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Abstract—We consider the maximization of the energy effi-
ciency (or, equivalently, the minimization of the energy per bit)
in a set of parallel multiple-input single-output (MISO) broadcast
channels (e.g., in the downlink of a multiuser multicarrier
system). For a given allocation of users to subchannels, the
problem is strictly-quasiconvex and can be efficiently solved by
introducing a continuous, differentiable, and concave waterfilling-
rate function. To optimize the user allocation, we adopt successive
allocation schemes that have been formerly applied to the
problem of sum rate maximization. In numerical simulations,
we compare different allocation schemes, and we demonstrate
that a fixed sum transmit power can lead to a significant loss in
energy efficiency if the fixed value is either too high or too low.

I. INTRODUCTION

Energy efficiency has become an important design criterion
for wireless communication systems (e.g., [1] and [2]). While
early research in this area had mainly focused on wireless sen-
sor networks (e.g., [3] and the references therein), the interest
in the optimization of the energy efficiency of cellular wireless
systems has recently been growing. Potential to increase the
energy efficiency has been identified on all abstraction layers
of communication systems (e.g., [1]).

On the circuit level, studies on the energy efficiency were
performed, e.g., in [4] and [5]. However, in our work, we want
to focus rather on the particularities of multiuser systems with
beamforming instead of on physical aspects. Thus, we model
all power consumed by the circuit electronics in addition to
the transmit power as an affine function of the sum rate as was
done in [6] and [7]. The case of constant circuit power (e.g.,
[1] and [8]–[12]) is a special case of this model. Moreover,
we assume that the total bandwidth available for transmission
is fixed. Consequently, we do not face the problem discussed
in [5] that the energy efficiency can be made arbitrarily large
by taking the bandwidth to infinity if the model used for the
circuit level power consumption is not accurate enough.

For single-user systems, the energy efficiency in the mul-
ticarrier case was studied in [6] and [12]–[14]. Part of the
optimization that will be performed in our work, namely the
minimization of the energy per bit for a given allocation of
streams to users (cf. Section IV), is equivalent to such a
single-user optimization. However, instead of adopting one of
the various solution methods presented in the abovementioned
works, we will propose a new approach whose appeal is that it
has a nice intuitive interpretation. More precisely, the problem
will be decomposed in finding the maximum sum rate for a

given sum transmit power and in optimizing the sum transmit
power as an outer problem.

In [15], the energy efficiency of a single-user multiple-input
multiple-output (MIMO) system was optimized by performing
a singular value decomposition (SVD) in order to diagonalize
the channel and by applying the method from [14] to the
resulting equivalent channel.

Optimization of the energy efficiency was also consid-
ered in multiuser communication systems. The authors of
[9] applied methods from non-cooperative game theory to
study a multicarrier interference channel. However, as this
scenario is qualitatively different from the broadcast channel
under consideration (cf. Section II), the approach will not be
discussed further here.

For a single-carrier vector broadcast channel, the energy
efficiency under the application of random beamforming was
studied in [10]. The setup considered in our work is more
general in that we consider multiple orthogonal carriers. A
MIMO broadcast channel which was also limited to a single
carrier was considered in [11], where a heuristic selection
criterion was derived based on uniform power allocation.

Research on multiuser multicarrier uplink or downlink
systems was performed in [7], [8], [16] and [17] under the
assumption of orthogonal frequency division multiple access
(OFDMA), i.e., with exclusive assignment of subcarriers to
users. In our work, however, we will allow that multiple users
are allocated to each carrier as long as the number of users
per carrier does not exceed the number of antennas at the
base station. Therefore, it is necessary to perform a selection
procedure to decide which users shall be served on the various
carriers (cf. Section V). To this end, we will apply the greedy
user allocation scheme from [18] and the semiorthogonal user
selection from [19]. After this process, the streams of the
selected users are separated from each other by means of zero-
forcing beamforming (cf. Section III), and, finally, a power
allocation is performed in a way that minimizes the energy
per bit (cf. Section IV).

Notation: In this work, we use boldface lowercase letters
for vectors, boldface uppercase letters for matrices, and ∙H
for the conjugate transpose of a vector or matrix.

II. SYSTEM MODEL AND PROBLEM FORMULATION

We consider a set of 𝑁 orthogonal parallel broadcast chan-
nels (e.g., 𝑁 carriers in a multicarrier downlink system) with
an 𝑀 -antenna base station and 𝐾 single-antenna receivers,
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where the data transmission is described by

𝑦
(𝑛)
𝑘 = 𝒉

(𝑛),H
𝑘

𝐾∑
𝑘′=1

𝒖
(𝑛)
𝑘′

√
𝑝
(𝑛)
𝑘′ 𝑠

(𝑛)
𝑘′ + 𝑤

(𝑛)
𝑘 .

The channels 𝒉
(𝑛),H
𝑘 ∈ ℂ

1×𝑀 of all users 𝑘 on all sub-
channels 𝑛 are assumed to be frequency flat and perfectly
known, and the additive noise is assumed to be circularly
symmetric complex Gaussian, i.e., 𝑤(𝑛)

𝑘 ∼ 𝒞𝒩 (0, 𝜎
(𝑛),2
𝑘 ).

The beamforming vectors 𝒖
(𝑛)
𝑘′ ∈ ℂ

𝑀 have unit norm, and
the transmit symbols 𝑠(𝑛)𝑘′ are circularly symmetric complex
Gaussian with unit variance, i.e., 𝑠(𝑛)𝑘 ∼ 𝒞𝒩 (0, 1). Thus,
𝑝
(𝑛)
𝑘′ ≥ 0 are the transmit powers. We will restrict ourselves to

linear zero-forcing beamforming which is performed on each
carrier separately. Note that due to the user selection performed
in Section V, the total number of users 𝐾 can be arbitrary.

The aim of this work is to minimize the energy per bit

𝐸b =
𝜂−1𝑃 + 𝑃𝑐

𝑅
(1)

or, equivalently, to maximize the energy efficiency 1
𝐸b

. Here,
𝜂 is the efficiency of the power amplifier,

𝑃 =

𝐾∑
𝑘=1

𝑁∑
𝑛=1

𝑝
(𝑛)
𝑘 (2)

is the sum transmit power, and 𝑃𝑐 is the power consumed by
the circuit electronics apart from the power amplifier, which
is assumed to be an affine function 𝑃𝑐 = 𝛼+ 𝛽𝑅 of the sum
rate

𝑅 =

𝐾∑
𝑘=1

𝑁∑
𝑛=1

𝑟
(𝑛)
𝑘 . (3)

Modeling 𝑃𝑐 as affine function of the rate is motivated by
the fact that part of the circuit power is proportional to the
clock frequency, which could be dynamically scaled with the
sum rate [6]. On the other hand, this model includes the very
common assumption of a constant circuit power (e.g., [1] and
[8]–[12]) as the special case 𝛽 = 0.

With 𝑐 = 𝛼𝜂, the optimization problem can be written as

min
(𝒖

(𝑛)
𝑘 , 𝑝

(𝑛)
𝑘 ≥0)∀𝑛,∀𝑘

𝑃 + 𝑐

𝑅
(4)

s.t. 𝒖
(𝑛),H
𝑘 𝒖

(𝑛)
𝑗 = 𝛿𝑘𝑗 ∀𝑛, 𝑘, 𝑗 (5)

where 𝛿𝑘𝑗 is the Kronecker delta, which is 1 whenever 𝑖 = 𝑗
and 0 otherwise. In (4), we have dropped the multiplicative
constant 𝜂−1 and the additive constant 𝛽 from the objective
function.

As the only matter of interest in (4) is the sum of power and
rate over all users and carriers, there is no coupling between
the different streams of a user, and we can consider the system
as a broadcast channel with 𝐾𝑁 virtual users denoted by (𝑛)

𝑘 .

III. ZERO-FORCING BEAMFORMING

To be able to fulfill the zero-forcing constraints (5), the
number of users 𝑆(𝑛) scheduled on a carrier 𝑛 has to be smaller
than or equal to the number of transmit antennas (𝑆(𝑛) ≤
𝑀 ). Thus, part of the optimization is a scheduling problem,
where we have to decide for a set 𝒮 which contains all virtual
users (𝑛)

𝑘 that are meant to receive data. After the scheduling
decision, the beamformers 𝒖(𝑛)

𝑘 have to be chosen as the scaled
columns of the Moore-Penrose pseudo-inverse 𝑯(𝑛),+ of the
joint channel matrix

𝑯(𝑛) = [𝒉
(𝑛)

𝑘(𝑛)(1)
, . . . ,𝒉

(𝑛)

𝑘(𝑛)(𝑆(𝑛))
]H ∈ ℂ

𝑆(𝑛)×𝑀 (6)

of the users scheduled on carrier 𝑛, where 𝑘(𝑛)(ℓ) is the user
corresponding to the ℓ-th stream on subcarrier 𝑛. This leads to
𝑆tot =

∑𝑁
𝑛=1 𝑆

(𝑛) orthogonal scalar subchannels with channel
gains

𝑔
(𝑛)

𝑘(𝑛)(ℓ)
= 𝜎

(𝑛),−2

𝑘(𝑛)(ℓ)

[(
𝑯(𝑛)𝑯(𝑛),H

)−1
]−1

ℓ,ℓ

(7)

where [𝑨]ℓ,ℓ is the ℓ-th diagonal element of 𝑨 [20].
For the objective function of the energy efficiency opti-

mization (4), it is not important to which user the streams
contributing to the sum rate and sum power belong. We
therefore reindex all scheduled data streams with a stream
index 𝑠 such that the channel gains 𝑔𝑠 are in decreasing order,
i.e., 𝑔1 ≥ 𝑔2 ≥ ⋅ ⋅ ⋅ ≥ 𝑔𝑆tot . Using the new stream index 𝑠, we
get the optimization

min
𝒮

min
(𝑝𝑠≥0)∀𝑠

𝑐+
∑𝑆tot

𝑠=1 𝑝𝑠∑𝑆tot

𝑠=1 𝑟𝑠
(8)

where

𝑟𝑠 =𝑊 log2(1 + 𝑝𝑠𝑔𝑠) (9)

and 𝑔𝑠 is a function of 𝒮 . Here, 𝑊 is the bandwidth available
for each carrier, i.e., the fixed total bandwidth divided by the
number of carriers 𝑁 .1 The two parts of this optimization
problem will be treated in the following sections.

IV. MINIMUM ENERGY PER BIT FOR FIXED SCHEDULING

The inner optimization is equivalent to the optimization in
the single-user case considered in [6], [12] and [14]. Therein,
the problem was classified as a convex-concave fractional
program in 𝑆tot variables, and was converted to a parametric
convex program by means of the so-called Dinkelbach method.
An equivalent problem was also treated in [13], where a
gradient algorithm was applied to a rate space formulation
(per-stream rates as optimization variables).

We propose an alternative method to efficiently solve the
inner problem, which has a nicer intuitive interpretation: by

1Note that in a practical system, the noise powers are 𝜎
(𝑛),2
𝑘 = 𝑊𝑁

(𝑛)
0,𝑘 ,

where 𝑁
(𝑛)
0,𝑘 is the noise power spectral density of user 𝑘 on carrier 𝑛. Thus,

the gains 𝑔𝑠 are proportional to 1
𝑊

.
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making use of the well-known waterfilling solution [21] of the
sum rate maximization problem

𝑅opt(𝑃 ) =

(
max

(𝑝𝑠≥0)∀𝑠

𝑆tot∑
𝑠=1

𝑟𝑠 s.t.

𝑆tot∑
𝑠=1

𝑝𝑠 ≤ 𝑃
)

(10)

the inner problem can be reduced to the scalar problem

min
𝑃≥0

𝑃 + 𝑐

𝑅opt(𝑃 )
(11)

where the only optimization variable is the sum transmit
power.

The optimal solution to the maximization in (10) is given
by [21] as

𝑝𝑠 = max
{
0, 𝜇− 𝑔−1

𝑠

}
(12)

where the water level 𝜇 has to be chosen according to

𝜇 =
𝑃 +

∑𝑚
𝑠=1 𝑔

−1
𝑠

𝑚
(13)

with 𝑚 being the number of active streams with non-zero
power 𝑝𝑠 > 0. Note that the streams are ordered according to
decreasing channel gains (cf. Section III).

The number of active streams 𝑚 increases with increasing
transmit power, and the 𝑚th stream becomes active for 𝜇 =
𝑔−1
𝑚 , i.e., for

𝑃 = 𝑃𝑚 = 𝑚𝑔−1
𝑚 −

𝑚∑
𝑠=1

𝑔−1
𝑠 . (14)

Inserting (12) and (13) into (9), we get

𝑅opt(𝑃 ) =

𝑚∑
𝑠=1

𝑊 log2

(
𝑃 +

∑𝑚
𝑡=1 𝑔

−1
𝑡

𝑚𝑔−1
𝑠

)

if 𝑃𝑚 ≤ 𝑃 < 𝑃𝑚+1. (15)

This means, instead of defining 𝑅opt(𝑃 ) by means of a maxi-
mization as was done in (10), we can write the waterfilling-rate
function 𝑅opt(𝑃 ) explicitly as a piece-wise defined function
of 𝑃 . In the following, we will show that this function is
continuous, continuously differentiable, strictly increasing, and
concave, and we will explicitly calculate its derivative.

Proposition 1. 𝑅opt(𝑃 ) is continuous.

Proof: Within any interval ]𝑃𝑚, 𝑃𝑚+1[, continuity is
obvious. Near 𝑃 = 𝑃𝑚, we have

lim
𝜖→0

𝑅opt(𝑃𝑚 − 𝜖)

= lim
𝜖→0

𝑚∑
𝑠=1

𝑊 log2

(
𝑚𝑔−1

𝑚 −
∑𝑚

𝑡=1 𝑔
−1
𝑡 − 𝜖+

∑𝑚−1
𝑡=1 𝑔

−1
𝑡

(𝑚− 1)𝑔−1
𝑠

)

=
𝑚∑
𝑠=1

𝑊 log2

(
𝑔𝑠
𝑔𝑚

)
(16)

and

lim
𝜖→0

𝑅opt(𝑃𝑚 + 𝜖)

= lim
𝜖→0

𝑚∑
𝑠=1

𝑊 log2

(
𝑚𝑔−1

𝑚 −
∑𝑚

𝑡=1 𝑔
−1
𝑡 + 𝜖+

∑𝑚
𝑡=1 𝑔

−1
𝑡

𝑚𝑔−1
𝑠

)

=

𝑚∑
𝑠=1

𝑊 log2

(
𝑔𝑠
𝑔𝑚

)
(17)

which completes the proof.

Proposition 2. 𝑅opt(𝑃 ) is continuously differentiable.

Proof: Within any interval ]𝑃𝑚, 𝑃𝑚+1[, we have

∂𝑅opt

∂𝑃
=

𝑊𝑚

(ln 2)
(
𝑃 +

∑𝑚
𝑠=1 𝑔

−1
𝑠

) . (18)

Near 𝑃 = 𝑃𝑚, we have

lim
𝜖→0

∂𝑅opt

∂𝑃
(𝑃𝑚 − 𝜖)

= lim
𝜖→0

𝑊 (𝑚− 1)

(ln 2)
(
𝑚𝑔−1

𝑚 −∑𝑚
𝑠=1 𝑔

−1
𝑠 − 𝜖+∑𝑚−1

𝑠=1 𝑔
−1
𝑠

)
=
𝑊𝑔𝑚
ln 2

(19)

and

lim
𝜖→0

∂𝑅opt

∂𝑃
(𝑃𝑚 + 𝜖)

= lim
𝜖→0

𝑊𝑚

(ln 2)
(
𝑚𝑔−1

𝑚 −∑𝑚
𝑠=1 𝑔

−1
𝑠 + 𝜖+

∑𝑚
𝑠=1 𝑔

−1
𝑠

)
=
𝑊𝑔𝑚
ln 2

(20)

which completes the proof.

Proposition 3. 𝑅opt(𝑃 ) is strictly increasing and strictly
concave.

Proof: As can be easily verified from (15) and (18),
respectively, 𝑅opt(𝑃 ) is strictly increasing in all intervals, and
its first derivative is strictly decreasing in all intervals.

Note that unlike the first derivative, the second derivative
jumps at the interval boundaries. Apart from this property,
the optimal rate function 𝑅opt(𝑃 ) has the same qualitative
behavior as the rate 𝑟𝑠 of a single stream [cf. (9)] when
considered as a function of 𝑝𝑠. Therefore, disregarding the
fact that we use the slightly modified rate function 𝑅opt(𝑃 ),
the optimization (11) is equivalent to the energy efficiency
optimization in the single-stream case, which was discussed,
e.g., in [1].

To illustrate this, we have included Fig. 1, which shows
a small example with 𝑊 = 1

4 , 𝑔1 = 4, 𝑔2 = 2, 𝑔3 = 4
3 ,

𝑔4 = 1, and 𝑐 = 0.2. In the plot, it can be seen that the
function 𝑅opt(𝑃 ) is increasing and concave and has indeed
the logarithmic shape of a conventional rate function. At
𝑃 ∈ { 14 , 34 , 32}, new streams are activated, i.e., 𝑚 increases,
which is in compliance with (14). The discontinuity of the
second derivative at these points can be observed in the plot as
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Fig. 1. The optimal rate function 𝑅opt(𝑃 ) with its first and second derivative,
the objective function of (11) with its optimum (circle), and the number of
active streams 𝑚.

well as the continuity and monotonicity of the first derivative.
The objective function (𝑃 + 𝑐)/𝑅opt(𝑃 ) of the energy-per-bit
minimization (11) has the same shape as the single-stream
version in [1]. The aim is now to find the minimum of this
function, which is marked in the plot with a blank circle.

As the numerator of the cost function in (11) is affine
in 𝑃 and the denominator is concave in 𝑃 , the problem
is a convex-concave fractional program. The same was true
for the formulation chosen in [6], [12] and [14]. However,
therein, the considered convex-concave fractional program was
an optimization in many variables while (11) has only one
optimization variable, i.e., it is a scalar problem.

According to [22], the cost function of a convex-concave
fractional program is strictly quasiconvex, which implies that
any local optimum is a global one. Moreover, as is shown in
Appendix A, there is a unique point with vanishing derivative.
Therefore, to find the global optimum, we have to find the root
of the derivative

∂𝑓

∂𝑃
=
𝑅opt(𝑃 )− (𝑃 + 𝑐)

∂𝑅opt(𝑃 )
∂𝑃

𝑅2
opt(𝑃 )

(21)

of 𝑓(𝑃 ) = (𝑃 + 𝑐)/𝑅opt(𝑃 ). Due to the fact that the only
stationary point of 𝑓(𝑃 ) is a minimum, a sign change of ∂𝑓

∂𝑃

must occur at this root of ∂𝑓
∂𝑃 , which means that we can find

it by applying the bisection method.

V. USER SELECTION

In the last section, we have derived a method to optimize
the energy per bit for a given user selection 𝒮 . The aim is now
to find a good choice for 𝒮 that leads to a low energy per bit.

The globally optimal solution 𝒮opt of the combinatorial
user allocation problem could be obtained by an exhaustive
search, which is not feasible for large systems due to the
exponential complexity of evaluating the energy per bit for

the
(∑min{𝑀,𝐾}

𝑚=1

(
𝐾
𝑚

))𝑁
possible allocations.

Therefore, we propose to perform a successive user alloca-
tion by means of the the greedy user selection (GUS) scheme
from [18] or the semiorthogonal user selection (SUS) from
[19]. These methods were originally proposed for the problem
of sum rate maximization, but can also be applied for the
energy efficiency optimization.

A. Greedy User Selection (GUS)

The greedy user allocation from [18] successively allocates
streams to users by a series of locally optimal decisions,
leading to a globally suboptimal solution in general.

In step 𝑖, for each carrier 𝑛 that still has available spatial
degrees of freedom (i.e., the number of users 𝑆(𝑛) scheduled
on carrier 𝑛 is smaller than the number of transmit antennas
𝑀 ) and for each user 𝑘 that is not yet scheduled on 𝑛,2 the
user allocation 𝒮((𝑛)𝑘 ) = 𝒮(𝑖−1) ∪{(𝑛)𝑘 } resulting from adding
the virtual user (𝑛)

𝑘 to the current allocation 𝒮(𝑖−1) is created.
Here, the left superscript is the step index. For each 𝒮((𝑛)𝑘 ),
the resulting energy per bit 𝐸b(

(𝑛)
𝑘 ) is computed by solving

the inner problem as described in Section IV, and we set 𝒮𝑖
to the best allocation, i.e.,

𝒮𝑖 ← 𝒮(argmin
(
(𝑛)
𝑘 )

𝐸b(
(𝑛)
𝑘 )). (22)

The algorithm terminates when the energy per bit increases
from one step to the next or when 𝑀 streams have been
allocated on each carrier.

Note that for the energy efficiency optimization—just like
for the sum rate maximization in [18]—there is no need for a
special initialization phase. Such a phase was, e.g., necessary
for the quality-of-service-constrained optimizations considered
in [23] and [24]. In case of a problem with quality of service
constraints (e.g., minimum rate constraints), the inner problem
is not feasible unless each user has obtained at least one data
stream. Therefore, it cannot be used as a decision criterion
in the first steps of the greedy algorithm. As there are no
such constraints in the energy efficiency optimization (4),
the algorithm could be started with an empty set 𝒮0 = ∅.
However, to reduce the computational complexity, we propose
the following initialization.

Since the energy per bit is small if the channel gains of the
allocated streams are high, it is clear that the first user to be
allocated on a carrier is the one with maximal channel norm
∥𝒉(𝑛)

𝑘 ∥2. Therefore we can start with an initial allocation

𝒮0 =

{
(𝑛)
𝑘

∣∣∣∣𝑛 ∈ {1, . . . , 𝑁} ∧ 𝑘 = argmax
𝑘′

∥∥∥𝒉(𝑛)
𝑘′

∥∥∥
2

}
(23)

i.e., 𝑁 streams are already allocated before the actual greedy
algorithm starts.

By doing so, the number of inner optimizations is at most
(𝐾𝑁−𝑁)+(𝐾𝑁−𝑁−1)+⋅ ⋅ ⋅+(𝐾𝑁−𝑀𝑁+1) < 𝐾𝑀𝑁2.
Therefore, the algorithm can be executed in reasonable time
even for large numbers of users 𝐾. However, the number of
evaluations of the inner problem grows quadratically in the
number of carriers 𝑁 .

2The last condition is specific to single-antenna receivers.
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To avoid this, we also propose an alternative algorithm
where the greedy allocation is performed separately on each
carrier as follows. For each carrier 𝑛, the greedy algorithm
is applied in order to find a set 𝒮(𝑛) of virtual users (𝑛)

𝑘

scheduled on carrier 𝑛 that leads to a low energy per bit
on carrier 𝑛. Note that this reduces the number of possi-
ble choices in each step of the greedy scheme as well as
the problem dimension of the inner problem. Moreover, the
greedy algorithm can be executed on the various carriers in
a parallelized manner. Afterwards, we set 𝒮 =

∪𝑁
𝑛=1 𝒮(𝑛),

and we perform the inner optimization from Section IV
in order to find the optimal power allocation for the re-
sulting 𝒮 . In total, the inner optimization is performed up
to 𝑁 ((𝐾 − 1) + (𝐾 − 2) + ⋅ ⋅ ⋅+ (𝐾 −𝑀 + 1)) < 𝐾𝑀𝑁
times for a single carrier (i.e., with reduced problem dimen-
sion) and only once for the overall system. This reduces
the complexity of the method significantly in case of a high
number of carriers. In the numerical simulations in Section VI,
it will turn out that the per-carrier version performs close to
the original greedy scheme.

B. Semiorthogonal User Selection (SUS)

While the greedy user allocation scheme from [18] makes
decisions based on evaluations of the objective function, the
decisions of the semiorthogonal user selection (SUS) from [19]
only rely on the channel conditions.

The method is based on the observation that the achieved
energy per bit is small whenever the joint channel matrix 𝑯(𝑛)

defined in (6) is well conditioned, which is the case if the
channels of the selected users are nearly orthogonal. As the
method is based only on the channel conditions, it can be
performed separately on each carrier. As before, this could
again be done in a parallelized manner.

In the 𝑖th step, the channels of all candidate users (𝑛)
𝑘 on

carrier 𝑛 are projected onto the orthogonal complement of
span[ 𝑯(𝑖−1) (𝑛)], where 𝑯(𝑖−1) (𝑛) is the joint channel matrix
of the virtual users (𝑛)

𝑘 ∈ 𝒮(𝑖−1) (𝑛) selected in step 𝑖 − 1 on
carrier 𝑛. Then, the user whose projected channel vector has
the biggest norm is chosen to be included in the new set of
scheduled users 𝒮𝑖 (𝑛).

The complexity is significantly lower than the complexity
of the greedy scheme since for each candidate, only the
norm of a projected vector has to be computed while the
greedy scheme performs the whole inner optimization for each
candidate. Moreover, the complexity is further reduced by only
considering users whose channel vectors are semiorthogonal to
span[ 𝑯(𝑖−1) (𝑛)], i.e., whose component in span[ 𝑯(𝑖−1) (𝑛)] is
smaller than a parameter 𝛼. If this criterion is not fulfilled for a
user in a step, the user is permanently removed from the set of
candidate users. This not only reduces the complexity, but also
ensures that the resulting joint channel matrix 𝑯(𝑛) after the
execution of the algorithm is well conditioned. The algorithm
for carrier 𝑛 terminates when 𝑀 users have been allocated on
that carrier or when there are no further candidates.

Finally, the overall user allocation is obtained from 𝒮 =∪𝑁
𝑛=1 𝒮(𝑛), and the overall energy efficiency is optimized for
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Fig. 2. Energy per bit achieved in a system with 𝑀 = 2 transmit antennas,
𝐾 = 10 users, 𝑁 = 2 subchannels, circuit power 𝑃𝑐 = 𝛼, and amplifier
efficiency 𝜂 = 0.5 (averaged over 1000 channel realizations).

this user allocation by performing the inner optimization once.
As the SUS method makes its decisions only based on the

channel properties and not on the actual objective function,
we expect it to perform worse than the greedy algorithm. This
can indeed be observed in the numerical results in Section VI.
However, the increase in energy per bit comes with a reduced
computation time.

VI. NUMERICAL RESULTS AND DISCUSSION

For the numerical simulations that will be presented in this
section, we have used 1000 realizations of i.i.d. circularly
symmetric complex Gaussian channel coefficients with zero
mean and unit variance. We have set the per-carrier bandwidth
to 𝑊 = 1

𝑁 and the noise power to 𝜎(𝑛),
2

𝑘 = 𝑊 = 1
𝑁 for all

users and all carriers.
The system considered for the simulations presented in

Fig. 2 is a small example with 𝑁 = 2 carriers,𝑀 = 2 transmit
antennas, 𝐾 = 10 users, and a constant circuit power 𝑃𝑐 = 𝛼,
i.e., 𝛽 = 0. For the efficiency of the power amplifier, we have
chosen 𝜂 = 1

2 , but other values of 𝜂 can be read from the
same plot by scaling both the 𝛼 and the 𝐸b axis since

𝜂𝐸b =
𝑃 + 𝜂𝛼

𝑅
(24)

if 𝛽 = 0 (cf. Section II).
In the figure, we plot the energy per bit resulting from the

application of the proposed GUS-based and SUS-based energy
efficiency optimization as well as from the application of the
respective sum rate maximization for a fixed transmit power
𝑃 . As can be seen, the greedy user selection outperforms the
semiorthogonal user selection in all cases, and the difference is
most pronounced for large values of the circuit power 𝑃𝑐 = 𝛼
and the sum transmit power 𝑃 . On the other hand, as discussed
in Section V, the semiorthogonal user selection has a lower
computational complexity.
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Fig. 3. Resulting sum transmit power in a system with 𝑀 = 2 transmit
antennas, 𝐾 = 10 users, 𝑁 = 2 subchannels, circuit power 𝑃𝑐 = 𝛼, and
amplifier efficiency 𝜂 = 0.5 (averaged over 1000 channel realizations).

If the sum rate is maximized for fixed sum transmit power
𝑃 , the strategy resulting from the optimization does not depend
on the actual value of the circuit power, but the obtained
energy per bit does. In this case, the achieved energy per bit
is an affine function of the circuit power, as can be seen from
(1) and from Fig. 2. Due to the suboptimality of a fixed sum
transmit power, the affine curve always lies above the curve of
the corresponding energy efficiency optimization and touches
it at a certain point as can be seen for the case 𝑃 = 1 in
Fig. 2. At this point the circuit power is such that the fixed
sum transmit power is by chance the optimal choice. This can
also be observed in conjunction with Fig. 3, where we have
plotted the sum transmit power 𝑃 for the same scenario. The
value of 𝛼 where the curve of the optimized sum transmit
power intersects the horizontal line of the fixed sum transmit
power 𝑃 = 1 corresponds to the point of tangency in Fig. 2.

However, for other values of 𝛼, the energy per bit resulting
from the sum rate maximization with fixed transmit power
is much higher than the value obtained when performing the
energy efficiency optimization as can be clearly seen in the
plots. In particular, for very low transmit power 𝑃 , we get a
very low sum rate 𝑅(𝑃 ) leading to a high energy per bit due to
the term 𝑃𝑐

𝑅(𝑃 )

𝑃→0→ ∞ in the definition of 𝐸𝑏 [cf. (1)]. On the
other hand, for very high transmit power 𝑃 , the sum rate 𝑅(𝑃 )
grows much slower than 𝑃 due to its logarithmic dependence
on 𝑃 . In this case, we get again a high energy per bit since
we are penalized by the term 𝑃

𝑅(𝑃 )

𝑃→∞→ ∞. The optimal
sum transmit power 𝑃 lies in between and can be found as
proposed in Section IV. Performing such an optimization can
significantly improve the energy efficiency of the considered
communication system.

In Fig. 3, we can also see that the utilized sum transmit
power is increasing in 𝛼, which is the constant part of the
circuit power. To understand this behavior, it helps to look at
Fig. 4, where the resulting sum rate is plotted. If the circuit
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Fig. 4. Resulting sum rate in a system with 𝑀 = 2 transmit antennas,
𝐾 = 10 users, 𝑁 = 2 subchannels, circuit power 𝑃𝑐 = 𝛼, and amplifier
efficiency 𝜂 = 0.5 (averaged over 1000 channel realizations).

power is high, there is a strong penalty for slow transmission.
Therefore, the sum rate has to grow with 𝛼. However, to
achieve a higher sum rate, an increased sum transmit power
is needed (cf. Proposition 3). On the other hand, if the circuit
power tends to zero, it is optimal to transmit infinitely slow,
i.e., with rate and transmit power tending to zero. This effect
was discussed, e.g., in [1].

In Fig. 5, we show the optimal energy per bit for a larger
system with 𝐾 = 20 users, 𝑁 = 16 carriers, and 𝑀 = 2 base
station antennas. In this case, we have assumed a non-zero
parameter 𝛽, i.e., the circuit power now grows linearly with
the sum rate. However, from (1), we have

𝐸b =
𝜂−1𝑃 + 𝛼+ 𝛽𝑅

𝑅
=
𝜂−1𝑃 + 𝛼

𝑅
+ 𝛽 (25)

which means that the parameter 𝛽 only yields an offset on the
𝐸𝑏-axis as can also be observed in the figure. The behavior
of the optimal energy per bit as a function of the parameter
𝛼 as well as the different performance of the two considered
user selection algorithms are qualitatively the same as in the
smaller system.

In Fig. 5, we have also included the per-carrier version of
the greedy user selection (cf. Section V-A), which performs
so close to the original version that the difference can hardly
be noticed in the plot. A slightly larger difference between
the conventional and the per-carrier GUS can, however, be
observed in the same system if the number of users is
decreased to 𝐾 = 10 as can be seen in Fig. 6, where we
have plotted the achieved energy per bit for different numbers
of users 𝐾 ∈ {10, 20, . . . , 100}.

In that figure, we can also observe that the energy per bit is
lower if the system has a larger number of users. This effect is
called multiuser diversity and was discussed, e.g., in [18] and
[19] for the sum rate maximization problem: the more users
we have in the system, the higher is the probability that on
each carrier, we can find 𝑀 users whose channels are strong
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Fig. 5. Energy per bit achieved in a system with 𝑀 = 2 transmit antennas,
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amplifier efficiency 𝜂 = 0.5 (averaged over 1000 channel realizations).
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Fig. 6. Energy per bit achieved in a system with 𝑀 = 2 transmit antennas,
𝑁 = 2 subchannels, circuit power 𝑃𝑐 = 𝛼 = 2, 𝜂 = 0.5, and various
numbers of users (averaged over 1000 channel realizations).

and nearly orthogonal to each other. Since this leads to higher
rates for a given sum transmit power, it also yields a lower
energy per bit or, equivalently, an increased energy efficiency.
This behavior was also shown for the random beamforming
method for single-carrier vector broadcast channels in [10].

VII. CONCLUSION

Optimizing the sum rate of a communication system for a
fixed sum transmit power can lead to a high energy per bit, i.e.,
a bad energy efficiency. On the other hand, allowing a variable
sum transmit power that is adapted such that the energy per
bit is optimized yields a much better energy efficiency.

In the parallel vector broadcast channels considered in this
paper, a simple way of implementing such an energy efficient
transmission is the application of zero-forcing beamforming
in combination with a successive user allocation algorithm.

The optimization problem that remains to be solved for a
given user allocation is then equivalent to the energy efficiency
optimization in a single-user multicarrier scenario. For this
inner optimization, we have proposed a new method which
uses the sum transmit power as the only optimization variable
and encapsulates the detailed power allocation in a so-called
waterfilling-rate function. This allows an intuitive understand-
ing of the energy efficiency optimization and reveals similar-
ities to the case with a single data stream.

Applying the proposed method, a significant reduction of
the energy per bit compared to the case of transmission with
a fixed sum transmit power could be observed in numerical
simulations.

APPENDIX A

Proposition 4. There is only one stationary point of 𝑓(𝑃 ) =
(𝑃 + 𝑐)/𝑅opt(𝑃 ), and this point is the global minimum.

Sketch of proof: The second derivative of 𝑓(𝑃 ) is

∂2𝑓(𝑃 )

∂𝑃 2
= −𝑅opt(𝑃 )(𝑃 + 𝑐)

∂2𝑅opt(𝑃 )
∂𝑃 2

𝑅3
opt(𝑃 )

−
(
𝑅(𝑃 )− (𝑃 + 𝑐)

∂𝑅opt(𝑃 )
∂𝑃

)
2
∂𝑅opt(𝑃 )

∂𝑃

𝑅3
opt(𝑃 )

(26)

at points where ∂2𝑅opt(𝑃 )
∂𝑃 2 exists. Note that the second summand

is zero whenever the first derivative of 𝑓(𝑃 ) is zero [cf. (21)].
Moreover, as 𝑃 > 0, we have the following inequalities
at stationary points of 𝑓(𝑃 ): 𝑅opt(𝑃 ) > 0, (𝑃 + 𝑐) > 0,

and ∂2𝑅opt(𝑃 )
∂𝑃 2 < 0. Therefore, all stationary points of 𝑓(𝑃 )

where ∂2𝑅opt(𝑃 )
∂𝑃 2 exists are minima. If ∂2𝑅opt(𝑃 )

∂𝑃 2 does not exist
at a stationary point of 𝑓(𝑃 ), the same can be shown by
considering the right and left second derivative of 𝑓(𝑃 ) and
𝑅opt(𝑃 ).

Note that above observations also imply that the function
cannot be constant on any interval as the first and second
derivatives cannot be zero at the same time. On the other hand,
due to strict quasiconvexity of 𝑓(𝑃 ), local minima can only
be right next to each other. Therefore, there must be a unique
local minimum which is also the global one, and there are no
other stationary points.
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