme enables to reduce the amount of packet transmissions while keeping
corresponding processing latency at an absolute minimum.

2.3.4 Haptic Signal Prediction

A signal prediction algorithm estimates future haptic samples based on previous signal in-
put. For the prediction of haptic signals, typically linear predictors of very low order (e.g.
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(a) Compliance with a 2D isotropic
deadzone

(b) Violation of a 2D isotropic
deadzone

(c) Compliance with a 3D
isotropic deadzone

(d) Violation of a 3D isotropic
deadzone

Figure 2.6: Illustration of compliance and violation events of multi-DoF isotropic perceptual dead-
zones. The predicted haptic sample pi defines the circular/spherical deadzone which is
used to perceptually evaluate the haptic input sample hi.

order one) are deployed to comply to the strict delay constraints which are required to main-
tain control loop stability. They successfully model the low frequency characteristics of hap-
tic signals while still being able to quickly adapt to transients during contact events due to
their low group delay.

2.3.4.1 Zeroth-order Prediction

A zeroth-order predictor estimates future haptic samples by simply repeating its most re-
cently received input sample (hold-last-sample algorithm, HLS).

Combined with the concept of PD compression, the size of the applied perception threshold
Δi at discrete time i, it is a function of the PD parameter k and the signal magnitude of
the most recently transmitted haptic sample |hi−m|, where m samples back in time the last
violation of applied perception thresholds took place. This can be described by

Δi = Δi−1 = . . . = Δi−m = k · |hi−m|. (2.10)

This process of PD compression using a zeroth-order predictor and perceptual thresholds
defined by Weber’s Law of JND is visualized in Figure 2.7. Samples illustrated with solid
vertical lines represent the samples that are considered to be relevant for transmission. They
define discrimination thresholds represented by PDs, illustrated as gray zones. The size of
the applied PD is a function of a deadband parameter k and the signal amplitude of the
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Figure 2.7: Perceptual deadband compression using a zeroth-order prediction (hold-last-sample) al-
gorithm (adapted from [98]).

recently transmitted haptic sample value hi−m. Once the PD is violated by a new input
sample, this input sample is transmitted and redefines the applied perception thresholds.
Samples with dotted lines fall within the currently defined deadband and can be dropped
as their change in signal is too small to be perceptible. In case of noisy sensors, a minimum
absolute deadband size exceeding the current noise level should be defined [98].

2.3.4.2 First-order Prediction

The first-order prediction scheme as proposed in [99] takes the two most recently transmitted
haptic signal updates hi and hj at time i and j into account. This allows for the calculation
of a gradient cj

cj =
hi − hj

i− j
with i > j > 0 (2.11)

The predicted haptic sample pi at time i ≥ j is calculated by

pi = hj + cj · (i− j) (2.12)

The first-order prediction process combined with PD compression is illustrated in Fig-
ure 2.8. On the left side, the discrete predictor output is shown. The solid line illustrates the
linear prediction of future haptic sample output based on the two most recently transmitted
haptic samples. On the right side, the haptic input signal is visualized. With every predictor
update, the PD is recalculated and applied (gray area) which enables to perceptually eval-
uate the perceptual quality of the predictor output. As long as the haptic input samples do
not violate applied perception bounds, the haptic input samples can be discarded and the
predicted sample is output. Only during events of PD violation, haptic samples need to be
transmitted and are used for updating the predictors at the encoder and decoder.
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Predicted/Output Signal Input Signal 

Figure 2.8: Perceptual deadband compression using a first-order prediction algorithm (adapted from
[5]).

2.3.5 Perceptual Deadband Parameter k

The PD parameter k has a strong impact on compression performance and system trans-
parency. It enables the control of the size of the applied perception bounds and, hence,
needs to be carefully adjusted to match the characteristics of human haptic perception and
the haptic display capabilities of the HSI device. With increasing parameter k, the amount of
transmitted updates on the communication channel decreases at the cost of increased signal
distortion. Optimal compression performance can be reached if the PD parameter k is set
to a maximum value where compression distortion is still kept within imperceptible percep-
tion bounds. Such optimal configuration can be experimentally determined by investigating
the transparency of the compression system for different values of k. As long as a loss of
data is not noticeable to the human OP, the system transparency of the TPTA should not be
affected.

Interestingly, an optimal configuration for k varies widely in literature. For example, Hin-
terseer et al. find a threshold for the detection of PD-induced compression artifacts in a force
feedback signal at around k = 2.5−7.5% [103], whereas Nitsch et al. find no significant feed-
back quality deterioration with PD parameters of k ≤ 15% [143]. Furthermore, Hirche et.
al report thresholds to range between k = 7.5% and k = 20% [110]. In specialized TPTA
scenarios where an accurate representation of small contact forces is of great perceptual
importance to the user (such as dealing with dangerous materials or touching fragile ob-
jects), experimental results in [20] reveal significantly increased PD threshold ranges (about
k = 50%). It seems that the distortion introduced by PD compression is less disturbing as
long as the intensity of displayed force feedback stays within small bounds. This finding
is also confirmed by Jones et al. in [121] who identify increased Weber fractions for forces
below 0.5 N .

Although in theory JNDs for force and velocity perception are approximately similar for
all healthy human OPs [122], these results indicate that the optimum size of the PD param-
eter k is further influenced by various other factors. For instance, cross-modal interactions,
particularly those related to visual sensory input, are known to affect human perception
thresholds [171]. Results in [20] indicate an impact of visual feedback on the PD parameter
k. An experimental study shows that participants receiving visual-haptic feedback from the
remote environment are more sensitive to the PD compression artifacts compared to subjects
presented only with distorted haptic feedback.
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The perception of PD coding artefacts may be also influenced by the characteristics and lim-
itations of the deployed hardware such as the frequency response, dynamic range, precision,
and noise level. For the implementation of PD-based haptic compression, these results in-
dicate that there is no single optimum PD threshold which may be universally applicable in
all TPTA systems. As the human perception thresholds are affected by many factors such as
the design of the TPTA system (amount of DoFs), cross-modal feedback, the environment,
specific task criteria, etc., the PD parameter k should be individually optimized for every
TPTA system in order to achieve the best possible compression performance.

2.4 Chapter Summary

With various applications in industry, medicine, space operation, etc., TPTA systems are
gaining in relevance. Their performance strongly depends on the bidirectional exchange of
haptic signals which is restricted by hard delay constraints in order to assure system stabil-
ity and transparency. Furthermore, modern TPTA systems deploy a large number of DoFs
which need to be individually sampled and controlled. This leads to high packet and data
rates on the haptic communication channel. The unique properties of haptic communication
disallow the adaption of block-based compression techniques from the field of audio and
video compression.

The challenges of haptic communication are subject to intensive research and addressed
by the perceptual predictive compression schemes. These schemes employ a mathematical
model of human haptic perception which maps physical stimuli to perceived sensations.
These psychophysical dependencies are characterized by absolute and relative perception
thresholds. By exploiting the limitations of human haptic perception, the perceptual dead-
band compression scheme only transmits haptic samples that are considered to be percep-
tually relevant in order to reduce the high transmission rates on the haptic channel. To this
end, the haptic signals are perceptually downsampled while keeping introduced compres-
sion distortion below human haptic perception thresholds.
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As discussed in Chapter 2, haptic real-time communication in TPTA systems is restricted
by strict delay constraints to maintain control loop stability and a high degree of system
transparency. To keep the processing latency at an absolute minimum, haptic samples are
typically transmitted immediately upon generation. In addition, currently available TPTA
systems deploy a large number of DoFs which need to be individually sampled and con-
trolled and therefore lead to high data rates on the haptic channel. Hence, the haptic sensory
and actuator control data is exchanged at the haptic sampling rate, i.e., 1000 times per sec-
ond for every DoF from the HSI to the TOP (forward channel) and from the TOP to the
HSI (backward channel). In packet-switched networks, this transmission behavior leads to
significant network overhead and puts high demands on the deployed network resources,
especially in space and underwater TPTA scenarios.

The challenges of haptic communication are addressed by the perceptual predictive haptic
compression scheme. It reduces the packet rate by considering only perceptually relevant
haptic samples for transmission.

In this chapter, several contributions to the perceptual predictive compression scheme in-
troduced in Section 2.3.2 are presented. The first two sections in this chapter focus on im-
proving the perceptual haptic model and the haptic signal prediction algorithm, which are the
main components of the PD compression scheme. To this end, the integration of additional
psychophysical findings into the perceptual model are discussed in Section 3.1. Further-
more, Section 3.2 proposes the use of environment models for perceptual haptic commu-
nication. They allow for substituting the transmission of remotely captured haptic sensory
data with locally rendered haptic feedback.

In addition to the delay critical real-time processing of haptic signals, growing demand
can also be found in the area of offline haptic data processing. In training, teaching, enter-
tainment, and documentation applications, the recoding of TPTA sessions is of fundamental
interest. As soon as haptic data has to be stored on a storage device for posterior replay,
the interest in offline compression algorithms for haptic data emerges. Due to the relaxed
delay constraints, the design of a haptic offline compression scheme can be addressed in a
fundamentally different way, as shown in Section 3.3

Furthermore, perceptual haptic communication is analyzed and studied from a theoretical
perspective. To this end, a theoretical framework is proposed which enables a mathematical
performance evaluation of the PD-compression scheme. With the help of a statistical model
of haptic signals, the average data rate and computational resources required for the com-
pression of haptic signals can be expressed as a function of the PD parameter k, as shown in
Section 3.4.
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3.1 Extended Psychophysical Model for Perceptual Haptic Data
Compression

A precise psychophysical model of human haptic perception is of fundamental interest for
the development of perceptual haptic data compression algorithms. This section discusses
the integration of additional findings from psychophysics into the perceptual deadband ap-
proach (see Section 2.3.3). This promises improved adaptation to human haptic perception
thresholds.

The work presented in this section has been conducted in cooperation with Iason Vittorias,
Verena Nitsch, and Rahul Gopal Chaudhari [3, 14].

3.1.1 Direction-dependent Multi-DoF Perceptual Deadzone

Most TPTA systems provide haptic interaction with multiple DoFs. Consequently, the haptic
sensory and control signals to be compressed consist of multi-dimensional haptic sample
vectors. In this context, Hinterseer et. al propose the construction of an isotropic deadzone
(see Section 2.3.3). It assumes the human haptic perception thresholds to be independent
from the direction of the pending stimulus and from the direction of stimulus change.

This is in contrast to psychophysical experiments presented in [21] which reveal that the
multi-DoF equivalent of the single-DoF perceptual deadzone in not isotropic. In this study,
the discrimination thresholds of pairwise presented force feedback stimuli of changing di-
rection are investigated. The results indicate that haptic perception thresholds are a function
of stimulus direction.

Interestingly, psychophysical experiments published in [31, 176] show that the human dis-
crimination ability of changes in force direction is independent from the direction of the
reference force. This effect was shown to be valid for force vectors with varying force in-
tensity. In summary, these experimental results suggest applying individual discrimination
thresholds to force direction and force intensity.

3.1.1.1 Proposed Perceptual Model

By taking both the psychophysical findings of directional discrimination thresholds for
changes in force intensity and the analysis of the discrimination ability of force direction
into account, a direction-dependent multi-DoF deadzone for haptic data compression can be
constructed. According to [31, 176], the discrimination thresholds for changes in direction of
force feedback can be isotropically defined by an angle α, hence independent from the direc-
tion of the currently applied haptic force sample f . In contrast, the perception thresholds Δf

for changes in magnitude of f are defined as a function of the pending force direction and
Weber’s Law of JND in order to reflect the findings from [21]. The resultant deadzone shape
takes the form of a frustum of a cone, as illustrated in Figure 3.1.

Similar to the application of the Weber-based isotropic deadzone (see Section 2.3.3), this
novel deadzone shape can be used for perceptually evaluating changes in haptic force feed-
back signals. As long as current haptic force feedback vectors f fall into the adaptively con-
structed perceptual cone frustum, they are considered to be irrelevant for transmission. Ac-
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(a) Deadzone compliance (b) Deadzone violation

Figure 3.1: Illustration of the construction of a direction-adaptive deadzone. fi describes the current
incoming haptic sample vector (adapted from [14]). fi−m represents the haptic reference
sample vector. Discrimination thresholds for changes in force direction are defined by
the isotropically uniform angle α. Perception thresholds for changes in magnitude are a
function of the reference force intensity ||fi−m|| and described by Δf .

cordingly, as soon as haptic samples violate the pending PD, they need to be sent over the
network and are used for redefining the perceptual thresholds.

3.1.1.2 Experimental Study

In order to investigate the performance of the direction-dependent PD model, an experimen-
tal evaluation with human subjects has been conducted. The experimental testbed consists
of a Phantom Omni device by SensAble Technologies [163] and a virtual telepresence sim-
ulation that provides visual-haptic interaction with a virtual touchable sphere. During the
experiment, movements by the haptic device are mapped to a spherical cursor which repre-
sents a virtual TOP. During contact with the virtual TPTA environment, contact forces are
rendered and displayed using the haptic rendering routines provided by the CHAI3D haptic
rendering library [57].

In the experiment, eleven students from the Institute for Media Technology, TUM partic-
ipated. Initially, they are familiarized with the experimental setup and the expected dis-
tortion effects that are introduced by PD compression. This training phase ensures that all
participants are approximately at the same level of training, as far as the detection of pos-
sible signal disturbances is concerned. Furthermore, the subjects are instructed to hold the
haptic device tightly with fixed hand orientation towards the haptic device. This ensures
the maintenance of a more or less consistent orientation of the hand throughout the experi-
mental procedure. The conducted experimental evaluation consists of three parts which are
performed sequentially, as explained in the following.

The first experiment investigates the PD parameter k as a function of force feedback di-
rection. To this end, a virtual TPTA simulation is designed that provides full control of the
displayed force feedback orientation without imposing limitations on haptic user interac-
tion. This is achieved by presenting an invisible but touchable plane of infinite size in the
simulated virtual environment. As no friction effects are applied during contact with the vir-
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(a) Illustration of the 14 sample points on a
unit sphere in the three-dimensional vector
space used for investigating the dependencies
of force feedback directions on the perception
of PD data reduction artefacts.
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(b) Illustration of the contact paths on the
touchable virtual sphere object that are used
for investigating discrimination thresholds of
changes in force feedback direction.

Figure 3.2: Overview of sampled orientations and investigated contact paths used in the experimental
study (reproduced from [14]).

tual plane, the direction of force feedback is aligned with the surface normal of the presented
plane. This enables the control of the direction of displayed force feedback by modifying the
orientation of the virtual plane. In the experiment, the three-dimensional space of force feed-
back orientations is investigated at 14 sample points, which are shown in Figure 3.2(a). They
are randomly selected for each run in the experiment. During contact with the virtual plane,
virtual contact forces are haptically rendered and sent to the PD compression scheme. In
this way, the subjects experience distorted contact forces as a result of applied lossy PD com-
pression. The subject can manipulate the applied PD parameter k within a predefined range
of 0% to 20% and with a resolution of 0.5%. During each run, the user is instructed to tap
upon the surface of the virtual frictionless plane in a direction more or less perpendicular
to its surface while searching for a maximum setting of the associated PD parameter k at
which no disturbance is felt in the haptic feedback. Furthermore, each of the 14 force feed-
back sample directions is tested twice - once by approaching the target setting of k by slowly
decreasing from a maximum value of k = 20% and a second time by slowly increasing the
parameter value from the minimum parameter value k = 0% to the preferred user setting.
Hence, every subject performs 28 runs in total.

A second experiment is performed to determine the thresholds of perceptual sensitivity re-
garding directional changes of force feedback perception. The subjects are provided with a
virtual TPTA scenario containing a touchable virtual sphere. They are instructed to rub on
the frictionless surface of the sphere while corresponding contact forces are rendered and
displayed in the direction along the vector from the sphere origin to the point of contact
on the sphere’s surface. In order to investigate the discrimination thresholds of changes in
force direction, the orientation of the force vectors are uniformly quantized before being dis-
played. The quantization parameter α is controlled by the subject in steps of 0.5 degrees
within a range from 0 to 5 degrees. Similar to the first experiment, the subjects are instructed
to find a maximum setting of α at which compression distortion is perceptually just unno-
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Figure 3.3: Experimental results of the first experiment investigating preferred PD parameters k as a
function of force direction (reproduced from [14]). The sample points used are illustrated
in Fig. 3.2(a). Note that the "front" and "back" force direction is identical in both figures.

ticeable. Furthermore, the subjects are instructed to rub along four different contact paths on
the virtual sphere in order to investigate the influence of the direction of force feedback and
the orientation of hand movements on the discrimination threshold of the inspected quanti-
zation parameter α. These four contact paths on the surface of the sphere are illustrated in
Figure 3.2(b).

The third part of the experiment takes the results of the first two experiments into account,
i.e., the direction-dependent PD parameter k and the isotropic discrimination threshold α
for changes in force direction. These results are used for parameterizing the proposed adap-
tive perceptual deadzone with the subjective discrimination thresholds. In order to obtain
a denser mesh of the direction related PD parameters, an interpolation step is applied by
using the “inverse weighting distance" algorithm. This allows for estimating intermediate
PD parameter values along other directions in three dimensional space. The simulated vir-
tual environment in the third experiment again contains a touchable virtual sphere. During
contact with the virtual object, rendered force-feedback is applied to PD data reduction and
its output is displayed through the haptic device. The subject is given the freedom to freely
switch between ten different PD configurations, i.e., disabled compression, the proposed
direction-adaptive PD and eight isotropic PD configurations. The reference mode disables
the haptic PD compression for displaying undistorted haptic feedback. The remaining nine
selectable deadzone configurations are presented in randomized order. The configuration
of the eight isotropic deadzones are k = 1%, 3%, 4%, 5%, 6%, 7%, 8%, 10%. During events of
contact with the virtual environment, the haptic update rates are recorded for each of the
provided PD configurations. In addition, the subjects are asked to subjectively rate the de-
gree of perceived distortion between the reference (unencoded) and the lossy encoded haptic
force feedback. Based on their subjective perception, they assess the influence of the applied
PD configuration according to the rating scheme presented in Table 2.1 in Section 2.1.4.
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Figure 3.4: Means and standard deviations of angular thresholds quantifying the just perceptible
change in the direction of force feedback for different reference force directions (reproduced
from [14]). The dashed line illustrates the mean at 1.85 degrees across all test items.

3.1.1.3 Experimental Results

Figure 3.3 illustrates the results of the first part of the experiment. The figures show the
PD parameter k determined for every force direction averaged across all the subjects and
across the two runs per test-item. As is evident from this figure, the perception thresholds
of disturbances arising out of the PD distortion artefacts vary for different directions of force
feedback. Disturbance in force feedback with front orientation that pulls the operator’s arm
towards the haptic device is detected with the highest sensitivity. Force feedback in an up-
ward direction shows the lowest detection thresholds of PD distortion. When analyzing the
results in the horizontal and vertical plane, a similar structure with increased PD threshold
values in the diagonal force directions (45◦, 135◦, 225◦, and 315◦) is observed.

The results in Figure 3.4 show the mean and standard deviation of determined perception
thresholds of the quantization of force direction (in degrees) for different reference forces
and directions of hand movements. In contrast to the obtained results on the directional
dependencies of the PD parameter, here the angular thresholds do not significantly depend
on the force feedback direction. This result confirms the findings presented in [31, 176].
According to the results, a mean value of around 1.85 degrees can be assumed to be the
threshold on imperceptible directional changes in the force feedback vector.

When taking the results discussed above into account for parameterizing the proposed
deadzone shape, varying values for PD parameter k can be applied for different force direc-
tions to improve the encoding performance. In addition, the isotropic perception threshold
α of directional changes can be further applied to the deadzone design for perceptually eval-
uating angular signal characteristics.

The results of the third part of the experimental evaluation are displayed in Figure 3.5. The
mean subjective quality ratings for the isotropic PD shape as a function of the PD parameter
k are illustrated in Figure 3.5(a). The corresponding packet/update rates on the haptic chan-
nel are shown in Figure 3.5(b). The solid horizontal lines in both subfigures represent the
obtained results for the direction-dependent deadzone shape. It elicits a mean quality rating
of 79 which corresponds to the quality rating that would be obtained for an isotropic dead-
zone configured with k = 3.6%. Referring to the mean packet rate results in Figure 3.5(b)
at k = 3.6%, the results for the adaptive deadzone structure exhibit an improvement of
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approximately 8 pks/s over the performance of the isotropic deadzone with 30 pks/s. In
other words, the proposed direction-adaptive PD scheme achieves high quality data reduc-
tion with an additional gain in packet rate reduction of 26.7% compared to the isotropic PD
compression scheme.
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(b) Mean packet rates.

Figure 3.5: Experimental evaluation of the compression performance in terms of subjective quality
and packet rate (reproduced from [14]). The figures illustrate the results for the isotropic
deadzone shape as a function of the deadband parameter k. The solid horizontal lines
represent the performance of PD data reduction using the direction-adaptive deadzone
shape. The results show an improvement in packet rate of approximately 8 pks/sec over
the performance of the isotropic deadzone with 30 pks/sec.
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3.1.2 Velocity-adaptive Perceptual Deadbands

Interestingly, very few of the empirical studies investigate the influence of dynamic move-
ments and attentional requirements, which are both important aspects of human haptic in-
teraction. For instance, in a typical TPTA scenario, an OP is required to plan, control and exe-
cute certain movements. These movements usually need to be executed with some degree of
precision, in terms of positioning and force application. During the execution of movements
and task related operations, one would speculate that less cognitive resources are available to
devote attention to the perception and interpretation of displayed force feedback. Therefore,
it would seem likely that task-directed movement reduces the operator’s ability to perceive
changes in displayed force-feedback which would be reflected by increased haptic percep-
tion thresholds.

Attentional theories from research in psychophysics support this assumption [47, 72]. Sev-
eral studies suggest that attention may have a direct effect on the human haptic perceptive
ability by triggering a remodulation of neuronal activity in the primary sensory cortex (see
[41, 116]). Other studies found direct support for increased JNDs in the presence of multiple
attentional demands. For example, the authors in [196] discover in a study on change blind-
ness that the log of the Weber-Fechner parameter is proportional to the log of the number
of targets given. Moreover, Xing-Dong et al. [198] finds that force discrimination thresh-
olds are greater during hand movements and that this effect is independent of the speed of
movement. Similarly, experimental studies in [47, 197, 198] find absolute force perception
thresholds to increase when the operator’s hand is in motion and the authors in [202] sug-
gest using them in the context of haptic data reduction. However, in their work, neither
difference detection thresholds nor performance and/or efficiency of corresponding data
reduction architectures are investigated.

3.1.2.1 Proposed Perceptual Model

In order to reflect the reduced human force-feedback discrimination ability during the hand
movements of the OP, the PD thresholds need to be dynamically adjusted to the operator’s
hand velocity. This allows for the exploitation of the potentially increased JNDs during task-
directed hand movement for the purpose of improved, yet still imperceptible, haptic data
compression. Specifically, the PD parameter can be described as a function of velocity ẋ:

φ = k︸︷︷︸
JND (Weber)

+ ν · |ẋ|︸ ︷︷ ︸
Velocity Adaptation

(3.1)

where the velocity-adaptive PD parameter φ is determined by the sum of the constant com-
ponent k and a velocity-proportional component defined by the factor ν ≥ 0. The parameter
k represents a velocity-independent component of the JND. Adjusting ν allows for control-
ling the influence of the velocity on the resulting modified deadband parameter φ. For ν = 0
the velocity independent relationship in (2.10) is obtained.

Correspondingly, the size of the applied PD bounds Δi at time i can be described by:

Δi = φ · |fi−m|
= (k + ν · |ẋi|) · |fi−m| (3.2)
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Figure 3.6: Adaptive PD parameter φ as a function of velocity (reproduced from [3]).

where the last PD violation of the velocity-adaptive deadband occurred at time i−m.
An example of the adaptive PD parameter φ recorded during the experimental evaluation

is shown in Figure 3.6. The velocity signal ẋ referring to the operator’s hand movements is
illustrated in Figure 3.6(a). Its magnitude is used to calculate the velocity-adaptive deadband
parameter φ which is illustrated in Figure 3.6(b).

The system architecture of the velocity-adaptive PD compression scheme is illustrated in
Figure 3.7, where ẋh and fh denote the pending velocity and the force-feedback signal at
the HSI, respectively. The HSI measures the human operator’s hand movements and corre-
sponding motion commands are sent across the network. At the TOP, the received velocity
signal enters the proposed adaptive PD block modifying the current deadband size accord-
ing to (3.2). As changes in the haptic signal are only transmitted in case of a violation of the
applied perception thresholds, the increased PD during movements of the OP’s hand leads
to an additional packet and data rate reduction and, accordingly, improve the performance
of the perceptual PD compression scheme.

3.1.2.2 Experimental Evaluation

To evaluate whether the velocity-dependent PD compression scheme constitutes an im-
provement to the traditional Weber-inspired approach in terms of transparent, i.e. imper-
ceptible, perceptual haptic data compression, an experimental study has been conducted.

Firstly, the respective PD disturbance detection thresholds are investigated with respect to
the constant PD parameter k, the basis of the traditional PD compression approach. Sec-
ondly, the velocity adaptation parameter ν from (3.2) is analyzed, which forms the basis
of the proposed velocity-adaptive PD extension. In addition, influential factors such as the
speed of the movement performed by participants on k and ν are analyzed. Finally, the over-
all performance of velocity-adaptive PD in the context of perceptual haptic data compression
is experimentally evaluated and compared to the standard PD compression approach from
Section 2.3.2.

18 male and three female students participated in the experiment (mean age = 27 years,
std. deviation = 2.5 years), all of whom are right-handed and did not know the purpose of
the experiment. The experimental setup consists of a tubular linear motor, Thrusttube 2510
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Figure 3.7: Architecture of the velocity-adaptive PD data reduction principle (adapted from [3]). The
size of the applied PD adapts to the velocity signal ẋ.

from Copley Controls Corp. as shown in Figure 3.8(a), a Burster Corp. 8524-5500 force sensor
and two computers. The linear motor displays peak forces of up to 780 N and continuous
stall forces of up to 104.3 N . It is connected to a digital servo drive Xenus XTL, also from
Copley Controls Corp. The digital servo operates in current control; thus, the signal input
can be considered to be approximately proportional to the applied motor force. The position
is captured by an optical incremental encoder with a precision of 1 μm. The force sensor
provides a measurement range of 0 ± 500 N with an accuracy of 0.25% in full scale. The
entire haptic interface is controlled by a PC running a real-time Linux operating system. The
digital servo is connected to the PC through a sensory I/O card. The overall haptic device
is controlled by a high-gained force controller which compensates for viscous and Coulomb
friction. This results in negligible device dynamics for the purpose of the experiment, i.e.,
0.35 kg inertia and 3.01 Ns/m damping. All the control functions are implemented with
Simulink from MathWorks. The sampling rate of the haptic signals and the local control
loops is set to 1 kHz. A second PC also running a real-time Linux kernel receives the position
information of the HSI which controls and visualizes a virtual TOP within a virtual TPTA
environment. The connection between the two PCs is UDP/IP-based and time delay is on
average less than 1ms and, hence, can be considered to be negligible.

The virtual test environment consists of a simulated spring which acts as an admittance,
hence it received velocity information from the HSI and provides force feedback. The pro-
posed velocity-adaptive PD scheme is applied to the rendered force signals before being dis-
played to the test subject. The spring covers the entire motion range and its spring constant
is set to 100 N/m. During interaction with the virtual spring, two potentiometers enable the
participants to control the parameters k and ν online and allow for adjustments of k and ν
to maximum settings of 0.40 and 1.20, respectively, with a resolution of 0.01.

The experimental study makes use of a two (PD type) x three (motion speed) within-
subjects design. In order to introduce a measure of task performance accuracy and to en-
sure that participants move the master device with similar motion speed, participants are
instructed to follow a given a task: They are advised to control the movement of the virtual
TOP in accordance to a moving, visually-displayed cursor as closely and precisely as pos-
sible whilst perceiving force-feedback originating from the virtual spring. A screenshot of
the visual feedback is illustrated in Figure 3.8(b). The motion speed with which the cursor
moved from one side of the computer screen to the other is manipulated in a sinusoidal
manner using three different frequency levels (2, 3 and 4 rad/sec). The maximum speed for
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(a) Tubular linear motor, Thrusttube 2510 (b) Visual feedback

Figure 3.8: Illustration of the experimental testbed (reproduced from [3]). The left Figure 3.8(a) shows
the HSI device which displays force-feedback from a virtual spring. The right Figure 3.8(b)
shows a virtual teleoperator environment.

each motion level is 0.12 m/sec, 0.18 m/sec and 0.24 m/sec, respectively. During the ex-
periment, a preferable configuration setting for the force component k and for the velocity
adaptation parameter ν is determined for each speed level. In addition, the mean squared
error (MSE) of the distance between the computer cursor and the TOP positions together
with the corresponding compression performance of the regular and the velocity-adaptive
PD compression schemes are recorded.

Firstly, the participants are given the opportunity to familiarize themselves with the experi-
mental setup and the potentiometers affecting the control of the TOP. Furthermore, they are
demonstrated the effects of the component k as well as the velocity adaptation parameter ν
influencing the quality of the displayed force feedback. This training phase ensures that all
participants are approximately at the same level of training as far as the detection of possible
signal disturbances is concerned. They are then asked to continuously perform the task of
following the moving cursor as closely as possible using the haptic device and the cursor
coupled to it.

During each experimental run, the participants adjust the parameters k and ν, using the
provided potentiometers until they found a maximum setting with which no disturbance is
perceived. Specifically, they are asked to approach the target setting from both directions,
i.e., initially starting to slowly increase from the minimum parameter value, followed by
slowly decreasing from a maximum value, until they are confident that they have found the
highest setting at which they feel no disturbance in the control of the TOP.

In a first step, participants are instructed to focus on an optimum configuration for k start-
ing with its lowest setting (k = 0) while the velocity adaptation parameter ν is set to zero.
As soon as they are confident that they have found the target setting, the corresponding
compression performance is measured for 10 seconds for the preferred setting of the par-
ticipants. During these 10 seconds, participants only focus on their task performance. This
procedure is repeated to find an optimum velocity adaptation parameter ν while k is held
to the participants’ preferred configuration. Afterwards, both steps are repeated with two
other speeds of movement. The order of the three speed conditions, which determine the
speed of the computer cursor, and consequently participants’ hand movements, is systemat-
ically randomized for each subject. In addition, participants are wearing headphones which
prevent them from hearing sounds that might distract or influence them in any way.
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Guided speed Parameter k Parameter ν

mean std. deviation mean std. deviation

low 0.053 0.053 0.15 0.11

medium 0.064 0.056 0.15 0.10

high 0.059 0.027 0.16 0.13

Table 3.1: Preferred configuration for the parameters k and ν of the adaptive deadband coding scheme
with respect to different speed levels (reproduced from [3]). Maximum settings possible are
0.40 and 1.20 for k and ν, respectively.

3.1.2.3 Experimental Results

The obtained results are inspected for outliers, as well as for normality and homogeneity of
variance. In this context, z-scores are calculated which represent a normalized distance to
the expected mean. Data with z-scores of z > ±3.29 are excluded from further analysis.

The results are further analyzed using the statistical Analysis Of Variances (ANOVA). It an-
alyzes the statistical significance between (assumed) normally distributed dependent and
independent variables. If no significance can be detected, the dependent variables do not
need to be investigated further. If, however, a significant dependency can be found (so
called effects), a so called F-test is applied to investigate the individual influence of the
dependent variables. The F-test analyses the ratio of the variability between all the dif-
ferent variables (between-group-variability) and the variability within the variables them-
selves (within-group-variability). The significance of this ratio can be determined with the
F-distribution, which is denoted as

F (x, y) = v (3.3)

where x and y describe the between-group-variability and within-group-variability, respec-
tively. The F-value v allows for determining the significance p in the probability table of
the F-distribution. In psychophysical studies, values of p ≤ 0.05 are typically considered to
reflect statistical significance. Further information about the ANOVA can be found in [76].

In the following, the experimental results of the ANOVA are summarized. For a detailed
discussion of the ANOVA evaluation, the reader is referred to [3].

Table 3.1 illustrates the results of the obtained disturbance detection thresholds. It shows
the mean and standard deviations of the parameters k and ν that the participants adjusted
for each movement speed to a maximum level without feeling any introduced coding arte-
facts. The results presented indicate that the mean preferred setting for the constant compo-
nent k lies at around 0.06. The mean preferred value for the velocity adaptation parameter ν
has been detected to be approximately 0.15.

In order to determine the influence of the velocity of the operator’s hand on the respec-
tive deadband detection thresholds for the Weber-based and velocity-adaptive deadband
types, as indicated by k and ν, two within-subjects univariate ANOVAs are conducted with
hand movement speed as independent variable and adjusted k and ν settings as dependent
variables, respectively. The obtained results suggest that the effects of each component are
velocity independent. In other words, the participants adjusted to very similar values for k
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and ν, regardless of the speed at which they performed their movement. While the num-
ber of participants in this study would not suffice to detect small effects of speed on k and
ν values, the results provide an indication that the design and the deployed psychophys-
ical function consisting of a constant component k and a velocity-proportional component
characterized by ν is a valid assumption.

In order to determine whether or not the use of velocity-adaptive deadbands achieves
greater data reduction compared to the standard PD-based haptic compression approach
without deteriorating performance accuracy, two further repeated-measures ANOVA are
conducted with movement speed (low, medium, high) and deadband type (non-adaptive
vs. adaptive) as independent variables, and task performance accuracy (mean squared posi-
tion error) as well as data reduction performance (signal updates per second) as dependent
variables, respectively. Despite a trend of increasing signal updates with increasing motion
speed as indicated by the mean values, the ANOVA results do not show a significant main
effect of the speed on the data reduction performance. In contrast, it reveals a significant
main effect of the applied deadband type. Looking at the mean values, the results indi-
cate that the use of adaptive deadbands significantly reduce the number of signal updates
performed per second regardless of the speed at which participants move their hands (see
Figure 3.9(a)).

For the investigation of task performance data, the ANOVA reveals a significant main effect
of speed on the mean squared position error. As no significant main effect of deadband type
on position error is detected, the results indicate that task performance accuracy does not
significantly deteriorate with the use of velocity-adaptive deadbands compared to the use of
non-adaptive deadbands (see Figure 3.9(b)).

Overall, the results suggest that the velocity-adaptive PD approach constitutes a significant
improvement to the traditional Weber-based PD compression scheme in terms of compres-
sion performance. The results indicate an optimum configuration of approximately k = 0.06
and ν = 0.15, regardless of the speed at which participants operated the HSI device. In this
configuration, an additional packet rate reduction of up to 30% compared to the Weber-based
PD compression approach (total data reduction of 96%) is achieved without perceptibly im-
pairing the quality of the force-feedback signal or significantly affecting task performance
accuracy. Since this effect is observed for all three motion speeds tested, the concept of the
velocity-dependent PD for perceptual haptic communication seems to be valid.
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Figure 3.9: Mean values and standard deviations of packet rates and subjective quality with respect
to velocity level and deadband type (reproduced from [3]). The dark bars show results
for the Weber-based (non-adaptive) PD approach. The light bars represent results for
the proposed novel velocity-adaptive PD compression scheme. Compared to Weber-based
PDs, velocity-dependent deadbands achieve an additional mean packet rate reduction of
30.1% without effects on task performance accuracy.
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3.2 Model-mediated Haptic Communication

During a TPTA session, kinesthetic motion commands are executed by the TOP. In return,
force feedback is reflected during contact events with the remote environment. Hence, by
associating the contact forces with the position information of the TOP, the geometry and
impedance characteristics of the remote surface in contact can be estimated [70]. This ob-
servation allows for the construction of surface models based on an analysis of combined
position-force sample pairs (see Section 2.1.3.2).

The use of environment models in the context of haptic data communication has not been
intensively addressed in literature so far. In this section, the concepts of model-mediated com-
pression, prediction, and contact coding are presented which all rely on mathematical models of
the remote environment.

Parts of the work presented in this section have been conducted in cooperation with Rahul
Gopal Chaudhari, Xiao Xu, and Zike Chen [2, 10, 25, 48, 49]. The experimental study of
the model-mediated compression scheme has been performed at the Institute of Automatic
Control Engineering, TUM with support from Iason Vittorias.

3.2.1 Model-mediated Haptic Data Compression

Research by Mitra et. al has shown that the integration of simple environment models into
the control scheme of the TPTA system allows for increased system stability and trans-
parency due to the decoupling of the global haptic control loop (see [138, 139] and Sec-
tion 2.1.3.2).

In this section, an architecture for combining model-mediated control with perceptual hap-
tic data compression is discussed. In model-mediated control, the haptic models are typ-
ically estimated and transmitted at high rates from the TOP to the HSI device in order to
reduce inconsistencies between the remote environment and the locally applied haptic feed-
back model. Consequently, high update and data rates are observed in the network, which
are addressed in this section. Note that the previously discussed methods for perceptual
haptic communication cannot be directly applied to the transmitted model parameters due
to missing haptic signal information on the haptic channel.

3.2.1.1 Model Estimation Process

Contacts of the TOP with the environment can be easily detected by investigating the mag-
nitude of the pending force sample (|fs| > 0). In order to increase the amount of sup-
port/training data for the model estimation process, the TOP position xs, the desired TOP
position xd

s and the force sensory signal fs are jointly stored in memory during the contact
period.

As soon as the model estimation process is triggered, a subset of the recorded haptic sen-
sory data is selected according to the current TOP position. Specifically, the subset consists
of haptic sensory data which relates to a surface contact position closely located to the cur-
rent TOP position and characterized by a similar force feedback direction. Hence, the model
estimation process takes only the haptic samples into account which spatially relate to the
currently touched surface area, as shown in Figure 3.10(a).
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(a) Sample selection process. The current TOP
position is used to query haptic sensory informa-
tion from previous contact events with the remote
object.

(b) Plane fitting based on a singular value de-
composition. The third singular vector v3 with
smallest singular value describes the plane
normal.

Figure 3.10: Illustration of the haptic sample selection and plane fitting process.

To this end, a maximum distance r and an angle γ are defined for selecting a set of indices
M(i) of previously captured haptic samples which are closely located to the current TOP
position xs(i) at time i and exhibit a similar contact force orientation (angle between force
vectors < γ).

M
(
i
)
=
{
j | 0 < j ≤ i,

|fs(j)| > 0,

|xs(j)− xs(i)| ≤ r,

� (fs(j), fs(i)) < γ
}

(3.4)

The indices in M(i) are used to estimate the geometric surface and impedance character-
istics of the current contact with the remote surface. In this work, a rudimentary planar
surface model is used, as proposed by Mitra and Niemeyer [139]. It assumes the surface in
contact to be a frictionless planar structure with fixed stiffness s. Consequently, the surface
plane can be expressed by the standard plane equation:

Ax+By + Cz +D = 0 (3.5)

Its small parameter set (plane orientation and plane position) enables a quick adaptation to
unknown contact locations. More specifically, at the initial contact with unknown remote
objects, the parameters of this plane model can be immediately estimated in order to reflect
the contact event to the human OP without introducing any algorithmic delay to the haptic
feedback loop.

The current TOP position is used to query the set Q of previously captured surface contact
points with indices in M(i).

Q =
{
xs(j)|j ∈M

(
i
)}

(3.6)

The model estimation is performed by fitting a plane into the point setQ in the least-squares
sense. Accordingly, the calculation of the plane normal can be described as a linear least-
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square minimization problem

min
n̂

||[Q− q̄] · n̂||2 (3.7)

where q̄ is the mean of all contact points in Q.

By applying a singular value decomposition (SVD) on [Q − q̄], an estimated plane normal
n̂ can be determined.

[USV ] = SVD([Q− q̄]) (3.8)

Assuming a rank(Q) ≥ 3, the first two singular vectors v1,v2 ∈ V with highest singular
values should span the plane. Accordingly, the third singular vector describes its normal, as
shown in Figure 3.10(b)

n̂ =
v3

|v3| (3.9)

In case of rank(Q) < 3, the direction of the current force sample is used to obtain an estimate
of the surface normal

n̂ =
fs
|fs| (3.10)

By taking estimated plane normal n̂ and the current TOP position xs(i) into account, the
planar surface model can be successfully parameterized:

A = n̂x

B = n̂y

C = n̂z

−D = n̂ ·xs (3.11)

The obtained model parameters are transmitted to the HSI device and used for model-
based force rendering with stiffness s and the current HSI position xm

f̂ = (n̂ ·xm +D)︸ ︷︷ ︸
distance to plane

· s︸︷︷︸
stiffness

· n̂︸︷︷︸
force direction

(3.12)

In order to avoid abrupt changes in the haptic feedback during model updates, a linear
crossfade from the currently applied model to the recently received model is performed
within a short time window (similar to the active transition update strategy in [139]). As
in model-mediated control the haptic control loop is locally closed at the HSI, a (shortly)
delayed presentation of the remote surface model does not directly impair the stability of
the TPTA system.
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Figure 3.11: Proposed architecture for model-mediated compression.

3.2.1.2 Surface Model Verification

In model-mediated control, the estimated models are typically transmitted with high update
rate. In order to reduce the network load on the haptic channel, only perceptually relevant
model updates should be transmitted.

To this end, the detection of perceptually relevant model updates can be achieved by com-
paring the output of the most recently transmitted model with the current force sensory data
at the TOP. Only if the model-based and the sensed force feedback exceed applied percep-
tion bounds, the transmission of model updates is required. However, small and probably
unrecognizable displacements of the estimated planar surface and the actual contact point
quickly lead to significant differences in force feedback (particularly with high stiffness s).
For instance, if the model-mediated feedback displays a contact shortly before the actual con-
tact occurs at the TOP, a PD-based evaluation would immediately invalidate the currently
applied model, although the error in contact position might be too small to be perceivable
and, hence, can be considered to be neglectable.

To address this issue, the distance between the plane model and the actual contact point of
the TOP with the remote environment needs to be investigated, rather than directly compar-
ing the model-based rendered and the remotely sensed force feedback signals. The distance
p between the current TOP position xs and the applied plane model can be calculated by

p = |n̂ ·xs +D|2 (3.13)

In order to compensate for sensor noise and small position drifts of the TOP control, a
minimum distance Δmin is applied to discard small and neglectable model updates with p <
Δmin. However, with stronger contact forces being applied, the human perception system
is assumed to be less sensitive to changes in force feedback which allows for a reduced
model update rate. This is exploited by increasing the minimum plane distance threshold in
accordance with Weber’s Law of JND and, therefore, by taking the currently force sample fs,
the PD parameter k and the stiffness s into account.

Δp = max
(
Δmin,

k|fs|
s

)
(3.14)

Similarly to (2.9) in Section 2.3.3, this allows the perceptual detection and transmission of
only those model updates which are considered to be important for transmission.
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Figure 3.12: Overview of the experimental setup for model-mediated haptic data compression. The
experiment has been performed at the Institute of Automatic Control Engineering (LSR),
TUM.

p

{
≤ Δp keep current surface model - discard current model estimate
> Δp update current surface model - trigger model update transmission

(3.15)

Figure 3.11 illustrates the proposed architecture for combined model-mediated control and
perceptual haptic data communication. At the TOP side, captured haptic sensory data is
used to estimate the model parameters me. They are evaluated and perceptually relevant
model updates mv which are sent over the network to the HSI. The human OP only interacts
with the remotely estimated and locally applied environment models. In this way, the HSI
and the TOP are haptically decoupled and the haptic control loop locally closed at the HSI
device.

3.2.1.3 Experimental Evaluation

In order to compare the performance of model-mediated haptic data compression with the
standard PD compression approach from Section 2.3.3, an experimental study has been con-
ducted.

The experimental setup is shown in Figure 3.12. It consists of a bimanual TPTA system us-
ing the DeKiFed (HSI) and DeKiTop (TOP) devices described in [97]. They provide high
performance low-friction tracking and force feedback due to DC-motors with Harmonic
Drives for every joint. The HSI and the TOP are similarly constructed and equipped with a
force/torque sensor at the handle (HSI) and at the tip of the endeffector (TOP). The remote
environment contains a plate and a cup which are turned around and fixed upside-down on
the ground. The plate shows a slight curvature at its edges. The center of the plate is mainly
planar and contains slight indentations. In contrast the cup is strongly curved at its edges
and the handle. Also its top is shaped with a slight concavity.

The model-mediated compression methods are implemented in C++ and integrated into a
MATLAB/Simulink environment that runs on a real-time capable Linux system (RT-Linux).
Both the HSI and the TOP system run on separate PCs connected via 100 MBit/s Ethernet
and communicate via the UDP/IP protocol. The robot hardware is controlled using special
I/O-PCI cards.

45



3 Perceptual Compression of Haptic Signals

In the experiment, the model estimation process is configured with the following param-
eters. The sample selection method is configured with γ=45◦ and selects samples within
a radius of r = 1 cm. The surface stiffness parameter s is set to 25000 N/m. The linear
crossfading window for updating received model parameters at the HSI is set to 15 ms. The
latency on the communication channel is kept at a minimum (< 1ms).

Seventeen subjects participated in the experimental study, aged from 21 to 33. Prior to each
experiment, the subjects are familiarized with the experimental equipment and the expected
distortion introduced by the model-based and PD compression. The participants are further
instructed to haptically explore the surface of the remote environment along a fixed path
they could freely choose. This fixed contact path strategy facilitates a direct comparison
between different compression settings. The experiment consists of nine runs each investi-
gating randomized PD parameter configurations (k = 0%, 5%, 10%, 15%, 20%, 25%, 30%,
35%, 40%). During each run, the subjects are able to freely choose between three blindly
presented compression schemes: the PD compression approach using the zeroth-order pre-
dictor (see Section 2.3.4.1), the PD compression approach using the first-order predictor (see
Section 2.3.4.2), and the proposed model-mediated compression scheme. Furthermore, the
subjects are provided with a reference setting which completely deactivates haptic data com-
pression within the system. This allows for a direct subjective evaluation of the presented
compression schemes in comparison to the undisturbed reference configuration. In each
run, the subjects are asked to perceptually evaluate any perceived difference to the reference
setting according to the evaluation scheme shown in Table 2.1 in Section 2.1.4.

3.2.1.4 Experimental Results

The experimental results are illustrated in Figure 3.13. The bottom Figure 3.13(b) shows the
mean packet rates as a function of the applied PD parameter k for all investigated haptic
compression schemes. As a PD parameter k = 0 deactivates the perceptual compression
schemes, a maximum update rate can be observed on the haptic channel which is as high
as the applied sampling rate of 1000 Hz. With increasing PD parameter k, the packet rate
quickly decreases, even for small values of k. The packet rate reduction performance of the
model-mediated compression scheme outperforms the signal prediction schemes already at
k = 5%. At a PD parameter of k > 30%, the performance of all three perceptual compression
techniques reaches a similar packet rate reduction performance of > 95%. Figure 3.13(a)
show the corresponding mean subjective quality ratings as a function of the applied PD pa-
rameter k. With increasing PD parameter k, a decrease in subjective quality of the presented
haptic feedback is observed. For the PD compression approach using zeroth-order and first-
order predictors, the subjective quality quickly reaches a level where the introduced dis-
tortion becomes clearly perceivable (≤ 80). In contrast, the compression artefacts for the
model-mediated compression approach stay clearly below human perception thresholds up
to k ≤ 15%. Accordingly, the results show improved subjective performance of the model-
mediated compression approach compared to the zeroth-order and first-order perceptual
compression.

Taking both the mean packet rates and the mean subjective quality ratings into account, the
results show that the model-mediated compression significantly outperforms the first-order
and second-order predictive PD compression methods. Already at a small PD parameter
k = 5%, strong data reduction is achieved without affecting the perceptual quality of the
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3.2 Model-mediated Haptic Communication

haptic feedback. Here, the model-based compression approach further reduces the packet
rates from 100 to 25 pks/s compared to PD compression scheme. As the model-based local
haptic feedback rendering provides natural force feedback to the human OP, the disturbing
update steps during PD signal reconstruction can be avoided which seems to be preferable
to the subjects.

47



3 Perceptual Compression of Haptic Signals

0 5 10 15 20 25 30 35 40
0

20

40

60

80

100

PD Parameter k (%)

M
ea

n 
S

ub
je

ct
iv

e 
R

at
in

gs
�������������	���
��
��	�
�
����������	���
��
��	�
���������
�������������
�

(a) Mean subjective ratings.
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(b) Mean packet rates.

Figure 3.13: Mean subjective ratings and mean packet rates as a function of the PD parameter k
for PD compression with zeroth-order and first-order prediction in comparison to the
proposed model-mediated compression approach. The model-mediated compression ap-
proach shows best performance in terms of both subjective ratings and packet rate reduc-
tion.
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3.2.2 Model-mediated Prediction

Interestingly, the prediction of haptic signals does not necessarily need to be based on sta-
tistical models of the haptic signal trajectories. Inspired by the concept of model-mediated
control and compression, a haptic model of the remote surface can be estimated by analyz-
ing the bidirectional haptic data streams. This section discusses a model-mediated predic-
tion scheme which estimates future haptic samples based on simple models of the remote
environment. Particularly, it can be used to predict haptic feedback at the HSI device that
otherwise would be remotely sensed and transmitted.

In contrast to model-mediated control and compression, a model-based predictor needs to
be deployed at both the sender and the receiver side (see Figure 2.5 in Section 2.3.2). As both
predictors need to be kept strictly coherent during all time, they must be fed with identical
training data in order to assure their consistency. Accordingly, the model estimation process
can only refer to the perceptually downsampled and transmitted desired velocity/position
and desired force feedback signals that are available at the communication subsystem. Corre-
spondingly, the absolute contact location of the TOP endeffector is not available and cannot
be used to support the model estimation process. To address this lack of absolute TOP con-
tact position information, the model-mediated prediction scheme must reflect the impedance
properties of both the environment and the deployed TOP position controller in order to esti-
mate the TOP contact position required for predicting the haptic feedback at the HSI device.

3.2.2.1 Model Estimation Process

In order to keep the amount of samples necessary for approximating remote surfaces as
small as possible, simple surface models such as a plane and/or a sphere associated with
linear impedance properties are used which allow for the haptical modeling of frictionless
planar, concave and convex surface structures.

Plane model

A planar surface in 3D space can be defined by the plane equation:

Ax+By + Cz +D = 0 (3.16)

where n = (A,B,C) is the normal vector of the plane, as illustrated in Figure 3.14(a). In
absence of surface friction, the direction of the actual force fs is identical to the surface normal
n. Hence it can be estimate by n̂ = fs/|fs|.

Furthermore, assuming linear stiffness of the TOP controller in contact with the environ-
ment, Hooke’s law can be applied to estimate the surface contact point x̂s as a function of
the contact force vector fs and the unknown combined controller and surface stiffness s:

x̂s = xd
s + fs/s (3.17)

Combined with (3.16), we obtain

(fs, 1)

(
1
s

−D

)
= n̂ ·xd

s (3.18)
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Penetration 
Depth

(a) Plane model (b) Sphere model

Figure 3.14: Estimation of the surface contact point x̂s using a planar and a spherical surface model
(adapted from [49]).

In (3.18), the only unknowns are the stiffness s and plane parameterD. Hence, by collecting
at least two force/position pairs, and solving a system of linear equations, the plane model
in (3.16) can be estimated with associated stiffness, as shown in Figure 3.14(a).

In order to use the model for local haptic signal prediction, the penetration depth p needs
to be computed:

p = xm · n̂+D (3.19)

If p > 0, the current device point is outside the object, the predicted force is zero; otherwise
the current contact force can be estimated using Hooke’s law:

p

{
≤ 0 f̂s = 0 remote surface not touched

> 0 f̂s = spn̂ remote surface touched, render haptic feedback
(3.20)

Sphere Model
The sphere model is capable of modeling concave as well as convex surface structures. It is

defined by the center o = (ox, oy, oz) and the radius r, as shown in Figure 3.14(b).
Under the assumption of a frictionless surface, the actual force fs points radially outward

from the center o of the sphere. Hence, the surface contact point of the TOP x̂s can be defined
by:

x̂s = o+ r
fs
|fs| (3.21)

By assuming linear stiffness, the distance p to the surface of the sphere can be estimated
using Hooke’s law.

p =
|fs|
s

(3.22)

Hence, the force fs can be expressed as a function of the desired TOP position xd
s :

o+ r
fs
|fs| −

fs
s
= xd

s (3.23)
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(a) Spherical approximation in
horizontal direction

(b) Spherical approximation in
horizontal direction

(c) Planar approximation in vertical
direction

Figure 3.15: Simulation of model-mediated prediction of haptic force-feedback based on simple geo-
metric surface models (adapted from [5]). The little spheres represent the virtual endef-
fector. In (a) and (b) a spherical and in (c) a planar surface approximation are illustrated.

This can be expressed in matrix-vector notation form:

(
I fs

|fs| fs

)⎛
⎜⎜⎝

o

r

−1
s

⎞
⎟⎟⎠ = xd

s (3.24)

where I is the identity matrix. According to (3.24), there are five unknown variables
(ox, oy, oz, r, s) and three equations (for each dimension). Correspondingly, at least two
force/position pairs are required to solve this system of linear equations.

Once defined, the distance p between the HSI position xm and the sphere model can be
calculated in order to perform model-based force prediction.

p = r − |xm − o| (3.25)

The sign of the estimated stiffness s tells us the surface shape. If s ≥ 0, the surface is
considered to be convex, otherwise it is assumed to be concave. So depending on convex
or a concave surface structure, the predicted force f̂m at the HSI device can be computed as
follows:

f̂m =

⎧⎪⎪⎨
⎪⎪⎩

p · s · xd
s−o

|xd
s−o| if |xd

s − o| < r, s ≥ 0

p · s · o−xd
s

|o−xd
s | if |xd

s − o| > r, s < 0

0 else

(3.26)

3.2.2.2 Adaptive Selection of Surface Models

The performance of the planar and spherical models strongly depend on the characteristics
of the remote environment. Dependant on its curvature and structure, the choice of an op-
timal surface model might change for different remote objects (see Figure 3.15). In order
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Figure 3.16: Virtual TPTA simulation used in the experimental study.

to achieve an adaptive selection of the best suited surface model, an analysis by synthesis
approach can be applied by estimating and evaluating the performance of several surface
models in parallel. By using Weber’s Law of JND, a “Weber-normalized” prediction error wi

of the ith surface model can be determined (see Section 2.2.2)

wi = |(f̂ i − f)|/|f | (3.27)

where f̂ i denotes the force estimate of the ith model-based predictor. Consequently, the
model-based predictor with the smallestwi is to be selected for predicting the current contact
forces.

Note that this adaptive model selection scheme works without transmitting additional side
information over the haptic communication channel. The cost function in (3.27) takes only
the current force sample f and the predictor output f̂ i of the ith prediction model into ac-
count, which are both available at the HSI and the TOP side.

3.2.2.3 Experimental Study

In order to evaluate the performance of the model-mediated prediction scheme, a psy-
chophysical experiment has been conducted [25]. The test setup consists of a virtual TPTA
system developed with the CHAI3D haptic rendering library [57]. The simulated environ-
ment contains a virtual teleoperator and virtual 3D ashtray object which can be haptically
explored (see Figure 3.16). It is slightly concave in the center and its sides are planar with
curved areas in the edges. For controlling the virtual TOP, a Phantom Omni HSI by Sens-
Able Technologies [163] is used in the experiments. The sample rate and control rate of the
virtual TPTA system is set to 1000 Hz. The latency on the communication channel is kept at
a minimum (<1ms).

A total of 14 subjects participated in the psychophysical study, ranging in age from 23
to 32. All of them are right-handed. Ten of them had never used a haptic device before
and the remaining four had used such a device on a regular basis. In order to standardize
the experiments across all subjects, a fixed seating posture and hand-device configuration
is instructed. The computer screen displaying the VE is placed in front of the participant
while the haptic device is placed on the right. A cardboard protects the haptic device from
visual observation by the subject. During the experiment, the participants wear headphones
playing music to mask the noise originating from the motor of the haptic device.
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3.2 Model-mediated Haptic Communication

At the beginning of the experiment, a training session is conducted to help the subjects
familiarize themselves with the experimental setup and the task. The subjects are guided to
recognize compression distortion artefacts introduced by the PD compression scheme and its
influence on the applied prediction models. During the experiment, each subject is required
to perform 30 test runs with different system configurations. Particularly, the performance
of PD compression using the zeroth-order and first-order signal predictors is investigated
(see Section 2.3.4.1 and Section 2.3.4.2). In addition, the performance of PD compression
using the planar and spherical surface predictors including the proposed adaptive model
selection scheme is analyzed. The PD compression scheme is configured with the following
PD parameters: 2.5%, 5%, 10%, 15%, 20%, 30%. The assignment of the PD parameter k and
the prediction scheme are presented blindly and in randomized order. During each test run,
the subject explores the virtual object within a time interval of ten seconds while the update
rate of the selected predictor is recorded. After the test run, the participants are asked to
perceptually rate the quality of haptic feedback perceived by using the rating scheme shown
in Table 2.1 in Section 2.1.4.

3.2.2.4 Experimental Results

The experimental results are shown in Figure 3.17. Figure 3.17(a) illustrates the mean packet
rates as a function of the applied PD parameter k for PD compression using the model-
mediated and the signal-based haptic prediction schemes. The results show that the model-
based predictors and the adaptive prediction scheme integrated into the PD compression
approach achieve best packet rate reduction performance. For all applied PD parameters,
they outperform the PD compression using the signal-based zeroth-order and first-order
predictors. The best packet rate reduction performance is achieved at a PD parameter of
5-10%. Here, the adaptive prediction scheme improves the packet rate reduction by a factor
of two compared to the signal based predictors. The corresponding subjective ratings are
illustrated in Figure 3.17(b). Similar to the results on the packet rate reduction performance,
the mean subjective quality for PD compression using the model-based prediction signifi-
cantly outperforms the signal-based prediction techniques, in particular with increasing PD
parameter.

When taking both the mean subjective quality and the corresponding packet rates into
account, the results show that best compression performance in terms of subjective quality
and packet rate reduction is achieved when integrating the adaptive prediction scheme into
the PD compression approach. At a similar subjective quality rating of 80 (compression
distortion below perception thresholds), an additional reduction in packet rates of 54% and
60% can be achieved by the planar and spherical surface models compared to the signal-
based haptic predictors, respectively.
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(a) Mean packet rate results.
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Figure 3.17: Experimental results for PD compression using signal-based and model-mediated pre-
diction (adapted from [25]). Integrated into the PD compression approach, the model-
mediated and the adaptive prediction scheme achieve best compression performance .
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3.2.3 Event-based Coding using Contact Models

During a TPTA session, the human OP often targets and follows known contact points in
order to navigate within the remote TPTA work space. Contact events provide important
haptic information about the geometry of the remote environment. But also tactile feed-
back being displayed during a haptic contact event allows for perceiving highly relevant
information. Wellman and Howe show that high-frequency acceleration profiles occurring
during the initial contact with objects allow us to perceive important information about sur-
face properties and impedance characteristics [191]. Ideally, displayed contacts in a TPTA
scenario provide the same real-world touch experience. Unfortunately, this is not the case
due to finite compliance of haptic display devices, system dynamics, network latency, etc.

The paradigm of event-based haptics (EVBH) proposed by Hwang et al. [115] and Kuchen-
becker et al. [129] addresses this issue. They present and validate the idea that discrete
events of remote contact with an object can be described by contact time and TOP velocity
which allows for displaying pre-computed contact force histories. In their work, the vibra-
tion waveforms arising out of the tapping task are modeled with an exponentially decaying
sinusoid whose parameters depend on the simulated material characteristics:

facc(t) = a|ẋs|e−btsin(2πft) (3.28)

where facc(t) is a single-DoF acceleration waveform produced by the initial contact with
the object, a|ẋs| is the attack amplitude which is a function of the magnitude of the contact
velocity ẋs and a constant a. For a given material, b is a decay constant matched to the
apparent decay of the waveform and f is the frequency of the attack portion of the wave
(in Hz). Experiments performed with real world objects show that the attack frequency is
typically a function of the contact stiffness. Okamura et al. (see [145]) further combine this
empirical vibration model with a standard virtual wall controller which improves the haptic
presentation of virtual stiff objects.

In addition, Kuchenbecker et al. present a technique for online identification and real-time
matching of high-frequency acceleration profiles during remote interaction with a TPTA sys-
tem [128]. During remote contacts, they extract the acceleration profiles by applying a high-
pass filter to the force signal configured with a cut-off frequency just above the low-frequent
tracking bandwidth. By taking the dynamics of the TOP into account, the high-frequent
acceleration vibrations can be obtained. At the HSI device, the parameterized acceleration
feedback is superimposed onto the closed-loop low-frequent tracking forces. The experi-
ments of the authors show improved haptic experience when the high-frequent contact ac-
celerations are portrayed in a TPTA system.

The concept of EVBH is also of great relevance in virtual haptic TPTA scenarios. Most con-
ventional haptic rendering algorithms for virtual environments ignore contact acceleration
feedback. Instead, they concentrate on displaying closed-loop quasi-static restoring forces to
the user which are computed according to physics models, such as the well known Hooke’s
law. These feedback forces are proportional to the depth of penetration of the haptic device
into the virtual object surface. As a result, the displayed contact forces mediate soft contacts
at best and do not provide a realistic feel of haptic interaction with a rigid object.

In addition to the challenges of sensing and displaying realistic haptic contact feedback,
the transmission and compression of haptic feedback signals during the initial contact event
is also challenging. As soon as the remote TOP touches an object, the initial force samples
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Figure 3.18: Illustration of the PD violations during contact events. High update rates can be ob-
served during the initial contact phase.

which are used to define the perception bounds in the PD compression scheme are of small
magnitude. Furthermore, the force signal tends to exhibit transient and high frequency sig-
nal characteristics which typically results in increased packet rates on the network, as shown
in Figure 3.18.

The concept of event-based contact coding discussed in this section (see also [2, 10, 48])
using local contact models addresses both the impaired realism of rigid haptic contacts and
the increased packet rates when applying PD compression on contact feedback signals. As
the typical contact period lasts from 10 to 100 ms, it is too short for incorporating any cogni-
tive human response. This observation can be exploited by deploying an open-loop haptic
contact model at the HSI for locally approximating and displaying contact forces during the
contact period. Hence, by locally rendering the initial contact forces at the HSI, the trans-
mission of high-frequency haptic signals over the network can be avoided while the realism
and quality of haptic contact feedback are simultaneously improved.

3.2.3.1 Proposed Event-based Contact Model

Figure 3.20 illustrates the proposed event-based coding scheme using contact models.
Whenever initial contact with the environment is encountered, an event-of-contact message
m is triggered which contains the model parameters for the local contact feedback render-
ing. During the short contact transient period, the transmission of the force-feedback signal
fs is substituted by locally approximated haptic contact feedback f̂s. To this end, high update
rates during the initial contact phase can be avoided (see Figure 3.18).

In addition, the previously discussed Wellman contact vibration model can be used to ren-
der realistic acceleration forces facc using (3.28). Figure 3.19 illustrates the desired position
ẋd
s , the commanded force fdm and the corresponding measured acceleration profile in ẍm

during the event of a contact. The acceleration shows the decaying high-frequency contact
vibrations during a remote contact event.
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Figure 3.19: Illustration of improving contact realism by superimposing acceleration forces during
contact events (reproduced from [2]). The top figure shows the trajectory of the haptic
interface point as a function of time. The dashed horizontal line indicates the virtual
object surface (object penetration occurs below this line). The middle figure shows the
calculated and commanded force signal with superimposition of event-triggered force
contact transients on traditionally rendered penetration-based feedback forces. The bot-
tom figure illustrates the measured acceleration of the haptic interface device.

In order to completely suspend the transmission of the remote force signal, the low-
frequency proportional feedback forces also need to be estimated. As these forces tend to
exhibit transient signal characteristics during the initial contact phase which later decays,
the rising period of a squared sine function (over [0; π2 ]) scaled by the initial contact velocity
ẋd
s has been found to be suitable for approximating the intensity of proportional force profile

during the transient period. This local approximation function of force intensity is described
by:

f I(t) = c · |ẋd
s | ·

[
sin

(
(t− 0.5)π

2N

)]2
for 0 ≤ t ≤ N (3.29)

where ẋd
s is the initial contact velocity, c is a constant analogous to the displayed stiffness

and t denotes the time during the transient period of duration N .
In single DoF TPTA scenarios, the direction of contact forces (assuming a flat wall-like

object) is constrained to be exactly opposite to the direction of approach for every interaction.
In contrast, in multi-DoF TPTA systems, the contact feedback can freely change direction
depending upon the nature of user interaction and the physical and geometric properties of
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Figure 3.20: Proposed architecture for event-based coding using contact models. As soon as contact
with the remote environment occurs, an event-of-contact message m is sent. During
the initial contact phase, haptic feedback is substituted with locally rendered contact
forces. This enables the reduction of high packet rates during the initial contact phase
and improves the quality of haptic contact feedback.

the object in contact. Particularly, static as well as dynamic friction significantly affect the
direction of force feedback [57, 160]. In order to tackle this challenge, the local contact model
needs to integrate the friction characteristics of the currently touched surface.

Typically, the direction of frictional forces is opposite to the direction of the surface slip and
their intensity is a function of the surface slip velocity and the applied contact force [160].
Consequently, to model the frictional forces, the orientation of the surface in contact needs
to be incorporated. Several techniques for obtaining geometric information of the remote
surface are known, as discussed in the previous Section 3.2.1 and Section 3.2.2.

In order to limit the amount of model parameters to be estimated and communicated, the
deployed friction model is simplified based on a few assumptions. During the relatively
short contact transient time period, the TOP is assumed to slide only along a short length on
a surface area of the remote object. Due to this restricted contact path, any surface asperity
is neglected and a locally planar surface structure is assumed. In addition, the static and
dynamic friction effects are assumed to be of comparable intensity.

The proposed friction model projects the contact velocity vector ẋd
s onto the assumed con-

tact surface with normal n. The direction of the projection vector is referred to in the follow-
ing as the direction of slip d. The corresponding friction forces are in a direction opposite to d,
and are applied to smoothly vary the direction of the estimated proportional feedback-forces
towards the surface normal n over period N . Hence, the proportional forces for 0 ≤ t ≤ N
can be approximated by:

f̂(t) = f I(t) ·n︸ ︷︷ ︸
proportional forces

+ d · |ẋd
s | ·d · − 1︸ ︷︷ ︸

frictional forces

for 0 ≤ t ≤ N/2 (3.30)

where the constant d has the physical meaning of a friction coefficient that adjusts the mag-
nitude of the frictional forces. This contact response behavior is illustrated in Figure 3.21.
The applied frictional forces lead to deceleration of the TOP on the object surface. Hence,
the corresponding force orientation approaches the direction of the surface normal of the
touched virtual object smoothly over time.
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Surface 
in Contact 

Contact-Point 

Figure 3.21: Illustration of local proportional force feedback approximation with friction compensa-
tion (adapted from [2]).

To integrate the concept of EVBH with the friction-based proportional force estimation, the
contact transient force signal facc given by (3.28) is superimposed onto the magnitude of the
proportional forces f̂ , as illustrated in Figure 3.22. After the contact period, there inevitably
occurs a mismatch between the local approximation and the subsequent force sensory data
received from the remote TOP. In order to avoid disturbing discontinuities arising from a
hard switchover between the local contact force estimation and the remote haptic signal, a
squared sinus crossfading window is applied to enable a smooth transition, as illustrated in
Figure 3.23.

Note that in the proposed EVBH-based contact coding scheme, the underlying control
architecture is assumed to bear the responsibility of ensuring system stability. Neverthe-
less, the approximated contact forces might add energy to the system which can impair
the system stability (see Section 2.1.3). However, due to the relatively short contact period
(≤ 100ms), the concept of event-based contact coding has shown to provide stable interac-
tion. Since the human in the loop acts as an intervening compliance, the limited additional
signal energy is typically not reflected back to the TOP device.

(a) Superimposition in 2D (b) Superimposition in 3D

Figure 3.22: Superimposition of contact transients onto proportional forces for the local approxima-
tion of haptic contact force-feedback signals with (a) two DoF and (b) three DoF (adapted
from [2]).
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Figure 3.23: Local generation and display of proportional forces during the contact phase (adapted
from [2]). A smooth transition between the locally approximated signal and the signal
received from the remote side is achieved by applying a crossfading window. This window
is trailed by forces which are received from the remote side with step-like artefacts due to
PD compression. Note that the update step-size variation in the signal profile depends
upon the instantaneous signal amplitude.

3.2.3.2 Experimental Evaluation

Perceptual tests have been carried out to investigate the performance of the proposed event-
based coding scheme using haptic contact models.

The user study is based on a total of twelve subjects ranging in age from 20 to 26, all right-
handed. Seven of them had never used a haptic device before. Some had used such a device
a few times before and one reported using it on a regular basis.

The experimental setup consists of the SensAble Phantom DesktopTM HSI device [163] used
to haptically interact within a virtual TPTA simulation rendered by the CHAI3D library [57].
The applied haptic sampling and control rate is 1000 Hz. The virtual workspace contains of a
simple touchable spherical object with a stiffness of 540N/mwhich attempts to model a solid
rigid object. During contact periods, frictional forces (with static and dynamic friction of
equal intensity) are rendered and displayed to the subjects. The configuration of the contact
model is empirically tuned and set to the following values: a = 4 N/m/s, b = 97 and f = 61
Hz. In (3.29) and (3.30), c is set to 4.2 N/m/s, d is set to 2.25 N/m/s. The duration of the
contact modeling is set to 30 ms. These parameters are hand-tuned to attribute a specific
quality and feel of touch to the virtual object.

In order to ensure that the subject responds only on the basis of his sense of touch, all
superfluous stimuli are removed from the experimental setting. The computer screen dis-
playing the virtual TPTA simulation is placed on an elevated platform towards the extreme
left while the Phantom is placed on the right so as to prevent visual observation of the hap-
tic device. The subjects are instructed to hold the Phantom stylus with a firm grasp and to
avoid touching the table with the other hand so as to prevent unintentional transmission
of contact vibrations. In addition, headphones playing music are used to mask the noise
emanating from the Phantom motors.
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In the experimental evaluation, four different configurations of the proposed compression
scheme are separately investigated:

• PD compression of proportional force feedback: In this configuration, closed-loop force
feedback signals are subject to haptic PD compression before being transmitted and
displayed to the OP. No high-frequency acceleration feedback is incorporated into the
force signals.

• PD compression with remote superimposition of contact acceleration forces: The Wellman
EVBH model is introduced to superimpose high-frequency acceleration feedback onto
the proportional forces during the initial contact period. The EVBH scheme is re-
motely applied (i.e. at the virtual TOP) to render realistic haptic sensory signals of
rigid contacts. Subsequently, the force signal is PD-compressed and transmitted. Its
high-frequency components are expected to trigger additional haptic signal updates
on the network. This configuration thus achieves improved contact realism at the ex-
pense of an increase in the number of packets on the haptic channel.

• PD compression with local superimposition of contact acceleration forces: In order to avoid
additional packets being triggered by remotely superimposed contact transients, the
EVBH contact model is shifted from the TOP to the local OP side to enable local model-
based transient rendering. The proportional force signal is efficiently transmitted by
applying PD compression. Hence, improved contact realism without additional net-
work load on the haptic channel is expected.

• PD compression with local contact acceleration rendering and local approximation to propor-
tional forces: Here, the performance of the local proportional forces approximation is
investigated, which allows for completely substituting the transmission of the remote
haptic force-feedback signal during the initial contact period. This enables further
packet rate savings on the network and pushes the data reduction performance be-
yond what is otherwise achievable by the PD compression scheme alone.

As in this experiment the focus is on the evaluation of model-based contact rendering,
no compression is applied to the position/velocity channel in the described test configura-
tions. However, the PD data reduction schemes can also be applied on the forward posi-
tion/velocity channel as shown in [98].

The experiment consists of two distinct phases; a training phase and evaluation phase. In
the training phase, the subjects are familiarized with the provided haptic interaction in the
virtual TPTA simulation. They are instructed to tap on the object by approaching it from dif-
ferent directions until they are comfortable with their movements in the virtual workspace.
In order to verify the proposed contact model, the subjects experience force-feedback with
and without contact acceleration forces and are asked to qualitatively compare between
these stimuli. They reported improved contact perception with respect to tapping on rigid
object surfaces in case of applied EVBH accelerations. In the next step, the subjects are ac-
quainted to the distortion that the PD compression scheme introduces. For this purpose,
force-feedback signals are displayed with extreme values of the PD parameter k (both for
configurations with and without contact transients). The subjects are instructed to remem-
ber haptic perceptions arising out of these training interactions so that he/she would be able
to identify the PD artefacts during the course of the actual experiment.

During the experimental phase, one of the previously described configurations is randomly
selected and applied along with randomly changing PD parameter values between 0% to
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30%. Meanwhile each setting is presented for about five to six seconds, corresponding packet
transmission rates are recorded during the time interval of being in contact with the virtual
object. In addition to the displayed test items, individual reference signals corresponding to
the applied configuration are presented. To this end, the experimental results reflect solely
the influence of the PD compression scheme on the subjective quality and does not inves-
tigate a comparison in quality between the configurations with and without EVBH contact
models applied. The subjects are given the ability to switch back and forth between the dis-
torted test configuration and corresponding reference signal. To this end, the impact of PD-
based disturbances on the perceived quality is investigated regardless of the applied contact
model. The subjects are then asked to subjectively assess the quality of the PD compressed
haptic feedback signal with respect to the undistorted reference signal. Depending upon the
degree of relative disturbance that the user perceives, a rating is obtained according to the
user rating scheme shown in Table 2.1 in Section 2.1.4.

3.2.3.3 Experimental Results

Figure 3.24(a) illustrates the mean packet rate results plotted against the applied PD param-
eter k for each of the four test configurations. It is expressed as a fraction of the total num-
ber of packets that would have been transmitted without PD compression being applied
(1 packet/sample transmission at 1000 Hz rate).

When remotely rendering contact transients, a marginal increase in packet rate of 4% can be
observed due to additional packet transmissions from superimposed EVBH high-frequency
signal information. In contrast, when locally approximating the proportional feedback dur-
ing the contact period, a gain in packet reduction of around 8-11% is obtained independent
of the applied deadband parameter (lowermost curve on the packet rate results). Here, the
only overhead is the transmission of model parameters within the event-of-contact trigger
messages.

The results of the subjective quality investigation are illustrated in Figure 3.24(b) showing
means and standard deviations of the subjective user ratings for the investigated configura-
tions. The presented results on subjective quality for a given k are based on a comparison
with the same configuration but disabled PD compression (k = 0%). It appears that the users
prefer the more crisp contact provided by the direct superimposition of contact transients.
The configurations with directly applied local and remote contact transient superimposition
have similar ratings.

For systems in which strong data reduction is necessary at acceptable but not disturbing
presentation of the force signal, the experiments reveal the configurations with local contact
acceleration to be preferable up to a deadband size corresponding to a k value of 20%. There-
fore, it outperforms the plain deadband configuration without any contact transient model
applied, which performs acceptably in terms of distortion for deadband sizes corresponding
to k values of 15%. This is particularly surprising, as it seems that the introduction of contact
transients conceals the artefacts of the perceptual PD compression scheme and therefore sup-
ports keeping introduced coding distortion below human perception thresholds, not only in
the transient region but also to some extent in the post-transient interaction region.

In the fourth test configuration, the proportional forces are substituted by the output of
the locally deployed contact model during the contact phase. Here, an acceptable subjective
quality result can be observed until a k of around 15%. Compared to this, the configurations
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with local and remote superimposition of contact transients achieve similar performance at
k = 20%. Simultaneously consulting both the mean packet rate results and the mean sub-
jective rating results allows for spotting points of best system performance, as marked in
Figure 3.24(a). The best performance is achieved with the fourth test configuration where
perceptual deadband coding with a k = 15% and locally deploying a multi-DoF contact
model is combined with proportional feedback substitution. Here, the packet rate is fur-
ther reduced from 28% (central curve) to 17% (lowermost curve) which results in a packet
rate reduction of 83%.

In summary, the results show that with contact acceleration feedback, the PD data reduction
scheme can operate with larger deadband sizes providing enhanced haptic data reduction
performance. When contact forces are locally approximated for substituting the remote hap-
tic signals, optimal performance is achieved at k = 15% on both result charts, making this
point of operation the best in terms of both data reduction performance and quality of hap-
tic force feedback. Here, an improved data reduction performance is observed as it pulls the
packet rate further down (from the central curve to the lowermost curve) by roughly 11%.
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(a) Packet rates for different test configurations as a function of the PD parameter k.
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(b) Mean and standard deviation bars of user ratings for different test configurations
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Figure 3.24: Experimental results for event-based coding using contact models (reproduced from [2]).
The results show that the integration of local contact models into the PD compression
scheme allows for improved compression performance and enhanced quality of haptic
force feedback.
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3.3 Perceptual Haptic Coding of Recorded Telemanipulation
Sessions

In many TPTA scenarios, the ability to record and store a haptic TPTA session is of great in-
terest. For instance, in highly complex TPTA scenarios such as on-orbit servicing or surgery
TPTA systems, recorded TPTA sessions can serve as important documentation resources of
performed work steps. Furthermore, the recording and replay of TPTA sessions are an im-
portant tool in teacher-student scenarios. As complex TPTA systems require experienced
and well trained OPs, the replay of recorded TPTA sessions can support skill-transfer and
training tasks. In addition, a subsequent analysis of a TPTA session enables the determina-
tion of the system performance and allows for detecting important system parameters. Once
haptic data has to be stored for posterior replay, the interest in compressing this kind of data
emerges.

In this section, the challenges of recording and playing back TPTA sessions are discussed.
In addition, a perceptual haptic offline compression scheme [17, 18, 86] is presented which
exploits the relaxed delay constraints in haptic offline signal processing.

3.3.1 Recording and Replay of Multimodal TPTA Sessions

In order to record a multimodal TPTA session, all involved modalities have to be syn-
chronously encoded and stored to a storage device. This allows for posterior replaying of
the telemanipulaton session by redisplaying the previously recorded media content.

3.3.1.1 Related Work

Most haptic playback systems presented in literature propose position guidance and imple-
ment a proportional-derivative position controller [62, 63, 71]. Here, the subject is kines-
thetically guided through the recorded motion by the haptic interface in order to support
the learning of complex movements and motion skills [75]. Similarly, Hemni et al. present
a virtual calligraphy system which allows for the recording of the position trajectories of a
teacher’s writing brush for subsequently displaying the expert’s data sets to a student [96].
The authors in [136] introduce haptic recording and playback in the context of a virtual hap-
tic museum, which enables virtual "museum visitors" to haptically explore virtual exhibits
by touching them. In addition, a comprehensive analysis on how sensorimotor skills can be
taught through haptics is presented in [83]. Burdea et al. discuss a virtual reality simulator
for the diagnosis of prostata cancer with integrated recording and playback functionality
for performance and training purpose [43]. The potential of haptic and auditory trajectory
playback as a method of teaching shapes and gestures to visually impaired people is inves-
tigated in [62, 63]. Alternatively, the authors in [157] propose using synchronized recordings
of the haptic signals together with a video recording from the expert’s viewpoint. During the
multimodal session replay, the user is guided along the recorded position trajectory through
virtual fixtures [156] while the recorded video stream is played back with dynamically ad-
justed speed according to the current user hand position.

However, these position guided haptic playback approaches have a major disadvantage.
Position guidance in the form of virtual fixtures or proportional-derivative position con-
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troller based directional forces occupy the motors of the HSI device. This means that dur-
ing the playback of recorded position information of the expert’s movements, the display
of guidance forces excludes the ability of simultaneously displaying recorded force feed-
back information. Similarly, the display of prerecorded force feedback signals through the
deployed haptic device does not allow simultaneously presenting force-feedback based po-
sition guidance. This haptic playback discrepancy is formally described as a control engi-
neering problem in [58].

The ability to perceive haptic force-feedback information, however, is especially important
in scenarios where information about the remote environment is presented best by the haptic
modality, such as surface roughness, friction, viscoelasticity, etc. In order to overcome the
playback discrepancy, Henmi et al. (see [96]) propose substituting competing haptic feedback
signals by displaying force feedback intensity in the visual feedback represented by circles
with radius proportional to the force magnitudes. Similarly, position information can be
visually displayed together with the current position of the student. In this way, the student
is able to follow the prerecorded trajectory of the teacher while perceiving force feedback
through the device. A similar approach can be found in [194], where a virtual cursor tracing
the expert’s path is shown in the visual feedback. The user must actively follow the cursor
to receive position feedback while the haptic device displays corresponding force feedback
information. Nevertheless, the required user activity during the playback process clearly
distracts the immersion into the recorded haptic session.

3.3.1.2 Proposed Recording and Replay System Architecture

In this section, a novel recording and playback scheme for interactive TPTA sessions is pre-
sented. It is based on the observation that the human perception system can associate the
recorded movements and actions of the TOP from the visual content and relate simultane-
ously displayed force feedback to it.

Figure 3.25(a) shows a schematic overview of the proposed recording scheme for visual-
haptic TPTA sessions. The human OP remotely controls the TOP and receives multimodal
sensory information captured by the TOP. During TPTA operation, the OP’s perception of
the orientation and the position of the TOP relates to the local interaction with the HSI in
conjunction with remotely sensed and locally displayed visual and haptic sensory informa-
tion. In order to enable the posterior playback of the recorded multimodal TPTA session,
each modality of the transmitted and displayed multimodal sensory information needs to
be captured and stored on a data storage device.

During the replay of a recorded TPTA session, the previously captured and compressed
multimedia content is decoded and redisplayed through the HSI as shown in Figure 3.25(b).
Here, the displayed force feedback originates from the session recording and no longer relate
to the user interaction. To provide a posterior immersion of the recorded multimodal TPTA
session, the human OP is explicitly instructed to resist the displayed contact forces referring
to the visually displayed haptic contact events. Hence, the user keeps the HSI at a fixed posi-
tion during the whole visual-haptic replay, preferably at the center of its workspace and only
perceives tactile contact forces. Experimental results in [17, 18, 40] show that an adequate
visual presentation of the movements of the operator successfully enables an imagination of
the performed actions, which is solely perceived through the presented visual information.
In other words, the position perception of the haptic tool becomes substituted by the visual
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(b) Playback of a multi-modal TPTA ses-
sion

Figure 3.25: Schematic overview of recording and playback of a visual-haptic TPTA session. Multi
modal feedback information to be displayed to the human OP is encoded and stored on
a storage device. During playback, the previously captured and compressed multimedia
content is decoded and redisplayed through the HSI.

feedback and supplemented with tactile contact forces that are displayed through the HSI,
independent of the current user hand position. In this manner, the users are able to immerse
into the previously recorded TPTA session.

3.3.2 Perceptual Offline Compression

When approaching haptic offline compression, one major difference in comparison to the
delay-critical real-time processing of haptic data can be noted. In offline compression, haptic
data is either sent from the haptic sensors to the recording device or played back from the
recording device to be displayed through the human system interface. Hence, haptic signals
are unidirectionally transmitted and, therefore, do not affect the stability of the delay critical
control loops anymore enabling pre- and/or post-processing of the corresponding haptic
data streams.

Particularly, the relaxed delay constraints enable:

• Block-based signal encoding: Offline compression schemes are no longer restricted to
process the signals sample by sample. Instead, a comprehensive investigation of the
signal at once or in parts in the time and/or frequency domain can be performed before
deciding which haptic information can be considered to be irrelevant for encoding and
therefore being discarded.

• Block-based signal decoding: The relaxed delay constraints also affect the design of the
decoder algorithm. To reconstruct signal components being discarded during encod-
ing, the decoder can reference not only previous but also future signal information.

• Predictive coding and entropy coding: Perceptual real-time communication mainly
focuses on the reduction of high packet rates on the haptic channel. In contrast, haptic
offline applications do not need to focus on end-to-end latency minimization. Here,
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a reduction of data is specifically addressed by applying predictive coding techniques
combined with entropy coding methods.

In the following, the PD compression approach presented in Section 2.3.2 is modified to ap-
ply to offline compression scenarios [17, 18]. In particular, a novel signal prediction approach
combined with entropy coding is integrated which incorporates knowledge about applied
perception bounds for additional entropy minimization. Furthermore, instead of extrapola-
tive (predictive) signal reconstruction as performed in low-latency decoding of PD-encoded
haptic signals, the offline decoding scheme uses an interpolation algorithm which takes fu-
ture haptic samples into account during the signal reconstruction process.

3.3.2.1 Deadband-based Differential Coding

The perceptual predictive compression approach discussed in Section 2.3.2 deploys two co-
herent haptic signal predictors; one at the sender and the other at the receiver side. As long
as no compressed haptic data is lost or corrupted, they keep running in parallel and pro-
vide consistent haptic sample estimates p. Only if the prediction error exceeds the applied
discrimination thresholds, the prediction error is considered to be perceivable and an up-
date needs to be encoded. Instead of encoding absolute values of haptic input samples h
during events of PD violations (as proposed in real-time PD compression), the PD differ-
ential compression approach encodes only the deviation between the predicted p and the
incoming haptic sample h, i.e., the prediction error d = p − h, which leads to reduced en-
tropy of the encoded haptic data. Additionally, further knowledge about the applied PD can
be exploited. As only samples violating the applied perceptual thresholds are considered
to be relevant for encoding, a certain knowledge about the prediction error d is available:
It is known that the norm of the prediction error must have exceeded the size of the cur-
rently applied PD. This observation can be exploited by transforming the prediction error
p to polar coordinates. Here, only the surplus of the vector norm of the prediction error
ΔI = |d| − {size of PD} needs to be encoded which leads to additional compression gain
due to reduced marginal entropy of ΔI . As the applied perception thresholds are also avail-
able during decoding, the encoded prediction error d can be fully recovered. This concept is
illustrated in Figure 3.26.

The proposed architecture for PD-based differential compression is shown in Figure 3.27.
During encoding, the encoder is fed with the current haptic sensory sample h together with
a predicted signal forecast p delivered by the predictor algorithm, as shown in Figure 3.27(a).
As long as the incoming signal lies within the PD of the predicted signal p, the human user is
expected to be unable to distinguish between the incoming and the predicted haptic samples.
During the state of dropping input samples, the time interval t is clocked, which is required
for later signal decoding. Correspondingly, as soon as an incoming haptic signal sample
violates the pending PD of the predicted sample p, a signal update u = d together with the
amount of previously dropped samples t are jointly encoded.

In the next step the proposed PD-based differential encoding technique is applied. To
this end, the prediction error vector d is transformed from the Cartesian domain d :=
(d1, . . . ,dD) with D dimensions into the polar coordinate system d := (ϕ1, . . . , ϕD−1, r).
As the norm of the prediction error d must have exceeded the currently defined deadzone,
the corresponding deadzone size is subtracted from the norm of the prediction error to de-
termine ΔI . Furthermore, the direction of successive prediction errors d typically shows a
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(a) Calculation of ΔI in single-DoF space.
Only the distance between the currently ap-
plied perception thresholds and the input
sample is encoded.

(b) Calculation of ΔI in three-DoF space
(adapted from [17]). The grey sphere indicates
the isotropic deadzone located at the tip of the
predicted vector p. Only the direction of the
prediction error d together with ΔI needs to
be considered for encoding to recover the in-
put vector h at the decoder.

Figure 3.26: Illustration of PD-based differential encoding. Only the surplus of the vector norm of
the prediction error ΔI = |d| − {size of deadzone} needs to be encoded which allows for
a reduction of the marginal entropy of ΔI .

strong temporal correlation, which allows for a second predictive coding stage for the polar
angles. This is mainly due to the fact that the orientation of the haptic sample vectors may
change slowly over time, so that the prediction process has to be updated several times in a
similar manner. By differentially encoding ϕ1, . . . , ϕD−1, this correlation is exploited.

The differentially encoded values Δϕj and ΔI are furthermore uniformly quantized with
individual quantization resolutions to be fed together with the time interval t to the entropy
encoder. By using an end-of-sequence symbol, the individual bit streams of ϕ1, . . . , ϕD−1,
Δr, and time intervals t can be sequentially linked up to finally build the encoded output bit
stream b. In order to keep the prediction process coherent during encoding and decoding,
the predictors at the encoder are fed with the quantized signal output d′.

3.3.2.2 Interpolative Signal Reconstruction

During PD-encoding, the haptic input signal is irregularly downsampled, which leads to the
desired strong data reduction. The decoder needs to recover the discarded signal informa-
tion and to upsample the haptic signals to their original constant sampling rate before they
can be forwarded to the haptic display devices (see Figure 3.27(b)).

As previously discussed, the decoding process also benefits from the relaxed delay con-
straints. In contrast to haptic online compression, the decoded sample vectors u can be
subsequently used as the supporting points of an interpolation algorithm to estimate the
discarded samples. A schematic illustration of the interpolative signal decoding process is
illustrated in Figure 3.28. The assumed perception thresholds (boundaries of gray zones) in
the upper graph are a function of the magnitude of the PD-defining haptic samples. Black
circles represent haptic samples violating the applied perception threshold and hence are
considered to be relevant for encoding. The lower graph illustrates the signal reconstruc-
tion process during decoding. Here, a first-order linear interpolation algorithm is used to
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Figure 3.27: Schematic diagram of the PD-based offline data reduction scheme including the pro-
posed signal prediction and deadband-based differential coding approach (reproduced
from [17]).

estimate the missing haptic samples.

This is in contrast to the real-time PD compression which performs an extrapolative signal
reconstruction in order to minimize its signal processing latency. The difference between
interpolative and extrapolative signal reconstruction is illustrated in Figure 3.29. The dots
illustrate the encoded haptic samples. Figure 3.29(a) shows the performance of extrapola-
tive signal reconstruction in online perceptual haptic compression. At each predictor update,
discontinuities in terms of sudden steps within the signal are observable. In offline compres-
sion, the encoded haptic signal samples can be used as supporting point of an interpolation
algorithm which leads to a smooth signal trajectory, as visualized in Figure 3.29(b).

3.3.2.3 Experimental Evaluation

The goal of the proposed haptic offline compression approach is to reduce the amount of data
without a noticeable impact on user perception. In particular, the PD parameter k as well
as the degree of quantization puts a strong impact on the perceived quality of the encoded
signal. To find points of optimal and maximized performance while maintaining a high
degree of transparency of the applied signal processing methods, an experimental evaluation
with human subjects has been conducted.

70



3.3 Perceptual Haptic Coding of Recorded Telemanipulation Sessions

Decoding 
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t 
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Figure 3.28: Principle of interpolative signal reconstruction (reproduced from [18]). Perceptually
irrelevant samples are discarded during encoding and estimated during decoding using
an interpolation algorithm.

For psychophysical evaluation, a virtual TPTA system is used. The remote environment is
simulated and contains a virtual scene consisting of a touchable sphere. On the operator side,
a SensAble’s PHANTOM Omni [163] HSI device is used to track the hand movements which
are mapped to the virtual TOP. As soon as it encounters contact with the three dimensional
sphere, corresponding force feedback is rendered and displayed to the human OP. During
the recording of the TPTA session, the visual and force feedback information received from
the remote (virtual) environment is synchronously stored on a local data storage device. This
allows for a posterior replaying of the TPTA session by redisplaying the previously recorded
multimedia content (see Section 3.3.1.2).

Prior to the experiment, a TPTA session of the described TPTA setup of 14.43 seconds in
length (14432 samples) is recorded. During the recording, several actions are continuously
performed to include all kinds of possible haptic force feedback characteristics, such as pok-
ing into the sphere from different directions, keeping contact while sliding along the surface,
etc. As in the test scenario, haptic signal samples with three-DoF and sensed with 32 bit float-
ing point precision are applied, the total amount of data of the unencoded haptic signal is:
3 DoF · 32 bits/smp · 14432 smp = 173184 bytes.

The recorded visual data stays unmodified the whole time, while the corresponding hap-
tic force feedback signal is modified by applying the proposed haptic offline compression
scheme with different parameters. To evaluate the influence of the involved PD parameter k
as well as the applied quantization resolution on performance and transparency of the pro-
posed algorithms, 18 different parameter sets are used to configure the encoding process.
That follows the generation of corresponding test signals for evaluation purposes. In six
parameter sets, the quantization step is completely deactivated to investigate the sole influ-
ence of the PD parameter k. To analyze the impact of the quantization on performance and
transparency, twelve additional parameter sets are applied, all with a PD parameter k set to
50% and varying quantization resolutions. The differentially encoded polar angles and ΔI

values (range 0.0-1.0N) are individually quantized with a different quantization resolution.
For the test items with partly or completely deactivated quantization, the entropy coding
stage and bitstream generation is also skipped due to missing quantizer indices.

Eleven subjects participated in the experiment. In the evaluation software, all versions of
the recording with differently encoded force feedback content are put in random order and
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(b) Offline signal reconstruction based on interpola-
tion.

Figure 3.29: Differences between online and offline signal reconstruction of PD-encoded haptic sig-
nals (reproduced from [17]).

presented in a blind manner. Additionally, the original unmodified TPTA recording is clearly
marked and made selectable for replaying. The subjects are able to switch freely between all
presented versions of the TPTA session recording without knowing the explicit encoding pa-
rameter set. For each presented recording, they are asked to rate the degree of perceived de-
viation between the unencoded and the lossy encoded haptic force feedback signals. Based
on their subjective perception, they assess the influence of the proposed encoding scheme
on a scale from 0 (strong perceived difference) to 100 (no perceivable difference), as shown
in Table 2.1 in Section 2.1.4.

The results of the conducted subjective evaluation show a strong data reduction ability
while keeping introduced coding artefacts within an acceptable range. In order to investi-
gate the impact of the PD parameter k on transparency and performance, six test items derive
from applying a varying PD parameter k while disabling the quantization step during en-
coding. The mean ratings and the amount of dropped input samples during encoding can
be seen in Table 3.2. The subjective mean evaluation ratings with respect to the PD percent-
age k are shown in Figure 3.30. The obtained results reveal an interesting system behavior.
Already at a small PD of 10%, more than 95% of the incoming sample vectors are dropped
during the PD analysis stage. The rate of dropped samples slowly increases even more up
to 99% at a PD parameter k of 95%. When investigating the mean evaluation ratings with
respect to the applied deadzone size, the test subjects report a high degree of transparency
of the applied signal processing steps. Up to a deadband percentage of 50%, the evaluated
mean ratings range between 80 and 90. This is in contrast to online PD compression, where
already small PD parameter values of ≤ 15 lead to noticeable artefacts (update steps) origi-
nating from extrapolative signal reconstruction. Most subjects report that the only difference
they could feel is a little reduction in force intensity of the force feedback signal. This can be
explained by the fact that in case of an already pending strong haptic stimulus, temporary
peaks in amplitude often fall within the deadzone and therefore are discarded during encod-
ing. By this means, the PD analyzer tends to slightly reduce the energy of the haptic signal,
leading to an impression of a globally reduced intensity of the decoded haptic information.
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Figure 3.30: Experimental results showing the mean subjective ratings with respect to the deadband
threshold parameter k (reproduced from [17]).

Additionally, the influence of the quantization settings on performance and transparency
is investigated. For this analysis, a PD of 50% is used for all test items as it shows optimal
performance in the previously described experiment. In a first step, the impact of quantiza-
tion noise on the representation of the polar angles is analyzed, followed by a quantization
of the encoded Δr norm values. The results are presented in Table 3.2. In both cases, the
disturbances induced by the quantizer have a similar impact. The results show that with
strongly reduced quantization precision, the mean subjective evaluation ratings are not sig-
nificantly affected, while the amount of encoded samples increases slowly. During encoding,
the quantization noise clearly affects the performance of the applied prediction algorithms,
as the prediction filter coefficients are redefined at each encoding instance according to the
encoded signal update information. Due to the quantized signal representation, bigger pre-
diction errors are more likely leading to an increased number of deadzone violations which
are generating additional haptic signal updates. Nevertheless, the results reveal acceptable
ranges for quantizing the differentially encoded polar coordinates to be 6-8 bits per angle
value and 2-4 bits per polar norm. When applying quantization on both the differential en-
coded polar angles and the PD-based norm values corresponding quantization indices are
forwarded to the applied adaptive arithmetic encoder for entropy encoding. The total length
in bytes of the entirely encoded haptic force feedback signal of the test item is also shown in
Table 3.2.

In the experiments, best performance in data reduction and transparency is achieved with
a PD of k = 50% when assigning 8 bits to the quantization of the polar angles and 4 bits for
the corresponding vector norm ΔI . Applying this configuration enables the compression of
the recorded haptic force feedback signal with 173184 bytes in length to a reduced size of
only 1819 bytes, which results in a data compression factor of about 95. In other words, the
proposed coding scheme is able to encode recorded haptic force feedback data streams with
only 0.0105% of the original data size.

73



3 Perceptual Compression of Haptic Signals

Weber Quantization Quantization Compression Encoded Subjective Bitstream

k ϕ r Samples Rating (bytes)

10 % off (float) off (float) 96.4 % 519 85.5 -

30 % off (float) off (float) 98.0 % 288 87.2 -

50 % off (float) off (float) 98.4 % 231 82.7 -

70 % off (float) off (float) 98.7 % 187 67.7 -

90 % off (float) off (float) 98.9 % 158 46.1 -

95 % off (float) off (float) 99.0 % 144 29.4 -

50 % off (float) 8 bit 98.4 % 228 82.3 -

50 % off (float) 6 bit 98.3 % 237 84.5 -

50 % off (float) 4 bit 98.2 % 259 85.0 -

50 % off (float) 2 bit 97.8 % 310 85.0 -

50 % 8 bit off (float) 98.4 % 226 81.5 -

50 % 6 bit off (float) 98.2 % 247 84.0 -

50 % 4 bit off (float) 98.2 % 259 84.0 -

50 % 3 bit off (float) 97.8 % 304 77.5 -

50 % 6 bit 2 bits 97.7 % 319 75.5 1585

50 % 6 bit 4 bits 98.1 % 268 77.5 1511

50 % 8 bit 2 bits 97.8 % 318 88.8 2045

50 % 8 bit 4 bits 98.2 % 257 88.5 1819

Table 3.2: Experimental results of the perceptual haptic offline compression scheme (reproduced from
[17]). The influence of the quantization resolution on the encoding performance and the
perceived quality can be observed.
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3.4 Theoretical Analysis of Perceptual Deadband Coding

In the previous sections, several contributions to haptic online and offline compression have
been presented. In this section, the PD compression scheme is further analyzed from a the-
oretical point of view. The presented mathematical framework allows the iterative determi-
nation of the signal statistics of the update behavior for a random input signal model. More
specifically, a stochastic Gaussian first-order random walk model is used to simulate hap-
tic signals and mathematically determine the relationship between the PD parameter k and
its combined transmission rate savings. In the following, the PD compression approach is
investigated in terms of an adaptive sampler.

The presented research work in this section has been conducted in cooperation with Dr. Pe-
ter Hinterseer and Prof. Subhasis Chaudhuri [11, 16, 97].

3.4.1 Perceptual Deadband Sampler

The PD compression scheme using perceptual bounds (see Section 2.3.2) can be mathemat-
ically modeled as an adaptive sampling process. In contrast to regular sampling where the
amplitude of a continuous signal is measured at a fixed rate, the PD sampler samples the
input only if a change in signal is considered to be perceivable according to pending percep-
tion thresholds. This leads to a non-uniform or adaptive sampling process. In accordance
with the PD compression approach, the PD sampler investigated in this section aims to select
only perceptually relevant samples which lead to the desired perceptual lossy compression.

In the following, the method of operation of the zeroth-order PD compression algorithm is
mathematically described (see Section 2.3.4.1).

A discrete single-DoF haptic input signal h can be defined as:

hi ∈ (−∞,+∞) (3.31)

where i is the sequence number of a sequence of discrete input samples.
The output signal of the PD sampler ĥi is generated by the following rules:

ĥ1 = h1 (3.32)

ĥi =

⎧⎨
⎩ ĥi−j if |hi−ĥi−j |

|ĥi−j | < k

hi else
where i > 1 (3.33)

and
ĥi−1 = ĥi−2 = · · · = ĥi−j = hi−j (3.34)

where j samples back in discrete time, when the last threshold violation took place. The PD
parameter k controls the applied perception threshold based on Weber’s Law of the JND (see
(2.8) in Section 2.2.2). The sample hi−j is called the reference value from now on.

Based on the PD parameter k, the corresponding PD bounds are defined by:

PD interval W(ĥi) =

{
[ĥi(1− k), ĥi(1 + k)] if ĥi ≥ 0

[ĥi(1 + k), ĥi(1− k)] if ĥi < 0
(3.35)
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Note that the size of the PD bound only depends on the magnitude and not on the sign of
the input value of the haptic sample. This leads to symmetry at the origin which allows for
some simplifications, such as focusing on positive sample values in the upcoming deriva-
tions.

3.4.2 Stochastic Input Model for Haptic Signals

Haptic signals are influenced by many highly nonlinear factors and physical properties of
the human operator, the TPTA system and the remote environment. Accordingly, the de-
sign of a stochastic model for simulating the trajectories of haptic signals in TPTA systems
is a challenging and complex task. Nevertheless, some important characteristics of haptic
signals in TPTA systems can be observed. Firstly, the haptic signals mostly exhibit low fre-
quency signal characteristics. Especially during free space motions, the inertia of the human
body and the haptic devices leads to smooth and relatively slow changing signal trajectories.
Therefore, adjacent haptic signal samples are typically strongly correlated. Only during the
events of contact with the remote/virtual environment, the haptic signal typically shows a
transient signal behavior due to the sudden force feedback and/or sudden change in veloc-
ity [15, 128, 129, 191].

These signal trajectories show a certain similarity to so-called "random walks" known from
the field of stochastic processes. To mathematically simulate haptic signals with similar char-
acteristics, a first-order autoregressive (AR) random process is chosen, which is closely re-
lated to random walk models.

A first-order AR random process for modeling haptic signal input can be described as:

h1 = η (3.36)
hi = θhi−1 + η where i > 1, |θ| ≤ 1 (3.37)

It implements the regression of the output signal on its own past values. By these means,
the AR coefficient θ influences the degree of correlation in the output signal and can be used
to adjust it to the characteristics of observed haptic signals. The random increment variable η
is an independently distributed random variable. Hence, at every time instance, the random
process refers to a fraction θ of the previous signal output which is added to the outcome of
a real-valued random variable η. If the coefficient θ equals one, it results in a classic random
walk / Wiener process. If θ equals zero, it reflects a process of order zero, i.e., an independent
and identically distributed (i.i.d.) random signal.

3.4.3 Theoretical Analysis

At each time i, the PD sampler tests if the human is able to perceive the change in the signal
amplitude. The signal sample hi lies either within the PD defined by ĥi−j , i.e., hi ∈ W(ĥi−j)

or not, i.e., hi �∈ W(ĥi−j). In case of a PD violation, the output of the PD sampler adapts
to the current sample amplitude and, consequently, the applied perception thresholds are
redefined. To this end, the perceptual evaluation affects the output of the PD sampler in a
non-linear manner and puts an impact on future PD bound evaluation results. To model
these non-linear dependencies, a binary tree structure is built to derive the conditional prob-
abilities of a particular sampler output value ĥi with respect to a previously occurred PD
violation/compliance event history s (see Figure 3.31).
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Figure 3.31: Schematic diagram of the proposed binary tree structure. Each node represents a con-
ditional probability distribution function f(u|s), which represents the probability of the
occurrence of a specific event sequence s resulting in a particular output sample u.

Starting at the root of the binary tree at h1, the conditional probability distribution func-
tions f(ĥ|s) are sequentially determined. They address the probability of occurrence of a
specific event sequence s resulting in a particular output sample ĥ. The first incoming sam-
ple initializes the PD -based perception thresholds W(h1) and leads to a first output sample
ĥ1 = h1. For sample h2 it is either possible to lie within the PD of ĥ1 or not. These two pos-
sibilities have to be considered individually and therefore constitute the first two branches
of the tree. This approach enables the observation of all possible event sequences of previ-
ously occurred PD violations or PD compliances where the path back to the root of the tree
represents a specific PD test sequence s. All nodes in the binary tree refer to corresponding
conditional density distribution functions. In the following, the notation of the sequence s
refers to either being in compliance with the respective PD (0) or not (1). Accordingly, the
length of the sequence denotes the time instance i of the input sequence, which corresponds
to the depth of the binary tree.

The binary tree structure considers all possible event sequences affecting the output distri-
bution as well as the update rate behavior of the PD sampler. Integrating f(ĥ|s) over ĥ at
node s results in the probability of the occurrence of a specific PD event sequence s:

Pr[s] =

∫ +∞

−∞
f(ĥ|s) dĥ (3.38)

The overall probability that a PD bound violation occurred at time i consists of all condi-
tional probabilities referring to a PD violation event at tree depth i. As every node within a
certain tree level describes an individual state of the Weber sampler, the conditional proba-
bility functions within a particular depth level of the binary tree have to be independent from
each other with respect to the sequence argument s. This enables the union of corresponding
conditional probabilities and, therefore, the determination of the overall probability of a PD
violation event:
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Pr{Bound violation at time i} =
∑

s={0,1}i−1{1}

∫ +∞

−∞
f(ĥ|s) dĥ (3.39)

with {0, 1}i−1{1} indicating any binary sequence of length i where the last bit is equal to 1.
In a similar manner, the overall probability of a PD compliance at time i can be determined.
By taking into account any binary sequence of length i where the last bit is equal to 0, we are
able to calculate the overall probability of a PD compliance at time i:

Pr{Bound compliance at time i} = 1− Pr{Bound violation at time i} (3.40)

=
∑

s={0,1}i−1{0}

∫ +∞

−∞
f(ĥ|s) dĥ

Note that the probability of a particular PD sampler output value ĥ is influenced by the PD
event sequence s. This means, although the applied random input model is generated by a
Markov process according to (3.36), the corresponding probabilities of the signal output of
the PD sampler at various nodes of the proposed binary tree structure do not constitute a
Markov chain. Correspondingly, one has to travel from the root node to the given node to
compute the probability of that particular state. Processing the nodes backwards towards
the root by taking conditional density functions of the sibling nodes into account in order to
determine the distribution function at a parent node is also not possible.

f(ĥ|s{0}) + f(ĥ|s{1}) �= f(ĥ, s) ∀s ∈ {0, 1}i (3.41)

This means the mathematical analysis has to start at the root of the binary tree propagating
to the child nodes in order to consider the conditional density functions f(ĥ|s) of all possible
PD bound event sequences. In the following, a method to iteratively derive f(ĥ) to finally
investigate the PD sampling behavior with respect to its update rate is presented.

3.4.3.1 Initialization

The first signal sample h1 needs to be sampled, as it defines the initial PD bounds. Hence,
the first output sample is ĥ1 = h1 which defines the PD bound W(ĥ1). The probability
density functions of h1 and ĥ1 have to be identical fĥ

1

= fη. This distribution is used to

initialize the conditional probability distribution function at the root node: f(ĥ|{1}) = fη(ĥ).
From there on, the conditional density distribution functions of its siblings can be iteratively
determined and, consequently, all future event sequences s of the PD evaluation procedure
can be systematically taken into account.

3.4.3.2 Perceptual Deadband Compliance

Whenever a PD compliance event occurs, the change in signal is considered to be too small
to be perceivable. Therefore, the internal PD sampler state is maintained and its output does
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Figure 3.32: Illustration of finding an acceptable value range λ1 for the random summand η to assure
that the AR process output continuously stays in compliance with the currently defined
PD bound. The center of λ1 is shifted by δ = ĥi − θhi. The size of λ1 corresponds to
W(ĥi)

not change. Only at the event of a PD violation, the sampler state is updated to the current
input sample hi and redefines the assumed human perception boundaries. Hence, every
sampler state therefore has a certain "survival" probability until becoming updated and re-
placed by an input value. To investigate the effect on the conditional density distribution
functions during a PD bound compliance event, the probability of the PD sampler state not
being replaced by the current input sample is analyzed.

A PD violation happens at time i at PD event sequence s = p{1} with previous PD event
history p, which leads to a redefinition of the PD sampler state (ĥi = hi). The distribution
of the output value ĥi is at this point identical to the distribution of the current input value
hi. Accordingly, the problem can be narrowed to the question: What is the probability of j
successive input samples falling into the deadband W(ĥi):

Pr
[
hi+1, . . . , hi+j ∈ W(ĥi)

]
=?

A deadband compliance event at time i+ j is only assured if the outcome of the AR process
contains appropriate sample values within a certain interval λ. As the regression of previous
sample output by the autoregressive factor θ must be taken into account, the influence of θ
has to be mapped to λ, which provides valid summands η. The interval λj is defined by:

λj =
{
η|ĥi − θhi+j−1 − kĥi ≤ η ≤ ĥi − θhi+j−1 + kĥi

}
(3.42)

In Figure 3.32 and Figure 3.33, the finding of the interval λ and the influence of the au-
toregression factor θ are illustrated. During successive PD compliance events, the intervals
λ1 . . . λj are all of the size of the PD W(ĥi). However, the center of each λ shifts accordingly
to the random signal input hi+1 . . . hi+j and the autoregression factor θ. The probability of
obtaining a valid summand from the random variable η can be derived by partially integrat-
ing over fη within the PD ensuring range λj :

Pr{η not inducing a bound violation at step i+ j} =

= Pr{η ∈ λj}
= Pr{(ĥi − θhi+j−1)− kĥi ≤ η ≤ (ĥi − θhi+j−1) + kĥi}

=

∫ (ĥi−θhi+j−1)+kĥi

(ĥi−θhi+j−1)−kĥi

fη(v) dv (3.43)
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Figure 3.33: Illustration of possible signal trajectories and value ranges λ for the random summand
η leading to a PD compliance during a period of j samples with autoregression factor
θ = 0.5.

In case of multiple successive deadband compliance events, these dependencies require
taking all possible signal trajectories of future AR process output values into account which
do not violate the PD during an interval of j samples. In other words, the probability of
"survival" of a certain PD sampler state ĥi during a period of j samples consists of the con-
ditional probability of occurrence of sampler output value ĥi with event history s = p{1}
multiplied with nested partial integrals of the probability density function fη of the random
variable η over the corresponding intervals λ1, λ2,. . .λj :

f(ĥi+j |s{0}j) =
= f(ĥi+j |s) ·

∫
v1∈λ1

fη(v1)

∫
v2∈λ2

fη(v2) · · ·
∫
vj∈λj

fη(vj) dvj . . . dv2 dv1 (3.44)

= f(ĥi+j |s) ·
∫ ĥi+j−θĥi+j+kĥi+j

ĥi+j−θĥi+j−kĥi+j

fη(v1)

∫ ĥi+j−θ(θĥi+j+v1)+kĥi+j

ĥi+j−θ(θĥi+j+v1)−qhi+j

fη(v2) · · · dv

The proposed procedure is illustrated in Figure 3.33. Starting at the event of a PD violation,
the discussed iterative method considers the influence of multiple PD bound compliance
events on the development of corresponding conditional probability functions within the
binary tree. It allows the definition of the conditional density function f(u|p{1}{0}j) by
referring to the conditional density function f(u|p{1}) while recursively investigating all
possible signal trajectories staying in PD compliance. For every additional PD compliance
event, an additional nested integral is necessary to determine the conditional probabilities.

3.4.3.3 Perceptual Deadband Violation

If an incoming sample hi violates the currently defined PD , the change in signal has to
be sampled, which leads to an adoption of the incoming sample ĥi = hi. To determine
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ĥi+j
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Figure 3.34: Illustration of possible signal trajectories and value ranges λ for the random value η
ensuring a PD compliance during a period of j − 1 samples, followed by a PD violation
event at time i+ j (θ = 0.5).

the corresponding conditional probability function f(ĥi|s) at the event of a PD violation
described by a PD event sequence s = p{1}{0}j−1{1} with history p, the derivation has to
be approached from a different perspective.

In contrast to the analysis of PD compliance events, the output sample ĥi does no longer
directly refer to a fixed value defined in the past. This is due to the current update event
ĥi = hi at time i. Hence, all possible signal trajectories generated by the AR process must be
considered, which finally result in a particular bound violating sample value hi �∈ W(ĥi−j).
The PD bound to be violated has been defined during a previous violation event at time i−j
with PD event sequence s = p{1}. The binary tree model helps to following the path back to
the root node until the first node referring to a PD bound violation event is reached, i.e., its
corresponding conditional distribution function f(ĥi−j |p{1}).

In order to investigate all possible AR process signal trajectories which are j − 1 times in
compliance with the PD bound {hi−j+1, · · · , hi−1 ∈ W(ĥi−j = hi−j)} followed by a final PD
violation event at time i, i.e. {hi �∈ W(ĥi−j)}, the value range within ĥi−j needs to be known
within which samples define a deadband that is violable by the current input sample hi.

As this signal range is disjunctive from the interval within which input samples are in
compliance with W(ĥi−j), this derivation can be simplified by focusing in a first step on
possible sample values of ĥi−j , which comply with hi ∈ W(ĥi−j).

ĥi−j(1− k) < hi < ĥi−j(1 + k) (3.45)
hi

(1− k)
> ĥi−j >

hi
(1 + k)

(3.46)

For a particular input sample hi, (3.46) describes the interval [ hi
(1+k) ;

hi
(1−k) ] within which

ĥi−j defines a PD that cannot be violated by the current input value hi. Accordingly, as-
suming hi lies outside that interval, it must violate the corresponding perception threshold
W(ĥi−j). Hence, every sample value of ĥi−j assuring ĥi−j �∈ [ hi

(1+k) ;
hi

(1−k) ] is a possible can-
didate to reach hi at time i under the discussed assumptions. In line with the PD bound

81



3 Perceptual Compression of Haptic Signals

compliance analysis, the consideration is in the following a PD bound defined at time i− j,
which stays active during the following j−1 input samples until it becomes violated at time
i. To include the event of the final deadband violation into the analysis, the random value
η within the AR process is assumed to be exactly δ = hi − θhi−1 at time i, which happens
with probability fη(δ). This assures that the assumed signal trajectories of the autoregressive
input signal reach the destination value hi = ĥi in the last step and therefore trigger a PD
bound violation. The corresponding conditional density distribution function for the tree
node s = p{1}{0}j−1{1} can be therefore written as:

f(ĥi, p{1}{0}j−1{1}) =

=

∫ ĥi
(1+k)

−∞
fη(u)︸ ︷︷ ︸

u �∈W(ĥi)

∫
λ1

fη(v1) · · ·
∫
λj−1

fη(vj−1)︸ ︷︷ ︸
hi−j+1,...,hi−1∈W(u)

· fη(hi − vj−1︸ ︷︷ ︸
hi �∈W(u)

) dvj−1 . . . dv1 du

+

∫ +∞
ĥi

(1−k)

fη(u)︸ ︷︷ ︸
u �∈W(ĥi)

∫
λ1

fη(v1) · · ·
∫
λj−1

fη(vj−1)︸ ︷︷ ︸
hi−j+1,...,hi−1∈W(u)

· fη(hi − vj−1︸ ︷︷ ︸
hi �∈W(u)

) dvj−1 . . . dv1 du (3.47)

This procedure is illustrated in Figure 3.34.

3.4.4 Experimental Evaluation

In the following, the analytical derivations are compared to extensive simulations of the PD
sampler with a numerical solution of the aforementioned formulas. In the experiments, the
random increment η is a normally distributed random variable with variance 1 and zero
mean:

h1 = η

hi = hi−1θ + η where η ∈ N (0, 1); i > 1 (3.48)

Due to the high computational complexity of numerically solving the nested integrals, only
the conditional density functions for the first five tree levels of the binary tree structure are
sampled at intervals of 0.02 within the range of −6 to +6 for different configurations of au-
toregression factors θ and PD parameters k. To determine the probability of a PD bound
violation event at time instance i, the conditional density functions up to tree level i (2i bi-
nary tree nodes) are numerically evaluated in order to calculate the overall probability of a
PD bound violation using (3.39). How strongly different parameter sets affect the outcome of
the experiments is illustrated in Figure 3.35. When applying different parameter configura-
tions, varying conditional density distributions of the Weber sampler’s signal output can be
observed. The analytical derivation (black lines) and the simulation (grey line) are in perfect
agreement.

The results of our conducted experiments are shown in Figure 3.36. The four plots illustrate
the analytically derived probability of a deadband sampler update event for values of k
from 0.1 to 0.9 for the first five steps in the input sequence and corresponding simulation
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Figure 3.35: Examples of conditional density functions f(ĥ|s) for different configurations of the PD
parameter k, the autoregression factor θ, and the PD event sequence s.

results. Although a strong agreement can be observed, the slight deviations for steps later
in the sequence originate from the fact that 2i−1 discretely sampled and recursively derived
conditional density functions, each with some error coming from the finite resolution of the
value axis, have to be summed up.

The results show that the displayed probabilities quickly converge to a steady state. This
state represents the average probability of a PD violation event after processing an infi-
nite number of input samples. Especially for small values of the autoregression coefficient
and/or higher values of the PD parameter, this state is almost reached after the very first
steps in the sequence. For θ = 1, the applied random input process equals a random walk
model with unbounded signal evolution. Hence, the probability of a PD bound violation
is asymptotically converging to zero as the variance increases with every step of the input
sequence. Figure 3.36(d) shows the first five steps of the strictly monotonic decreasing prob-
ability of the PD bound violation.

Although the applied random walk models generate at first glance similar signal trajecto-
ries compared to recordings of haptic signals within real-world telepresence experiments,
the obtained update rates from the analytical derivation differs from typical real-world hap-
tic telepresence experiments. For instance, applied on a haptic force-feedback signal, haptic
PD compression is able to reduce the amount of samples considered to be necessary for
transmission by approximately 90% (see Section 2.3). This difference mainly originates from
the huge amount of complex non-linear factors based on physical properties of the remote
environment and the arbitrariness of the human operator’s actions which are not reflected
by the normally distributed random variable used in the experiment. However, the pre-
sented theoretical work successfully reveals how the haptic PD compression approach can
be investigated from a theoretical point of view and it provides a solid framework for the
analysis of more complex stochastic input signal models.
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Figure 3.36: Simulation (black lines) and analytical derivation (black crosses) of the probability of
a perception threshold violation for different configurations of autoregression factors θ
and PD parameters k. The slight deviations with higher time originate from the limited
resolution capacity when numerically solving the nested integral formulae. The figures
show that the average probability that a new input value violates the active PD quickly
tends to reach a steady state (steady state probability).
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3.5 Chapter Summary

In this chapter, several contributions to perceptual haptic online and offline data compres-
sion have been presented. In the following, their concepts are briefly summarized.

Perceptual haptic data compression relies on a precise model of human haptic perception.
Research in psychophysics reveals that the perception of artefacts arising from PD data re-
duction is influenced by the direction of force feedback. These psychophysical findings sug-
gest the construction of a direction-dependent deadzone for the perceptual compression of
haptic signals. Deployed in the PD compression scheme, an improved compression perfor-
mance of 26.7 % compared to the isotropic PD compression scheme can be observed.

Similarly, research in psychophysics shows that active movements of the human OP have a
significant impact on the haptic force feedback discrimination ability. Particularly, increased
perception bounds are discovered during active movements of the OP’s hand which can
be exploited in the context of perceptual haptic data compression. Conducted experiments
reveal that integrating velocity-adaptive PD into the predictive haptic compression approach
leads to greater compression without affecting the task performance and transparency of the
TPTA system. Specifically, the experimental evaluation of the velocity-adaptive PD scheme
show an additional transparent packet reduction ability of 30% compared to the isotropic
PD model.

Furthermore, several architectures for integrating environment models into perceptual
haptic communication schemes have been proposed. In model-mediated control, the haptic
model parameters are typically estimated and transmitted at a high rate over the haptic chan-
nel in order to minimize possible inconsistencies between the remote environment and the
locally applied haptic feedback model. To reduce the high packet rates in the communication
system, a model verification method has been developed which is able to detect perceptually
relevant model updates. Psychophysical experiments performed on a real-world TPTA sys-
tem show that the model-mediated compression approach leads to improved transparency
and compression performance compared to the PD compression approach. The results fur-
ther demonstrate that already at a small PD parameter k = 5%, an improvement of 75% in
transparent packet rate reduction can be achieved.

Similarly, the concept of model-mediated prediction has been presented which extends the
class of signal-based haptic prediction methods. It estimates future haptic feedback based
on current and previous contact events of the TOP with the remote environment. Here, the
absolute contact location of the TOP endeffector is typically not available and needs to be es-
timated by taking the impedance of the TOP controller and the corresponding force sensory
information into account. When integrated into the perceptual predictive compression ap-
proach, the conducted experiments reveal an improvement of 31% in packet rate reduction
performance compared to PD compression using linear signal-based haptic prediction.

Additionally, the concept of model-based coding of haptic contact events has been pro-
posed. The transmission of haptic feedback during contacts with the remote environment
is challenging due to increased haptic update rates. By transmitting only a single event-
of-contact message, a local contact model can be applied to substitute the transmission of
remote haptic signals with locally rendered contact feedback. Furthermore, by integrating
the concept of Event-based Haptics, the quality and realism of displayed contact feedback can
be significantly improved. Combined with the PD compression approach, the high packet
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3 Perceptual Compression of Haptic Signals

rates during the initial contact phase can be avoided which further improves the packet rate
reduction performance by 28% .

In addition to the delay critical real-time perceptual communication of haptic signals, the
development of perceptual offline compression algorithms has also been addressed. In this
context, a TPTA session recording and playback scheme has been presented, which allows
the replaying of a prerecorded TPTA session without the need for active involvement of the
user. Once haptic data needs to be stored on a storage device, methods for haptic offline
compression become relevant. Interestingly, haptic offline compression algorithms can be
design in a fundamentally different way to haptic online compression schemes. Due to re-
laxed delay constraints, the application of block-based signal processing and entropy coding
techniques become feasible. To this end, the concept of deadband-based differential coding
applied to the successively encoded prediction errors has been presented. It allows the ex-
ploitation of knowledge about pending perception bounds enabling an additional entropy
minimization. Conducted experiments demonstrate a strong data compression ability of
the presented haptic offline compression scheme while keeping introduced coding artefacts
within an imperceptible range.

Furthermore, to investigate the PD compression approach from a theoretical point of view,
the concept of a PD sampler has been proposed. The presented theoretical framework al-
lows the analytical analysis of the gain in update rate savings in accordance with a stochas-
tic model of haptic signals. Specifically, a first-order autoregressive input model is used to
mathematically simulate the performance of perceptual haptic data compression. The ana-
lytical derivations show a strong agreement with the simulation results of the PD sampler
performance.
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4 Haptic Communication and Coding
Architectures

Perceptual haptic data compression discussed in the previous chapters successfully ad-
dresses the challenges of high packet and high data rates on the haptic communication
channel. Its compression performance, however, depends on the properties of the hardware
components, the communication network as well as the physical properties of the remote
objects being touched as they significantly influence the haptic signals that are exchanged
between the OP and the TOP.

This chapter focuses on the integration of the developed perceptual haptic data compres-
sion methods into the haptic control and communication systems from a combined signal
processing, control engineering and networking point of view. In particular, the impact of
communication uncertainties such as latency and packet loss on the haptic communication
channel are discussed. Additionally, a flexible framework leveraging Internet session and
presence protocols is presented in order to enable interoperability among heterogeneous
TPTA systems and platforms.

In real-world telepresence scenarios, communication latency on the haptic channel is of-
ten not avoidable due to physical propagation time, protocol, network congestions, etc. In
order to solve the stability issues of time-delayed communication, the wave variable con-
trol approach can be applied which, however, excludes the applicability of perceptual haptic
compression methods. To this end, a modification of the wave variable control scheme is
presented in Section 4.1 which takes advantage of the stabilization ability of the wave vari-
ables while allowing for the application of perceptual communication schemes on the haptic
channel.

In addition, the issues of bit errors or packet loss on the haptic channel are discussed in Sec-
tion 4.2 which presents a low-delay packet loss compensation scheme for perceptual haptic
communication. It employs a probabilistic model of the receiver to adaptively control the
amount of redundancy required to compensate for packet loss on the haptic channel.

Furthermore, an Internet-based communication framework for TPTA session control is pre-
sented in Section 4.3 which takes advantage of synergies between the Internet-based telecon-
ferencing technology and the TPTA system domain. This framework enables flexibility and
interoperability among different types of TPTA systems and provides standard interfaces for
the developed perceptual communication and control methods.
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4.1 Perceptual Haptic Compression with Time-delayed
Communication

Latency on the haptic communication channel impairs the stability of the global control loop
closed between the HSI and the TOP [29]. The previously discussed haptic compression
and processing techniques address this issue by keeping introduced time delay as short as
possible. However, communication latency on the haptic channel is often not avoidable,
particularly in large-distance TPTA scenarios [188].

The scattering transformation presented in [29], later referred to as the wave variable (WV)
approach in [142], has become a popular control approach for addressing the stability is-
sues of time-delayed communication. It provides a control framework that ensures stability
of the global haptic control loop under the assumption of an arbitrarily long but constant
time delay on the communication channel. It is based on the concept of passivity (see Sec-
tion 2.1.3.1) which proves system stability as long as all components of the TPTA system
dissipate or store more energy than they create. By transmitting so called wave variables in-
stead of haptic velocity and/or force signals (power conjugated signals), the communication
subsystem is proven to behave in a passive manner. These wave variables represent lin-
ear transformations of the local and remote haptic sensory data. Hence, the transmission of
mathematically combined velocity and force signals makes it difficult to apply perceptual
arguments for data compression in the wave variable domain. Furthermore, research results
presented in [108] indicate that perceptual resolution limits like the Weber fraction do not
directly apply to the wave domain.

In this section, a novel control scheme is presented which allows the combination of per-
ceptual haptic data compression with wave variable-based control for time-delayed TPTA
scenarios. In addition, a modified signal reconstruction approach is presented which guar-
antees passivity during the decoding process of PD compressed signals. The presented work
has been conducted in cooperation with Iason Vittorias [24].

4.1.1 Wave Variable Control

Figure 4.1 illustrates the wave variable control architecture proposed by [142]. Instead of
the exchange of the velocity signal ẋm and force feedback fs, the wave variables um (on the
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Figure 4.1: Signal diagram of the wave variable approach.
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forward path) and vs (on the backward path) are transmitted. They are calculated by

um =
1√
2b

(fdm + bẋm), us =
1√
2b

(fs + bẋd
s),

vm =
1√
2b

(fdm − bẋm), vs =
1√
2b

(fs − bẋd
s), (4.1)

where b ≥ 0 defines a characteristic impedance which represents a tuning parameter for con-
trolling the dynamics of the TPTA system.

By taking the two-port network theory into account (see Section 2.1.3.1), the power inflow
into the communication subsystem is determined by:

Pin(t) = ẋm(t)fdm(t)− ẋd
s(t)fs(t) (4.2)

After rearranging (4.1), inserting it into (4.2), and integrating, the total energy stored in the
communication line during the signal transmission of the wave variables is obtained:

∫ t

0
Pin(τ)dτ =

∫ t

0
u2
m(τ)− u2

s(τ) + v2
s(τ)− v2

m(τ)dτ. (4.3)

The communication channel delays the transmitted wave variable um and vs with a time
delay of T1 > 0 and T2 > 0, respectively.

us(t) = um(t− T1) and vm(t) = vs(t− T2). (4.4)

Since the L2 norm of a constantly delayed operator is always smaller than the L2 norm of its
undelayed input, the delay operator does not lead to increased signal energy and follows the
small gain property [142]. Consequently, the integral in (4.3) is always positive which proves
passivity of the communication two-port subsystem for constant network delays T = T1+T2
(see passivity conditions in Section 2.1.3.1).

∫ t

0
u2
m(τ)− u2

s(τ)dτ ≥ 0 and
∫ t

0
v2
s(τ)− v2

m(τ)dτ ≥ 0. (4.5)

For more details on the passivity analysis of the wave variable control scheme, see [142].

4.1.2 Local Computation of Wave Variables

The transmission of wave variables in TPTA systems guarantees passivity of the communi-
cation subsystem. However, it excludes the applicability of perceptual haptic compression
techniques as haptic sensory information is not directly exchanged anymore. In order to
address this issue, a modification of the wave variable control architecture [24] is described
in the following, which allows for the direct transmission of perceptually encoded haptic
signals while ensuring wave variable-based stabilized TPTA operation.

By expanding (4.1), the desired force fdm at the HSI can alternatively be obtained as
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fdm(t) = bẋm(t)−
√
2bvm(t)

= bẋm(t)−
√
2bvs(t− T )

= bẋm(t)−
√
2b

[
b√
2b

ẋs(t− T )− 1√
2b

fs(t− T )

]

= bẋm(t)−
[
b

(√
2

b
us(t− T )− 1

b
fs(t− T )

)
− fs(t− T )

]

= bẋm(t)−
[√

2bvm(t− 2T )− fs(t− T )− fs(t− T )
]

= bẋm(t)− [bẋm(t− 2T ) + fm(t− 2T ))− 2fs(t− T )]︸ ︷︷ ︸
all variables locally known at the HSI device

(4.6)

Accordingly, the desired force at the HSI only depends on the pending HSI velocity and
delayed TOP velocity and force signals which are all locally accessible at the HSI device
assuming some storage element that stores the HSI velocity and force within the interval of
the round-trip time delay 2T . Hence, by rearranging the wave variable operations, haptic
sensory data ẋm can be directly transmitted while maintaining an equivalent input/output
behavior of the standard wave variable control architecture.

Similarly, this can be applied for the transmission of the desired velocity signal xd
s :

xd
s(t) =

√
2

b
us(t)− 1

b
fs(t)

=

√
2

b
um(t− T )− 1

b
fs(t)

=

√
2

b

(
b√
2b

ẋm(t− T ) +
1√
2b

fm(t− T )

)
− 1

b
fs(t)

= ẋm(t− T ) +
1

b
(bẋm(t− T )−

√
2bvm(t− T ))− 1

b
fs(t)

= 2ẋm(t− T )−
√
2b

b
vs(t− 2T )− 1

b
fs(t)

= 2ẋm(t− T ) + xt(t− 2T )− fs(t− 2T )− 1

b
fs(t)︸ ︷︷ ︸

all variables locally known at the TOP

(4.7)

Hence, by locally simulating the global wave variable loop, the direct transmission of the
haptic signals ẋm and fs is enabled without losing the passivity property of the wave vari-
able control scheme. The computation of these locally computed wave variable (LCWV)
loops refer to local haptic signals that have to be stored for the round-trip time delay 2T . Ac-
cordingly, the round-trip time delay needs to be known, which poses a limitation compared
to the original wave variable approach where the exact knowledge of the communication
latency is not required. However, recent telepresence experiments between Germany and
Japan over the Internet showed that the time delay can be considered constant even over
this long-distance interconnection [150]. Additionally, the round-trip time delay is rather
simple to measure using time-stamps.
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Figure 4.2: Illustration of the passivity-preserving perceptual deadband compression scheme applied
at the HSI device (adapted from [24]).

4.1.3 Passivity-preserving PD compression

The previously discussed modified wave variable control approach guarantees passivity of
the communication component within the TPTA system. In contrast, the signal modifica-
tions occurring during PD compression are not passive [56, 106]. Particularly, the signal
upsampling step during PD decoding may lead to an active system behavior and, conse-
quently, violate the passivity constraints, discussed in Section 2.1.3.1.

The energy balance of a passive communication subsystem must satisfy:

E(t)COM (t) =

∫ t

0
ẋm(τ)fdm(τ)− ẋd

s(τ)fs(τ)dτ ≥ 0 ∀t > 0 (4.8)

In case of lossless encoding and optimal channel conditions, the transmitted haptic signals
are identical to the received haptic signals, hence ẋd

s(t) = ẋs(t− T1) and fdm(t) = fm(t− T2).
However, applied lossy PD compression introduces coding noise in the form of impercep-

tible prediction errors that occur during decoding. To avoid additional signal energy during
PD compression, the PD-based signal modifications in fdm and ẋd

s need to be actively ob-
served at the PD encoder side. Specifically, a modified desired velocity signal ẋ∗

s(t) at the
HSI and the modified desired force signal f∗m(t) at the TOP are calculated, which assures
that no additional signal energy is added to the transmitted haptic signals. Depending on
the sign of incoming signal energy, the haptic signals are modified towards the upper or
lower end of the imperceptible PD interval in order to continuously dissipate energy from
the communication system. To comply with (4.8), the passivity-preserving PD compression
scheme increases the input energy and decreases the output energy of the communication
subsystem, hence

|ẋmf∗m| > |ẋmfdm| (4.9)

and
|ẋ∗

sfs| < |ẋd
sfs| (4.10)

This process is illustrated in Figure 4.2 for the HSI side. Figure 4.3 illustrates the archi-
tecture for combined perceptual haptic compression and wave variable control. The local

91



4 Haptic Communication and Coding Architectures

Network

Locally
C

om
puted

W
ave V

ariables

Locally
C

om
puted

W
ave V

ariables

H
um

an-S
ystem

 Interface

P
assivity-preserving

P
D

 E
ncoder

Teleoperator

P
D

 D
ecoder

P
assivity-preserving

P
D

 E
ncoder

P
D

 D
ecoder

Figure 4.3: Schematic overview of the architecture for combined PD compression and wave variable
control (adapted from [24]).

signals ẋm, fdm at the HSI device and the local signals ẋd
s , fs at the TOP are used to locally

simulate wave variable control in accordance with (4.6) and (4.7). The haptic signals are fur-
ther perceptually compressed to reduce the packet rate in the network. In order to assure
passivity during PD compression, the haptic samples that are considered to be perceptually
relevant for transmission are further modified to the upper or lower end of the imperceptible
PD interval.

4.1.4 Experimental Evaluation

In order to evaluate the performance of the modified wave variable control combined with
the passivity-preserving PD compression scheme, an experimental study has been con-
ducted. Specifically, the packet rate reduction ability and the system transparency of the
proposed system are investigated in a simulated environment consisting of a virtual spring
(spring constant of 200N/m). The latency on the communication channel is set to 30ms
which is considered to be a realistic assumption in TPTA scenarios using Internet-based
communication. The sampling rate of the control loop is 1 kHz.

According to Lawrence et al. (see [131]), absolute transparency is achieved if the dis-
played impedance Zm is equal to the actual impedance of the environment contact Ze, hence
Zm = Ze (see Section 2.1.4). Accordingly, integrating over the impedance error provides a
weighted impedance fidelity measure,∫ ωmax

ωmin

|Zm(jω)− Ze(jω)|
|Zm(jω)| dω < ε (4.11)

where ε > 0 is the accuracy. The PD compression approach affects the dynamics of the sys-
tem in a non-linear manner. However, to facilitate the analysis, a linearized impedance is
assumed which allows the estimation of its frequency response. In the conducted experi-
ments, the TPTA system is excited with sinusoidal inputs within a frequency window [ωmin,
ωmax] = [10−2 103]rad/s. The gain and phase relation between the exciting velocity signal
and the resulting force feedback, i.e. the frequency response of the displayed impedance, is
computed using standard cross-correlation methods.

The experimental study focuses on a comparison of the performance of deadband compres-
sion using a deadband of fixed size directly applied to wave variables (proposed in [108])
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Figure 4.4: Displayed impedance for stiff environment (reproduced from [24]). The LCWV approach
applies a PD with k = 10%. The WV data reduction uses a constant deadband of size
0.02

√
Watt.

and the local simulation of wave variables combined with the passivity-preserving PD com-
pression approach. This comparison is divided into two parts. Firstly, the packet rate is
analyzed in a stiff environment when both compression schemes are configured to operate
with a similar degree of transparency. Here, the locally computed wave variable approach
with the passivity-preserving PD compression is configured with a PD parameter of k = 10%
which is an empirically preferable value for transparent haptic data compression, as shown
in [98]. A similar degree of transparency is achieved, when the transmitted wave variables
are compressed using a constant deadband of size 0.02

√
Watt. This value has been identi-

fied in multiple simulations to achieve a similar displayed impedance (ε = 0.0015). In the
second part of the experiment, this configuration is used again to compare the compression
performance during free space motions of the TOP within the simulation environment.

The Bode plots of the first experiment are shown in in Figure 4.4. It can be seen that both
compression techniques operate at similar impedances. The simulated impedance of the
remote environment Ze(s) =

200
s is illustrated by the dashed line. The corresponding mean

packet rate results on the ↑ forward channel and the ↓ backward channel are:

Constant Deadband Compression on Wave Variables: ↑ 544 pks/s, ↓ 525 pks/s

Local Wave Variables + Passive PD Compression: ↑ 324 pks/s, ↓ 332 pks/s

The results show that the mean packet rates of the local wave variables with PD com-
pression outperforms the constant deadband compression scheme (original packet rate:
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Figure 4.5: Displayed impedance for free space motion (reproduced from [24]).

1000 pks/s).
In the second part, the experiment is repeated during simulated free space motions of the

TOP. Figure 4.5 shows the corresponding impedance plots. For both architectures a devia-
tion from the ideal displayed impedance, Zh(s) → −∞, is observed as the bilateral control
dynamics and the time delay degrade the degree of transparency. However, the LCWV ap-
proach does not transmit packets when there is no contact with the environment (on this
velocity-force architecture) which leads to a large gain in compression efficiency for teleop-
eration scenarios with mostly free space motion. Qualitatively similar results are obtained
for different deadband thresholds k, i.e. different compression rates.

Constant Deadband Compression on Wave Variables: ↑ 352 pks/s, ↓ 334 pks/s

Local Wave Variables + Passive PD Compression: ↑ 265 pks/s, ↓ 0 pks/s

The experimental results show that by locally simulating the wave variable control loops at
the HSI and TOP side, the global wave variable loop can be successfully decoupled. This
allows the direct transmission of perceptually encoded haptic sensory data over a time-
delayed communication channel while preserving the stabilization ability of the wave vari-
ables approach. The packet rates for stiff environments and TOP free space motions indicate
that the LCWV control architecture with the modified PD compression achieves improved
compression performance reflected by higher transparency/packet rate ratios compared to
the standard wave variable architecture.
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4.2 Error-resilient Haptic Communication

Haptic data transmission in real-world networks might be disturbed by bit errors or packet
losses with varying probability and burstiness. Consequently, failures occurring during the
transmission of haptic signals may impair the performance and transparency of the TPTA
systems [172].

Particularly, the exchange of compressed haptic signals in TPTA systems is sensitive to data
loss on the haptic channel. As the perceptual haptic data compression approach removes
redundancy in the signal by transmitting only perceptually relevant haptic samples, lost
network packets consequently impair the system’s transparency. Furthermore, in predictive
coding schemes, failed haptic data transmission leads to inconsistent predictor states which
also results in disturbing artefacts in the decoded haptic signal.

A common strategy for detecting and compensating packet loss on the communication
channel is to acknowledge successfully transmitted packets to the sender. If the sender does
not receive an acknowledgement message (ACK) from the receiver within a fixed period of
time, it assumes the packet to be lost and triggers a transmission until a successful transmis-
sion is achieved. However, the strict latency constraints of haptic real-time communication
prevent any acknowledgement-based waiting strategy. Furthermore, since the transmission
of compressed haptic packets is temporally irregular, the receiver does not know when it is
supposed to receive a network packet. This poses a serious challenge for the detection and
corresponding concealment of network errors on the haptic channel.

This research work has been conducted in cooperation with Fernanda Brandi and Florian
Schweiger [13].

4.2.1 Architecture for Perceptually Robust Haptic Communication

Network latency and delayed feedback prevent the sender from obtaining exact information
about the receiver state. Interestingly, research from the field of real-time video streaming
proposes a technique for robust low-latency video streaming, which has been shown to also
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Human-System Interface

Teleoperator in
remote Environment

Channel  
Model 

Probabilistic 
Receiver Model Predictor 

Perception Model 
ACKs 

Predictor 

Perception Model 

ACKs 

Probabilistic 
Receiver Model 

Channel  
Model 

Figure 4.6: Architecture for error-resilient haptic communication. A probabilistic model of the re-
ceiver is used to estimate the receiver state. If a disturbing deviation at the receiver be-
comes likely, additional redundancy is added to the communication channel. Receiver
feedback can be used to support the receiver state estimation process.
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Figure 4.7: Markov decision tree considering cases of successful and unsuccessful transmissions of
haptic packets (adapted from [9]).

apply to the challenges of erroneous haptic communication [9, 46, 51]. An illustration of the
proposed architecture for error-resilient haptic communication is shown in Figure 4.6. The
haptic signals are perceptually compressed and communicated over the haptic channel. The
probabilistic receiver model at the sender considers every triggered network transmission to
either successfully arrive at the receiver or to be lost. To this end, it allows for incorporating
all possible states the receiver might be in. If likely receiver states deviate by more than the
applied perception thresholds, additional redundancy has to be added to the transmission of
the haptic signals. As every transmission on the haptic channel decreases the probability of
disturbed receiver output, this scheme allows for signal-adaptive packet loss compensation
without introducing any additional processing latency to the haptic signals.

4.2.2 Receiver State Estimation using Markov Decision Trees

Whenever a haptic signal transmission is triggered, the corresponding data packet either
successfully arrives at the receiver or it is lost due to a network error. Accordingly, a
transmitted haptic packet either updates the receiver state with probability p or, in case of
packet loss, it holds its current configuration with probability (1 − p). This process can be
modeled with a Markov decision tree [46], as illustrated in Figure 4.7. Here, the following
channel model for the transmission of a haptic sample hi at time i is assumed.

h0,h1,h2,h3, . . .︸ ︷︷ ︸
samples h ∈ RD to be sent

−→ Channel︸ ︷︷ ︸
Pr{Successful Transmission}=p

−→ h0, ĥ1, ĥ2, ĥ3, . . .︸ ︷︷ ︸
receiver state ĥ ∈ RD

where the sender and the receiver are initialized with h0. From then on, haptic updates hi

are transmitted and arrive at the receiver with probability p. The estimated receiver state is
denoted by ĥi with i > 0.

The Markov decision tree describes all possible event sequences of successful and unsuc-
cessful packet transmissions. Combined with a probabilistic model of the communication
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(a) Tree reset event based on remote acknowl-
edgments (ACK).

(b) Tree collapsing by reinitializing the tree with the ex-
pected value of the possible receiver output.

Figure 4.8: Size limitation techniques of the Markov decision tree.

channel, it allows the determination of the possible receiver states after n transmissions to-
gether with their corresponding probabilities of occurrence. This allows for the considera-
tion of all possible signal output of the receiver which can be perceptually and probabilisti-
cally evaluated. To this end, a probabilistic decision over the transmission of possibly lost
packets can be obtained.

Note that the number of branches and, hence, number of possible receiver states to con-
sider exponentially grows with every triggered haptic data transmission. For n transmitted
update packets, the total number of branches is 2n. The exponential growth of the Markov
decision tree rapidly results in a large tree size requiring increased computation and mem-
ory resources. Furthermore, as every possible receiver state in the Markov tree needs to
be individually analyzed at every sampling instance, the simulation and evaluation of all
possible receiver states at the haptic sampling frequency of 1 kHz becomes computationally
expensive after a few iterations. Hence, techniques for reducing and limiting the size of the
Markov tree model are of great interest.

This can be achieved, for instance, by transmitting additional state acknowledgement in-
formation from the receiver back to the sender. In this way the sender obtains delayed but
exact receiver state information which is reflected by one of the nodes in the Markov tree
model. Consequently, remote receiver feedback can be used to remove all parent and sibling
nodes of the acknowledged tree node by resetting the root of the Markov decision tree to the
most recently acknowledged receiver state. An alternative approach for reducing the size of
the Markov tree is to collapse branches in the tree as soon as a certain tree size is reached.
The procedure of resetting and collapsing the Markov tree are illustrated in Figure 4.8.

A comprehensive performance study of robust haptic communication using the Markov
decision tree models is presented in [9].

4.2.3 Receiver State Estimation using Multivariate Gaussian Models

In this section, an alternative approach to the previously discussed Markov tree is presented.
Conducted experiments reveal that the distribution of the signal error in the PD compression
scheme originating from packet loss exhibits a Gaussian-like distribution, as illustrated in
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(a) Position error when using zeroth-
order PD compression.
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(b) Force error when using a zeroth-order
PD compression.

   
  

(c) Position error when using first-order
PD compression.

(d) Force error when using a first-order
PD compression.

Figure 4.9: Distribution of haptic signal errors originating from packet loss. In this experiment, a
uniform packet loss with probability 0.5 and PD compression with k = 10% is used.
The results show that the signal error induced by lost packets exhibits a Gaussian-like
distribution.

Figure 4.9. This motivates to probabilistically model the uncertainty of the receiver state
with a multivariate normal distribution (see Figure 4.10).

Similar to the Markov decision tree model, the sender and the receiver are assumed to be
initialized with state h0. From then on, a successful transmission of packet hn+1 updates
the receiver state (ĥn+1 = hn+1) with probability p. Otherwise, the receiver holds its most
recently successfully received update at time i ≤ n, hence ĥn+1 = ĥi with probability (1−p).

Pr{ĥn+1 = hi} =

{
Pr{ĥn = hi} · (1− p) : 0 ≤ i ≤ n

p : i = n+ 1
(4.12)

By using (4.12), we can iteratively calculate the sample mean hn+1 of all possible receiver
states after n + 1 transmissions which can serve as an estimate of the expected mean of the
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Figure 4.10: Illustration of a multivariate Gaussian distribution for statistically describing the re-
ceiver state.

receiver state.

hn+1 =

n+1∑
i=0

Pr{ĥn+1 = hi} ·hi (4.13)

=

n∑
i=0

Pr{ĥn+1 = hi}︸ ︷︷ ︸
Pr{ĥn=hi} · (1−p)

·hi + Pr{ĥn+1 = hn+1}︸ ︷︷ ︸
p

·hn+1 (4.14)

= (1− p) ·hn + p ·hn+1 (4.15)

Similarly, the sample mean of all vector products hihi
ᵀ can be iteratively updated with

every triggered network transmission:

hn+1h
ᵀ
n+1 =

n+1∑
i=0

Pr{ĥn+1 = hi} ·hih
ᵀ
i (4.16)

=

n∑
i=0

Pr{ĥn+1 = hi} ·hih
ᵀ
i + Pr{ĥn+1 = hn+1} ·hn+1h

ᵀ
n+1 (4.17)

= (1− p) ·hnh
ᵀ
n + p ·hn+1h

ᵀ
n+1 (4.18)

With the help of the continuously updated sample mean values hn+1 and hn+1h
ᵀ
n+1, an

estimate of the covariance matrix Ĉn+1 can be determined which expresses the uncertainty
of the current receiver state estimation. It is defined by:

Ĉ(ĥn+1) = hn+1h
ᵀ
n+1 − hn+1 ·hn+1

ᵀ (4.19)

=
[
(1− p) ·hnh

ᵀ
n + p ·hn+1h

ᵀ
n+1

]
− (4.20)[

(1− p) ·hn + p ·hn+1

] ·
[
(1− p) ·hn

ᵀ
+ p ·hᵀ

n+1

]
Hence, the receiver state can be statistically modeled with every network transmission by

successively updating the mean and covariance estimates of ĥn+1. This iterative estimation
procedure can be performed with low computational effort and at high update/transmission
rates at the sender.
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Note that the estimated covariance matrix Ĉ incorporates correlations within the transmit-
ted signal h. The principal axes of the recently transmitted haptic samples hi are reflected by
the eigenvectors of the covariance matrix Ĉ(ĥ). Hence, the uncertainty described by the co-
variance matrix increases towards the direction of current signal change and, consequently,
stays within smaller bounds along an orthogonal direction to the current signal trajectory. If
Ĉ is nonsingular and positive definite (which is usually the case after a few iterations), its
determinate det(Ĉ) can be used to obtain a measure of uncertainty of the current receiver
state estimation process. If det(Ĉ) falls below a small threshold ε, the sample mean hn+1

can be considered to be a precise estimate of the current receiver state ĥn+1. Consequently,
a perceptual evaluation of the sample mean hn+1 at the sender allows a reliable decision
over the transmission of possibly lost packets to be obtained. However, if det(Ĉ) exceeds
the uncertainty threshold ε, additional steps are required to decide over possibly required
redundancy on the haptic channel which are discussed in the following.

As the receiver output ĥi is unknown at the sender at time i, the region in the receiver
state space is of interest, within which haptic output samples ĥ are in PD compliance with
the current input sample hi at the sender. If hi falls into this region, the difference in signal
between sender input hi and receiver output ĥi can be considered to be imperceptible and
no additional network transmissions are required.

Interestingly, the region assuring a PD compliance is of circular/spherical shape with center
s and radius r, as shown in the following equations:

|ĥ− h| ≤ k|ĥ| (4.21)
(ĥx − hx)

2 + (ĥy − hy)
2 + (ĥz − hz)

2 ≤ k2ĥ2x + k2ĥ2y + k2ĥ2z (4.22)

(k2 − 1)ĥ2x + 2ĥxhx − h2x (4.23)
+(k2 − 1)ĥ2y + 2ĥyhy − h2y

+(k2 − 1)ĥ2z + 2ĥzhz − h2z ≤ 0(
ĥx

√
k2 − 1 +

hx√
k2 − 1

)2

−
(
1 +

1

k2 − 1

)
h2x (4.24)

+

(
ĥy

√
k2 − 1 +

hy√
k2 − 1

)2

−
(
1 +

1

k2 − 1

)
h2y

+

(
ĥz

√
k2 − 1 +

hz√
k2 − 1

)2

−
(
1 +

1

k2 − 1

)
h2z ≤ 0

(k2 − 1)

(
ĥx +

hx
k2 − 1

)
(4.25)

+(k2 − 1)

(
ĥy +

hy
k2 − 1

)

+(k2 − 1)

(
ĥz +

hz
k2 − 1

)
≤ k2

k2 − 1
(h2x + h2y + h2z)(

ĥx − hx

1− k2︸ ︷︷ ︸
=:sx

)2

+

(
ĥy − hy

1− k2︸ ︷︷ ︸
=:sy

)2

+

(
ĥz − hz

1− k2︸ ︷︷ ︸
=:sz

)2

≤ k2

(k2 − 1)2
(h2x + h2y + h2z)︸ ︷︷ ︸
≤:r2

|ĥ− s| ≤ r (4.26)
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Hence, if |ĥ − s| ≤ r, the current haptic input h at the sender is PD compliant with the
receiver output ĥ. Consequently, the probability of being in PD compliance can be calculated
by integrating over the PD assuring spherical region within the probability density function
fĥ of the modeled receiver state distribution

Pr[PD Compliance] =

∫
{x|r≥|x−s|}

fĥ(x) dx (4.27)

using the probability density function fĥ of a D-dimensional multivariate Gaussian distri-
bution:

fĥ(x) = (2π)−
D
2 det(Ĉ)−

1
2 exp

(
−1

2(x− x)ᵀĈ
−1

(x− x)
)

(4.28)

As long as the probability of the signal error being in PD compliance with the input signal h
stays below a target probability ψ, transmissions of possibly lost packets need to be executed
until the desired PD compliance probability ψ is retained.

This sender-driven packet transmission approach using multivariate Gaussian distribution
models can be further extended to first-order PD compression scenarios (see Section 2.3.4.2).
Here, the prediction coefficient/gradient g is typically jointly transmitted together with the
current absolute haptic sample value h. This allows the separate modeling of not only the
statistical distribution of the absolute signal h, but also of the prediction gradient g. How-
ever, transmission errors in predictive coding schemes propagate over time which requires
updating of the mean and covariance estimates of ĥ and ĝ at every sampling instance (and
not only when network transmissions are triggered). According to linear regression theory
in statistics, the absolute sample amplitude and the corresponding gradient can be under-
stood as independent random variables. As the sum of normally distributed independent
random variables is again normally distributed, the signal prediction step can be easily ap-
plied to the probabilistic models during periods of network inactivity:

hn+1 = hn + gn (4.29)
Ĉ(ĥn+1) = Ĉ(ĥn) + Ĉ(ĝn) (4.30)

Hence, the modeled uncertainty of the receiver state described by the covariance estimate
Ĉ(ĥn) grows linearly over time. However, each triggered update reduces again the uncer-
tainty in the haptic communication system. Consequently, the presented approach does not
require acknowledgments and feedback information from the receiver. However, feedback
of the remote receiver state can be optionally used to support the receiver state estimation
process.

4.2.3.1 Experimental Study

A psychophysical study has been conducted to investigate the performance of perceptually
robust haptic communication using the novel multivariate Gaussian receiver state model.
In the experiment, 16 students from the Institute for Media Technology, TUM, participated.
The experimental setup consists of a Phantom Omni HSI device from SensAble [163] and
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a simulated virtual TPTA environment. It contains a touchable virtual sphere with smooth
surface which can be approached and haptically touched from any direction. During contact
with the TPTA environment, contact forces are rendered by the CHAI3D library [57] at a rate
of 1000 Hz. In the experiment, a uniform packet loss during the transmission of the haptic
feedback signal is simulated. The uncertainty threshold ε applied to the determinant of Ĉ
is set to 10−15. The integral in (4.27) is numerically evaluated with a resolution of 0.01N in
every dimension.

The experiment consists of two runs which investigate the performance of the proposed
packet loss concealment scheme applied to zeroth-order and first-order PD compression, re-
spectively (see Section 2.3.2) with PD parameter k = 10%. In each run, ten different system
configurations with varying packet loss and deadband compliance probability ψ are evalu-
ated which are blindly presented to the subjects. Specifically, the impact of network packet
loss of 0%, 20%, 40%, 60% on PD compressed force feedback signals is investigated. In ad-
dition, for each of the test configurations with a packet loss probability > 0%, the influence
of the proposed packet loss compensation scheme using the multivariate Gaussian receiver
model on subjective quality and packet rates are observed. Here, three PD compliance prob-
abilities ψ = 0%, 70%, 95% are used to configure the sender-driven transmission scheme.
The subject can freely choose between the ten test configurations by pressing the number
0-9 on a keyboard. As soon as a test configuration is selected, the corresponding feedback is
immediately displayed to the subject which allows for a pairwise comparison between the
test items. In addition, a reference configuration is provided to the subject which deactivates
the simulated packet loss on the haptic channel. This enables the direct comparison and sub-
jective rating the different test configurations against the presented reference configuration.
The subjects are asked to perceptually evaluate any perceived difference in the haptic feed-
back compared to the reference setting in accordance with the subjective evaluation scheme
illustrated in Table 2.1 in Section 2.1.4.

The experimental results are shown in Figure 4.11. The upper figures show the mean packet
rates and mean subjective ratings for the zeroth-order PD compression scheme. It can be
observed that with increasing packet loss probability, the subjective quality of the haptic
feedback becomes clearly impaired. The light and the dark gray bars illustrate the results
with applied packet loss compensation using the multivariate Gaussian receiver model. In
order to conceal the packet loss on the haptic channel, additional packet transmissions are
triggered as soon as disturbing signal distortion at the receiver becomes likely, which can
be seen in Figure 4.11(b). The subjective ratings in Figure 4.11(a) show that by adding re-
dundancy to the haptic channel, the disturbing packet loss effects in the TPTA system can
be successfully compensated. Even at a PD compliance probability of 70%, the transparency
of the TPTA system is almost completely restored. The lower figures illustrate the mean
packet rates and the mean subjective rating of the first-order PD compression scheme. The
results clearly show that first-order PD compression is significantly more sensitive to data
loss on the communication channel. Here, already a low packet loss probability significantly
impairs the subjective quality of haptic feedback. This is mainly due to incorrect signal
predictions which occur as soon as haptic predictor updates are lost during transmission.
However, the results in Figure 4.11(c) demonstrate that also for the first-order PD compres-
sion scheme, the sender-driven transmission scheme successfully compensates the network
data loss. Interestingly, the additional packet rates required for packet loss compensation
seem to be similar for the zeroth-order and first-order PD compression scheme.

102



4.2 Error-resilient Haptic Communication

In summary, the experimental results reveal that the multivariate receiver model is able
to compensate even high packet loss up to a loss probability of 60% at the cost of increased
packet rates on the haptic channel. This can be achieved with low computational complexity
and without the need for acknowledgement feedback. Furthermore, the presented error-
resilient communication scheme does not introduce any additional processing latency to the
haptic signals.
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(a) Subjective ratings (zeroth-order PD compression).
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(b) Mean packet rates (zeroth-order PD compression).
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(c) Subjective ratings (first-order PD compression).
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(d) Mean packet rates (first-order PD compression).

Figure 4.11: Experimental results of error-resilient haptic communication based on multivariate
Gaussian models. In all test configurations, PD compression with a PD parameter of
k = 10% is applied to the force feedback signals. The results show that packet loss on the
haptic channel can be successfully compensated at the cost of increased packet rates.
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4.3 Multimodal Telepresence Sessions using the Session
Initiation Protocol (SIP)

In TPTA systems, not only haptic sensory data needs to be exchanged between the HSI de-
vice and the TOP. In addition to the communication of multimodal audio and video data
streams, the exchange of session control commands is also required during a TPTA session.

Although research in telerobotics is quickly advancing, the communication architectures
typically used in TPTA systems are still that of pre-Internet point-to-point networks. It is
common for each TPTA system to be programmed with a fixed configuration of its remote
partners and to communicate via an individual proprietary network protocol [30, 125, 150],
a practice with limited flexibility. Furthermore, there are no established protocols for locat-
ing remote TOPs or established standard formats for exchanging TOP control data. Many
available software platforms in robotics include networked communication [80, 152, 184].
However, these are not typically designed for TPTA systems, and are unsuited for the low-
latency requirements and high packet rates of haptic communication. A common framework
is therefore needed to allow a variety of haptic and teleoperation systems to work together
flexibly.

In this section, a flexible framework for initiating, handling and terminating TPTA sessions
using the widely deployed Session Initiation Protocol (SIP) is discussed. This research work
has been conducted in cooperation with Hawkeye King [19].

4.3.1 Internet-based Transport Streams and Session Control

Haptic data communication is characterized by strict delay constraints required to maintain
control loop stability. Lost or out-of-order packets need to be discarded as triggered retrans-
missions significantly increase the communication latency. In Internet-based communica-
tion, this suggests using the User Datagram Protocol (UDP), as it works without handshak-
ing dialogues and does not provide reliability, ordering, or data integrity functionality. An
additional requirement for the transport of haptic signals is the availability of timestamps
for each transmission. This enables the detection of delayed packets and supports dejit-
tering and stream synchronization. Furthermore, in TPTA systems with many DoFs, the
haptic transport system needs to be capable of addressing/updating only a subset of DoFs
by grouping and assigning data identifiers. All these requirements match the widely applied
Real-Time Transport Protocol (RTP). It is an application layer protocol for real-time streaming
of media data and deploys the lightweight, yet unreliable UDP protocol as the underlying
transport mechanism. It also provides build-in mechanisms for jitter compensation enabling
the TPTA system to trade-off additional latency for more consistent timing. RTP has a com-
panion protocol, the RTP Control Protocol (RTCP), that operates in parallel collecting out of
band statistics such as round-trip delay and packet loss. Based on this information, RTP can
perform stream synchronization between multiple data streams. This would allow haptic
and video data to be presented in a time-coordinated manner if desired. Multicast is also
supported by RTP, which is beneficial in cooperative TPTA scenarios.

In addition, session control commands need to be exchanged between the OP and the
TOP in order to initiate, control and finish a TPTA session. TPTA system related opera-
tion commands for changing/switching tools, sensors, system states, etc. also need to be
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Figure 4.12: Illustration of the SIP-based protocol stack for TPTA session control. The protocol suite
uses SIP for session management, SDP for codec and parameter negotiation, and RTP
for transport of encoded media.

signaled. Furthermore, to enable flexible interconnection between different TPTA systems,
the exchange of system relevant characteristics describing the properties of the HSI and the
TOP system must be communicated during the session initialization procedure. In contrast
to the transmission of the haptic data streams, the communication of session commands and
system meta information is not affected by strict latency constraints. Here, the reliability of a
successfully signaled command and/or system state update is of the highest importance. In
an Internet-based network scenario, the communication of session commands and system
description information should therefore use the reliable Transmission Control Protocol (TCP)
protocol.

4.3.2 System Parameter Negotiation

In order to allow for flexible dynamic connections between multiple haptically enabled in-
terfaces and devices, detailed knowledge of the system parameters and functional capabil-
ities is essential. In the context of TPTA systems, the exchange of system descriptions and
hardware characteristics of the HSI device and the TOP is of great relevance. It enables the
negotiation and optimization of the functional capabilities of the HSI and the TOP during the
initialization of a TPTA session. In contrast to audio, video and text communication where
only a small set of system parameters such as resolution, color depth, frame and sampling
rate, audio channels, etc. are required to configure the application, a TPTA system can vary
in several aspects. Interoperability among unique TPTA systems with widely varying de-
signs and capabilities can only be achieved by negotiating and determining what data is to
be transmitted in which format and how that data should be applied to the HSI and TOP.

In this context, important system characteristics of a TPTA system are:

• System parameters: amount of DoFs, kinematics, coordinate systems, controller
type/rates, sensory dynamics, transforms (rotation/translation matrices), workspace
and joint limits, initialization parameters (initial position)

• Compression system: applied compression method (codec), compression parameteriza-
tion, data encoding, error correction scheme, error concealment techniques

• Control architecture: deployed control architecture, control gains, haptic signals to be
transmitted (position, velocity, orientation, forces, torques, wave variables, total en-
ergy)
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Figure 4.13: Illustration of a SIP-based OP to TOP call (reproduced from [19]).

• Communication system: error detection scheme, network conditions/statistics (time de-
lay, jitter, packet loss)

Solving the challenges of establishing communication sessions among different types of
computer systems is fundamental to computer networking and has been extensively ad-
dressed in literature. For instance, in multimedia teleconferencing, a wide range of network
protocols exist for real-time audio and visual media exchange, which are used by NetMeet-
ing, AIM, Google Talk and others. These protocols solve complex engineering tasks such as
resource location, media and codec negotiation, data transport, and security. Particularly, the
widely adopted Session Initiation Protocol (SIP) is well suited for the initialization and con-
trolling of multimodal transport streams [155]. By taking advantage of synergies between
teleconferencing technology and the telerobotics domain, the teleconferencing protocols and
the teleconferencing infrastructure can be used to also improve flexibility and interoperabil-
ity among different types of TPTA systems.

An overview of the proposed protocol stack for SIP-based TPTA session management is
illustrated in Figure 4.12.

4.3.3 SIP-based Communication Framework

The proposed TPTA session management framework uses the SIP protocol for multimodal
TPTA sessions including streaming audio, video and haptic modalities [155]. SIP uses the
Session Description Protocol (SDP) during initial call handshake to negotiate network pa-
rameters and select optimal codecs for streaming media [87]. These features are not unique
to SIP, but are also common to other Internet session protocols like IAX2 and H.323.
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Figure 4.13 gives an overview of session initiation, parameter negotiation, transport, and
session termination processes. To start a SIP session the HSI sends a SIP invitation to the
TOP. It includes a SDP description of media types, codecs, and codec parameters supported
by the inviting client. The remote user subsequently acknowledges the invitation and an-
swers the call, sending a SIP answer message. The SIP answer contains a SDP message which
describes the media codecs and parameters supported by both parties, selected by compar-
ing local capabilities to those indicated in the offer. For the haptic modality, codec and pa-
rameter negotiation may select the applied control architecture and parameters, workspace
and device degrees of freedom, endeffector capabilities, and any other haptics-specific re-
quirements. The master and slave capabilities and the codec in use will determine the pa-
rameters to be negotiated. At this point, all communication parameters have been decided
on and the multimodal data streaming begins.

Figure 4.15 shows an example of a SIP INVITE message containing a SDP descriptor. In this
SIP invitation, three media types are specified: video, audio and the new type haptic which
is added for bilateral TPTA session control. For each media type, one or more codecs may
be provided. In this packet the GSM codec for voice is offered to support the audio media
type, and for video streaming, the h.264 codec is offered. In addition, the codec Haptic_Coder
is offered for the media type haptic.

A codec is essentially a method for transcoding data to and from a raw format to another
format that is of better rate-distortion ratio and/or has better error resiliency properties. In
the context of TPTA systems, a haptic codec can be used to provide an interface to different
compression algorithm, control architecture and error concealment schemes. Accordingly,
the integration of a codec abstraction layer for the haptic transport enables the negotiation
of all global communication and control parameters of a TPTA system. Furthermore, it frees
the control engineer from the details of networking and session management.

For complete control of a telemanipulation system, additional commands and information
may need to accompany the haptic data stream. Specifically, important control data like
tool-change commands, emergency stops, or user information should be transmitted with a
reliable transport mechanism. The SIP architecture provides the SUBSCRIBE and NOTIFY
interface which allows SIP clients to request notification from and exchange data with remote
nodes [154].

Network 
SIP 

Haptic Codec 

Haptic Device 

SIP 

Haptic Codec 

Haptic Device 

SIP Session Control (TCP) 

Haptic Transport (RTP/UDP) 

Figure 4.14: Haptic codec transcodes raw haptic device data into formats for haptic communication
according to the selected haptic compression and control scheme (adapted from [19]).
The codec is controlled by the session management application, which also manages the
transport streams.
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Figure 4.15: SIP INVITE along with SDP media-type and codec offer.

4.3.4 Demonstrator System

In order to demonstrate the SIP-based session framework, a proof-of-concept system has
been implemented. The demonstrator hardware comprises two Linux PCs equipped with
PHANToM Omni haptic devices [163]. The HSI system tracks the OP’s hand movements
and displays force feedback. The OP host computer also displays audio and video feedback
captured by the TOP robot. The TOP, as shown in Figure 4.16(a), consists of a PHANToM
Onmi which is equipped with a Logitech Webcam with integrated microphone attached. It
also has a writing pen attached as an endeffector.

The software developed for the demonstrator prototype is based on the Open Phone Ab-
straction Library (OPAL). It is cross-platform compatible with the Linux, Mac OS X and
Windows operating systems and provides a full featured SIP protocol stack including the
SDP codec negotiation functionality and low-latency RTP protocol implementation.

The OPAL’s media handling routines are extended to support haptic media types, alongside
audio and video media types. A haptic device interface wrapper is developed using the
OpenHaptics API from SensAble [163]. OPAL has built in support for loading binary codec
plugins for every available media format. This enables the SDP to provide auto-negotiation
of optimal codecs during the initial SIP handshake.

For the demonstrator system, OpenPhone, a GUI-frontend for OPAL, is compiled against
the modified OPAL libraries. Once the SIP-based TPTA session is established, the media
streams for each modality are set up automatically with no human intervention. The hap-
tic codec used in the system implements a bilateral position-position control of the haptic
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(a) Teleoperator (b) OpenPhone GUI

Figure 4.16: Overview of the demonstrator and prototyping system for SIP-based teleoperation (re-
produced from [19]). Figure 4.16(a) shows an image of the teleoperator. The system em-
ploys a SensAble PHANToM Omni haptic device equipped with a Logitech audio/video
Webcam and an endeffector writing instrument. Figure 4.16(b) shows a screenshot of
the operator display with GUI and visual feedback.

devices with local PD control. A screenshot of the application is shown in Figure 4.16(b).
In the demonstration scenario, the OP-side host computer calls the TOP to initiate a SIP call.

As soon as the call is accepted, the SDP stack selects codecs for the audio, video and haptic
media communication. After the codec negotiation, three RTP transport streams are created,
one for each modality. During the TPTA session, the SIP-based session control framework
handles the haptic data flow between the device, codec and network (see Figure 4.14). The
demonstrator successfully establishes haptics, audio, and video media streams, transmitting
haptic data at close to 1 kHz.
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4.4 Chapter Summary

The performance of perceptual haptic data compression in TPTA systems significantly de-
pends on the properties of the haptic signals. They are influenced by many factors such as
the deployed control architecture, the network performance, the hardware characteristics of
the TPTA system, etc. In order to address these important influencing factors, the devel-
opment of methods for perceptual haptic communication needs to be approached from a
combined signal processing, control engineering and networking point of view. In this con-
text, several contributions have been presented in this chapter which are briefly summarized
in the following.

In bilateral TPTA systems, the wave variable control scheme has become a popular control
approach to address the stability issues of time-delayed communication. By transmitting
wave variables over the communication channel, the passivity of the haptic communication
system can be guaranteed under the assumption of arbitrarily long, but constant time delay.
The wave variables represent linear transformations of combined local and remote haptic
sensory information which makes it difficult to apply perceptual arguments for data com-
pression in the wave variable domain. To address this limitation, a modified wave variable
control approach has been presented which allows for a local decoupling of the wave vari-
able loop. Consequently, the direct transmission and application of perceptual compression
in time-delayed TPTA communication is enabled while preserving the stabilization ability
of the wave variable control approach. Furthermore, a passivity-preserving PD compres-
sion scheme has been presented. It considers the TPTA system to be a cascade of inter-
connected one-port and two-port subsystems and investigates the energy balance within the
HSI and the TOP subsystem. The performance of the local wave variable rendering approach
combined with the passivity-preserving PD compression approach has been experimentally
investigated in a simulated TPTA environment. The results demonstrate improved trans-
parency at lower packet rates compared to the standard wave variable architecture.

Not only network latency but also data loss on the communication channel impairs the
performance of perceptual haptic data communication techniques. As the PD compression
scheme only transmits haptic samples which are considered to be perceivable to the human
OP, packet loss in the network immediately leads to perceivable distortion. To address this
issue, a sender-driven retransmission scheme for low-latency packet loss compensation has
been proposed. By deploying a probabilistic model of the receiver, a probabilistic decision
about possibly required retransmissions can be obtained. If a likely receiver state is assumed
to deviate from the undistorted signal by more than the applied perception thresholds, ad-
ditional redundancy can be adaptively added to the haptic channel in order to compensate
for the data loss. In addition to the Markov decision tree based receiver model, a novel mul-
tivariate Gaussian model for receiver state estimation has been proposed and experimen-
tally evaluated. Its computational complexity is significantly lower and does not require
the transmission of acknowledgement feedback. Conducted experiments validate that the
packet loss compensation scheme using the multivariate Gaussian receiver model can suc-
cessfully restore the transparency of the TPTA system when operating on a highly erroneous
network channel.

Furthermore, a novel communication framework leveraging Internet session and presence
protocols for TPTA systems has been discussed. It is based on the widely adopted Session
Initiation Protocol (SIP), which is designed for Internet telephony and teleconferencing. En-
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tirely within the SIP architecture, a method for TPTA session control has been presented
which allows for flexible and dynamic connections between multiple haptic enabled inter-
faces and devices. In addition, it provides a standard interface for integrating the discussed
perceptual communication and control approaches. To this end, interoperability among het-
erogeneous TPTA systems can be achieved. For prototyping and evaluating the SIP-based
communication and control codecs, a proof-of-concept system has been developed.
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5.1 Concluding Remarks

The broad range of TPTA systems and their application scenarios promise great scientific
and economical interest for the future. Their goal is to locally provide a realistic immersion
of a distant, scaled, inaccessible and/or hazardous environment.

In this context, the exchange of haptic signals plays a central role in TPTA systems. In
contrast to the transmission of audio and video signals, haptic signals are bidirectionally
exchanged and thereby close a global control loop between the HSI device and the TOP.
In order to assure system stability and transparency, introduced communication delay on
the haptic channel needs to be kept at an absolute minimum. These strict delay constraints
require haptic samples to be transmitted immediately upon generation which leads to trans-
mission rates up to the applied haptic sampling rate of 1000 Hz. In packet-switched net-
works, e.g., the Internet, the increased amount of transmitted packet header information
leads to significant network overhead. In addition, modern TPTA systems deploy a large
number of DoFs to provide intuitive and flexible remote manipulation. As every DoF is in-
dividually sampled and controlled, the bidirectional exchange of haptic signals leads to high
data rates which are particularly challenging in large-distance or wireless TPTA scenarios.

This dissertation addresses the challenges of perceptual haptic data communication in
TPTA systems. To this end, the consideration of human haptic perception is of fundamental
interest and intensively discussed. Limitations in haptic perception can be exploited for the
detection and removal of imperceptible signal content. As long as changes in haptic sig-
nals cannot be perceived by the human operator, they can be considered to be irrelevant for
transmission and processing.

Several contributions presented in this thesis focus on improving perceptual haptic data
compression.

By incorporating additional findings of human haptic perception into the psychophysical
model, the performance of perceptual haptic data compression can be increased. Particu-
larly, the integration of psychophysical findings on directional dependencies of force feed-
back perception has shown to significantly improve compression performance. Similarly, the
adaption to psychophysical findings on velocity-dependent discrimination thresholds dur-
ing human operator’s hand movements can be exploited in the context of perceptual haptic
data communication.

Furthermore, an architecture for combined model-mediated control and compression has
been proposed. Instead of haptic feedback, it transmits the parameters of estimated environ-
ment models over the haptic channel. Conducted experiments on a real TPTA system indi-
cate that the integration of environment models into haptic compression algorithms allows
for improved compression performance and system transparency. The model-mediated
compression scheme is further extended to enable the design of a model-mediated haptic
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signal prediction scheme. Experimental results reveal improved compression performance
when PD compression is combined with model-mediated haptic prediction algorithms. In
addition, a model-based coding scheme for haptic contact events is proposed which ad-
dresses the increased haptic update rates during the initial contact phase. By transmitting
a single event-of-contact message from the TOP to the HSI device, haptic feedback can be
locally generated and used for substituting the transmission of remote haptic feedback. The
experimental results show that by integrating the concept of Event-based Haptics, the quality
of contact feedback can also be improved.

In addition to the delay critical real-time communication of haptic signals, the development
of perceptual offline compression algorithms is also of great interest. To this end, a haptic
recording and playback scheme has been presented which allows the OP to immerse into
the previously recorded TPTA session. Once haptic data needs to be stored on a storage
device, methods for haptic offline compression become relevant. In contrast to haptic online
compression algorithms which mainly address the high update rate on the communication
channel, methods for haptic offline compression strictly focus on reducing the amount of
data to be stored. To this end, a first perceptual haptic offline compression scheme has been
presented and experimentally evaluated. It exploits knowledge about applied perception
thresholds resulting in reduced entropy of the encoded data.

In order to investigate perceptual haptic communication from a theoretical point of view,
the concept of a Perceptual Deadband Sampler has been proposed. It provides a framework for
analytically evaluating the compression performance based on a statistical model of haptic
signals. In particular, a first-order Gaussian random walk model has been used to model the
signal trajectories of haptic signals which allows for the mathematic determination of the
expected packet rates on the communication channel.

Perceptual haptic data communication has been further investigated from a combined sig-
nal processing, control engineering and networking point of view. Several contributions
based on this integrated approach have been made.

In real-world telepresence scenarios, transmission delays on the haptic channel quickly
destabilize the global control loop closed by the communication system. In order to enable
stable TPTA operation in the presence of network delay, the passivity-based wave variable
control scheme can be applied. Instead of haptic sensory signals, combined velocity and
force signals are exchanged over the communication channel which excludes a perceptual
evaluation of the transmitted signals. To address this issue, a novel control architecture has
been proposed which enables the combination of the wave variable control scheme with
perceptual haptic data compression.

In addition to communication latency, data loss on the haptic channel also affects the perfor-
mance of perceptual haptic communication in TPTA systems. Particularly, the transmission
of compressed haptic signals is sensitive to data loss on the haptic channel. To this end, an
error-resilient perceptual communication scheme has been proposed which is based on a
probabilistic model of the PD decoder. Whenever the actual sender state and the estimated
receiver state are expected to deviate by more than the applied perception thresholds, ad-
ditional data transmissions are adaptively triggered in order to compensate for the packet
loss.

Furthermore, a flexible communication framework for initiating, handling and terminating
TPTA sessions has been presented which takes advantage of synergies between the Internet-
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based teleconferencing technology and the TPTA system domain. Based on the widely de-
ployed SIP teleconferencing protocol, it enables flexible and dynamic connections between
multiple haptic enabled interfaces and devices. In addition, the framework provides a stan-
dard interface to haptic codecs which enable the seamless integration of the developed per-
ceptual communication and control approaches into the communication system of a TPTA
system. For prototyping and evaluating the SIP-based communication and control codecs, a
proof-of-concept system has been developed.

5.2 Outlook

With recent advances in man-machine interaction, sensor and actuator hardware, network
capacities, signal processing, control schemes, etc., TPTA systems are increasingly gaining
in relevance. Their development will always be accompanied by the need for efficient algo-
rithms for haptic data communication.

In the following, some exciting directions for future research emerging from this disserta-
tion are briefly discussed:

• Extending the psychophysical model of human haptic perception: Research in psychophysics
investigates the limitations and characteristics of the human haptic perception system.
The integration of additional psychophysical findings into the perceptual model for
perceptual haptic data compression may further improve the performance of percep-
tual haptic communication algorithms. In this context, the integration of human hap-
tic discrimination thresholds for the perception of stiffness, acceleration, inertia, etc.
seems promising.

• Multimodal data multiplexing: Human haptic discrimination thresholds are influenced
by cross-modal dependencies. Particularly, the temporal integration of multimodal
feedback is of great interest in the context of TPTA systems. It allows for the de-
velopment of a multiplexer which incorporates upper and lower latency bounds for
each modality. In this way, a high degree of immersiveness and transparency can be
achieved even in scenarios with capacity limited communication channels.

• Improving perceptual communication of velocity/position signals: The perceptual deadband
approach can be applied on force feedback as well as on velocity and position sig-
nals, as shown by Hinterseer et al. [98]. However, changes in the velocity/position
signals are only indirectly reflected in the visual and haptic feedback over the remote
environment. In this context, a comprehensive study of human cross-modal velocity
and limb position perception is required in order to further improve perceptual haptic
communication systems.

• Extending environment models for model-mediated control, compression, and prediction: In or-
der to quickly adapt to environment changes, the environment models used for model-
mediated control, compression, and prediction are characterized by a small number of
parameters. However, there is a trade-off between model complexity and environ-
ment adaption performance which should be studied in more detail. In particular, the
integration of surface friction effects into environment models seems promising.

• Combining human behavior models with model-mediated compression: Similar to the model-
mediation concepts using environment models, the development of a mathematical
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Figure 5.1: Suggested architecture for separating kinesthetic and tactile feedback from force sensory
data.

model describing human haptic behavior would allow for estimating changes in ve-
locity as a function of displayed force feedback [151]. Consequently, this would enable
model-mediated prediction and compression of haptic velocity signals which should
be addressed in future research.

• Investigating block-based algorithms for haptic offline compression: In contrast to haptic low-
latency signal processing in TPTA systems, haptic offline compression algorithms do
not have to take the strict delay constraints into account. Correspondingly, block based
coding techniques from the field of audio and video compression, such as vector quan-
tization, subband coding, predictive coding, etc. can be applied. In this context, the
development and integration of perceptual models in the frequency domain could also
further improve the performance of haptic offline compression.

• Haptic communication in shared collaborative haptic virtual environments: Shared cooper-
ative virtual haptic environments enable multiple users to haptically collaborate to-
wards a common objective. As soon as users are haptically coupled during events of
joint manipulation, communication latency becomes a critical factor. To address this
issue, methods for detecting joint haptic interaction and decentralizing the rendering
and control system are of great interest. In particular, the development of an adaptive
grouping scheme of active users should be addressed. Furthermore, delayed network
transmissions leads to inconsistencies within the global virtual world representation.
In this context, an energy-constrained update strategy could be used where intercon-
nected clients always agree to the state that reflects the least physical energy.

• Separate processing of kinesthetic and tactile feedback: The haptic perception system in-
volves the kinesthetic and the tactile sense. In order to address their individual prop-
erties with respect to haptic discrimination thresholds, methods for separating kines-
thetic and tactile components from the haptic sensory data need to be designed. Fig-
ure 5.1 proposes an architecture for perceptual haptic communication which processes
tactile and kinesthetic signal components separately. Here, the perceptual deadband
scheme is used to compress the low-frequent kinesthetic signal component. Experi-
mental studies have shown that the signal content typically lost during PD compres-
sion often contains high-frequent tactile components [18]. The signal characteristics of
tactile signals suggest a frequency-based compression scheme, such as LPC coding.

• Processing of haptic multi-point contact signals: Modern TPTA systems integrate more
and more DoFs. During multi-point contacts with the environment, the control and
sensory signals typically correlate with each other which should be exploited in the
context of perceptual haptic data communication. In addition, a joint analysis of the
multi-point contact sensory data would support the estimation of environment models
used in model-mediated control, compression and prediction.

116



List of Figures

1.1 Overview of addressed research areas. . . . . . . . . . . . . . . . . . . . . . . . 3
1.2 Overview of the dissertation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.1 Overview of the main components of a TPTA system. . . . . . . . . . . . . . . 8
2.2 Overview of haptic signals in a TPTA system. . . . . . . . . . . . . . . . . . . . 9
2.3 TPTA system as a cascade of one-port and two-port subsystems. . . . . . . . . 11
2.4 Absolute and relative perception thresholds of tactile stimuli. . . . . . . . . . 19
2.5 Illustration of perceptual predictive coding. . . . . . . . . . . . . . . . . . . . . 21
2.6 Illustration of multi-DoF isotropic perceptual deadzones. . . . . . . . . . . . . 23
2.7 Perceptual deadband compression using a zeroth-order prediction algorithm. 24
2.8 Perceptual deadband compression using a first-order prediction algorithm. . 25

3.1 Illustration of the construction of a direction-adaptive deadzone. . . . . . . . 29
3.2 Overview of sampled orientations and investigated contact paths. . . . . . . . 30
3.3 Experimental results investigating preferred PD parameters k as a function of

force direction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.4 Means and standard deviations of angular thresholds quantifying the just per-

ceptible change in the direction of force feedback for different reference force
directions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.5 Experimental evaluation of the compression performance in terms of subjec-
tive quality and packet rate. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.6 Adaptive PD parameter φ as a function of velocity. . . . . . . . . . . . . . . . . 35
3.7 Architecture of the velocity-adaptive PD data reduction principle. . . . . . . . 36
3.8 Illustration of the experimental testbed for velocity-dependent PD compression. 37
3.9 Mean values and standard deviations of packet rates and subjective quality

with respect to velocity level and deadband type. . . . . . . . . . . . . . . . . 40
3.10 Illustration of the haptic sample selection and plane fitting process. . . . . . . 42
3.11 Proposed architecture for model-mediated compression. . . . . . . . . . . . . 44
3.12 Overview of the experimental setup for model-mediated haptic data compres-

sion. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
3.13 Experimental results for model-mediated compression. . . . . . . . . . . . . . 48
3.14 Estimation of the surface contact point x̂s using a planar and a spherical sur-

face model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
3.15 Simulation of model-mediated prediction of haptic force-feedback based on

simple geometric surface models. . . . . . . . . . . . . . . . . . . . . . . . . . . 51
3.16 Virtual TPTA simulation used in the experimental study. . . . . . . . . . . . . 52
3.17 Experimental results for PD compression using signal-based and model-

mediated prediction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
3.18 Illustration of the PD violations during contact events. . . . . . . . . . . . . . 56

117



List of Figures

3.19 Illustration of improving contact realism by superimposing acceleration
forces during contact events. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

3.20 Proposed architecture for event-based coding using contact models. . . . . . . 58
3.21 Illustration of local proportional force feedback approximation with friction

compensation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
3.22 Superimposition of contact transients onto proportional forces. . . . . . . . . 59
3.23 Local generation and display of proportional forces during the contact phase. 60
3.24 Experimental results for event-based coding using contact models. . . . . . . 64
3.25 Schematic overview of recording and playback of a visual-haptic TPTA session. 67
3.26 Illustration of PD-based differential encoding. . . . . . . . . . . . . . . . . . . 69
3.27 Schematic diagram of the PD-based offline data reduction scheme including

the proposed signal prediction and deadband-based differential coding ap-
proach. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

3.28 Principle of interpolative signal reconstruction. . . . . . . . . . . . . . . . . . . 71
3.29 Differences between online and offline signal reconstruction of PD-encoded

haptic signals. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
3.30 Mean subjective ratings of the haptic offline compression experiments. . . . . 73
3.31 Schematic diagram of the binary tree structure for the theoretical analysis. . . 77
3.32 Illustration of finding an acceptable value range λ1 for the random summand

η to assure that the AR process output continuously stays in compliance with
the currently defined PD bound. . . . . . . . . . . . . . . . . . . . . . . . . . . 79

3.33 Illustration of possible signal trajectories and value ranges λ for the random
summand η leading to a PD compliance during a period of j samples with
autoregression factor θ = 0.5. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

3.34 Illustration of possible signal trajectories and value ranges λ for the random
value η ensuring a PD compliance during a period of j − 1 samples, followed
by a PD violation event at time i+ j (θ = 0.5). . . . . . . . . . . . . . . . . . . 81

3.35 Examples of conditional density functions f(ĥ|s) for different configurations
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