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Introduction

Electricity is one of the fundamental goods of modern civilization. In recent times many
countries focused on nuclear energy to cover the growing energy appetite of their econ-
omy. But after the nuclear disaster following the earthquake on March 11 in Japan, the
stance on nuclear energy has changed. Not only is Japan thinking about phasing-out
nuclear energy and replacing it with renewable sources, but also Germany. The German
“Sachverständigenrat für Umwelt” (a research organization specializing in environmental
issues) has already pointed out the main challenges on Germany’s way to 100% renew-
able feed-in, see Faulstich et al. [2011]. Beside a reconstruction of the German grid, a
main challenge is the expansion of energy storage facilities. These facilities are necessary
to ensure an uninterrupted power supply on a pure renewable energy market due to the
intermittency of the energy production by those sources. The need to store energy in
storage facilities raises the question of how to control such storages, taking into account
the fluctuations of energy in the market. In addition to that it is reasonable to obtain
a value for the investment in such a storage facility. We focus on the transition period
between a pure conventional energy market and a pure renewable one, called a mixed
energy market. In this market we are going to develop a response to both questions in
this thesis.

The incorporation of renewable energy in the electricity market forces changes in this
market, due to the differences between the renewable end conventional energy production.
So are the marginal costs for renewable energy significant lower than the costs for conven-
tional power technologies. Since the driving fuels such as sun and wind, that we focus on,
are free of charge. The lower marginal costs imply that the producers of renewable energy
offer their good already for a lower price than conventional energy producers. Thereby
from a macro economic perspective the electricity price on the market is reduced in com-
parison to a pure conventional power market. This change in price is denoted as merit
order effect. A summary of various papers concerning this effect is given in Morthost et al.
[2010]. Moreover renewable energy production is not to an equal amount controllable as
the conventional energy production. Environmental circumstances have a major influence
on the amount renewable energy producing entities produce and can not be influenced by
humans. Since energy needs to be consumed in a close timely relation to the production,
this leads to the challenge to ensure an uninterrupted power supply. The common idea to
respond to this challenge is to store the energy in times of overproduction and feed the
power back to the gird at times of peak demands. Thus in a mixed power market energy
storages gain importance. These changes caused by renewable energy sources are briefly
summarized in Chapter 1.

1



2 INTRODUCTION

In Chapter 2 we motivate the necessity of a large cumulated capacity of energy stor-
ages integrated in the grid. For this purpose we evaluate, based on historical time series,
different development scenarios in the renewable energy sector and available storage ca-
pacities the minimal required backup from conventional plants to ensure an uninterrupted
power supply, using a linear optimization approach. This means we minimize the required
backup from conventional plants given the knowledge of all past and future demand for
energy and renewable produced energy in the considered time interval by controlling the
modes – charging, keeping the charging level constant and discharging – of the energy
storages. In this setting we neglect the uncertainty inherited in the amount of energy
contributed by renewable sources and demand on the electricity market.

To consider this uncertainty we develop a more elaborate problem in Chapter 3. This
means we include the stochasticity of the renewable energy production and the demand
by a dynamic stochastic model. In this framework we assume that an agent is controlling
an energy storage focused on maximizing the expected reward. The agent is in this setting
just able to control the respective modes – charging, keeping the charging level constant
and discharging – of the storage, denoted by regimes. To specify this reward the generic
features of an energy storage are pointed out and the market price for electricity is de-
rived. The derivation of the market price is based on a modified merit order curve. This
modified curve states, given the current energy contribution from renewable sources and
the demand, the energy price on the market. The approach is based on the theory behind
the merit order effect discussed in Chapter 1, where the merit order curve is used for the
derivation. In this case the curve is a step function given by the marginal cost progression
of conventional power technologies and the production capacities of the respective tech-
nologies. A problem including this way for the price derivation has not been considered
in the literature before. The energy storage characteristics are mirrored by the change
rates in the charging level depending on the regime, the maximal storage capacity and
the minimal charging level. Respective costs are summarized in three categories, including
management and operating costs, storage costs of one energy unit over one time period
and switching costs between the regimes. Bearing these storage features in mind the agent
requires the optimal dynamic strategy to maximize the reward by switching between the
regimes.

Problems of finding an optimal strategy between multiple regimes, as derived in Chap-
ter 3, are known as multiple switching problems. We show in Chapter 4 that a solution for
the problem stated in Chapter 3 exists. The basic theory to show the existence is the Snell
envelope theory. This theory is aimed at finding the optimal stopping time to maximize
the reward represented by a stochastic reward process. The next step towards the multiple
switching problems is the two regime switching problem. Pioneer papers in the area of
the two regimes problem are Brennan and Schwartz [1985] and Dixit [1989]. The mathe-
matical theory of the two regimes case was firstly studied by Brekke and Øksendal [1994]
and has been extended by others including Hamadene and Jeanblanc [2007] using back-
wards stochastic differential equations (BSDE) as well as Ly Vath and Pham [2007] with
viscosity solutions. The theory for the multiple switching case is based on the research on
the two regimes case and has recently been published by Pham et al. [2009] and Djehiche
et al. [2009]. To derive the existence of a solution we focus on the framework discussed
in Djehiche et al. [2009] and extent this theory to cover also the additional charging level



INTRODUCTION 3

dependence in our setting. Especially, due to complexity included by the dependence on
the charging level an analytical derivation of the solution is not viable, therefore we focus
in the following on a numerical approach to obtain a solution.

In Chapter 5 we describe two algorithms constituted in Carmona and Ludkovski [2010],
namely the Bivariate Least Squares Monte Carlo Method (BLSM) and the Mixed Inter-
polation Tsitsiklis-van Roy (MITvR), to compute a numerical solution. The key idea of
both algorithms is a discretization of the switching times and an empirical regression to
compute the conditional expectation. This idea was firstly pointed out by Longstaff and
Schwartz [2001] to price an American option by an approximation with Bermuda options.
The algorithm of Longstaff and Schwartz uses, besides transfer to discrete exercise times,
the concept of backwards equations relaying on empirical regression as the base for the
exercise decision. A quite similar approach was also proposed by Tsitsiklis and van Roy
[2000]. The regression idea with an set of bases function has been extensively studied
until now, among others Egloff [2005] extended the theory to general stochastic learning
problems. An other application of this idea is the dimension reduction as used for example
introduced in Hepperger [2010]. To employ the approach for our problem we show explic-
itly the steps to obtain the backward equation. Therefore the information needed for the
switching decision is reduced to the conditional expectations of the future rewards in the
different regimes. But by this formulation the nested dependence of the optimal dynamic
strategy on the charging level and the charging level on the strategy is not considered.
For the practical implementation this dependence needs to be incorporated. To include
the dependence on the charging level of the optimal strategy we follow two different ap-
proaches. On the one hand, in the MiTvR scheme the optimal regime is evaluated at each
switching time point and at each charging level grid point. On the other hand, in the
BLSM scheme an expectation conditioned on the charging level and the renewable energy
production is computed for the optimal regime decision.

Finally, in Chapter 6, we give a concrete storage example and show the influence of
the different parameters on the maximal expected reward. For this example we focus on
the German electricity market for the merit order curve and the energy demand. In this
market environment we consider different storage characteristics, including the storage
size, charging and discharging rates, and compute the maximal expected reward. The
same computations are done for the costs occurring while running the storage, including
switching costs between the regimes and costs to store one energy unit for one time period.
Thereby the influences of the different parameters on the reward become transparent.
Besides developments on the conventional power market can be examined, since the merit
order curve is very flexible. So can consequences of recent developments in the marginal
costs and capacities of the conventional technologies be easily mirrored by a modification
of the merit order curve. For example the value of a storage can also be examined after a
nuclear phase-out. Furthermore, we take a closer look at the resulting optimal strategy.
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Chapter 1

Energy markets with renewable
energy

The structure of energy markets changes with the contribution of energy produced by re-
newable sources. Furthermore, changes on the energy supply side are necessary to achieve
way to 100% renewable energies. In this chapter the main changes required by renewable
energies in the electricity market and the respective required additional technologies are
introduced.

The technologies which are generally counted as renewable are biomass, wave power,
tidal power, hydro power, solar power and wind power plants, but in this thesis we fo-
cus on wind and solar energy. One difference between these technologies and conventional
ones is that the driving fuels, wind and sun, are free of charge, which implies low marginal
costs. Thereby, from a macroeconomic perspective, the contribution of renewable energies
reduces the price. This effect is known as merit order effect and is described in Section 1.1.
But the dependence on those natural sources leads to intermittency effects in the course
of the year and day as well as to short term fluctuations depending on environmental con-
ditions, catalogued in Section 1.2. In Section 1.3 the currently available storage facilities
are introduced, which can be used to ensure an uninterrupted energy service on a market
with renewable sources.

1.1 Merit Order Effect

The merit order effect describes the price effect resulting from adding energy produced by
renewable sources to the conventional power mix. To specify this effect in more detail we
have to go back to the basic microeconomic model for price determination in a market,
called the supply-and-demand model.

The supply-and-demand model assumes that buyers and sellers of a certain product
interact on a market such that in the long run it reaches an economic equilibrium. This
is the point, where the demand from the buyers’ side for a certain price is equal to the
supply by the sellers’ side for the same price. This means that neither of the two sides
has the incentive to offer higher prices or accept lower prices. To obtain the equilibrium
the concepts of demand and supply curves are applied. The supply curve represents the

5
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price1

price2

price/MWh

nuclear

supply

combined heat and power plants

gas turbinesdemand

MWh
Figure 1.1: Resulting merit order curves with and without renewable energy in the power market for the
supply-and-demand model. The dashed staircase represents the supply curve without contributions by
the renewable energy sector and the green lined staircase represents the supply curve with contributions
by the renewable energy sector. The blue line is the demand in MWh for the price per MWh in Euro.
This results in the market clearing price, price1, in the pure conventional power market and in the price2
in the market with contribution by the renewable sector.

quantity producers’ offer at a given price. This curve slopes upwards, since for a higher
price it is advantageous to expand the production or to invest in plants to increase the
supply. The demand curve represents the quantity buyers will purchase at a given price.
This curve has the property that it slopes downwards due to the fact that consumers
normally are willing to buy more at lower prices. In this setting the market-clearing
equilibrium is the intersection of these two curves. The supply-and-demand model can be
applied if the market is roughly competitive, see [Pindyck, 2009, p. 6].

Now coming back to the energy market, we need to find a supply and a demand
curve. The merit order curve can be seen as the supply curve in power markets. It is
an increasing step function with one step for each conventional power technology with
equal marginal costs. It orders the marginal costs of the energy portfolio from the least
to the most expensive. The step height represents the marginal costs and the length of
the steps represents the amount of energy the respective power technology is able to
produce. Since we focus on the marginal costs, it is worth noting that the differences in
the prices are mainly driven by the costs of the fuel needed by the technology to produce
electricity. The marginal costs represent the cost for one further quantity of the same
good as already produced and hence disregard fixed costs. In this setting the technology
order of conventional plants is nuclear as the cheapest, followed by combined heat and
power plants (CHP) and ends with condensing plants Morthost et al. [2010].
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Figure 1.2: Example wind power curve.

For the demand curve in power markets, since electricity is one of the fundamental
goods for modern civilization, which currently has no substitute, it is reasonable to assume
that the demand curve is inelastic. This means that a change in the price of a good has
almost no influence on the quantity demanded. Price inelasticity is normal for goods which
are necessary and have almost no substitutes.

The dashed curve in Figure 1.1 shows the merit order curve without renewable energy
contribution to the market. Thus, without a contribution of renewable energy to the
electricity market, the equilibrium is achieved at the intersection of the supply curve,
dashed, and the blue demand curve. Since natural resources like wind and sun are free of
charge, renewable energy has almost no marginal costs. In the supply-and-demand model
this means that, even for receiving almost no gains, the producers of renewable energy
would still offer their good to the market. Hence, by adding the renewable energy stream
to the power mix in our market, the merit order curve is shifted to the right. The respective
shift is equal to the amount of renewable energy produced at this time. Consequently in
the demand-and-supply model with renewable energy in the portfolio the price, price2,
is clearly below the price, price1, in the purely conventional power mix. The difference
between the equilibrium price with and without the renewable energy contribution is
called merit-order-effect. In Figure 1.1 the merit order effect is price1 - price2.

1.2 Variability of renewable energy production

The fundamental difference between the renewable energy power production and the
power production by conventional plants is that the amount produced can only be steered
to certain degree. Most of the renewable energy sources exhibit seasonal and short term
fluctuations, mainly driven by the weather, especially photovoltaic (PV) and wind we
focus on in this thesis.

The energy production of a wind turbine depends mainly on the wind speed and
the technical specifications of the turbine. For a given wind mill the dependence of the
produced electricity and the wind speed can be read from the respective power curve, a
function giving the power output for a given wind speed. Each mill needs a certain wind
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Figure 1.3: Average daily run of energy production by PV panels in summertime.

speed to start the energy production, called cut-in wind speed, and stops the production
at a given wind speed, called cut-out wind speed, to prevent system damage. From the
cut-in wind speed the produced energy rises by the power of three up to the maximal
power production, the respective wind speed is called rated wind speed, and remains
constant from this point on until the cut-out wind speed is reached.

For the electricity production with PV panels the produced amount depends on the
radiation, the air temperature, the collector’s angle of slope in relation to the sun and the
PV module characteristics. With a rising radiation the current rises almost proportionally,
but the voltages stay almost the same. A rise in air temperature reduces the voltage
although it leaves the current unchanged. This implies that the power output of PV
plants would be maximal in cool regions with long daylight hours. Apart from local
weather driven fluctuations the energy production by PV panels follows the run of the
sun. The average production of a PV plant in summer during the day is shown in Figure
1.3. To achieve additional efficiency so called solar trackers, which angel the panels in an
optimal slope to the sun, can be applied. Thereby between 20 % and 50% more output is
achieved.

1.3 Energy Storages

The storage of energy, in an electricity market with the contribution of renewable energy
is essential due to the variability discussed in Section 1.2 and the fact that electricity
needs to be consumed almost at the same time as it is produced. This section is mainly
based on the Chapter 4.5.2. of the study by Faulstich et al. [2011].

The available storages can be characterized in four groups contingent on the storage
form, potential, mechanic, chemical or electrochemical. Each technology has different
advantages depending on the storage capacity, the storage performance, the efficiency,
the economic life-time and the power density. Hence they have different favorable fields
of application in concern to ensure an uninterrupted power supply.

Compressed air energy storage (CAES) is a mechanic energy storage. The mode of
operation is to compress ambient air with electricity driven turbines in times of energy
over production into aquifers or caverns. In times of high load the air is released through
turbines to generate electricity. The compression generates as a by-product heat, which
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at the moment is not exploited in most of the plants. Subsequently, the compressed air
cools down and therefore heat is required for decompression. This procedure reduces the
efficiency to around 50%. In the future so called adiabatic CAES are projected, which
store the heat and return it when the air is released to produce energy.

The group of chemical energy storages are based on hydrogen and methane production.
These technologies are interesting since they can also be used in other sectors, such as
transport or heating. The idea behind the hydrogen approach is to produce hydrogen
by electrolysis in times of high supply of energy and low demand and store it. At peak
demands electricity is produced by running gas fired plants with the stored hydrogen.
For methane the idea is similar to the hydrogen storage, but has advantages in the high
energy density of methane compared to hydrogen.

Electro chemical storages are based on a principle similar to the one of a classic battery.
They are important as systemic reserve. Major exponents are lithium-ion, nickel cadmium
and lead-acid batteries.

The main field of application of the pumped storage power stations is the intra day
balancing of energy streams. The principle behind this power production is the potential
energy between a higher water reservoir to a lower one. In periods of low demand and
high production energy is consumed to pump the water from the lower storage basin
into the higher one. During periods of high demand and low production the stored water
is released through turbines into the lower reservoir to produce energy. The potential
energy depends on the body of water and the height difference between the two basins
and thereby the efficiency is ranging between 70-80%. Thereby the potential to run a
storage of this type depends on topographical conditions. According to Faulstich et al.
[2011] the available options in Germany are exhausted, but in Norway and in Sweden the
potential is estimated above 118 TWh storage capacity. The main advantage of pumped
storage power stations is that they can react to load demand changes within seconds.
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Chapter 2

A Clairvoyant Approach

In this chapter we solve the optimal charging and discharging strategy of energy storages
under the assumption that we know the energy contribution from renewable sources to
the electricity market and the load, demanded energy, over a certain time horizon. The
optimal dispatching strategy in this case is equal to minimizing the needed energy from
conventional plants to ensure a load and supply equilibrium.

We derive the contribution of energy from renewable sources, wind and solar, as prod-
ucts of the installed capacity, β for wind and α for sun, and utilization factors, i.e. the
energy produced under certain environmental conditions as a fraction of the installed ca-
pacity. The time series for the wind energy utilization is denoted by {windm}m∈{0,...,M}
and the solar energy utilization by {solm}m∈{0,...,M}, where m ∈ {0, . . . ,M} denotes the
measurement time points. The respective load time series is {loadm}m∈{0,...,M} and quoted
in GWh.

For given installed capacities and a given storage capacity CS we formulate a lin-
ear optimization problem to minimize the backup needed by conventional technologies
{backupm}m∈{0,...,M} in Section 2.1. A detailed description of how the example data is ob-
tained is given in Section 2.2. In Section 2.3 the implemented graphical user interface as a
tool to evaluate different renewable energy development scenarios is introduced. Finally,
we give a detailed influence study of different scenarios in the scope of the needed backup,
storage and wasted energy in Section 2.4.

2.1 Linear Optimization for given Data

We denote the fixed maximal storage capacity by CS [GWh], the installed capacity of
wind parks by β [GW] and the installed capacity of photovoltaic (PV) production entities
by α [GW] integrated in the grid. The storage facilities’ charging level is denoted by STm
[GWh] at timem ∈ {0, . . . ,M} and is dependent on the history up to timem. The storage
facilities can be charged or discharged by stm, −STm−1 ≤ stm ≤ CS− STm−1, to balance
the energy supply and demand in the time interval from m− 1 to m. At times of higher
production from renewable energy sources than demanded and full storage capacity the
excess energy is wasted, denoted by {wm}m∈{0,...,M}. On the other side, at times, where the
load cannot be met by the stored and renewable energy production, the energy demand

11
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and supply equilibrium is ensured by energy produced by conventional power plants,
denoted by {backupm}m∈{0,...,M}.

The respective optimization problem is given by:

min
wm,stm,STm

∑M
m=1 backupm (2.1)

s.t. α solm + β windm + bm − wm − stm = loadm m = 0, . . . ,M (2.2)

STm = STm−1 + stm m = 1, . . . ,M (2.3)

ST0 = STM + st0 (2.4)

backupm, wm ≥ 0 m = 0, . . . ,M (2.5)

0 ≤ STm ≤ CS m = 0, . . . ,M (2.6)

Equation (2.2) ensures that the load and the supply in the electricity market coincides.
The equality in (2.3) updates the charging level of the storages based on the level STm−1
and the balancing term stm. At this point we assume for simplicity that the amount
charged to the storage facilities is equal to the amount taken from the energy market
for charging as well as that the charging (discharging) is restricted by the capacity CS
(by the storage level STm−1). Furthermore, we assume that we start with the same joint
level in inventories as we finish with, see (2.4). Within (2.5) we ensure that the waste
{wm}m∈{0,...,M} and the backup {backupm}m∈{0,...,M} are non-negative, and in (2.6) we
guarantee that the stored amount of energy {STm}m∈{0,...,M} fulfills the requirements.

To obtain the standard formulation of an linear optimization problem we introduce
slack variables {RSm}m∈{0,...,M} to achieve an equality for the constraints STm ≤ CS, m ∈
{0, . . . ,M}, i.e. STm + RSm = CS and RSm > 0. Hence we define the vector in the
following way:

x =
(

b0 w0 st0 + CS ST0 RS0 backup1 · · · stM + CS STM RSM

)T
.

Accordingly to this definition set f :=
(

1 0 0 0 0 1 · · · 0 0
)T

to meet (2.1). To
transfer the equality constraints and (2.6) define the matrix

A =





A1

A2

A3



 and the vector b =





b1
b2
b3



 .

The matrix A1 and the respective b1 represent Constraint (2.2) and are defined as follows:

A1 =







1 −1 −1 0 0 · · ·
. . .

· · · 0 1 −1 −1 0






and b1 =







load1 − αsol1 − βwind1 − CS
...

loadM − αsolM − βwindM − CS






.

The matrix A2 and b2 are given by

A2 =







0 0 −1 1 0 0 · · · 0 −1
· · · 0 −1 0 0 0 −1 1 0 · · ·

. . .






and b2 =







−CS
...

−CS






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and ensure Constraints (2.3) and (2.4). Finally, we define A3 and b3 to cover Constraint
(2.5)

A3 =







0 0 0 1 1 0 · · ·
. . .

· · · 0 0 1 1






and b3 =







CS
...
CS






.

Hence, the linear optimization problem in standard form is given by:

min f ′x
Ax = b
0 ≤ x.

(2.7)

This problem can now be solved using standard linear optimization methods, as the
Simplex Algorithm [Vanderbei, 2008, Chapter 2] or Primal-Dual Interior points methods
[Vanderbei, 2008, Part 3]. Interior point methods are superior for large scale linear pro-
gramming and the Simplex algorithm for medium scale problems, see [Vanderbei, 2008,
Simplex Methods vs Interior point methods Chapter 22] .

2.2 Description of the time series

The data we use are time series of the utilization for PV plants {solm}m∈{0,...,M}, the
utilization for wind farms {windm}m∈{0,...,M} and the load {loadm}m∈{0,...,M} aggregated
over Europe and owned by Siemens. The time points m ∈ {0, . . . ,M} represent hourly
measurements in the time horizon from 1st January 2000 until 31st December 2007, hence
70128 data points. The countries in this aggregation are all countries on the European
continent except Estonia, Latvia, Lithuania, Belarus, Ukraine, Swiss, Moldova and Russia.

The load series are based on publicly available data of country or network transmission
providers’ load history. Before 2006, the demand data was in most cases not available in a
sufficient small temporal resolution. For this reason the load streams have been replicated
based on the known load performances and the larger scale available data. Especially week-
end effects are reflected in this replication. From 2006 onwards the country specific load
data in hourly resolution comes from the load database (https://www.entsoe.eu/resources
/data-portal/consumption/), provided by the European Network of Transmission System
Operators for Electricity (ENTSO-E). To obtain the Europe wide view the data is summed
to one load history.

For the solar and wind time series the local weather conditions are used. Therefore,
the countries are separated into a 50×50 km2 spatial mesh on the mainland and off-shore
regions on the waterside for the calculation of the utilization series. The specific surface
roughness and mainland or seaside indices are accomplished for each grid-cell. The weather
data for these grid-cells was provided by the private weather service provider Weather &
Wind Energy Prognosis (WEPROG). This data consists of the wind speed and direction
100 m above the ground, the cloud cover, air temperature 2m above the ground, net short
wave radiation at the surface and the cloud albedo. Moreover the surface albedo is given
in monthly resolution.

The wind utilization time series are obtained by using the wind power curves and the
impacting wind at hub hight. The wind power curve gives the power output for a given
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wind mill as a function of the wind speed, as for example Figure 1.2. The impacting wind
at hub hight is obtained by the respective surface roughness given by the grid indices and
the measured wind speed. For a more detailed description of the different influences of
the parameters see Section 1.2. The utilization factors per grid cell are aggregated over
Europe to obtain the European factor.

The PV plants utilization factor is achieved by the usage of the global radiations,
temperatures, geographical coordinates and the assumptions towards the photovoltaic
panels characteristic. The global radiation is obtained from the known cloud cover, cloud
albedo and net short wave radiation. The influence of the different factors on the power
output of PV panels are pointed out in Section 1.2. For each grid cell different PV panels
with varying tilt angles and orientations as well as with or without solar trackers are
considered. The resulting small spatial utilizations factors are aggregated to the European
wide view.

2.3 Graphical User Interface

To give a simple tool to view the influences of different developments scenarios of the
renewable energy sector we implemented a graphical user interface (GUI). This interface
offers different variables to adjust the scenarios and gives a graphical overview as well as
concrete figures of the respective result.

First of all we introduce the adjustment parameters. The quota of renewable energy
on the load γ ∈ R+, defined by

γ :=

∑M
m=1 αsolm + βwindm
∑M

m=1 loadm
,

adjusts the development of the renewable energy sector as part of the overall energy
supply. The fraction of PV energy on the renewable energy µ ∈ (0, 1), defined by

µ :=

∑M
m=1 αsolm

∑M
m=1 αsolm + βwindm

,

is the adjustment tool for the development of the PV energy in the renewable energy
sector. Given γ and µ we can derive the respective installed capacities of PV plants by

α =
µ γ

∑M
m=1 loadm

∑M
m=1 solm

and the capacities of wind plants by

β =
(1− µ) γ

∑M
m=1 loadm

∑M
m=1 windm

,

needed to get the problem stated in (2.7). The parameters γ and µ, which are together with
the storage capacity CS are the variable inputs and are collected in the parameter caption
in the GUI, see Figure 2.1. This caption along with the data setting caption forms the input
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Figure 2.1: GUI to obtain the influence of different development scenarios of renewable energy production,
given by the quota of renewable energy on load γ and fraction PV energy on renewable energy µ.
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section of the interface. The data setting caption offers the features to upload data files and
specify the columns corresponding to {solm}m∈{0,...,M},{windm}m∈{0,...,M},{loadm}m∈{0,...,M}
and the considered time horizon.

Now by solving the optimization problem (2.7) with the respective α, β and CS
we obtain four time series, including the needed backup {backupm}m∈{0,...,M}, the waste
{wm}m∈{0,...,M}, the balancing energy {stm}m∈{0,...,M} and the charging level of the storage
facilities {STm}m∈{0,...,M}, for further analysis. For each of the results the GUI offers
three plots, including the pure time series, the time series relative to {loadm}m∈{0,...,M}
and relative to the contribution by renewable energies {α solm + β windm}m∈{0,...,M} for
detailed examination. Moreover, the sum of the backup, the absolute values of the storage
stream and the waste relative to the cumulative load are shown in a bar-plot. Additional
to the visual examination part some resulting numbers are given in the result caption,
namely the maximum of {wm}m∈{0,...,M}, {backupm}m∈{0,...,M}, {STm}m∈{0,...,M},{α solm+
β windm}m∈{0,...,M} and the resulting minimal problem value.

2.4 Results

We examine the influence of the different parameters, including the quota of the total
renewable energy on the load γ ∈ [0, 1], the fraction PV energy on renewable energy
µ ∈ [0, 1] and the storage capacity CS ∈ [0, 50000]. The large interval for the storage
capacity is reasonable since the potential storage capacity for pumped storages in Sweden
and Norway are estimated to 118 TWh (see Faulstich et al. [2011]). Since for the given
time series, as described in 2.2, the sparse matrix A of the standard problem (2.7) is
of a large size, 210384 × 350640, we use a version of the interior point solver LIPSOL,
implemented in MATLAB. LIPSOL is a variant of the Mehrotras’s Algorithm as described
in [Wright, 1997, Chapter 10].

For a fixed fraction of sun energy on the renewable energies µ = 0.6 the results are
shown in Figure 2.2. On the left hand side we see, that needed backup linearly demises
for a rising quota of renewable energy on the load and for a large storage capacity CS ∈
[1000, 50000]. For a smaller storage capacity CS ∈ [0, 1000] the needed backup for a high
fraction of renewable energy on the load, i.e. γ > 0.5, descent much slower, which can
be seen on the left plot in Figure 2.2. This means that, for a minor storage capacity the
production of renewable energy is wasted, since peak productions are not storable. On
the right hand side of Figure 2.2, we see that we start wasting a significant amount of
energy at a renewable energy contribution over 40% and no storage available. This wasted
energy raises up to 0.3 of the overall load for no storage capacity available and γ = 1. For
a small storage capacity CS ∈ [0, 5000] the lost energy steps up with the contribution of
renewable energies and the reduction of the storage capacity. For a high storage capacity
CS ∈ [5000, 50000] the wasted energy is slowly, almost linear, falling with the quota of
renewable energy contribution on the load and the storage size. It shows that the storage
capacity has a major influence on the needed backup for conventional plants as well as
on the energy wasted. This emphasize the importance of an adequate amount of storage
capacity integrated in the grid.
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Figure 2.2: Shows the sum of the backup, to the left hand side, and waste, on the right hand side, versus
the sum of the load for 60% sun energy contribution on the renewable energy contribution.
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Figure 2.3: Shows the sum of the backup, to the left hand side, and waste, on the right hand side, versus
the sum of the load for renewable energy quota γ = 1 on the load.

In the γ = 1 scenario, as shown in Figure 2.3, the influence of the fraction PV plants on
the renewable energy contribution µ and the storage capacity CS is almost equal for the
backup on the left hand side and the waste on the right hand side. We see that the fraction
of energy generated by PV plants has a significant influence on the required backup and
wasted energy, with a minimum wasted energy and needed backup of around µ = 0.4.
This result is confirmed by the results in [Heide et al., 2010, 4. Conclusion], where the
optimal mix of PV and wind generated electricity in the 100% renewable scenario is 55%
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wind energy and 45% PV energy.
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Figure 2.4: For 540 GWh storage capacity the sum of the backup, waste and absolute balancing streams
versus the sum of the load are shown.

In Figure 2.4 we consider a constant storage capacity of 540 GWh. The left plot shows
that the needed backup falls with the renewable energy quota on the load and depicts
a minimum for a fraction around 30% contribution from solar energy at γ = 1. For an
increase in the fraction of energy produced by PV plants the needed backup energy rises
in the interval µ ∈ [0.4, 1] and falls in the interval µ ∈ [0, 0.2]. Moreover, this effect
flattens out in the size of fraction of renewable energy on the load γ. The middle plot in
Figure 2.4 shows the dependence between wasted energy and the respective fractions is
shown. The minimum wasted energy is produced for a combination of approximately 30%
solar energy production on renewable energy contribution for a given quota of renewable
energy contribution γ ∈ [0.5, 1]. With a rise of the fraction of PV energy on the renewable
energy contribution in γ ∈ [0.3, 1] and given quota renewable energy on the load γ > 0.5
the wasted energy rises as well. The storage streams soar with the fraction of PV energy
due to the day-night fluctuations, which is shown in Figure 2.4 to the right. As well the
storage streams rise with the quota of renewable sources, since for conventional power
technologies a storage is meaning less.

In a nutshell we see that storages become more and more crucial with a rising quota
of renewable energy on the electricity market, with an additional increase for high contri-
butions from PV plants.



Chapter 3

Problem Setup

In Chapter 2 we developed an optimal storage strategy for a given time interval for all
electricity storages connected to the grid and given the complete knowledge about the
demanded and produced energy in this interval. This approach neglects certain aspects in
reality, especially the uncertainty of the energy production by renewable sources. Thus,
from now on we are going to focus on a more elaborate problem setting. This setting
considers the uncertain production by the stochastic renewable energy process {Rt}t∈[0,T ]

and the variability of the demanded energy by the demand process {Dt}t∈[0,T ]. Moreover,
we focus on one electricity storage facility, including all storages introduced in Section 1.3,
leased by the agent over the finite time horizon [t, T̂ ]. Since every finite time horizon of
the form [t, T̂ ] can be transformed to [0, T ] without loss of generality, we do so from now
on. Moreover, we assume that the agent is a price taker and that the electricity market
is infinitely liquid. This chapter introduces our problem and the notations used in the
following paragraphs, in which we derive an optimal dispatching strategy for an energy
storage given variable energy prices.

In the following let {Rt}t∈[0,T ] denote the renewable energy process, where Rt is the
amount of energy in MW produced by renewable technologies at time t ∈ [0, T ]. The
demand process is denoted by {Dt}t∈[0,T ] andDt is the amount of energy in MW demanded
at time t ∈ [0, T ]. In this setting we assume that all stochastic quantities live on the
filtrated probability space (Ω,F ,F,P), where F = {Ft}t∈[0,T ] satisfies the usual conditions
of right continuity and completeness.

The price on the electricity market in our setting results from the price function
ρ : [0, T ] × R+ × R+ → R+ of the renewable energy process {Rt}t∈[0,T ] and the demand
process {Dt}t∈[0,T ]. The price function ρ reflects the results for price derivation in the
demand-and-supply model and the merit-order curve discussed in Section 1.1. We establish
this function in Section 3.1. Given the price on the electricity market the agent wants
to optimize his return in the time horizon [0, T ] by changing the possible regimes of
the battery, namely charging, discharging and keeping the level constant. The essential
reflections of the batterie’s operational characteristics in gain and losses of the respective
regimes are summarized in Section 3.2. In Section 3.3, the segments introduced in the
previous sections are assembled into the control problem, which we solve in Chapter 4.
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3.1 Price fixing

As already pointed out the market price is obtained from the renewable energy process
{Rt}t∈[0,T ] , the demand {Dt}t∈[0,T ] and a function similar to the merit order curve pre-
sented in Figure 1.1. Therefore we are going to formulate the results from Section 1.1 to
obtain an energy price in a mathematical way.

Let us assume that we have N conventional power technologies. These could include
fossil fuel driven plants as well as nuclear power and waste-to-energy plants. All power
plants of a given technology n ∈ {1, ...,N} have the same non-negative marginal costs pn
for producing one MWh and all power plants of technology n have a capacity of cn quoted
in MW. The technologies are labelled such that for all n1, n2 ∈ {1, ...,N} with n1 < n2 it
holds that pn1 < pn2 . Furthermore let An = {1, . . . , n} for n ∈ {1, ...,N}, be the n energy
portfolio. The capacity of the energy portfolio An, is given then given by

∑n
k=1 ck.

Given {pn}
N

n=1 and {cn}
N

n=1 we define a step function ρ̂ : [0, T ] × R+ → {p1, . . . , pN}
by:

ρ̂(t, Dt) =

N
∑

n=1

pn1[
∑n−1

i=1 ci,
∑n

i=1 ci)
(Dt). (3.1)

This function gives the marginal costs pn of technology n such that the capacity of the en-
ergy portfolio An covers the demand Dt at every t ∈ [0, T ]. Figure 3.1 gives a visualization
of the function in (3.1).

p1

p2

p3

p4

c1 c2 + c1 c3 + c2 + c1

price/MWh

Dt

Figure 3.1: Classical merit order curve ρ̂, (3.1).

The transfer of this definition from the pure conventional power market into a mix
of conventional and renewable energy is straightforward. It is worth to notice, that the
energy needed to be provided at time t ∈ [0, T ] by conventional technologies to meet the
demand is max(0, Dt−Rt). Since we are not going to assume that Dt ≥ Rt almost surely
for all t ∈ [0, T ], we introduce p0 as the marginal costs for one MWh electricity from
renewable technologies. Hence, together with the derivation of ρ̂, in (3.1), we achieve a
price function ρ : [0, T ] × R+ × R+ → [p0, pN] for the energy market with contribution
from renewable energies by:

ρ(t, Rt, Dt) =

{

p0 if Dt − Rt < 0,

ρ̂(t, Dt − Rt) if Dt − Rt ≥ 0.
(3.2)
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3.2 Storage Characteristics

In this section we define the specific constraints, costs and the rewards the agent deals
with.

First of all we state the constraints on the size of the storage facility. Assume that the
facility has the maximal charging level cmax and the minimal charging level cmin quoted
in MWh and 0 ≤ cmin < cmax < ∞. At each time point t ∈ [0, T ] the storage facility
has a certain charging level Lt ∈ [cmin, cmax], which depends on the strategy up to time
t ∈ [0, T ], leading to the charging level process {Lt}t∈[0,T ]. Further details on {Lt}t∈[0,T ]

are given in Section 3.3.
The storage facility has three possible regimes i ∈ {−1, 0, 1}, corresponding to

i =











−1 charging the storage,

0 keeping the storage level constant,

+1 discharging the storage.

(3.3)

We postulate that given by the storage characteristics only a limited amount of energy
per time unit can be transferred from the storage into the electricity network, denoted
by aout[MWh], and charged from the network into the storage, denoted by ain[MWh].
Since the charging rate depends, besides ain and aout, also on the current charging level
Lt, t ∈ [0, T ], we define the change function ai : {−1, 0, 1}× [0, T ]× [cmin, cmax] → R+ for
regime i ∈ {−1, 0, 1} in the following way:

ai(t, Lt) =











ain(t, Lt) if i = −1,

0 if i = 0,

aout(t, Lt) if i = +1,

(3.4)

where ain and aout are appropriate functions of the charging level. This function gives the
changes in the storage level in MWh for a charging level Lt at time t ∈ [0, T ] and in regime

i ∈ {−1, 0, 1}. Therefore it holds that ∂a−1(t,l)
∂t

≤ ain and ∂a1(t,l)
∂t

≤ aout for all t ∈ [0, T ]
and l ∈ [cmin, cmax], which means that the restriction given by the storage characteristics
holds.

In the following, we introduce notations for the costs resulting from running the elec-
tricity storage. Let b denote the monetary costs of storing one MWh per time unit. These
costs summarize various costs; for example the cost due to not influenceable relative
discharging, mainly dependent on the charging level. As well we have operating and man-
aging costs Ki depending on the regime i ∈ {−1, 0, 1}. Finally, changing the regime incurs
switching costs. We denote the corresponding costs for switching from regime i to regime
j by Ci,j, i, j ∈ {−1, 0, 1}, and make the following assumptions on these costs.

Assumption 3.1. The costs Ci,j are greater than ε > 0 and furthermore satisfy the
triangle property, Ci,k ≤ Ci,j + Cj,k for all i, j, k ∈ {−1, 0, 1} and i 6= j.

Both assumptions on the switching costs are made to make a switching disadvanta-
geous, the first one to switch in general away from the current regime and the second one
to switch twice at the same time. This is needed “to role out chattering, where the owner
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would repeatedly change the regime back-and-forth”[Carmona and Ludkovski, 2010, Sec-
tion 2.1]. Furthermore, Assumption 3.1 ensures the existence of a finite variation optimal
strategy.

To get the reward of the storage in regimes i ∈ {−1, 0, 1} and at time t ∈ [0, T ], given
the contribution from the renewable energy sector Rt, the demand Dt and the charging
level Lt we have to sum the costs and rewards established before. The reward function
ψi : R+ × R+ × [cmin, cmax] → R in regime i ∈ {−1, 0, 1} is given by:

ψi(t, Rt, Dt, Lt) = i ρ(t, Rt, Dt) ai(t, Lt)− b Lt − Ki, (3.5)

where ρ(t, Rt, Dt), defined in (3.2), is the price of one MWh, ai(t, Lt), given by (3.4), is
the change rate in MWh, b are the costs of storing one MWh and Ki are the management
and operating cost in regime i ∈ {−1, 0, 1}. Besides, under the assumption that selling
and buying has an immediate influence on the charging level we can specify the dynamics
of the charging level process by

dLt = −i ai(t, Lt)dt, (3.6)

where i ∈ {−1, 0, 1} is the current regime and ai is the respective change function (3.4).

3.3 Control Problem

Finally, we are able to derive the control problem in our setting. This means, that given
the time horizon [0, T ] and the uncertain cash flows driven by the renewable energy process
{Rt}t∈[0,T ] and the demand process {Dt}t∈[0,T ], we attain an optimal strategy by steering
the regimes i ∈ {−1, 0, 1} such that the reward is maximized. Subsequently we going to
obtain a strategy consisting of optimal regimes and the corresponding switching times
between the regimes, which maximize the reward.

A strategy consists of a non-decreasing sequence of F-stopping times {τk}k≥0, with
0 ≤ τk ≤ τk+1 for all k ≥ 0, and a sequence of regimes {ξk}k≥0 with ξk 6= ξk+1 and
ξk ∈ {−1, 0, 1} for all k ≥ 0. We denote such a strategy by u = (ξk, τk)k≥0 and by
{ut}t∈[0,T ] the corresponding indicator of the current regime, given by:

ut =
∑

k≥0

ξk1[τk,τk+1)(t) , t ∈ [0, T ]. (3.7)

Note that {ut}t∈[0,T ] is uniquely determined by {τk}k≥0 and {ξk}k≥0 and vice versa, the
càdlàg process {ut}t∈[0,T ] determines {τk}k≥0 and {ξk}k≥0.

Definition 3.1 (Admissible Strategy [Djehiche et al., 2009, p. 2754]). A strategy u =
(ξk, τk)k≥0 is called admissible if it satisfies

lim
k→∞

τk = T P− a.s. (3.8)

The set of admissible strategies with τ0 ≥ t is denoted by U(t) for all t ∈ [0, T ].
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Moreover, for a given strategy u ∈ U(t) and a fixed initial charging level l ∈ [cmin, cmax],
the respective charging levels up to time T are uniquely determined by the following
ordinary differential equation [Carmona and Ludkovski, 2010, Eq. (4)]:

dLu
s = −us aus

(Lu
s )ds , Lu

0 = l , (3.9)

which is the strategy equivalent to the dynamics given in (3.6). Hence, every charging
level Lu

t with t ∈ [0, T ], given a strategy u, is determined by Lu
t = Lu

0 +
∫ t

0
(−us)aus

(Lu
s )ds.

Since we are always dealing with the charging level in combination with a given strategy
we suppress from now on u for simplicity, i.e. Lu

t =: Lt, t ∈ [0, T ].
For any strategy u ∈ U(t) being at time t ∈ [0, T ] in regime i, i.e. ut = i, given the

renewable energy contribution Rt = r, the demand Dt = d and the charging level Lt = l
the expected gain or loss until time T is given by:

J(t, r, d, l, i; u) = E

[∫ T

t

erm(t−s)ψus
(s, Rs, Ds, Ls) ds−

∑

τk<T

erm(t−τk)Cuτk−,uτk

∣

∣

∣

∣

∣

Ft, Lt = l, ut = i

]

.

(3.10)

The first term in (3.10) measures the rewards discounted to the present value at time
t with the market interest rate rm and the second term sums the discounted switching
costs of the strategy u up to time T . The function ψi(t, Rt, Dt, Lt) is the reward function
defined in (3.5).

These preliminaries lead to the formal control problem

J(t, r, d, l, i) = sup
u∈U(t)

J(t, r, d, l, i; u), (3.11)

Until now constraints on conditions at time T have not been specified. Since such
constraints are common in lending contracts, for example to return the storage facility
with the same inventory level as the initial one, we include a penalty function at time
T to cover that. The penalty function is the mathematical formulation of the respective
‘buy back provisions’(Carmona and Ludkovski [2010]). A common example for a penalty
function is V : R+ × R+ × [cmin, cmax] → R, given by:

V (RT , DT , LT ) = 2 ρ(T,RT , DT ) max(0, L0 − LT ), (3.12)

where L0 is the initial charging level at the beginning of the contract. Hence, the agent is
charged twice the market price, if he returns the storage at a lower level than the initial
level. This constraint is reasonable, since otherwise we would allow a risk free profit by
simply discharging the storage facility.
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Chapter 4

Recursive Optimal Stopping

This chapter is mainly based on Chapter 3 in the Ph.D. thesis of Michael Ludkovski
[2005]. The difference between his assumptions and ours is that we do not obtain the
price directly by a price process. Instead, we achieve the price by the modified merit
order curve ρ(t, Rt, Dt), (3.2), with renewable energy process {Rt}t∈[0,T ] representing the
amount of energy in MWh produced by renewable technologies at time t ∈ [0, T ] and the
load process {Dt}t∈[0,T ], as implemented in Section 3. Furthermore in [Ludkovski, 2005,
Chapter 3] deals with the optimal switching problem without considering the charging
level and its dependence to the reward and strategy. Thus, we extend the results to include
the charging level dependence, as well.

From now on we assume that the driving process is just {Rt}t∈[0,T ] and keep the load
process {Dt}t∈[0,T ] constant over time, i.e. Dt = D > 0 for t ∈ [0, T ]. Based on the
assumption of a fixed demand D the functions introduced in Chapter 3 simplify to:

ρ(t, r) := ρ(t, r, D),

ψi(t, r, l) := ψi(t, r, D, l),
(4.1)

where ρ : [0, T ] × R+ → [p0, pN] is the respective price function derived from (3.2) and
ψi : [0, T ]× O × [cmin, cmax] → R is the reward function in regime i ∈ {−1, 0, 1} derived
from (3.5).

In Section 4.1 technical assumptions on the reward function ψi in regime i and the
driving process {Rt}t∈[0,T ] are stated and further notations are introduced. We recall
general results for Snell envelope theory, which are important for solving the optimal
switching problem (3.11) in Section 4.3, in Section 4.2.

4.1 Setup and Assumptions

We start with stating the assumptions on the renewable energy process {Rt}t∈[0,T ]. We
assume that {Rt}t∈[0,T ] is an Itô process on the open subset O ⊆ R+. The respective
Brownian motion {Bt}t∈[0,T ] is defined on the probability space (Ω,F ,P). The filtration
F = {Ft}t∈[0,T ] is the completed filtration generated by {Bt}t∈[0,T ] and satisfies the usual
condition of right continuity, i.e. ∩ǫ>0Ft+ǫ = Ft for all t ∈ [0, T ], and completeness, i.e. all
set of F with probability zero are contained in Ft, ∀t ∈ [0, T ]. The corresponding filtrated
probability space is (Ω,F ,F,P).

25



26 CHAPTER 4. RECURSIVE OPTIMAL STOPPING

For ease of notation we introduce important sets. Define:

S := S0 = {τ : F-stopping time 0 ≤ τ ≤ T} (4.2)

and the set
Sv := {τ ∈ S : v ≤ τ}, (4.3)

for v ∈ S. Moreover, for p ≥ 1 we define:

Sp
T :=

{

{Xt}t∈[0,T ] : Xt ∈ Ft,E

[

sup
t∈[0,T ]

|Xt|
p

]

<∞

}

, (4.4)

and

Mp
T :=

{

{Xt}t∈[0,T ] : Xt ∈ Ft,E

[
∫ T

0

|Xs|
p ds

]

<∞

}

. (4.5)

Assumption 4.1 ([Ludkovski, 2005, Assumption 1]). The reward function ψi is Borel
measurable and ψi(·, R·, L·) ∈ M2

T for all initial charging levels L0 ∈ [cmin, cmax] and
i ∈ {−1, 0, 1}.

The first assumption is necessary that {ψ(t, Rt, l)}t∈[0,T ] is a random process for all
l ∈ [cmin, cmax]. The second assumption is needed to make the Snell envelope uniformly
integrable. The reward function ψi stated in (4.1) satisfies these assumptions for every
regime i ∈ {−1, 0, 1}. Measurability is ensured, since the reward function ψi is a sum of
constants and a measurable function ρ. Besides, ψi(·, R·, l) ∈ M2

T , since:

E

[
∫ T

0

|ψi(s, Rs, Ls)|
2ds

]

= E

[
∫ T

0

|i ρ(t, Rs) ai(t, Ls)− b Lt − Ki|
2ds

]

≤ E

[
∫ T

0

(|ρ(t, Rs) ai(t, Ls)|+ |b Lt|+ |Ki|)
2ds

]

≤

∫ T

0

(pN ai + b cmax + Ki)
2ds <∞.

(4.6)

The first inequality is simply the triangle property. The second inequality follows from
the operational characteristics, namely

ai(t, Lt) ≤ ai <∞ by the definition of the change function ai (3.4) and

Lt ≤ cmax <∞ due to the charging level restriction,

and the derivation of the electricity price, namely

ρ(t, Rt) ≤ pN <∞ by the definition of the price function (3.2).

Moreover, if we define a := maxi∈{−1,0,1} ai and K := maxi∈{−1,0,1} Ki we obtain:

E

[
∫ T

0

max
i∈{−1,0,1}

|ψi(s, Rs, Ls)|
2ds

]

≤

∫ T

0

(pN a+ b cmax + K)2ds <∞, (4.7)

and thus {supi∈{−1,0,1} ψi(t, Rt, Lt)}t∈[0,T ] ∈ M2
T .
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4.2 Snell envelope in continuous time

This section is mainly based on Appendix D in Karatzas and Shreve [2001]. We also include
results published by Fakeev [1970] in his introduction to stopping rules in continuous time,
Hamadène and Lepeltier [2000] paper on the mixed game problem and Cvitanic and
Karatzas [1996] Appendix A, as a more general summary. In addition the convergence
proof by Djehiche et al. [2009] given in the theoretical introduction to optimal multiple
switching problems is included.

Throughout this section let (Ω,F ,P) be a complete probability space and F = {Ft}t∈[0,T ]

be a filtration satisfying the usual conditions of right continuity and completeness. We
define the set S, Sv and Sp

T also for the general filtration F. Let {Zt}t∈[0,T ] be a càdlàg
process adapted to F and E[supt∈[0,T ] |Zt|

2] <∞. We call the process {Zt}t∈[0,T ], according
to the optimal stopping context, reward process, as defined in Thompson [1971].

Definition 4.1 (Essential Supremum [Karatzas and Shreve, 2001, Def. A.1]). Let {Zl}l∈L
be an arbitrary family of random variables with the index set L ⊆ R (or Z). The essential
supremum of {Zl}l∈L is the unique random variable Y satisfying that Y ≥ Zl a.s. for all
l ∈ L and Y ≤ X a.s for all random variables X such that X ≥ Zl a.s. for all l ∈ L. This
random variable is denoted by esssupl∈L Zl.

Definition 4.2 (Dominates [Björk, 2009, Def. 21.9]). We say a process {Yl}l∈L dominates
the process {Zl}l∈L, if Yl ≥ Zl a.s. for all l ∈ L ⊆ R (or Z).

Definition 4.3 (Snell Envelope [Karatzas and Shreve, 2001, D.7]). The Snell envelope of
the reward process {Zt}t∈[0,T ] is the smallest càdlàg supermartingale dominating {Zt}t∈[0,T ].

Theorem 4.4 ([Fakeev, 1970, Theorem 1 and Theorem 2]). The càdlàg process {Yt}t∈[0,T ],
given by

Yt := esssup
τ∈St

E[Zτ |Ft], t ∈ [0, T ], (4.8)

is the Snell envelope of the reward process {Zt}t∈[0,T ].

Proof. This proof is a summary of the respective proof of theorems [D.1]-[D.7] given in
Karatzas and Shreve [2001], using the same notation and extend it to the uniformly
integrable {Zt}t∈[0,T ] process, instead of a non-negative process.

For all t ∈ [0, T ] the process Yt is adapted to Ft by definition, see (4.8). Moreover, we
prove the existence of a sequence of stopping times {τn}

∞
n=0 in Sv such that {E[Zτn |Fv]}

∞
n=1

is non-decreasing and limn→∞E[Zτn |Fv] = esssupτ∈Sv
E[Zτ |Fv] almost surely. To see this,

we have to recognize that the family of random variables {E[Zτ |Fv]}τ∈Sv
is closed under

pairwise maximization. This means that for every stopping time τ1, τ2 ∈ Sv there exists a
stopping time τ3 := 1Bτ1 + 1Bcτ2, where B = {ω ∈ Ω : E[Zτ1 |Fv](ω) ≥ E[Zτ2 |Fv](ω)} ∈
Fv, such that the following holds:

E[Zτ3 |Fv] = E[1BZτ1 |Fv] + E[1BcZτ2 |Fv] = 1BE[Zτ1 |Fv] + 1BcE[Zτ2 |Fv]

= E[Zτ1 |Fv] ∨ E[Zτ2 |Fv] ≥ E[Zτi |Fv] i = 1, 2.

The operator ‘∨’ is the pathwise maximum operator. For a given A ∈ Fv and K ∈ N

choose disjoint sets A1, . . . , AK in Fv, such that ∪K
k=1Ak = A, and τ1, . . . , τK are stopping
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times in Sv. We define the corresponding set by π = {K;A1, . . . , AK ; τ1, . . . , τK} and
denote it by {E[Zτ |Fv]}τ∈Sv

-partition of A given K. In addition we define

µα
π(A) := E

[

K
∑

k=1

1Ak
E[Zτk |Fv] ∧ α

]

and
µα(A) := sup {µα

π | π a {E[Zτ |Fv]}τ∈Sv
-partition of A }

For a given n ∈ N there exists a {E[Zτ |Fv]}τ∈Sv
-partition of Ω denoted by

πn = {K(n);A
(n)
1 , . . . , A

(n)
K ; τ

(n)
1 , . . . , τ

(n)
K }

such that

µn(Ω) ≤ E





K(n)
∑

k=1

1
A

(n)
k

E[Z
τ
(n)
k

|Fv] ∧ n



+
1

n
,

since µn(Ω) ≤ n <∞. Then, due to {E[Zτ |Fv]}τ∈Sv
is closed under pairwise maximization,

we get Fn = E[Z
τ
(n)
1

|Fv] ∨ · · · ∨E[Z
τ
(n)
K

|Fv] and En = F1 ∨ · · · ∨ Fn are in {E[Zτ |Fv]}τ∈Sv
.

Hence, we have that:

E

[

esssup
τ∈Sv

E[Zτ |F ]

]

= µ∞(Ω) ≤ lim
n→∞

E[En] = E

[

lim
n→∞

En

]

and since En ≤ esssupτ∈Sv
E[Zτ |Fv] for all n ∈ N a.s., we have equality. Thus, there exists

a sequence of stopping times {τn}n≥0 such that:

lim
n→∞

E[Zτn |Fv] = esssup
τ∈Sv

E[Zτ |Fv]

Then we see that the first equality in

E[|Yt|] = E

[

| lim
n→∞

E[Zτn |Ft]|
]

≤ E

[

sup
t∈[0,T ]

|Zt|

]

<∞ ∀t ∈ [0, T ] (4.9)

holds. The inequality follows from E[Zτn |Ft] ≤ E[sups∈[0,T ] Zs|Ft].
Since for all v > µ, v, µ ∈ S the following inequality holds,

E[Yv|Fµ] = lim
n→∞

E[E[Zτn |Fv]|Fµ] = lim
n→∞

E[Zτn |Fµ] = esssup
τ∈Sv

E[Zτ |Fµ]
Sv⊆Sµ

≤ Yµ, (4.10)

we see that {Yt}t∈[0,T ] is a supermartingale. The first equality in (4.10) is obtained as in
(4.9). The second equality follows from the law of iterated conditional expectation. The
third is a result of the following two inequalities. On the one hand from the definition of
the essential supremum it holds that:

lim
n→∞

E[Zτn |Fµ] ≤ esssup
τ∈Sv

E[Zτ |Fµ].
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On the other hand E[Zρ|Fv] ≤ Yv = esssupτ∈Sv
E[Zτ |Fv] for all ρ ∈ Sv and v ∈ Sµ and,

by taking the conditional expectation it follows that for all ρ ∈ Sv, E[Zρ|Fµ] ≤ E[Yv|Fµ].
This implies that

esssup
τ∈Sv

E[Zτ |Fµ] ≤ E[Yv|Fµ]. (4.11)

Thus we see by comparing (4.11) with (4.10) that the third equality holds. The last
inequality follows due to the fact that Sv ⊆ Sµ. Hence, we see that {Yt}t∈[0,T ] is a super-
martingale.

Let us define

S∗v := {τ ∈ Sv : τ > v a.s. on {τ < T}}

and introduce Y ∗v = esssupτ∈S∗
v
E[Zτ |Fv]. Since Yv ≥ Y ∗v ∨Zv by the definition of the essen-

tial supremum, Theorem 4.1, and by taking the essential supremum above the following
inequality

E[Zρ|Fv] = E[Zv1ρ=v+Zρ1ρ>v|Fv] = Zv1ρ=v+E[Zρ1ρ>v|Fv] ≤ Zv1ρ=v+Y
∗
v 1ρ>v ≤ Y ∗v ∨Zv,

it follows that

Yv = Y ∗v ∨ Zv. (4.12)

Define for every decreasing sequence {vn}n≥0 in S
∗
v the respective stopping times {τn}n≥0

for a τ ∈ Sv by

τn =

{

τ if τ > vn,

T if τ ≤ vn.

Moreover, since {Zt}t∈[0,T ] is in S2
T there exists a sufficient large constant C such that

{Zt + C}t∈[0,T ] is non negative. Denote Zt + C =: ZC
t for t ∈ [0, T ]. For the respective

essential supremum {Y C∗

t }t∈[0,T ] and some A ∈ Fv the following holds:

∫

A∩{vn<T}

ZC
τndP −

∫

A∩{τ≤vn<T}

ZC
T dP =

∫

A∩{vn<τ<T}

ZC
τ dP

=

∫

A∩{vn<τ<T}

E[ZC
τ |Fv]dP ≤

∫

A∩{vn<τ<T}

Y C∗

vn dP

≤

∫

A∩{v<T}

Y C∗

vn dP.

Then for letting n→ ∞ it follows that the set {vn < T} ↑ {v < T} and {τ ≤ vn < T} ↓ ∅.
Hence, we have by the right continuity of {Zt}t∈[0,T ]:

∫

A∩{v<T}

ZC
τ dP ≤ lim

n→∞

∫

A∩{v<T}

Y C∗

vn dP,

and after subtracting
∫

A∩{v<T}
C dP from both sides we obtain:

∫

A∩{v<T}

Zτ dP ≤ lim
n→∞

∫

A∩{v<T}

Y ∗vndP. (4.13)
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Furthermore for {v = T} we see that,

∫

A∩{v=T}

ZT dP ≤

∫

A∩{v=T}

Y ∗vndP. (4.14)

By (4.14) and (4.13) we have
∫

A
Zτ dP ≤ limn→∞

∫

A
Y ∗vn dP and thus

∫

A

Y ∗v dP ≤ lim
n→∞

∫

A

Y ∗vn dP.

On the other hand from supermartingale property it follows that

∫

A

Y ∗vn dP =

∫

A

E[Y ∗vn |Fv] dP ≤

∫

A

Y ∗v dP. (4.15)

As conclusion we obtain

lim
n→∞

∫

A

Y ∗vn dP =

∫

A

Y ∗v dP. (4.16)

By the extension of Fatou’s lemma for integrable lower bounds and the right continuity
of {Zt}t∈[0,T ] we get

Y ∗v ≥ lim inf
n→∞

E[Zvn |Fv] ≥ E

[

lim
n→∞

Zvn

∣

∣

∣
Fv

]

= Zv. (4.17)

It follows by (4.12) that

Y ∗v = Yv a.s..

Hence there exists a càdlàg version Y 0
v of Yv, from now on denoted by Yv.

Let {Xt}t∈[0,T ] be a regular càdlàg supermartingale dominating {Zt}t∈[0,T ]. Then for
all t ∈ [0, T ] the following inequality holds

Xt ≥ Zt ∀t ∈ [0, T ].

Thus for every τ ∈ St get

Xt ≥ E[Xτ |Ft] ≥ E[Zτ |Ft]

and by the definition of the essential supremum: Xt ≥ Yt, for all t ∈ [0, T ]. Hence we have
proofed that {Yt}t∈[0,T ] is the Snell envelope of {Zt}t∈[0,T ].

Theorem 4.5 (Doob-Meyer decomposition supermartingale [Karatzas and Shreve, 2001,
Theorem D.13] ). Let {Yt}t∈[0,T ] be a supermartingale of class [D] (i.e. the set of random
variables {Yτ , τ ∈ S} is uniformly integrable) the Doob Meyer decomposition implies that
there exists a finite martingale {Mt}t∈[0,T ] and an increasing process {At}t∈[0,T ] such that

Yt =Mt − At, t ∈ [0, T ],

with Y0 =M0 and A0 = 0.
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Theorem 4.6 ([Cvitanic and Karatzas, 1996, A.10 and A. 11]). Suppose that {Zt}t∈[0,T ]

is upper semicontinuous (i.e. lim supn→∞ Zτn ≤ Zτ for all τ ∈ S and τn ↑ τ). Then, the
Snell envelope {Yt}t∈[0,T ] of {Zt}t∈[0,T ] is a continuous and uniformly integrable process.
Furthermore, for a given stopping time v ∈ S the optimal strategy is given by:

τv = inf{s ≥ v : Zs = Ys} ∧ T (4.18)

and we denote this strategy as Snell strategy.

Proof. We follow the proof as given in [Hamadène and Lepeltier, 2000, Lemma 1]. Since
|Yt| ≤ E

[

sups∈[0,T ] |Zs||Ft

]

, where E
[

sups∈[0,T ] |Zs||Ft

]

is a martingale, it follows by
Doob’s inequality that

E

[

sup
s∈[t,T ]

|Ys|
2

]

≤ 4E

[

sup
s∈[0,T ]

|Zs|
2

]

<∞.

Moreover we see that {Yτ}τ∈S is uniformly integrable. According to the Doob-Meyer
decomposition, Theorem 4.5, have a martingale {Mt}t∈[0,T ] and a nondecreasing process
{At}t∈[0,T ] such that Yt =Mt −At for all t ∈ [0, T ]. Let {Y −t }t∈[0,T ] be the left continuous
version of {Yt}t∈[0,T ] and {Zt}t∈[0,T ] defined by Zτ := lim supn→∞Zτn for all τ ∈ S and
τn ↑ τ . Hence all jumps of {At}t∈[0,T ] are included in the set {Y − = Z}. For a stopping
time τ ∈ S, where the process {At}t∈[0,T ] jumps, the following holds:

E
[

Y −τ 1△Aτ>0

]

= E
[

Zτ1△Aτ>0

]

≤ E [E [Zτ |Fτ−] 1△Aτ>0] = E [Zτ1△Aτ>0] ≤ E [Yτ1△Aτ>0] ,

where the first inequality is given by the upper semicontinuity and the second by the
definition of the Snell envelope {Yt}t∈[0,T ]. It follows that {At}t∈[0,T ] and thus {Yt}t∈[0,T ] is
continuous.

We now mimic the proofs of Proposition D.10 and Theorem D.12 in Karatzas and
Shreve [2001] with our assumptions on {Zt}t∈[0,T ], i.e. {Zt}t∈[0,T ] is not non-negative and
not continuous. To prove the existence of a snell strategy we define for v ∈ S and α ∈ (0, 1)
the set

Dα(v) := inf{t ∈ (v, T ] : αYt ≥ Zt} ∈ Sv (4.19)

and the set

D∗(v) := lim
α↑1

Dα(v).

Set (4.19) is right continuous by the right continuity of {Yt}t∈[0,T ] and {Zt}t∈[0,T ]. Moreover
it holds that:

αYDα(t) ≤ ZDα(t), for all t ∈ [0, T ]. (4.20)

Furthermore since t ≤ Dα(t), it follows that Yt ≥ E[YDα(t)|Ft]. Now define a non negative
version of {Zt}t∈[0,T ] by Z

C
t = Zt+C, where C > 0 is a sufficient large constant. Note that

all inequalities given above are also valid for {ZC
t }t∈[0,T ] and the respective {Y C

t }t∈[0,T ].
On the set {Dα(t) = t} we obtain that

αY C
t + (1− α)E[Y C

Dα(t)|Ft] = Y C
t ≥ ZC

t
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On the other hand on the set {Dα(t) > t} we get, due to the positivity of ZC
t and hence

the positivity of Y C
t , that:

αY C
t + (1− α)E[Y C

Dα(t)|Ft] ≥ αY C
t ≥ ZC

t

Thus we get that E[Y C
Dα(t)|Ft] ≥ ZC

t and together with (4.20) we have E[Y C
Dα(t)|Ft] = Y C

t .
By subtracting the constant C from both sides it follows that:

E[YDα(t)|Ft] = Yt, for all t ∈ [0, T ]. (4.21)

Combing (4.21) and (4.20) we obtain that.

Yv = E[YDα(v)|Ft] ≤
1

α
E[ZDα(v)|Ft] a.s.

Since ZDα(v) ≤ supt∈[0,T ] Zt a.s. , hence bounded and by the upper semicontinuity, we get

Yv ≤ lim
α↑1

E[YDα(v)|Ft] ≤ E[ZD∗(v)|Ft] a.s.

The reverse inequality is obtained by the supermartingale property of {Yt}t∈[0,T ], i.e.

E[ZD∗(v)|Fv] = E[YD∗(v)|Fv] ≤ Yv.

As conclusion we obtain

E[ZD∗(v)|Fv] = Yv. (4.22)

Thus E[ZD∗(v)] = Yv ≥ E[YD∗(v)], but since {Yt}t∈[0,T ] dominates {Zt}t∈[0,T ] it must be true
that ZD∗(v) = YD∗(v). This implies:

D∗(v) ≥ inf{t ∈ [v, T ] : Yt = Zt}.

On the other hand it follows from the definition (4.19), that

D∗(v) = lim
α↑1

Dα(v) ≤ inf{t ∈ (v, T ] : Yt ≥ Zt}.

Besides, on the set {Zv = Yv} the right continuity of {Yt}t∈[0,T ] and {Zt}t∈[0,T ] implies
that Dα(v) = v a.s. for all α ∈ (0, 1) and thereby D∗(v) = v. Hence we conclude that:

D∗(v) = inf{t ∈ [v, T ] : Yt = Zt}

and by (4.22) we see that D∗(v) is the optimal stopping time after v ∈ S.

Theorem 4.7 ([Djehiche et al., 2009, Proposition 2. iv]). Let {Zn
t }t∈[0,T ] be a càdlàg

and uniformly integrable for every stopping time τ ∈ S sequence of processes n ≥ 0,
such that {Zn

t }t∈[0,T ] converges increasingly and pointwisely to {Zt}t∈[0,T ]. Then the Snell
envelope {Y n

t }t∈[0,T ] of {Z
n
t }t∈[0,T ] converges increasingly and point wise to {Yt}t∈[0,T ] the

Snell envelope of {Zt}t∈[0,T ].
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Proof. Since {Zn
t }t∈[0,T ] is increasing in n ≥ 0 and converges pointwise to {Zt}t∈[0,T ], it

follows that Zn
t ≤ Zt a.s. for all t ∈ [0, T ] and n ≥ 0. Hence Y n

t ≤ Yt for all t ∈ [0, T ] and
every n ≥ 0 and we have that

lim
n→∞

Y n
t ≤ Yt, t ∈ [0, T ]. (4.23)

The process {limn→∞ Y
n
t }t∈[0,T ], as a limit of a non-decreasing càdlàg supermartingale

sequence of class [D], also is a càdlàg supermartingale of class [D]. On the other hand
since Zn

t ≤ Y n
t a.s. for all t ∈ [0, T ] and every n ≥ 0, it follows that limn→∞Z

n
t = Zt ≤

limn→∞ Y
n
t . Thus we see that:

Yt ≤ lim
n→∞

Y n
t , t ∈ [0, T ]. (4.24)

With (4.23) and (4.24) we conclude that Yt = limn→∞ Y
n
t for t ∈ [0, T ].

4.3 Optimal switching via recursive optimal stopping

For the control problem in (3.11) we will now explain how we can find a solution. It is
mainly based on two mathematical concepts, namely stochastic optimization and dynamic
programming. We stay in the framework described in Section 3.3 and use the definitions
and variables from that section. This includes the set of admissible strategies U(t) defined
in Definition 3.1 as well as the use of an Itô process on O ⊆ R+ as renewable energy
processes {Rt}t∈[0,T ], introduced in Section 4.1. Besides, we proved in (4.6) that the reward
functions ψi (4.1) for i ∈ {−1, 0, 1} and in (4.7) that supi∈{−1,0,1} ψi belongs to the set M

2
T ,

where M2
T was defined in (4.5). Furthermore we omit from now on for ease of notation

the discounting terms, since they inherit no additional challenge in the solution finding.
For every strategy u ∈ U(t) being at time t ∈ [0, T ] in regime i, i.e. ut = i, the

renewable energy process Rt = r and the charging level Lt = l the expected gain or loss
until time T, as given in (3.10), is in this setting given by:

J(t, Rt, l, i; u) = E

[

∫ T

t

ψus
(s, Rs, Ls) ds−

∑

τk<T

Cuτk−,uτk

∣

∣

∣

∣

∣

Rt = r, Lt = l, ut = i

]

.

(4.25)
The function ψi(t, Rt, Lt) is the reward function defined in (4.1) for the fixed demand D.
In contrast to (3.10) the information up to time t ∈ [0, T ] can be reduced to Rt = r since
{Rt}t∈[0,T ] is a Markov process.

A strategy u ∈ U(t) is called finite, if the agent makes only a finite number of decisions
within [t, T ]. This means for u ∈ U(t) the respective τk satisfies the condition P(τk <
T for all k ≥ 0) = 0. Moreover, the optimal strategy lies in the set of finite strategies,
denoted by Uf (t), as stated in Proposition 4.8.

Proposition 4.8 ([Djehiche et al., 2009, Proposition 1]). The suprema over admissible
strategies and finite admissible strategies coincide:

sup
u∈U(t)

J(t, r, l, i; u) = sup
u∈Uf (t)

J(t, r, l, i; u), (4.26)
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It is worth to notice, that multiple switching at the same time, τk = τk+1 for k ≥ 0,
would in principle be possible, however by the subadditivity of Ci,j as stated in Assumption
3.1 this would be suboptimal. Furthermore, it is worth to notice that by the construction
of {us}s∈[t,T ] via stopping times {τk}k≥0, it follows that {us}s∈[t,T ] is adapted to F. This
implies, that the decisions of the agent only rely on the informations given by the renewable
energy process {Rt}t∈[0,T ].

The first idea leading to the solution is formulated by R. Bellman in the 1950’ies in the
framework of Dynamic Programming and is known as the Bellman optimality principle.

Theorem 4.9 ( [Bellman, 1954, Principle of optimality]). Every optimal strategy to max-
imize (4.25) has the property that, whatever the initial regime, charging level and initial
decisions are, the remaining decisions must constitute an optimal strategy with regard to
the regime and the charging level resulting from the initial decisions.

To apply this principle we restrict the total number of allowed switches to K ∈ N.
Accordingly, we define the set

Uk(t) := {u ∈ U(t) : τl = T for all l ≥ k}

of all admissible strategies, as defined in Definition 3.1, with maximal k ∈ {1, . . . , K}
switches allowed and starting at time t. Now, we have on the one hand the classical
control problem with at most K regime switches allowed in the setting (4.25), given by

JK(t, r, l, i) = sup
u∈UK(t)

E

[

∫ T

t

ψus
(s, Rs, Ls) ds−

∑

0≤k≤K

Cuτk−,uτk

∣

∣

∣

∣

∣

Rt = r, Lt = l, ut = i

]

,

(4.27)
which is the analogue to (3.11) with restricted number of switches and under the assump-
tions introduced in Section 4.1.

On the other hand, having the Bellman’s optimality principle in mind we can formulate
a recursive definition. By applying the principle we are left with finding the optimal
solution for the next K − 1 switches from the time the first switch occurred onwards
and so forth. Hence, the problem reduces to finding the first stopping time under the
condition that only one switch is allowed and then going bottom up in the number of
allowed switches.

Since we stay in one regime until the next switch occurs, we can simplify the actual
charging level opposed the dependence on the optimal strategy as given in (3.9) by a
definition for a fixed regime i ∈ {−1, 0, 1}. This means that we just need to obtain the
charging level at time s for staying in regime i from time t to time s and having charging
level l at time t. Thus, we define the charging level function ℓ : [0, T ]×[0, T ]×[cmin, cmax]×
{−1, 0, 1} → [cmin, cmax] by:

ℓ(t, s, l, i) = l +

∫ s

t

(−i) ai(m, ℓ(t,m, l, i))dm, (4.28)

where ai is given in (3.4).
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We define simpler recursive optimal stopping problems as stated in [Carmona and
Ludkovski, 2010, Eq. 3.7]. Define Jk(t, r, l, i) for r ∈ R+,l ∈ [cmin, cmax], 0 ≤ t ≤ T and
i ∈ {−1, 0, 1}, by:

J0(t, r, l, i) := E

[
∫ T

t

ψi(s, Rs, ℓ(t, s, l, i)) ds

∣

∣

∣

∣

Rt = r

]

,

Jk(t, r, l, i) := sup
τ∈St

E

[
∫ τ

t

ψi(s, Rs, ℓ(t, s, l, i)) ds+Mk,i(τ, Rτ , ℓ(t, τ, l, i))

∣

∣

∣

∣

Rt = r

]

,

(4.29)

for k = 1, . . . , K, where

Mk,i(t, r, l) := max
j 6=i

{

−Ci,j + Jk−1(t, r, l, j)
}

(4.30)

is the optimal strategy, given the decision to switch away from regime i ∈ {−1, 0, 1}
at time t ∈ [0, T ] and in charging level l ∈ [cmin, cmax]. Thus, M

k,i(t, r, l) contains the
recursive part of the definition and is the application of Bellman’s principle in (4.29).

Now, to invoke stochastic control methods we have to show that we can rewrite (4.29)
as:

Jk(t, r, l, i) = esssup
τ∈St

E

[
∫ τ

t

ψi(s, Rs, ℓ(t, s, l, i)) ds+Mk,i(τ, Rτ , ℓ(t, τ, l, i))

∣

∣

∣

∣

Rt = r

]

.

In order to do so we have to show that the regularity assumptions of Section 4.2 hold.
For ease of notation we write

Jk,i
t (l) := Jk(t, Rt, l, i), (4.31)

where the right hand side was introduced in (4.29). We are follow an idea given by Djehiche
et al. [2009] and extend it in a way that it covers also the additional dependence on the
charging level in our setting.

Theorem 4.10. The processes {Jk,i
t (l)}t∈[0,T ] are F-adapted, continuous and in S2

T for all
k ∈ {0, . . . , K}, l ∈ [cmin, cmax] and i ∈ {−1, 0, 1}, .

Proof. By induction we prove that for any regime i ∈ {−1, 0, 1} and charging level l ∈
[cmin, cmax] the theorem assumption holds. First, we shall prove that it holds for k = 0.
We can rewrite the definition given in (4.31) as

J0,i
t (l) = E

[
∫ T

0

ψi(s, Rs, ℓ(t, s, l, i)) ds

∣

∣

∣

∣

Ft

]

−

∫ t

0

ψi(s, Rs, ℓ(t, s, l, i)) ds, (4.32)

where the first summand is a martingale with respect to a Brownian motion and the
second is a continuous process. Hence, J0,i

t (l) is continuous. For all t ∈ [0, T ] the following
inequality holds:

|J0,i
t (l)| ≤ E

[∫ T

t

|ψi(s, Rs, ℓ(t, s, l, i))| ds

∣

∣

∣

∣

Ft

]

≤ E

[
∫ T

0

|ψi(s, Rs, ℓ(t, s, l, i))| ds

∣

∣

∣

∣

Ft

]

<∞
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since E[
∫ T

0
|ψi(s, Rs, ℓ(t, s, l, i))|

2 ds] <∞. Together with Doob’s inequality we obtain that

{J0,i
t (l)}t∈[0,T ] is in S2

T . Now, suppose that the statement holds for k and show that it is
also holds for k + 1. The process given by

{∫ t

0

ψi (s, Rs, ℓ(t, s, l, i)) ds+Mk+1,i(t, Rt, l)

}

t∈[0,T ]

, (4.33)

where Mk+1,i(t, Rt, l) is defined as in (4.30) is right continuous and in S2
T by (4.7). Fur-

thermore, by assumption 3.1 on the regime switching costs Ci,j, it holds that

max
j 6=i,j∈{−1,0,1}

(

−Ci,j + Jk,i
t (l)

)

|t↑T ≤ −ε ≤ 0.

Thus, since Jk,i
T (l) = 0, (4.33) is upper semi continuous. Hence, by Theorem 4.6 the

respective Snell envelope, given by

{

Jk+1,i
t (l) +

∫ t

0

ψi(s, Rs, ℓ(t, s, l, i)) ds

}

t∈[0,T ]

, (4.34)

is continuous and in S2
T . By subtracting the continuous term

∫ t

0
ψi(s, Rs, ℓ(t, s, l, i)) ds we

obtain that {Jk+1,i
t (l)}t∈[0,T ] is continuous and in S2

T .

Since we are now in the setting as introduced in Theorem 4.6, we can also apply
the Snell strategy derived in this theorem. The following Theorem 4.11 capitalizes the
Snell strategy. The theorem is based on the Verification Theorem [Djehiche et al., 2009,
Theorem 1] and transfers its results to the restricted switching case and the charging level
dependences.

Theorem 4.11 (Optimal Strategy). For a given l ∈ [cmin, cmax] and i ∈ {−1, 0, 1} the
optimal strategy is given by the sequence of F-stopping times {τk}k∈{0,...,K} and indicators
{ξk}k∈{0,...,K} ,defined by:

τ0 = 0,

τ(K+1)−k = inf
{

s ≥ τK−k : J
k,ξK−k

t (ℓ(τK−k, s, lK−k, ξK−k))

=Mk,ξK−k(s, Rs, ℓ(τK−k, s, lK−k, ξK−k))
}

∧ T,

(4.35)

where the charging levels {lk}k∈{0,...,K} are determined by:

l0 = l,

l(K+1)−k = ℓ(τK−k, τ(K+1)−k, lK−k, ξK−k),
(4.36)

and the corresponding regimes are given by:

ξ0 = i,

ξ(K+1)−k = argmax
j 6=ξK−k,j∈{−1,0,1}

(

−CξK−k ,j + Jk−1,j
τ(K+1)−k

(l(K+1)−k)
)

.
(4.37)
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Proof. By Theorem 4.10 we know that the processes {Jk,i
t (l)}t∈[0,T ] are F-adapted contin-

uous processes in S2
T for all k = 0, . . . , K, l ∈ [cmin, cmax] and i ∈ {−1, 0, 1}. Moreover,

we can apply the definition of the Snell strategy given in this theorem. Begin with K
switches allowed and in regime i ∈ {−1, 0, 1}, i.e. ξ0 = i, at time 0, i.e. τ0 = 0, and with
charging level l ∈ [cmin, cmax], i.e. l0 = l. Going back to the results (4.33) and (4.34), the
Snell envelope of the process

{
∫ t

0

ψi (s, Rs, ℓ(t, s, ℓ(0, t, l, i), i)) ds+MK,i(t, Rt, ℓ(0, t, l, i))

}

t∈[0,T ]

is given by

{

JK,i
t (ℓ(0, t, l, i)) +

∫ t

0

ψi(s, Rs, ℓ(t, s, ℓ(0, t, l, i), i)) ds

}

t∈[0,T ]

.

The corresponding Snell strategy as given in (4.18) is:

τ1 = inf

{

t ≥ 0 :

∫ t

0

ψi (s, Rs, ℓ(t, s, ℓ(0, t, l, i), i)) ds+MK,i(t, Rt, ℓ(0, t, l, i))

= JK,i
t (ℓ(0, t, l, i)) +

∫ t

0

ψi(s, Rs, ℓ(t, s, ℓ(0, t, l, i), i)) ds

}

∧ T

= inf
{

t ≥ τ0 : J
K,i
t (ℓ(0, t, l, i)) =MK,i(t, Rt, ℓ(0, t, l, i))

}

∧ T.

(4.38)

Accordingly, by (4.28) the charging level at τ1 is given by

l1 = ℓ(τ0, τ1, l0, ξ0),

where τ0 = 0, l0 = l and ξ0 = i are given and the stopping time τ1 is determined by (4.38).
The respective regime indicator ξ1 is obtained by:

ξ1 = argmax
j 6=ξ0,j∈{−1,0,1}

(

−Cξ0,j + JK−1,j
τ1

(l1)
)

,

Analogously the remaining stopping times {τk}k∈{2,...,K}, regime indicators {ξk}k∈{2,...,K}
and charging levels {lk}k∈{2,...,K} can be obtained.

To apply the recursive definition given in (4.29) to solve the control problem in (4.27)
we have to verify the equality of both formulations.

Theorem 4.12 ([Ludkovski, 2005, Theorem 1]). For r ∈ O,i ∈ {−1, 0, 1} and l ∈
[cmin, cmax] the maximal expected reward Jk(t, r, l, i) (4.29) is equal to the value function
for the optimal switching problem Jk(t, r, l, i) (4.27) with at most k = 0, . . . , K switches
allowed.

Proof. We show this by induction for starting at time t ∈ [0, T ] in any regime i ∈ {−1, 0, 1}
and charging level l ∈ [cmin, cmax]. Since for K = 0 no decision is necessary we start with
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K = 1 and obtain:

J1(t, r, l, i) = sup
u∈U1(t)

E

[
∫ T

t

ψus
(s, Rs, ℓ(t, s, l, i)) ds− Ci,uτ1

∣

∣

∣

∣

Rt = r

]

= esssup
τ∈St,j 6=i

E

[
∫ τ

t

ψi(s, Rs, ℓ(t, s, l, i))ds− Ci,j

+

∫ T

τ

ψj(s, Rs, ℓ(t, s, l, i))ds

∣

∣

∣

∣

Rt = r

]

= J1(t, r, l, i).

(4.39)

Thus, with the results of Theorem 4.11 we get that the Snell strategy

τ1 = inf{s ≥ t : J1(s, Rs, ℓ(t, s, l, i), i) =M i,1(s, Rs, ℓ(t, s, l, i))} ∧ T (4.40)

together with

ξ1 = argmax
j 6=i,j∈{−1,0,1}

{−Ci,j + J0(τ, Rτ , ℓ(t, τ, l, i), j)}

forms the optimal strategy in U1(t).

Let the assumption hold for K − 1, hence

E

[

JK−1(t, r, l, i)
∣

∣

∣
Ft

]

is equal to

E
[

JK−1(t, r, l, i)
∣

∣Ft

]

for all r ∈ O,l ∈ [cmin, cmax], t ∈ [0, T ] and i ∈ {−1, 0, 1}. Furthermore,

JK(t, r, l, i) ≥ E

[
∫ τ

t

ψi(s, Rs, ℓ(t, s, l, i)) ds−M i,K(τ, Rτ , ℓ(t, τ, l, i))

∣

∣

∣

∣

Rt = r

]

≥ E

[
∫ τ

t

ψi(s, Rs, ℓ(t, s, l, i)) ds− Ci,ξ + JK−1(ξ, Rτ , ℓ(t, τ, l, i))

∣

∣

∣

∣

Rt = r

]

= E

[
∫ τ

t

ψi(s, Rs, ℓ(t, s, l, i)) ds− Ci,ξ + JK−1(ξ, Rτ , ℓ(t, τ, l, i))

∣

∣

∣

∣

Rt = r

]

(4.41)

for all extensions τ ∈ St and ξ ∈ {−1, 0, 1} of the optimal strategy u ∈ UK−1(τ) with
uτ = ξ. Since τ ∈ St and ξ ∈ {−1, 0, 1} is arbitrary it holds that Jk(t, r, l, i) ≥ JK(t, r, l, i).

By Theorem 4.11 we know, that by setting

τ1 = inf{s ≥ t : JK(s, Rs, ℓ(t, s, l, i), i) =M i,K(s, Rs, ℓ(t, s, l, i))} ∧ T

and

ξ1 = argmax
j 6=i,j∈{−1,0,1}

{−Ci,j + JK−1(τ1, Rτ1 , ℓ(t, τ1, l, i), j)}
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we get the optimal regime switching time and the respective regime after t. Together with
the induction assumption we see that:

JK(t, r, l, i) = E

[
∫ τ1

t

ψi(s, Rs, Ls) ds− Ci,ξ1 + Jk−1(ξ, Rτ , Lτ1)

∣

∣

∣

∣

Rt = r

]

= E

[
∫ τ1

t

ψi(s, Rs, Ls) ds− Ci,ξ1 + Jk−1(ξ1, Rτ1 , Lτ1)

∣

∣

∣

∣

Rt = r

]

.

(4.42)

Hence, we have by (4.41) and (4.42) that Jk = Jk.

Additionally, we obtain the optimal strategy u ∈ Uk(t) by extension of the optimal
strategy u∗ ∈ Uk−1(τ) with initial regime ξ1 in the following manner:

τ0 = t and τk = τ ∗k−1 for k ∈ {1, . . . , K},

ξ0 = i and ξk = ξ∗k−1 for k ∈ {1, . . . , K}.

Hence, with the induction starting at (4.40) and we see that the Snell strategy and the
optimal strategy u ∈ Uk(t) coincides. Besides, under the assumption that {Rt}t∈[0,T ] is
Markovian it follows that τ ∗k = inf{s ≥ τ ∗k−1 : Jk−1(s, Rs, Ls) = M i,k−1(s, Rs, Ls)} ∧ T is
Markovian as well.

Now we defined everything on the basis of k ∈ {0, . . . , K} switches allowed but we
would like to come back to the general definition of J(t, r, l, i) with an arbitrary number
of switches. To come back to the general setting, we need the following theorem.

Theorem 4.13 ([Ludkovski, 2005, Theorem 2]). Let J(t, r, l, i) be defined as in (3.10)
and Jk(t, r, l, i) as in (4.29). Then JK(t, r, l, i) converges for K → ∞ a.s. pointwise to
J(t, r, l, i), for all other parameters fixed.

The proof can be obtained by mimicking the proof of Theorem 4.7 and noting the fact,
that more allowed switches are advantageous. This is obvious since UK(t) ⊂ UK+1(t), thus
JK(t, r, l, i) is monotonously rising in K ≥ 0, if we keep all other parameters fixed.
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Chapter 5

Numerical Solution

In this chapter we transfer the findings from the previous chapters to a computational
solution. To this end we switch from continuous time in discrete time.

Let M denote the number of time intervals with lag △t = T
M
, then the respective set

of possible switching times is given by {m△t}m=0,...,M . Accordingly, define the discrete
equivalent to (4.2) by

S△ := {τ ∈ S : τ = m△t a m = 0, . . . ,M} (5.1)

and for v ∈ S△ equivalent to (4.3) by

S△v := {τ ∈ S△ : τ ≥ v}. (5.2)

The set of admissible strategies (3.1) in discrete time is

U△(t) := {u ∈ U(t) : τk = m△t for m ∈ {0, . . . ,M}}. (5.3)

Furthermore, is the renewable energy process {Rm}m∈{0,...,M} in discrete time given by the
continuous time renewable energy process {Rt}t∈[0,T ] at the respective discrete time grid
points, i.e. Rm = Rm△t.

Denote by ψ△i : {0, . . . ,M} × O × [cmin, cmax] → R the reward function in discrete
time of regime i ∈ {−1, 0, 1} from m△t to time (m+ 1)△t. Defined by:

ψ△i (m, r, l) = ψi(m△t, r, l) △t, (5.4)

where ψi is the reward function as in (4.1) from the continuous time setting.
Since in the algorithms we need the charging level one time step ahead being in regime

i ∈ {−1, 0, 1} for having the current charging level l ∈ [cmin, cmax], we define the function
ℓ→ : {0, . . . ,M} × {−1, 0, 1} × [cmin, cmax] → [cmin, cmax] by:

ℓ→(m, l, i) =











l − i ai(m△t, l)△t if cmin ≤ l − i ai(m△t, l)△t ≤ cmax,

cmax if l − i ai(m△t, l)△t > cmax,

cmin if l − i ai(m△t, l)△t < cmin,

(5.5)

where ai(t, l) is the level change function given by (3.4). As well we need the current
charging level knowing the charging level l ∈ [cmin, cmax] one time step ahead and the

41
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regime i ∈ {−1, 0, 1} for the interval [m△t, (m+1)△t). Therefore, we define the function
ℓ← : {0, . . . ,M} × {−1, 0, 1} × [cmin, cmax] → [cmin, cmax] to go backwards in time by:

ℓ←(m+ 1, l, i) =











l + i ai((m+ 1)△t, l)△t if cmin ≤ l + i ai((m+ 1)△t, l)△t ≤ cmax,

cmax if l + i ai((m+ 1)△t, l)△t > cmax,

cmin if l + i ai((m+ 1)△t, l)△t < cmin.

(5.6)
These are the discrete time formulations of the charging level function given in (4.28).
By applying (5.5) we obtain the respective charging level process {Lm}m∈{0,...,M} for a
strategy u ∈ U△(0) with initial charging level L0 = l, l ∈ [cmin, cmax], by:

Lm = ℓ→(m− 1, Lm−1, um−1), m ∈ {1, . . . ,M}, (5.7)

analogously to (3.9).
The respective control problem to (3.10) in discrete time is given by:

J(m, r, l, i) = sup
u∈U△(m)

E

[

M
∑

n=m

ψ△um
(n,Rn, Ln)−

∑

τk<T

Cuτk−1
,uτk

∣

∣

∣

∣

∣

Rm = r, Lm = l, um = i

]

.

(5.8)

5.1 Snell envelope in discrete time

This section is based on Section VI in Neveu [1975]. We simplify the setting by assuming
that M <∞ and that the reward process {Zm}m∈{0,...,M} satisfies

E[ sup
m∈{0,...,M}

|Zm|] <∞.

This assumption reflects our problem setting and simplifies the definitions. Through-
out this section let (Ω,F ,P,F) be a filtrated probability space, where F := {Fm, m ∈
{0, . . . ,M}} is the completed filtration generated by {Zm}m∈{0,...,M}.

Definition 5.1 (Snell Envelope in discrete time [Neveu, 1975, Prop. VI-1-2 ]). The
Snell envelope {Ym}m∈{0,...,M} of {Zm}m∈{0,...,M} is the smallest supermartingale domi-
nating {Zm}m∈{0,...,M}.

Since M <∞ the solution of the {Zm}m∈{0,...,M}-backward equations given by:

Γm =

{

ZM if m =M,

Zm ∨ E[Γm+1|Fm] else ,
(5.9)

is unique and takes for m < M the value of Zm on the set G := {ω ∈ Ω : Zm(ω) ≥
E[Γm+1|Fm](ω)} and E[Γm+1|Fm] else. This sets give also the definition of the pathwise
maximum ’∨’ operator. Furthermore {Γm}m∈{0,...,M} is the Snell envelope of {Zm}m∈{0,...,M}.
The solution of the {Zm}m∈{0,...,M}-backward equation is adapted to F,

E[|Γm|] ≤ E[ sup
m∈{0,...,M}

|Zm|] <∞
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and E[Γm+1|Fm] ≤ Γm. Hence, it is a supermartingale and by definition smaller than all
other supermartingales dominating {Zm}m∈{0,...,M}. All in all we have that the solution
to the {Zm}m∈{0,...,M}-backward equations is the Snell envelope of {Zm}m∈{0,...,M}, i.e.
Γm = Ym for m ∈ {0, . . . ,M}. A more detailed proof can be found in [Neveu, 1975, Proof
of Prop. VI-1-2] and follows the same steps as the proof of Theorem 4.4 for the continuous
Snell envelope.

Definition 5.2 (Snell strategy [Neveu, 1975, Prop. VI-1-3]). Given the Snell envelope
{Ym}m∈{0,...,M} of {Zm}m∈{0,...,M}, the associated Snell strategy for all m ∈ {0, . . . ,M} is
given by:

τm := inf{s ∈ {m, . . . ,M} : Zs = Ys} ∧M. (5.10)

This is the discrete time equivalent of the Snell strategy as stated in Theorem 4.6 for
the continuous time case. Likewise, as for the Snell strategy there exists as well a discrete
time equivalent of the Doob-Meyer decomposition Theorem 4.5.

Theorem 5.3 (Doob-Meyer decomposition [Neveu, 1975, Prop. VIII-1-1]). Every finite
supermartingale {Ym}m∈{0,...,M} can be written as the difference between a finite positive
martingale {Mm}n∈{0,...,M} and an increasing process {Am}m∈{0,...,M},

Ym =Mm − Am , m ∈ {0, . . . ,M}, (5.11)

where M0 = Y0 and A0 = 0. Moreover the decomposition is unique.

5.2 Basic concept for the numerical solution

Within this section we derive the basic concept to solve the optimal control problem (5.8)
with numerical methods. This solution is based on three results:

(i) The maximal reward in regime i ∈ {−1, 0, 1} at time m△t with charging level
l ∈ [cmin, cmax] and contribution from renewable sources r ∈ O is given by:

max
j∈{−1,0,1}

(

−Ci,j + ψ△j (m, r, l) + E[J(m+ 1, Rm+1, ℓ←(m, l, j), j)|Rm = r]
)

, (5.12)

where Ci,i := 0 and Ci,j for j ∈ {−1, 0, 1} \ {i} the switching costs as defined in
Assumption 3.1. The respective optimal regime is given by:

argmax
j∈{−1,0,1}

(

−Ci,j + ψ△j (m, r, l) + E[J(m+ 1, Rm+1, ℓ←(m, l, j), j)|Rm = r]
)

. (5.13)

If (5.13) is i we stay and else we switch to the regime given by (5.13).

(ii) The reward J(M, r, l, i) is known for all r ∈ O,l ∈ [cmin, cmax] and i ∈ {−1, 0, 1} by
the penalty function given in (3.12).

(iii) The conditional expectation for j ∈ {−1, 0, 1}

E[J(m+ 1, Rm+1, ℓ←(m, l, j), j)|Rm = r] (5.14)

can be approximated by regression of a set function of r against the known values
J(m+ 1, Rm+1, l1, i), for l1 ∈ [cmin, cmax].
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This forms a solution of (5.8), since (5.12) and (5.13) in (i) can be obtained if we know the
conditional expectation (5.14). Due to the fact that the value (5.14) is not viable in most
of the problem, we need the approximation introduced in (iii). But the approximation
of (5.14) is based on the knowledge of J(m + 1, Rm+1, l, i), thus we need (ii) at time
T and the value given in (5.12) for (m + 1) ∈ {1, . . . ,M − 1}. Hence, we start with
J(M,RM , l, i) as stated in (ii), then we approximate E[J(M,RM , ℓ←(M, l, j), j)|RM−1 = r]
and consequently obtain by (5.12) J(M − 1, RM−1, l, i), and so forth. A visualization of
the consecutive steps is shown in Figure 5.1.

0 M△t(M − 1)△t

J(M,RM , l, i) (iii)J(M − 1, RM−1, l, i) (i)· · ·J(0, R0, l, i) (i)

(ii)(ii)(ii)

Figure 5.1: Visualization of the basic idea.

First of all we show that (5.12) holds. Therefore we have to bear in mind, that we
are now dealing with discrete Snell envelopes rather than with continuous ones, so we
can calculated them in standard manner via backward equations (5.9). Together with
Assumption 3.1 for the switching costs the control problem in discrete time simplifies as
follows.

Theorem 5.4 ([Carmona and Ludkovski, 2010, Eq. (12)]). The control problem (5.8) is
equivalent to

J(m, r, l, i) = max
j 6=i,j∈{−1,0,1}

(

−Ci,j + ψ△j (m, r, l) + E[J(m+ 1, Rm+1, ℓ→(m, l, j), j)|Rm = r]
)

∨
(

ψ△i (m, r, l) + E [J(m+ 1, Rm+1, ℓ→(l, i), i) | Rm = r]
)

,

(5.15)

where ‘∨’ is the pathwise maximum operator as introduced in (5.9).

Proof. Due to the fact that the proof can not be found in Carmona and Ludkovski [2010]
and the importance for the construction, we give a detailed proof of this equation. Anal-
ogously to the derivation of the continuous Snell envelope, see proof of Theorem 4.10, we
find that

{

J(m, r, l, i) +

m−1
∑

n=0

ψ△i (n,Rn, L
i
n)

}

m∈{0,...,M}

,
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where the charging level {Li
n}n=0,...,m−1 is given by Li

n = ℓ←(n+1, Li
n+1, i) for and L

i
m = l,

is the Snell envelope of
{

M i(m, r, l) +
m−1
∑

n=0

ψ△i (n,Rn, L
i
n)

}

m∈{0,...,M}

,

where M i(m, r, l) = maxj 6=i,j∈{−1,0,1}(−Ci,j + J(m, r, l, j)). Besides we define that

−1
∑

n=0

ψ△i (n,Rn, L
i
n) := 0.

From the backward equation (5.9) it follows that:

J(m, r, l, i) +

m−1
∑

n=0

ψ△i (n,Rn, L
i
n) =

(

M i(m, r, l) +

m−1
∑

n=0

ψ△i (n,Rn, L
i
n)

)

∨

E

[

J(m+ 1, Rm+1, l, i) +

m
∑

n=0

ψ△i (n,Rn, L
i
n)

∣

∣

∣

∣

∣

Fm

]

and by subtracting
∑m−1

n=0 ψ
△
i (n,Rn, L

i
n) we obtain:

J(m, r, l, i) =M i(m, r, l) ∨ E

[(

ψ△i (m, r, l) + J(m+ 1, Rm+1, ℓ→(m, l, i), i)
) ∣

∣

∣ Fm

]

.

(5.16)

Assume now, that for some ω ∈ Ω the following holds:

J(m, r, l, i)(ω) = −Ci,j + J(m, r, l, j)(ω) , j 6= i, j ∈ {−1, 0, 1},

and
J(m, r, l, j)(ω) = −Cj,k + J(m, r, l, k)(ω) , k 6= j, k ∈ {−1, 0, 1}.

Then, we obtain by the definition of the switching costs that:

J(m, r, l, i)(ω) = −Ci,j − Cj,k + J(m, r, l, k)(ω) <

{

J(m, r, l, i)(ω) for k = i,

−Ci,k + J(m, r, l, k)(ω) else .

This is a contradiction to (5.16). Hence on the set {J(m, r, l, i) = −Ci,j + J(m, r, l, j)} it
holds that:

J(m, r, l, j) = E[ψ△j (m, r, l) + J(m+ 1, Rm+1, ℓ→(m, l, j), j)|Rm = r]

= ψ△j (m, r, l) + E[J(m + 1, Rm+1, ℓ→(m, l, j), j)|Rm = r],

for j ∈ {−1, 0, 1} \ {i}. Thus, on the set {J(m, r, l, i) =M i(m, r, l)} we have that:

M i(m, r, l) = max
j∈{−1,0,1}\{i}

E[−Ci,j + ψ△j (m, r, l) + J(m+ 1, Rm+1, ℓ→(m, l, j), j)|Rm = r]

= max
j∈{−1,0,1}\{i}

(

−Ci,j + ψ△j (m, r, l) + E[J(m+ 1, Rm+1, ℓ→(m, l, j), j)|Rm = r]
)

.

With the measurability of ψ△i (m, r, l), we see that (5.15) holds.
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Consequently to find a solution to the problem given in (5.15) it is sufficient to evaluate
the conditional expectations. It is worth to notice, that the conditional expectations

E [J(m+ 1, Rm+1, ℓ→(l, i), i) | Rm = r] (5.17)

exist for every m ∈ {0, . . . ,M}, i ∈ {−1, 0, 1} and l ∈ [cmin, cmax], since

|J(m+ 1, Rm+1, ℓ→(l, i), i)| ≤
M
∑

m+1

max
i∈{−1,0,1}

|ai △t pN| <∞,

by the same arguments as in (4.7). Furthermore the conditional expectation lies in the
Hilbert space L2(P). A conditional expectation in a Hilbert space can be viewed as a
projection

y 7→ Φ(y) = E[X|Y = y].

Therefore we achieve a feasible projection representing the conditional expectation (5.17)
denoted by:

Φi,l
m : r → E [J(m+ 1, Rm+1, ℓ→(l, i), i) | Rm = r] . (5.18)

In most of the models it will not be possible to calculate this quantity explicitly. Conse-
quently, the problem could be solved by finding an adequate approximation for Φi,l

m, as
claimed in (iii). The idea we focus on for this approximation was given by Longstaff and
Schwartz [2001]. It is based on an approximation of Φi,l

m via a truncated Hilbert basis of
L2(P). Let NB denote the number of functions in the truncated Hilbert basis and

B = {Bj function j, j = 1, . . . , NB} (5.19)

the set of basis functions. How to select those functions and the number of functions NB,
which are sufficient to calculate the conditional expectation, is discussed in Section 5.5.

We obtain an approximation of the mapping Φi,l
m by a linear combination of functions

in B, i.e.

Φi,l
m(r) ≈

NB
∑

n=1

αnBn(r), (5.20)

where αn are R-valued coefficients and Bn(r) is the function value of the n-th function in
B. The coefficients {αn}n∈{1,...,NB} for a given set of functions B can by derived by:

α = argmin
α∈RNB

∥

∥

∥

∥

∥

Φi,l
m(·)−

NB
∑

n=1

αnBn(·)

∥

∥

∥

∥

∥

P

, (5.21)

where ‖Φi,l
m(·)‖P =

(∫

r∈O
(Φi,l

m(r))
2
P(dr)

)1/2
.

Since the exact computation of the projection (5.21) is in general not viable, we intro-
duce a sample based projection [Tsitsiklis and van Roy, 2000, Chapter C]. Therefore, we
generate a Monte Carlo sample of the driving renewable energy process {Rm}m∈{0,...,M}
starting at R0 = r0 ∈ O. Let N be the number of the Monte Carlo sample paths and
denote by

{rnm}
M
m=0 (5.22)
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the realization of the n-th path, n ∈ {0, . . . , N}.
Let us assume that we know {J(m + 1, rnm+1, l, i)}n∈{0,...,N} for all l ∈ [cmin, cmax].

The assumption is reasonable since we know {J(M, rnM , l, i)}n∈{0,...,N}, see (ii), for all
l ∈ [cmin, cmax] and iteratively by going backwards we know the reward one time step
ahead. The expectation at time m of the rewards {J(m + 1, rnm+1, l, i)}n∈{0,...,N} at time
m+1 can obtained by finding the linear combination of basis functions {B(rnm)}n∈{0,...,N}
of the realization of the driving processes at time m which minimize the distance in the
Euclidean norm. Estimates {α̂n}n∈{1,...,NB} for the coefficients {αn}n∈{1,...,NB} can now be
derived by:

α̂ = inf
α̂∈RNB

∥

∥

∥

∥

∥

∥

∥







J(m+ 1, r1m+1, l, i)
...

J(m+ 1, rNm+1, l, i)






−







∑NB

n=1 α̂nBn(r
1
m)

...
∑NB

n=1 α̂nBn(r
N
m)







∥

∥

∥

∥

∥

∥

∥

2

, (5.23)

where ‖ ·‖2 is the Euclidean norm. This approach is numerically efficient, since we use the
Monte Carlo sample paths for deriving the conditional expectation as well as for generating
the pathwise reward values. For large samples the obtained coefficients {α̂n}n∈{1,...,NB}

become close to the exact coefficients in (5.21)[Tsitsiklis and van Roy, 2000, Chapter C].
The assumption that we know {J(m+ 1, rnm+1, l, i)}n∈{0,...,N} for all l in the subset of

the real numbers [cmin, cmax] neglects that this knowledge is numerical not feasible.
An intuitive idea is to find values for {J(m+ 1, rnm+1, l, i)}n∈{0,...,N} for all l ∈ [cmin, cmax]
by interpolation. Therefore construct a grid within the feasible charging levels, L = {c0 =
cmin, c1, . . . , cG = cmax}, and interpolate between those grid points. This is the idea behind
the ‘Mixed Interpolation Tsitsiklis-van Roy ’ (MITvR) scheme introduced in Section 5.3,
formulated in the work of Ludkovski [2005].
But the MITvR scheme resembles a slow lattice scheme in the charging level variable
l ∈ [cmin, cmax] and is hence not numerically efficient (Carmona and Ludkovski [2010]).
Accordingly we try to circumvent this lattice scheme in the charging level, by using the
‘Bivariate Least Squares Monte Carlo’ (BLSM) scheme invented by Ludkovski [2005],
which is described Section 5.4.

5.3 Mixed Interpolation Tsitsiklis-van Roy (MITvR)

The MITvR scheme is based on the intuitive idea to pass the continuous charging level
interval [cmin, cmax] into the discrete set L = {c0 = cmin, c1, . . . , cG = cmax}. It is called
Tsitsiklis-van Roy scheme, since we use the approximated values for the next step as
established in Tsitsiklis and van Roy [2000] in comparison to the realized values as done
in Longstaff and Schwartz [2001].

Let G be the number of equidistant intervals within [cmin, cmax], hence the grid points
are given by:

cg = cmin + g △g , g ∈ {0, . . . , G},

where △g = (cmax − cmin)/G.
To make the regime decision at time m△t and charging levels {cg}g∈{0,...,G} we need

an approximation of the following conditional expectation:

E [J(m+ 1, Rm+1, ℓ→(m, cg, i), i) | Rm = r]
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for every i ∈ {−1, 0, 1} and the respective charging level ℓ→(m, cg, i) at (m+ 1)△t given
by (5.5). Since we do not know the value J(m + 1, rnm+1, ℓ→(m, cg, i), i) for the charging
level ℓ→(m, cg, i) we interpolate them by the known values {J(m+1, rnm+1, cg, i)}g∈{0,...,G}
for each path n ∈ {0, . . . , N}. Then apply the method pointed out in Section 5.2. Obtain
the coefficients {α̂n}n∈{1,...,NB} as in (5.23) by replacing

{J(m+ 1, rnm+1, ℓ→(m, cg, i), i)}n∈{0,...,N}

with the interpolated values

{Ĵ(m+ 1, rnm+1, ℓ→(m, cg, i), i)}n∈{0,...,N}.

For each g ∈ {0, . . . , G} we get the approximation of the function Φ
i,ℓ→(cg ,i)
m by:

Φ̂i,ℓ→(cg,i)
m (r) =

NB
∑

n=1

α̂nBn(r), (5.24)

as given in (5.20). A visualization of this consecutive steps is shown in Figure 5.2.
Let us now assume at time m△t and path n ∈ {0, . . . , N} that we are in regime

i ∈ {−1, 0, 1}. Define the function v̂ : {0, . . . ,M} ×O ×L× {−1, 0, 1} → R by:

v̂(m, rnm, cg, j) =

{

Φ̂
j,ℓ→(m,cg ,j)
m (rnm) + ψ△j (m, r, cg)− Ci,j if j 6= i,

Φ̂
i,ℓ→(m,cg,i)
m (rnm) + ψ△i (m, r, cg) if i = j,

(5.25)

where Φ̂
j,ℓ→(m,cg,j)
m is given by (5.24), ψ△i is given by (5.4) and Ci,j are the switching costs

from regime i to regime j. The respective reward value is then given by:

Ĵ(m, rnm, cg, i) = max
j∈{−1,0,1}

v̂(m, rnm, cg, j).

Moreover, the optimal regime can be evaluated using the function ξ̂ : {0, . . . ,M} × O ×
[cmin, cmax]× {−1, 0, 1} → {−1, 0, 1}, defined by:

ξ̂(m, rnm, g, i) = argmax
j∈{−1,0,1}

v̂(m, rnm, cg, j). (5.26)

The function ξ̂ gives the optimal regime in the time interval from m△t until (m + 1)△t
for the renewable energy contribution rnm, coming from regime i and have the charg-
ing level cg at time m△t. The resulting optimal regimes are the computational equiv-
alents to the optimal regime (ξk)k≥0 in (3.7). The respective switching times (τk)k≥0 in

(3.7) are those m ∈ {0, . . . ,M} for which ξ̂(m, r, g, i) 6= i, but this knowledge is not
required in the computational solution. Based on the fact, that the switching regions
for each time m△t, m ∈ {0, . . . ,M} and for all grid point g ∈ {0, . . . , G} given by
(rnm, ξ̂(m, r

n
m, g, i))n∈{0,...,N} determines the optimal strategy uniquely.

Starting at time T =M△t in paths n ∈ {0, . . . , N} with the value:

Ĵ(M, rnM , cg, i) = V (rnM , cg, i) for g ∈ {0, . . . , G},

where V is the penalty function, for example (3.12), and successively applying the steps,
described above, we obtain the optimal expected value at time 0, Ĵ(0, r0, L0, i).
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Figure 5.2: Visualization of one time step m△t in the MiTvR scheme. Starting at a given charging level
cg, g ∈ {0, . . . , G}, and regime i ∈ {−1, 0, 1}. Then go one time step ahead for every regime j ∈ {−1, 0, 1}.
For the resulting charging levels l

−1 and l+1 interpolate the reward given the reward at the grid points.
Finally, regress the functions of B against this interpolated values to obtain the conditional expectation.
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5.3.1 Algorithm

We stepwise present the algorithm introduced in Section 5.3:

(i) Select the algorithm parameters number of time grids M , N and G.

(ii) Generate sample paths n ∈ {0, . . . , N} of the renewable energy process, {rnm}
M
m=0,

with rn0 = r0.

(iii) Initialize the value function Ĵ(M, rnM , cg, i) with a given penalty function, for exam-
ple (3.12), for all g ∈ {0, . . . , G}, n ∈ {0, . . . , N} and i ∈ {−1, 0, 1}.

(iv) Moving backwards in time m = (M − 1), . . . , 1, repeat:

(a) For each g ∈ {0, . . . , G}:

i. Set ℓig = ℓ→(m, cg, i) for all i ∈ {−1, 0, 1}, where ℓ→ is given by (5.5).

ii. Compute Ĵ(m + 1, rnm, ℓ
i
g, i) by interpolation and calculate the approxi-

mated conditional expectations Φ̂
i,ℓig
m (r), as given in (5.24) for every i ∈

{−1, 0, 1}.

iii. For every regime i ∈ {−1, 0, 1} do:

A. Evaluate the expected rewards for being in regime j ∈ {−1, 0, 1} after
m△t v̂(m, rnm, cg, j), as given in (5.25) for every j ∈ {−1, 0, 1} and
n ∈ {0, . . . , N}.

B. Set the maximal reward with

Ĵ(m, rnm, g, i) = max
j∈{−1,0,1}

(v̂(m, rnm, cg, j))

for every n ∈ {0, . . . , N}.

C. Obtain the optimal regime by

ξ̂(m, rnm, g, i) = argmax
j∈{−1,0,1}

v̂(m, rnm, cg, j)

for all n ∈ {0, . . . , N}.

iv. End the regime loop

(b) End the loop for g

(v) End the loop for m

(vi) Interpolate Ĵ(1, rnm, ℓ→(0, L0, i), i) and set for i ∈ {−1, 0, 1} and n ∈ {0, . . . , N}

Ĵ(1, ℓ→(0, L0, i), i) = 1
N

∑N
n=1 Ĵ(1, r

n
m, ℓ→(0, L0, i), i). The maximal reward is then

given by:

Ĵ(0, r, L0, 0) = max
(

Ĵ(1, ℓ→(0, L0, 0), 0) + ψ△0 (0, r, L0),

Ĵ(1, ℓ→(0, L0,−1),−1) + ψ△−1(0, r, L0)− C0,−1,

Ĵ(1, ℓ→(0, L0, 1), 1) + ψ△1 (0, r, L0)− C0,1

)

.
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5.4 Bivariate Least Squares Monte Carlo Method

The Bivariate Least Squares Monte Carlo Method (BLSM) circumvent the discretization
in the space of feasible charging levels. Since the BLSM scheme is described in two different
ways, we split this Section into two parts. In the first subsection we describe the BLSM
scheme with random mesh. This means that we draw a random mesh of a random mesh
of inventory levels and renewable energy contributions, i.e. {rnm, l

n
m}m∈{0,...,M} for each

path n ∈ {0, . . . , N}, is drawn, as pointed out in Carmona and Ludkovski [2007]. The last
subsection describes the path dependent BLSM, as formulated in Carmona and Ludkovski
[2010]. In this scheme the charging levels are propagated backward from in time from a
random terminal charging level. This scheme is the more intuitive then the first on, but
not stable under different guessing schemes of optimal regime to propagate the charging
level backward in time. Therefore we concentrate on the BLSM scheme with random
mesh.

5.4.1 BLSM with random mesh

The BLSM with random mesh works as follows. We draw, additional to the renewable
energy paths {rnm}m∈{0,...,M}, a charging level l

n
m uniformly distributed in [cmin, cmax] for all

m ∈ {0, . . . ,M} and n ∈ {0, . . . , N}. With these charging levels we evaluate the pathwise
values of (5.15) by:

J(m, rnm, l
n
m, i) =M

i(m, rnm, l
n
m)∨

(

ψ△i (rnm, l
n
m) + E [J(m+ 1, Rm+1, ℓ→(l

n
m, i), i) | Rm = rnm]

)

,
(5.27)

where ℓ→ is given by (5.5) and

M i(m, r, l) = max
j 6=i,j∈{−1,0,1}

(−Ci,j +ψ△j (m, r, l) +E[J(m+ 1, Rm+1, ℓ→(m, l, j), j)|Rm = r]).

In this pathwise formulation ‘∨’ in just the standard maximum operator.
Using the function ℓ→(m, l

n
m, j) in (5.5) we obtain the charging level at time (m+1)△t

resulting from lnm at time m△t and being in regime j ∈ {−1, 0, 1}. Hence, it ensures that
the comparison in (5.27) is done on the same basis. It is necessary to have an equivalent ba-
sis for the inventory level, since the switching decision is not only depending on the current
renewable energy process value rnm but also on the charging level ℓ→(m, l

n
m, j). The future

return depends on the energy already charged to the battery, based on the fact that the
charged energy can be materialized. This implies that the charging level lnm at time m△t
has an significant influence on the respective reward J(m + 1, rnm+1, ℓ→(m, l

n
m, j), j), j ∈

{−1, 0, 1}, up to time T . The value J(m+ 1, rnm+1, ℓ→(m, l
n
m, j), j) is unknown, since it is

drawn randomly.
We are left with finding a solution towards the conditional expectation, but this time

also the values J(m + 1, rnm+1, ℓ→(m, l
n
m, j), j), j ∈ {−1, 0, 1}, are unknown. Recall, the

idea of approximating the conditional expectation by a truncated Hilbert basis introduced
in Section 5.2 and enhance this idea to work also with the unknown values

J(m+ 1, rnm+1, ℓ→(m, l
n
m, j), j), j ∈ {−1, 0, 1},
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for the respective charging level ℓ→(m, l
n
m, j) in the paths n ∈ {0, . . . , N} . Therefore,

we follow an idea given by Carmona and Ludkovski [2010] and do a bivariate regression.
A similar approach in the more general multidimensional case was also established in
Tsitsiklis and van Roy [2000]. To characterize the bivariate regression in this context we
carry out the same procedure as in Section 5.2.

The conditional expectation is again well defined as argued in Section 5.2. We choose
NB bivariate linear independent functions Bn(x, y), which can be tensor products of uni-
variate basis functions (see Carmona and Ludkovski [2007]) or other bivariate linear in-
dependent functions. Denote the set of this functions by

B = {Bj bivariate function j, j = 1, . . . , NB}.

The function selection in the bivariate case is also discussed in Section 5.5. We approximate
Φi

m : (r, l) → E[J(t2, Rm+1, l, i)|Rm = r] analogously to (5.20) by:

Φi
m(r, l) ≈

N
B
∑

n=1

αnBn(r, l), (5.28)

where αn are R-valued coefficients and Bn(r, l) is the function value for r and l of the n-th
basis function in B. This function Φ̂i

m(r, l) (5.28) is the bivariate mirror of the function
Φ̂i,l

m(r) (5.20). The estimates for the coefficients {αn}n∈{1,...,NB} of the projection on B can
be obtained by empirical regression against the known values J(m+ 1, rnm+1, l

n
m+1, i),

α = argmin
α∈R

N
B

∥

∥

∥

∥

∥

∥

∥







J(m+ 1, r1m+1, l
1
m+1, i)

...
J(m+ 1, rNm+1, l

N
m+1, i)






−







∑N
B

n=1 αnBn(r
1
m, l

1
m+1)

...
∑N

B

n=1 αnBn(r
N
m, l

N
m+1)







∥

∥

∥

∥

∥

∥

∥

2

,

similar to (5.23). It is worth to notice, that we regress against a set of functions of
the current renewable energy contribution {rnm}n∈{0,...,N} and the future charging level

{lnm+1}n∈{0,...,N}. We define Φ
i

m(r, l) as the empirical version of (5.28) by:

Φ
i

m(r, l) =

N
B
∑

n=1

αnBn(r, l). (5.29)

To turn the assumption, that we know J(m + 1, rnm+1, l
n
m+1, i) at time m△t, to the

truth, we have to initialize the starting point for the backward fashioned calculation. For
every regime i ∈ {−1, 0, 1} and path n ∈ {0, . . . , N} set:

J(M, rnM , l
n
M , i) = V (rnM , l

n
M , i)

at expire time T = M△t, where V (r, l, i) is the penalty function (3.12) reflecting the
lending contract specifications.

Now going back in time and set m = (M − 1), . . . , 0. For given m regress for all
i ∈ {−1, 0, 1} the known values J(m + 1, rnm+1, l

n
m+1, i) for all paths n ∈ {0, . . . , N} one

time step ahead, against {Bj(r
n
m, l

n
m+1)}

N
B

j=1.
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We achieve the respective charging levels at time (m+1)△t given the level lnm at timem△t
for every regime j ∈ {−1, 0, 1} by ℓ→(m, l

n
m, j), see (5.5). By the step ℓ→(m, l

n
m, j), j ∈

{−1, 0, 1}, we obtain the charging level one time step ahead. Thereby we are in the
situation for which obtained the approximated conditional expectation in (5.29). Thus,
we can solve the optimal regime and the maximal reward for the charging level lnm and
the fixed current regime i ∈ {−1, 0, 1} at time m△t. We define the function:

v(m, rnm, l
n
m, j) =

{

Φ
j

m(r
n
m, ℓ→(m, l

n
m, j)) + ψ△j (m, rnm, l

n
m)− Ci,j if j 6= i,

Φ
i

m(r
n
m, ℓ

→(m, lnm, i)) + ψ△i (m, rnm, l
n
m) if i = j,

(5.30)

where j ∈ {−1, 0, 1}. The function ξ : {0, . . . ,M} × O × [cmin, cmax] × {−1, 0, 1} →
{−1, 0, 1} defined by:

ξ(m, rnm, l
n
m, i) = argmax

j∈{−1,0,1}

(v(m, rnm, l
n
m, j)) , (5.31)

derives the optimal regime for the time period [m△t, (m+1)△t) given the charging level
lnm and renewable energy contribution rnm at time m△t and regime i before m△t. This
ξ(m, rnm, l

n
m, i) is the discrete time pathwise and charging level dependent equivalent to

(ξk)k≥0 in (3.7). Besides, this yields also the approximate reward value

J(m, rnm, l
n
m, i) = max

j∈{−1,0,1}
(v(m, rnm, l

n
m, j)). (5.32)

The schemes described above to obtain the value of J(0, r0, L0, 1) is computational effi-
cient since in comparison to the MiTvR scheme, Section 5.3, for each timem ∈ {0, . . . ,M}
just one regression is performed instead of G + 1.

5.4.2 Algorithm

In this section we give a scripted summary of the algorithm introduced in Section 5.4:

(i) Select the algorithm parameters M and N and set △t = T
M
.

(ii) Generate N paths of the driving renewable energy process {rnm}
M
m=0 as well as ran-

dom charging levels {lnm}
M
m=0 for each path n ∈ {0, . . . , N}, sampled independently

and uniformly distributed in [cmin, cmax].

(iii) Moving backwards in time for m = (M − 1), . . . , 0 repeat:

(a) Compute the approximated conditional expectations Φ
j

m(r, l) as described in
(5.28) and apply this mapping for (rnm, ℓ→(m, l

n
m, j)), where the charging level

ℓ→(m, l
n
m, j), (5.5), to obtain (5.30) for every j ∈ {−1, 0, 1}.

(b) For every regime i ∈ {−1, 0, 1} do

i. Obtain v(m, rnm, l
n
m, j) in (5.30)

ii. Evaluate the optimal regime ξ(m, rnm, l
n
m, i) in (5.31) and the maximal re-

ward J(m, rnm, l
n
m, i) in (5.32), where v is given by (iii a) .
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(c) End regime loop i

(iv) End the loop for m

(v) Interpolate J(0, rn0 , l
n
0 , i) for the initial charging level L0 for all i ∈ {−1, 0, 1} and

denoted the interpolation by Ĵ(1, r, L0, i). Get the maximal reward for starting in
regime 0 by:

J(0, r, L0, 0) = max
(

Ĵ(1, r, L0, 0), Ĵ(1, r, L0,−1)− C0,−1, Ĵ(1, r, L0, i)− C0,1

)

5.4.3 Path dependent BLSM

In this subsection we give a brief stepwise overview of the pathwise scheme. For this
scheme the charging level at time m△t is dependent on the regime i and on the path n,
hence denoted by lnm(i).

(i) Draw a terminal charging level lnM(i) for each path n ∈ {0, . . . , N} and regime
i ∈ {−1, 0, 1}, sampled independently and uniformly distributed in [cmin, cmax].

(ii) Guess on basis of rnm and the current regime i the optimal regime î at time m△t
and set the charging level lnm(i) = ℓ←(m+ 1, lnm(̂i), î), where ℓ← is given in (5.6).

(iii) Perform the same steps for the regression as in 5.4.1 to obtain (5.30).

(iv) In the cases that the guessed regime î = ξ(m, rnm, l
n
m, i) set

J(m, rnm, l
n
m(i), i) =

{

J(m+ 1, rnm+1, l
n
m+1(j), j) + ψ△j (m, r

n
m, l

n
m(i))− Ci,j if î 6= i

J(m+ 1, rnm+1, l
n
m+1(i), i) + ψ△i (m, rnm, l

n
m(i)) if i = î

(5.33)
else obtain the value as in (5.32).

The reward value obtained in (iv) gives, beside the intuitive design, a second argument
for this scheme, since the value maxj∈{−1,0,1}(v(m, r

n
m, l

n
m(i), j)) as the approximation of

J(m, rnm, l
n
m(i), i) is potentially biased [Longstaff and Schwartz, 2001, p. 124 f]. Hence, it

is advantageous to calculate J(m, rnm, l
n
m(i), i) looking ahead properly, given the decision

made by the first evaluation instead of passing the biased result of (5.30) on to the next
iteration. Thereby, we exploit the truth of the looking ahead in the algorithm of Longstaff
and Schwartz for the case that the guess was good, i.e. ξ(m, rnm, l

n
m(i), i) = î, and hazard

the consequences of the Tsitsiklis van Roy scheme to obtain a solution for bad guesses,
i.e. ξ(m, rnm, l

n
m(i), i) 6= î. Hence, the Longstaff and Schwartz part helps us to reduce error

accumulation [Carmona and Ludkovski, 2010, p. 366]. Figure 5.3 gives an overview of the
successive steps in the scheme described above.

This scheme is computational efficient by the same arguments as in 5.4.1, since we
use the same scheme to obtain the estimate for the conditional expectation. But the
forecasting of the charging level by a regime guess involves a not in generally controllable
source of numerical instability.
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1. guess
2. get lnm+1(̂i)

3. ℓ←(m+ 1, lnm+1(̂i), î) by (5.6)

5. evaluate optimal regime

and the reward value

4. forecast charging level
ℓ→(l

n
m△t(k, i), j) by (5.5)

m△t (m+ 1)△t

KNOWN

FORECASTED

WRITTEN

regime i
path n

lnm+1(j)
∀j ∈ {−1, 0, 1}

charging level

guessed regime î

charging level lnm(i)

optimal regime ξ̂ = ξ(m, rnm, l
n
m(i), i) = argmaxj∈{−1,0,1} (v(m, r

n
m, l

n
m(i), j)) (5.31)

reward

J(m, rnm, l
n
m(i), i) =











J(m+ 1, rnm+1, l
n
m+1(i), î) + ψ△

î
(m, rnm, l

n
m(i))− Ci,̂i if ξ̂ = î 6= i

J(m+ 1, rnm+1, l
n
m+1(i), i) + ψ△i (m, rnm, l

n
m(i)) if i = j

maxj∈{−1,0,1}(v(m, r
n
m, l

n
m(i), j)) else

reward
v(m, rnm, l

n
m(i), j)

∀j ∈ {−1, 0, 1}
(5.30)

Figure 5.3: Visualization of the steps in the path dependent BLSM scheme.

5.5 Function Selection

The selection of the functions in the set B ( or respective B) is quite heuristic. We first
motivate the univariate functions case of B and subsequently the bivariate case B.

From a theoretical point of view a subset of Hilbert basis functions is consequential,
from the motivation of the approach given in Section 5.2. For example Longstaff and
Schwartz [2001] used the Laguerre polynomials

Dj(x) = exp−
x
2
expx

j!

dj(dj(xj expx)

dxj
, (5.34)

where j = 0, . . . , (NB − 1) are the specifications of the respective function in the set
of all basis functions. On the other hand, since we select just a small number of func-
tions, any set of linear independent functions is sufficient. For example with monomials
1, x, x2, . . . , xNB the same space is spanned as with the Laguerre polynomials (5.34).
Both sets have in common that they grow very fast in x, since the {Rm}m∈{0,...,M} is of
large scale it is numerical advisable to scale down to the interval [0, 2]. Moreover, Tsitsiklis
and van Roy [2000] give the advice that these functions should represent the most salient
properties of the function to be estimated. This means in our case that a well guess would
be functions of the form 1, x, x2, . . . or eζx.

For the bivariate regression, required bivariate functions can be obtained by the tensor
product of the univariate functions. Let Nb1 be the number of functions for the renewable
energy part and Nb2 for the charging level part, hence NB = Nb1Nb2 . For the example
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given in (5.34), the bivariate functions are:

Bj(r̂, l̂) = Dj1(r̂)Dj2(l̂), (5.35)

where j = 0, . . . , NB, j2 = j mod Nb1 and j1 =
j−j2
Nb1

. Furthermore, r̂ and l̂ are the values of

the renewable energy process realization r and the charging level l rescaled to the interval
[0, 2]. The use of the normalized values is necessary since the Laguerre polynomials get
volatile for large function values, see Figure 5.4. But by the same arguments as in the
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Figure 5.4: Laguerre polynomials for n = 1, . . . , 12.

univariate case we use the tensor product of the functions 1, x, x2, . . . and eζx.
Using empirical tests Ludkovski [2005] showed that a large number of basis functions

reduce the accuracy due to over fitting. We stay with this result and take a set of NB = 13
functions for the bivariate case and NB = 6 for the univariate part. We use this simple
set of functions since more complex functions we tried did not perform better. But for
example Gobet et al. [2005] made studies using approaches, based on Voronoi partitions,
hypercubes and global polynomials, to abandon parts of the heuristic in the basis selection
as well as allowing for a time dependent selection of the basic function set.



Chapter 6

Numeric Example for Germany

In this chapter we consider a concrete example problem and solve it with the numerical
algorithms as introduced in Chapter 5. This means that we compute the optimal charging-
storing-discharging strategy of an energy storage and the respective expected maximal
reward. For the problem setup in Section 6.1 we follow parts of Chapter 3, namely the
price fixing in Section 3.1 and the storage characteristics in Section 3.2. Also in Section
6.1 we compare the rewards obtained by the two algorithms described in Sections 5.3 and
5.4 and give some insight considering the convergence of these algorithms by the standard
error. In Section 6.2 we analyze the influence of the different parameters in the problem
setup on the reward. Finally in Section 6.3 we explore the switching regions depending
on the current regime, charging level and the contribution from renewable sources.

6.1 Problem setup

We assume that the agent is a leaser of an energy storage in Germany for one week, i.e.
T = 1. The storage is handed over to the agent in the regime i = 0, i.e. keeping the
charging level constant, and with initial level L0 = 2. The respective buy back provision
of the lending contract is mirrored by

V (RT , DT , LT ) = 2 ρ(T,RT , DT ) max(0, L0 − LT ),

the penalty function introduced in (3.12). The storage has the following characteristics:

• cmax = 4 [MWh], maximal storage capacity,

• cmin = 0 [MWh], minimal storage charging level,

• ain = 0.2 · 7 · 24 [MWh], maximal weekly charging rate,

• aout = 0.5 · 7 · 24 [MWh], maximal weekly discharging rate,

• b = 0.1 [Euro/MWh], costs to store one MWh over one time unit,

• Ki = 0 [Euro], managing and operation costs per time unit and

• Ci,j = 0.25 [Euro] for i, j ∈ {−1, 0, 1}, j 6= i, switching costs.

57
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Additionally we assume that the storage charging and discharging rate is independent of
the current charging level. Hence the change function (3.4) is given by:

ai(t, Lt) =











0.2 · 7 · 24 · 1Lt>0 if i = −1,

0 if i = 0,

0.5 · 7 · 24 · 1Lt<4 if i = +1.

As derived in (3.2), for calculating the price in the German electricity market we need
the energy contribution from renewable sources Rt, the demand Dt, the number of con-
ventional power technologies N and the marginal costs of conventional power technologies
{pn}n∈{0,...,N}. First of all we assume a fixed demand D > 0 (as introduced in Chapter 4)
from the respective fraction of the yearly demand in Germany. According to the “Statistis-
che Bundesamt” (http://www.destatis.de/) the German energy demand in the year 2008
was 614.8 TWh, which we take as our fixed yearly demand. Hence, using the one week
time horizon and the definition △t = T/M for the resulting size of the time intervals,
the fixed demand is given by D = 614.8 · 106 · (7/365) · △t. Since we have not found any
better model up to now, we allow for a myopic approach regarding the contribution of
renewable energies. We assume that the renewable energy process follows an exponential
Ornstein Uhlenbeck process, given by:

d log(Rt) = 17.1(log(0.7D)− log(Rt)) dt+ 1.33dWt. (6.1)

The asymptotic mean of the renewable energy production process is 70% of the respective
demand and there is a strong mean reversion of 17.1. See Appendix A for a more detailed
definition of the parameters and an introduction to the numerical implementation for the
simulation of such a process.
In accordance with von Roon and Huck [2010] we summarize the conventional power
technologies and respective marginal costs to obtain the merit order curve. The relevant
extracted prices and capacities are

• 8 [Euro/MWh] and 16000 [MW] for nuclear energy,

• 38 [Euro/MWh] and 13000 [MW] for lignite-fired power plants,

• 52 [Euro/MWh] and 4000 [MW] for efficient combined cycle gas turbine plants,

• 60 [Euro/MWh] and 18000 [MW] for coal-fired plants,

• 78 [Euro/MWh] and 6000 [MW] for old combined cycle gas turbine plants,

• 100 [Euro/MWh] and 2000 [MW] for gas turbine power stations and

• 125 [Euro/MWh] and 2000 [MW] for medium fuel oil fired plants.
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Furthermore, we assume that renewable technologies have marginal costs of 6 [Euro/MWh],
i.e. p0 = 6. Hence, the respective price function (as defined in (4.1)) is given by:

ρ(t, r) =



























































6 if (D − r) < 0,

8 if 0 ≤ (D − r) < 16000(7 · 24)△t,

38 if 16000(7 · 24)△t ≤ (D − r) < 29000(7 · 24)△t,

52 if 29000(7 · 24)△t ≤ (D − r) < 33000(7 · 24)△t,

60 if 33000(7 · 24)△t ≤ (D − r) < 51000(7 · 24)△t,

78 if 51000(7 · 24)△t ≤ (D − r) < 57000(7 · 24)△t,

100 if 57000(7 · 24)△t ≤ (D − r) < 59000(7 · 24)△t,

125 if 59000(7 · 24)△t < (D − r).

(6.2)

Moreover, the risk free interest rate is given by rm = 0.06. In summary the problem setup
values are:

cmax = 4 cmin = 0
ain = 0.2 · 7 · 24 aout = 0.5 · 7 · 24
b = 0.1 Ki = 0
Ci,j = 0.25 i, j ∈ {−1, 0, 1}, j 6= i rm = 0.06

Table 6.1: Problem setup values for the storage example

Within this setting we evaluate the BLSM and MiTvR scheme. In the following the
number of equidistant time intervals M is defined as 168, which corresponds to an hourly
spacing.
The random mesh BLSM (as described in Section 5.4.1) is evaluated for a different number
of Monte Carlo paths, namely N ∈ {8000, 16000, 24000, 32000, 40000}. To obtain an
approximation of the respective Monte Carlo sampling error the BLSM scheme was run
50 times for each N . The results are shown in Table 6.2. In this table we can observe
convergence of the form O((△t N)−1/2), similar to the results in Carmona and Ludkovski
[2010]. Analytically this error is hard to analyze due to the pathwise-maximum and the
cross-path regression coupled with the charging level dependence. For simpler applications
detailed studies are available, see for example Tsitsiklis and van Roy [2000] and Gobet
et al. [2005]. The respective value of the BLSM scheme for N = 40000 Monte Carlo paths
is 414.52 and the evaluation takes on average 235 seconds.
The reward evaluation was also done using the MiTvR scheme (described in Subsection
5.3.1) for N = 10000 paths and different charging level spacing of G ∈ {20, 40, 80}. The
results for this scheme are shown in Table 6.3. For G = 80 the scheme takes on average
1269 seconds for the evaluation and returns a reward of 457.33.
The monetary storage values only differ by 9% but the BLSM scheme evaluation time is
less than 1/6 of the time the MiTvR scheme requires. The difference in computation time
is caused by the slow lattice scheme implemented in MiTvR. From now on we focus on
the BLSM scheme due to its advantages.
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paths mean standard deviation computational time
8000 414.8322 1.6336 43.4097
16000 414.5005 1.1127 88.2305
24000 414.6244 0.9957 136.4711
32000 414.2998 0.7695 183.3401
40000 414.5241 0.7305 235.4589

Table 6.2: Convergence of the Monte Carlo sampling error for the BLSM scheme based on the storage
given by Table 6.1 and the market price obtained by (6.2) conjoint with renewable energy process (6.1)

spacing mean standard deviation computational time
456.675 20 0.4635 115.0461
457.1781 40 0.4363 335.3286
457.3314 80 0.4147 1269.769348

Table 6.3: Convergence of the Monte Carlo sampling error for the MiTvR scheme with N = 10000 paths
based on the storage given by Table 6.1 and the market price obtained by (6.2) conjoint with renewable
energy process (6.1)

6.2 Sensitivity analysis of the different parameters

Now we study the influence of the different storage characteristics on the expected reward.
The storage flexibility given by the charging and discharging rates, ain and aout, has the
greatest influence on the reward. In particular this means that if the charging and dis-
charging rates are halved the expected reward is nearly halved. The influence of the
doubled charging and discharging rate is weaker, as shown in Table 6.4. For a higher
charging rate and equal discharging rate the expected reward soars in comparison to a
higher discharging rate with equal charging rate, see Table 6.4. Thus, we obtain that
the main restriction is the slow charging rate. In particular this means that, we can-
not charge the storage fast enough to realize all possible rewards. A maximal reward
is obtained when the charging and discharging rate is nearly equal, since then we can
react on changes with an equal rate. Charging and discharging characteristics of this
type are common for pumped water storages (an example the characteristic is shown on
www.enbw.com/.../pumpspeicherkraftwerk/index.jsp) and sodium sulphur batteries, thus
they are able to compensate the high acquisition costs.

ain aout reward
0.5 0.5 640.2108
0.4 0.5 534.0965
0.1 0.5 277.4365
0.2 0.7 430.4399
0.1 0.25 246.9002
0.4 1 648.1473

Table 6.4: Influence of different charging ain and discharging rates aout on the expected reward evaluated
by the BLSM scheme based on the storage given by Table 6.1 and the market price obtained by (6.2)
conjoint with the renewable energy process in (6.1)
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The reward is rising with the storage size, but the size of this trend flattens out. So the
additional reward for a rise in the storage size by 2 MWh is about 60 Euro and for further
extension by 2 MWh we just gain about 30 Euro, see first and last column in Table 6.5.
This result confirms, that we cannot charge the storage fast enough to realize all possible
rewards. A shift of the capacity about one MWh leaves the reward unchanged, see Table
6.5.

cmin cmax reward
0 6 470.4096
0 3 373.5098
1 5 414.5276
0.5 6 459.2759
0 8 501.9667

Table 6.5: Influence of different maximal storage capacities cmax and minimal storage levels cmin on the
expected reward evaluated by the BLSM scheme based on the storage given by Table 6.1 and the market
price obtained by (6.2) conjoint with the renewable energy process in (6.1) .

The influence of the switching costs, Ci,j, is shown in Table 6.6. A rise in the switching
costs of 0.05 has an influence of about 3 Euro. This is the expected influence but due to
the size this influences is marginal. A small variation in the costs to store one MWh, b,

Ci,j 0.05 0.1 0.2 0.25 0.4 0.5
reward 427.0505 424.1018 418.4974 415.8048 408.0835 403.201

Table 6.6: Influence of different switching costs Ci,j on the expected reward evaluated by the BLSM
scheme based on the storage given by Table 6.1 and the market price obtained by (6.2) conjoint with the
renewable energy process in (6.1) .

has almost no influence on the reward, see Table 6.7.

b 0 0.05 0.1 0.2 0.3 0.5
reward 415.9987 415.9018 415.8048 415.6109 415.4172 415.0301

Table 6.7: Influence of different switching costs Ci,j on the expected reward evaluated by the BLSM
scheme based on the storage given by Table 6.1 and the market price obtained by (6.2) conjoint with the
renewable energy process in (6.1) .

As well we take a closer look at the influence of the current charging level and the energy
contribution of renewable sources on the reward at time m△t = 0.49405, which is one
hour before the middle of our lending contract over one week. With a rising current
charging level the expected reward also rises, as shown in Figure 6.1. The reward depicts
the minimum for an energy contribution of renewable sources around the long term mean
0.7D, i.e. round 49000 MWh. This demonstrates that a deviation from the long term
mean implies arbitrage opportunities, namely to sell the already charged energy for high
prices or buy electricity for low prices.
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Figure 6.1: The maximal reward at time t = 0.49405 (one hour before the middle of the lending contract)
and in the regime keeping level constant, i = 0, for the current charging levels and contributions from
renewable sources based on the storage given by Table 6.1 and the market price obtained by (6.2) conjoint
with the renewable energy process in (6.1).

Finally the influence of a nuclear energy plant phase-out is evaluated. To obtain the
respective price function without the nuclear technology, we erase the marginal costs of 8
Euro and the capacity of 16000 MWh from the price function (6.2). Hence the new price
function is given by:

ρ(t, r) =



















































6 if (D − r) < 0,

38 if 16000(7 · 24)△t ≤ (D − r) < 13000(7 · 24)△t,

52 if 29000(7 · 24)△t ≤ (D − r) < 17000(7 · 24)△t,

60 if 33000(7 · 24)△t ≤ (D − r) < 35000(7 · 24)△t,

78 if 51000(7 · 24)△t ≤ (D − r) < 41000(7 · 24)△t,

100 if 57000(7 · 24)△t ≤ (D − r) < 43000(7 · 24)△t,

125 if 59000(7 · 24)△t < (D − r).

(6.3)

Under given storage characteristics the new setting reduces the reward to 300.578 Euro.
This effect on the reward is caused by the fact that we have less low price periods. We
have to bear in mind that the next expensive technology lignite-fired power plants has
already marginal costs of 38 Euro. Thus in short run a phase-out of this technology is not



6.3. SWITCHING REGIONS 63

beneficial for the agent. Following the energy plan formulated by the German government
we extend the renewable energy sector. Consequently we raise the average mean of energy
produced by renewable sources up to 0.9D, i.e. round 63000 MWh. The resulting reward
in this setting is 473.662 Euro, which is higher than the reward in the current energy
market.

6.3 Switching Regions

The collection of regions with optimal regime j ∈ {−1, 0, 1} conditional on a previous
given regime i ∈ {−1, 0, 1} at time m△t is called a switching region. Here j runs over
all possible values whereas i is fixed. The optimal regime depends on the current energy
contribution from renewable sources and the current charging level. The regions are deter-
mined by ξ(m, rnm, l

n
m, i) in (5.31) (or ξ̂(m, rnm, g, i) in (5.26)) and depend on the realization

of the renewable energy contribution rnm and the random charging level lnm (or the current
grid point cg = cmin + g △g). Examples for the resulting regions are shown in Figure
6.2 and Figure 6.4. Each of those figures exhibit the respective switching regions at given
time and different previous regimes, namely for the previous regime i = −1 in the plot
on the left hand side, i = 0 in the plot in the middle and i = +1 in the plot on the right
hand side. Moreover, the respective plots display the regions, where staying in the current
regime is optimal in black and the switching regions to another regime in blue and green.
In the following we examine the influence of the energy contribution by renewable sources
and the current charging level on the optimal switching decisions. Another interesting
point is studying the influence of the remaining contract time.

First we take a closer look at the switching regions in the middle of the lending contract.
Figure 6.2 for the BLSM scheme and Figure 6.3 for the MiTvR show the switching regions
at time m△t = 0.537, namely a bit less than 4 days, for each regime i ∈ {−1, 0, 1}, i.e.
on the left hand side for charging i = −1, in the middle for keeping the level constant
(i = 0) and the discharging regime i = 1. The regime i = 0 is more or less only advisable,
if we already are in this regime. This makes sense since we neither obtain more flexibility
by more energy in the storage nor more reward due to discharging. For the case that
we are already in regime i = 0 the holding out in this regime is advantageous due to
the switching costs. Besides, we see that the switching regions are ruled by the current
contribution from renewable sources. This means for high contributions, i.e. low prices,
the regime i = −1 is favorable, since we might be able to sell the electricity for higher
prices later on. On the other hand for low contributions, consequently high prices, we sell
the stored energy and realize the difference between the current price and the price at
charging time. Only at the boundary of storage the size current charging level plays a
role.

When the time comes closer to the expiry date the current charging level gets more
and more important due to the fact that the agent is charged twice the market price, if
he returns the storage at a lower level than the initial level, L0 = 2. This can be seen in
Figure 6.4 for the BLSM scheme and in Figure 6.5 for the MiTvR scheme, which shows
the switching level at time m△t = 0.9523, i.e. 8 hours before the expiry date. At this time
it is advantageous to charge if the current charging level is below L0, since it is cheaper
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Figure 6.2: Optimal switching regions at m△t = 0.5 depending on the current regime, i = −1 charging
on the left hand side, i = 0 keeping the storage level constant in the middle and i = 1 discharging on
the left hand side, the current renewable energy contribution and the charging level. (Generated by the
BLSM random mesh scheme 5.4.2 for N=40000 and M=168 for the example given in Section 6.1)

Figure 6.3: Optimal switching regions at m△t = 0.5 depending on the current regime, i = −1 charging
on the left hand side, i = 0 keeping the storage level constant in the middle and i = 1 discharging on
the left hand side, the current renewable energy contribution and the charging level. (Generated by the
MiTvR scheme 5.3.1 for N=40000, M=168 and G=20 for the example given in Section 6.1)

than paying the double price. On the other hand it is advisable to discharge if the current
level is greater than L0, since we get no compensation for a higher charging level than the
initial one. But still the regime i = 0 (keeping the charging level constant) is a minority.
This is mainly due to the fact that the charging rate of 20 hours and the discharging rate
of 8 hours are fast.
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Figure 6.4: Optimal switching regions at m△t = 0.95 depending on the current regime, i = −1 charging
on the left hand side, i = 0 keeping the storage level constant in the middle and i = 1 discharging on
the left hand side, the current renewable energy contribution and the charging level. (Generated by the
BLSM random mesh scheme 5.4.2 for N=40000 and M=168 for the example given in Section 6.1)

Figure 6.5: Optimal switching regions at m△t = 0.5 depending on the current regime, i = −1 charging
on the left hand side, i = 0 keeping the storage level constant in the middle and i = 1 discharging on
the left hand side, the current renewable energy contribution and the charging level. (Generated by the
MiTvR scheme 5.3.1 for N=40000, M=168 and G=20 for the example given in Section 6.1)
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Chapter 7

Conclusion

In this thesis we answered the questions how to control an energy storage and what the
economic value of such a storage is. Based on historical data we confirmed the need of
energy storages for mixed energy markets, i.e. markets with renewable and conventional
production plants, in Chapter 2. In Chapter 3 we developed a general model for a storage
facility and the price in the electricity market based on the merit order curve. For this
setting we showed that a solution of the respective optimal multiple switching problem
exists and we derived the characteristics of such an optimal strategy in Chapter 4. Since
an analytical derivation of these two parameters is not feasible, we implemented two
algorithms in Chapter 5 to obtain the solution numerically. The thesis is completed by a
concrete example stated in Chapter 6, focused on the German electricity market.

In Chapter 2 we derived a linear optimization problem for minimizing the required
energy generated by conventional technologies based on historical time series of the load
and renewable energy production relative to the installed capacities. The flexible param-
eters, namely installed capacity of wind plants, of PV plants and of storage facilities, are
used as regulation screws to obtain the influences of different development scenarios. To
simplify the examination of the scenarios, a GUI was implemented, which gives a visual
overview as well as detailed figures. The interaction of wasted energy, required backup
by conventional plants and the resulting storage streams, altering two variable inputs of
this problem, have been examined. The main result is that the capacities of storages have
the most significant influence on all parameters, especially for a large installed capacity
of PV power plants. In the rest of this thesis we dealt with a more elaborate problem
of optimizing the reward based on the market price derived on an energy market with
renewable energy.

We stated the characteristics of an energy storage as well as the derivation of the
market price, in Chapter 3. The price was obtained by a version of the merit order curve,
which gives us great flexibility to incorporate market developments. Thus, we have been
able to evaluate the value of the storage and the strategy after a phase-out of nuclear
energy as well as under the assumption of an increase in the renewable energy plants
installed capacity. In Chapter 4 we showed that the multiple switching problem – between
charging, discharging and keeping the storage level constant – derived from the problem
setup in Chapter 3 has a theoretical solution. This solution is accomplished with an
optimal strategy, equivalent to the single process Snell strategy. The theory introduced in
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this chapter can be rounded off by rewriting the results in the framework of BSDE. Due
to the complexity resulting from charging level dependence this is still an open point.
An other interesting point would be to derive the set of processes where a solution of
the multiple switching problem exists, aside from the set of processes purely driven by a
Brownian motion we considered.

Due to the fact that the reward of the optimal stopping problem is analytically not
tractable, we introduced two algorithms based on Monte Carlo methods in Chapter 6. The
common basic idea for both algorithms is the approximation of the conditional expecta-
tion by a regression and the strategy to go pathwise backwards in time for the evaluation.
Thereby given the knowledge about the current state, represented by functions of the
current state variables, and the known future values we obtained an estimation of the
future reward conditioned on the current knowledge. On the one hand we implemented
the MiTvR scheme. The consecutive steps in this algorithm are shown in Subsection 5.3.1.
This scheme is based on a lattice in the interval of possible storage levels. Thereby the
scheme is numerically stable, but computational time and storage intensive. On the other
hand two versions of the BLSM scheme were implemented. One develops the charging
level pathwise backwards in time and the other one is using a stochastic mesh in the
charging levels. The pathwise BLSM scheme is more intuitive, but not stable under dif-
ferent schemes to guess the optimal regime on the first hand. We discussed this scheme
in Subsection 5.4.3. The stochastic mesh BLSM, as developed in Subsection 5.4.1, is sta-
ble and needs less computational time and storage in comparison to the MiTvR scheme.
For the BLSM schemes the question of convergence is still on the schedule, even if the
numerical test suggests the convergence rate of Monte Carlo methods. This numerical
convergence result is also shown in Chapter 5. Furthermore, a good insight would be to
show why the path dependent BLSM value is strongly dependent on the chosen guessing
scheme. An additional point would be to upgrade the implementation by altering sets of
bases functions over time used for the regression.

Finally, we showed in Chapter 6 the numeric results of the different schemes and
conducted a sensitivity analysis of the storage characteristics parameters. The charging
and discharging rates have the greatest impact on the reward, especially asymmetric
rates imply less reward. This is due to the fact that we cannot react equally flexible on
the energy price for the different regimes. Another result in this section is that the optimal
regimes, depending on time and the current regime, are mainly ruled by the current energy
contribution. Just at times close to the expiry date the charging level becomes relevant
for the decision of optimal regime. Furthermore, we showed how the decision rules for the
optimal regime can be derived from the numerical schemes by time and regime dependent
optimal switching regions characterized by the contribution of renewable sources and the
charging level.



Appendix A

Ornstein Uhlenbeck process

The Ornstein-Uhlenbeck (OU) process {Xt}t∈[0,T ] with the asymptotic mean µ, the mean
reversion θ and the variance σ2 satisfies the following stochastic differential equation
[Gasserman, 2004, Eq. (3.39)]:

dXt = θ(µ−Xt)dt+ σdWt, for t ∈ [0, T ], (A.1)

where {Wt}t∈[0,T ] is a standard Brownian motion. The drift in (A.1) changes algebraic
sign, i.e. positive when µ−Xt > 0 and negative when µ −Xt < 0. This means if the Xt

is smaller than µ the process tends to drift upwards and if Xt at time t ∈ [0, T ] is greater
than µ the process tends to drift downwards to the asymptotic mean, a property generally
referred to as mean reversion. Moreover the OU process is Gaussian and Markov.

Solving the (A.1) for a given initial condition X0, satisfying that E[|X0|
2] < ∞ we

obtain:

Xt = X0e
−θt + µ(1− e−θt) + σe−θt

∫ t

0

eθsdWs. (A.2)

From (A.2) it follows, that the random variable Xt for a fixed t ∈ [0, T ] is normally
distributed with expectation

E[Xt] = X0e
−θt + µ(1− e−θt) (A.3)

and the variance

V ar(Xt) = E

[

(σe−θt
∫ t

0

eθsdWs)
2

]

=
σ2

2θ
(1− e−2θt). (A.4)

To simulate the process at time (m + 1)△t, m ∈ {0, . . . , (M − 1)}, we use the results
(A.2), (A.3) and (A.4), and set [Gasserman, 2004, Eq. (3.46)]:

X(m+1)△t = Xm△te
−θ△t + µ(1− e−θ△t) +

√

σ2

2θ
(1− e−2θ△t)Zm+1, (A.5)

where Zm+1 are standard normal distributed samples and △t = T
M
.

Moreover we take a closer look at the exponential Ornstein Uhlenbeck process, given
by:

dXt = Xt[θ(µ− log(Xt))dt+ σdWt]. (A.6)
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The stochastic differential equation (A.6) can be equivalently written in the following
form

d log(Xt) =

[

θ (µ− log(Xt))−
1

2
σ2

]

+ σdWt,

by applying the Itô formulae for f(x) = log(x). Bearing the second formulation in mind
the simulation of the process can be analogously to (A.5) be done by

X(m+1)△t = exp

(

log(Xm△t)e
−θ△t + µ1(1− e−θ△t) +

√

σ2

2θ
(1− e−2θ△t)Zm+1

)

,

where µ1 = µ− σ2

2θ
.
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