
T U M
I N S T I T U T F Ü R I N F O R M A T I K

A Denotational Model for
Mobile Many-to-Many

Data-flow Networks

Radu Grosu
Ketil Stølen������
TUM-I9622

Mai 1996

T E C H N I S C H E U N I V E R S I TÄ T M Ü N C H E N

TUM-INFO-05-1996-I9622-350/1.-FI

Alle Rechte vorbehalten

Nachdruck auch auszugsweise verboten

c1996 MATHEMATISCHES INSTITUT UND

INSTITUT FÜR INFORMATIK

TECHNISCHE UNIVERSITÄT MÜNCHEN

Typescript: ---

Druck: Mathematisches Institut und

Institut für Informatik der

Technischen Universität München

TECHNISCHEUNIVERSIT�ATM �UNCHEN
INSTITUT F�UR INFORMATIKSonderforschungsbereich 342:Methoden und Werkzeuge f�ur die Nutzungparalleler Rechnerarchitekturen

A Denotational Model forMobile Many-to-ManyData-ow NetworksRadu Grosu, Ketil St�len

TUM-I9622SFB-Bericht Nr.342/13/96 AMai 1996

TUM{INFO{05-96-I22-350/1.{FIAlle Rechte vorbehaltenNachdruck auch auszugsweise verbotenc1996 SFB 342 Methoden und Werkzeuge f�urdie Nutzung paralleler ArchitekturenAnforderungen an: Prof. Dr. A. BodeSprecher SFB 342Institut f�ur InformatikTechnische Universit�at M�unchenD-80290 M�unchen, GermanyDruck: Fakult�at f�ur Informatik derTechnischen Universit�at M�unchen

A Denotational Model for MobileMany-to-Many Data-ow NetworksRadu Grosu, Ketil St�lenInstitut f�ur Informatik, TU M�unchen, D-80290 M�unchenemail:grosu,stoelen@informatik.tu-muenchen.deJune 11, 1996AbstractWe present a fully abstract, denotational model for mobile, timed, nondetermin-istic data-ow networks whose components communicate in a many-to-many fash-ion. In this model components and networks of components are represented by setsof stream processing functions. Each stream processing function is required to bestrongly guarded and generic. A stream processing function is strongly guarded if it iscontractive with respect to the standard metric on streams. This property guaranteesthe existence of unique �x-points. The genericity property can be thought of as aninvariant, or alternatively, a privacy requirement, that is satis�ed by any mobile sys-tem. It guarantees that a function never accesses, depends on or forwards a port whosename it does not already know. Our model allows the description of a wide varietyof networks | in particular, the description of unbounded nondeterministic networks.We demonstrate some features of our model by specifying a mobile telephone network.1 IntroductionOne of the most prominent theories for interactive computation is the theory of data-ownetworks. In this theory, an interactive system is represented by a network of autonomouscomponents which communicate solely by asynchronous transmission of messages via di-rected channels.A very elegant model for static, deterministic data-ow networks whose components com-municate in a point-to-point fashion, was given by Kahn in [Kah74]. Despite of its elegantfoundation, this class of networks is, however, too restrictive for many practical applica-tions. In this paper we extend Kahn's model in a number of ways.Firstly, contrary to [Kah74], we model nondeterministic behavior. Like Park [Par83], Broy[Bro87] and Russell [Rus90], we represent nondeterministic data-ow networks by sets ofstream processing functions. However, in contrast with [Par83] and [Bro87], our modelis fully abstract. This is achieved, by considering only sets of functions which are closedwith respect to the external observations. The closure idea was used by [Rus90] for thesame purpose. However, contrary to [Rus90], we use a timed model and a di�erent notionof observation. This allows us to describe a considerably greater class of networks. In3

particular, we can describe all fair merge components discussed in [PS92]. In fact, wecan describe any liveness property that can be expressed in standard property orientedspeci�cation languages for distributed systems [CM88], [Lam91], [BDD+93]. Moreover,since our model is fully abstract, we obviously avoid the expressiveness problem known asthe Brock/Ackermann anomaly [BA81].Secondly, contrary to [Kah74], and also contrary to [Par83], [Bro87], [Rus90], we handlemany-to-many communication. This is achieved by building implicit fair merge com-ponents into the network operators | the operators used to build networks from basiccomponents. Despite the fact that several components may have both receive and sendaccess to the same channel, each component is described by a set of functions mappinginput streams to output streams. The input streams contain the messages sent by theenvironment; the output streams contain the messages sent by the component. Thus, wemodel the shared-state interference caused by the many-to-many communication at a veryabstract level | the interference is isolated and placed in the network operators.Thirdly, contrary to [Kah74] and also contrary to [Par83], [Bro87], [Rus90], we describedynamically recon�gurable or mobile networks | networks in which every componentmay change its communication partners on the basis of computation and interaction. Theformal modeling of mobility has been a very popular research direction in recent years.However, most models published so far have been formalized mainly in operational terms.Examples of such models are the Actor Model [HBS73, AMST92], the �{Calculus [EN86,MPW92a, MPW92b], the Chemical Abstract Machine [BB90], the Rewriting Logic [Mes91]and the Higher Order CCS [Tho89]. On the contrary, our model gives a denotationalformalization of mobility. As in the above models, this formalization is based on twoassumptions. Firstly, ports are allowed to be passed between the network components.Secondly, the components preserve privacy: their behavior do not depend on ports they donot know. Although it is well understood how to express privacy operationally, there is lessdenotational understanding. Our solution is to require each stream processing functionto be generic. This requirement can be thought of as an invariant satis�ed by any mobilesystem. Informally speaking, the genericity property makes sure that a function accesses,depends on and forwards only ports it already knows. By \the ports it already knows" webasically mean any port which is in its initial interface, it has already received or it hasalready created itself. Any port created by the function itself is assigned a \new" nametaken from a set that is \private" to the component in question.Although we could have formulated our semantics in a cpo context, we decided to baseit on the topological tradition of metric spaces [Niv82, dBZ82, AdBKR89]. Firstly, wewanted to understand the exact relationship between our approach and those based onmetric spaces. Secondly, the use of metric spaces seems more natural since our approachis based on in�nite streams, and since our strong guardedness constraint, guaranteeingthe existence of a unique �x-point, corresponds straightforwardly to contractivity.The rest of the paper is split into seven sections. Section 2 introduces basic notionslike communication histories and stream processing functions. Section 3 formalizes thegenericity constraint. Section 4 introduces mobile components. Section 5 describes themodeling of interference. Section 6 is devoted to the network operators. Section 7 gives anexample. Section 8 relates our approach to other approaches known from the literature.Finally, there is an appendix reviewing some basic stu� on metric spaces and streams.4

2 Basic NotionsWe model an interactive system by a network of autonomous components communicat-ing via directed channels in a time-synchronous and message-asynchronous way. Time-synchrony is achieved by using a global clock splitting the time axis into discrete, equidis-tant time units. Message-asynchrony is achieved by allowing arbitrary, but �nitely manymessages to be sent along a channel in each time unit.2.1 Communication HistoriesWe model the communication histories of directed channels by in�nite streams of �nitestreams of messages. Each �nite stream represents the communication history within atime unit. The �rst �nite stream contains the messages received within the �rst time unit,the second the messages received within the second time unit, and so on. Since time neverhalts, any complete communication history is in�nite. Let M be the set of all messages.Then [M�] is the set of all complete communication histories, and (M�)� is the set of allpartial communication histories1.In the introduction we anticipated that components may transmit ports. A port is achannel name together with an access right, which is either a receive right, representedby ?, or a send right, represented by !. Hence, if N is the set of all channel names, then?N = f?n j n 2 Ng is the corresponding set of receive ports, and !N = f!n j n 2 Ngis the corresponding set of send ports. We also write ?!N for ?N [!N . We assumethat ?!N � M . Let D be the set of all messages not contained in the set of ports, i.e.,D =M n ?!N .Since components may exchange ports, each component can potentially access any chan-nel in N . For that reason we model the complete input and output histories of a compo-nent by named stream tuples contained in N ! [M�]. The partial ones are modeled byN ! (M�)�. In the sequel we refer to named stream tuples of these signatures as namedcommunication histories. Thus, each named communication history assigns a communi-cation history to each channel name in N .2.2 Guarded FunctionsA deterministic component is modeled by a stream processing functionf 2 (N ! [M�])! (N ! [M�])mapping complete named communication histories for its input channels to completenamed communication histories for its output channels. Note that if no message is com-municated along an input channel within a time unit then the empty stream occurs inthe communication history for that channel. The lack of this information causes the fairmerge anomaly [Kel78].The functions process their inputs incrementally | at any point in time, their outputsdo not depend on future inputs. Functions satisfying this constraint are called weakly1For an arbitrary set S, by S� we denote the set of �nite streams over S and by [S] the set of in�nitestreams over S. See also the appendix. 5

guarded. If the outputs they produce in time unit t are not only independent of futureinputs, i.e., the inputs received during time unit t + 1 or later, but also of the inputsreceived during time unit t, then they are called strongly guarded. Intuitively, the stronglyguarded functions introduce a delay of at least one time unit between input and output.The weakly guarded functions allow in addition zero-delay behavior.Let �#j represent the pre�x of � of length j, i.e., the result of cutting � after the j'th timeunit. Then weak and strong guardedness can be formalized as below:De�nition 1 (Guarded functions) A function f 2 (N ! [M�]) ! (N ! [M�]) isweakly guarded if8�; '; j : �#j = '#j) f(�)#j = f(')#j ;and strongly guarded if8�; '; j : �#j = '#j) f(�)#j+1 = f(')#j+1: 2We use the arrow w+ to characterize sets of weakly guarded functions.A weakly guarded function is non-expansive and a strongly guarded function is contractivewith respect to the metric on streams (see appendix). As a consequence, by Banach's �x-point theorem, strong guardedness not only replaces the usual monotonicity and continuityconstraints of domain theory but also guarantees unique �x-points of feedback loops.3 GenericityA stream processing function f 2 (N ! [M�])! (N ! [M�]) used to model a componentis not only required to be strongly guarded but also to be generic. That it is generic meansthat it accesses, depends on and forwards only ports it already knows. Thus, the genericityproperty basically characterizes the way the function gains access to ports. In this sectionwe formalize this additional property.
(θ))f

?I,O,P
ap (θ,f (θ))

?iI

j
i

O

p
o

I,O,P

!j
P

!o

f

?p

(θ,ap
!

...

...

Figure 1: Generic Stream Processing FunctionThe behavior of a generic function can be described with respect to Figure 1, as follows.Initially, f receives from a designated set of input channels I and sends on a designatedset of output channels O. These two sets name the static channels or the initial wiring. Tomake sure that channels created by the di�erent components in a network have di�erent6

names, each mobile function is assigned a set of private names P . Obviously, this setshould be disjoint from the static interface. Thus, we require that (I [O) \ P = ;.During the computation, the sets of accessible channels gradually grow. For example, ifthe function receives a receive port ?i (i 62 P) then it may receive from the channel i, andif it receives a send port !o (o 62 P) then it may send on the channel o. Similarly, wheneverthe function sends a send port !j, whose channel j 2 P it has created itself, it may laterreceive what is sent along j, or whenever it sends a receive port ?p, whose channel p 2 Pit has created itself, it may itself send messages along p which eventually are received bythe components which received the receive port.To formally characterize this behavior we introduce some additional notation. For a givenpoint in time n and named input history �, by ap(�; f(�))(n) we denote the set of activeinput and output ports, and by pp(�; f(�))(n) we denote the set of passive input andoutput ports. At any point in time n these two sets are disjoint. For any channel p, byep we denote its complement, i.e., e!p =?p and f?p =!p. A port p in pp(�; f(�))(n) remainspassive as long as its complement port ep is unknown to the environment. After all, if epis unknown to the environment then there is no way the environment can receive what fsends along p if p is a send port, and there is no way the environment can inuence whatf receives on p if p is a receive port. Formally:De�nition 2 (Active and passive ports) For any n; I;O; P; � and �, letapI;O;P (�; �)(n) def= apn; ppI;O;P (�; �)(n) def= ppn;where apn and ppn are de�ned recursively as follows:ap1 def= ?I [!O; pp1 def= ?!P;apn+1 def= apn [rn [gn; ppn+1 def= ppn n gn;wherern = S?i2apnfp j p 2 ppn ^ p 2 �(i)(n)g;gn = S!i2apnfp j p 2 ppn ^ ep 2 �(i)(n)g: 2The sets rn and gn are the sets of received and generated ports, respectively.Theorem 1 For any n; I;O; P; � and �ppI;O;P (�; �)(1) � apI;O;P (�; �)(n) [ppI;O;P (�; �)(n)ppI;O;P (�; �)(n) � ppI;O;P (�; �)(1)Proof: Follows trivially since anything that is removed from the set of passive portsis added to the set of active ports, and since nothing is ever added to the set of passiveports. 2With domI;O;P and rngI;O;P we describe how f dynamically gain access to ports. Theexpression domI;O;P (�; f(�))(n) characterizes the input history that is actually consideredby f in time unit n. Accordingly, rngI;O;P (�; f(�))(n) is the output history that is actuallyproduced by f in time unit n. In the de�nition of genericity below, domI;O;P and rngI;O;Pconstrain f to maintain the privacy invariant described above. Since the function f runs inan open environment this constraint is of course not su�cient unless also the environment7

sticks to the rules of the game. There are basically two ways in which the environmentof f can break the rules of the game. Firstly, the environment can send f a port p 2!?Pwhich the environment has not yet received from f , i.e., a port \it does not yet know"because it has not yet been output by f . Secondly, the environment can send along achannel c 2 P without �rst having received !c.There are two ways to deal with this problem. One alternative is to impose an environmentassumption in all de�nitions characterizing exactly those input histories in which theenvironment sticks to the rules of the game. The other alternative, which is used in thispaper, is to constrain the functions to ignore the input messages which do not respectthe privacy restrictions. This is okay, because we are only interested in environments thatcan be understood as mobile components in accordance with the de�nition below. Suchcomponents will never break the rules of the game. For that reason, domI;O;P and rngI;O;Phave been de�ned in such a way that, in addition to their main task of characterizing theactual domain and range of a function, they also correct environment mistakes. Portssent by the environment that should be unknown to the environment are �ltered away.Moreover, messages sent by the environment along channels it does know are removed.Formally:2De�nition 3 (Domain and range) For any n; I;O; P; � and �, we de�nedomI;O;P (�; �)(i)(n) def= ((gppn [D) c �(i)(n) if ?i 2 apn� otherwiserngI;O;P (�; �)(i)(n) def= ((ppn [apn [D) c �(i)(n) if !i 2 apn� otherwisewhere apn = apI;O;P (�; �)(n) and ppn = apI;O;P (�; �)(n). 2Theorem 2 The functions pp and ap are strongly guarded, and the functions dom andrng are weakly guarded.Proof: ppI;O;P (�; �)(n) and apI;O;P (�; �)(n) depend only on �#n�1 and �#n�1.domI;O;P (�; �)(n) and rngI;O;P (�; �)(n) depend only on �#n and �#n. 2Theorem 3 The functions dom and rng have the following properties:domI;O;P (�; �) = domI;O;P (domI;O;P (�; �); �) = domI;O;P (�; rngI;O;P (�; �));rngI;O;P (�; �) = rngI;O;P (domI;O;P (�; �); �) = rngI;O;P (�; rngI;O;P (�; �)):Proof: The proof is based on the inductive de�nitions of ap and pp.Induction hypothesis:apI;O;P (�; �)(n) = apI;O;P (domI;O;P (�; �); �)(n) = apI;O;P (�; rngI;O;P (�; �))(n);ppI;O;P (�; �)(n) = ppI;O;P (domI;O;P (�; �); �)(n) = ppI;O;P (�; rngI;O;P (�; �))(n):To simplify the notation we write:apn = apI;O;P (�; �)(n);ap0n = apI;O;P (domI;O;P (�; �); �)(n); ap00n = apI;O;P (�; rngI;O;P (�; �))(n);ppn = ppI;O;P (�; �)(n);pp0n = ppI;O;P (domI;O;P (�; �); �)(n); pp00n = ppI;O;P (�; rngI;O;P (�; �))(n):2The operator 2 is overloaded to test for containment in a list. Moreover, for any set of ports S � ?!N ,S def= ?!N n S and eS def= fep j p 2 Sg. When convenient, we also view �(i)(n) as a set.8

Base case: ap1 = ap01 = ap001 =?I [!O and pp1 = pp01 = pp001 =?!P .Induction Step: By induction hypothesis apn = ap0n = ap00n and ppn = pp0n = pp00n. Byde�nition of ap and pp:apn+1 = (apn [S?i2apnfc j c 2 ppn ^ c 2 �(i)(n)g [S!i2apnfc j c 2 ppn ^ ec 2 �(i)(n)g);ap0n+1 = (ap0n [S?i2ap0nfc j c 2 pp0n ^ c 2 domI;O;P (�; �)(i)(n)g [S!i2ap0nfc j c 2 pp0n ^ ec 2 �(i)(n)g);ap00n+1 = (ap00n [S?i2ap00nfc j c 2 pp00n ^ c 2 �(i)(n)g) [S!i2ap00nfc j c 2 pp00n ^ ec 2 rngI;O;P (�; �)(i)(n)g);ppn+1 = ppnn S!i2apnfc j c 2 ppn ^ ec 2 �(i)(n)g;pp0n+1 = pp0nn S!i2ap0nfc j c 2 pp0n ^ ec 2 �(i)(n)g;pp00n+1 = pp00nn S!i2ap00nfc j c 2 pp00n ^ ec 2 rngI;O;P (�; �)(i)(n)g:By de�nition of dom and rng:domI;O;P (�; �)(i)(n) = (gppn [D) c �(i)(n) if ?i 2 apn = ap0n = ap00n;rngI;O;P (�; �)(i)(n) = (ppn [apn [D) c �(i)(n) if !i 2 apn = ap0n = ap00n:The �rst union in the de�nition of apn+1; ap0n+1 and ap00n+1 is taken over ?i 2 apn = ap0n =ap00n. As a consequencedomI;O;P (�; �)(i)(n) = (gppn [D) c �(i)(n)inside this union. It is enough to show thatc 2 �(i)(n) , c 2 (gppn [D) c�(i)(n)under the assumption that c 62 apn and c 2 ppn. This follows trivially since ec 2 pp1 , c 2pp1, Theorem 1 and the two assumptions imply that c 62 gppn.The second union in the de�nition of apn+1; ap0n+1 and ap00n+1 is taken over !i 2 apn =ap0n = ap00n. As a consequencerngI;O;P (�; �)(i)(n) = (ppn [apn [D) c �(i)(n)inside this union. It is enough to show that~c 2 �(i)(n) , ec 2 (ppn [apn [D) c �(i)(n)under the assumption that c 2 ppn. This follows trivially since ec 2 pp1 , c 2 pp1,Theorem 1 and the assumption imply that ec 2 ppn [apn. This proves that apn+1 =ap0n+1 = ap00n+1. That ppn+1 = pp0n+1 = pp00n+1 follows accordingly.Finally, because of these equalities, domI;O;P (�; �)(i)(n) simpli�es to �(i)(n) inside thede�nition of domI;O;P and rngI;O;P (�; �)(i)(n) simpli�es to �(i)(n) inside the de�nition ofrngI;O;P . This immediately proves the theorem. 2We can now characterize what it means for a function to be generic.De�nition 4 (Generic functions) A function f 2 (N ! [M�])! (N ! [M�]) is calledgeneric with respect to the initial wiring (I;O) and the private names P i�:8� : f(�) = f(domI;O;P (�; f(�))) = rngI;O;P (�; f(�)): 29

We use the Mob(I;O; P) to characterize the set of all strongly guarded functions that aregeneric with respect to (I;O; P). In the sequel we refer to these functions as mobile.4 Mobile ComponentsWe model a nondeterministic component by a set of mobile functions F . Any pair (�; f(�)),where f 2 F , is a possible behavior of the component. Intuitively, for any input historyeach mobile function f 2 F represents one possible nondeterministic behavior. For any setof functions F we de�ne O(F) to be the set of all behaviors of F , i.e., O(F) = f(x; f(x)) jf 2 Fg.Di�erent sets of mobile functions may have the same set of behaviors. The reason is thatfor some sets of mobile functions we may �nd additional mobile functions which can beunderstood as combinations of the functions already in the set. For example, we may �nda mobile function g which for one input history behaves as the function f 2 F and foranother input history behaves as the function f 0 2 F , and so on. This means, a model inwhich a nondeterministic component is represented by an arbitrary set of mobile functions,is too distinguishing, and consequently, not fully abstract. To achieve full abstraction weconsider only closed sets, i.e., sets F , where each combination of functions in F , whichgives a mobile function, is also in F .De�nition 5 (Mobile components) A mobile component, with initial wiring (I;O) andprivate names P , where P \(I[O) = ;, is modeled by a nonempty set of stream processingfunctionsF � Mob(I;O; P)that is closed in the sense that for any f 2Mob(I;O; P)(8� 2 (N ! [M�]) : 9f 0 2 F : f(�) = f 0(�))) f 2 F: 2It follows straightforwardly that if F1 and F2 are mobile components then F1 = F2 i�O(F1) = O(F2). Thus, our notion of a component is fully abstract with respect to thecorresponding set of behaviors. Note the relationship to [Rus90]. That our semantics isfully abstract with respect to O is of course trivial. Nevertheless, this notion of observationcharacterizes the expectations one has to a semantics dealing with time.Note that if c 2 N and (�; �) 2 O(F) then the communication history �(c) contains thehistory of all messages sent by the environment along the channel c. On the other hand,the communication history �(c) contains the history of all messages sent by F along thechannel c. Thus, although we model many-to-many communication, each component canbe understood as a pure relation between input and output histories where each inputhistory contains only messages sent by the environment, and each output history containsonly messages sent by the component.5 Interference and Implicit MergeInterference occurs when two mobile components send on the same channel. As shouldbe clear from the discussion in the previous section, interference is not considered at the10

component level. This allows us to describe each component in a very abstract and, inour opinion, intuitive way. Instead, interference is modeled by building implicit mergecomponents into the network operators. Each such merge component MC takes twonamed communication histories as input and yields their merge as output. Since MC ishidden in the semantics, it should neither add nor reduce delay. Remember, we want to beable to express timing constraints. This means that its output history during time unit kshould be a merge of the two �nite streams characterizing the input histories in time unitk. Moreover, MC should not �x the interleaving. Thus, any interleaving of the messagesreceived within a time unit should be allowed. This means that MC is nondeterministic.MC is now formally de�ned in two steps.We �rst characterize what it means for a �nite stream to be a merge of two �nite streams.To do so, we introduce some operators. For any tuple t we use �1(t) to denote the �rstcomponent of t; for any stream s we use #s to denote the length of s. For a set ofmessages A and a stream of messages s, A cs denotes the stream we obtain by removingany message in s that is not contained in A. This operator is overloaded to sets of pairsof messages A � B and pairs of streams of messages (r; s) in a straightforward way: foreach j, (r(j); s(j)) is �ltered away i� it is not in A�B.De�nition 6 (The merge relation on �nite streams) Let FM be the function suchthat:FM 2M� �M� ! P(M�)FM(s1; s2) = fs j 9p 2 f1; 2g� : #p = #s ^ 8i 2 f1; 2g :si = �1((M � fig) c (s; p))g 2It is now straightforward to de�ne the implicit merge component.De�nition 7 (The merge component) The merge component is a set of weakly guardedfunctions de�ned as follows:MC � (N ! [M�])� (N ! [M�]) w+ (N ! [M�])MC = ff 2 (N ! [M�])� (N ! [M�]) w+ (N ! [M�]) j8'; ; i : N;n 2 N : f(';)(i)(n) 2 FM('(i)(n); (i)(n))g 2Note that the functions contained in MC are only required to be weakly guarded. Nev-ertheless, due to the way this implicit component is used in the de�nitions of networkoperators, this does not lead to any problem.Theorem 4 MC is a nonempty set.Proof: Trivial 26 Network OperatorsIn this section we introduce three network operators, namely an operator for parallelcomposition with mutual feedback , a feedback operator and a hiding operator.11

6.1 Many-to-Many CompositionThe parallel composition with mutual feedback of two components F1 and F2 is charac-terized by the network in Figure 2.

1O 2O∪

F1 F2

ϕ ψ

θ

I1 I2

Figure 2: Many-to-many communicationDe�nition 8 (Many-to-many composition) Given two mobile componentsF1 � Mob(I1; O1; P1); F2 � Mob(I2; O2; P2),where P1 \ (P2 [I2 [O2) = P2 \ (P1 [I1 [O1) = ;. LetI = I1 [I2; O = O1 [O2; P = P1 [P2;thenF1 � F2 � Mob(I;O; P)F1 � F2 = ff 2Mob(I;O; P) j 8� : 9f1 2 F1; f2 2 F2;m1;m2;m3 2MC :f(�) = rngI;O;P (�; �) where� = m3(';); # = domI;O;P (�; �)' = f1(m1(#;)); = f2(m2(#; '))g 2Note the role of domI;O;P and rngI;O;P in maintaining privacy. If F1 sends a private sendport !p 2!P1 on a feedback channel (and it does not send ?p), then both the environmentand F2 can send along p, but only F1 is allowed to receive on p. As a consequence, theoutput of F2 along p should not be observed by the environment. This is ensured byrngI;O;P . Similarly, if F1 sends a private receive port ?p 2?P1 on a feedback channel (andit does not send !p), then both the environment and F2 can receive on p, but only F1is allowed to send along p. As a consequence, the input of F2 on p should contain onlymessages sent by F1. This is ensured by domI;O;P .Theorem 5 F1 � F2 6= ;.Proof: Since F1 and F2 are mobile components and MC is not empty we may �ndfunctions f1 2 F1; f2 2 F2 and m1;m2;m3 2MC. Based on these functions we constructa function f which is strongly guarded, generic and satis�es the recursive de�nition above.12

Let g be de�ned as follows:g 2 ((N ! [M�])� (N ! [M�]))� (N ! [M�])! (N ! [M�])� (N ! [M�])g((';); �) = (f1(m1(#;)); f2(m2(#; ')); where # = domI;O;P (�; �); � = m3(';):Theorem 12 and the way g is de�ned in terms of strongly and weakly guarded functionsimply that g is strongly guarded. Thus � g is well-de�ned, in which case Theorem 14implies that � g is strongly guarded. That the function f de�ned below is also stronglyguarded follows by a similar argument:f 2 (N ! [M�])! (N ! [M�])f(�) = rngI;O;P (�; �) where � = m3(';); (';) = (� g)(�)That f is generic is a consequence of the next two lemmas.Lemma 1 f(�) = f(domI;O;P (�; f(�))).Proof: The idea of the proof is to transform f(�) to f(domI;O;P (�; f(�))) by using theequalities from Theorem 3. By de�nitionf(domI;O;P (�; f(�))) = rngI;O;P (domI;O;P (�; f(�)); �0) where�0 = m3('0; 0); #0 = domI;O;P (domI;O;P (�; f(�)); �0);'0 = f1(m1(#0; 0)); 0 = f2(m2(#0; '0)):By Theorem 3 and de�nition of fdomI;O;P (�; �) = domI;O;P (�; rngI;O;P (�; �)) = domI;O;P (�; f(�));domI;O;P (�; �) = domI;O;P (domI;O;P (�; �); �) = domI;O;P (domI;O;P (�; f(�)); �);rngI;O;P (�; �) = rngI;O;P (domI;O;P (�; �); �) = rngI;O;P (domI;O;P (�; f(�)); �):Replacing domI;O;P (�; �) and rngI;O;P (�; �) in the de�nition of f we obtainf(�) = rngI;O;P (domI;O;P (�; f(�)); �) where� = m3(';); # = domI;O;P (domI;O;P (�; f(�)); �);' = f1(m1(#;)); = f2(m2(#; ')):Now the fact that we have unique �x-points implies that � = �0, ' = '0, = 0 and # = #0and consequently that f(�) = f(domI;O;P (�; f(�))). 2Lemma 2 f(�) = rngI;O;P (�; f(�)).Proof:rngI;O;P (�; f(�)) =rngI;O;P (�; rngI;O;P (�; �)) = fby de�nition of fgrngI;O;P (�; �) = fby Theorem 3gf(�) fby de�nition of fg 2Finally, since 9f1; f2;m1;m2;m3 : 8� : P implies 8� : 9f1; f2;m1;m2;m3 : P it followsthat f 2 F1 � F2. 2Theorem 6 F1 � F2 is a mobile component.Proof: That F1 � F2 6= ; follows from Theorem 5. To see that F1 � F2 is closed, letf 2Mob(I;O; P), and assume that 13

8� : 9f 0 2 F1 � F2 : f(�) = f 0(�):The de�nition of � implies that for any � there are f 0 2 F1 � F2, f1 2 F1; f2 2 F2 andm1;m2;m3 2MC such that:f(�) = f 0(�) = rngI;O;P (�; �) where' = f1(m1(#;)); = f2(m2(#; ')); # = domI;O;P (�; �); � = m3(';)By the de�nition of �, it follows that f 2 F1 � F2. 26.2 FeedbackAs we have already pointed out, if (�; �) is a behavior of a mobile component F thenthe communication history �(c) contains the messages sent by the environment along thechannel c, and �(c) contains the messages sent by the component along the channel c.Clearly, the behavior of F has only indirect inuence on its input via the environment.Thus, there is no direct interference. To allow the component's output to interfere withits input a simple feedback operator can be used. We then get the network pictured inFigure 3. Formally, the feedback operator can be de�ned as below:
µF

θ

I

F

δ

O Figure 3: FeedbackDe�nition 9 (Feedback) Given a mobile component F � Mob(I;O; P). Then�F � Mob(I;O; P)�F = ff 2Mob(I;O; P) j 8� : 9g 2 F;m 2MC :f(�) = rngI;O;P (�; �) where � = g(m(domI;O;P (�; �); �))g: 2Note the close relationship between Figure 3 and the de�nition. If I\O 6= ; it is completelyclear that interference will occur. However, interference can take place also if I \ O = ;.For example, this is the case if F receives a receive port ?c to a channel in O.Theorem 7 �F 6= ;.Proof: Since F is a mobile component and MC is not empty we may �nd functionsg 2 F and m 2MC. Based on these functions we construct a function f which is stronglyguarded, generic and satis�es the recursive de�nition above. Let h be de�ned as follows:14

h 2 (N ! [M�])� (N ! [M�])! (N ! [M�])h(�; �) = g(m(domI;O;P (�; �); �))Theorem 12 and the way h is de�ned in terms of strongly and weakly guarded functionsimply that h is strongly guarded. Thus �h is well-de�ned, in which case Theorem 14implies that �h is strongly guarded. By a similar argument, f de�ned below is alsostrongly guarded:f(�) = rngI;O;P (�; �) where � = �h(�)That f is generic is a consequence of the next two lemmas.Lemma 3 f(�) = f(domI;O;P (�; f(�))).Proof: The idea of the proof is to transform f(�) to f(domI;O;P (�; f(�))) by using theequalities from Theorem 3. By de�nitionf(domI;O;P (�; f(�))) = rngI;O;P (domI;O;P (�; f(�)); �0) where�0 = g(m(domI;O;P (domI;O;P (�; f(�)); �0); �0)):By Theorem 3 and de�nition of fdomI;O;P (�; �) = domI;O;P (�; rngI;O;P (�; �)) = domI;O;P (�; f(�))domI;O;P (�; �) = domI;O;P (domI;O;P (�; �); �) = domI;O;P (domI;O;P (�; f(�)); �)rngI;O;P (�; �) = rngI;O;P (domI;O;P (�; �); �) = rngI;O;P (domI;O;P (�; f(�)); �):Replacing domI;O;P (�; �) and rngI;O;P (�; �) in the de�nition of f we obtainf(�) = rngI;O;P (domI;O;P (�; f(�)); �) where� = g(m(domI;O;P (domI;O;P (�; f(�)); �); �)):Now the fact that we have unique �x-points implies that � = �0 and consequently thatf(�) = f(domI;O;P (�; f(�))). 2Lemma 4 f(�) = rngI;O;P (�; f(�)).Proof:rngI;O;P (�; f(�)) =rngI;O;P (�; rngI;O;P (�; �)) = fby de�nition of fgrngI;O;P (�; �) = fby Theorem 3gf(�) fby de�nition of fg 2Finally, since 9g;m : 8� : P implies 8� : 9g;m : P it follows that f 2 �F . 2Theorem 8 �F is a mobile component.Proof: That �F 6= ; follows from Theorem 7. To see that �F is closed, let f 2Mob(I;O; P), and assume that8� : 9f 0 2 �F : f(�) = f 0(�):The de�nition of feedback implies that for any � there are f 0 2 �F , g 2 F and m 2 MCsuch that:f(�) = f 0(�) = rngI;O;P (�; �) where � = g(m(domI;O;P (�; �); �))gBy the de�nition of �, it follows that f 2 �F . 215

6.3 HidingThe privacy of a non-static port is guaranteed by the genericity property. The privacy of astatic port, i.e., a port from the initial wiring, can be ensured by using a hiding operator.If x is a port from the initial wiring of the component F , then �x : F is a componentwhere x is added to the set of private channel names and deleted from the static interface.The domain and range of the functions modeling �x : F are changed accordingly. As aconsequence, only components receiving !x or ?x as a message can access this channel lateron.De�nition 10 (Hiding) Given a mobile component F � Mob(I 0; O0; P 0) and a channelname x such that x 62 P 0. Let:I = I 0 n fxg; O = O0 n fxg; P = P 0 [fxg:Then:�x : F � Mob(I;O; P)�x : F = ff 2 Mob(I;O; P) j 8� : 9g 2 F :f(�) = rngI;O;P (�; �) where � = g(domI;O;P (�; �))g 2Note the role of domI;O;P and rngI;O;P in maintaining privacy: domI;O;P makes sure thatthe behavior of �x : F is independent of what the environment sends along x before theenvironment has received the send port !x; rngI;O;P makes sure that �x : F does not sendmessages along x before it has sent the receive port ?x.Theorem 9 � x : F 6= ;.Proof: Since F is a mobile component we may �nd a strongly guarded function g 2 F .Based on g we construct a function f which is strongly guarded, generic and satis�es therecursive de�nition above.Let h be de�ned as follows:h(�; �) = g(domI;O;P (�; �))Theorem 12 and the way h is de�ned in terms of strongly and weakly guarded functionsimply that h is strongly guarded. Thus �h is well-de�ned, in which case Theorem 14implies that �h is strongly guarded. By a similar argument, f de�ned below is alsostrongly guarded:f(�) = rngI;O;P (�; �) where � = � g(�)That f is generic is a consequence of the next two lemmas.Lemma 5 f(�) = f(domI;O;P (�; f(�))).Proof: The idea of the proof is to transform f(�) to f(domI;O;P (�; f(�))) by using theequalities from Theorem 3. By de�nitionf(domI;O;P (�; f(�))) = rngI;O;P (domI;O;P (�; f(�)); �0) where�0 = g(domI;O;P (domI;O;P (�; f(�)); �0)):By Theorem 3 and de�nition of f 16

domI;O;P (�; �) = domI;O;P (�; rngI;O;P (�; �)) = domI;O;P (�; f(�))domI;O;P (�; �) = domI;O;P (domI;O;P (�; �); �) = domI;O;P (domI;O;P (�; f(�)); �)rngI;O;P (�; �) = rngI;O;P (domI;O;P (�; �); �) = rngI;O;P (domI;O;P (�; f(�)); �):Replacing domI;O;P (�; �) and rngI;O;P (�; �) in the de�nition of f we obtainf(�) = rngI;O;P (domI;O;P (�; f(�)); �) where� = g(domI;O;P (domI;O;P (�; f(�)); �)):Now the fact that we have unique �x-points implies that � = �0 and consequently thatf(�) = f(domI;O;P (�; f(�))). 2Lemma 6 f(�) = rngI;O;P (�; f(�)).Proof:rngI;O;P (�; f(�)) =rngI;O;P (�; rngI;O;P (�; �)) = fby de�nition of fgrngI;O;P (�; �) = fby Theorem 3gf(�) fby de�nition of fg 2Finally, since 9g : 8� : P implies 8� : 9g : P it follows that f 2 �x : F . 2Theorem 10 �x : F is a mobile component.Proof: That �x : F 6= ; follows from Theorem 9. To see that �x : F is closed, letf 2Mob(I;O; P), and assume that8� : 9f 0 2 �x : F : f(�) = f 0(�):The de�nition of hiding implies that for any � there are f 0 2 �x : F and g 2 F such that:f(�) = f 0(�) = rngI;O;P (�; �) where � = g(domI;O;P (�; �))gBy the de�nition of �, it follows that f 2 �x : F . 27 Mobile TelephonesOur denotational model is very expressive. In this section we show how we can deal withthe mobile telephone example discussed in [Mil91]. A center is in permanent contact withtwo base stations; each in a di�erent part of the country. A car with a mobile telephonemoves about the country; it should always be in contact with a base. If it gets ratherfar from its current base contact, then a hand-over procedure is initiated, and as a resultthe car relinquishes contact with one base and assumes contact with another. The initialcon�guration of the network is illustrated by Figure 4.
17

2ak

1gv

1

car

2

2

2gv

ak

tk

1

tk

base base

1

ot

centerFigure 4: The initial system con�gurationIn this example there are no real-time constraints to be imposed. We therefore introduce atime abstraction operator: the untimed stream tuple b� is obtained from the timed streamtuple � by removing time information. This is achieved by concatenating for each i 2 Nall the �nite sequences in �(i). The operation fc ! mg&' appends the message m tothe head of the stream '(c). The other streams in ' remain unchanged. This operator isoverloaded to streams in the obvious way.Figure 4 shows the initial con�guration of system. car is in contact with base1. However,there is no connection between car and base2. The system is speci�ed as follows:system(�ot) def= � tk1; tk2; gv1; gv2; ak1; ak2 :car(tk1 � ot) � base(gv1 � tk1; ak1) � base(gv2 � tk2; ak2)�center(tk1; tk2)(ak1; ak2 � gv1; gv2)The car is parametric upon a receive port tk and a send port ot. On tk it can eitherreceive talk messages m or switch messages ?x. Any talk message is forwarded along ot.The arrival of a receive port ?c forces the component to receive on ?c instead of on tk.car(tk � ot) def= f f 2Mob(ftkg; fotg; ;) j8� : df(�) = g(tk)(b�) where 8#;m; c :g(tk)(ftk 7! mg&#) = fot 7! mg& g(tk)(#)g(tk)(ftk 7!?cg&#) = g(c)(#) gA base can talk repeatedly with the car; but at any time it can receive on its give channel gva new port which it should communicate to the car and then become idle itself. Whetherit ignores the give channel or not is controlled with a prophecy stream. An idle base isreactivated upon receipt of an act message on its give channel.base(gv � tk; ak) def= f f 2Mob(fgvg; ftk; akg; ;) j8� : 9p 2 [f1; 2g] : df(�) = h(p)(b�) where 8p; #; x :h(p)(fgv 7! actg&#) = g(p)(#)g(1& p)(#) = ftk 7! mg& g(p)(#)g(2& p)(fgv 7!?xg&#) = ftk 7!?x; ak 7! okg&h(p)(#) g18

The center which initially knows that the car is in connection with base1, can decide(according to information which we do not model) to transmit the receive port ?tk2 to thecar via base1. Upon receipt of an acknowledgment on ak1 from base1 it alerts base2 of thisfact.center(tk1; tk2)(ak1; ak2 � gv1; gv2) def= f f 2 Mob(fak1; ak2g; fgv1; gv2g; ;) j8� : df(�) = g(1)(b�) where 8i 2 f1; 2g; #g(i)(#) = fgvi 7! actg& fgvi 7!?tk:ig&h(i)(#)h(i)(faki 7! okg&#) = g(:i)(#) gIt is here assumed that :1 = 2 and that :2 = 1.8 DiscussionOur main contribution is that we have extended a denotational model for timed, many-to-many, nondeterministic data-ow networks to handle mobility. Our model is fullycompositional. It allows us to reason about mobility at a very abstract level. In fact,we believe our semantics is well-suited as a foundation for a method for the speci�cationand development of mobile systems. The exact relationship between our model and othermodels like for instance the �-calculus [Mil91] and actor-based approaches [AMST92] isan interesting area for future research. For example, we believe that our model can beused to give a denotational semantics for the asynchronous �-calculus. We also believethat the actor languages can be smoothly integrated within our formalism.Our semantics can easily be adapted to model other kinds of communication. For example,in [GS96b, GS96a] we show how two di�erent kinds of point-to-point communication canbe modeled in our approach.Our approach is related to the work of Kok [Kok87, Kok89]. The major di�erence is thatKok does not deal with mobility. Moreover, his handling of nondeterminism di�ers fromours. In [Kok89], where he uses a metric on relations, he can basically handle only boundednondeterminism. In [Kok87], which is not based on metric spaces, an automaton is usedto generate the behavior of basic agents. This guarantees the existence of �x-points. Weuse sets of strongly guarded functions for the same purpose.References[AdBKR89] P. America, J. de Bakker, J. N. Kok, and J. Rutten. Denotational semanticsof a parallel object-oriented language. Information and Computation, 83:152{205, 1989.[AMST92] G. Agha, I. A. Mason, S. F. Smith, and C. L. Talcott. Towards a theoryof actor computation. In Proc. CONCUR'92, Lecture Notes in ComputerScience 630, pages 565{579, 1992.
19

[BA81] J. D. Brock and W. B. Ackermann. Scenarios: A model of non-determinatecomputation. In Proc. Formalization of Programming Concepts, LectureNotes in Computer Science 107, pages 252{259, 1981.[BB90] G. Berry and G. Boudol. The chemical abstract machine. In Proc. POPL'90,pages 81{94, 1990.[BDD+93] M. Broy, F. Dederichs, C. Dendorfer, M. Fuchs, T. F. Gritzner, and R. Weber.The design of distributed systems | an introduction to Focus (revised ver-sion). Technical Report SFB 342/2/92 A, Technische Universit�at M�unchen,1993.[Bro87] M. Broy. Semantics of �nite and in�nite networks of concurrent communi-cating agents. Distributed Computing, 2:13{31, 1987.[CM88] K. M. Chandy and J. Misra. Parallel Program Design, A Foundation.Addison-Wesley, 1988.[dBZ82] J. W. de Bakker and J. I. Zucker. Denotational semantics of concurrency. InProc. 14 ACM Symposium on Theory of Computing, pages 153{158, 1982.[EN86] U. Engberg and M Nielsen. A calculus of communicating systems with label-passing. Technical Report DAIMI PB-208, University of Aarhus, 1986.[Eng77] R. Engelking. General Topology. PWN | Polish Scienti�c Publishers, 1977.[GS96a] R. Grosu and K. St�len. A denotational model for mobile point-to-pointdataow networks with channel sharing. To appear as technical report, Tech-nische Universit�at M�unchen, 1996.[GS96b] R. Grosu and K. St�len. A model for mobile point-to-point dataow networkswithout channel sharing. To appear in the Proc. of AMAST'96, 1996.[HBS73] C. Hewitt, P. Bishop, and R. Steiger. A universal modular actor formalismfor arti�cial intelligence. In Proc. IJCAI'73, pages 235{245, 1973.[Kah74] G. Kahn. The semantics of a simple language for parallel programming. InProc. Information Processing 74, pages 471{475. North-Holland, 1974.[Kel78] R. M. Keller. Denotational models for parallel programs with indeterminateoperators. In Proc. Formal Description of Programming Concepts, pages337{366. North-Holland, 1978.[Kok87] J. N. Kok. A fully abstract semantics for data ow nets. In Proc. PARLE'87,Lecture Notes in Computer Science 259, pages 351{368, 1987.[Kok89] J. N. Kok. An iterative metric fully abstract semantics for nondeterministicdataow. In Proc. MFCS'89, Lecture Notes in Computer Science 379, pages321{331, 1989.[Lam91] L. Lamport. The temporal logic of actions. Technical Report 79, Digital,SRC, Palo Alto, 1991. 20

[Mes91] J. Meseguer. Conditional rewriting logic as a uni�ed model of concurrency.Technical Report SRI-CSL-91-05, SRI, 1991.[Mil91] R. Milner. The polyadic �-calculus: A tutorial. Technical Report ECS-LFCS-91-180, University of Edinburgh, 1991.[MPS86] D. MacQueen, G. Plotkin, and R. Sethi. An ideal model for recursive poly-morphic types. Information and Control, 71:95{130, 1986.[MPW92a] R. Milner, J. Parrow, and D. Walker. A calculus of mobile processes, part I.Information and Computation, 100:1{40, 1992.[MPW92b] R. Milner, J. Parrow, and D. Walker. A calculus of mobile processes, part II.Information and Computation, 100:41{77, 1992.[Niv82] M Nivat. Behaviours of processes and synchronized systems of processes. InProc. Theoretical Foundations of Programming Methodology, pages 473{551,1982.[Par83] D. Park. The \fairness" problem and nondeterministic computing networks.In Proc. 4th Foundations of Computer Science, Mathematical Centre Tracts159, pages 133{161. Mathematisch Centrum Amsterdam, 1983.[PS92] P. Panangaden and V. Shanbhogue. The expressive power of indeterminatedataow primitives. Information and Computation, 98:99{131, 1992.[Rus90] J. R. Russell. On oraclizable networks and Kahn's principle. In Proc.POPL'90, pages 320{328, 1990.[Tho89] B. Thomsen. A calculus of higher order communicating systems. In Proc.POPL'89, 1989.A Metric Space De�nitionsA.1 Metric Space BasicsThe fundamental concept in metric spaces is the concept of distance.De�nition 11 (Metric Space) A metric space is a pair (D; d) consisting of a nonemptyset D and a mapping d 2 D�D ! R, called a metric or distance, which has the followingproperties:(1) 8x; y 2 D : d(x; y) = 0 , x = y(2) 8x; y 2 D : d(x; y) = d(y; x)(3) 8x; y; z 2 D : d(x; y) � d(x; z) + d(z; y) 2A very simple example of a metric is the discrete metric.
21

De�nition 12 (The discrete metric) The discrete metric (D; d) over a set D is de�nedas follows:d(x; y) = (0 if x = y1 if x 6= y 2Measuring the distance between the elements of a sequence (xi)i2N in D we obtain thefamiliar de�nitions for convergence and limits.De�nition 13 (Convergence and limits) Let (D; d) be a metric space and let (xi)i2Nbe a sequence in D.(1) We say that (xi)i2N is a Cauchy sequence whenever we have:8� > 0 : 9N 2 N : 8n;m > N : d(xn; xm) < �.(2) We say that (xi)i2N converges to x 2 D denoted by x = limn!1xi and call x thelimit of (xi)i2N whenever we have:8� > 0 : 9N 2 N : 8n > N : d(xn; x) < �.(3) The metric space (D; d) is called complete whenever each Cauchy sequence convergesto an element of D. 2Theorem 11 The discrete metric is complete.Proof: Each Cauchy sequence is constant from a given N . 2A very important class of functions over metric spaces is the class of Lipschitz functions.De�nition 14 (Lipschitz functions) Let (D1; d1) and (D2; d2) be metric spaces and letf 2 D1 ! D2 be a function. We call f Lipschitz function with constant c if there is aconstant c � 0 such that the following condition is satis�ed:d(f(x); f(y)) � c � d(x; y)For a function f with arity n the above condition generalizes to:d(f(x1; : : : ; xn); f(y1; : : : ; yn)) � c �maxfd(xi; yi) j i 2 [1::n]gIf c = 1 we call f non-expansive. If c < 1 we call f contractive. 2Theorem 12 The composition of two Lipschitz functions f 2 D1 ! D2 and g 2 D2 ! D3is a Lipschitz function with constant c1 � c2.Proof: d(g(f(x1)); g(f(x2)) � c2 � d(f(x1); f(x2)) � c2 � c1 � d(x1; x2) 2Lemma 1 The composition of a contractive and a non-expansive function is contrac-tive. The composition of two non-expansive functions is non-expansive. Identity is non-expansive. 2The main tool for handling recursion in metric spaces is the Banach's �xed point theorem.It guarantees the existence of a unique �xed point for every contractive function.22

Theorem 13 (Banach's �xed point theorem) Let (D; d) be a complete metric spaceand f 2 D ! D a contractive function. Then there exists an x 2 D, such that thefollowing holds:(1) x = f(x) (x is a �xed point of f)(2) 8y 2 D : y = f(y)) y = x (x is unique)(3) 8z 2 D : x = limn!1fn(z) wheref0(z) = zfn+1(z) = f(fn(z))Proof: See [Eng77]. 2Usually we want to use a parameterized version of this theorem.De�nition 15 (Parameterized �xed point) Let f 2 D � D1 � : : : � Dn ! D be afunction of non-empty complete metric spaces that is contractive in its �rst argument. Wede�ne the parameterized �xed point function �f as follows:(�f) 2 D1 � : : : �Dn ! D(�f)(y1; : : : ; yn) = xwhere x is the unique element of D such that x = f(x; y1; : : : ; yn) as guaranteed by Ba-nach's �xed point theorem. 2Theorem 14 If f is contractive (non-expansive) so is �f .Proof: See for example [MPS86] pages 114{115. 2A.2 Streams and Named Stream TuplesA stream is a �nite or in�nite sequence of elements. For any set of elements E, we useE� to denote the set of all �nite streams over E, and [E] to denote the set of all in�nitestreams over E. For any in�nite stream s, we use s#j to denote the pre�x of s containingexactly j elements. We use � to denote the empty stream.We de�ne the metric of streams generically with respect to an arbitrary discrete metric(E; �).De�nition 16 (The metric of streams) The metric of streams ([E]; d) over a discretemetric (E; �) is de�ned as follows:[E] = Qi2NEd(s; t) = inff2�j j s#j = t#jg 2This metric is also known as the Baire metric [Eng77].Theorem 15 The metric space of streams ([E]; d) is complete.Proof: See for example [Eng77]. 2A named stream tuple is a mapping � 2 (I ! [E]) from a set of names to in�nite streams.# is overloaded to named stream tuples in a point-wise style, i.e., �#j denotes the result ofapplying #j to each component of �. 23

De�nition 17 (The metric of named stream tuples) The metric of named streamtuples (I ! [E]; d) with names in I and elements in (E; �) is de�ned as follows:I ! [E] is the set of functions from the countable set I to the metric [E];d(s; t) = inff2�j j s#j = t#jg 2Theorem 16 The metric space of named stream tuples (I ! [E]; d) is complete.Proof: This metric is equivalent to the Cartesian product metric Qi2I [E] which iscomplete because [E] is [Eng77]. 2

24

SFB 342: Methoden und Werkzeuge f�ur die Nutzung parallelerRechnerarchitekturenbisher erschienen :Reihe A342/1/90 A Robert Gold, Walter Vogler: Quality Criteria for Partial Order Seman-tics of Place/Transition-Nets, Januar 1990342/2/90 A Reinhard F�o�meier: Die Rolle der Lastverteilung bei der numerischenParallelprogrammierung, Februar 1990342/3/90 A Klaus-J�orn Lange, Peter Rossmanith: Two Results on Unambi-guous Circuits, Februar 1990342/4/90 A Michael Griebel: Zur L�osung von Finite-Di�erenzen- und Finite-Element-Gleichungen mittels der Hierarchischen Transformations-Mehrgitter-Methode342/5/90 A Reinhold Letz, Johann Schumann, Stephan Bayerl, Wolfgang Bibel:SETHEO: A High-Performance Theorem Prover342/6/90 A Johann Schumann, Reinhold Letz: PARTHEO: A High PerformanceParallel Theorem Prover342/7/90 A Johann Schumann, Norbert Trapp, Martin van der Koelen:SETHEO/PARTHEO Users Manual342/8/90 A Christian Suttner, Wolfgang Ertel: Using Connectionist Networks forGuiding the Search of a Theorem Prover342/9/90 A Hans-J�org Beier, Thomas Bemmerl, Arndt Bode, Hubert Ertl, OlavHansen, Josef Haunerdinger, Paul Hofstetter, Jaroslav Kremenek,Robert Lindhof, Thomas Ludwig, Peter Luksch, Thomas Treml: TOP-SYS, Tools for Parallel Systems (Artikelsammlung)342/10/90 A Walter Vogler: Bisimulation and Action Re�nement342/11/90 A J�org Desel, Javier Esparza: Reachability in Reversible Free- Choice Sys-tems342/12/90 A Rob van Glabbeek, Ursula Goltz: Equivalences and Re�nement342/13/90 A Rob van Glabbeek: The Linear Time - Branching Time Spectrum342/14/90 A Johannes Bauer, Thomas Bemmerl, Thomas Treml: Leistungsanalysevon verteilten Beobachtungs- und Bewertungswerkzeugen342/15/90 A Peter Rossmanith: The Owner Concept for PRAMs342/16/90 A G. B�ockle, S. Trosch: A Simulator for VLIW-Architectures342/17/90 A P. Slavkovsky, U. R�ude: Schnellere Berechnung klassischer Matrix-Multiplikationen342/18/90 A Christoph Zenger: SPARSE GRIDS
25

Reihe A342/19/90 A Michael Griebel, Michael Schneider, Christoph Zenger: A combinationtechnique for the solution of sparse grid problems342/20/90 A Michael Griebel: A Parallelizable and Vectorizable Multi- Level-Algorithm on Sparse Grids342/21/90 A V. Diekert, E. Ochmanski, K. Reinhardt: On conuent semi-commutations-decidability and complexity results342/22/90 A Manfred Broy, Claus Dendorfer: Functional Modelling of Operating Sys-tem Structures by Timed Higher Order Stream Processing Functions342/23/90 A Rob van Glabbeek, Ursula Goltz: A Deadlock-sensitive Congruence forAction Re�nement342/24/90 A Manfred Broy: On the Design and Veri�cation of a Simple DistributedSpanning Tree Algorithm342/25/90 A Thomas Bemmerl, Arndt Bode, Peter Braun, Olav Hansen, PeterLuksch, Roland Wism�uller: TOPSYS - Tools for Parallel Systems(User's Overview and User's Manuals)342/26/90 A Thomas Bemmerl, Arndt Bode, Thomas Ludwig, Stefan Tritscher:MMK - Multiprocessor Multitasking Kernel (User's Guide and User'sReference Manual)342/27/90 A Wolfgang Ertel: Random Competition: A Simple, but E�cient Methodfor Parallelizing Inference Systems342/28/90 A Rob van Glabbeek, Frits Vaandrager: Modular Speci�cation of ProcessAlgebras342/29/90 A Rob van Glabbeek, Peter Weijland: Branching Time and Abstraction inBisimulation Semantics342/30/90 A Michael Griebel: Parallel Multigrid Methods on Sparse Grids342/31/90 A Rolf Niedermeier, Peter Rossmanith: Unambiguous Simulations of Aux-iliary Pushdown Automata and Circuits342/32/90 A Inga Niepel, Peter Rossmanith: Uniform Circuits and Exclusive ReadPRAMs342/33/90 A Dr. Hermann Hellwagner: A Survey of Virtually Shared MemorySchemes342/1/91 A Walter Vogler: Is Partial Order Semantics Necessary for Action Re�ne-ment?342/2/91 A Manfred Broy, Frank Dederichs, Claus Dendorfer, Rainer Weber: Char-acterizing the Behaviour of Reactive Systems by Trace Sets342/3/91 A Ulrich Furbach, Christian Suttner, Bertram Fronh�ofer: Massively Par-allel Inference Systems342/4/91 A Rudolf Bayer: Non-deterministic Computing, Transactions and Recur-sive Atomicity342/5/91 A Robert Gold: Dataow semantics for Petri nets342/6/91 A A. Heise; C. Dimitrovici: Transformation und Komposition von P/T-Netzen unter Erhaltung wesentlicher Eigenschaften
26

Reihe A342/7/91 A Walter Vogler: Asynchronous Communication of Petri Nets and theRe�nement of Transitions342/8/91 A Walter Vogler: Generalized OM-Bisimulation342/9/91 A Christoph Zenger, Klaus Hallatschek: Fouriertransformation auf d�unnenGittern mit hierarchischen Basen342/10/91 A Erwin Loibl, Hans Obermaier, Markus Pawlowski: Towards Parallelismin a Relational Database System342/11/91 A Michael Werner: Implementierung von Algorithmen zur Kompakti-�zierung von Programmen f�ur VLIW-Architekturen342/12/91 A Reiner M�uller: Implementierung von Algorithmen zur Optimierung vonSchleifen mit Hilfe von Software-Pipelining Techniken342/13/91 A Sally Baker, Hans-J�org Beier, Thomas Bemmerl, Arndt Bode, HubertErtl, Udo Graf, Olav Hansen, Josef Haunerdinger, Paul Hofstetter,Rainer Kn�odlseder, Jaroslav Kremenek, Siegfried Langenbuch, RobertLindhof, Thomas Ludwig, Peter Luksch, Roy Milner, Bernhard Ries,Thomas Treml: TOPSYS - Tools for Parallel Systems (Artikelsamm-lung); 2., erweiterte Auage342/14/91 A Michael Griebel: The combination technique for the sparse grid solutionof PDE's on multiprocessor machines342/15/91 A Thomas F. Gritzner, Manfred Broy: A Link Between Process Algebrasand Abstract Relation Algebras?342/16/91 A Thomas Bemmerl, Arndt Bode, Peter Braun, Olav Hansen, ThomasTreml, Roland Wism�uller: The Design and Implementation of TOPSYS342/17/91 A Ulrich Furbach: Answers for disjunctive logic programs342/18/91 A Ulrich Furbach: Splitting as a source of parallelism in disjunctive logicprograms342/19/91 A Gerhard W. Zumbusch: Adaptive parallele Multilevel-Methoden zurL�osung elliptischer Randwertprobleme342/20/91 A M. Jobmann, J. Schumann: Modelling and Performance Analysis of aParallel Theorem Prover342/21/91 A Hans-Joachim Bungartz: An Adaptive Poisson Solver Using HierarchicalBases and Sparse Grids342/22/91 A Wolfgang Ertel, Theodor Gemenis, Johann M. Ph. Schumann, ChristianB. Suttner, Rainer Weber, Zongyan Qiu: Formalisms and Languages forSpecifying Parallel Inference Systems342/23/91 A Astrid Kiehn: Local and Global Causes342/24/91 A Johann M.Ph. Schumann: Parallelization of Inference Systems by usingan Abstract Machine342/25/91 A Eike Jessen: Speedup Analysis by Hierarchical Load Decomposition342/26/91 A Thomas F. Gritzner: A Simple Toy Example of a Distributed System:On the Design of a Connecting Switch342/27/91 A Thomas Schnekenburger, Andreas Weininger, Michael Friedrich: In-troduction to the Parallel and Distributed Programming LanguageParMod-C
27

Reihe A342/28/91 A Claus Dendorfer: Funktionale Modellierung eines Postsystems342/29/91 A Michael Griebel: Multilevel algorithms considered as iterative methodson inde�nite systems342/30/91 A W. Reisig: Parallel Composition of Liveness342/31/91 A Thomas Bemmerl, Christian Kasperbauer, Martin Mairandres, Bern-hard Ries: Programming Tools for Distributed Multiprocessor Comput-ing Environments342/32/91 A Frank Le�ke: On constructive speci�cations of abstract data types usingtemporal logic342/1/92 A L. Kanal, C.B. Suttner (Editors): Informal Proceedings of the Workshopon Parallel Processing for AI342/2/92 A Manfred Broy, Frank Dederichs, Claus Dendorfer, Max Fuchs, ThomasF. Gritzner, Rainer Weber: The Design of Distributed Systems - AnIntroduction to FOCUS342/2-2/92 A Manfred Broy, Frank Dederichs, Claus Dendorfer, Max Fuchs, ThomasF. Gritzner, Rainer Weber: The Design of Distributed Systems - AnIntroduction to FOCUS - Revised Version (erschienen im Januar 1993)342/3/92 A Manfred Broy, Frank Dederichs, Claus Dendorfer, Max Fuchs, ThomasF. Gritzner, Rainer Weber: Summary of Case Studies in FOCUS - aDesign Method for Distributed Systems342/4/92 A Claus Dendorfer, Rainer Weber: Development and Implementation of aCommunication Protocol - An Exercise in FOCUS342/5/92 A Michael Friedrich: Sprachmittel und Werkzeuge zur Unterst�ut- zungparalleler und verteilter Programmierung342/6/92 A Thomas F. Gritzner: The Action Graph Model as a Link between Ab-stract Relation Algebras and Process-Algebraic Speci�cations342/7/92 A Sergei Gorlatch: Parallel Program Development for a Recursive Numer-ical Algorithm: a Case Study342/8/92 A Henning Spruth, Georg Sigl, Frank Johannes: Parallel Algorithms forSlicing Based Final Placement342/9/92 A Herbert Bauer, Christian Sporrer, Thomas Krodel: On DistributedLogic Simulation Using Time Warp342/10/92 A H. Bungartz, M. Griebel, U. R�ude: Extrapolation, Combination andSparse Grid Techniques for Elliptic Boundary Value Problems342/11/92 A M. Griebel, W. Huber, U. R�ude, T. St�ortkuhl: The Combination Tech-nique for Parallel Sparse-Grid-Preconditioning and -Solution of PDEson Multiprocessor Machines and Workstation Networks342/12/92 A Rolf Niedermeier, Peter Rossmanith: Optimal Parallel Algorithms forComputing Recursively De�ned Functions342/13/92 A Rainer Weber: Eine Methodik f�ur die formale Anforderungsspezifkationverteilter Systeme342/14/92 A Michael Griebel: Grid{ and point{oriented multilevel algorithms
28

Reihe A342/15/92 A M. Griebel, C. Zenger, S. Zimmer: Improved multilevel algorithms forfull and sparse grid problems342/16/92 A J. Desel, D. Gomm, E. Kindler, B. Paech, R. Walter: Bausteine eineskompositionalen Beweiskalk�uls f�ur netzmodellierte Systeme342/17/92 A Frank Dederichs: Transformation verteilter Systeme: Von applikativenzu prozeduralen Darstellungen342/18/92 A Andreas Listl, Markus Pawlowski: Parallel Cache Management of aRDBMS342/19/92 A Erwin Loibl, Markus Pawlowski, Christian Roth: PART: A ParallelRelational Toolbox as Basis for the Optimization and Interpretationof Parallel Queries342/20/92 A J�org Desel, Wolfgang Reisig: The Synthesis Problem of Petri Nets342/21/92 A Robert Balder, Christoph Zenger: The d-dimensional Helmholtz equa-tion on sparse Grids342/22/92 A Ilko Michler: Neuronale Netzwerk-Paradigmen zum Erlernen vonHeuristiken342/23/92 A Wolfgang Reisig: Elements of a Temporal Logic. Coping with Concur-rency342/24/92 A T. St�ortkuhl, Chr. Zenger, S. Zimmer: An asymptotic solution for thesingularity at the angular point of the lid driven cavity342/25/92 A Ekkart Kindler: Invariants, Compositionality and Substitution342/26/92 A Thomas Bonk, Ulrich R�ude: Performance Analysis and Optimization ofNumerically Intensive Programs342/1/93 A M. Griebel, V. Thurner: The E�cient Solution of Fluid Dynamics Prob-lems by the Combination Technique342/2/93 A Ketil St�len, Frank Dederichs, Rainer Weber: Assumption / Commit-ment Rules for Networks of Asynchronously Communicating Agents342/3/93 A Thomas Schnekenburger: A De�nition of E�ciency of Parallel Programsin Multi-Tasking Environments342/4/93 A Hans-Joachim Bungartz, Michael Griebel, Dierk R�oschke, ChristophZenger: A Proof of Convergence for the Combination Technique forthe Laplace Equation Using Tools of Symbolic Computation342/5/93 A Manfred Kunde, Rolf Niedermeier, Peter Rossmanith: Faster Sortingand Routing on Grids with Diagonals342/6/93 A Michael Griebel, Peter Oswald: Remarks on the Abstract Theory ofAdditive and Multiplicative Schwarz Algorithms342/7/93 A Christian Sporrer, Herbert Bauer: Corolla Partitioning for DistributedLogic Simulation of VLSI Circuits342/8/93 A Herbert Bauer, Christian Sporrer: Reducing Rollback Overhead inTime-Warp Based Distributed Simulation with Optimized IncrementalState Saving342/9/93 A Peter Slavkovsky: The Visibility Problem for Single-Valued Surface (z= f(x,y)): The Analysis and the Parallelization of Algorithms
29

Reihe A342/10/93 A Ulrich R�ude: Multilevel, Extrapolation, and Sparse Grid Methods342/11/93 A Hans Regler, Ulrich R�ude: Layout Optimization with Algebraic Multi-grid Methods342/12/93 A Dieter Barnard, Angelika Mader: Model Checking for the Modal Mu-Calculus using Gau� Elimination342/13/93 A Christoph Paum, Ulrich R�ude: Gau�' Adaptive Relaxation for theMultilevel Solution of Partial Di�erential Equations on Sparse Grids342/14/93 A Christoph Paum: Convergence of the Combination Technique for theFinite Element Solution of Poisson's Equation342/15/93 A Michael Luby, Wolfgang Ertel: Optimal Parallelization of Las VegasAlgorithms342/16/93 A Hans-Joachim Bungartz, Michael Griebel, Dierk R�oschke, ChristophZenger: Pointwise Convergence of the Combination Technique forLaplace's Equation342/17/93 A Georg Stellner, Matthias Schumann, Stefan Lamberts, Thomas Ludwig,Arndt Bode, Martin Kiehl und Rainer Mehlhorn: Developing Multicom-puter Applications on Networks of Workstations Using NXLib342/18/93 A Max Fuchs, Ketil St�len: Development of a Distributed Min/Max Com-ponent342/19/93 A Johann K. Obermaier: Recovery and Transaction Management in Write-optimized Database Systems342/20/93 A Sergej Gorlatch: Deriving E�cient Parallel Programs by SystematingCoarsing Speci�cation Parallelism342/01/94 A Reiner H�uttl, Michael Schneider: Parallel Adaptive Numerical Simula-tion342/02/94 A Henning Spruth, Frank Johannes: Parallel Routing of VLSI CircuitsBased on Net Independency342/03/94 A Henning Spruth, Frank Johannes, Kurt Antreich: PHIroute: A ParallelHierarchical Sea-of-Gates Router342/04/94 A Martin Kiehl, Rainer Mehlhorn, Matthias Schumann: Parallel MultipleShooting for Optimal Control Problems Under NX/2342/05/94 A Christian Suttner, Christoph Goller, Peter Krauss, Klaus-J�orn Lange,Ludwig Thomas, Thomas Schnekenburger: Heuristic Optimization ofParallel Computations342/06/94 A Andreas Listl: Using Subpages for Cache Coherency Control in ParallelDatabase Systems342/07/94 A Manfred Broy, Ketil St�len: Speci�cation and Re�nement of FiniteDataow Networks - a Relational Approach342/08/94 A Katharina Spies: Funktionale Spezi�kation eines Kommunika-tionsprotokolls342/09/94 A Peter A. Krauss: Applying a New Search Space Partitioning Method toParallel Test Generation for Sequential Circuits
30

Reihe A342/10/94 A Manfred Broy: A Functional Rephrasing of the Assumption/Com-mitment Speci�cation Style342/11/94 A Eckhardt Holz, Ketil St�len: An Attempt to Embed a Restricted Versionof SDL as a Target Language in Focus342/12/94 A Christoph Paum: A Multi-Level-Algorithm for the Finite-Element-Solution of General Second Order Elliptic Di�erential Equations onAdaptive Sparse Grids342/13/94 A Manfred Broy, Max Fuchs, Thomas F. Gritzner, Bernhard Sch�atz,Katharina Spies, Ketil St�len: Summary of Case Studies in FOCUS- a Design Method for Distributed Systems342/14/94 A Maximilian Fuchs: Technologieabh�angigkeit von Spezi�kationen digi-taler Hardware342/15/94 A M. Griebel, P. Oswald: Tensor Product Type Subspace Splittings AndMultilevel Iterative Methods For Anisotropic Problems342/16/94 A Gheorghe S�tef�anescu: Algebra of Flownomials342/17/94 A Ketil St�len: A Re�nement Relation Supporting the Transition fromUnbounded to Bounded Communication Bu�ers342/18/94 A Michael Griebel, Tilman Neuhoe�er: A Domain-Oriented MultilevelAlgorithm-Implementation and Parallelization342/19/94 A Michael Griebel, Walter Huber: Turbulence Simulation on Sparse GridsUsing the Combination Method342/20/94 A Johann Schumann: Using the Theorem Prover SETHEO for verifyingthe development of a Communication Protocol in FOCUS - A CaseStudy -342/01/95 A Hans-Joachim Bungartz: Higher Order Finite Elements on Sparse Grids342/02/95 A Tao Zhang, Seonglim Kang, Lester R. Lipsky: The Performance of Par-allel Computers: Order Statistics and Amdahl's Law342/03/95 A Lester R. Lipsky, Appie van de Liefvoort: Transformation of the Kro-necker Product of Identical Servers to a Reduced Product Space342/04/95 A Pierre Fiorini, Lester R. Lipsky, Wen-Jung Hsin, Appie van de Liefvoort:Auto-Correlation of Lag-k For Customers Departing From Semi-MarkovProcesses342/05/95 A Sascha Hilgenfeldt, Robert Balder, Christoph Zenger: Sparse Grids: Ap-plications to Multi-dimensional Schr�odinger Problems342/06/95 A Maximilian Fuchs: Formal Design of a Model-N Counter342/07/95 A Hans-Joachim Bungartz, Stefan Schulte: Coupled Problems in Microsys-tem Technology342/08/95 A Alexander Pfa�nger: Parallel Communication onWorkstation Networkswith Complex Topologies342/09/95 A Ketil St�len: Assumption/Commitment Rules for Data-ow Networks -with an Emphasis on Completeness342/10/95 A Ketil St�len, Max Fuchs: A Formal Method for Hardware/Software Co-Design
31

Reihe A342/11/95 A Thomas Schnekenburger: The ALDY Load Distribution System342/12/95 A Javier Esparza, Stefan R�omer, Walter Vogler: An Improvement ofMcMillan's Unfolding Algorithm342/13/95 A Stephan Melzer, Javier Esparza: Checking System Properties via IntegerProgramming342/14/95 A Radu Grosu, Ketil St�len: A Denotational Model for Mobile Point-to-Point Dataow Networks342/15/95 A Andrei Kovalyov, Javier Esparza: A Polynomial Algorithm to Computethe Concurrency Relation of Free-Choice Signal Transition Graphs342/16/95 A Bernhard Sch�atz, Katharina Spies: Formale Syntax zur logischen Kern-sprache der Focus-Entwicklungsmethodik342/17/95 A Georg Stellner: Using CoCheck on a Network of Workstations342/18/95 A Arndt Bode, Thomas Ludwig, Vaidy Sunderam, Roland Wism�uller:Workshop on PVM, MPI, Tools and Applications342/19/95 A Thomas Schnekenburger: Integration of Load Distribution into ParMod-C342/20/95 A Ketil St�len: Re�nement Principles Supporting the Transition fromAsynchronous to Synchronous Communication342/21/95 A Andreas Listl, Giannis Bozas: Performance Gains Using Subpages forCache Coherency Control342/22/95 A Volker Heun, Ernst W. Mayr: Embedding Graphs with BoundedTreewidth into Optimal Hypercubes342/23/95 A Petr Jan�car, Javier Esparza: Deciding Finiteness of Petri Nets up toBisimulation342/24/95 A M. Jung, U. R�ude: Implicit Extrapolation Methods for Variable Coe�-cient Problems342/01/96 A Michael Griebel, Tilman Neunhoe�er, Hans Regler: Algebraic MultigridMethods for the Solution of the Navier-Stokes Equations in ComplicatedGeometries342/02/96 A Thomas Grauschopf, Michael Griebel, Hans Regler: Additive Multilevel-Preconditioners based on Bilinear Interpolation, Matrix Dependent Geo-metric Coarsening and Algebraic-Multigrid Coarsening for Second OrderElliptic PDEs342/03/96 A Volker Heun, Ernst W. Mayr: Optimal Dynamic Edge-Disjoint Embed-dings of Complete Binary Trees into Hypercubes342/04/96 A Thomas Huckle: E�cient Computation of Sparse Approximate Inverses342/05/96 A Thomas Ludwig, Roland Wism�uller, Vaidy Sunderam, Arndt Bode:OMIS | On-line Monitoring Interface Speci�cation342/06/96 A Ekkart Kindler: A Compositional Partial Order Semantics for Petri NetComponents342/07/96 A Richard Mayr: Some Results on Basic Parallel Processes342/08/96 A Ralph Radermacher, Frank Weimer: INSEL Syntax-Bericht
32

Reihe A342/09/96 A P.P. Spies, C. Eckert, M. Lange, D. Marek, R. Radermacher, F. Weimer,H.-M. Windisch: Sprachkonzepte zur Konstruktion verteilter Systeme342/10/96 A Stefan Lamberts, Thomas Ludwig, Christian R�oder, Arndt Bode: PFS-Lib { A File System for Parallel Programming Environments342/11/96 A Manfred Broy, Gheorghe S�tef�anescu: The Algebra of Stream ProcessingFunctions342/12/96 A Javier Esparza: Reachability in Live and Safe Free-Choice Petri Nets isNP-complete342/13/96 A Radu Grosu, Ketil St�len: A Denotational Model for Mobile Many-to-Many Data-ow Networks

33

SFB 342 : Methoden und Werkzeuge f�ur die Nutzung parallelerRechnerarchitekturenReihe B342/1/90 B Wolfgang Reisig: Petri Nets and Algebraic Speci�cations342/2/90 B J�org Desel: On Abstraction of Nets342/3/90 B J�org Desel: Reduction and Design of Well-behaved Free-choice Systems342/4/90 B Franz Abstreiter, Michael Friedrich, Hans-J�urgen Plewan: DasWerkzeug runtime zur Beobachtung verteilter und paralleler Programme342/1/91 B Barbara Paech1: Concurrency as a Modality342/2/91 B Birgit Kandler, Markus Pawlowski: SAM: Eine Sortier- Toolbox -Anwenderbeschreibung342/3/91 B Erwin Loibl, Hans Obermaier, Markus Pawlowski: 2. Workshop �uberParallelisierung von Datenbanksystemen342/4/91 B Werner Pohlmann: A Limitation of Distributed Simulation Methods342/5/91 B Dominik Gomm, Ekkart Kindler: A Weakly Coherent Virtually SharedMemory Scheme: Formal Speci�cation and Analysis342/6/91 B Dominik Gomm, Ekkart Kindler: Causality Based Speci�cation andCorrectness Proof of a Virtually Shared Memory Scheme342/7/91 B W. Reisig: Concurrent Temporal Logic342/1/92 B Malte Grosse, Christian B. Suttner: A Parallel Algorithm for Set-of-SupportChristian B. Suttner: Parallel Computation of Multiple Sets-of-Support342/2/92 B Arndt Bode, Hartmut Wedekind: Parallelrechner: Theorie, Hardware,Software, Anwendungen342/1/93 B Max Fuchs: Funktionale Spezi�kation einer Geschwindigkeitsregelung342/2/93 B Ekkart Kindler: Sicherheits- und Lebendigkeitseigenschaften: Ein Lit-eratur�uberblick342/1/94 B Andreas Listl; Thomas Schnekenburger; Michael Friedrich: Zum En-twurf eines Prototypen f�ur MIDAS

34

