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Abstract

α-helical membrane proteins account for 20-30% of a typical genome and are crucial
for such processes as transport, cell division and metabolism. They are associated with
various diseases and serve as targets for about 60% of approved drugs. Paradoxically,
only about 2% of the protein structures in the Protein Data Bank (PDB) account for
membrane proteins. Therefore, structural bioinformatics of membrane proteins is still
in its infancy, and the picture of their fold space is only beginning to emerge.

Structure classification is a valuable means for the investigation of structure-function
relationships and for studies on the structural diversity of the protein sequence space.
This thesis is focused on the structural classification of α-helical membrane proteins.

In the first part, the structural classification of membrane proteins in SCOP and
CATH is addressed by a comparative analysis. Using a dataset of 63 α-helical mem-
brane protein structures, a number of differently classified proteins both regarding their
domain and fold assignment was observed. The majority of all discrepancies affect single
transmembrane helix (TMH), two helix hairpin, and four helix bundle proteins, while
domains with more than five TMHs are mostly classified consistently between SCOP
and CATH.

In the second part, a hierarchical classification approach specifically tailored to mem-
brane proteins (named CAMPS) is described. In contrast to SCOP and CATH, it
is not based on three-dimensional structures, but on sequence similarity and topol-
ogy conservation (in terms of the number of TMHs and loop lengths) allowing for a
large-scale classification of membrane proteins. Using high-order hidden Markov models
1,353 structurally homogeneous clusters (SC-clusters) roughly corresponding to mem-
brane protein folds were found. Only 53 SC-clusters are associated with experimentally
determined structures, and for these clusters CAMPS is in reasonable agreement with
SCOP and CATH.

In the third and last part, a further development of the classification approach is
proposed. In addition to sequence similarity, the number of TMHs and loop length
patterns, it also considers helix-helix interactions and allows to identify SC-clusters that
are likely to represent the same fold. Using predicted consensus helix architectures
a selected set of 431 SC-clusters was joined into 151 superior clusters (termed MCL
clusters). By comparing the SC- and MCL clusters to Pfam clans, it could be shown
that the sensitivity increased by 30.7%.
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Zusammenfassung

α-helikale Membranproteine machen 20-30% eines Genoms aus und sind essentiell für
Prozesse wie z.B. Transport, Zellteilung und Metabolismus. Sie sind mit verschiedenen
Krankheiten assoziiert und dienen als Targets für circa 60% der zugelassenen Medika-
mente. Seltsamerweise sind Membranproteine nur zu etwa 2% in der Strukturdatenbank
PDB vertreten. Daher ist die Strukturbioinformatik von Membranproteinen noch ganz
am Anfang und der Faltungsraum nur ganz wenig erforscht.

Die Strukturklassifikation ist ein nützliches Instrument für die Untersuchung von
Struktur-Funktions-Beziehungen und der Analyse der strukturellen Diversität von Pro-
teinsequenzen. Diese Dissertation konzentriert sich auf die strukturelle Klassifikation
von α-helikalen Membranproteinen.

Im ersten Teil wird die Strukturklassifikation von Membranproteinen in SCOP und
CATH mittels einer vergleichenden Analyse adressiert. Unter Verwendung eines Daten-
satzes von 63 α-helikalen Membranproteinen wurden mehrere unterschiedlich klassi-
fizierte Proteine entdeckt, sowohl hinsichtlich ihrer Domänenzuordnung, als auch ihrer
Faltungszuweisung. Die Mehrheit aller Diskrepanzen betrifft Membranproteine mit ein,
zwei oder vier Transmembranhelices (TMH), während Domänen mit mehr als fünf TMHs
meistens konsistent in SCOP und CATH klassifiziert sind.

Im zweiten Teil wird ein hierarchischer Klassifikationsansatz (CAMPS) beschrieben,
der speziell auf Membranproteine angepasst ist. Im Gegensatz zu SCOP und CATH
basiert dieser nicht auf drei-dimensionalen Strukturen, sondern auf Sequenzähnlichkeit
und Topologiekonservierung (hinsichtlich der Anzahl der TMHs und der Loop-Längen)
und erlaubt somit eine umfangreiche Klassifikation von Membranproteinen. Mit Hilfe
von Hidden Markov Modellen höherer Ordnung wurden 1,353 strukturell homogene
Cluster (SC-cluster) gefunden, die in etwa Membranproteinfaltungen entsprechen. Nur
53 SC-cluster sind mit einer experimentell bestimmten Struktur assoziiert und für diese
stimmt CAMPS im Wesentlichen mit SCOP und CATH überein.

Im dritten und letzten Teil wird eine Weiterentwicklung des Klassifikationsansatzes
vorgestellt. Zusätzlich zur Sequenzähnlichkeit, der Anzahl an TMHs und der Loop-
Längen, berücksichtigt diese auch Helix-Helix Interaktionen und ermöglicht es SC-cluster
zu identifizieren die sehr wahrscheinlich die gleiche Faltung repräsentieren. Unter Ver-
wendung von vorhergesagten Consensus-Helix-Architekturen wurde ein ausgewähltes Set
von 431 SC-clustern zu 151 übergeordneten Clustern (genannt MCL cluster) zusam-
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mengefasst. Durch den Vergleich der SC- und MCL Cluster mit Pfam Clans konnte
gezeigt werden, dass die Sensitivität um 30.7% gesteigert werden konnte.
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Chapter 1
Introduction

“So far, we have only scratched the surface of the world of

membrane proteins...”

(Gunnar von Heijne)

He is absolutely right! Gunnar von Heijne is one of the leading scientists in membrane
protein research. And I wholeheartedly agree with his opinion that we have just reached
the tip of the iceberg. The most important cause is that only few membrane protein
structures are currently available mainly due to their intrinsic difficulties in experimental
determination. Therefore, sequence comparison and structure prediction remain the
main tools for investigating membrane protein families.

This thesis copes with the structural classification of membrane proteins in order to
explore structure-function relationships. Thus, the following introduction starts with
a review on current knowledge about membrane protein research. Similarly, different
approaches to classify proteins in general are summarized. Finally, the manifold relations
between sequence, structure and function are introduced.

1.1 Membrane proteins

Membrane proteins are crucial to all living organisms because of their key roles in con-
trolling the processes of life. They do not only transport ions, metabolites and proteins
across membranes, but also receive chemical signals from outside the cell and propa-
gate electrical impulses. Membrane proteins are also necessary to attach to neighboring
cells, to anchor other proteins to specific locations in the cell and to regulate intracel-
lular vesicular transport. And to demonstrate their functional diversity even further,
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CHAPTER 1. INTRODUCTION

they also control membrane lipid composition, and organize and maintain the shape
of the organelles and the cell itself [1]. Through genome-wide studies it was estimated
that membrane proteins constitute 20-30% of proteomes [2–6]. Given their abundance
and functional significance, it is not surprising that defects in membrane proteins are
associated with many known diseases [1] such as cystic fibrosis [7], color blindness [8],
alzheimer [9] and diabetes [10]. Likewise, membrane proteins represent more than 60%
of drug targets [11] and are therefore of great pharmaceutical interest as well.

1.1.1 Basic principles

There are two types of membrane proteins differing in the degree to which they span the
membrane lipid bilayer. Peripheral membrane proteins are loosely associated with the
membrane with no part extending into the hydrophobic bilayer environment. Integral
membrane proteins on the other hand are embedded in the phospholipid bilayer [12].
Integral membrane proteins can be further divided into two distinct architectures: α-
helix bundle and β-barrel proteins [13]. β-barrel proteins are integrated exclusively in
the outer membrane of Gram-negative bacteria, mitochondria and chloroplasts [1]. They
constitute 2-3% of the proteome [14] and are also called porins. In contrast, α-helical
membrane proteins occur not only in all cellular membranes, but also exhibit a broader
functional range and are much more abundant [1]. Therefore, all the following sections
and chapters will focus on α-helical membrane proteins.

Membrane proteins differ remarkably from soluble proteins because they do not only
reside in an aqueous environment, but are also embedded in a lipid bilayer. The bilayer
can be distinguished into three distinct regions [15]. The first part is formed by the
hydrophobic core of the bilayer that is ∼30 Å thick. The second and third part are
the surrounding head group layers on both sides (each of ∼15 Å width). With regard
to this bilayer thickness, transmembrane helices are usually about 20 to 25 residues in
length [16]. The different environments that a membrane protein is faced with result in
different amino acid preferences along the bilayer [17]. In the middle of the membrane,
transmembrane helices are strongly enriched in hydrophobic residues (such as Ala, Ile,
Val and Leu). The aromatic residues Tyr and Trp are abundant in the lipid-water
interface near the helix ends. Finally, positively charged residues (Lys and Arg) are four
times more abundant in loops located at the cytoplasmic side of membranes than in
extracellular loops [18]. This observation was termed the positive-inside rule and was
shown to appear in all three kingdoms of life [4, 19].
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1.1. MEMBRANE PROTEINS

1.1.2 Membrane structure space

A landmark in the history of membrane proteins was the structure determination of
the first high-resolution membrane protein, the photosynthetic reaction center, in 1985
[20]. In fact, it was such a meaningful achievement that Johann Deisenhofer, Robert
Hubert and Hartmut Michel were honored with the Nobel prize in chemistry in 1988
[21]. However, it has to be noted that the bacteriorhodopsin structure had already been
resolved ten years beforehand [22]. But most probably due to the low resolution (7
Å), the high-resolution (3 Å) structure of the photosynthetic reaction center instead is
usually specified as the first resolved membrane protein structure.

In contrast to soluble proteins, membrane proteins reside in a lipid bilayer environment
that strongly restricts the range of possible transmembrane protein structures [15]. For
a long time, α-helical membrane proteins appeared to adopt a very simple architecture
[17, 23]: transmembrane helices are oriented more or less perpendicular to the membrane
plane forming an α-helix bundle, in which the helices pack with typical knobs-into-
holes packing angles [24, 25]. A very prominent example of this structural simplicity is
bacteriorhodopsin (Figure 1.1A).

One major challenge in membrane protein bioinformatics is the paucity of structural
data. In spite of their functional and pharmaceutical importance, less than 2% (1,550 out
of 79,5381) of the structures in the Protein Data Bank (PDB) [27] account for membrane
proteins. This is because membrane proteins are extremely difficult to determine using
classical techniques and high-resolution structures are hard to obtain [13, 28]. However,
significant efforts have been made in the last years to further improve the structure
determination technology for membrane proteins [29–32] (for a review see [33]). The
number of available unique membrane protein structures increases exponentially and
doubles every ∼3 years [17, 34]. While only about 40 unique structures were available
in 2000, 310 structures exist today (data taken from the Stephen White laboratory2;
as of January, 2012). Although this is an encouraging trend, progress in membrane
protein structure determination lacks 15 years behind that of soluble proteins and the
few structures only give a limited view on membrane protein structure space [17]. This
is evident from the structures that appeared recently showing that membrane proteins
are much more diverse than initially assumed giving new insights into membrane protein
structure and evolution.

1Statistics taken from PDBTM [26] as of January, 2012
2http://blanco.biomol.uci.edu/mpstruc/listAll/list

3



CHAPTER 1. INTRODUCTION

Irregular structures

Apart from the simple membrane protein structures (Figure 1.1A) with straight trans-
membrane helices traversing the membrane bilayer, irregularities in the regular structure
have recently been found [35, 36] including proline kinks, tilted helices, interface helices,
interrupted helices, and reentrant regions.

• Proline kinks: Although Proline is known to be a helix-breaker, it is often found
in the middle of transmembrane helices of membrane proteins [37, 38] (Figure
1.1B). Instead of breaking the helix, Proline introduces a notable kink in its back-
bone [38–40]. In several cases, it was shown that some of the transmembrane
prolines are fundamental for the structure and function of the respective mem-
brane protein [36, 41–44].

• Strongly tilted helices: Some α-helical membrane proteins contain transmem-
brane helices that are strongly tilted and thus much longer. A good example is
the Clc chloride channel [45] (Figure 1.1C) that contains several transmembrane
helices that are not parallel to the membrane normal. It seems that helix tilting
is a response to hydrophobic mismatch [46, 47] that occurs if the length of the
hydrophobic transmembrane helix does not match the hydrophobic thickness of
a membrane bilayer [48]. By doing so the length of the transmembrane helix is
adjusted to the bilayer thickness. In some cases, such as bacteriorhodopsin [49, 50]
and the mechanosensitive channel MscL [48], it could be shown that the helix tilt-
ing is fundamental for the functional activity of the protein. It has to be noted
that there also exists other compensation mechanisms for hydrophobic mismatch,
such as oligomerization or backbone kinking [48, 50].

• Interface helices: Helices that reside in the membrane-water interface region
and that are situated parallel with the membrane are called interface helices [51]
(Figure 1.1D). 30% of the residues in the interface region form interface helices
(70% have irregular secondary structure) that are shorter than transmembrane he-
lices. Like transmembrane helices, interface helices consist mainly of hydrophobic
residues, but they contain much more polar aromatic residues (Trp, Tyr) [51, 52].
In addition, while in transmembrane helices Trp and Tyr extend their side chains
to the membrane bilayer pointing away from the membrane core (known as ‘snorke-
ling’ [53]), in interface helices the side chains of Trp and Tyr tend to point towards
the membrane core (‘anti-snorkeling’ [53]). In contrast, polar and charged residues
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1.1. MEMBRANE PROTEINS

tend to point away from the membrane center [51, 54]. Although the functional
contributions of interface helices are not yet fully understood, it is assumed that
they play an ancillary role by, for example, helping to position the transmembrane
helices [51, 55].

• Interrupted helices: The regular secondary structure of a transmembrane helix
can be interrupted such that coils occur in the core of transmembrane helices
(Figure 1.1E). By analyzing these coil regions, Kauko et al. found that 7% of all
residues in the transmembrane helix core region contain coils [56]. Compared to
transmembrane helices, these coils contain more polar and charged residues, show
an increased preference for Gly and Pro, and are significantly more buried and
conserved. Additionally, it could be shown that coil regions are abundant within
channels and transporters and are functionally important. For example, the coils
in B12 ABC transporter seem to participate in the binding of vitamin B12 and in
protein-protein interactions [56].

• Reentrant regions: So far, reentrant regions are most probably the best example
for structural peculiarities in α-helical membrane proteins. These are regions that
cross the membrane only partly and enter and exit the membrane on the same side
[57] (Figure 1.1F). Depending on their secondary structure content, they can be
divided into three distinct categories: reentrant regions with a helix-coil-helix mo-
tif, with a helix-coil or coil-helix motif, and without regular secondary structure.
They were already found in several known membrane protein structures [58–64]
and it is estimated that at least 10% of all membrane proteins in a genome con-
tain reentrant regions. Thereby, reentrant regions are most commonly found in
channels and transporters [57]. It was recently found that reentrant regions dif-
fer remarkably from transmembrane helices with respect to their hydrophobicity
[65]. Reentrant regions are not only less hydrophobic than transmembrane he-
lices, but also show a heterogeneous distribution of hydrophobic residues. While
hydrophobic residues are equally distributed at all positions in transmembrane he-
lices, reentrant regions are more hydrophobic at positions close to the membrane
surfaces and less hydrophobic inside the membrane.
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Figure 1.1: Structural diversity of membrane proteins. (A) Simple membrane protein structure of
bacteriorhodopsin (PDB code: 1c3w, chain A) with straight transmembrane helices. (B) Structure
of the bovine mitochondrial ADP-ATP carrier (PDB code: 2c3e, chain A) with proline kink.
(C) Structure of the Clc chloride channel from S. typhimurium (PDB code: 1kpl, chain A) with
strongly tilted helix. (D) Structure of the photosynthetic reaction center from R. viridis (PDB
code: 1prc, chain M) with interface helix. (E) Structure of the GltPh (PDB code: 2nwl, chain A)
with interrupted helix. (F) Structure of the AQP1 water channel (PDB code: 1j4n, chain A) with
reentrant region. (G) Structure of the glutamate transporter homologue from P. horikoshii (PDB
code: 1xfh, chain A) with strongly tilted and interrupted helices and reentrant regions. Yellow:
transmembrane helices, Red: examples of structural irregularities. The figure was drawn using
PyMOL [66].
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Taken together, many substructures have been found that clearly deviate from the
simple membrane protein architectures that we are used to from early membrane protein
structures. It is worth mentioning that some membrane proteins even contain several of
these irregular substructures. A good example is the eukaryotic glutamate transporter
homologue from Pyrococcus horikoshii that consists of tilted helices, reentrant regions
and interrupted helices [35, 67] (Figure 1.1G). Most importantly, it seems that all these
substructures are somehow involved in the function of the corresponding protein. There-
fore, it is inevitable to leave behind our view of a simple helix-bundle arrangement as it
is overwhelmingly clear that membrane protein structures are much more diverse than
initially expected.

3D and 2.5D prediction methods

As only few membrane protein structures are available, computational methods to pre-
dict the three-dimensional structure of a membrane protein are in high demand. A
couple of prediction methods were already developed [12] and will be briefly summa-
rized here.

One of the main approaches to predict the three-dimensional structure of a protein
from its amino acid sequence is homology modeling (also known as comparative model-
ing). Homology modeling describes the technique of predicting the structure of a given
protein sequence (target) based on one or more known three-dimensional structures of
homologous proteins (templates) [68]. Given that membrane proteins clearly differ from
soluble proteins, it can not be taken for granted that the same methods originally de-
veloped for soluble proteins can automatically be applied to membrane proteins as well.
However, it could be shown that existing methods perform equally good on membrane
proteins [69, 70]. Furthermore, one of the most important steps in homology modeling
is the alignment between target and template. Thus, as membrane protein specific sub-
stitution matrices [71–75] and alignment methods [76–78] do exist, it is even possible
to further optimize existing methods to membrane proteins. That available homology
modeling methods can yield better models if specifically tailored to membrane proteins
was recently shown by the newly developed MEDELLER algorithm [79].

Similar attempts have also been made in the field of fold recognition methods (also
known as threading). Fold recognition, in contrast to homology modeling, does not
depend on templates, but rather uses a library of all known folds and tries to find
the most compatible one [80]. One fold recognition method developed specifically for
membrane proteins was proposed by Taylor et al. [81].
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Unfortunately, the fundamental problem with these template based methods is the
paucity of structural data [12]. Given that only 310 unique membrane protein structures
exist up to now, the chance of detecting a suitable template structure is very small and
thus limits the applicability.
A possible solution to this problem are the ab initio prediction methods that depend

solely on the sequence of the target protein [80]. In fact, some membrane protein specific
ab initio methods already exist [82, 83]. However, these methods are limited too as they
have problems in handling large membrane protein structures.
Finally, apart from the methods that try to predict the whole structure of a membrane

protein, other methods exist that are specialized in the substructures presented in the
previous paragraph. The prediction methods for these substructures were termed 2.5D
predictions [35] as the substructures are between the 2D dimension of the topology and
the 3D dimension of the tertiary structure. There are tools available for the prediction
of kinks [84–86], tilted helices [87, 88], interface helices [55, 57], and reentrant regions
[57, 89–92]. And interrupted helices can be predicted by a combination [93] of ZPRED
[87, 88] and PsiPred [94].
To summarize, several 3D and 2.5D prediction methods are available. But either

they have only a limited applicability or predict only parts of the membrane protein
structure. Therefore, the prediction of the three-dimensional structure of membrane
proteins is still a very challenging task. More promising in this respect is the prediction
of membrane protein topology which will be the focus of the next paragraph.

1.1.3 Membrane protein topology

The topology of a membrane protein describes the number and location of its trans-
membrane helices together with their orientations relative to the membrane. It is a
meaningful feature of membrane proteins as it represents an important intermediate be-
tween the primary structure and the fully folded three-dimensional structure [17]. The
major determinants of a membrane protein topology are the hydrophobic stretches of
the transmembrane helices and the positive-inside rule that helps to define the cytosolic
side of the protein [38].

Prediction of topology

Like all methods in bioinformatics, methods for predicting the topology of a membrane
protein have evolved from simple approaches to more sophisticated ones. One of the
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first methods was developed by Kyte and Doolittle in 1982 [95]. Using a hydropathy
scale, a hydrophobicity score is first assigned to each residue in the sequence. After-
wards, a window of specific length slides along the sequence and if the sum of all values
in the window exceeds a given threshold, then the hydrophobic stretch is predicted
to be a transmembrane helix. Significant improvements have been achieved with the
development of machine-learning approaches including neural networks (e.g. PHDhtm
[96] and Memsat [97]), hidden Markov models (HMM) [98–102] and more recently, sup-
port vector machines [92, 103, 104] and bayesian networks [105]. HMM based methods
(such as HMMTOP [99] and TMHMM [98]) were shown to be particularly successful
[101, 106, 107] and thus are commonly used. One difficulty that almost all prediction
methods struggle with is that signal peptides are hydrophobic as well and are hence
often wrongly predicted as transmembrane helices and vice versa. Again it was a HMM
based method (called Phobius [100]) which could successfully address this problem first
by combining signal peptide prediction and topology prediction within one model. Fi-
nally, there also a couple of methods available that use the results of multiple prediction
programs and combine them into one consensus prediction [108–113].

Although there are already many prediction methods available, there is still room for
improvement. As was the case after switching from simple hydropathy scale analysis
to advanced machine-learning approaches. With new prediction methods emerging that
additionally incorporate new structural features (such as reentrant regions, tilts etc.) it
is likely that they will clearly outperform all existing methods. In fact, some methods
already exist that go in this direction by either combining different machine-learning
approaches and/or predicting reentrant regions as well [90–92, 114, 115]. For example,
SPOCTOPUS [91] not only combines HMMs with neural networks, but also predicts
transmembrane topology, signal peptides and reentrant regions. However, it is also
possible that with new membrane protein structures even more structural deviations
will appear that further challenge existing prediction methods. Thus, it seems that
membrane proteins will keep us busy for the next few years.

Evolution of topology

There is also another reason why the topology of a membrane protein is given so much
attention. In contrast to soluble proteins, the topology represents an additional dimen-
sion for membrane protein evolution [17]. The first examples presented in this context
show that one membrane protein adopts not necessarily only one topology [17, 36, 38].

• Opposite topologies: It could be shown that homologous proteins such as RnfA
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and RnfE [116] or YdgE and YdgF [117] have the same number of transmembrane
helices and are in agreement with the positive-inside rule, but show opposite topol-
ogy [17, 38]. These proteins represent examples of divergent evolution of membrane
protein topology.

• Dual topologies: In contrast to the cases of opposite topology, other proteins
do not follow the positive-inside rule and thus adopt a so-called dual topology
[17, 36, 118]. That means that these proteins can insert in two opposite orientations
[118]. Examples of dual-topology proteins include SugE and CrcB [117].

• Multiple topologies: Some proteins can even adopt different topological forms
as a consequence of inefficiently inserting transmembrane helices. One example
is given by the scrapie prion protein that exists not only as a single-spanning
membrane protein in two opposite orientations, but also in a cytoplasmic and
fully secreted form [17, 119].

• Dynamic topologies: Furthermore, membrane proteins are not necessarily stable
entities with respect to their topology. Some of them can reorient their whole
topology as part of a reaction cycle. Similarly, also single transmembrane helices
can be repositioned during folding and oligomerization [17, 93].

One of the main mechanisms that drive membrane protein evolution is internal gene
duplication. The majority of duplications are complete resulting in a duplication of
transmembrane helix number and symmetric three-dimensional structures. Particularly
membrane proteins with 8, 10 and 12 transmembrane helices seem to have evolved
through a complete gene duplication [17, 120, 121]. Thereby, the larger the membrane
protein is (i.e. the more transmembrane helices it contains), the higher the frequency to
be internally duplicated [122]. The symmetry resulting from such a duplication is appar-
ent in the structures of Lactose permease [123], Clc chloride channels [45], aquaporin-1
[60] and YrbG [124]. But these are only a few examples and Choi et al. found that
almost half of all known membrane protein structures (that were available at that time)
contain internal symmetries [125]. Although the duplication of an odd number of trans-
membrane helices (called anti-parallel duplication) represents a special case (as the two
homologous domains cannot both retain their original orientation), it was found that
parallel and anti-parallel duplications are equally common [122]. In context of dupli-
cations, Rapp et al. suggested a possible scenario for opposite topologies [118, 126].
They hypothesized that proteins with opposite topologies may have emerged from a
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duplication of a dual-topology protein followed by divergent topology evolution. And if
these proteins are finally fused, the resulting polypeptide adopts an anti-parallel sym-
metric structure. Therefore, dual-topology proteins form a possible evolutionary path
for proteins containing anti-parallel duplications. Another type of internal duplication
is the partial duplication, where only part of the primordial protein is duplicated. It was
frequently found in proteins with 6 and 7 transmembrane helices likely to have evolved
from primordial proteins with 2,3 or 4 and 3,4 or 5 transmembrane helices, respectively
[121].

Besides gene duplication, another important force in driving protein evolution is do-
main recombination. While the first was shown to be common in membrane proteins,
the second one is not [127]. Liu et al. argue that membrane proteins use an alter-
native method to gain evolutionary diversity, namely the formation of oligomers that
is frequently found among membrane protein structures [15, 127]. However, it has to
be mentioned that the uncommon recombination applies to non-homologous membrane
domains, but not to the recombination of transmembrane and soluble domains.

1.1.4 Genome-wide analysis

Predicting membrane protein topology on genome-wide scale followed by a comparative
analysis of the results for different genomes allows us to address many interesting ques-
tions. For example, how abundant are membrane proteins within the studied proteomes
and are there differences? Or if there are membrane proteins with a given number of
transmembrane helices that are prominent in one organism or kingdom, why not in
the others? In the following these questions will be answered through the results of
previously published analyses on that subject.

One of the first main results of these studies that is now cited in almost every pub-
lication on membrane protein research considers their abundance. The proportion of
proteins with one or more predicted transmembrane helices within a proteome reaches
20-30% [2–6]. Whether there is a correlation between the number of transmembrane
proteins and the complexity of an organism is ambiguous as the results are controversial
[36]. While the results of some studies show that membrane proteins are more abundant
in larger genomes [4], others do not affirm such a correlation [5, 128, 129].

A general decreasing trend is observed regarding the transmembrane helix distribu-
tion. Accordingly, membrane proteins with few transmembrane helices are more common
than proteins with many [3, 4, 130]. But exceptions to this general trend do exist in that
certain membrane protein topologies are highly favored. These exceptions are reported
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Figure 1.2: Topology distribution in membrane proteomes. (A) Functional categorization of mem-
brane proteins in E. coli. (B) Distribution of functional categories with respect to topology in E.
coli. Proteins with a cytoplasmic C terminus are plotted upwards and those with an extracytoplas-
mic C terminus are plotted downwards. (C) Same as (A), but for S. cerevisiae. (D) Same as (B),
but for S. cerevisiae. Figure taken from [1].

in many different studies [3, 4, 117, 131–133]. The results of these analyses can be
summarized as follows. Proteins with 6 and 12 transmembrane helices are predominant
in uni-cellular organisms and constitute small-molecule transporters, sugar transporters
and ABC transporters [3, 4]. On the other hand, C. elegans and human favor topologies
with 7 transmembrane helices [3, 4, 131] which can be explained by the high abundance
of G-protein coupled receptors (GPCRs). In human, 5% of the whole proteome and even
15% of the membrane proteome account for GPCRs [134]. Jones called such favored
topologies ‘transmembrane superfolds’ [3] in accordance with the superfolds found for
soluble proteins [135]. Furthermore, it was found that the topology with both N- and
C-terminus in the cytoplasma is abundant in proteins with an even number of trans-
membrane helices suggesting that pairs of helices connected by short loops (called helical
hairpins) may be a preferred insertion mechanism [38, 117, 132, 133]. Finally, studies
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on S. cerevisiae [133] and E. coli [117] revealed a strong correlation between structure
and function (Figure 1.2). While proteins with at least 10 (in case of S. cerevisiae) and
12 (in case of E. coli ) transmembrane helices are most often transporters, most of the
proteins with less than 5 transmembrane helices have no functional annotation. These
small membrane proteins should be the focus of future functional investigations in order
to fill that gap of knowledge.

1.2 Classification of proteins

Large-scale sequencing projects accumulate data at an ever-increasing rate. Therefore,
it becomes more and more important to organize similar proteins into groups, a process
known as classification, to keep pace with the large amount of data. The most well-
known classification approach is probably the biological classification of organisms as
for example exemplified by Carl von Linne [136].

At the protein level, there are three important attributes according to which proteins
can be classified: sequence, structure and function. These three approaches are described
as follows.

1.2.1 Sequence-based classification

One of the most common approaches of protein classification is based on sequence sim-
ilarity that is measured by using algorithms such as BLAST [137] or FASTA [138].
Sequence-based classification schemes focus on the detection of homologous sequences
assuming that proteins with similar sequences are evolutionary related.

The big advantage of establishing protein classifications on sequence information is
that it is not limited to structure data. While the UniProt database [139] currently
contains more than 19 million sequences (release 2011_12; SwissProt+TrEMBL), only
about 78,300 structures are deposited in PDB [27] (as of January, 2012). One disadvan-
tage of these methods is that it is very difficult to define a reliable similarity threshold.
On the one hand, if the threshold is too restrictive, only few or no matches are found. On
the other hand, if the threshold is too permissive, a lot of false-positives are retrieved.

Many methods exist that group proteins solely based on sequence information [140–
144]. Two of the more well-known are Pfam [145, 146] and COG [147, 148].
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Pfam

Pfam is a well-established database that classifies protein sequences from the UniProt
database into families. The Pfam database consists of two components: Pfam-A and
Pfam-B. Pfam-A is a manually curated version of Pfam containing well-characterized
protein domain families with high quality alignments. The families of the Pfam-B sup-
plement are automatically generated and are thus of lower quality. However, since
Pfam-A does not cover all known proteins, Pfam-B families might be useful when no
Pfam-A families are found.

In order to accomplish the high quality of the Pfam-A alignments, Pfam uses two
alignments. The seed alignment is constructed from a representative set of sequences
that are described in literature as belonging to the same family. After manual inspec-
tion of the alignment quality, an HMM is built that is used to detect additional family
members in UniProt. Finally, a full alignment is constructed of all members. Further
quality controls are performed once the two alignments have been constructed. Thus,
each Pfam family is represented by a multiple alignment and an HMM. In addition, an-
notation and cross-references to other databases (such as PDB and SCOP) are provided.
(species distribution)

Since its first release in 1997, Pfam has not only increased the data, but also developed
a lot of new features. One of these features was the grouping of related Pfam families in
so-called clans [149]. A clan summarizes two or more families that have arisen from a
single evolutionary origin. One of the last developments was the linkage of Pfam families
to relevant Wikipedia pages [146].

The whole set of HMMs represents a comprehensive library that can be used to identify
and classify domains in protein sequences. The recent version of Pfam (release 26.0)
contains 13,672 Pfam-A families covering almost 80% of UniProt and 499 clans [146].

COG

The protein database of Clusters of Orthologous Groups (COGs) classifies proteins from
completely sequenced genomes according to orthologous relationships. Each COG in-
cludes proteins from at least three distantly related species that are inferred to be
orthologs. These are genes from different species that have evolved from a common
ancestor through speciation [150].

COGs are derived based on all-against-all sequence comparison of proteins from com-
pletely sequenced genomes. First, for each protein its best hit in each of the other
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genomes is determined. Then, all triangles formed by best hits are detected (called
minimal COGs). Finally, triangles with a common side are merged and each COG is
manually refined in order to eliminate false positives.

Since orthologs typically retain the same function in different species [147, 151], it
is possible to transfer functional information from one member to an entire COG. The
COGs provide a powerful tool for automatic functional annotation of newly sequenced
genomes [152–154] and genome-wide evolutionary studies [155, 156].

The current release of the COGs database consists of 4,872 prokaryotic COGs from
66 genomes and 4,852 eukaryotic COGs (termed KOGs) from 7 genomes.

1.2.2 Structure-based classification

Another approach to protein classification is based on the comparison of three-dimensional
protein structures. The big advantage of using structural information is that distant
evolutionary relationships between proteins can be revealed that are undetectable by
sequence analysis [157]. This is because structure is more conserved than sequence
[158, 159].

The detection of distant relationships is not the only benefit of structure-based clas-
sification databases. These databases also allow the generation of template libraries of
unique structures that are needed in structure prediction methods like fold recognition
and homology modeling. Furthermore, they simply give an easy accessible overview of
the diversity of protein structures and allow to estimate the number of protein folds and
families [160, 161].

Among the most commonly used structure-based classification approaches are SCOP
[162, 163] (Figure 1.3A) and CATH [164, 165] (Figure 1.3B) that are based on evolu-
tionary relationships. These two databases have become the gold standard in structural
bioinformatics.

SCOP

In 1995, the Structural Classification of Proteins (SCOP) database was established by
Murzin et al. as the first classification approach of determined structures. The basic
classification unit in SCOP is the domain. A domain is defined as a compact segment of
the polypeptide chain that folds independently [167, 168] and it occurs either in isolation
or within a multi-domain protein [169]. That means that proteins are first split into their
constituent domains and then each domain is classified separately. SCOP defines the
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Figure 1.3: Overview of structural and functional classification approaches. Structural classification
of SCOP (A) and CATH (B) for C-phycocyanin (PDB code: 1cpc, chain A). Right figure taken
from [164]. Examples of the functional classification approaches EC (C) and GO (D). Right figure
taken from [166].

boundaries of the domains manually.
Proteins are classified according to a four-level hierarchical scheme [162].

• Class: The class is the most general level and considers the content and organiza-
tion of secondary structure elements. The four main classes are all-alpha, all-beta,
alpha+beta and alpha/beta.

• Fold: The fold level describes geometrical relationships by considering the over-
all shape of a protein. Two proteins have the same fold if the major secondary
structures are the same and assemble in the same arrangement and with the same
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topological connections. Protein domains grouped together in the same fold may
not have a common evolutionary origin.

• Superfamily: The superfamily level groups together proteins with low sequence
identities, but where similarities in structure and function suggest that a common
evolutionary origin is probable.

• Family: At the family level, proteins are clearly evolutionary related. This is
shown either by high sequence identity (≥ 30%) or lower sequence identity but
very similar structures and functions. The clustering of proteins according to
sequence similarity is the only automatically performed step in SCOP.

With only one exception (family level), all classification steps are manually performed
with visual inspection and structure comparison demanding a detailed human expert
knowledge. Therefore, SCOP is supposed to be the most accurate classification approach
[162]. The problem with such an approach is, however, that the results are not always
reproducible.

The latest version of SCOP (release 1.75) contains 1,195 folds, 1,962 superfamilies
and 3,902 families.

CATH

While SCOP uses a nearly complete manual approach, CATH (created by Orengo in
1997) classifies proteins in a semi-automatic manner. For example, the definition of
domain boundaries is done automatically (in contrast to SCOP).

Common to both approaches is that the classification is on hierarchical levels accord-
ing to evolutionary and structural relationships. The CATH hierarchy comprises the
following levels [164]:

• Class: Similar to SCOP, the class level regards the secondary structure content.
Three classes are defined: all-alpha, all-beta and alpha/beta.

• Architecture: The architecture level considers the overall shape of the structure
as determined by the orientation of the secondary structure elements regardless
of their connectivity. The assignment of the architecture level is a manual step in
CATH.

• Topology: At the topology level, the overall shape and connectivity of secondary
structure elements are considered. The topology level corresponds to the fold level
in SCOP.
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• Homologous superfamily: Similar to topology but requiring a higher degree of
structural similarity coupled with a functional similarity. At this level, proteins
may have evolved from a common ancestor.

• Sequence, Nearly identical, identical: At these levels, protein domains share
a sequence identity of 35%, 95% and 100%, respectively.

At present CATH (release v3.4) contains 40 architectures, 1,282 topologies and 2,549
homologous superfamilies.
With the large increase in the PDB database, manual approaches become more and

more difficult furthering the need for an automatic classification. In fact, several methods
are already available that completely rely on large-scale structure comparisons and are
therefore fully automated [170–178].

1.2.3 Function-based classification

Finally, proteins can also be assigned to groups on the basis of functional similarity. The
difficulty with functional classification methods is that there are several ways to define
a protein’s function. Function can be defined based on enzyme reaction mechanisms,
participation in biochemical pathways, functional roles and cellular localization [136].
Furthermore, function can be described at different levels. For example, the term ‘lipid
transport’ describes a protein’s function more specific than the term ‘transport’.
Among the most widely used function-based classification approaches are the Enzyme

Commission [179] (Figure 1.3C) and Gene Ontology [166, 180] (Figure 1.3D).

Enzyme Commission

The Enzyme Commission (EC) provided the first detailed classification of protein func-
tion designed as a four-level hierarchy. The first field in the EC number describes the
enzymatic class. The second and third field further specify the class. And the fourth
field indicates the specific enzymatic activity. For example, the EC number 4.2.3.1
corresponds to a lyase (4.*), more precisely a carbon-oxygen-lyase (4.2.*) that acts on
phosphates (4.2.3.*), finally describing a threonine synthase (4.2.3.1).
The ENZYME database [181, 182] contains valuable information for each EC number

specified by the Enzyme Commission, such as the list of proteins that are associated
with the EC number.
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Gene Ontology

The Gene Ontology (GO) Consortium provides a structured, dynamic, controlled vocab-
ulary for describing functions of genes and gene products. As function can be described
in several ways, the GO Consortium comprises three independent subschemes called on-
tologies. An ontology is defined as a vocabulary of well-defined terms with well-defined
relationships [166].

• Biological process: describes a biological goal to which the gene product con-
tributes (Example term: GO:0016049 ‘cell growth’).

• Molecular function: describes the biochemical activity of a gene product (Ex-
ample term: GO: 0038023 ‘signaling receptor activity’)

• Cellular component: describes the location in the cell where a gene product is
active (Example term: GO:0005622 ‘intracellular’)

Unlike EC, GO is not limited to enzymes. And in contrast to the strict hierarchical EC
numbering, GO terms are organized in a directed acyclic graph (DAG). As such, it is pos-
sible that one GO term has multiple parental terms. For example, the term GO:0038023
(‘signaling receptor activity’) is connected to the parental terms GO:0004871 (‘signal
transducer activity’) and GO:0004872 (‘receptor activity’). It is important to note that
one gene product can be associated with several GO terms (from the same ontology)
reflecting the fact that a protein may be multi-functional.

1.3 From sequence to structure to function

Protein classification methods are a valuable tool for the investigation of sequence-
structure and structure-function relationships that give insight into protein evolution.
Although it is very common that proteins with similar sequences and similar structures
tend to possess similar functions, examples exist showing deviation from this general
relationship, as will be shown in the following.

1.3.1 Sequence-structure relationships

Anfinsen’s theorem postulates that all information necessary for a protein to fold into
its three-dimensional structure residues within its amino acid sequence [183]. There-
fore, if two pairs of proteins have similar sequences, it is likely that they also adopt
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similar structures [158]. This is the cornerstone of homology modeling a method to
predict the three-dimensional structure of a protein using the already known structure
of a sequence-similar protein. Several studies have analyzed to which extent sequence
similarity ensures structural similarity. It was found that proteins sharing at least 35%
sequence identity will almost certainly have similar structures [158, 184, 185]. In the
region of 20-35%, which is often called the ‘twilight zone’, structural similarity is con-
siderably less common [184].
However, several examples were found that show the converse indicating that the

relationship between sequence and structure is ambiguous. As such, different sequences
can lead to similar structures, and similar sequences to different structures.
Different sequences, similar structures. A very prominent example for the first

case are hemoglobin and myoglobin sharing only 25% sequence identity, but having
closely related structures (RMSD 1.5 Å) [186]. Such examples highlight the fact that
structure is more conserved than sequence [158, 159].
Similar sequences, different structures. Conversely, Kosloff and Kolodny found

a significant set of proteins with highly similar sequences (ranging between 50-100%)
and substantially different structures [187]. Very interesting examples for this case are
pairs of DNA polymerase β proteins and diphtheria toxins (with sequence identities
close to 100%) [188]. It is being argued that the structural dissimilarity is caused by
functional issues [187, 188]. In the last-mentioned examples, the function involves large
conformational changes. Given that some proteins do exist in both open and closed
forms, it becomes apparent that sequence similarity does not always imply structure
similarity.

1.3.2 Structure-function relationships

Sequence determines structure and structure determines function. Therefore, as se-
quence can be used to predict structure (e.g. through homology modeling), structure
can be used to predict function. This can be done by searching for proteins of known
function that are similar in sequence and structure to the target protein. If such proteins
could be found, then the function is transferred to the target protein [189–191]. Thus,
methods of functional transfer are based on the assumption that structural similarity of
proteins implies their functional similarity [192]. ‘The great majority of proteins which
exhibit significant structural similarity are homologues and perform identical or similar
functions’ [193] (Figure 1.4).
However, as was already the case for sequence and structure, the relationship between
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Figure 1.4: Illustration of the relationships between fold and function. The thicker the arrows the
higher the relative frequency of the relationships. There is a clear trend that homologous proteins
usually have the same fold and function, while the reverse applies to non-homologous proteins.
However, deviations from this trend occur, although being less frequent. Figure taken from [193].

structure and function is also not straightforward.

Different structure, similar function. Trypsin and subtilisin proteinases are non-
homologous proteins with different structures but the same function [193]. Other exam-
ples include carbonic anhydrases, glycosidases and carboxylases [194];

Similar structure, different function. It was found that alpha-beta folds are par-
ticularly associated with functional diversity [191, 194]. The TIM-barrel and Rossmann
folds are most probably the best known examples in this respect [194, 195]. Similarly,
lysozyme and alpha-lactalbumin adopt similar structures, but, although being homo-
logues, perform different functions [193]. All mentioned examples are enzymes. Several
researchers argue that the enzyme folds are functionally diverse because their function
depends only on a few amino acids and not the whole fold [193, 196].

1.4 Motivation and Outline

Membrane proteins are involved in many essential cellular functions and are of great
pharmaceutical interest. However, only few structures are currently available and thus
the relationships between structure and function giving valuable insights into protein
evolution are only poorly understood. In order to explore their structure-function re-
lationships, it is necessary to have a comprehensive classification system specifically
tailored to membrane proteins. In this thesis, existing structure classification methods
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are evaluated and new classification methods are proposed.
In chapter 2 (‘Classification of membrane proteins based on 3D structure’), the first

analysis of the classification of membrane proteins in SCOP and CATH is presented.
This analysis addresses the general occurrence of membrane proteins and folds within
SCOP and CATH, as well as the differences in their domain and fold assignments. The
study was motivated as follows. α-helical membrane proteins share the overall structure
of a α-helix bundle with transmembrane helices oriented approximately perpendicular
to the membrane. But at the same time, they exhibit a significant variety due to specific
structural features such as reentrant regions, strongly tilted helices or interrupted helices
(see section 1.1.2, page 3). Therefore, the question arises whether the fold definition
initially developed for soluble proteins can be directly applied to membrane proteins as
well.
In chapter 3 (‘Classification of membrane proteins based on 1D and 2D structure’),

a hierarchical classification approach (named CAMPS) is presented that is specifically
tailored to membrane proteins and that aims to provide structural membrane protein
families with members likely to share the same fold (SC-clusters). While SCOP and
CATH are based on three-dimensional structures, CAMPS uses sequence similarity, the
number of transmembrane helices and loop length patterns. The CAMPS classifica-
tion is evaluated against different sequence-based, function-based and structure-based
classification methods and the results are discussed in detail. The development of this
classification system was motivated by the fact that methods based on three-dimensional
structures (such as SCOP and CATH) are not comprehensive since membrane protein
structures are rare. Furthermore, methods specifically established for membrane pro-
teins can deal better with their structural characteristics.
In chapter 4 (‘Classification of membrane proteins based on helix-helix interactions’),

another fold determinant is considered, namely helix-helix interactions. The chapter de-
scribes how predicted consensus helix architectures can be used to identify SC-clusters
that describe the same fold. A benchmark is performed in order to find the best pa-
rameters for the generation of consensus architectures. Then, the method is applied to
a selected set of SC-clusters and the joined SC-clusters are further analyzed in terms
of structural and functional aspects. The motivation for this work was that CAMPS
can not deal with analogous structures resulting from convergent evolution since the
approach is mainly based on sequence similarity.
At the end of the thesis, I will present the main conclusions that can be drawn from

this work and I will give a short outlook on future work.
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Chapter 2
Classification of membrane proteins based

on 3D structure

“Science is always wrong. It never solves a problem

without creating ten more.”

(George Bernard Shaw)

Structural classification of proteins is a valuable tool for the understanding of protein
function and evolution, with the power to reveal distant evolutionary relationships that
are hidden at the sequence level [157]. Enumeration of protein architectures existing
in nature not only gives a good overview of their structural diversity, but also provides
invaluable clues into the general principles of protein structure organization [160, 161].
A great practical benefit of structural classification approaches is that they provide
a library of unique folds that can be used in structure prediction methods, such as
homology modeling and fold recognition. However, the structural classification of soluble
proteins is much more advanced than the structural classification of membrane proteins.

For soluble proteins, a clear fold definition exists considering the number, arrange-
ment, and connectivity of secondary structure elements. The total number of distinct
protein folds existing in nature is estimated to range from 650 to 8,000, depending on
assumptions made and datasets used [135, 161, 197–203]. The two most established
resources, SCOP [162, 163] and CATH [164, 165], currently hold about 1,200 protein
folds. Finally, the proportion of novel folds among newly determined structures has
been steadily decreasing [165, 204–206], from 6% in 1997 to merely 0.4% 10 years later,
suggesting that the soluble protein space is nearly exhausted.

In contrast, structure classification of membrane proteins is still in its infancy, pri-
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marily because known structures are scarce, but also due to the lack of a clear fold
definition. Therefore, the number of membrane protein folds is not known yet. Because
of the physical constraints of the membrane bilayer, membrane proteins show a limited
range of structural diversity and adopt either an α-helix bundle or β-barrel architecture
[13]. However, the large variety of functions mediated by membrane proteins suggests
that they attain their structural divergence at a different level than soluble proteins,
leading to the question whether current fold definitions initially developed for soluble
proteins can be directly applied to membrane proteins as well. Furthermore, considering
the idea of a continuous fold space (see section 2.1.2) and the additional structural lim-
itations imposed to membrane proteins by the lipid bilayer, the question arises whether
membrane proteins can be reasonably classified into distinct folds at all.

Within this chapter, these issues are addressed by a comparative analysis of the struc-
tural classification of membrane proteins in SCOP and CATH. The next two sections
briefly introduce comparative studies on structure classification databases and the con-
tinuity of the protein fold space. In the results section, three topics are investigated.
First, the general occurrence of membrane proteins and folds within SCOP and CATH.
Second, the differences in their domain assignments. And third, the differences in their
fold assignments. So far, such comparative analyses were focused on the full set of avail-
able protein structures. The study presented here is the first comparative analysis of
the classification of membrane proteins.

2.1 Introduction

2.1.1 Comparison of SCOP and CATH

SCOP [162, 163] and CATH [164, 165] are both hierarchical classification systems and
employ a largely similar fold definition based on the number of secondary structure ele-
ments, their spatial orientation and connectivity (see section 1.2.2, page 15). However,
they differ in their objectives and the methods used to divide proteins into structural
domains, which is the first step in these structural classification approaches. Several
studies have already investigated the similarities and differences between the classifica-
tions of SCOP and CATH [207–210]. Although they have shown considerable agreement
among the classifications, remarkable discrepancies were found as well. Given that the
domain partitioning is not a trivial task [211], it is not surprising that some of the dif-
ferences arise from variations in the applied domain assignment procedure. Csaba et al.
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found that the domain assignments agree only in about 70% of the cases [210]. Further-
more, several cases were found where SCOP and CATH differ in their fold and homology
assignments. For instance, general folds in one database (such as the Rossmann fold)
are separated into several more specific folds within the other database (termed the
‘fold overlap’ problem) [207]. Even more drastic discrepancies can be observed where
one database classifies two proteins into an evolutionary related family, while another
classification approach places the same pair of proteins into completely different folds.
This is possible due to the fact that proteins may be structurally diverse despite a com-
mon evolutionary origin [207, 212]. While, some of these disagreements clearly arise as
a consequence of specific differences in classification schemes, others may be attributed
to the continuity of the protein structure space [212], which will be introduced in the
next paragraph.

One of the motivations to perform these analyses was to generate a benchmark set con-
taining protein domains that are consistently classified in several classification systems.
Such datasets are highly valuable for the training and evaluation of diverse bioinformat-
ics methods such as automatic structure classification, protein structure prediction [210]
and homology detection [213].

2.1.2 Continuity of fold space

SCOP and CATH implicitly assume that the fold families are discrete entities and do
not overlap due to local structural similarity [212, 214, 215]. However, this assumption
is being questioned and the recent notion of a continuous fold space represents a seri-
ous challenge to hierarchical structure classification methods ([208, 212, 214–222] and
references therein). It is argued that substructures (corresponding to structural mo-
tifs) below the domain level should be used as the basic unit for structural classification
[208, 212]. Therefore, if domains are regarded as assemblies of several such substructures
leading to local structural similarity of one protein to several other proteins that are not
globally related to each other, then the structure space is continuous [212]. In this case,
Pascual-Garcia et al. suggest to represent the protein structure space as a network and
not as a tree in order to allow links between different folds having substructures in com-
mon [212]. Such a representation would also bring benefits for functional considerations,
since it is suggested that functional relationships between different folds may be missed
by grouping structures into non-overlapping folds [214, 219, 220].

Structural overlaps between protein folds were already noticed in 1997 by Orengo et
al. who used the term ‘russian doll effect’ [164]. Since then several studies reported on
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diverse examples of folds sharing significant structural similarity to other folds [214, 217,
218, 222]. Harrison et al. found that most of these folds, which they termed ‘gregarious’
folds, are α-β proteins and include super-secondary structural motifs, such as α-hairpins
[217]. It is unclear to what extent similarities between folds exist. While Harrison et
al. take the view that the fold space is mostly discrete with only few ‘gregarious’ folds,
Skolnick et al. hypothesize that the protein structure space is almost entirely connected
[221].

However, it seems more likely that the fold space is not completely continuous with
some regions being continuous and others being discrete [212, 217]. It is argued that the
different views on fold space are not mutually exclusive and ‘both views have their place
in practical applications and neither should be neglected or unnecessarily criticized’
[220]. Hence, several authors suggest to use the notion of a continuous fold space to
complement existing structural classification schemes such as SCOP and CATH [214,
217, 220]. This can be done by adding horizontal links between folds sharing structural
substructures [214, 218]. Taken together, although the fold space continuity challenges
traditional structural classification approaches, if the classifications are adapted to cope
with overlapping folds (e.g. by horizontal connections), they will continue to serve as
valuable tools for structural bioinformatics.

2.2 Materials and Methods

2.2.1 Datasets

An initial dataset of α-helical membrane proteins with experimentally determined struc-
ture was generated using the Protein Data Bank of Transmembrane Proteins (PDBTM
[26]) as of October 1, 2008. From this database, all proteins that had at least one trans-
membrane helix were extracted according to the PDBTM annotation, yielding a dataset
of 2,673 amino acid chains. Using the cd-hit algorithm [223], this dataset was made
non-redundant such that no pair of proteins shared more than 95% sequence identity,
resulting in a dataset of 381 amino acid chains.

From this initial collection, two datasets were created that contained all protein chains
with domain and fold assignment in SCOP v1.73 [162, 163] and CATH v3.2 [164, 165],
respectively. SCOP or CATH domains that did not contain at least one transmembrane
segment were excluded from consideration. Note that in case of biological units consist-
ing of multiple copies of the asymmetric unit, PDBTM contains multiple instances of
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the same chain. These instances have different chain identifiers that are neither listed
in PDB nor in SCOP or CATH. Such duplicate chains were ignored. Model structures
as well as structures where the fraction of non-alpha carbon atoms is below 70% (for
which CATH does not provide classification [224]) were also not considered. In one case,
a protein chain (1p49, chain A) with two transmembrane helices and an assignment in
SCOP (‘alkaline phosphatase-like’ fold (SCOP code c.76)) was removed from the SCOP
dataset as the domain assignment in SCOP covered not only the transmembrane part
but also the globular part of the protein. Similarly, the protein chain 1ehkB was ex-
cluded from the CATH dataset, as CATH obviously misclassifies this domain covering
only a single transmembrane helix into a fold containing seven transmembrane helix
proteins. Finally, the protein 1bzkA was removed from both datasets as the available
3D structure covers only parts of the full protein chain. After these filtering steps, the
SCOP dataset included 156 protein chains, whereas the CATH dataset covered 110 pro-
tein chains (corresponding to 160 and 119 domains, respectively). These datasets are
further referred to as MP_SCOP and MP_CATH, respectively.

For the comparative analysis of domain assignment and membrane protein fold clas-
sification, a third dataset, further referred to as MP_shared, was constructed containing
proteins with assignments in both classification databases. To this end, all protein chains
present in both MP_SCOP and MP_CATH were extracted yielding 96 chains (corresponding
to 99 SCOP and 105 CATH domains). Redundancy at the domain level was removed
from this set using the SCOP unique identifier (sunid) describing distinct domains. The
final non-redundant MP_shared dataset contained 63 protein chains corresponding to 64
SCOP and 67 CATH domains that share a sequence identity below 95%.

Using the fold classifications in the two datasets, MP_SCOP and MP_CATH, all SCOP
and CATH folds containing α-helical membrane proteins were identified. The final set
of α-helical membrane protein folds contained 34 SCOP (Table 7.1 in the Appendix)
and 28 CATH folds (Table 7.2 in the Appendix).

2.2.2 Comparing domain assignments

Using the MP_SCOP and MP_CATH datasets, the number of single-domain and multi-
domain membrane protein chains was calculated separately for both SCOP and CATH.
In a second analysis, the domain assignments between SCOP and CATH were directly
compared for all proteins in the MP_shared dataset. For those proteins where SCOP and
CATH agreed in the number of domains, the extent of domain overlap was additionally
calculated. This was done by calculating the fraction of residues consistently assigned
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by both databases for a pair of corresponding domains. SCOP and CATH were said to
agree regarding domain boundaries if this fraction was at least 90% of both individual
domains.

2.2.3 Comparing fold assignments

For the analysis of similarities and differences regarding fold assignments of membrane
proteins within SCOP and CATH, the MP_shared dataset was used. The agreement
between fold assignments in SCOP and CATH was considered perfect if the following
conditions were satisfied: (i) all proteins that were assigned to the same fold in one
database were also assigned to a single fold in the other database, and (ii) no other
proteins in the latter database had this fold assignment. If one of the two conditions for
fold agreement was not fulfilled, the corresponding SCOP and CATH folds were added
to the list of fold disagreements. Whereas fold disagreements of this kind were observed
for protein chains classified as single-domain proteins by both databases, disagreements
regarding fold assignments naturally resulted also from differences in domain assign-
ments. Another kind of fold disagreement was thus given if PDB chains were classified
as single-domain proteins into the same fold in one database, but were classified as
two-domain proteins by the other database, with each domain having a separate fold
assignment.
To compare the structural similarity of proteins involved in fold disagreements to those

with consistent fold assignments, all-against-all protein structure comparisons were made
using DaliLite v.3.1 [225]. For each comparison, the structural similarity Z-score and
the root mean square deviation (RMSD) were obtained. Fold disagreements caused
by domain discrepancies were not considered in this analysis. In case of fold agree-
ments, SCOP domain coordinates were used for structure comparison because of their
higher degree of manual curation. For those folds involved in disagreements, SCOP and
CATH domain coordinates were used to represent SCOP and CATH folds, respectively.
Only in one case (2atk, chain C), CATH domain coordinates were solely used for both
the SCOP and CATH fold assignment as the SCOP domain did not cover the whole
transmembrane region. As DaliLite did not return any result for several bitopic pro-
teins, especially those with short sequence length, structure comparisons among bitopic
proteins were additionally performed using the SSAP algorithm ([226], available via
http://www.cathdb.info/cgi-bin/SsapServer.pl). The functional consistency of
SCOP and CATH folds was furthermore evaluated using GO annotations [166, 180], as
provided by the GOA group at the EBI (http://www.ebi.ac.uk/QuickGO/).
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2.3 Results and Discussion

2.3.1 Membrane protein folds in SCOP and CATH

Membrane proteins with at least one transmembrane helix assigned by PDBTM (MP_
SCOP and MP_CATH datasets, see Materials and Methods) are currently found in 34 SCOP
(Table 7.1 in the Appendix) and 28 CATH (Table 7.2 in the Appendix) folds. In SCOP,
membrane proteins are primarily classified within the ‘membrane and cell surface pro-
teins and peptides’ class (f) while CATH does not provide a separate class for membrane
proteins. Instead, α-helical membrane proteins are included within the mainly-α class
(20 folds) together with α- helical soluble proteins and in the few secondary structures
class (eight folds). Within the former class, 4 of the 20 folds containing membrane pro-
teins belong to the orthogonal bundle architecture (CATH code 1.10) and 16 folds to
the up-down bundle architecture (1.20). Generally, membrane proteins of the same fold
are rarely further subdivided into superfamilies and families in both databases. Only
4 out of 28 CATH membrane protein folds (14.3%) are associated with more than one
superfamily (Table 7.2 in the Appendix). In SCOP, three membrane protein folds are
further subdivided into more than one superfamily, and only five folds contain more
than one family (Table 7.1 in the Appendix), which corresponds to 8.8% and 14.7% of
all SCOP membranous folds, respectively. In contrast, 13 and 38% of all globular folds
(belonging to SCOP classes a, b, c or d) are associated with more than one superfamily
and family, respectively. Not surprisingly, these numbers reflect the substantially higher
structural coverage of soluble proteins compared to membrane proteins. Although the
number of newly identified folds for soluble proteins is steadily decreasing [227], struc-
ture determination of membrane proteins is far from saturation, limiting the number of
folds with several unrelated representatives to a small number of well-studied folds, such
as the single transmembrane helix, the two helix hairpin and the four helix bundle.

The number of distinct membrane protein domains that are assigned to one fold
ranges from 1 to 30 (SCOP) and 1 to 26 (CATH) domains (Table 7.1 and Table 7.2 in
the Appendix). In both SCOP and CATH, folds containing membrane proteins with
one to four transmembrane helices represent the largest folds in terms of the number
of distinct domains (SCOP: f.17, f.21, f.23; CATH: 1.10.287, 1.20.5, 1.20.85, 1.20.120).
Generally, the collection of available membrane protein structures is still too small and
biased [228, 229] to allow any conclusions about the most prevalent membrane protein
folds in nature. However, it can be noted that the currently most populated folds all have
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small numbers of transmembrane helices. This observation is compatible with genome
scale analyses of membrane proteins where the fraction of proteins with a given number
of transmembrane helices was found to decrease with increasing number of helices [4,
5, 230, 231] (see section 1.1.4, page 11). On the other hand, it might also indicate
that proteins with fewer transmembrane helices are harder to classify into different folds
because of more limited degree of structural variation (see also later), and that such
proteins therefore tend to be assembled into few and larger folds.
Finally, the number of transmembrane helices was found to vary significantly within

some folds, according to the annotation taken from PDBTM (Table 7.1 and Table 7.2
in the Appendix). For example, protein domains assigned to the ‘heme-binding four
helical bundle fold’ in SCOP (f.21) were found to contain between three and five trans-
membrane helices. Within the CATH database, the biggest variance was found for the
‘cytochrome bc1 complex chain c’ fold (1.20.810), whose domains contain either four or
eight transmembrane helices. The common classification seems to be caused by local
structural similarity between the N-terminal part of cytochrome b and cytochrome b6

domains [232], although cytochrome b consists of eight transmembrane helices, whereas
cytochrome b6 only has four. In contrast, SCOP splits cytochrome b proteins into two
domains and hence, classifies only the N-terminal domain to the same fold as cytochrome
b6 proteins, whereas the C-terminal domain is classified separately.

2.3.2 Comparison of domain assignments

As domains are the basic units of protein structure classification in SCOP and CATH, the
agreement in their assignments was analyzed first. SCOP and CATH use different meth-
ods to split proteins into domains. While SCOP essentially relies on visual inspection,
CATH only employs manual annotation if three different automatic domain assignment
methods do not yield a consistent consensus prediction [233]. Accordingly, previous anal-
yses reported significant differences between SCOP and CATH in the resulting domain
assignments, considering all proteins in the respective databases [207, 209]. However,
as most of the membrane proteins are single-domain proteins [127], one would expect
disagreements between domain assignments for membrane proteins to be less frequent
than those observed for soluble proteins.
Of the 156 protein chains in the MP_SCOP dataset, 152 were classified as single-domain

chains and four were split into two domains, while amongst the 110 protein chains from
the MP_CATH dataset, nine contained two domains (Table 2.1). The observation that
CATH identifies more multi-domain proteins than SCOP was already reported in the

30



2.3. RESULTS AND DISCUSSION

Table 2.1: Comparison of α-helical membrane protein fold classification in SCOP and CATH

SCOP CATH

General treatment of membrane proteins Separate class Membrane proteins
(membrane and cell surface are classified together

proteins and peptides) with globular proteins
Number of folds 34 28
With more than one superfamily 3 4
With more than one family 5 -

General comparison using independent datasets (MP_SCOP, MP_CATH)a,b

Number of protein chains with fold assignment 156 110
Domain assignments
One domain per chain 152 101
Two domains per chain 4 9

Direct comparison using the shared dataset (MP_shared)c

Domain assignments (SCOP:CATH)
1:1 58
2:1 1
1:2 4

Fold agreements f.3 ↔ 4.10.220
f.13 ↔ 1.20.1070
f.19 ↔ 1.20.1080
f.20 ↔ 1.10.3080
f.24 ↔ 1.20.210
f.29 ↔ 1.20.1130
f.30 ↔ 1.20.860
f.31 ↔ 1.20.1240
f.33 ↔ 1.20.1110

Fold disagreement caused by f.25 → 1.10.287 + 1.20.120
domain disagreement f.26 → 1.20.85 + 1.20.85

1.20.810 → f.21 + f.32
Fold disagreement caused by f.14 → 1.10.287, 1.20.120
fold overlap f.17 → 1.10.287, 1.20.20

f.21 → 1.20.810, 1.20.950, 1.20.1300
f.23 → 1.10.8, 1.10.442, 1.20.5, 4.10.49,

4.10.51, 4.10.81, 4.10.91, 4.10.93,
4.10.95, 4.10.540

1.10.287 → f.14, f.17
1.20.5 → f.23, j.35, j.37

1.20.120 → f.14, f.25, f.36
a MP_SCOP: Set of PDBTM [26] proteins with an annotation in SCOP.
b MP_CATH: Set of PDBTM [26] proteins with an annotation in CATH.
c MP_shared: Set of PDBTM [26] proteins with an annotation in SCOP and CATH.
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work of Hadley and Jones [207] and was found to be a direct result of the different
domain definitions that are used in the two databases. CATH addresses geometrical
aspects while SCOP also incorporates functional considerations.

To further elucidate differences in the domain assignments between SCOP and CATH,
the separation into domains was examined using the dataset MP_shared containing 63
α–helical membrane proteins with one or more transmembrane helices found both in
SCOP and CATH. In 58 cases, the two databases consistently assigned one domain per
protein chain. However, this single domain did not always cover the entire protein chain,
and in some cases, the sequence positions of domain boundaries differed between SCOP
and CATH. Specifically, four cases were observed where SCOP and CATH deviated by
more than 10% of their assigned positions, whereas in the remaining 54 cases (85.7% of
all proteins in MP_shared) the domain assignments were consistent.

Five protein chains were divided into two domains either by SCOP or by CATH.
Specifically, SCOP splits cytochrome b into two domains (first domain assigned to fold
f.21 and second domain assigned to fold f.32, Figure 2.1A) while CATH classifies the
full protein as one domain (‘cytochrome bc1 complex fold’, 1.20.810). Similarly, four
cases were only found in CATH, where protein chains were separated into two domains,
including two structures of subunit III of the cytochrome c oxidase. CATH splits these
latter structures into a N-terminal domain with two transmembrane helices and a C-
terminal domain with five helices based on the existence of a V-shaped cleft between
the two helix bundles (Figure 2.1B) which is known to bind a lipid molecule [234]. The
N-terminal domain is assigned to the ‘helix hairpin fold’ (1.10.287), and the C-terminal
one to the ‘four helix bundle fold’ (1.20.120). In SCOP, the same proteins are classified
as single-domain proteins to the ‘cytochrome c oxidase subunit III like fold’ (f.25). The
other two two-domain protein chains correspond to the photosynthetic reaction center’s
L or M chains that have similar structures [235]. Both domains of these structures are
assigned to the same CATH fold (‘photosynthetic reaction center, subunit m, domain
1’ (1.20.85)), whereas one domain spans two and the other three helices. In contrast,
SCOP treats them as single-domain chains that belong to the ‘bacterial photosystem II
reaction centre L and M subunits fold’ (f.26).

Finally, one amino acid chain (AcrB protein; 1iwg, chain A) is split into two domains
by both SCOP and CATH. Although this protein is not yet officially classified in CATH
and hence is not included in the MP_shared dataset, its CATH domain assignments are
already available, defining six globular and two transmembrane domains identical to the
domain assignment in SCOP.
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Figure 2.1: Domain assignment discrepancies between SCOP and CATH. (A) Mitochondrial cy-
tochrome b subunit of the cytochrome bc1 complex (PDB code: 1be3, chain C) is classified as a
single-domain protein in CATH, but is divided into two domains in SCOP. (B) Mitochondrial cy-
tochrome c oxidase, subunit III (PDB code: 1oco, chain C) constitutes a single domain in SCOP,
but is separated into two domains in CATH. Two-domain assignments are indicated, with the trans-
membrane helices of each domain in a different color. Single-domain assignments encompass both
colorings (yellow and red). Transmembrane helix coordinates were extracted from PDBTM [26].
The figure was drawn using PyMOL [66].

Summarizing, the fraction of membrane protein domains with consistent domain as-
signment (84.4 and 80.6% of all SCOP and CATH domains in MP_shared) is currently
indeed slightly higher than the fraction of consistently assigned globular domains (69.3
and 67.9% for SCOP and CATH, respectively [209]). Such higher consistency for mem-
brane proteins may be due to the fact that most of the membrane proteins with known
structures are single-domain proteins. From all multi-domain membrane proteins found
in SCOP or CATH (two and six proteins, respectively), only the AcrB protein was con-
sistently assigned with two domains in SCOP and CATH indicating that the assignment
of multi-domains per se is not easier for membrane protein than for soluble proteins.

2.3.3 Comparison of fold assignments - Fold agreements

To determine the agreement between SCOP and CATH with respect to their fold clas-
sification, the fold assignments of all proteins in the MP_shared dataset were compared.
As MP_shared is a subset of MP_SCOP and MP_CATH, it does not cover all known α-helical
membrane protein folds (Table 7.1 and Table 7.2 in the Appendix). Although the total
number of membrane protein folds in SCOP is much higher than in CATH (34 folds
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compared to 28, respectively), CATH classifies the proteins within the MP_shared set
into more folds than SCOP (19 folds in SCOP and 26 in CATH, Table 7.1 and Table
7.2 in the Appendix).
Nine folds were found to contain exactly the same domains in SCOP and CATH (Table

2.1). In total, 21 chains, or 33.3% of the full MP_shared dataset, were assigned to these
folds. All 21 proteins were classified as single-domain proteins by both databases with
good positional agreement (only in one case the domains overlapped by less than 90%).
SCOP and CATH even agree to a large extent regarding the names of these folds.
Considering only proteins from MP_shared, the nine folds identical between SCOP and

CATH contained between one and six distinct domains. Six out of these nine cases af-
fected proteins with six or more transmembrane helices. With only one exception where
proteins with 12 and 13 transmembrane helices were found within the same fold (SCOP
fold f.24/ CATH fold 1.20.210), the number of transmembrane helices was completely
conserved within each of these folds. In the remaining three cases (folds f.3/4.10.220,
f.30/1.20.860 and f.31/1.20.1240 each consisting of a single protein chain), the number
of transmembrane helices was one, two and three, respectively.
By comparing the structures of each fold using DaliLite, a high degree of structural

similarity among all proteins of the same fold was observed. Average Z-scores for com-
parisons of the same fold (Table 2.2) varied between 23.9 (fold agreement f.13/1.20.1070)
and 44.3 (fold agreement f.24/1.20.210). On the other hand, trying to align two domains
covering both 10 transmembrane helices but classified consistently into two different folds
(PDB code 2exw, chain A from fold f.20/1.10.3080 and PDB code 1iwo, chain A from
fold f.33/1.20.1110) resulted in a maximal Z-score of 1.0. For comparison, a Z-score
of 2.0 and higher was suggested by the authors of DaliLite to indicate a common fold
[225], whereas a Z-score above 20 means that two structures are true homologues (see
the DaliLite help file at http://www.ebi.ac.uk/Tools/dalilite/).
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Table 2.2: All-against-all structure comparisons between membrane proteins with agreeing and
disagreeing fold assignments in SCOP and CATH using DaliLite [225].

Folds Number of Number of Maximal Minimal Average
proteins comparisons Z-score Z-score Z-score

Fold agreementsa

f.3 ↔ 4.10.220 1 0 - - -
f.13 ↔ 1.20.1070 6 15 35.6 8.5 23.9
f.19 ↔ 1.20.1080 4 6 30.7 17.8 24.1
f.20 ↔ 1.10.3080 1 0 - - -
f.24 ↔ 1.20.210 4 6 57.5 34.1 44.3
f.29 ↔ 1.20.1130 2 1 34.1 34.1 34.1
f.30 ↔ 1.20.860 1 0 - - -
f.31 ↔ 1.20.1240 1 0 - - -
f.33 ↔ 1.20.1110 1 0 - - -

Fold disagreementsb

f.14 2 1 3.4 3.4 3.4
f.17 4 6 9.6 2.2 4.8
f.21 7 18c 19.6 2.8 6.5
f.23 18 58d 3.4 0.1 2.2
f.25 3 3 31.1 20.6 24.3
f.36 4 6 20.9 17.7 19.4
1.10.287 6 13e 8.8 1.8 4.0
1.20.5 10 36f 3.4 0.1 2.0
1.20.120 8 28 27.6 3.8 10.4
1.20.810 2 1 17.0 17.0 17.0
1.20.950 2 1 6.6 6.6 6.6
1.20.1300 3 3 9.4 4.1 6.2
4.10.81 2 1 2.9 2.9 2.9
a Structure comparisons were executed using SCOP domain coordinates.
b Structure comparisons were executed using domain coordinates from the re-
spective database (CATH coordinates for CATH folds and SCOP coordinates
for SCOP folds).

c For three comparisons, DaliLite did not yield a result.
d For 95 comparisons, DaliLite did not yield a result.
e For two comparisons, DaliLite did not yield a result.
f For nine comparisons, DaliLite did not yield a result.

2.3.4 Comparison of fold assignments - Fold disagreements

Disagreements between SCOP and CATH fold assignments can be caused either by dis-
crepancies in domain assignments or by intrinsic differences in the classification process.
This latter type of disagreement was termed the ‘fold overlap’ problem by Hadley and
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Jones [207], and for SCOP and CATH, it arises from differences between the manual fold
assignment within SCOP and the largely automatic approach based on automatic struc-
ture comparisons within CATH. While the discrepancies in domain assignments occurred
three times (Table 2.1) and were already discussed earlier, seven cases of fold overlaps
within the MP_shared dataset were observed. Remarkably, all seven fold overlaps involve
only domains with one to five transmembrane helices, with single transmembrane helix,
two helix hairpin, and four helix bundle domains being particularly strongly represented.

Case 1: 1.20.120 → f.14, f.25, f.36

The first case of fold overlap encompasses six distinct protein chains that correspond
to one potassium channel (1ors, chain C), four different chains of acetylcholine receptor
(1oed, chains B-E), and one ubiquinol oxidase subunit III (1fft, chain C). All proteins
are assigned to the same CATH fold, the ‘four helix bundle fold’ (1.20.120), but to three
different folds in SCOP. The potassium channel is assigned to the ‘voltage-gated potas-
sium channel fold’ (f.14), the acetylcholine receptors to the ‘neurotransmitter-gated ion
channel transmembrane pore fold’ (f.36), and ubiquinol oxidase subunit III to the ‘cy-
tochrome c oxidase subunit III-like fold’ (f.25). Each of the four SCOP folds corresponds
to a different CATH superfamily within the ‘four helix bundle fold’ (1.20.120). Interest-
ingly, despite their common four helix bundle architecture, structural similarity among
some of the six protein structures is remarkably low. The average Z-score of the six
protein chains was only 10.4 (Table 2.2) corresponding to a clearly decreased average
Z-score compared to those folds where SCOP and CATH agree in their classification.
Protein chains such as 1oedB (acetylcholine receptor, beta chain) and 1fftC (ubiquinol
oxidase) are both assigned to the four helix bundle fold (1.20.120), although the root
mean square deviation (RMSD) is as high as 7.63 Å and their structure comparison score
calculated by the SSAP algorithm [236] is below 70. The latter threshold is motivated by
the CATH approach where two structures are assigned to the same fold if their SSAP
score is greater than 70 [164]. As CATH uses the single-linkage clustering procedure
[237] assigning a new protein to a given fold as soon as there is one member of the fold
to which it is structurally similar, structures without significant similarity can end up in
the same fold (this effect is also known as chaining). In fact, as just recently described
by Pascual-Garcia and colleagues [212], the single-linkage clustering approach of CATH
is one of the major sources resulting in differences to the SCOP classification system
which instead applies the average-linkage procedure. As long as folds are structurally
clearly distinct from each other, the impact of these clustering differences is expected
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to be minimal. However, for more similar structures differences between the clustering
mechanisms are likely to have a more prominent effect on the classification results, as
seems to be the case for the membrane four helix bundle proteins attributed to CATH
fold 1.20.120.

Case 2: f.14 → 1.10.287, 1.20.120

The second case of fold overlap involves two protein chains representing potassium chan-
nel (1ors, chain C and 2atk, chain C). In fact, these PDB chains represent different
conformations of the same protein (1ors, chain C: opened conformation; 2atk, chain C:
closed conformation) [238, 239] where the conformational change is known to cause sig-
nificant structural differences [240] as can be seen in Figure 2.2A and Figure 2.2B. Both
structures are assigned to the ‘voltage-gated potassium channel fold’ in SCOP (f.14).
In contrast, CATH classifies each protein chain not only to different folds, but even to
different architectures (2atk, chain C: orthogonal bundle architecture (1.10), helix hair-
pin fold (1.10.287); 1ors, chain C: up-down bundle architecture (1.20), four helix bundle
fold (1.20.120)). Although representing the same protein, the 1ors (chain C) and 2atk
(chain C) structures show only small similarity with a Z-score of 3.4 (Table 2.2). In this
example, SCOP seems to strongly consider functional aspects over structural similarity
to assign proteins to the same fold.

Figure 2.2: Potassium channels assigned to the voltage-gated potassium channel fold in SCOP
(f.14) despite high structural diversity. (A) KvAP potassium channel voltage sensor (PDB code:
1ors, chain C). (B) KcsA potassium channel (PDB code: 2atk, chain C). The coordinates for the
transmembrane helices of each domain (show in red) were extracted from PDBTM [26]. The figure
was drawn using PyMOL [66].
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Case 3: f.21 → 1.20.810, 1.20.950, 1.20.1300

The third case covers six distinct chains including one cytochrome b6 (2d2c, chain A),
three fumarate reductases (2bs2, chain C; 2b76, chains C and D), one succinate dehy-
drogenase (2acz, chain C) and one formate dehydrogenase (1kqf, chain C). As in the
previous case, these proteins all belong to the same SCOP fold (‘heme-binding four
helical bundle’ (f.21)), but to different CATH folds (‘fumarate reductase cytochrome b
subunit’ (1.20.950); ‘cytochrome bc1 complex, chain C’ (1.20.810); ‘three helical TM
bundles of succinate and fumarate reductases’ (1.20.1300)). Thereby, each of the four
families of the SCOP fold f.21 corresponds to a different CATH superfamily. Again, some
of the structures assigned to the four helical bundle fold in SCOP are very different with
respect to the number of transmembrane helices, the loop lengths and helix tilts, with
an average Z-score between them of only 6.5 (Table 2.2) and hence even smaller than the
average Z-score of the CATH ‘four helix bundle fold’ (1.20.120) discussed above. In the
particular case of the fold f.21, the affected proteins are still assigned to the same SCOP
fold, since they all bind heme(s) and their overall structural similarity implies a com-
mon evolutionary origin, as suggested by Andreeva and colleagues [169]. On the other
hand, CATH disregards functional aspects and identifies enough structural differences
to assign these proteins to different folds.

Case 4: f.17 → 1.10.287, 1.20.20

While the previous cases of fold disagreements involved proteins with three to five trans-
membrane helices, two more disagreements were found for folds containing proteins with
two transmembrane helices. Both cases involve one ubiquinol oxidase (1fft, chain B)
and two cytochrome c oxidase subunits 2 (1ar1, chain B and 2dyr, chain B) that are
all assigned to the ‘transmembrane helix hairpin fold’ in SCOP (f.17) and to the ‘helix
hairpin fold’ in CATH (1.10.287). The two fold disagreements are caused by a fourth
protein chain that is either assigned to another SCOP or another CATH fold. The
CATH classification of the F1FO ATPase subunit c protein (1c0v, chain A) to the ‘F1FO

ATP synthase fold’ (1.20.20) gives rise to the first fold overlap. Thus, compared to the
other three protein chains, the fourth protein chain is not only assigned to a different
CATH fold, but even to a different CATH architecture. Thereby, the two CATH folds
correspond to different SCOP superfamilies of f.17. In line with all other cases of fold
disagreement mentioned above, the structural similarity of the four protein chains is
again rather low with an average Z-score of 4.8 (Table 2.2).
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Case 5: 1.10.287 → f.14, f.17

The second disagreement between SCOP and CATH fold assignments caused by two
helix hairpin proteins is similar to the previous one, but differs in that all four chains
are assigned to the same CATH fold (‘helix hairpin’ (1.10.287)), but to different SCOP
folds, whereas each SCOP fold corresponds to a different CATH superfamily of 1.10.287.
The fourth protein chain (2atk, chain C) causing the discrepancy in the fold assignment
is a voltage-gated potassium channel that is classified to the ‘voltage-gated potassium
channel fold’ in SCOP (f.14). The structural similarity among the four structures is
again remarkably low as indicated by the average Z-score of 4.0 (Table 2.2).

Case 6: f.23 → 1.10.8, 1.10.442, 1.20.5, 4.10.49, 4.10.51, 4.10.81, 4.10.91,
4.10.93, 4.10.95, 4.10.540

Finally, for proteins containing only a single transmembrane helix two cases of fold
overlap were found as well. The first case covers 18 protein chains corresponding to
eight cytochrome c oxidases (1m56, chain D; 2dyr, chains D, G and I-M), five chains
of the cytochrome bc1 complex (1be3, chains E and K; 1ezv, chain D; 2ibz, chains G
and I), two subunits of the photosystem I (1jb0, chains F and J), one photosynthetic
reaction center subunit H (1aig, chain H), one formate dehydrogenase subunit (1kqf,
chain B) and one cytochrome f (1vf5, chain C). All protein chains are assigned to the
‘single transmembrane helix fold’ in SCOP (f.23). In contrast, CATH separates the same
chains not only into ten different folds (1.10.8, 1.10.442, 1.20.5, 4.10.49, 4.10.51, 4.10.81,
4.10.91, 4.10.93, 4.10.95 and 4.10.540), but even into different architectures (orthogonal
bundle, up-down bundle and irregular) and classes (mainly alpha and few secondary
structures class). Except in one case (CATH classification 4.10.81.10 corresponds to
SCOP superfamilies f.23.7 and f.23.18), all CATH superfamilies involved in this case
of fold overlap coincide with distinct SCOP superfamilies of fold f.23. The main cause
for this differential fold classification seem to be extramembraneous structural elements
that are mostly ignored by SCOP while CATH produces a structurally more meaningful
classification of bitopic proteins with single transmembrane helix domains being split
into several folds depending on their globular portions (Figure 2.3).

Case 7: 1.20.5 → f.23, j.35, j.37

The second case of fold overlap involving single transmembrane helix proteins includes
ten protein chains: five chains of the cytochrome bc1 complex (1be3, chains E and K;
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Figure 2.3: Common classification of bitopic membrane protein domains into SCOP fold f.23
despite different structural elements in their globular portions. In contrast, all three proteins are
classified into different folds within CATH. (A) Subunit of cytochrome bc1 (PDB code: 1be3, chain
K). (B) Photosystem 1 reaction centre subunit 3 (PDB code: 1jb0, chain F). (C) Cytochrome c
oxidase subunit 4 (PDB code: 2dyr, chain D). The coordinates for the transmembrane helices
of each domain (shown in red) were extracted from PDBTM [26]. The figure was drawn using
PyMOL [66].

1ezv, chain D; 2ibz, chains G and I), one cytochrome c oxidase (1m56, chain D), one
cytochrome f (1vf5, chain C), one formate dehydrogenase subunit (1kqf, chain B), one
phospholamban (1n7l, chain A) and one glycophorin A (1afo, chain A). Other than
in the previous case, all these chains are classified to the same CATH fold (‘single
alpha-helices involved in coiled-coils or other helix-helix interface’ (1.20.5)), but to three
different SCOP folds (f.23, j.35, j.37) from two different SCOP classes. In total, eight
of the ten protein chains are members of the ‘single transmembrane helix fold’ (f.23)
in SCOP, and only two are classified to the few secondary structures class (1n7l, chain
A and 1afo, chain A). Thereby, different CATH superfamilies of 1.20.5 correspond to
different SCOP superfamilies. Generally, CATH classifies all domains having either no
globular parts or only globular stretches without secondary structure within fold 1.20.5.
The reason for the separate classification of proteins 1n7l (chain A) and 1afo (chain A)
within SCOP is therefore unclear.

Reasons for fold overlaps

Further investigating the reasons for these fold overlaps, it must first be noted that no
database is in general more structurally consistent than the other when it comes to the
classification of membrane proteins with more than one transmembrane helix, as can
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be seen from the average structural similarity of proteins classified to the same SCOP
or CATH fold (Table 2.2). For example, proteins from CATH folds covering several
SCOP folds (1.10.287 and 1.20.120) are on average as structurally similar to each other
as proteins from SCOP folds covering several CATH folds (f.14, f.17 and f.21), with
average Z-scores ranging between 3.4 and 10.4. Similarly, the classification of four helix
bundle proteins, while approached completely differently in both databases, results in
folds with average Z-scores between 6.6 (fold 1.20.950) and 17.0 (fold 1.20.810) in CATH
and 6.5 (fold f.21) and 24.3 (fold f.25) in SCOP, demonstrating that no classification
system groups together structurally more similar folds than the other.

This finding is surprising as the CATH classification system is exclusively based on
structural considerations while SCOP also considers functional and evolutionary aspects
[207]. Inspecting the observed cases of fold overlaps more closely (see above), it becomes
apparent that functional considerations in fact explain some of the observed membrane
protein fold overlaps but may lead to both structurally more diverse as well as more
consistent folds in SCOP. For example, the two potassium channels classified together
to SCOP fold f.14 (see above; Figure 2.2) share a rather low structural similarity (Z-
score 3.4, Table 2.2). The opposite effect is observed in the case of CATH fold 1.20.120
(see above) covering proteins with only a weak structural similarity that are in fact not
fulfilling the requirements of a common CATH classification (required SSAP score >
70). Although these proteins end up in the same CATH fold due to the single-linkage
clustering approach used during classification [237], SCOP places them in different folds
(f.25 and f.36), which have homogenous functional GO assignments [166, 180] and high
average Z-scores (24.3 for fold f.25 and 19.4 for fold f.36).

In contrast, functional considerations seem to be irrelevant for the classification of
bitopic membrane protein domains (having only one transmembrane helix). DaliLite
structure comparisons generally resulted in either very low Z-scores or no result at all
for most pairwise comparisons of bitopic proteins because of their short sequence length
(Table 2.2, folds 1.20.5, 4.10.81, and f.23). Therefore, additional comparisons using the
SSAP algorithm [226] were conducted as well as manual structure inspection to analyze
the structural consistency of bitopic membrane protein folds in SCOP and CATH. As
was already described above, SCOP collects most single helix domains of transmembrane
proteins within fold f.23 irrespective of the presence of any additional extramembraneous
domains or their functional annotation (see Figure 2.3). While CATH classifies bitopic
membrane domains into different folds (including 1.20.5) depending on their globular
parts. Accordingly, SSAP structure comparisons of proteins from CATH fold 1.20.5
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result in high SSAP scores (>80) and/or low RMSD values (< 3Å), while SCOP fold
f.23 combines proteins with only intermediate SSAP scores (≤60) and high RMSD values
(>15Å) (e.g., see Figure 2.3).
In general, SCOP comprises functionally more consistent folds as can be observed

from available GO annotations for all affected proteins without being necessarily more
or less structurally consistent. Although all CATH folds covering several SCOP folds
contain proteins with completely different GO annotations, several SCOP folds combin-
ing proteins from different CATH folds, such as folds f.14 and f.21, share common GO
annotations. Of course, functionally consistency is also not exhaustive in SCOP. Espe-
cially folds with only few transmembrane helices and a very general description (such
as folds f.17 (‘transmembrane helix hairpin’) and f.23 (‘single transmembrane helix’))
aggregate proteins with inconsistent GO annotations.

Summary

From the comparative analysis of membrane proteins in SCOP and CATH it can be
concluded that the currently available membrane protein structures with six and more
helices are either very similar to each other with average DaliLite Z-scores ranging
between 23.9 and 44.3 (and thus are classified to the same fold) or sufficiently diverse
for SCOP and CATH to be able to consistently assign them to different folds. However,
it must be noted that most of the folds within the MP_shared dataset differ in the
number of transmembrane helices, facilitating the classification of the corresponding
proteins. More than one fold is observed only in proteins with 10, 4, 2 and 1 helices.
In the first case, structures of the Clc chloride channel (1ots, chain A) and the calcium
ATPase (transmembrane domain M; 1xp5, chain A) are so dissimilar (DaliLite Z-score
of 1.0) that both SCOP and CATH concordantly separate them into two different folds.
In contrast, the classification of membrane proteins with one to five transmembrane
helices seems to be more difficult as highlighted by the fact that almost no cases of
fold agreement can be detected for these proteins at the moment. Only 3 out of 21
proteins for which SCOP and CATH agree in their fold classification have less than six
transmembrane helices. Instead, all cases of fold overlap affecting α-helical membrane
proteins involve proteins with one to five transmembrane segments.
This observation might have several reasons. One possibility is that larger, multi-helix

proteins might contain more specific traits facilitating their separation into different
folds. Recent publications have highlighted the presence of previously unseen structural
features such as reentrant or tilted helices within membrane proteins (for a review, see
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[35, 241]). According to the recent estimates, these features may occur quite frequently.
For example, 10% of all polytopic membrane proteins are expected to contain reentrant
regions [57]. Naturally, the possibility for structural modification and variation sig-
nificantly increases with the number of available transmembrane helices. Accordingly,
although proteins with less than six helices are still diverse enough for both CATH and
SCOP to place them into several individual folds, their differences seem to be too subtle
to be captured using the classic definition of a fold (primarily based on the number, con-
nectivity and orientation of secondary structure elements), leading to largely deviating
classifications within SCOP and CATH.

Another possible explanation for the discrepancy between the fold attribution in the
two databases may lie in the potential adaptability of membrane-embedded proteins
with only few transmembrane helices, which is possibly related to the evolutionary
origin of primordial membrane proteins. Under the standard evolutionary model, with
RNA and proteins preceding the emergence of cellular membranes [242], the problem of
the first membrane proteins arises as a typical ‘chicken and egg’ paradox: while a lipid
membrane would be useless without membrane transporting systems, the respective
membrane proteins would need membranes to evolve. A plausible resolution of this
paradox has recently been offered based on a combination of structural and phylogenetic
analyses [243]. The suggested solution implies that the evolution of membrane proteins
started from simple amphiphilic, α-helical hairpins capable of being incorporated into
the membrane as oligomeric pores. This membrane architecture is retained by the
membrane oligomer of c-subunits in the F1FO- type ATP synthase [244], where each
hairpin is stabilized by interactions with its neighbors. Accordingly, the structure of
simpler, two and four helix membrane proteins might be essentially dependent on the
interaction with neighboring α-helices and, hence, depend on the partners in case of
oligomeric structures. This variation could, at least partly, account for the discrepancy
in fold attribution between databases.
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2.4 Summary

• SCOP provides a separate class for membrane proteins; in CATH membrane
proteins are classified together with soluble proteins

• SCOP contains 34 and CATH 28 membrane protein folds

• SCOP also considers functional aspects in fold classification → clearly different
structures can be assigned to the same fold

• CATH uses single-linkage clustering → chaining effect can cause different struc-
tures to be assigned to the same fold

• Folds involved in fold agreements show much higher internal structural similarity
than those folds involved in fold disagreements

• Reasonable agreement for domains with ≥ 6 TMHs

– structure space seems to be discrete

– classification similar to soluble proteins possible

• Many discrepancies for domains with 1-5 TMHs

– structure space seems to be continuous

– redefinition of fold necessary (more fine-grained structural features such as
reentrant regions and helix-helix interactions)

2.5 Clarification of contribution

The comparative analysis of membrane protein classification in SCOP and CATH (as
published in [245]) was carried out jointly with Angelika Fuchs. Angelika Fuchs accom-
plished an initial version of this comparison (for proteins with at least 3 transmembrane
helices). In the final version of the comparative analysis she also performed studies
on four-helix bundle proteins (results not shown here). I redid the analysis using an
updated dataset that also contains membrane proteins with less than 3 transmembrane
helices. The investigation of agreements and disagreements in the classifications was
done by myself (such as the structural comparisons, literature research etc.).
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Chapter 3
Classification of membrane proteins based

on 1D and 2D structure

“Commenting your code is like cleaning your bathroom -

you never want to do it, but it really does create a more

pleasant experience for you and your guests.”

(Ryan Campbell)

The comparative analysis of the structural classification of α-helical membrane proteins
in SCOP and CATH (see Chapter 2, page 23) has shown that the globular fold defini-
tion is applicable only to a limited degree and thus should be adapted for membrane
proteins by incorporating more fine-grained structural features. However, even if a new
fold definition would be applied on membrane proteins in the context of structure-based
classification, we still have to face the problem of the paucity of structural data. There-
fore, such an approach only gives a limited view to the structural diversity of membrane
proteins.

Given the current pace of membrane protein structure determination, the only op-
tion available today to explore the structural variety of the vast majority of membrane
proteins is by sequence comparison and structure prediction. Existing classification sys-
tems for membrane proteins (such as GPCRDB [246] or TCDB [247]) operate at the
sequence [248–251] and/or function level, but ignore topology. One method that also
considers structural information was presented by Oberai et al. [250]. To organize
the membrane sequence space into families, they developed an algorithm optimized for
membrane proteins using sequence similarity and information about predicted TMHs.
Using a dataset covering 95 genomes, they found 4,075 membrane protein families con-
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taining sequences with at least two transmembrane helices (TMHs). Predicted TMHs
served to define domain boundaries at the post-processing stage of the clustering ap-
proach. Another classification explicitly considering predicted structural organization is
the CAMPS (Computational Analysis of the Membrane Protein Space) database that
was introduced in 2006 [252]. The first version of the database, CAMPS 1.0, was based
on sequence clustering and TMH prediction to identify structurally homogeneous clus-
ters (SC-clusters) whose members are likely to share the same fold. Using a dataset of
membrane proteins with at least three TMHs from 120 prokaryotic genomes, 266 SC-
clusters were found, representing the estimate of the number of prokaryotic membrane
protein folds at that time. The analysis was restricted to proteins with at least three
TMHs, since most of the proteins with less helices are typically lipid-anchored proteins
and integral membrane proteins were in the focus of that work. Furthermore, TMH pre-
diction methods often falsely predict signal peptides as TMHs. Thus, using the cut-off
of three TMHs minimizes the risk to include non-membrane proteins into the analysis
considerably. In contrast to the approach of Oberai et al. structural information (in
terms of predicted TMHs) directly affects the clustering in CAMPS such that clusters
are required to show a certain degree of structural homogeneity.

In this chapter, a new version of the CAMPS database (CAMPS 2.0) is presented
that features the following novelties. First, membrane proteins of eukaryotic and viral
origin were incorporated into the classification process. Second, the membrane protein
fold definition was revised by considering information about loop lengths in addition to
sequence similarity and the number of TMHs. Finally, the empirically derived rules to
derive structurally homogeneous clusters were replaced by a more sophisticated approach
based on meta-models. The usage of meta-models (that are derived from so-called hidden
Markov models) and the incorporation of loop lengths are two major modifications in
CAMPS 2.0. Therefore, a short introduction is given at the beginning of this chapter.
Subsequently, the new release is described and the results of comprehensive comparisons
against sophisticated classification approaches are presented.

3.1 Introduction

3.1.1 Hidden Markov models

Hidden Markov models (HMMs) are statistical models that have been extensively ap-
plied in the field of speech recognition and computational biology for many different
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problems including the prediction of genes [253], coiled coils [254], signal peptides [255]
and transmembrane helices [98, 99] (see also section 1.1.3, page 8), as well as for se-
quence alignment and homology detection [256]. A short introduction will be given here
according to [257] and [258]. For a more detailed description see [259].

Each HMM is a finite model composed of a set of states and a set of symbols. Thereby,
each state emits symbols depending on its own emission probabilities and the states
are connected by transition probabilities. In the example shown in Figure 3.1A, the
HMM consists of two states and the symbols that each state can emit correspond to
the nucleobases A, C, G and T. A HMM can be considered as a model that generates
sequences. Therefore, a sequence of states (Figure 3.1B) is generated by moving from
state to state according to the transition probabilities. As each state emits a symbol
according to the emission probabilities, an observable sequence of symbols is generated
as well (Figure 3.1C). In our example, the symbol sequence corresponds to a DNA
sequence. The sequence of states is a so-called Markov chain. This is also a probabilistic
model generating a sequence, in which the probability of a symbol only depends on the
preceding symbol. As the state sequence is not observed and is hidden, it is called a
hidden Markov chain, and therefore the whole model a hidden Markov model.

The usual scenario is that we are given a symbol sequence and we want to infer
the hidden state sequence. For example, in the special case of transmembrane helix
prediction, the symbol sequence corresponds to the amino acid sequence and the state
sequence contains the information which residue belongs to a transmembrane helix or
to a interhelical loop. It is possible that many state sequences can generate the given
symbol sequence. In order to find the most probable one, algorithms such as the Viterbi
algorithm can be used.

A very important step in generating HMMs is their training that defines the pa-
rameters of the model (i.e. the transition and emission probabilities etc.) that are
unknown at the beginning. The standard training algorithms are the Baum-Welch and
the Forward-Backward algorithms.

3.1.2 Importance of interhelical loop regions

Studies on α-helical membrane proteins mainly focus on their transmembrane domains.
However, given that less than 30% of residues are within transmembrane domains [260],
it is more than reasonable to also include interhelical regions in the structural and
functional investigations of α-helical membrane proteins. In fact, the theory on how
membrane protein folding occurs is switching from the ‘two-stage’ model [261] to the
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Figure 3.1: Example of a simple two-state hidden Markov model (HMM) describing DNA sequence.
(A) State 1 and State 2 produce AT-rich and CG-rich sequences, respectively. Arrows indicate
state transitions and their probabilities. Each state has its own emission probability distribution
for generating a symbol (either A, C, G, or T; shown below the states). By moving from state to
state, the HMM generates two sequences. A hidden state sequence (B) and a symbol sequence
that is observable (C). Figure taken from [257].

‘three-stage’ model [262]. According to the first model, membrane protein folding is
separated into two distinct stages. First, transmembrane helices are formed and inserted
into the lipid bilayer. Second, the embedded transmembrane helices interact with each
other to form a helix bundle. Based on experimental evidence, the second model suggests
an additional third stage that also considers the binding of ligands and the folding of
extramembraneous loops.

There is also evidence that some interhelical loops contribute to the function of α-
helical membrane proteins [263–265]. This is also confirmed by two approaches demon-
strating that loop length patterns can be used for functional classification [266, 267].
Otaki and Firestein applied their approach to the large superfamily of G-protein cou-
pled receptors (GPCRs). It is known that all GPCRs share a seven transmembrane
helix topology, but differ remarkably at the sequence level and are therefore further
divided into families [134]. They have shown that loop length patterns are conserved
among family members suggesting a functional significance in the GPCR superfamily
[267]. Similar results were obtained by the study of Wistrand et al. [268].

Apart from the functional importance, there are some indications that interhelical
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loops are also important for the structure of α-helical membrane proteins [269–271].
While the studies of Kim et al. and Landin et al. revealed that certain loops are
essential for the stability of bacteriorhodopsin [269] and rhodopsin [270], Tastan et al.
showed that interhelical loops affect the assembly of transmembrane helices as stretched
loops constrain the distance between two adjacent helices.

Taken together, interhelical loops seems to play a meaningful role in the function and
structure of α-helical membrane proteins. Hence, it seems promising to also consider
loops in the structural classification of membrane proteins as an additional fold deter-
minant. In fact, for soluble proteins it could already been shown that fold classification
based on secondary structure can be further improved by adding loop information [272].

3.2 Materials and Methods

3.2.1 Dataset

A dataset of α-helical membrane protein sequences was created using the SIMAP [273]
database that contains pre-calculated similarity scores between all publicly available
amino acid sequences as well as annotation features. Only sequences from completely
sequenced genomes with at least three predicted transmembrane helices (TMHs; accord-
ing to Phobius [100]) were considered. Since SIMAP covers sequences from all genome
sequencing projects, some genomes were represented several times. In such cases, the
RefSeq [274] genome was chosen in order to avoid redundancy at the genome level. If
a RefSeq genome was not available one genome instance was selected randomly. The
final dataset of α-helical membrane proteins contained 494,679 sequences from 1,702
genomes, including 57 archaeal, 792 bacterial, 134 eukaryotic and 719 viral genomes.
This dataset was used to set up the CAMPS database. It has to be noted that through
the subsequent steps (initial clustering and SC-cluster derivation; see below), the number
of sequences and genomes was further reduced (see Results and Discussion).

3.2.2 Analysis of domain content

For the analysis of domain content of α-helical membrane proteins a non-redundant
dataset of 373,800 sequences was derived sharing no more than 90% sequence identity
using the cd-hit algorithm [223]. For each sequence, Pfam-A [145, 146] domain annota-
tions were obtained from SIMAP. Furthermore, each Pfam-A domain was classified as

49



CHAPTER 3. CLASSIFICATION OF MEMBRANE PROTEINS BASED ON 1D AND 2D STRUCTURE

either soluble (if it contained no predicted TMHs), transmembrane (if it contained pre-
dicted TMHs and soluble regions not longer than 120 residues), or hybrid (if it contained
predicted TMHs and soluble regions longer than 120 residues).

3.2.3 Initial clustering

All sequences from the membrane protein dataset were initially clustered using the MCL
[275] algorithm (version mcl-08-157) with an inflation value of 1.1 (default is 2.0) and a
scheme of 7 (corresponds to default). The inflation value controls the granularity of the
clustering (with higher values increasing the granularity). The smallest possible inflation
value was used, since the purpose of the initial clustering was to obtain a very coarse
grained clustering. The clustering was conducted based on pairwise FASTA [138] simi-
larity scores between sequences that were extracted from the SIMAP database. Edges
corresponding to alignments above a variable E-value threshold or not covering two or
more TMHs and at least 40% of all predicted TMHs [252] were not considered during the
clustering. Furthermore, the clustering was performed hierarchically at various E-value
thresholds, starting at E-value threshold 1E-5 up to E-value 1E-100. The clusters ob-
tained with the previous, less stringent E-value threshold were clustered independently
of each other at the successive, more stringent threshold. Depending on the E-value
threshold, the number of initial clusters ranged from 6,278 (1E-5) to 35,868 (1E-100)
(for more information see Table 7.3 in the Appendix).

3.2.4 Determination of TMH core regions

For each initial cluster, a permissible range of TMH numbers was defined as described in
Martin-Galiano and Frishman, 2006 [252]. Briefly, the most common number of TMHs
among the cluster members was determined and some minor deviations were allowed
(e.g. if almost all cluster members had four TMHs, the permissible TMH range was
3-5; see Martin-Galiano and Frishman, 2006 [252] for details). For each cluster, all
those members were selected sharing less than 90% sequence identity (based on cd-hit
[223] calculations) and whose TMH number was within the cluster’s TMH range. If
this procedure yielded at least 15 cluster members, they were multiply aligned using
ClustalW [276] (which yielded better results than MUSCLE [277], data not shown).
If the number of retained cluster members exceeded 400, only the 400 most divergent
members were retained for alignment. Using these alignments, TMH cores corresponding
to consecutive regions in the multiple alignment where 35% of the aligned sequences were
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predicted to be within a TMH [252] were determined. If fewer than three TMH cores
were found or the number of TMH cores was not within the TMH range, no TMH
cores were assigned to the cluster. Regions outside of the TMH cores were considered
to represent loop regions. Thus, each initial cluster was finally represented by a set of
TMH cores and loops that was used for the generation of meta-models (see below).

3.2.5 Derivation of SC-clusters

Out of the set of initial membrane protein clusters those clusters were selected whose
members are structurally homogeneous. This was done by incorporating the information
on the number of TMHs and the length of extramembraneous loops into meta-models, as
described below. Such clusters were called SC-clusters (structurally correlated) because
the structural properties of their constituent proteins are similar.

Definition of meta-models

The intention is to combine topology, loop lengths and sequence similarity for the clas-
sification process since it is presumed that all these features determine a membrane
protein fold. For this purpose meta-models were utilized that consist of a set of hid-
den Markov models (HMMs) each representing either a single TMH or a single loop
region within a membrane protein. The individual submodels are connected to form one
high-level model (Figure 3.2). Given a specific membrane protein family, a collection
of HMMs representing loop and helix regions was shown to be able to detect remote
members of this family. While the architecture of the meta-model developed by Wis-
trand et al. [268] was specifically adjusted to the family of G protein-coupled receptors,
a family independent definition of a meta-model was developed capturing both sequence
and topology information of any set of training sequences.

Submodel architecture

Different types of HMM architectures were utilized to model TMHs and loops. Using the
set of TMH cores and loops inferred from the cluster alignments, HMMs were constructed
as follows. A dedicated HMM was created for each TMH core, with the number of states
corresponding to the length of the aligned core region. Depending on the number of gaps,
the core region of an individual cluster member can also be shorter than the consensus
length for all cluster members. Therefore, the helix model must be able to represent
helices of different length simultaneously in order to account for structural variation in
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Figure 3.2: Meta-model architecture for a membrane protein with four TMHs. The boxes indicate
the submodels of the meta-model, with hatched boxes representing loop regions and white boxes
representing TMHs. The gray colored plane indicates the membrane bilayer. Solid arrows corre-
spond to transitions between individual submodels and dotted arrows indicate transitions resulting
from missing helices. Figure taken and adapted from [278].

the cluster. To this end transitions between a given state and all successive states were
allowed by introducing silent states that emit no symbols, thus creating the possibility
of skipping one or more states (Figure 3.3A).

Additionally, two different architectures were used to model the loop regions. The first
model deals with loops longer than twelve residues and contains an adjustable number
of states (depending on loop length conservation) and an additional globular state in
the middle (Figure 3.3B). To determine the optimal number of states for this model,
the mean loop length µ and its standard deviation σ were calculated. If the loop length
was detected to be conserved (σ < 2) the number of states corresponding to the mean
loop length was selected. If not, the number of states was set to twelve since the first
and the last six amino acids of each loop were found to carry the most information,
with additional states not resulting in a higher classification accuracy (data not shown).
In order to allow longer loops to fit to the model as well, the globular state is able to
perform self-transitions. On the other hand, the same model can also match shorter
loops by using the transitions between normal and silent states. The second loop model
was used for short loops with up to twelve residues (Figure 3.3C). In this model the
number of states equals the maximally observed loop length within a given cluster.
Again silent states allow for skipping individual states.
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Figure 3.3: Helix and loop model architectures. (A) Helix model with normal states (white)
and silent states (gray) that emit no symbols. Silent states allow transitions from one state to
all successive states and are used to model helices of different lengths. Arrows denote possible
transitions between two states. (B) Model for loops having a length greater than twelve amino
acids. If the loop length is conserved within the cluster (standard deviation σ of mean loop length
< 2), the number of states is set to the mean loop length, otherwise the model contains 12 states.
In both cases, the model contains an additional globular state (black). (C) Model for loops having
a length shorter than twelve amino acids. The number of states equals to the maximal loop length
within the cluster. No globular state exists in this model. Figure taken and adapted from [278].

Model training

Before the model parameters were estimated by training they were initially set uniformly
to 0.05 for the emission parameters (corresponding to 20 possible amino acids) and to
1/S for all transitions starting in node i, with S being the total number of successive
states for node i. In addition to emission and transition probabilities, the probability
of a sequence to start in state i was initialized by setting this parameter to 1 for the
first state and to 0 for any other state. The actual parameter estimation for each HMM
was executed using the iterative Baum-Welch algorithm from the Jahmm library v0.6.1
(http://code.google.com/p/jahmm/) with the default value of nine iterations as the
stopping criterion.

After the separate training of each helix and loop model, the models were connected
to each other to obtain one meta-model for the respective set of training sequences.
To this end, transition probabilities between the individual submodels were introduced.
Transition probabilities from the last state of a helix model to the first state in the
following loop model were always set to 1. For the reverse case (loop-helix transition), the
probability was set to the observed percentage of sequences containing the subsequent
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helix in the training set. The remaining fraction of sequences missing this helix was
used to model a transition skipping this helix.

Model optimization

After the training was finished, the models were best adapted to the training sequences
and could not generalize to unseen data. To overcome this overfitting of meta-models,
emission and transition probabilities were further processed after the training.
Transition probabilities needed to be adapted since the training may cause some

transitions to be modeled with the probability of zero. To avoid this, predefined pseu-
docounts were added to allow transitions not seen in the training sequences with at least
minimal probabilities by using the following equation:

âij =
aij + η

1 + η |ai|

where âij and aij are the final and initial probabilities for the transition from state
i to state j, η is a predefined pseudocount, and ai is the number of transitions from
state i. Based on preliminary optimization experiments, η was set to 0.003 (data not
shown). These pseudocounts were not only used for transition probabilities within an
HMM, but also for transition probabilities connecting two HMMs. Emission proba-
bilities were adapted using Dirichlet mixtures which represent prior information about
amino acid distributions observed in different sequence contexts such as positions with
polar residues, small residues, and highly conserved residues. The combination of this
information with the observed amino acid frequencies is expected to result in a greater
generalization capability of the obtained model allowing the detection of remotely re-
lated sequences. The 9-component mixture estimated on the BLOCKS database [279]
was used, which also includes a context for hydrophobic amino acids, and the adjusted
emission probabilities were calculated as suggested by Sjölander et al. [280].

Generation of meta-models

In a second step an iterative procedure was developed using the generalized meta-model
definition to detect from the set of initial sequence clusters those whose members are
likely to share the same membrane protein fold (SC-clusters).
The derivation of SC-clusters is based on the idea that such clusters are supposed

to contain proteins with sufficient sequence and structure similarity to be classified to
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their originating cluster with high sensitivity and selectivity within a cross validation
experiment. While this would also be true for protein families (as opposed to folds), the
SC-cluster detection procedure was started with clusters generated at highly permissive
E-value thresholds and then E-value thresholds were gradually made more and more
stringent, accepting any cluster as soon as the pre-defined criteria for successful cross
validation were met. For several protein families sharing the same fold this should be
the case at an E-value where the tested sequence cluster still covers all of these families.
The procedure is thus based on the notion that a structural fold is a broader concept
than a functional family. The exact steps of the iterative SC-cluster detection procedure
are as follows (Figure 3.4):

Step 1: Start with all initial clusters at the least restrictive E-value threshold (1E-5)
as the training set.

Step 2: Build a candidate meta-model for each cluster in the training set.
Step 3: Classify all members of the clusters in the training set using 10-fold cross

validation against all meta-models in the training set (‘test step’).
Step 4: Remove clusters with less than 95% correctly classified members and replace

them with their child clusters at the next more restrictive E-value threshold.
The training set now includes these newly added clusters as well as all the
clusters accepted at earlier cross validation rounds.

Step 5: Go to Step 2 and iterate until no cluster is left to be split or until the most
restrictive E-value threshold has been reached (1E-100).

The clusters resulting from this iterative procedure are assumed to represent structural
membrane protein families whose members are likely to share the same fold and are
termed SC-clusters. A short description was derived for each SC-cluster using the Pfam-
A [145, 146] and SUPERFAMILY [281] assignments (as extracted from SIMAP [273])
of their members. The assignment that could be found for at least half of all members
was inherited as the SC-cluster description. If no such assignment was available, the
SC-cluster was termed ‘Uncharacterized SC-cluster’.

Classification of individual sequences

In the third step of the SC-cluster detection procedure, all cluster sequences were clas-
sified against a set of meta-models. A scoring mechanism was developed to identify the
best fitting meta-model. Every sequence was compared to each meta-model by scor-
ing all possible paths using the forward algorithm implemented in the Jahmm library.
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Figure 3.4: Flowchart of the procedure to identify SC-clusters using meta-models.

Given a meta-model and a sequence, the forward algorithm calculates a value between
0 and 1 indicating the probability that the meta-model generated the sequence. The
final score was calculated as the natural logarithm of that probability. For those cases
where the best score was below the minimal score threshold, implying that even the
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best meta-model gave no score reliable enough for classification, the sequence was clas-
sified as ‘unknown’. Otherwise, the sequence was assigned to the highest scoring model.
The optimal value for the minimal score threshold was determined in preliminary op-
timization experiments with the goal to obtain the best trade-off between sensitivity
(fraction of classified cluster members out of all sequences in the cluster) and accuracy
(fraction of correctly classified cluster members within the set of all classified members
of the cluster) (data not shown). The classification method is used in almost the same
manner on the project website to classify an unknown query sequence submitted by
the user. The only difference is that before the query sequence is checked against the
meta-models, TMHs are predicted using Phobius [100]. Then, the sequence will only
be compared to those meta-models, where the number of predicted TMHs is within the
TMH range of the underlying SC-cluster. This step was implemented to speed up the
classification of unknown query sequences. Please note that the forward algorithm used
in this work calculates the probability that the entire query sequence was generated
by a given meta-model (which is comparable to a global alignment), leading to poor
scores when multi-domain membrane proteins are compared with a meta-model built
from single-domain proteins. In a future CAMPS release, it is intended to incorporate
an improved algorithm that will be able to perform both global and local alignments
with respect to the sequence.

In order to filter unreliable matches, a score cut-off was determined for each meta-
model such that any match scoring above this cut-off is very likely to be a true positive.
The scores for each SC-cluster sequence against all meta-models (all-against-all com-
parison) were calculated yielding a list of scores of all members and a list of scores of
all non-members for each meta-model. Since each meta-model represents a SC-cluster,
members of a meta-model were defined as those SC-cluster sequences that were assigned
to this SC-cluster (see above) and non-members as those sequences that were assigned
to one of the other SC-clusters. For each meta-model, different score cut-offs were tested
and the sensitivity (fraction of all members that score above the cut- off) and specificity
(fraction of all non-members that score below the cut-off) was calculated. Then, the
score cut-off achieving at least 90% specificity was chosen. The mean sensitivity over
all defined meta-model specific score cut-offs was 96.7% and the mean specificity was
95.7%. These cut-offs are used to classify an unknown sequence such that only those
matches are returned that score above the respective cut-offs. Since these cut-offs do
not always fully exclude false positives, the uncertainty of each match is quantified by
reporting a P-value and a Z-score. The P-value is a probability and is calculated as
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the fraction of non-members with a score at least as good as the one obtained for the
match. The Z-score is defined as the difference of the score obtained for the match and
the mean score of all non-members divided by the standard deviation of the scores of
all non-members.

3.2.6 Derivation of FH- and MD-clusters

Each SC-cluster was further subdivided into two types of subclusters: functionally ho-
mogeneous (FH-clusters) and modeling distance clusters (MD-clusters). For the identi-
fication of FH-clusters, each SC-cluster was split based on the Pfam [145, 146] domain
architecture (i.e. the sequential order of domains) of its cluster members. SIMAP al-
ready contains an integrated clustering that is based on sequence similarity and protein
domain architecture [282]. Briefly, sequences were clustered using the MCL algorithm
[275] and a measure for assessing the similarity of two domain architectures as described
in Lin et al. [283]. This measure combines three indices, the Jaccard index (which mea-
sures the number of shared domains), the Goodman-Kruskal γ function (which measures
the similarity of shared domain arrangement) and the domain duplicate index (which
measures the similarity of domain duplications). The domain architecture cluster as-
signment was extracted for all members of the respective SC-cluster from SIMAP and
members with the same assignment were merged, yielding FH-clusters whose members
have the same or similar domain architecture and are thus likely to have the same
function [284]. Finally, a representative domain architecture was determined for each
FH-cluster by selecting the most common architecture among its members.
To derive the second type of subclusters (MD-clusters) at least 70% of all members

were required to share a sequence identity of at least 30%. This condition was first
evaluated for the entire SC-cluster and if it was met then all members of the SC-cluster
were assigned to one MD-cluster. Otherwise the subclusters at the next more stringent
E-value cut-off (determined by the initial clustering step; see above) were considered and
the conditions were checked again. This procedure was repeated until the requirements
were fulfilled or no subclusters were left. A short description was defined for each FH-
and MD-cluster in the same way as it was done for SC-clusters (see above).

3.2.7 Comparing SC-clusters with other databases

To analyze the relationships between CAMPS SC-clusters and Pfam [145, 146] (release
24.0) families and clans, the underlying sequence database of Pfam was used, called
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pfamseq containing 9,421,015 sequences from UniProt [139] (release 15.6). Sequences
having both a Pfam and a SC-cluster assignment were identified using md5 checksums,
yielding 421,422 common sequences. For each sequence of this dataset the domain
organization was extracted from the swisspfam file which is released with Pfam (and
contains Pfam domain annotations for SwissProt entries). Sequences having more than
one annotated Pfam domain and those where a Pfam domain covered less than 90% of the
complete sequence were excluded from consideration. If available, Pfam clan assignments
for each domain family were extracted from the Pfam-C file. The final dataset included
94,337 sequences having both CAMPS SC-cluster and Pfam family assignments and
56,756 sequences having both CAMPS SC-cluster and Pfam clan assignments. The two
databases were then compared in both directions by analyzing Pfam family and clan
assignments for sequences having the same CAMPS SC-cluster assignment (forward
comparison) as well as SC-cluster assignments for sequences having the same family and
clan assignment (reverse comparison).

Similarly, the relationship between the TCDB [247] and CAMPS databases was inves-
tigated. The FASTA sequence file from TCDB (downloaded from http://www.tcdb.org

as of September 13, 2010) was used including 5,835 sequences. The sequence mapping
between TCDB and CAMPS was performed using md5 checksums. 2,085 and 647 se-
quences with SC-cluster assignments were also found to possess TCDB family and su-
perfamily assignments, respectively. TCDB and CAMPS were then compared in the
same way as Pfam and CAMPS (see above).

For the comparison of CAMPS with SCOP [162, 163] (v1.75) and CATH [164, 165]
(v3.3) all 3,837 redundant α-helical transmembrane proteins from the PDBTM [26]
database (v2.3; September 13, 2010) were used. For the subset of 921 non-identical
proteins, the mapping between CAMPS and PDBTM was performed using BLAST
[137] (version 2.2.19) and a 90% sequence identity threshold yielding a common set
of 146 sequences. There are two reasons for such limited overlap. First, only mem-
brane proteins with at least 3 TMHs are included in CAMPS while the set of 3,837
PDBTM proteins also contains proteins with fewer TMHs. Second, CAMPS covers only
completely sequenced genomes while PDBTM also contains structures from partially
sequenced genomes. After excluding sequences with more than one SCOP or CATH
transmembrane domain, datasets of 54 CAMPS sequences also having SCOP and CATH
annotations, respectively, were collected. Again, the databases were compared in both
directions.

For all four comparisons, the median sequence identity of agreements and disagree-
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ments was calculated using the respective sequences from the reference group (i.e. if the
Pfam family distribution within each SC-cluster was analyzed, the reference group was
the particular SC-cluster and if the distribution of SC-cluster assignments was investi-
gated within each Pfam family, the reference group was the particular Pfam family).
The pairwise sequence identities were obtained from SIMAP and the median over all
pairwise values over all cases of agreement and disagreements, respectively, was deter-
mined. For those cases where CAMPS did not agree with CATH or SCOP, SIMAP did
not report sequence identity values (indicating that the values are very low and thus are
not contained in SIMAP). For these sequence pairs, the sequence identity was calculated
using the FASTA [138] algorithm. Similarly, the median standard deviation of the num-
ber of TMHs was calculated based on Phobius [100] predictions. In case of CATH and
SCOP, the structural similarity of proteins involved in agreements and disagreements
was also calculated using DaliLite [225]. The Z-score for each pairwise comparison was
obtained and the median value was defined in the same way as for sequence identity.

3.2.8 Comparing FH-clusters with ENZYME

To compare FH-clusters with the ENZYME nomenclature database [181, 182] the EC
(Enzyme Commission [179]) annotations were extracted for the proteins listed in the
enzyme.dat file (downloaded from http://www.expasy.org; release of July 13, 2010)
that could also be found in the CAMPS FH-clusters using the SwissProt entry name
as the mapping criterion. All proteins having more than one EC annotation were not
considered. The final dataset comprised 4,509 proteins covering 106 EC codes and 127
FH-clusters. EC codes and FH-clusters were compared in both directions as before.

3.2.9 Mapping to external databases

In order to exhibit relationships to other external databases membrane protein sequences
from the SC-, FH- and MD-clusters were searched using BLAST [137] (version 2.2.19)
against the following databases: DrugBank [285] (version 2.5), GPCRDB [246] (version
9.9.1), MPtopo [286], OMIM [287], OPM [288], PDBTM [26] (version 2.3), TargetDB
[289], TCDB [247], TOPDB [290] and VFDB [291]. Only those matches with a sequence
identity of at least 40% and an E-value better or equal to 1E-3 were considered. Fur-
thermore, it was required that at least two TMHs and at least 40% of all TMHs of the
CAMPS sequence are covered by the alignment.
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3.2.10 Availability

CAMPS 2.0 is available at http://webclu.bio.wzw.tum.de/CAMPS2.0/.

3.3 Results and Discussion

3.3.1 Modifications and improvements in CAMPS 2.0

The new release of CAMPS (CAMPS 2.0) contains substantial changes compared to
the previous database version (CAMPS 1.0), summarized in Table 3.1. An overview
of the whole method is given in Figure 3.5. One of the major changes is the inclusion
of membrane proteins from eukaryotic and viral genomes. While the first release was
built on membrane proteins from 120 genomes of prokaryotic origin [252], CAMPS 2.0
covers 1,253 genomes in total (849 prokaryotic, 134 eukaryotic, 270 viral genomes). This
10-fold increase in the number of genomes comes is accompanied with an almost 16-fold
increase in the number of unique membrane protein sequences assigned to SC-clusters
(26,360 versus 413,714 sequences). Several methods used in the classification pipeline
were also replaced by more sophisticated ones. In CAMPS 1.0, the TMH predictions
from TMHMM [98] were used. One drawback of this prediction method is that signal
peptides are often falsely predicted as TMHs. To circumvent this problem the new
release uses predictions from Phobius [100], a tool combining TMH and signal peptide
predictions. Furthermore, single linkage clustering was replaced by Markov clustering
[275] for generating the initial set of membrane protein clusters. The latter approach
is much better suited for dealing with large sequence collections and with multi-domain
proteins.

Besides the incorporation of eukaryotic membrane proteins, additional structural fea-
tures of membrane proteins were included into the process of detecting SC-clusters
whose members are likely to have the same fold. In CAMPS 2.0 not only sequence
similarity and the number of TMHs are used as fold determinants, but also informa-
tion about loop lengths. They contain valuable biological information for classifying
proteins [266, 267, 272, 292] and are important for structural assembly of the TMHs
[271]. Together with the enhancement of fold determinants the process of determining
SC-clusters was also changed. In the original version SC-clusters were found based on
empirically derived quality criteria applied to sequence similarity and the conservation
of TMH number within the cluster. In the new release these rules were replaced by so-
called meta-models that are particularly useful for the detection of remote homologues.
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Table 3.1: Differences between the first (CAMPS 1.0) and the second (CAMPS 2.0) CAMPS
release

First release Second release

Dataseta

Sequences 26,360 413,714
Genomes 120 1,253
Archaea 15 57
Bacteria 105 792
Eukarya - 134
Viruses - 270

Transmembrane helix (TMH) prediction TMHMM Phobius

Initial clustering Single-linkage clustering Markov clustering

Fold determinants Sequence similarity
Number of TMHs

Loop lengths

SC-cluster generation Empirical rules Meta-models

Subclustering of SC-clusters OH-clusters: FH-clusters:
95% of all members have all members have same domain
same COG assignment architecture cluster assignment

MD-clusters:
70% of all members share at
least 30% sequence identity

Linked databases Pfam, PDB, TCDB
COG eggNOG,

GenBank, UniProt,
ENZYME, GO,
SUPERFAMILY,
DrugBank, GPCRDB, MPtopo,
OMIM, OPM, TargetDB,
TOPDB, VFDB

a The numbers given correspond to those sequences and genomes that are covered by the SC-, FH-, and
MD-clusters.

Meta-models are higher-order Markov models that are composed of multiple HMMs that
represent either a TMH or a loop region. For example, if the membrane proteins of the
underlying cluster contain four TMHs, the respective meta-model contains nine HMMs
in total (four for the TMHs and five for the loops) that are connected in the correct
order (see Materials and Methods). The advantage of using meta-models is that se-
quence information can be easily combined with topology information (i.e. the number
of TMHs and loops). The concept of meta-models was previously employed by Möller
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Figure 3.5: Pipeline of the CAMPS 2.0 database release. Elements of the pipeline added or
changed in the new release are marked with stars.

and colleagues in their tool 7TMHMM that predicts the specificity of G-protein cou-
pled receptors (GPCRs) [293]. Since 7TMHMM can not identify new GPCRs another
tool named GPCRHMM was proposed that is specifically trained for the recognition of
GPCRs lacking sequence similarities to known sequences [268]. In this work the idea of
meta-models was adapted to detect clusters of membrane proteins that are structurally
homogeneous and are likely to share the same fold (SC-clusters).

Just like in CAMPS 1.0, SC-clusters were further divided into two types of subclusters.
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The first type is called MD-clusters (modeling distance), grouping membrane proteins
having at least 30% sequence identity. The second type, designed to approach the level
of protein function, was called OH-clusters (ortholog homogeneous) in CAMPS 1.0 and
contained proteins with the same COG [147, 148] assignment. Since orthologous group
assignments are not available for many eukaryotic proteins (e.g. the eggNOG [294]
database currently covers 575 prokaryotic, but only 55 eukaryotic genomes), a different
technique to derive functionally homogeneous subclusters was used in CAMPS 2.0. This
technique is based on the idea that proteins sharing the same domain architecture tend
to have the same function [284]. The DODO tool uses this idea to detect orthologous
proteins based on domain architectures [295]. Using sequence clusters based on the
similarity of domain architectures available from the SIMAP [273] database a subcluster
was considered as an FH-cluster if all its members had the same domain architecture
cluster assignment.
Finally, the links to external databases were further extended. Initially, CAMPS

was linked to four databases: COG [147, 148], Pfam [145, 146], PDB [27], and TCDB
[247]. CAMPS 2.0 is additionally linked to sequence databases (GenBank [296], UniProt
[139]), function databases (ENZYME [181, 182], GO [166, 180]), family databases (SU-
PERFAMILY [281]), membrane protein resources (GPCRDB [246], MPtopo [286], OPM
[288], TOPDB [290]), structural genomics repositories (TargetDB [289]) and biomedical
databases (DrugBank [285], OMIM [287], VFDB [291]).

3.3.2 Empirical rules versus meta-models

In CAMPS 1.0 [252] empirically derived rules were used to identify SC-clusters by im-
posing constraints on their structural (in terms of TMHs) and sequence variability. In
this work, these rules were replaced by meta-models and an advanced fold definition was
used that also incorporates loop lengths. In order to investigate whether these changes
improved fold classification of membrane proteins the new classification procedure was
applied to the CAMPS 1.0 dataset. For a reasonable comparison, the restriction to the
CAMPS 1.0 dataset was necessary as the empirical rules were initially developed specif-
ically for prokaryotic membrane proteins and a revision of these rules would have been
necessary if they had to be applied to eukaryotic proteins as well. Since meta-models
are trained with at least 15 sequences having TMH core annotations (see Materials and
Methods), only those SC-clusters derived by meta-models were compared to the original
empirically derived SC-clusters also having at least 15 members with core annotations.
The first observed difference was the number of recognized SC-clusters - 233 SC-
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Figure 3.6: Topology diagram of rule-based and meta-model based SC-clusters. Red colored boxes
correspond to transmembrane helices, gray colored boxes to loops. The darker the color, the more
conserved is the region. Empirical rule-based SC-clusters (upper lines) are marked with the prefix
‘SC’, meta-model based SC-clusters (lower lines) with the prefix ‘MM’. 1)+2) One rule-based SC-
cluster conforms to one meta-model based SC-cluster differing in their E-value thresholds and the
number of transmembrane helices. 3)+4) One rule-based SC-cluster is associated with more than
one meta-model based SC-cluster. Figure taken and adapted from [278].

clusters based on empirically derived rules versus 249 SC-clusters based on meta-models.
Secondly, the number of proteins covered by meta-model based SC-clusters (15,016) was
comparable to that covered by rule based SC-clusters (15,497). Thus, while the number
of covered proteins remained practically unchanged, the new approach delivered slightly
more SC-clusters. This can be explained by the incorporation of the loop lengths in
the meta-model approach presented here. Using these additional criteria, members of
a SC-cluster must not only possess similar sequences and a similar number of TMHs,
but also display homogeneity in terms of their loop length patterns, resulting in clusters
of smaller size. Furthermore, membrane proteins can have very similar architectures,
but vary widely in their loop lengths as was already shown for the GPCRs [267, 292].
In this case, it is necessary to split the underlying cluster in order to meet all require-
ments of the advanced fold definition. Figure 3.6 displays the topology of representative
cases where membrane proteins of rule based SC-clusters were classified differently using
meta-models. In ten cases, one rule based SC-cluster corresponded to one meta-model
based SC-cluster (see examples 1 and 2 in Figure 3.6) differing in their E-value thresh-
olds, and in seven cases they also differed in terms of the number of TMHs. The third
type of correspondence was the partitioning of a rule-based SC-cluster into two or more
meta-model based SC-clusters (see examples 3 and 4 in Figure 3.6), which occurred six
times. In all six cases it was found that the meta-model based SC-clusters matching
one rule-based SC-cluster had completely different topologies indicating different folds.
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Altogether, in almost every case where there was no one-to-one correspondence between
rule based SC-clusters and meta-model based SC-clusters, loop lengths and the number
of TMHs were significantly better conserved within the meta-model based SC-clusters.
The conservation of loop lengths is secured by the usage of the meta-models and since
they are modeled explicitly this conservation should improve automatically. The stan-
dard deviation of loop lengths between two TMHs went down from 3.88 for rule based
SC-clusters to 3.55 for meta-model based SC-clusters. Overall, these results demonstrate
better performance of the meta-model based procedure (caused by the incorporation of
loop lengths that affect the assembly of the TMHs [271]) in finding clusters that are
assumed to represent membrane protein folds.

3.3.3 Domain content of membrane proteins

Expansion of the CAMPS database and, in particular, incorporation of eukaryotic
genomes raised the question to which extent the well-known difficulties in clustering
globular proteins caused by multi-domain proteins (promiscuous domains etc.) also ap-
ply to membrane proteins. In fact, very little is known about the domain structure of
membrane proteins. A previous study showed that most of the membrane proteins are
single-domain proteins, with eukaryotic proteins having a higher incidence of multiple
domains [127]. However, since this analysis was based on only 26 genomes, it is not
quite clear how representative these results are for a much-expanded set of genomes.
Therefore, the abundance of single- and multi-domain membrane proteins was analyzed
in the dataset using Pfam-A [145, 146] domain assignments. Each domain was assigned
as either soluble (containing no TMHs), transmembrane (containing TMHs) or hybrid
(containing both soluble and TMH regions; for more information see Materials and
Methods). When no domain class is specified in the following, all three domain classes
are referenced. Almost 83% of all membrane proteins were found to have at least one
domain assignment. Among these proteins the frequency of multi-domain membrane
proteins was 20.9% in prokaryota, 28.1% in eukaryota and 37.9% in viruses (for detailed
information see Table 3.2 and Table 3.3).
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Table 3.2: Occurrence of single-domain and multi-domain membrane proteins

All Eukaryota Prokaryota Viruses
Archaea Eubacteria

Sequences 373,800 153,486 14,314 204,628 1,420
Sequences with assignment 310,138 126,684 10,332 172,377 778

Single-domain proteins

Sequences with one domaina

Absolute number 236,027 91,033 8,502 136,038 483
Percentageb 63.1/76.1 59.3/71.9 59.4/82.3 66.5/78.9 34.0/62.1

Sequences with one
soluble domain
Absolute number 14,495 6,286 405 7,737 70
Percentageb 3.9/4.7 4.1/5.0 2.8/3.9 3.8/4.5 4.9/9.0

Sequences with one
transmembrane domain
Absolute number 205,683 77,500 7,761 120,131 316
Percentageb 55.0/66.3 50.5/61.2 54.2/75.1 58.7/69.7 22.3/40.6

Sequences with one
hybrid domainc

Absolute number 15,849 7,247 336 8,170 97
Percentageb 4.2/5.1 4.7/5.7 2.3/3.3 4.0/4.7 6.8/12.5

Multi-domain proteins

Sequences with multiple
domainsa

Absolute number 74,111 35,651 1,830 36,339 295
Percentageb 19.8/23.9 23.2/28.1 12.8/17.7 17.8/21.1 20.8/37.9

Sequences with multiple
transmembrane domains
Absolute number 32,710 15,602 1,084 15,978 47
Percentageb 8.8/10.6 10.2/12.3 7.6/10.5 7.8/9.3 3.3/6.0

a Either soluble, transmembrane or hybridc.
b Two values are given: first value corresponds to all sequences and second value to all
sequences having a domain assignment.

c Hybrid domains are defined as domains containing predicted TMHs and soluble regions
longer than 120 residues.

Altogether, multi-domain proteins (irrespective of taxonomic origin) accounted for
almost 24% of the dataset of membrane proteins with at least one domain assignment.
Furthermore, eukaryotic membrane proteins more often contain multiple domains clas-
sified as transmembrane (12.3%) than prokaryotic (9.3%) and viral membrane proteins
(6%). Although the abundance of multi-domain proteins was by far not as high as
that of globular proteins (40-60% [297]), the trend among the kingdoms was the same:
eukaryotic proteins were more often multi-domain proteins than prokaryotic proteins.
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Table 3.3: Domain combinations in membrane proteins. For every subset of the membrane protein
dataset (Archaea, Eubacteria, Eukaryota and Viruses), the absolute number of proteins containing
the specified number of hybrid (H), transmembrane (T) and soluble (S) domains is given. Hybrid
domains are defined as domains containing predicted TMHs and soluble regions longer than 120
residues.

0 H 1 H >1 H

Archaea

0 T 3,982 336 2 0 S
0 T 405 52 0 1 S
0 T 136 71 0 >1 S
1 T 7,761 74 0 0 S
1 T 262 17 0 1 S
1 T 131 1 0 >1 S
>1 T 952 0 0 0 S
>1 T 63 49 0 1 S
>1 T 20 0 0 >1 S

Eubacteria

0 T 32,251 8,170 282 0 S
0 T 7,737 1,439 2 1 S
0 T 4,167 1,120 6 >1 S
1 T 120,131 541 9 0 S
1 T 8,787 129 1 1 S
1 T 3,810 68 0 >1 S
>1 T 14,110 26 4 0 S
>1 T 836 550 0 1 S
>1 T 448 4 0 >1 S

Eukaryota

0 T 26,802 7,247 140 0 S
0 T 6,286 1,813 176 1 S
0 T 3,088 827 79 >1 S
1 T 77,500 607 14 0 S
1 T 8,664 477 33 1 S
1 T 3,932 196 3 >1 S
>1 T 10,231 112 4 0 S
>1 T 2,068 614 3 1 S
>1 T 2,397 171 2 >1 S

Viruses

0 T 642 97 6 0 S
0 T 70 42 8 1 S
0 T 103 39 17 >1 S
1 T 316 7 0 0 S
1 T 15 0 0 1 S
1 T 11 0 0 >1 S
>1 T 12 0 0 0 S
>1 T 0 1 0 1 S
>1 T 23 7 4 >1 S
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High percentage of multi-domain membrane proteins (24%) warrants the application
of more sophisticated sequence clustering methods, as was done in CAMPS 2.0.

3.3.4 Structural classification of membrane proteins using
meta-models

The procedure to identify SC-clusters (see Materials and Methods) designed to represent
the protein structure level was applied to an initial dataset of 494,679 sequences with
at least three TMHs. The resulting 1,353 SC-clusters comprised 413,714 sequences ac-
counting for 83.6% of the initial dataset. The size of a SC-cluster ranges between 14,411
and 15 sequences (the minimum size to derive SC-clusters; see Materials and Meth-
ods) with a median size of 83. The vast majority of SC-clusters have fewer than 200
members (73.9%) and large SC-clusters are rare (Figure 3.7). The list of the 15 largest
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Figure 3.7: Double logarithmic plot of the SC-cluster size distribution. Most of the SC-clusters
have less than 200 members and large SC-clusters are rare.

SC-clusters (Table 3.4) includes prominent superfamilies, such as the major facilitator
superfamily and the ABC superfamily. Ten of the largest SC-clusters are already asso-
ciated with known 3D structures. In total 53 out of 1,353 SC-clusters have at least one
protein member whose structure is known, which means that 1,300 additional structures
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Table 3.4: The 15 largest SC-clusters in CAMPS 2.0

Cluster Description Size TMH Cores Taxonomya Representative
range structureb

CMSC0001 Major facilitator 14,411 10-13 12 Eu+Pro 2cfqA
superfamily #1

CMSC0002 Family A G protein- 13,716 6-8 7 Eu+Pro -
coupled receptor-like
superfamily #1

CMSC0003 Major facilitator 7,855 10-13 11 Eu+Pro 1yg7A
superfamily #2

CMSC0004 SC-cluster containing 7,651 5-7 6 Eu+Pro 2hydA
ABC transporter
proteins

CMSC0005 Major facilitator 7,258 10-13 10 Eu+Pro 1pw4A
superfamily #3

CMSC0006 APC superfamily #1 6,006 10-13 13 Eu+Pro 3giaA
CMSC0007 Uncharacterized SC- 5,925 8-11 10 Eu+Pro -

cluster CMSC0007
CMSC0008 Binding-protein- 5,429 5-7 7 Eu+Pro 3d31C

dependent transport
system inner membrane
component #1

CMSC0009 7 transmembrane 5,261 6-8 8 Eu 1u19A
receptor (rhodopsin
family) #1

CMSC0010 ABC-2-transporter- 4,264 5-7 7 Eu+Pro -
like clan

CMSC0011 Binding-protein- 3,635 5-7 6 Eu+Pro 3dhwA
dependent transport
system inner membrane
component #2

CMSC0012 AcrB/AcrD/AcrF family 3,630 10-13 12 Eu+Pro 2j8sA
CMSC0013 SC-cluster containing 3,240 8-11 10 Eu+Pro 1wpgA

calcium ATPase
proteins

CMSC0014 Branched-chain amino 3,172 7-9 9 Eu+Pro -
acid transport system/
permease component #1

CMSC0015 Binding-protein- 3,157 4-6 5 Eu+Pro -
dependent transport
system inner membrane
component #3

a Eu: Eukaryota, Pro: Prokaryota.
b If a SC-cluster is associated with more than one structure, a representative structure was chosen,
giving preference to structures determined by X-ray diffraction. If several X-ray structures were
available, the one with the best resolution was selected.
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Figure 3.8: Dependence of the number of SC-clusters on the number of analyzed genomes. From
the full set of 1,253 genomes, subsets containing 50 genomes, 100 genomes etc. were constructed
randomly and the number of SC-clusters was counted. For each subset, the calculations were
repeated 25 times. The mean values with their standard deviation (mean ± SD) are shown.

would be needed to provide full structural coverage for the sequence space investigated
in this work. Figure 3.8 shows how the number of SC-clusters depends on the number of
genomes analyzed. In the range of about 50 to 700 genomes, the number of SC-clusters
increases rapidly as the number of genomes increases with almost 90% of all SC-clusters
covered with 700 genomes. The curve shows clear saturation as the number of genomes
approaches 1000. Thus, it seems that the current set of 1,353 SC-clusters is already
representative for the entire membrane protein sequence space and is not likely to in-
crease dramatically with the addition of new genomes. All but one SC-cluster in Table
3.4 are universal with respect to the superkingdoms of life, containing protein members
from all three superkingdoms. Overall there are 179 universal SC-clusters and 770 SC-
clusters that are specific for one superkingdom (Archaea: 13, Bacteria: 348, Eukarya:
409; Figure 3.5).

Using the dataset of 413,714 sequences covered by the SC-clusters, the loop length
distributions were investigated among the different classes of α-helical membrane pro-
teins (defining loops as regions connecting two TMHs), e.g. proteins with three TMHs
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(3TMH), four TMHs (4TMH) and so forth. The most frequent classes are 6TMH (13.3%)
and 7TMH (12.9%), corresponding to abundant families of ABC transporters and GPCR
proteins (Figure 3.9A). The loop length distributions are relatively homogeneous among

Figure 3.9: (A) Distribution of TMH number. (B) Distribution of loop lengths (shown as boxplot)
for different classes of membrane proteins. Both distributions refer to membrane protein sequences
covered by SC-clusters.

the different membrane protein classes (Figure 3.9B). Except for 4TMH, all classes have
a median loop length of 11 residues. The distributions also show that in case of 3TMH
and 4TMH 90% of all loops are shorter than 80 residues and for the other classes about
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90-95% of all loops are not longer than 50 residues. The remaining loops vary greatly
in length and can reach 2,000 residues with some of them containing soluble Pfam
[145, 146] domains (about 47% of the loops longer than 300 residues enclose a soluble
Pfam domain).

At this point, it has to be mentioned that this analysis is based on predicted TMHs and
therefore is influenced by the methodology used in Phobius [100]. For example, when
the loop length distributions were analyzed for proteins with experimentally derived
topology information (SwissProt [139]), the median loop lengths were found to be longer
than 11 residues (ranging from 13 to 18 residues) and they were not as uniform among
the different membrane protein classes as in case of predicted topology. For comparison,
the loop lengths were recalculated for the same SwissProt dataset using predicted TMHs
and it was found that the median length was close to 11 residues (data not shown).

Because of the fact that the classification approach is substantially based on sequence
similarity, it has to be assumed that the method can not deal with analogous structures
resulting from convergent evolution [150]. That means that membrane proteins having
the same fold, but very low sequence similarity will be assigned to different SC- clusters.
Thus, it is likely that several SC-clusters describe the same fold. However, membrane
proteins within the same SC-clusters typically share the same fold. Taken together, it
can be concluded that the number of 1,353 SC-clusters is a reasonable upper bound for
the number of existing membrane protein folds.

3.3.5 Comparison of SC-clusters with Pfam

CAMPS SC-clusters were compared to the most widely used functional classification
of proteins, the Pfam [145, 146] database. In contrast to CAMPS, Pfam is a purely
sequence-based approach and does not utilize structural features. Furthermore, the two
databases also use different methods to build models for the protein families (Pfam) and
SC-clusters (CAMPS), respectively. For each protein family in Pfam a seed alignment is
constructed from a non-redundant sequence set. This alignment is then manually verified
and a HMM is built from the final seed alignment [145]. While CAMPS also uses a non-
redundant set of sequences to create an alignment for each SC-cluster, it operates with
a series of inter-connected HMMs (see Materials and Methods) rather than with a single
HMM, with each individual HMM corresponding to clearly defined structural features
(TMHs and connecting loops). In addition to families, Pfam also provides a higher order
classification called protein clans [149]. A clan is a group of Pfam families presumed to
have a common evolutionary origin. The presence of related structures and significant
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profile-profile comparison scores are the most important criteria of relatedness for Pfam
families.

SC-clusters versus Pfam families

The comparison of SC-clusters with Pfam families involved 94,337 sequences, 654 SC-
clusters, and 550 Pfam families (Table 3.5). By analyzing the distribution of Pfam
family assignments within each SC-cluster, a perfect agreement could be found for 602
SC-clusters (1:1 relationships, i.e. all members of a SC-cluster were related to exactly
one Pfam family). The remaining 52 SC-clusters (involving 14.7% of the sequences) were
associated with two to five distinct Pfam family assignments each (1:n relationships).
For each of these SC-clusters the Pfam clan assignments of the corresponding Pfam
families were extracted and it was found that in those cases where at least two clan
assignments were available (41 out of 52 cases), all Pfam families within a SC-cluster
belonged to the same Pfam clan. By analyzing the distribution of SC-cluster assign-
ments within each Pfam family, 452 1:1 relationships and 98 1:n relationships (involving
32.8% of the sequences) were found. Less stringent conditions were also tested for 1:1
relationships (requiring 90% rather that 100% of all sequences to be linked with the same
SC-cluster) and another 30 cases of agreement were found. Accordingly, the number of
1:n relationships went down from 98 to 68 cases (involving 18.2% of the sequences).
Pairwise sequence identities for the sequences involved in the comparison between

SC-clusters and Pfam families had a median value of 27% for the agreements (for both
directions, i.e. CAMPS versus Pfam and Pfam versus CAMPS) and 23% for the disagree-
ments (again for both directions; Table 3.5). Likewise, the median standard deviation
of the number of TMHs (Table 3.5) was also determined. For the 1:1 relationships,
the median was around 0.60 (for both directions) and for the 1:n relationships 0.86
(SC-clusters versus Pfam families) and 0.80 (Pfam families versus SC-clusters), respec-
tively. Thus, the general trend here is that both values (sequence identity and TMH
number) clearly differ between agreements and disagreements and that sequences from
SC-clusters spanning multiple Pfam families are equally similar to each other (both
with respect to sequence identity and TMH number) as sequences from Pfam families
spanning several SC-clusters.

SC-cluster versus Pfam clans

In the next step, SC-clusters were compared to Pfam clans. At this level, 56,756 se-
quences, 293 SC-clusters and 43 Pfam clans were found to be involved (Table 3.6). Each
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Table 3.5: Comparison of CAMPS 2.0 SC-clusters with Pfam families

SC-clusters versus Pfam families versus
Pfam families SC-clusters

DB1a SC-clusters Pfam families
DB2a Pfam families SC-clusters
Sequencesb 94,337 94,337
Groups(DB1)c 654 550
Groups(DB2)c 550 654
1:1 relationshipsd

Occurrences 602 452
Involved sequences 80,487 (85.3%) 63,385 (67.2%)

1:n relationshipse

Occurrences 52 98
Involved sequences 13,850 (14.7%) 30,952 (32.8%)

Median sequence identityf

1:1 relationships 27.4% 27.9%
1:n relationships 22.8% 23.6%

Median standard deviation of
TMH numberg

1:1 relationships 0.60 0.62
1:n relationships 0.86 0.80

a For each group in DB1 the associated groups in DB2 were analyzed.
b Number of sequences involved in the comparison.
c In case of CAMPS groups denote SC-clusters and in case of Pfam families.
d One DB1 group assignment is associated with one DB2 group assignment.
e One DB1 group assignment is associated with multiple DB2 group as-
signments.

f For all sequences involved in 1:1/1:n relationships, the median of all pair-
wise sequence identities (taken from SIMAP) was calculated.

g For all sequences involved in 1:1/1:n relationships, the median of all stan-
dard deviations of the number of TMHs was calculated.

of the 293 SC-clusters was associated with one Pfam clan respectively (1:1 relation-
ship). Conversely, the analysis of the distribution of SC-cluster assignments within each
Pfam clan revealed that 1:1 relationships were much less frequent than 1:n relationships.
Six clans perfectly agreed with SC-clusters, but 37 clans were linked to more than one
SC-cluster (involving 99.1% of the sequences).

Analogously to the comparison at the family level, the median sequence identity and
standard deviation of TMH number were measured (Table 3.6). In case of agreements,
the median sequence identity reached 26.5% (SC-clusters versus clans) and 48.9% (clans
versus SC-clusters), respectively, and in case of disagreements, 23.1%. For those cases,
where one SC-cluster corresponded to one Pfam clan, the number of TMHs deviated by
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Table 3.6: Comparison of CAMPS 2.0 SC-clusters with Pfam clans

SC-clusters versus Pfam clans versus
Pfam clans SC-clusters

DB1a SC-clusters Pfam clans
DB2a Pfam clans SC-clusters
Sequencesb 56,756 56,756
Groups(DB1)c 293 43
Groups(DB2)c 43 293
1:1 relationshipsd

Occurrences 293 6
Involved sequences 56,756 (100%) 527 (0.9%)

1:n relationshipse

Occurrences 0 37
Involved sequences 0 56,229 (99.1%)

Median sequence identityf

1:1 relationships 26.5% 48.9%
1:n relationships - 23.1%

Median standard deviation of
TMH numberg

1:1 relationships 0.83 0.37
1:n relationships - 1.10

a For each group in DB1 the associated groups in DB2 were analyzed.
b Number of sequences involved in the comparison.
c In case of CAMPS groups denote SC-clusters and in case of Pfam clans.
d One DB1 group assignment is associated with one DB2 group assign-
ment.

e One DB1 group assignment is associated with multiple DB2 group
assignments.

f For all sequences involved in 1:1/1:n relationships, the median of all
pairwise sequence identities (taken from SIMAP) was calculated.

g For all sequences involved in 1:1/1:n relationships, the median of all
standard deviations of the number of TMHs was calculated.

a factor of 0.83 and for the reverse cases (one Pfam clan was linked to one SC-cluster)
by a factor of 0.37. A much higher deviation (1.10) was found when one Pfam clan was
associated with multiple SC-clusters. Compared to the family level, the first trend (se-
quence identity and TMH number clearly differ between agreements and disagreements)
could also be observed at the clan level. In contrast, sequences from SC-clusters span-
ning one Pfam clan (forward comparison) were not as similar as sequences from Pfam
clans spanning one SC-cluster (reverse comparison) with respect to sequence similarity
(26.5% and 48.9%, respectively) and TMH number (0.83 and 0.37, respectively). Look-
ing at SC-clusters and Pfam families, the median sequence identity varied only slightly
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(27.4% and 27.9%, respectively) between both types of agreements (forward and re-
verse comparison). It seems that this is because the number of involved sequences was
not comparable (56,756 in case of Pfam families and only 527 in case of Pfam clans).
What is highly apparent is the clear difference between the median standard deviation
of the number of TMHs at the family level and at the clan level (e.g. 0.60 in case one
SC-cluster is associated with one Pfam family and 0.83 if one SC-cluster is associated
with one Pfam clan). This observation reflects the fact that Pfam clans include more
divergent sequences than Pfam families.

Summary

The classification of membrane proteins at the SC-cluster level resembles Pfam at the
family rather than the clan level. The similarities are due to similar techniques em-
ployed by both resources (sequence similarity and HMMs). However, the comparison
also showed that using additional information in the classification approach (namely
the loop length and the number of TMHs) can result in a different classification, as
was shown to be the case for 14.7% (CAMPS versus Pfam families; one SC-cluster
corresponds to several Pfam families) and 32.8% (Pfam families versus CAMPS; one
Pfam family corresponds to several SC-clusters) of the sequences. In the former case
all Pfam families contained in a given SC-cluster belonged to the same Pfam clan im-
plying that these SC-clusters are more inclusive than Pfam families. For the second
type of discrepancy several explanations are possible. First, Pfam is more sensitive
for finding divergent sequences since it uses an HMM-based search method. CAMPS
also utilizes HMMs, but their application is preceded by an initial clustering based on
FASTA alignments which are not necessarily capable of identifying very remote homolo-
gies. Furthermore, Pfam alignments are manually curated, while CAMPS is generated
automatically. Thus, proteins sharing high structural similarity but very low sequence
similarity may not be assigned to the same SC-cluster. Second, previous studies have
shown that sequence families (such as Pfam) are not always connected to only one
structural family [298, 299]. Third, CAMPS considers additional information for the
classification leading to a further division of clusters since more criteria have to be met.
Utilization of additional information (such as TMHs) increases the ability to find re-
lated membrane proteins [300, 301]. Traditional homology detection methods initially
developed for globular proteins do not perform well for membrane proteins since TMHs
are similar per se due to their biased amino acid sequence composition, which leads to
a high rate of false positives. CAMPS utilizes different models for membrane-spanning
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and extramembraneous regions.
Taken together, it was found that the SC-clusters reasonably agree with Pfam families.

On the other hand, for almost 15% of the sequences (forward comparison), SC-clusters
were found to be more inclusive meaning that SC-clusters were linked to multiple Pfam
families. The reverse comparison revealed that about 18% of the sequences correspond
to Pfam families that are associated with multiple SC-clusters. Differences between
CAMPS and Pfam reflect different objectives. While CAMPS aims at structural families,
Pfam is a functional classification that does not consider structural information at all.
Even though significant sequence similarity is a strong indicator of structural similarity,
sequence identities in the ‘twilight zone’ of 20-35% [184] are problematic. Proteins with
very low sequence similarity can share structural similarity (see Sadekar et al., 2006
[302] for an example), but this is not common [184]. Structural information may be
helpful for finding distantly related globular proteins [303], and this is even more true
for membrane proteins due to their biased amino acid composition and the ensuing
higher chance similarity. Therefore, CAMPS classification is primarily geared towards
the users interested in structural membrane protein families.

3.3.6 Comparison of SC-clusters with TCDB

Similarly, CAMPS was also compared with the hierarchical TCDB database [247] that
uses both functional and phylogenetic information, but no sequence information. It is
analogous to the numerical EC (Enzyme Commission) system that classifies enzymes
by reaction type [179]. In contrast to Pfam and CAMPS, TCDB does not consider se-
quence similarity (except at the superfamily level; see below) and, unlike Pfam, TCDB
is a membrane protein specific database. Similar to Pfam, TCDB also provides a higher
classification level called superfamilies that comprises large families consisting of pro-
teins highly divergent in sequence. The relationship between CAMPS and TCDB was
investigated at both levels.

SC-clusters versus TCDB families

At the family level, 2,085 protein sequences, 337 SC-clusters and 228 TCDB families
were considered for comparison (Table 3.7). When the distribution of TCDB family as-
signments for each individual SC-cluster was analyzed, 304 1:1 relationships and 33 1:n
relationships (covering 13% of the sequences) were found. For the 33 SC-clusters that
were linked to multiple TCDB families, the TCDB superfamily assignments were also
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Table 3.7: Comparison of CAMPS 2.0 SC-clusters with TCDB families

SC-clusters versus TCDB families versus
TCDB families SC-clusters

DB1a SC-clusters TCDB families
DB2a TCDB families SC-clusters
Sequencesb 2,085 2,085
Groups(DB1)c 337 228
Groups(DB2)c 228 337
1:1 relationshipsd

Occurrences 304 176
Involved sequences 1,814 (87%) 682 (32.7%)

1:n relationshipse

Occurrences 33 52
Involved sequences 271 (13%) 1,403 (67.3%)

Median sequence identityf

1:1 relationships 26.8% 28.4%
1:n relationships 25.8% 22.8%

Median standard deviation of
TMH numberg

1:1 relationships 0.71 0.64
1:n relationships 0.70 1.46

a For each group in DB1 the associated groups in DB2 were analyzed.
b Number of sequences involved in the comparison.
c In case of CAMPS groups denote SC-clusters and in case of TCDB families.
d One DB1 group assignment is associated with one DB2 group assignment.
e One DB1 group assignment is associated with multiple DB2 group assign-
ments.

f For all sequences involved in 1:1/1:n relationships, the median of all pair-
wise sequence identities (taken from SIMAP) was calculated.

g For all sequences involved in 1:1/1:n relationships, the median of all stan-
dard deviations of the number of TMHs was calculated.

examined and it was found that all SC-clusters having at least two superfamily assign-
ments (8 out of 33) were associated with the same superfamily. The inverse comparison
revealed that 176 TCDB families have a perfect agreement with SC-clusters, while the
remaining 52 families were associated with multiple SC-clusters (covering 67.3% of the
sequences). For 2 out of 52 families CATH [164, 165] and SCOP [162, 163] fold assign-
ments were found for two associated SC-clusters in each case. In the first case (TCDB
family 3.A.1 (‘ABC superfamily’)), one SC-cluster was found to be linked with the CATH
fold 1.10.3470 (‘ABC transporter involved in vitamin B12 uptake, BtuC’) and the SCOP
fold f.22 (‘ABC transporter involved in vitamin B12 uptake, BtuC’) (Figure 3.10A) and
the other SC-cluster with the CATH fold 1.20.1560 (‘ABC transporter transmembrane
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Figure 3.10: Examples of membrane proteins assigned to the same TCDB family, but to different
SCOP and CATH folds. (A) Bacterial ABC transporter (PDB code: 1l7v, chain A) with 10 TMHs.
(B) Bacterial ABC transporter (PDB code: 2hyd, chain A) with 6 TMHs. Both transporters are
assigned to TCDB family 3.A.1 (‘ABC superfamily’). (C) Ubiquinol oxidase from E. coli (PDB
code: 1fft, chain C) with 5 TMHs. (D) Cytochrome c oxidase (PDB code: 1ar1, chain A) with 12
TMHs. Both oxidases belong to TCDB family 3.D.4 (‘Cytochrome oxidase superfamily’). TMH are
colored in red with coordinates extracted from PDBTM [26]. The figure was drawn using PyMOL
[66].

region fold’) and the SCOP fold f.37 (‘ABC transporter transmembrane region’) (Figure
3.10B). Similarly, the second TCDB family 3.D.4 (‘Cytochrome oxidase superfamily’)
was connected with two different CATH and SCOP folds, respectively (Figures 3.10C
and 3.10D). Again, the two CATH folds (1.20.120 ‘Four helix bundle’ and 1.20.210 ‘Cy-
tochrome c oxidase; chain A’) and the two SCOP folds (f.25 ‘Cytochrome c oxidase
subunit III-like’ and f.24 ‘Cytochrome c oxidase subunit I-like’) belonged to the same
TCDB family (3.D.4), but to different SC-clusters.

By calculating the pairwise sequence identities of all sequences involved in 1:1 and
1:n relationships between CAMPS and TCDB, it was found that the median sequence
identity for the cases of agreement was 26.8% (SC-clusters versus TCDB families) and
28.4% (TCDB families versus SC-clusters), respectively (Table 3.7). For those cases
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where one SC-cluster was associated with multiple TCDB families, the median sequence
identity was 25.8%. In contrast, considering the cases where one TCDB family was linked
with more than one SC-cluster, this value dropped down to 22.8%. Similarly, the median
standard deviation of the number of TMHs was also found to differ significantly between
the cases of agreement (SC-clusters versus TCDB families: 0.71, TCDB families versus
SC-clusters: 0.64)) and the 1:n relationships between TCDB families and SC-clusters
(1.46; Table 3.7). The median standard deviation for the cases where one SC-cluster was
associated with multiple TCDB families was in the same range as for the agreements
(0.70).

SC-clusters versus TCDB superfamilies

The comparison at the superfamily level of TCDB comprised 647 sequences, 69 SC-
clusters and 10 TCDB superfamilies (Table 3.8). As in the case of Pfam clans, 1:1
relationships were found for all 69 SC-clusters. Thus, no SC-cluster was associated
with more than one superfamily. However, in the reverse case, only two superfamilies
were found to perfectly agree with SC-cluster assignments (1:1 relationships) and eight
superfamilies (involving 98.8% of the sequences) were spread over up to 20 SC-clusters.

When comparing the median sequence identities and the median standard deviations
of the number of TMHs for the agreements and disagreements between SC-clusters and
TCDB superfamilies (Table 3.8), the same trend as with TCDB families was observed
(values for agreements clearly differ from 1:n relationships between TCDB and CAMPS).
However, sequence identities are slightly lower and the standard deviations of the TMH
number are slightly higher compared with TCDB families since superfamilies also include
divergent sequences.

Summary

CAMPS and TCDB do correspond in many cases, but rather at the family and not at
the TCDB superfamily level. As discussed above for Pfam, poor matches between SC-
clusters and TCDB families are primarily due to different objectives. While SC-clusters
are based on sequence and structural similarity and represent structural families, the
TCDB database is a functional classification not considering sequence information at
all. For 13% of the sequences involved in this analysis, the SC-clusters were found to
be more inclusive (i.e. one SC-cluster was linked to multiple TCDB families), which
is consistent with the finding that some folds can be connected to different functions
(e.g. TIM barrel [195]; ‘same fold, different functions’ paradigm). Similarly, in many
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Table 3.8: Comparison of CAMPS 2.0 SC-clusters with TCDB superfamilies

SC-clusters versus TCDB superfamilies versus
TCDB superfamilies SC-clusters

DB1a SC-clusters TCDB superfamilies
DB2a TCDB superfamilies SC-clusters
Sequencesb 647 647
Groups(DB1)c 69 10
Groups(DB2)c 10 69
1:1 relationshipsd

Occurrences 69 2
Involved sequences 647 (100%) 8 (1.2%)

1:n relationshipse

Occurrences 0 8
Involved sequences 0 639 (98.8%)

Median sequence identityf

1:1 relationships 24.3% 26.8%
1:n relationships - 22.3%

Median standard deviation of
TMH numberg

1:1 relationships 0.84 0.79
1:n relationships - 1.54

a For each group in DB1 the associated groups in DB2 were analyzed.
b Number of sequences involved in the comparison.
c In case of CAMPS groups denote SC-clusters and in case of TCDB superfamilies.
d One DB1 group assignment is associated with one DB2 group assignment.
e One DB1 group assignment is associated with multiple DB2 group assignments.
f For all sequences involved in 1:1/1:n relationships, the median of all pairwise
sequence identities (taken from SIMAP) was calculated.

g For all sequences involved in 1:1/1:n relationships, the median of all standard
deviations of the number of TMHs was calculated.

cases (involving > 67% of the sequences) one TCDB family corresponded to several
SC-clusters, consistent with the notion that the same function can be linked to different
folds (‘same function, different folds’ paradigm). Indeed, two of these TCDB families
(3.A.1 and 3.D.4) correspond to different CATH and SCOP folds, respectively (each
corresponding to a different SC-cluster; Figure 3.10). Since the latter notion (‘same
function, different folds’) was particularly apparent in the comparison between CAMPS
and TCDB, a lot more SC-clusters than TCDB families were involved (337 versus 228).
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3.3.7 Comparison of SC-clusters with SCOP and CATH

The SC-cluster classification approach aims at identifying structural membrane protein
families whose members share the same fold. Thus, it was particularly interesting to
evaluate how well the SC-clusters correlate with SCOP [162, 163] and CATH [164, 165]
folds. To this end, membrane proteins covered by SC-clusters as well as by SCOP or
CATH were identified.

In SCOP and CATH proteins are assigned to the same fold if their structures are
similar in the overall shape and connectivity of secondary structure elements. Thus,
at the fold level the classification approach of SCOP and CATH is solely based on
structure. In contrast, CAMPS is mainly based on sequence information, but also
exploits structural features. The major difference here is that while SCOP and CATH
rely on tertiary structure information CAMPS uses predicted topology information.

Since membrane protein structures remain scarce only 54 proteins with known struc-
ture were involved in the comparison with CATH, spread over 21 CATH folds and 31
SC-clusters (Table 3.9). When each of the 31 SC-clusters was investigated separately
and the distribution of CATH fold assignments within each of them was tested, a per-
fect agreement was found in all cases. By comparing the two databases in the reverse
direction (i.e. by analyzing the distribution of SC-clusters within each CATH fold),
1:1 relationships were found for 16 out of 21 CATH folds. The five other folds (CATH
codes 1.10.287 ‘Helix hairpins’, 1.20.120 ‘Four helix bundle’, 1.20.950 ‘Fumarate reduc-
tase cytochrome b subunit’, 1.20.1070 ‘Rhodopsin 7-helix transmembrane proteins’ and
1.20.1300 ‘3 helical TM bundles of succinate and fumarate reductases’) were associated
with two to four SC-clusters (Figure 3.11). Except for one case (fold 1.20.1070), all pro-
teins involved in the disagreements had two to five TMHs (here the number of TMHs
corresponds to the PDBTM [26] annotation). One explanation for the disagreements
between CATH and CAMPS might be the fact that membrane proteins with few helices
(< 6 TMHs) are difficult to classify in general, as was demonstrated in the compara-
tive analysis of membrane protein classification in SCOP and CATH (see Chapter 2,
page 23). Specifically, it was found that the fold space of membrane proteins with less
than six TMHs is rather continuous, thus complicating their structural classification.
Indeed, all CATH folds except 1.20.1070 involved in the disagreements with SC-clusters
(1.10.287, 1.20.120, 1.20.950 and 1.20.1300) were already found to be involved in the
disagreements between CATH an SCOP (see section 2.3.4, 35).

As was already done in the comparisons with Pfam and TCDB, the median sequence
identity and the median standard deviation of the number of TMHs were calculated
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Table 3.9: Comparison of CAMPS 2.0 SC-clusters with CATH folds

SC-clusters versus CATH folds versus
CATH folds SC-clusters

DB1a SC-clusters CATH folds
DB2a CATH folds SC-clusters
Sequencesb 54 54
Groups(DB1)c 31 21
Groups(DB2)c 21 31
1:1 relationshipsd

Occurrences 31 16
Involved sequences 54 (100%) 36 (66.7%)

1:n relationshipse

Occurrences 0 5
Involved sequences 0 18 (33.3%)

Median sequence identityf

1:1 relationships 34.5% 35.7%
1:n relationships - 28.5%

Median standard deviation of
TMH numberg

1:1 relationships 0.71 0.71
1:n relationships - 0.58

Median structural similarity
[Z-score]h

1:1 relationships 30.1 30.2
1:n relationships - 7.5

a For each group in DB1 the associated groups in DB2 were analyzed.
b Number of sequences involved in the comparison.
c In case of CAMPS groups denote SC-clusters and in case of CATH folds.
d One DB1 group assignment is associated with one DB2 group assign-
ment.

e One DB1 group assignment is associated with multiple DB2 group as-
signments.

f For all sequences involved in 1:1/1:n relationships, the median of all
pairwise sequence identities (taken from SIMAP) was calculated.

g For all sequences involved in 1:1/1:n relationships, the median of all
standard deviations of the number of TMHs was calculated.

h Similar to f. Structural similarity describes the overall similarity of 3D
structures.

for the cases of agreement and disagreement. And since the comparison with CATH
was based on three-dimensional structures, the median structural similarity was also
measured using DaliLite [225] (Table 3.9). For those cases where one SC-cluster corre-
sponded to one CATH fold and vice versa the median sequence identity was 34.5% and
35.7%, respectively. In case of disagreements, the sequence identity was only 28.5%. In
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Figure 3.11: Examples of membrane proteins assigned to the same CATH fold, but to different
SC-clusters. The proteins shown are assigned to CATH folds (A) 1.10.287, (B) 1.20.120, (C)
1.20.950, (D) 1.20.1070 and (E) 1.20.1300. The corresponding SC-clusters are given for each
structure. TMH coordinates were extracted from PDBTM [26]. The figure was drawn using
PyMOL [66]. (Figure continues on next page.)

terms of the number of TMHs, the median standard deviation was found to range be-
tween 0.58 (disagreements) and 0.71 (agreements). In contrast, structural similarity of
proteins involved in agreement and disagreements differed significantly. While cases of
agreement achieved a median Z-score of about 30, the median Z-score for those CATH
folds corresponding to several SC-clusters was only 7.5. According to the authors of
DaliLite Z-scores above 20 describe true homologies and those in the range of 8 and 20
correspond to probable homologues. Values in the range of 2 and 8 define the grey area,

85



CHAPTER 3. CLASSIFICATION OF MEMBRANE PROTEINS BASED ON 1D AND 2D STRUCTURE

Figure 3.11: Continued.

and values below 2 are not significant.
The comparison of SCOP folds with SC-clusters, which involved 54 proteins, 37 SC-

clusters and 25 SCOP folds (Table 3.10), yielded similar results. Each of the 37 SC-
clusters mapped to one SCOP fold while 20 out of 25 SCOP folds had a perfect relation-
ship with SC-clusters. Only five SCOP folds (SCOP codes f.13 ‘Family A G protein-
coupled receptor-like’, f.14 ‘Voltage-gated potassium channels’, f.21 ‘Heme-binding four-
helical bundle’, f.38 ‘MFS general substrate transporter’ and f.58 ‘MetI-like’) were found
to be spread over two to eight SC-clusters (Figure 3.12). 13 out of 17 proteins involved
in the disagreements had between two and six TMHs. Again, it is assumed that the
discrepancies arose due to the difficulty in classifying membrane proteins with few he-
lices. Indeed, two SCOP folds (f.14 and f.21) belong to those where SCOP and CATH
disagree (see section 2.3.4, page 35).
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Table 3.10: Comparison of CAMPS 2.0 SC-clusters with SCOP folds

SC-clusters versus SCOP folds versus
SCOP folds SC-clusters

DB1a SC-clusters SCOP folds
DB2a SCOP folds SC-clusters
Sequencesb 54 54
Groups(DB1)c 37 25
Groups(DB2)c 25 37
1:1 relationshipsd

Occurrences 37 20
Involved sequences 54 (100%) 32 (59.3%)

1:n relationshipse

Occurrences 0 5
Involved sequences 0 22 (40.7%)

Median sequence identityf

1:1 relationships 33.1% 35.1%
1:n relationships - 25.0%

Median standard deviation of
TMH numberg

1:1 relationships 0.45 0.58
1:n relationships - 0

Median structural similarity
[Z-score]h

1:1 relationships 29.6 29.6
1:n relationships - 5.8

a For each group in DB1 the associated groups in DB2 were analyzed.
b Number of sequences involved in the comparison.
c In case of CAMPS groups denote SC-clusters and in case of SCOP folds.
d One DB1 group assignment is associated with one DB2 group assign-
ment.

e One DB1 group assignment is associated with multiple DB2 group as-
signments.

f For all sequences involved in 1:1/1:n relationships, the median of all
pairwise sequence identities (taken from SIMAP) was calculated.

g For all sequences involved in 1:1/1:n relationships, the median of all
standard deviations of the number of TMHs was calculated.

h Similar to f. Structural similarity describes the overall similarity of 3D
structures.
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Figure 3.12: Examples of membrane proteins assigned to the same SCOP fold, but to different
SC-clusters. The proteins shown are assigned to SCOP folds (A) f.13, (B) f.14, (C) f.21, (D) f.38
and (E) f.58. The corresponding SC-clusters are given for each structure. TMH coordinates were
extracted from PDBTM [26]. The figure was drawn using PyMOL [66]. (Figure continues on next
page.)

The median identity level between sequences covered by 1:1 relationships between
CAMPS and SCOP ranged between 33.1% and 35.1% (Table 3.10). In case of disagree-
ments, the median identity dropped down to 25%. The number of TMHs deviated by a
factor of 0.45 and 0.58 (1:1 relationships) and 0 (1:n relationships), respectively (CATH:
0.71 and 0.58, see above). Again, a high degree of structural similarity could be observed
in case of agreements (Z-score: 29.6) and a rather low similarity in case of disagreements
(Z-score: 5.8).
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Figure 3.12: Continued.

In summary, CAMPS agrees reasonably well with CATH and SCOP in almost all
cases. Differences in the classification occurred when the involved membrane proteins
had fewer than six TMHs. For these proteins even CATH and SCOP do not agree
in their classification (see section 2.3.4, page 35). One of the conclusions was that
the fold definition has to be redefined for small membrane proteins that only have a
limited structural diversity by integrating more fine-grained structural features. One
such attempt is being undertaken here by using loop length as an additional structural
determinant, and indeed the fact that some CATH and SCOP folds fall into several
distinct SC-clusters suggests that the fold definition used here may offer advantages in
dealing with minor differences between small membrane proteins.

3.3.8 Layered organization of the CAMPS database

The CAMPS 2.0 database provides a hierarchical organization of the membrane protein
space. The first layer is composed of the SC-clusters that are designed to represent the
structural level. The second layer consists of the MD- and FH-clusters representing the
modeling distance and functional level, respectively. Thereby, each MD- and FH -cluster
is associated with exactly one SC-cluster, while one SC-cluster is connected with one or
more MD- and FH -clusters, respectively.

The first type of clusters (MD-clusters) composing the second layer of CAMPS, de-
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scribes clusters whose members share a sequence identity of at least 30%. 22,360 MD-
clusters were obtained covering 53% of the initial dataset with 7,047 MD-clusters having
at least eight members.
By using the methodology described in the Materials and Methods section, 2,021 FH-

clusters were derived (covering 75.7% of the initial dataset) with 1,319 of them having at
least eight members based on the domain architecture of its members. Since FH-clusters
were designed to represent the functional level and EC (Enzyme Commission) codes
represent exact functions of enzymatic proteins, the FH-clusters were compared with
ENZYME [181, 182] to assess the quality of the FH-clusters. As just a few membrane
proteins are enzymes, this comparison applied only to a small subset of the sequences
involving 127 FH-clusters and 106 EC codes. The EC code contains four numbers sep-
arated by dots, whereas the last number provides the most specific information about
the catalyzed reaction. The analysis of the distribution of FH-clusters for each EC code
showed that in 74 cases, EC codes agreed perfectly with FH- clusters (1:1 relationship).
32 EC codes were found to be associated with more than one FH-cluster (1:n relation-
ship). In 11 out of 32 cases the FH-clusters were subclusters of the same SC-cluster,
whereas in the remaining 21 cases the FH-clusters belonged to different SC-clusters.
The reverse analysis (distribution of EC codes within each FH-cluster) revealed 101
1:1 relationships and 26 1:n relationships, whereas 16 FH-clusters were associated with
several EC codes only differing in the last number of the code.
The comparison of the EC codes with the FH-clusters showed that the two systems

concur well. However, there were also cases where the same code was found to be
associated with several FH-clusters. In those cases where FH-clusters were connected
with different SC-clusters, the most probable explanation is convergent evolution. An
explanation for the other cases (several FH-clusters with same parental SC-cluster are
associated with same EC code) is that homologous proteins with the same function can
also be distantly related and methods with a strong reliance on sequence similarity,
such as CAMPS, will not group all proteins to the same cluster. Similarly, in some cases
several EC codes were found to be associated with the same FH-cluster. This may be
due to the fact that not all homologous proteins having the same or similar domain
architectures also have the same function.

3.3.9 Quality of the CAMPS clustering

It is important to note that several bioinformatics methods are incorporated in the
CAMPS clustering procedure each influencing the quality of the final set of SC-, FH-
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and MD-clusters. For example, it is well known that TMH prediction methods, such as
Phobius [100], are not 100% reliable. In some cases, signal peptides are misclassified as
TMHs and vice versa, two short TMHs are predicted as one TMH or one large TMH
is split into two TMHs. Phobius has a prediction accuracy of about 68% [102] and
errors in the prediction mainly affect the derivation of TMH cores that are used to
generate the meta-models. The quality of the TMH cores also depends on the quality
of the underlying alignments generated using ClustalW that achieves an accuracy of
about 64% [304]. Large alignments are particularly challenging and usually not very
accurate since ClustalW creates them progressively by a series of pairwise alignments
and every time a new sequence is added new errors are likely to be introduced. Similarly,
the accuracies of the FASTA and MCL algorithms determine the quality of the initial
clustering. Taken together, each of the integrated methodologies can produce errors and
these errors can accumulate causing a decrease in the quality of the CAMPS clustering.
With more sophisticated methods to be incorporated in the future releases of CAMPS
gradual progress towards significantly better clustering results may be achieved.

3.3.10 CAMPS website

Together with the release of CAMPS 2.0, a new website was developed that can be
accessed at http://webclu.bio.wzw.tum.de/CAMPS2.0/ (Figure 3.13). The browsing
interface allows the user to explore the lists of all prokaryotic, eukaryotic and viral
genomes that are contained in CAMPS and the lists of all SC-, FH-, and MD-clusters.
In the search interface, the user can either search for specific membrane proteins or
membrane protein clusters. For the protein search the user can specify different kinds of
information, such as GenBank [296], UniProt [139] or Pfam [145, 146] accession numbers,
organism names, GO [166, 180] terms, SCOP [162, 163] folds, etc. A similarity search
against CAMPS sequences can be effected by BLAST [137]. For each individual search
hit comprehensive information is being displayed such as the SC-/FH-/MD-clusters to
which the protein is assigned, the topology (i.e. the sequence positions of the TMH and
loop regions), the amino acid sequence, the 3D structure (if available), and numerous
links to external databases (e.g. GO, Pfam, TCDB [247] etc.). At the cluster level, the
user can specify an organism, a keyword, or a cross-reference (such as a Pfam accession
number, CATH [164, 165] topology, SCOP fold, TCDB family etc.) to get CAMPS
clusters (SC-, FH-, or MD-clusters) that contain membrane proteins that are associated
with the specified search item. For each selected cluster CAMPS provides the TMH
range (i.e. the range of TMH number among the cluster members), the list of associated
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Figure 3.13: Screenshot of CAMPS 2.0 website.

genomes, the list of FH- and MD-clusters (in case of SC-clusters), the protein members,
sequence alignments, the list of associated 3D structures (if available), and links to
external databases. Finally, a user-submitted sequence that is not yet in CAMPS can
be assigned to a SC-cluster using the full classification procedure described above.
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3.4 Summary

• CAMPS provides an automatic hierarchical approach to the structural classifi-
cation of α-helical membrane proteins (with at least 3 TMHs) using sequence
clustering and secondary structure prediction

• CAMPS integrates structural and functional aspects

• Three clustering levels exist: fold (SC-clusters), function (FH-clusters) and mod-
eling distance (MD-clusters)

• Major changes in new release: 1) incorporation of eukaryotic and viral genomes,
2) usage of meta-models for SC-cluster generation, 3) advanced fold determination
(loop lengths)

• CAMPS classification is independent of known structures and relies on sequence
similarity and topology conservation (with respect to the number of transmem-
brane helices and loop lengths)

• CAMPS is a comprehensive classification approach covering 413,714 membrane
protein sequence from all superkingdoms

• 1,353 SC-clusters (only 53 of them with an associated structure) correspond
roughly to membrane protein folds

• CAMPS agrees well with established databases (Pfam, SCOP/CATH)

• CAMPS serves as a membrane protein information resource (cross-references to
many external databases such as UniProt, GO, GPCRDB, OMIM, TOPDB etc.)

• Applications: target selection, studies on membrane protein evolution
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3.5 Clarification of contribution

The CAMPS 2.0 database was mainly developed by myself. Three people contributed to
the development as follows. Within the context of his master thesis [278], Holger Hart-
mann implemented the meta-model framework that was later used for the construction
of the new CAMPS database release. Angelika Fuchs supervised this master thesis. An-
tonio Martin-Galiano, who established the first release of the CAMPS database, assisted
through constant advice. The establishment of the new release (except meta-model im-
plementation), all comparisons against external databases and the development of the
new website were done by myself. The results of this chapter were published in [305].
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Chapter 4
Classification of membrane proteins based

on helix-helix interactions

“Bioinformatics is a mixture of the mundane and the

sublime.”

(Nathan Siemers)

In the preceding chapter, a structural classification approach specifically tailored to
membrane proteins was presented. In contrast to SCOP [162, 163] and CATH [164,
165], it is not based on three-dimensional structures, but on sequence similarity and
topology conservation (with respect to the number of transmembrane helices and loop
lengths). Hence, it offers a much more comprehensive classification since membrane
protein structures are rare.

However, one shortcoming remains. Although sequence information is not the only
considered fold determinant, it significantly influences the whole classification. There-
fore, the approach can not deal with analogous structures resulting from convergent
evolution [150]. Membrane proteins sharing the same fold, but almost no sequence sim-
ilarity, will be assigned to different SC-clusters. This means that several SC-clusters
may describe the same fold. To compensate this effect, the classification approach was
further improved by considering helix-helix interactions as an additional fold determi-
nant. This has been possible only recently, since existing methods for the prediction of
helix-helix interactions are not suitable for membrane proteins and specific tools were
missing so far (see section 4.1.2).

In this chapter, a method is described that allows to compare CAMPS SC-clusters
according to their helix-helix interaction patterns visualized by helix interaction graphs.
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In this way, it is possible to find and join SC-clusters with similar interaction patterns
that are not related at the sequence level. After a short introduction to helix-helix
interactions and their prediction, it is explained how the method is evaluated using a
subset of all SC-clusters that are associated with an experimental determined structure.
After defining the best parameters, the method is applied to all SC-clusters that fulfill
certain criteria. Finally, the chapter closes with an analysis of the joined SC-clusters in
terms of structural and functional aspects.

4.1 Introduction

4.1.1 Importance of helix-helix interactions

According to the ‘two-stage’ model [261], the packing of transmembrane helices is an
important process in the folding of α-helical membrane proteins (see also section 3.1.2,
page 47). While interhelical loops affect the helix packing of successive transmembrane
helices (‘short-range’ interactions), helix-helix interactions can also have a ‘long-range’
effect in case of nonsuccessive helices [271]. The classic mode of helix-helix packing in
membrane proteins is described by the ‘knobs-into-holes’ packing model that is already
known from soluble coiled coils [25]. By analyzing a library of interacting helical pairs,
it could be shown that this antiparallel motif with left-handed packing angles is the
most common packing motif in membrane proteins (almost 30% of the library), which
is often stabilized by the packing of small side chains appearing every seven residues
[306]. There are different types of helix-helix interactions. The five most favorable are
hydrogen bonds, salt bridges, aromatic interactions, closely packed small residues and
closely packed valines, isoleucines, and leucines ([307] and references therein). One of the
most known representatives of the fourth type is the GxxxG sequence motif, initially
found in glycophorin A [308] and later shown to occur frequently in transmembrane
helices in general [309].

By means of comparative analyses of helix-helix interactions in membrane and sol-
uble proteins, Eilers et al. have shown that their interaction patterns differ in many
aspects [310, 311]. Helices in membrane proteins are more tightly packed than in solu-
ble proteins. Furthermore, membrane proteins have a higher diversity of residues with
a distinct bias for closely packed small and polar residues. Finally, membrane proteins
exhibit two general motifs for helix-helix interactions (‘knobs-into-holes’ and GxxxG) .

Taken together, helix-helix interactions significantly contribute to the folding of α-
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helical membrane proteins. Further evidence comes from a recent study where a clas-
sification based on helix-helix interactions patterns [312] was shown to resemble the
conventional fold classification of SCOP [162, 163] and CATH [164, 165]. Therefore, it
is reasonable to include helix-helix interactions in the structural classification of mem-
brane proteins as an additional fold determinant.

4.1.2 Prediction of helix-helix interactions

Since helix-helix interactions in membrane proteins differ remarkably from that of soluble
proteins (see above), prediction methods that were developed for soluble proteins do not
perform well on membrane proteins [313]. Hence, it is better to use a prediction method
that is specifically tailored to transmembrane proteins. Only in the last four years,
approaches to predict helix-helix interactions in membrane proteins became available
[313–317].

The first developed method, called TMHcon [313], is a neural network based approach
that uses several information such as correlated mutations, membrane protein topology
and lipid-exposure scores to predict helix-helix contacts within the transmembrane he-
lices of α-helical membrane proteins. TMHcon consists of two different neural networks,
termed NN4 and NN4-D. While the former was trained on all contacts from all trans-
membrane helix pairs, the latter was specifically trained on long-range contacts from
non-neighboring transmembrane helices. Based on a dataset of 62 membrane protein
structures, TMHcon achieved a prediction accuracy of almost 26% which equals the ac-
curacy of contact predictors available for soluble proteins. Furthermore, TMHcon allows
to predict interacting transmembrane helices. This can be done by defining a threshold
of required helix-helix contacts to predict a pair of helices as interacting (with one con-
tact threshold for NN4 and one for NN4-D). Finally, if interacting helices are visualized
by a so-called ‘helix interaction graph’ [312] (Figure 4.1), it is possible to compare the
architectures of two α-helical membrane proteins.

4.2 Materials and Methods

4.2.1 Dataset

CAMPS 2.0 SC-clusters were used to apply the approach of predicted helix architec-
tures to a comprehensive set of α-helical membrane proteins. For each of the 1,353
SC-clusters the most common number of transmembrane helices (TMHs) was defined
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Figure 4.1: Example of a helix interaction graph. Left: Structure of the H(+)/Cl(-) exchange
transporter clcA (PDB code: 1kpk) with 10 TMHs. Right: Corresponding helix interaction graph
with nodes corresponding to TMHs and edges corresponding to interacting helices. Figure taken
from [312].

among the members (further referred to as the representative TMH number) and those
SC-clusters were selected with a representative TMH number of at least five and a struc-
tural homogeneity (reflecting the variation of the TMH number within the cluster, see
[252]) of at least 0.80. The latter parameter was used to ensure that those proteins
having the representative TMH number indeed represent the large majority of the cor-
responding cluster. From each of the 431 SC-clusters satisfying the above conditions,
the 50 most divergent protein members (according to sequence identity) with a TMH
number equaling the representative TMH number of the corresponding SC-cluster were
retained for further consideration. In case fewer than 50 members were available, all of
them were selected. By doing so, the final dataset contained 14,917 membrane protein
sequences and will be further referred to as CAMPS_SC.

4.2.2 Prediction of consensus helix architectures

First of all, helix-helix contacts were predicted for all proteins from the 431 SC-clusters
in CAMPS_SC using the TMHcon software [313]. The idea to derive consensus helix
architectures from these contacts was as follows: first predict interacting helices for each
protein using specific contact thresholds for NN4 and NN4-D (see section 4.1.2; resulting
in individual helix architectures) and then generate consensus helix architectures for all
431 SC-clusters using the predicted individual helix architectures from the (50 or less;
see above) selected cluster members (see Figure 4.2). Thereby, all helix interactions
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Figure 4.2: Workflow of joining SC-clusters with similar helix-helix interaction patterns using
consensus helix architectures.

occurring in more individual architectures than a pre-set consensus threshold (con) are
transferred to the consensus architecture.

As the required stringency of the consensus threshold is dependent on the sensitivity
and selectivity of the preceding helix interaction prediction, a benchmark was performed
to find optimal parameters for both the two contact thresholds (NN4 and NN4-D) for
the individual architectures and the consensus threshold con. To this end, SC-clusters
with a representative TMH number of at least five were selected that include a known
PDB [27] structure. This was done by searching all protein sequences contained in these
SC-clusters against PDBTM [26] (version 2.3) using BLAST [137] for matches with at
least 95% sequence identity and at least 95% sequence coverage. Theoretical models and
structures with a resolution worse than 4 Å were ignored. Furthermore, only structures
were considered whose TMH number (according to TOPDB [290] or PDBTM, if the
protein was not available in TOPDB) corresponds to the representative TMH number
of the respective SC-cluster. If several structures were available for one SC-cluster
the structure with the best resolution was chosen. By doing so, 28 SC-clusters were
determined to be associated with a known structure. The 28 PDB proteins representing
these SC-clusters will be further referred to as CAMPS_TEST.

For comparison, true helix interaction graphs were obtained for the structures in
CAMPS_TEST by considering all TMH pairs (TMH annotations were taken from TOPDB/
PDBTM) with at least one helix-helix contact as interacting. A helix-helix contact was
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defined as a residue pair (located on different TMHs) having a spatial distance of less
than 5.5 Å. Subsequently, a consensus helix interaction graph was predicted for each SC-
cluster in CAMPS_TEST using the 50 most divergent protein members (if the SC-clusters
had fewer members all of them were selected). As a result, one individual helix archi-
tecture that was used as a reference and one predicted consensus architecture for each
SC-cluster in CAMPS_TEST were available that were compared to each other. Different
values for the two contact thresholds and the consensus threshold were tested and sensi-
tivity and specificity were calculated. Thereby, sensitivity was defined as the proportion
of all interacting helices in the true helix architectures obtained from the structures that
were also present in the predicted consensus architectures. While specificity described
the proportion of all true non-interacting helices that were also absent in the consensus
architectures.
Using the parameter setting with the best sensitivity at a given specificity, consensus

architectures were finally generated for all 431 SC-clusters in CAMPS_SC (in the same
way as was done for the SC-clusters in CAMPS_TEST).

4.2.3 Large-scale classification of consensus helix architectures

To reveal consensus architectures representing similar membrane protein structures, all
consensus architectures that were generated for the SC-clusters in CAMPS_SC were com-
pared to each other using the HISS (Helix Interaction Similarity Score) scoring system
[312] (see Figure 4.2). The HISS score is a measure that calculates the similarity of
two helix architectures as represented by their helix interaction graphs. Thereby, only
those pairs of consensus architectures with the same representative TMH number were
considered for comparison. All HISS scores above different pre-defined thresholds were
used to cluster the consensus architectures using the MCL algorithm [275] with varying
inflation values. The inflation value is a MCL parameter that controls the granularity
of the clustering (the higher the value the more fine-grained the clustering). Different
combinations of the two parameters (HISS score threshold, inflation value) were tested
and the final MCL clusters were validated using the Pfam-A [145, 146] annotations of
the corresponding proteins. If a protein was classified to a Pfam-A family having a clan
assignment, then the clan annotation was considered, otherwise the family annotation
was used. Sensitivity was defined as the fraction of all proteins covered by the MCL clus-
ters with the same Pfam-A annotation that were also found in the same MCL cluster.
Similarly, specificity was calculated as the fraction of all proteins with different Pfam-A
annotations that were also found in different MCL clusters. The parameter combination
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with the best sensitivity at a given specificity was chosen for the final set of clustered
consensus architectures.

4.2.4 GO enrichment analysis

To identify significantly enriched Gene Ontology [166, 180] (GO) terms within the set
of proteins covered by the MCL clusters, the Ontologizer software [318] was used. The
software requires a GO ontology file, an annotation file (with GO terms mapped to
genes), so-called study sets (genes/proteins of interest) and a population set (refer-
ence set) as input. The GO slim [319] generic ontology (OBO v1.2; as of January 11,
2012) which is a subset of the whole GO containing high-level terms and the unfiltered
UniProt [139] annotation file (as of December 13, 2011; both files were downloaded from
http://www.geneontology.org) were chosen. Two separate enrichment analyses were
conducted. In the first analysis (further referred to as protein class level enrichment
analysis) all membrane proteins covered by the MCL clusters were grouped according
to their TMH number and each group constituted a study set resulting in eleven study
sets (5-15 TMHs). The union of all eleven study sets formed the population set. In the
second analysis (further referred to as cluster level enrichment analysis) each MCL clus-
ter itself described a study set using those members whose TMH number corresponded
to the representative TMH number of the corresponding cluster yielding 151 study sets.
The population set was again the sum of all study sets. For further consideration, all
enriched GO terms were selected as returned by Ontologizer with an adjusted P-value
better than or equal to 0.05. The adjusted P-values were calculated using the Bonferroni
correction method (which is one of the optional parameters of the Ontologizer software).

4.3 Results and Discussion

4.3.1 Generation of consensus helix architectures

The intention of combining multiple predicted helix architectures from a number of
structurally related membrane proteins into a consensus helix architecture is to have
the means to represent the fold shared by a set of membrane proteins. Since struc-
turally related membrane proteins are available by the SC-clusters from the CAMPS
2.0 database (see chapter 3, page 45), the generation of consensus helix architectures
was applied to these membrane protein clusters. It is recalled that α–helical membrane
proteins are classified in CAMPS 2.0 according to sequence similarity, the number of
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transmembrane helices, and loop length patterns. Although sequence information is
not the only feature in the classification, it has a major effect on the clustering result.
Thus, it is possible that multiple SC-clusters describe similar structures originating from
convergent evolution. By applying the method of consensus helix architectures to SC-
clusters, it was aimed to find membrane proteins that share structural similarity, but
lack sequence similarity.

First of all, optimal parameters for building consensus architectures were determined
using a set of 28 SC-clusters containing known three-dimensional PDB [27] structures
(dataset CAMPS_TEST). Consensus architectures with varying contact thresholds (for
NN4 and NN4-D) and consensus thresholds con were generated for each of the 28 SC-
clusters (as described in Materials and Methods) and compared to the observed indi-
vidual helix architecture of the corresponding structure. Aiming at 80% specificity, the
best parameter setting was achieved for C=11 (network NN4), C=11 (network NN4-D)
and con=0.3 (consensus threshold) yielding a sensitivity of 61.6% (Table 4.1). For com-
parison, individual helix architectures were predicted for the proteins used for building
consensus architectures as well and the average sensitivity and specificity was calcu-
lated. Similarly, helix architectures were predicted for the PDB proteins themselves
and compared to the observed helix architectures. As can be seen in Table 4.1, consen-
sus architectures reproduced observed helix architectures as good or even better as the
average helix predictions and the predictions obtained for the PDB proteins. At 80%
specificity, consensus architectures were 1.7% more sensitive than the PDB predictions
and 2.2% more sensitive than the average predictions.

Using the optimal parameters at 80% specificity (CNN4=11/CNN4-D=11/con=0.3),
consensus architectures were generated for all 431 SC-clusters from the CAMPS_SC dataset
containing proteins with 5 to 15 TMHs. All pairs of consensus architectures representing
the same number of TMHs (16,027 pairs in total) were compared to each other using
the HISS scoring system [312]. Afterwards, all SC-cluster pairs (represented by their
consensus architectures) above a given HISS score threshold were clustered using the
MCL algorithm [275]. Trying different HISS score thresholds and different MCL infla-
tion values (whereas the inflation value regulates the granularity of the clustering), the
sensitivity and specificity of the MCL clusters with respect to Pfam-A [145, 146] anno-
tations were calculated. Sensitivity was defined as the fraction of all protein pairs with
the same Pfam annotation that were assigned to the same MCL cluster and specificity
as the fraction of all proteins pairs with different Pfam annotations assigned to different
MCL clusters. As can be seen in Table 4.2, the best parameter combination reaching
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Table 4.1: Parameter optimization for generation of consensus helix architectures

Graph type Contact Consensus Accuracy [%] Sensitivity [%]c Specificity [%]d

thresholda thresholdb

Consensus C11/C11 0.3 71.8 61.6 80.1
C12/C14 0.6 69.9 45.4 89.7

PDBe C5/C12 - 70.9 59.9 79.8
C12/C18 - 69.8 45.4 89.6

Averagef C6/C18 - 70.1 59.4 79.5
C15/C27 - 66.0 41.3 89.5

a Contact threshold (NN4/NN4-D): number of required helix-helix contacts to predict a
helix as interacting.

b Consensus threshold: fraction of individual helix architectures required to contain a
helix interaction to transfer it to the consensus architecture.

c Sensitivity: fraction of known interacting helices that can also be found in the predicted
architectures.

d Specificity: fraction of known non-interacting helices that are also absent in the pre-
dicted architectures.

e PDB: helix architectures derived from known PDB structures were compared against
those that were predicted for these PDB proteins.

f Average: helix architectures were predicted for all proteins involved in the consensus
architecture and compared against the helix architectures derived from the known PDB
structures.

90% specificity for all 431 SC-clusters is given by a HISS score threshold of 0.86 and an
inflation value of 2. This combination achieves a sensitivity of almost 52%. However,
when sensitivity and specificity for SC-clusters with members having 5 to 7 TMHs and
more than 7 TMHs were calculated separately, it was found that this parameter setting
(0.86/2) is not optimal for both SC-cluster categories. For the former category (5-7
TMHs), a sensitivity of 79.7% and a specificity of 72.7% were obtained. For the latter
category (> 7 TMHs), specificity was already 98.5%. However, the sensitivity dropped
down to 29.2%. This observation can be explained by the fact that membrane proteins
with many TMHs (e.g. more than seven) have a higher potential of structural variability
than small membrane proteins. Thus, different parameter settings were defined for the
two categories both achieving similar values of sensitivity and specificity. Aiming at
90% specificity, a HISS score threshold of 0.95 and an inflation value of 1.1 were shown
to perform best for the first category achieving almost 55% sensitivity. For the sec-
ond category, the combination 0.75/1.1 performed with 90% specificity and almost 50%
sensitivity (Table 4.2). It has to be noted that these values are based on both Pfam-A
family and clan (= group of related families [149]) annotations (see Materials and Meth-
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Table 4.2: Parameter optimization for MCL clustering of consensus helix architectures

SC-cluster dataseta HISS score Inflation Sensitivity [%]b Specificity [%]c

threshold value

All 0.70 1.1 67.1 85.3d

0.86 2 51.8 89.5

≤ 7 TMHs 0.84 5 66.9 78.8
0.95 1.1 54.9 91.2

> 7 TMHs 0.70 1.1 54.2 84.3d

0.75 1.1 49.9 89.5
a All: All SC-clusters from the classification dataset; ≤ 7 TMHs: SC-clusters
with members having up to seven TMHs; > 7 TMHs: SC-clusters with mem-
bers having more than seven TMHs.

b Sensitivity: Fraction of all protein pairs having the same Pfam annotation
that were assigned to the same MCL cluster using the respective HISS score
threshold and inflation value.

c Specificity: Fraction of all protein pairs having different Pfam annotations
that were assigned to different MCL clusters using the respective HISS score
threshold and inflation value.

d Lower specificities were not obtained in the tested set of HISS score thresholds
and inflation values.

ods). Calculating the values for family and clan annotations separately shows that an
even higher sensitivity is achieved (for 0.95/1.1 and 0.75/1.1, respectively), when family
assignments are considered alone (≤ 7 TMHs: 74.8% sensitivity, 90.7% specificity; >
7 TMHs: 93.1% sensitivity, 88.8% specificity). Using only clan assignments results in
less than 50% sensitivity at about 90% specificity (≤ 7 TMHs: 48.1% sensitivity, 93.5%
specificity; > 7 TMHs: 44.9% sensitivity, 89.6% specificity).
Accordingly, the parameter combinations 0.95/1.1 (for SC-clusters with up to 7 TMHs)

and 0.75/1.1 (for SC-clusters with more than 7 TMHs) were used for the final clustering
of all consensus architectures. By doing so, the 431 SC-clusters were joined into 151
MCL clusters, whereas 111 of them are singleton clusters (i.e. clusters only containing
one SC-cluster) and 40 MCL clusters contain two or more SC-clusters (Table 4.3).

4.3.2 Validation of MCL clusters

Comparison with Pfam

Using the Pfam-A family and clan annotations of the membrane proteins involved in the
clusters, the two clusterings (SC-clusters and MCL clusters (= joined SC-clusters)) were
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Table 4.3: TMH distribution among SC-clusters and MCL clusters

Number of TMHs Number of SC-clusters Number of MCL clusters Reduction

Singletona Non-Singletonb Total factorc

5 97 25 18 43 2.3
6 121 26 8 34 3.6
7 68 28 3 31 2.2
8 24 1 1 2 12.0
9 12 3 1 4 3.0
10 37 16 4 20 1.9
11 27 0 1 1 27.0
12 30 6 1 7 4.3
13 5 0 1 1 5.0
14 8 4 2 6 1.3
15 2 2 0 2 1.0

Total 431 111 40 151 2.9
a MCL cluster containing only one SC-cluster.
b MCL cluster containing two or more SC-clusters.
c Number of SC-clusters divided by total number of MCL clusters.

compared to each other. It is important to mention at this point that it is not intended
to fully reproduce the Pfam clustering. SC-clusters and MCL clusters are designed to
represent sets of structurally similar membrane proteins likely to share the same fold,
while Pfam is a sequence-based approach and does not consider structural features. Nev-
ertheless, Pfam is used as a reference (and not SCOP [162, 163] or CATH [164, 165])
since Pfam annotations are available for a large majority of membrane proteins (about
70%; data not shown here). 66.5% of all protein pairs having the same Pfam-A family
annotation were also found in the same SC-cluster (sensitivity), while 99.9% of all pairs
with different annotations were assigned to different SC-clusters (specificity). Based on
the clan annotations, a sensitivity of 11.3% and a specificity of 100% could be obtained
for the SC-clusters. Through the further clustering of SC-clusters using helix architec-
tures, the sensitivity could be improved significantly at the cost of a slightly reduced
specificity. The MCL clusters approach a sensitivity of 81.6% (at 94.8% specificity) and
42.0% (at 96.1% specificity) at the family and clan level, respectively. The most im-
portant result here is that the MCL clusters are 30.7% more sensitive than SC-clusters
when compared to Pfam clans. A clan is described as a set of related Pfam families that
have arisen from a single evolutionary origin [149]. Based on structural information and
profile-profile comparisons, some Pfam clans group together large, divergent families.
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Thus, Pfam clans represent a perfect evaluation when investigating the clustering of
structurally similar proteins with low sequence similarity. Based on these results, it can
already be concluded that the further clustering of SC-clusters led to a considerable im-
provement, particularly as regards the clustering of divergent membrane proteins. Three
cases will be further described in detail demonstrating the improvement.

Case 1: G protein-coupled receptors

In the first two cases, groups of SC-clusters being associated with different Pfam families
from the same clan, could be found within the same MCL cluster. The first example
involves 12 SC-clusters that all contain members being assigned to Pfam clan CL0192
(‘Family A G protein-coupled receptor-like superfamily’). Through the further clustering
process using helix architectures, these SC-clusters were grouped into the same MCL
cluster due to their similar consensus architectures (Figure 4.3A). The G protein-coupled
receptors (GPCRs) are known to be the largest and most diverse protein superfamily
in the mammalian genome and are further divided into five main families [134, 320,
321] (with family A being the largest family of GPCRs). All GPCRs share a common
structure of a seven transmembrane helix bundle [322], while sequence similarity is rather
low among distant GPCRs. To verify whether it was possible to join SC-clusters that
capture structural similarity beyond sequence similarity, the average pairwise sequence
identity between all protein pairs of the same SC-cluster and all pairs from different
SC-clusters (out of the set of 12 SC-clusters that were joined together; Figure 4.3A) was
calculated. The average pairwise sequence identity was found to be 25.4% and 14.1% for
protein pairs assigned to the same and different SC-clusters, respectively. Once again,
these results confirm that the proposed method is able to identify membrane proteins
with similar structures lacking significant sequence similarity.

Case 2: APC superfamily

Similarly, another five SC-clusters were found that are all linked with Pfam clan CL0062
(‘APC superfamily’) and are classified to the same MCL cluster (Figure 4.3B). While
GPCRs are only present in eukaryotes, amino acid/polyamine/organocation (APC)
transporters are numerous in all domains of life. The twelve families of the APC su-
perfamily differ in their taxonomic distribution (some families are represented only in
bacteria, other only in eukaryotes etc.) and the number of transmembrane segments.
While most of them exhibit twelve segments, some APC transporters were also found
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Figure 4.3: Consensus helix architectures from joined SC-clusters. (A) All corresponding SC-
clusters belong to Pfam clan CL0192 (‘Family A G protein-coupled receptor-like superfamily’). (B)
All SC-clusters belong to clan CL0062 (‘APC superfamily’). Nodes correspond to transmembrane
helices, edges represent interacting helices. (Figure continues on next page.)

to contain 11 (which corresponds to the representative TMH number of the five SC-
clusters), 12 or 14 transmembrane segments [323]. As in the previous case, the average
pairwise sequence identity was calculated. For protein pairs originating from the same
SC-cluster, the average identity was 27.0%. And for protein pairs assigned to different
SC-clusters (joined into the same MCL cluster) the sequence identity was 14.5%.

Case 3: SC-clusters with similar 3D structures

The last case is special as it shows two SC-clusters linked with known 3D structures
being similar to each other and that were joined into the same MCL cluster (Figure
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Figure 4.3: Continued.

4.4). SC-Cluster CMSC0058 contains the archaeal aquaporin AqpM (2f2b, chain A)
and CMSC0180 a bacterial formate channel (3kly, chain A). By comparing the two
structures using DaliLite [225], a high degree of structural similarity (Z-score: 17.6) was
observed. While a Z-score of at least 2.0 indicates a common fold, a Z-score above 20
means that two structures are true homologues. At the same time, the sequence identity
of the two channels is only 15.3%. It is interesting to note that both structures are also
classified to the same CATH [164, 165] fold (‘Glycerol uptake facilitator protein’) and to
the same OPM [288] superfamily (‘Major Intrinsic Protein (MIP)/FNT superfamily’).
Furthermore, Theobald and Miller also revealed that the two channels share a common
structural fold in the absence of sequence similarity raising questions about the evolution
of membrane proteins [324].

Taken together, the results clearly indicate that using the proposed method of pre-
dicted helix architectures it is possible to identify structurally similar membrane proteins
lacking sequence similarity. These cases are of significant importance as they provide
insight into the previously poorly understood evolution of membrane proteins.
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Figure 4.4: Example of two SC-clusters that were joined together. Both SC-clusters contain
structures that show a very similar transmembrane helix packing. (A) Left panel: Representative
structure (PDB code: 2f2b, chain A) of SC-cluster CMSC0058. Right panel: Consensus helix
architecture for SC-cluster CMSC0058. (B) Left panel: Representative structure (PDB code:
3kly, chain A) of SC-cluster CMSC0180. Right panel: Consensus helix architecture for SC-cluster
CMSC0180. Both structures contain six transmembrane helices (M1-M6) colored differently. In
case of 3kly_A, the fifth helix is interrupted (M5a, M5b). Transmembrane helix coordinates were
extracted from PDBTM [26].

4.3.3 Exploring the membrane protein structure space

Structural similarity of transporter families

Given the almost 3-fold decrease in membrane protein clusters after the clustering based
on helix architecture similarity, it was interesting to further investigate whether proteins
with a certain number of TMHs (further referred to as membrane protein class) where
especially prone to be clustered together based on similar helix interaction patterns. This
could give new insights into the structural similarity of a certain membrane protein class
lacking sequence similarity.

As can be seen in Table 4.3, two membrane protein classes can be identified that
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indeed contribute most substantially to the reduction of protein clusters, namely the 8
TMH and the 11 TMH class. Most noticeably, 23 out of 24 SC-clusters with members
having eight TMHs were joined into one MCL cluster. By doing so, the MCL clus-
ter grouped together different transporter proteins including ABC transporters, nickel
transporters, NADH dehydrogenases and P-type ATPases, as well as many proteins of
unknown function. Hence, it seems that these transporters have a common structural
core, a structural similarity that could not be revealed using the SC-clustering approach.
In fact, previous studies based on hydropathy profile analysis also revealed structural
similarities between different families of secondary transporters not related in amino
acid sequence indicating distant evolutionary relationships [325–328]. Therefore, it is
hypothesized that structural similarity is likely to be found in other transporter families
as well, and the MCL cluster (joining 23 SC-clusters) is one more case of structurally
related transporters that arose either by divergent or convergent evolution [329]. The
second remaining MCL cluster containing 8 TMH proteins is a singleton cluster com-
prising only one SC-cluster (CAMPS code CMSC0049). Given that CMSC0049 includes
proteins of unknown function, it may be an interesting target for structural genomics.
In case of the 11 TMH class, all 27 SC-clusters were joined into a single MCL cluster

(Table 4.3). Again, most of the SC-clusters represent different transporters, such as
sulfate, ammonium, metal ion and amino acid transporters, as well as sodium/alanine
and sodium/glutamate transporters. Furthermore, the grouped SC-clusters are linked
with different Pfam clans (CL0062 ‘APC superfamily’, CL0064 ‘CPA/AT transporter
superfamily’, CL0182 ‘IT superfamily’). Taken together, for the special case of 8 and 11
TMH proteins, it is assumed that (almost) all SC-clusters were combined into one MCL
cluster because the considered transporter families share a common structural core.

Structural diversity of membrane protein classes

In a further analysis, it was examined whether certain membrane protein classes occur
more often than others among the SC-clusters and MCL clusters. Given that SC-clusters
and MCL clusters group together structurally related membrane proteins likely to share
the same fold, this analysis allows to draw conclusions about the structural diversity of
certain membrane protein classes. One factor that influences the structural diversity is
the abundance of the membrane protein class itself, i.e. how many membrane proteins
exist with a certain number of TMHs. Therefore, the distribution of membrane proteins
with respect to their TMH number was studied first.
In 1998, Jones already examined the question of whether certain transmembrane
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topologies occur more often than others [3]. This and other genome-wide analyses
[4, 117, 131–133] have shown that proteins with 6 and 12 TMHs are predominant in
uni-cellular organisms and constitute small-molecule transporters, sugar transporters
and ABC transporters (see section 1.1.4, page 11). In contrast, proteins with 7 TMHs
are abundant in C. elegans and human which can be explained by the high abundance
of G-protein coupled receptors. For the membrane proteins in the dataset used in this
work (CAMPS_SC) similar trends could be observed (see Figure 4.5A and Table 7.4 in
the Appendix), except for the 12 TMH class. In the CAMPS_SC dataset, proteins with
12 TMHs were more abundant in eukaryotic than in prokaryotic proteins (Eukaryota:
16.0%, Archaea: 9.2%, Bacteria: 13.0%). This difference may be caused by the different
datasets used. While previous analyses were based on not more than four eukaryotic
genomes, the CAMPS database incorporates 134 eukaryotic genomes in total (see section
3.3.1, page 61). Hence, it can be expected that the distribution shown here (Figure 4.5A)
is more representative.

Next, the distribution of TMH classes among the SC-clusters and MCL clusters was
investigated (see Figure 4.5B and 4.5C and Table 7.4 in the Appendix). It is recalled that
the distribution at the protein level reflects the abundance of the TMH classes, while the
distribution at the cluster level rather displays their structural diversity. As can be seen
in Figure 4.5A and Figure 4.5B, the distribution for proteins and SC-clusters are more
or less the same. However, slight differences can be observed in the 8, 9 and 12 TMH
class. While proteins with 8 and 9 TMHs are almost equally abundant as proteins with
10 TMHs, SC-clusters with 8 and 9 TMH proteins are less frequent than with 10 TMH
proteins. Furthermore, the distribution in the range of 10 to 12 TMHs is more uniform
at the SC-cluster level as at the protein level. In contrast to these minor differences,
the distribution among MCL clusters differs significantly from both distributions among
proteins and SC-clusters. The first striking difference between MCL and SC-clusters
can be observed in the range of 5 to 7 TMHs. While the 6 TMH class is abundant
among prokaryotic SC-clusters and the 7 TMH class among eukaryotic SC-clusters, this
is not true for MCL clusters. On the contrary, there is a steady decrease in the number
of MCL clusters and this relates to all superkingdoms. The second discrepancy can be
found in the range of 8 to 15 TMHs. Compared to SC-clusters, MCL clusters with 8 and
11 TMH proteins are clearly less common (see above), as well as with 12 TMH proteins.
Given that the applied clustering approach based on helix architectures is able to detect
distant relationships, it is expected that this difference can be explained by the grouping
of several SC-clusters that contain distantly related membrane proteins.
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Figure 4.5: Occurrence of TMH classes among proteins, SC-clusters and MCL clusters. (A)
Percentage of proteins with a certain number of TMHs. Percentage of SC-clusters (B) and MCL
clusters (C) with a certain representative TMH number.
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As the MCL clusters are the focus of this work, it was of particular interest why
some TMH classes occur more often among MCL clusters than others and thus may
exhibit a higher structural variability. Although the abundance of proteins with 8 to 12
TMHs is rather homogeneous (see Figure 4.5A), there are more MCL clusters with 10
and 12 TMH proteins (see Figure 4.5C) suggesting that these membrane protein classes
are structurally more diverse. It is known from previous publications that internal gene
duplications are a very common mechanism in membrane protein evolution [17, 120–125]
(see section 1.1.3, page 8). According to these studies, proteins with 10 and 12 TMHs
seem to have evolved through a complete gene duplication. Therefore, it is assumed here
that proteins with 10 and 12 TMHs show a higher structural diversity as they originated
from proteins with 5 and 6 TMHs that themselves are distributed among many different
MCL clusters. Similarly, it is suggested that for the same reason proteins with 14 TMHs
adopt more different structures than proteins with 13 TMHs.

Functional diversity of membrane protein classes and MCL clusters

Another explanation for the differences might be that some TMH classes are associated
with more functions than others and thus structural variability correlates with functional
diversity. To investigate whether this is true or not, a GO [166, 180] (Gene Ontology)
term enrichment analysis was performed for both the TMH classes and the MCL clusters.
Given that the assumption holds, it is expected that TMH classes associated with many
MCL clusters also have several enriched GO terms. In fact, the highest number of
distinct GO terms could be found for proteins with 5, 6, and 7 TMHs (having 6 to
7 terms; see Table 4.4 and Table 7.5 in the Appendix). So in this case, functional
diversity seems to implicate structural diversity. The same applies to the 10 TMH and
14 TMH classes (5 and 4 terms, respectively) as compared to the remaining classes in the
range of 8 to 15 TMHs. However, it has to be noted that the difference in the number
of distinct GO terms is often too subtle in order to draw clear conclusions regarding
the correlation between structural and functional diversity. For example, the 13 TMH
and 14 TMH classes differ remarkably in their structural variability (according to the
number of different MCL clusters), but only slightly in their functional variability (3
and 4 enriched GO terms, respectively). Although the number of GO terms for the 13
TMH class drops down to 2, if the terms ‘transport’ and ‘transmembrane transport’ are
considered as only one enriched term, as the second is just a more detailed description
of the first one.

GO enriched terms were used to draw conclusions about the functional diversity of
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Table 4.4: Enriched GO terms in membrane protein (MP) classes. For each membrane protein
class (i.e. set of proteins with a respective number of TMHs), the number of proteins that are
annotated with the respective GO term is given (gray colored cells). If no number is given, the
respective count is zero. All listed GO terms are enriched with a P-value ≤ 0.05.

MP class MP classesc

5 6 7 8 9 10 11 12 13 14 15

Sizea 15,627 29,439 14,358 10,806 11,403 14,145 11,896 17,277 2,805 1,880 324
Annotationsb 4,283 13,741 4,472 3,997 4,702 5,763 5,436 11,389 1,495 556 67

GO term Number of proteins in MP class with annotated GO term

Carbohydrate metabolic 10 1
process
Cell cycle 137 252 427 3
Cell differentiation 6 1
Cell division 140 107 244 3
Cell proliferation 5 1
Cellular component assembly 132 56 152 3
Cellular nitrogen compound 4 1
metabolic process
Embryo development 5 1
Lipid metabolic process 22 45 20 3
Locomotion 12 1
Photosynthesis 3 1
Protein complex assembly 132 56 152 3
Protein targeting 240 456 235 3
Reproduction 6 1
Response to stress 34 32 2
Signal transduction 153 275 200 53 4
Small molecule metabolic 2 1
process
Transmembrane transport 2,707 8,866 1,221 391 40 5
Transport 11,303 5,068 11,236 1,429 4
Vesicle-mediated transport 11 1

GO termsd 6 6 7 3 2 5 3 3 3 4 1

a Number of proteins in the membrane protein class.
b Number of proteins in the membrane protein class with GO annotations.
c Number of membrane protein classes that contain this enriched GO term.
d Number of enriched GO terms in this membrane protein class.

different membrane protein classes. However, it is clear that this approach is not nec-
essarily straightforward. First, one protein can be associated with multiple GO terms
(multi-functional protein). Second, one MCL cluster can be linked with multiple GO
terms (multi-functional cluster). Therefore, the statement that the more GO terms can
be found the higher the functional diversity might be misleading. To investigate the ef-
fect of multi-functional proteins, it was looked at the protein annotations and searched
for GO terms that frequently occur in combination with other GO terms. This was
found to occur in three cases. First of all, if proteins were annotated with the GO
term ‘cell division’, the ‘cell cycle’ annotation was available as well. This case concerns
the 5, 9 and 10 TMH classes. Secondly, the same applied to the combination ‘protein
targeting’ and ‘transport’ concerning the 6 TMH class. Thirdly, the annotations ‘trans-
port’, ‘transmembrane transport’ and ‘response to stress’ also occurred in combination
affecting the 11, 12 and 13 TMH classes.

Similarly, to analyze the effect of multi-functional MCL clusters, a separate GO enrich-
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ment analysis was performed (see Table 7.6 in the Appendix). Except for MCL clusters
with 15 TMHs, significantly (i.e. P-value ≤ 0.05) enriched GO terms could be found for
all MCL clusters. Compared to the protein class level enrichment analysis, additional
GO terms were found to be enriched that were, however, not considered for further
analyses. In total, seven MCL clusters were found to contain multiple enriched GO
terms (mcl5_5tmh, mcl12_5tmh, mcl2_6tmh, mcl10_6tmh, mcl6_7tmh, mcl1_8tmh,
mcl4_10tmh; see Table 7.6 in the Appendix), whereas terms that were already found
to occur in combination were considered as only one term. Additionally, it was also
observed that several MCL clusters from the same TMH class are associated with the
same GO terms. For example, in case of the 7 TMH class, four clusters (mcl2_7tmh,
mcl3_7tmh, mcl5_7tmh, mcl6_7tmh; see Table 7.6 in the Appendix) contain the term
‘signal transduction’.

To summarize, taking into account the effects of multi-functional proteins, multi-
functional MCL cluster and MCL clusters with the same functional annotations, it can
be concluded that the structural diversity of MCL clusters can be explained by functional
diversity, at least to some extent.

115



CHAPTER 4. CLASSIFICATION OF MEMBRANE PROTEINS BASED ON HELIX-HELIX
INTERACTIONS

4.4 Summary

• Using consensus helix architectures it was aimed to find SC-clusters representing
the same membrane protein fold

• Consensus helix architectures reproduce observed helix architectures better than
individual helix architectures

• 431 SC-clusters were joined into 151 MCL clusters

• MCL clusters are 30.7% more sensitive than SC-clusters (if sensitivity is described
as the fraction of all protein pairs with the same Pfam clan annotation that are
also assigned to the same MCL/SC-cluster)

• Membrane proteins with similar structures but almost no sequence similarity
could be grouped together using consensus helix architectures

• Some membrane protein classes show a higher structural diversity than others

• Structural diversity seems to correlate with functional diversity

4.5 Clarification of contribution

The idea of consensus helix architectures was initially developed by Angelika Fuchs.
Barbara Hummel implemented the approach within the context of her bachelor thesis
[330]. She was supervised by Angelika Fuchs, who revised the approach based on an
intermediate version of the CAMPS 2.0 database. I applied and further developed this
approach based on the latest CAMPS release. The benchmark, the application and
the analysis of the joined SC-clusters were done by myself. Standalone tools for the
prediction of consensus graph and their comparison were kindly provided by Angelika
Fuchs.
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Chapter 5
Conclusions and Outlook

“The most exciting phrase to hear in science, the one that

heralds new discoveries, is not ‘Eureka!’ (I found it!) but

‘That’s funny...’.”

(Isaac Asimov)

The overall objective of this thesis was to advance membrane protein research in the
field of structure classification. A comprehensive structure classification system allows to
explore structure-function relationships in membrane proteins that give valuable insights
into evolution. To this aim, existing approaches originally developed for soluble proteins
were first evaluated to figure out how they deal with membrane proteins. In a second
step, a hierarchical large-scale classification approach was developed that covers both
structural and functional aspects and is specifically tailored to α-helical transmembrane
proteins. This chapter summarizes the main conclusions that can be drawn from this
thesis and provides a short outlook on future work.

5.1 Structure space of small membrane proteins seems
to be highly continuous

In chapter 2, the first analysis of the classification of membrane proteins in SCOP and
CATH was presented. To this end, the general occurrence of membrane proteins and
folds within the two databases was investigated, as well as the differences in their domain
and fold assignments.

Given the current census of membrane protein structures, a reasonable agreement
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between SCOP and CATH was observed for all domains with six or more transmembrane
helices. Membrane proteins with more transmembrane helices are structurally restricted
and hence likely to be more similar between each other than soluble helix bundles.
However, the spectrum of possible structural diversity (such as tilted or reentrant helices)
also increases with a growing number of transmembrane helices. Therefore, membrane
proteins with six or more transmembrane helices seem to be sufficiently diverse to allow
for a structural classification comparable to that of soluble proteins.

While domains with more than five helices are mostly classified consistently between
SCOP and CATH, the majority of all discrepancies (such as differing domain assignments
and fold overlap problems) affect proteins with less than six transmembrane helices.
Single transmembrane helix, two helix hairpin and four helix bundle domains are among
the most prevalent classes of membrane proteins in both SCOP and CATH, and their
classification differs remarkably with almost no fold containing the same set of domains.
These findings indicate that the structural space of small membrane proteins is highly
continuous, making their classification intrinsically more difficult.

5.2 Fold definitions developed for soluble proteins are not
equally suitable for membrane proteins

The comparative analysis of SCOP and CATH has shown that membrane proteins
present a particular challenge for structure-based classification requiring a separate treat-
ment. Given that soluble and membrane proteins differ remarkably, it is not surprising
that the fold definition originally developed for soluble proteins can not automatically
applied to membrane proteins as well. Although membrane proteins are structurally
restricted by the lipid bilayer, they provide a variety of different functions. To fully
address the question how this is accomplished, the meaning of the term ‘fold’ should be
redefined, in particular for membrane proteins with a limited number of helices. This can
be done, for example, by considering more fine-grained structural features of membrane
protein structures such as helix-helix interactions and helix packing, the distribution of
helix tilt angles, the presence of reentrant regions, as well as functional features.
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5.3 CAMPS 2.0 reasonably agrees with sophisticated se-
quence and structure classification approaches

In chapter 3, a new release of the CAMPS database was described. The CAMPS
database represents an automatic hierarchical classification approach tailored towards
membrane proteins. The principal difference between CAMPS and other protein family
databases is the reliance on both sequence information and predicted structural fea-
tures. Three major changes have been implemented in the new release: i) eukaryotic
and viral membrane proteins have been incorporated in the classification approach, ii)
loop length patterns are used as an additional fold determinant, and iii) empirical rules
to delineate structural families have been replaced by higher-order hidden Markov mod-
els (meta-models). As long as structure determination of membrane proteins lags far
behind similar efforts for globular proteins, comparative sequence analysis and struc-
ture prediction will remain the principal tools for organizing the universe of membrane
protein folds.

In contrast to the SCOP and CATH hierarchies, CAMPS 2.0 offers a large-scale
classification not restricted to proteins with known structure. More importantly, for
known structures the CAMPS 2.0 classification is in reasonable agreement with SCOP
and CATH. Compared to purely sequence-based approaches, such as Pfam, CAMPS
2.0 provides more inclusive clusters, consistent with the notion that several functional
families may share the same fold.

5.4 Existing membrane protein structures represent only
a tiny fraction of the whole membrane protein fold
space

Based on the currently available set of completely sequenced genomes, the classification
approach applied in CAMPS 2.0 yielded 1,353 SC-clusters. Members of a SC-cluster
are structurally related and are expected to share the same fold. Although several
SC-clusters may describe the same fold, the number of SC-clusters can be used as an
upper bound for the estimation of membrane protein folds. Given that only 53 out
of 1,353 SC-clusters (4%) are associated with a known structure, it can be concluded
that the membrane protein structures available in the PDB database represent only a
small sample of the whole membrane protein fold space. Therefore, it can be expected
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that with new structures becoming available in the future the spectrum of structural
diversity will again increase considerably.

5.5 Incorporation of loop lengths and helix-helix interac-
tions improves the classification of membrane pro-
teins

The underlying principle of the CAMPS database is a hierarchical scheme with three
clustering levels: fold (SC-clusters), function (FH-clusters) and modeling distance (MD-
clusters). The SC-clusters are at the top level of the hierarchy and roughly correspond
to membrane protein folds. In the initial release of CAMPS, sequence similarity and
the number of transmembrane helices were used as fold determinants. In this thesis, the
database was progressively developed by gradually considering additional fold determi-
nants.

In the first round (see chapter 3, page 45), loop length patterns were included through
the application of meta-models. Loops were included to the classification approach as
it is known that they provide an additional source of structural variety. In fact, similar
membrane protein architectures can have diverse loop lengths so that they can be further
divided into subgroups. The comparison between CAMPS 1.0 and CAMPS 2.0 has
shown that the incorporation of loop length patterns produces much more structurally
homogeneous SC-clusters implying that loop lengths are an important determinant of
membrane protein structure.

In the second round (see chapter 4, page 95), consensus helix architecture graphs
were utilized to search for SC-clusters likely to describe the same fold due to convergent
evolution. The joined SC-clusters were termed MCL clusters. By comparing the SC-
clusters and MCL clusters against Pfam, it could be shown that the sensitivity (defined
here as the fraction of protein pairs having the same Pfam annotation that were assigned
to the same SC- or MCL cluster) could be improved remarkably. Most notably, the
sensitivity increased by 30.7% when Pfam clans were used as a reference. As Pfam
clans are known to group large divergent families, these results indicate that the further
clustering of SC-clusters brought a significant improvement.
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5.6 Some membrane protein topologies occur more often
than others

In the last step, the MCL clusters were investigated in terms of structural and functional
aspects. It appeared that in the range of 8 to 15 TMHs, the 10 TMH, 12 TMH and 14
TMH topologies are more prominent among the MCL clusters than the others implying
that these topologies share a higher structural diversity. By performing a GO enrich-
ment analysis, the question was addressed whether structural diversity correlates with
functional diversity. However, the question could not be completely answered, since the
number of distinct GO terms differed only slightly between the different topologies.

5.7 Outlook

In the very last section of this thesis, some ideas are presented how the proposed struc-
tural classification approach may be further developed in the future.

To further extend the usability of the database, one can expand the membrane protein
dataset in two possible ways: by integrating recently sequenced genomes and by also
including membrane proteins with less than three helices. The restriction to proteins
with at least three transmembrane helices was previously justified by the need to mini-
mize the risk to include non-membrane proteins. However, with the increasing accuracy
of newly developed membrane protein prediction tools, it is possible to include smaller
membrane proteins as well.

The fold determinants used in this thesis are: sequence similarity, number of trans-
membrane helices, loop lengths and helix-helix interactions. The membrane protein fold
definition can be further advanced by also taking into account irregular structures such
as reentrant regions, tilted helices and interface helices (see also section 1.1.2, page 3).

The proposed structural classification method is based on full-length sequences. Tra-
ditional approaches, such as SCOP and CATH, use protein domains as the classification
unit. CAMPS could be turned into a domain-based classification approach, if methods
to predict domain boundaries from sequence would exist. To the best of my knowledge,
no such method is currently available for membrane proteins. One possible solution to
this problem is to use helix-helix interaction graphs. Given that interactions within a
domain are more comprehensive than between domains [331], it may be possible to de-
lineate domain boundaries by searching for highly connected subgraphs in the helix-helix
interaction graph.
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The usability of CAMPS can also be extended by regular updates. However, the
development of a new release is a very time consuming process (that can take several
months depending on the computational resources). Therefore, it would be necessary
to establish an alternative update procedure that, for example, tests whether a new
membrane protein sequence can be assigned to one of the existing SC-clusters or not.
In the latter case, a new SC-cluster could be formed.
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Chapter 7
Appendix

Table 7.1: SCOP folds containing membrane proteins with at least one transmembrane helix

Fold Description Domainsa Super- Families Min Max Domains in
families (TMS)b (TMS)b MP_shared

c.3 FAD/NAD(P)-binding 1 1 1 1 1 0
domain

f.3 Light-harvesting complex 1 1 1 1 1 1
subunits

f.13 Family A G protein- 6 1 2 2 7 6
coupled receptor-like

f.14 Voltage-gated potassium 5 1 1 1 4 2
channel

f.16 Gated mechanosensitive 1 1 1 2 2 0
channel

f.17 Transmembrane helix 6 3 3 1 2 4
hairpin

f.19 Aquaporin-like 4 1 1 6 6 4
f.20 Clc chloride channel 1 1 1 10 10 1
f.21 Heme-binding four helical 9 3 5 3 5 7

bundle
f.22 ABC transporter involved 1 1 1 10 10 0

in vitamin B12 uptake,
BtuC

f.23 Single transmembrane 30 29 29 1 1 18
helix

f.24 Cytochrome c 4 1 1 12 13 4
oxidase subunit I-like

f.25 Cytochrome c 3 1 1 5 7 3
oxidase subunit III-like

(Table continues on next page.)

151



CHAPTER 7. APPENDIX

Table 7.1: —Continued.

Fold Description Domainsa Super- Families Min Max Domains in
families (TMS)b (TMS)b MP_shared

f.26 Bacterial photosystem II 2 1 1 5 5 2
reaction centre, L and M
subunits

f.29 Photosystem I subunits 2 1 1 11 11 2
PsaA/PsaB

f.30 Photosystem I reaction 1 1 1 2 2 1
center subunit X, PsaK

f.31 Photosystem I reaction 1 1 1 3 3 1
center subunit XI, PsaL

f.32 Domain/subunit of 2 1 1 3 3 1
cytochrome bc1 complex
(Ubiquinol-cytochrome c
reductase)

f.33 Calcium ATPase, 1 1 1 10 10 1
transmembrane domain M

f.34 Mechanosensitive channel 1 1 1 3 3 0
protein MscS (YggB),
transmembrane region

f.35 Multidrug efflux 1 1 1 6 6 0
transporter AcrB
transmembrane domain

f.36 Neurotransmitter-gated 4 1 1 4 4 4
ion-channel
transmembrane pore

f.37 ABC transporter 1 1 1 6 6 0
transmembrane region

f.38 MFS general substrate 2 1 2 12 12 0
transporter

f.41 Preprotein translocase 1 1 1 10 10 0
SecY subunit

f.42 Mitochondrial carrier 1 1 1 6 6 0
f.43 Chlorophyll a-b binding 1 1 1 3 3 0

protein
f.44 Ammonium transporter 1 1 1 11 11 0
f.49 Proton glutamate symport 1 1 1 8 8 0

protein
f.51 Rhomboid-like 2 1 1 6 6 0
i.5 Photosystems 3 1 1 1 12 0
i.18 Membrane ion ATPase 1 1 1 10 10 0
j.35 Transmembrane helical 13 1 1 1 2 1

fragments
j.37 Phospholamban fragments 1 1 1 1 1 1
a Number of distinct domains according to SCOP unique identifiers (sunid) for protein domains.
b Minimal and maximal number of transmembrane segments (TMS) according to PDBTM annotation.
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Table 7.2: CATH folds containing membrane proteins with at least one transmembrane helix

Fold Description Domainsa Super- Min Max Domains in
families (TMS)b (TMS)b MP_shared

1.10.8 Helicase, Ruva protein, 1 1 1 1 1
domain 3

1.10.287 Helix hairpin 14 6 2 3 6
1.10.442 Cytochrome c oxidase, chain D 1 1 1 1 1
1.10.3080 Clc chloride channel 2 1 10 10 1
1.20.5 Single alpha-helices involved 26 12 1 1 10

in coiled-coils or other
helix-helix interfaces

1.20.20 F1F0 ATP synthase 3 1 2 2 1
1.20.85 Photosynthetic reaction center, 13 1 2 3 4

subunit m domain 1
1.20.120 Four helix bundle (Hemerythrin 9 3 4 5 8

(Met), subunit a)
1.20.210 Cytochrome c oxidase, chain A 5 1 12 13 4
1.20.810 Cytochrome bc1 complex, 7 1 4 8 2

chain C
1.20.860 Alpha-t-alpha 1 1 2 2 1
1.20.950 Fumarate reductase 2 2 4 5 2

cytochrome b subunit
1.20.1050 Glutathione S-transferase Yfyf 1 1 4 4 0

(Class Pi), chain A, domain 2
1.20.1070 Rhodopsin 7-helix 9 1 7 7 6

transmembrane protein
1.20.1080 Glycerol uptake facilitator 8 1 6 6 4

protein
1.20.1110 Calcium-transporting ATPase, 1 1 9 10 1

transmembrane domain
1.20.1130 Photosystem I p700 chlorophyll 2 1 11 11 2

A apoprotein A1
1.20.1240 Photosystem 1 reaction centre 1 1 3 3 1

subunit XI, chain L
1.20.1300 3 helical TM bundles of 3 1 3 3 3

succinate and fumarate
reductases

1.20.1450 Particulate methane 1 1 7 7 0
monooxygenase, chain B

4.10.49 Cytochrome c oxidase, chain L 1 1 1 1 1
4.10.51 Cytochrome c oxidase, chain K 1 1 1 1 1

(Table continues on next page.)
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Table 7.2: —Continued.

Fold Description Domainsa Super- Min Max Domains in
families (TMS)b (TMS)b MP_shared

4.10.81 Cytochrome c oxidase, chain M 2 1 1 1 2
4.10.91 Cytochrome c oxidase, chain J 1 1 1 1 1
4.10.93 Cytochrome c oxidase, chain I 1 1 1 1 1
4.10.95 Cytochrome c oxidase, chain G 1 1 1 1 1
4.10.220 Light-harvesting protein 3 1 1 1 1
4.10.540 Photosynthetic reaction center, 3 1 1 1 1

chain H, domain 1
a Number of distinct domains according to a representative set of CATH domains at 95% sequence
identity.

b Minimal and maximal number of transmembrane segments (TMS) according to PDBTM annota-
tion.
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Table 7.3: Number of initial clusters for each threshold round and additional information

Threshold Clusters Clusters with TMH cores Sequences in clusters Singletons

1E-5 6,278 1,300 484,104 10,575
1E-6 6,942 1,331 482,589 12,090
1E-7 7,427 1,362 481,612 13,067
1E-8 7,811 1,385 480,893 13,786
1E-9 8,175 1,432 480,220 14,459
1E-10 8,550 1,467 479,557 15,122
1E-11 8,910 1,514 478,940 15,739
1E-12 9,283 1,546 478,373 16,306
1E-13 9,678 1,586 477,737 16,942
1E-14 10,064 1,626 477,077 17,602
1E-15 10,462 1,676 476,428 18,251
1E-16 10,808 1,718 475,791 18,888
1E-17 11,214 1,754 475,185 19,494
1E-18 11,599 1,774 474,490 20,189
1E-19 11,992 1,794 473,849 20,830
1E-20 12,397 1,801 473,146 21,533
1E-22 13,133 1,857 471,811 22,868
1E-24 13,849 1,897 470,309 24,370
1E-25 14,252 1,927 469,575 25,104
1E-26 14,661 1,942 468,769 25,910
1E-28 15,488 1,999 467,225 27,454
1E-30 16,311 2,032 465,621 29,058
1E-35 18,397 2,084 461,265 33,414
1E-40 20,330 2,142 456,547 38,132
1E-45 22,178 2,171 451,384 43,295
1E-50 23,953 2,188 445,799 48,880
1E-55 25,620 2,216 439,842 54,837
1E-60 27,057 2,251 433,695 60,984
1E-70 29,722 2,182 420,169 74,510
1E-80 32,076 2,105 406,051 88,628
1E-90 34,170 2,021 391,874 102,805
1E-100 35,868 1,862 377,101 117,578
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Table 7.4: Distribution of TMHs among proteins, SC-clusters and MCL clusters

Number of TMHs

5 6 7 8 9 10 11 12 13 14 15

Proteinsa

Archaea 615 1,402 654 516 412 404 317 464 97 122 20
Bacteria 13,770 26,622 10,939 9,585 10,449 12,774 10,556 14,852 2,482 1,635 263
Eukaryota 3,231 3,636 5,245 1,829 1,598 2,289 2,250 4,026 562 437 122

SC-clustersb

Archaea 28 52 21 14 10 19 17 16 1 5 1
Bacteria 75 105 41 21 10 35 24 28 4 8 1
Eukaryota 41 50 44 12 8 18 18 22 2 2 2

MCL clustersc

Archaea 18 16 11 2 4 10 1 4 1 4 1
Bacteria 34 30 24 2 4 19 1 7 1 6 1
Eukaryota 31 23 15 2 2 8 1 5 1 2 2
a These values represent the absolute number of proteins with the given number of TMHs.
b These values correspond to the absolute number of SC-clusters containing members with the given number
of TMHs.

c These values correspond to the absolute number of MCL clusters containing members with the given number
of TMHs.
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Table 7.5: Significantly enriched GO terms for protein class level enrichment analysis.

GO term Description Study count Population count Adjusted P-value

5 TMH

GO:0006605 Protein targeting 240 1,128 1.14E-46
GO:0006629 Lipid metabolic process 22 97 4.20E-05
GO:0007049 Cell cycle 137 961 2.08E-13
GO:0007165 Signal transduction 153 708 3.44E-34
GO:0016192 Vesicle-mediated transport 11 13 3.25E-10
GO:0051301 Cell division 140 588 4.43E-36

6 TMH

GO:0006461 Protein complex assembly 132 390 1.59E-04
GO:0006605 Protein targeting 456 1,128 7.86E-28
GO:0006629 Lipid metabolic process 45 97 3.86E-05
GO:0006810 Transport 11,303 47,363 4.07E-03
GO:0007165 Signal transduction 275 708 5.59E-18
GO:0022607 Cellular component assembly 132 390 1.59E-04

7 TMH

GO:0000003 Reproduction 6 11 3.14E-03
GO:0006461 Protein complex assembly 56 390 3.43E-04
GO:0006629 Lipid metabolic process 20 97 2.25E-03
GO:0007165 Signal transduction 200 708 5.23E-58
GO:0008283 Cell proliferation 5 7 2.26E-03
GO:0022607 Cellular component assembly 56 390 3.43E-04
GO:0040011 Locomotion 12 15 7.92E-10

8 TMH

GO:0006461 Protein complex assembly 152 390 8.14E-68
GO:0022607 Cellular component assembly 152 390 8.14E-68
GO:0030154 Cell differentiation 6 15 1.85E-02

9 TMH

GO:0007049 Cell cycle 252 961 7.80E-57
GO:0051301 Cell division 107 588 1.07E-11

10 TMH

GO:0006605 Protein targeting 235 1,128 5.46E-26
GO:0007049 Cell cycle 427 961 1.61E-167
GO:0009790 Embryo development 5 7 7.19E-03
GO:0015979 Photosynthesis 3 3 3.93E-02
GO:0051301 Cell division 244 588 7.71E-87

11 TMH

GO:0005975 Carbohydrate metabolic process 10 16 2.10E-05
GO:0006810 Transport 5,068 47,363 3.93E-41
GO:0055085 Transmembrane transport 2,707 18,420 2.36E-107

(Table continues on next page.)
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Table 7.5: —Continued.

GO term Description Study count Population count Adjusted P-value

12 TMH

GO:0006810 Transport 11,236 47,363 2.09E-185
GO:0006950 Response to stress 34 88 2.06E-02
GO:0055085 Transmembrane transport 8,866 18,420 0

13 TMH

GO:0006810 Transport 1,429 47,363 3.40E-15
GO:0006950 Response to stress 32 88 2.26E-25
GO:0055085 Transmembrane transport 1,221 18,420 2.11E-297

14 TMH

GO:0007165 Signal transduction 53 708 1.54E-26
GO:0034641 Cellular nitrogen compound 4 8 2.25E-05

metabolic process
GO:0044281 Small molecule metabolic process 2 5 2.72E-2
GO:0055085 Transmembrane transport 391 18,420 6.43E-75

15 TMH

GO:0055085 Transmembrane transport 40 18,420 1.57E-03
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Table 7.6: Significantly enriched GO terms for cluster level enrichment analysis.

Cluster GO term Description Study Population Adjusted
count count P-value

5 TMH

mcl1_5tmh GO:0006629* Lipid metabolic process 1 64 1.26E-02

mcl2_5tmh GO:0016192* Vesicle-mediated transport 1 10 4.50E-03
GO:0030154 Cell differentiation 3 7 5.43E-09

mcl3_5tmh GO:0007165* Signal transduction 2 518 1.68E-02

mcl4_5tmh GO:0016192* Vesicle-mediated transport 6 10 2.99E-21

mcl5_5tmh
GO:0007049* Cell cycle 132 562 5.48E-220
GO:0007165* Signal transduction 9 518 5.60E-03
GO:0051301* Cell division 132 401 1.23E-242

mcl6_5tmh GO:0006457 Protein folding 1 5 1.05E-02

mcl7_5tmh GO:0051301* Cell division 3 401 4.50E-05

mcl8_5tmh GO:0007165* Signal transduction 13 518 9.72E-20

mcl9_5tmh GO:0007067 Mitosis 1 1 2.60E-03
GO:0007155 Cell adhesion 2 5 7.77E-06

mcl10_5tmh GO:0040011 Locomotion 1 14 4.96E-02

mcl11_5tmh
GO:0006950 Response to stress 2 59 2.88E-04
GO:0007568 Aging 2 4 1.01E-06
GO:0008283 Cell proliferation 1 3 5.10E-03

mcl12_5tmh GO:0007165* Signal transduction 21 518 2.70E-29
GO:0016192* Vesicle-mediated transport 3 10 1.83E-09

mcl13_5tmh GO:0006629* Lipid metabolic process 10 64 6.48E-27
GO:0008219 Cell death 1 3 7.90E-03

6 TMH

mcl1_6tmh GO:0040007 Growth 1 12 7.90E-03
GO:0040011 Locomotion 1 14 9.20E-03

mcl2_6tmh
GO:0006810* Transport 1,205 28,687 1.97E-04
GO:0007165* Signal transduction 37 518 1.52E-02
GO:0055085 Transmembrane transport 1,205 12,033 0

mcl3_6tmh GO:0006810* Transport 1,360 28,687 1.24E-35

mcl4_6tmh GO:0006457 Protein folding 1 5 9.90E-03

mcl5_6tmh GO:0006629* Lipid metabolic process 40 64 4.90E-114

mcl6_6tmh GO:0007165* Signal transduction 95 518 5.25E-172

mcl7_6tmh GO:0006412 Translation 3 5 1.32E-02
GO:0006810* Transport 1,540 28,687 3.93E-40

mcl8_6tmh GO:0006810* Transport 1,260 28,687 5.87E-33

(Table continues on next page.)
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Table 7.6: —Continued.

Cluster GO term Description Study Population Adjusted
count count P-value

6 TMH

mcl9_6tmh GO:0006605* Protein targeting 301 691 0
GO:0006810* Transport 308 28,687 1.33E-07

mcl10_6tmh GO:0006461* Protein complex assembly 130 286 1.78E-41
GO:0022607* Cellular component assembly 130 286 1.87E-41

mcl11_6tmh GO:0006605* Protein targeting 16 691 2.87E-24

mcl12_6tmh GO:0007165* Signal transduction 25 518 6.71E-45

mcl13_6tmh GO:0006810* Transport 1,631 28,687 6.21E-43

mcl14_6tmh GO:0007165* Signal transduction 16 518 2.37E-28

mcl15_6tmh GO:0055085 Transmembrane transport 13 12,033 9.50E-03

7 TMH

mcl1_7tmh GO:0006810 Transport 114 28,687 6.00E-03

mcl2_7tmh GO:0007165* Signal transduction 2 518 1.40E-03

mcl3_7tmh GO:0007165* Signal transduction 5 518 2.81E-09

mcl4_7tmh GO:0055085 Transmembrane transport 278 12,033 2.15E-105
GO:0006810 Transport 278 28,687 1.35E-05

mcl5_7tmh GO:0007165* Signal transduction 2 518 1.40E-03

mcl6_7tmh

GO:0000003* Reproduction 6 8 5.92E-10
GO:0006629* Lipid metabolic process 8 64 5.01E-06
GO:0007165* Signal transduction 174 518 5.12E-241
GO:0040007 Growth 5 12 1.77E-06
GO:0040011* Locomotion 12 14 1.04E-21

mcl7_7tmh GO:0055085 Transmembrane transport 8 12,033 9.60E-03

8 TMH

mcl1_8tmh GO:0006461* Protein complex assembly 152 286 1.63E-110
GO:0022607* Cellular component assembly 152 286 1.63E-110

mcl2_8tmh GO:0040007 Growth 1 12 2.13E-02

9 TMH

mcl1_9tmh GO:0006810 Transport 1,265 28,687 3.86E-17

10 TMH

mcl1_10tmh GO:0007049* Cell cycle 423 562 0
GO:0051301* Cell division 239 401 0

mcl2_10tmh GO:0006810 Transport 248 28,687 4.70E-06
GO:0055085 Transmembrane transport 248 12,033 6.61E-94

(Table continues on next page.)
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Table 7.6: —Continued.

Cluster GO term Description Study Population Adjusted
count count P-value

10 TMH

mcl3_10tmh
GO:0006457 Protein folding 2 5 5.44E-06
GO:0007049* Cell cycle 4 562 4.63E-05
GO:0051301* Cell division 4 401 1.21E-05

mcl4_10tmh
GO:0006605* Protein targeting 235 691 2.93E-84
GO:0006810 Transport 2,120 28,687 1.74E-16
GO:0009790* Embryo development 5 6 1.85E-04

mcl5_10tmh GO:0040007 Growth 1 12 2.00E-03

11 TMH

mcl1_11tmh GO:0006810* Transport 1,102 28,687 1.27E-05
GO:0055086* Transmembrane transport 566 12,033 2.49E-09

12 TMH

mcl1_12tmh GO:0055085* Transmembrane transport 44 12,033 1.43E-16

mcl2_12tmh GO:0006810* Transport 1,524 28,687 8.69E-40

mcl3_12tmh GO:0006810* Transport 8,168 28,687 8.73E-228
GO:0055085* Transmembrane transport 8,141 12,033 0

mcl4_12tmh GO:0006810* Transport 346 28,687 7.54E-09

13 TMH

mcl1_13tmh
GO:0006810* Transport 570 28,687 2.29E-14
GO:0006950* Response to stress 28 59 8.59E-32
GO:0055085* Transmembrane transport 570 12,033 3.43E-218

14 TMH

mcl1_14tmh GO:0055085* Transmembrane transport 67 12,033 3.77E-25

mcl2_14tmh GO:0007165* Signal transduction 53 518 5.87E-95
a Asterisks indicate GO terms that were already found to be enriched by the protein class level
enrichment analysis (see Table 7.5).
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