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Abstract

We tackle the problem of finding association rules for quantitative data. Whereas most of
the previous approaches operate on hyperrectangles, we propose a representation based on half-
spaces. Consequently, the left-hand side and right-hand side of an association rule does not con-
tain a conjunction of items or intervals, but a weighted sum of variables tested against a threshold.
Since the downward closure property does not hold for such rules, we propose an optimization
setting for finding locally optimal rules. A simple gradientdescent algorithm optimizes a pa-
rameterized score function, where iterations optimizing the first separating hyperplane alternate
with iterations optimizing the second. Experiments with two real-world data sets show that the
approach is feasible and in fact finds meaningful patterns. We therefore propose quantitative as-
sociation rules based on half-spaces as an interesting new class of patterns with a high potential
for applications.

1 Introduction

Soon after the introduction of association rules for itemsets, researchers began to realize that associa-
tion rules would also be useful for quantitative data [11]. Most of the generalizations and extensions
of association rules to quantitative data either require a discretization of the numerical attributes or
a characterization of the numerical attributes in the right-hand side by their means and standard de-
viations. The discretization process, however, leads to a loss of information in the data set. In the
following we present a novel approach that works directly onthe continuous data, without the need for
any discretization or the calculation of statistical moments. It derives quantitative association rules of
the form “if the weighted sum of some variables is greater than a threshold, then a different weighted
sum of variables is with high probability greater than a second threshold”. For instance, consider a
table with wind strength, temperature and the wind chill index. Approaches so far applied to this data
would approximate the relationship among the variables by abundle of quantitative association rules.
In contrast, the approach proposed here would find a weightedsum of wind strength and temperature
on the left-hand side and the wind-chill index on the right-hand side. Thus, it allows for the discovery
of non-axis-parallel regularities and can account for cumulative effects of several variables. Since the
downward closure property frequently used in conventionalassociation rule mining does not hold for
this type of rule, we cast the problem of finding such rules as an optimization problem. The aim is to
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find rules that are locally optimal with respect to a parameterized score function. Consequently, the
user can adjust the parameters of the presented algorithm toobtain association rules that match her
individual interests. For instance, it is possible to specify target values for certain parameters, such
that the algorithm attempts to find rules near the target (penalizing rules that are too far off), while
simultaneously optimizing the rules’ confidence. The wholeframework is very flexible in several
directions and can easily be adapted to incorporate user constraints. In summary, the paper has two
main contributions: Firstly, therepresentationof quantitative association rules based on half spaces,
and secondly, theoptimization settingfor finding such rules.

The paper is organized as follows: section 2 introduces the representation of quantitative asso-
ciation rules based on half-spaces. Section 3 elaborates onthe optimization setting for finding such
rules. A scoring function is defined, and an optimization algorithm is sketched. Finally, we present
the results of some experiments in section 4, discuss related work in section 5, before we conclude in
section 6.

2 Quantitative Association Rules Based on Half-Spaces

As outlined above, the aim of this paper is to extend the association rule framework to quantitative
data. In general, an association rule is an implication of the form “if the left-hand side condition is
true for an instance, then, with high probability, a right-hand side condition is also true”. In the tradi-
tional setting, the conditions on the right-hand side and left-hand side are based on hyperrectangles of
discrete attributes. To extend association rules to continuous data, we therefore need to decide which
kind of “conditions” the quantitative association rules should be based on.

Of course, there are lots of different ways to impose conditions on numerical data. At the core
we would expect from a useful condition that it separates theinstance space in two subspaces, the
space of instances that meets the condition, and the one thatdoes not. The border between those two
subspaces can then be conveniently expressed by someseparation function. For numerical data, it
makes sense to select a smooth separation function to minimize the error that is caused by random
noise or measurement errors in the data. In this paper we willfocus onhyperplanes, a particularly
simple, but powerful class of separation functions. However, large parts of this paper also apply to
more complex separation functions. From a geometrical perspective, a hyperplaneα is given by a
vectorᾱ and an interceptα0. An instancex is then assigned to one half-space, if the scalar product
ᾱ · x + α0 is positive and to the other half-space, if it is negative. Infigure 1 (b), the one-dimensional
hyperplaneα (i.e. a line) separates the two-dimensional space into two half-spaces, one left ofα, the
other right ofα.

In the case of association rules, the use of hyperplanes as conditions boils down to testing a
weighted sum of variables against a threshold; i.e. an instancex in ann-dimensional space meets the
conditionα ∈ Rn+1, if

α1x1 + α2x2 + · · ·+ αnxn ≥ −α0 (1)

With this, one could build an association rule such asx1 ≥ 31→ 0.9x5 +1.2x6 ≥ 250. In a particular
medical application this association rule might be interpreted as “if the body mass index is greater
than or equal to 31, then the weighted sum of the systolic and diastolic blood pressure is greater than
or equal to 250”. Obviously, there are many cases where finding such a quantitative association rule
might lead to valuable insights into the structure of the data at hand.
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Figure 1: Two non-perpendicular hyperplanesα andβ (a), and two perpendicular hyperplanesα and
β, separating the instance space into four subspaces (b).

Of course, it is quite easy to generate a large number of trivial association rules with high con-
fidence. For example, the association rule1.5x1 ≥ 5 → 2x1 ≥ 4 has confidence 100%, but
does not give any new insight. More generally, situations like the one in figure 1 (a) are problem-
atic: we have two hyperplanesα andβ in a two-dimensional space, that define an association rule
α1x1 + α2x2 ≥ −α0 → β1x1 + β2x2 ≥ −β0. The problem is thatα andβ are highly correlated. If
an instance is left of theα hyperplane, it is very likely to be left of theβ hyperplane as well, simply
because the space that is right ofβ, but left of α is much smaller than the space left ofα and left
of β1. Because of that, the association rule has high confidence even for randomly generated data; it
does not give much information about the data at hand. For ourpurposes it is therefore essential, that
α andβ are uncorrelated, i.e. they have to be perpendicular as in figure 1 (b). This is, of course, the
case, if the scalar product is zero:

n
∑

i=1

αi · βi = 0 (2)

Note that this requirement does not prevent using the same variables on the left-hand and the right-
hand side of an association rule. For example, the association rulex1 + x2 > 2 → x1 − x2 > 0.2 is
perfectly valid, because

(

1
1

)

·
(

1
−1

)

= 0. At first sight this might seem to be a strange finding. However,
it is often easy to come up with a reasonable explanation for such a rule. For instance, if we know,
that in the example above thex1 andx2 values are always positive, we could (loosely) interpret the
rule as “ifx1 andx2 are sufficiently large, thenx1 is larger thanx2 by a margin of at least 0.2”. This
might be a valuable insight in the structure of the data set athand. In the next section we describe an
algorithm that is able to find such quantitative associationrules.

1Of course, in a strict mathematical sense it does not make sense to compare the “sizes” of subspaces, because all
subspaces are infinite anyway. A more formal justification would demand that the resulting probability distributions are
independent for uniform data.

3



3 Quantitative Association Rule Mining

The main problem with finding good quantitative associationrules is that the space of rules is un-
countably infinite and therefore not suited to an enumeration strategy as employed by APriori [1]. In
particular, the downward closure property does not hold forsuch rules, and thus we have to abandon
the idea of generating the complete set of solutions. However, we can adopt an optimization approach,
where the user can specify clearly the sort of rules she is looking for, and the algorithm returns locally
optimal solutions. While this may seem unusual for association rule mining, it is common practice
in other areas, for instance clustering (e.g, K-means clustering) and Bayesian learning (e.g., the EM
algorithm).

In the following we describe one particular algorithm for mining quantitative association rules in
this setting. First, we define a score function to assess the “interestingness” of an association rule.
Then, we sketch a simple optimization algorithm searching for association rules with a low score.
Before we go into further detail, however, we need to introduce the basic setting and some notational
conventions.

For mining quantitative association rules we are given adata setX containingm instances.
Each instance is given as a vector ofn real values, i.e.x ∈ Rn, so thatX ⊂ Rn. We are now
looking for association rules that are defined by two hyperplanesα := (α0, α1, . . . , αn)T andβ :=
(β0, β1, . . . , βn)T . Theα hyperplane specifies the condition on the left-hand side of the association
rule, theβ hyperplane specifies the right-hand side. Both hyperplanesare given in Hessian normal
form: theα0 value of a hyperplaneα is theintercept, i.e. the hyperplane’s distance to the origin. The
direction vectorᾱ := (α1, . . . , αn)T specifies the slope of the hyperplane. As a notational shortcut
we useᾱ to denote the direction vector part ofα andα0 to denote the intercept ofα. Usually, the
direction vector is normalized so that|ᾱ| = 1 and the distance between an instancex andα is sim-
ply ᾱTx + α0. However, to allow for an efficient optimization procedure,we will sometimes allow
non-normalized direction vectors. In this case we have to use a modified distance functionδ(α, x) to
calculate the distance between a hyperplane and an instance:

δ(α, x) :=
ᾱT x

|ᾱ|
+ α0 (3)

This distanceδ simply normalizes the direction vector before calculatingthe actual distance. For the
optimization procedure, we also need the derivatives ofδ:

∂δ(α, x)

∂α0
= 1;

∂δ(α, x)

∂αj

=
1

|ᾱ|

(

xj −
ᾱ · x

|ᾱ|2
αj

)

(4)

For later use, we denote the derivative along thejth axis byδ′j:

δ′j(α, x) :=
∂δ(α, x)

∂αj

(5)

The score function is a combination of four different criteria: confidence, coverage, contrastand
sparseness. It is designed to be differentiable to make it amenable to optimization approaches. Con-
fidence is defined as for ordinary association rules, while coverage reflects the number of instances
covered by the left-hand side of a rule. Contrast is a measureof how evenly the instances are dis-
tributed if the left-hand side doesnot apply. Thus, it measures whether the left-hand side makes any
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Figure 2: Confidence is optimal if the distribution is unevenleft of α, while contrast is optimal if it is
even right ofα.

difference. Sparseness is a term penalizing overly complexrules. If only a few variables occur in a
quantitative association rule, then its sparseness value will be small.

To summarize, the setting is as follows: The user specifies a target coverage and a target sparseness
of the rules. Then the optimization algorithm is run until a local optimum with respect to the score
function is found. The algorithm optimizes the confidence, under the constraint that the contrast is
balanced, targeting at user-specified values for the rule’scoverage and sparseness. Random restarts
are usually performed to return several of those locally optimal association rules. In the following,
we will formally define the components of the score function.

3.1 Confidence

We are mainly interested in association rules with highconfidence, i.e. the fraction of instances inX,
that fulfill both conditionsα andβ divided by the fraction of instances that fulfill only theα condition
should be as high as possible. Figure 2 illustrates this idea: we consider only instances that fulfill
theα condition, i.e. that are left of theα hyperplane. If an instancex is located left ofα and below
β, it contributes to a high confidence score. If it is located left of α, but aboveβ, it decreases the
confidence measure. Thus, we have the following maximization problem at hand:

max
α,β

∑

x∈X

I[δ(α, x) ≥ 0] sgn(δ(β, x)) (6)

whereI[. . . ] denotes the indicator function that is one if the condition in the brackets is fulfilled and
zero otherwise.

Unfortunately, this “confidence score” has two disadvantages. First of all, it is not differentiable
and thus not suited for standard numerical optimization techniques. Second, and more importantly,
it assigns the same weight to all instances, independent of the actual distance of the instance to the
hyperplanes. In practice, most values are not known exactly, but only up to a certain measurement
error. Thus, it makes sense to regard an instance that is leftof theα hyperplane, but very close to it,
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Figure 3: The sigmoid function as a replacement for the step function (a), and theτ function replacing
the absolute value function (b).

as “probably left ofα”. Such an instance should not contribute the same weight to the optimization
problem as an instance that is very far fromα and thus “certainly left ofα”. One common approach
to address those considerations is to use thesigmoidfunction. The sigmoid function is given by

σ(x) :=
1

1 + e−x
(7)

and plotted in figure 3 (a). In its basic form, it is a “smoother” version of the step functionI[x ≥ 0].
Since it assigns intermediate values in the vicinity of the origin, it takes the distance of an instance
to one of the hyperplanes better into account than the sharp step function. Thesgn function is just a
rescaled version of the step function:sgn(x) = 2I[x ≥ 0]− 1. Consequently we can use the sigmoid
function for a better handling of instances near theβ hyperplane as well.

With this, and by reformulating the maximization problem asa minimization problem, we get the
optimization problemminα,β l(α, β, X), wherel is defined as follows:

l(α, β, X) := −
∑

x∈X

σ(δ(α, x)) · (2σ(δ(β, x))− 1) (8)

For later use, we also give the derivatives with respect toα andβ:

∂l(α, β, X)

∂αj

= −
∑

x∈X

(2σ(δ(β, x))− 1) · σ′(δ(α, x)) · δ′j(α, x) (9)

∂l(α, β, X)

∂βj

= −
∑

x∈X

σ(δ(α, x)) · 2σ′(δ(β, x)) · δ′j(β, x) (10)

whereσ′ is the derivative of the sigmoid function:

σ′(x) :=
e−x

(1 + e−x)2
= e−xσ2(x) (11)
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3.2 Coverage

A second criterion for the interestingness of an association rule is itscoverage. The coverage is simply
the fraction of instances in the data set that satisfy the left-hand side condition. Together with the
confidence, the coverage determines the support of the association rule, i.e. the fraction of instances
that fulfills both conditions. Unfortunately, the coverageof interesting rules is not clear a priori. If
the coverage of an association rule is very large, the rule istrue for almost the whole data set. Such
rules often express trivial dependencies in the data. On theother hand, if the coverage of a rule is very
small, the pattern describes a very local phenomenon that might just be a random fluctuation instead
of a structural property of the underlying data. Thus, the coverage values for interesting association
rules are somewhere in between, depending on the data at handand the knowledge about the data. In
practice, the desired coverage (or equivalently, the support) is often determined empirically.

To take these considerations into account, we design a parameterized coverage interestingness
functionc(α, g, t, X), that leaves the choice of the “target coverage” as parameter t to the user. The
function should be low, if the coverage of the association rule given byα is near the desired target
coveraget and high otherwise. In this way the user can adjust the scoring function according to his
perception about which coverage is interesting. The following function fulfills this requirement. It
is zero, if the coverage is equal tot, and increases linearly with the factorg asα departs from this
optimum:

c(α, g, t, X) := g ·
∣

∣

∣

∑

x∈X

(

sgn(δ(α, x))− (2t− 1)
)

∣

∣

∣
(12)

Using the factorg the user can fine-tune the importance of the desired coveragein relation to the
interestingness score for the confidence. Ifg is set to one, confidence and coverage are treated equally.
If g is set to a lower value, confidence is weighted higher than coverage during the optimization
process.

Again, one can argue that instances very close to the hyperplane should be weighted lower than
instances far from the hyperplane. As above, this is achieved by replacing thesgn function with a
scaled sigmoid function. The absolute value function|x| is not differentiable atx = 0. This might
be a problem during the optimization process, because the optimization procedure might get stuck in
the induced “peak” optimum, even though nearby settings forα might have slightly worse coverage,
but better confidence scores. To avoid this problem, we replace the absolute value with a modified
sigmoid functionτ(x):

τ(x) :=
2x

1 + e−x
− x (13)

As can be seen in figure 3 (b), this function resembles the absolute value function, except for the area
around the origin, whereτ(x) is slightly lower. This leads to the following coverage interestingness
function:

c(α, g, t, X) := g · τ
(

∑

x∈X

(2σ(δ(α, x))− 2t)
)

(14)

With this we can estimate the interestingness of an association rule with regard to confidence and
coverage. Again, we give the derivatives ofc regarding toα:

∂c(α, g, t, X)

∂αj

= g · τ ′
(

∑

x∈X

(2σ(δ(α, x))− 2t)
)

·
∑

x∈X

(2σ′(δ(α, x)) · δ′(α, x)) (15)
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whereτ ′(x) is the derivative ofτ(x):

τ ′(x) := 2σ(x) + 2xσ′(x)− 1 (16)

3.3 Contrast

The confidence and coverage scores determine what the optimization algorithm is looking for on the
left side ofα in figure 2: confidence requires that the lower left subspace contains more instances than
the upper left subspace, while coverage determines the fraction of instances that are left ofα. Just like
in traditional association rule mining, there is no constraint regulating the distribution of instances on
the right side ofα. For quantitative association rule mining, this can be a problem: one can simply
move theβ hyperplane upwards until it is located above all instances.While this achieves maximal
confidence, the resulting association rule is not very interesting, because the right-hand side condition
is true for all instances anyway. One way to overcome this problem is to regulate the distribution of
instances that are right ofα with regard toβ. One might be tempted to demand that most instances
right of α should be located aboveβ. However, this would generate association equivalences of
the form “ᾱT x ≥ −α0 ↔ β̄Tx ≥ −β0” instead of implications in one direction as in traditional
association rules. For our purposes it seems to be more sensible to ask for an even distribution of
instances above and belowβ.

We call this criterioncontrast. The rationale is that the “contrast” between the instance above
and belowβ should be as low as possible on the right side ofα in figure 2. This ensures that the
optimization algorithm searches forlocal patterns, that is, patterns that hold for the specified subset
of patterns, but not for the reverse or general case. The following contrast scoring functionr(α, β, X)
formalizes the idea. It is zero, if the number of instances inthe upper right subspace in figure 2 is
equal to the number of instances in the lower right subspace and increases linearly otherwise.

r(α, β, X) :=
∣

∣

∣

∑

x∈X

I[δ(α, x) < 0] sgn(δ(β, x))
∣

∣

∣
(17)

Again, it makes sense to replace thesgn and the absolute value function with differentiable counter-
parts to accommodate for noisy data and avoid unwanted localoptima. This yields:

r(α, β, X) := τ
(

∑

x∈X

σ(−δ(α, x))(2σ(δ(β, x))− 1)
)

(18)

For the optimization algorithm in section 3.5 we also need the derivatives ofr:

∂r(α, β, X)

∂αj

= τ ′
(

∑

x∈X

σ(−δ(α, x))(2σ(δ(β, x))− 1)
)

·

∑

x∈X

(2σ(δ(β, x))− 1)σ′(−δ(α, x))(−δ′j(α, x)) (19)

∂r(α, β, X)

∂βj

= τ ′
(

∑

x∈X

σ(−δ(α, x))(2σ(δ(β, x))− 1)
)

·
∑

x∈X

σ(−δ(α, x))2σ′(δ(β, x))δ′j(β, x) (20)
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Algorithm 1 The frame algorithm, where iterations optimizing the first separating hyperplane alter-
nate with iterations optimizing the second

procedure QAR(t, g, h, X)
α← a random vector
β ← a random vector
repeat

y ← L(α, β, t, g, h, X)
α← LineSearch1(α, β, t, g, h, X)
β ← LineSearch2(α, β, t, g, h, X)

until |L(α, β, t, g, h, X)− y| ≤ 0.1
return (α, β)

end procedure

3.4 Sparseness

The three preceding scoring functions give sufficient information to identify values ofα andβ that are
unusual or interesting enough to justify a further analysis. However, for humans who have to interpret
the resulting association rules, there is one more pragmatic criterion: the components of theα and
β vectors of an quantitative association rule with low confidence, coverage and contrast scores are
usually not zero. This means that the resulting associationrule containsn addends on both sides of
the implication. It is hard and cumbersome work to identify which coefficients contribute significantly
to the confidence, coverage and contrast of the association rule, and which coefficients can be omitted
without changing the scores too much. Usually, the user prefers findingsparseassociation rules, i.e.
rules where most coefficients are zero and only the relevant coefficients are given. Those rules are
shorter and thus easier to interpret and validate.

To account for these pragmatic considerations, one can add aterm to penalize non-sparse asso-
ciation rules. Both,α andβ are normalized, so that the sum of the components is one. Thus, to
receive sparse vectors we only need to increase the variancein the components, so that we have many
very low (ideally zero-valued) components and a small number of large components. The following
functiona(α, h) expresses this property formally. It is zero, if one coefficient is one and the others are
zero. In the worst case, where all components have value

√

(1/n), the score is maximal athm− hm
n

.

a(α, h) := hm− hm

n
∑

i=1

( αi

|ᾱ|

)4

(21)

The parameterh determines how large this penalty should be in relation to the other scores. If sparse-
ness is very important to the user, she should set it to a high value near one. Again, we give the
derivative for later use in the optimization procedure:

∂a(α, h)

∂αj

= 4hm
(

n
∑

i=1

α4
i αj

|ᾱ|6
−

α3
j

|ᾱ|4

)

(22)

If one incorporates this penalty function during the searchfor association rules, the induced rules will
have many coefficients near zero. Unfortunately, they are not necessarily exactly zero. However, one
can set those coefficients to zero in a post-processing step without changing confidence, coverage,
and contrast too much. This post-processing step is explained in section 3.6.

9



Algorithm 2 The line search algorithm to perform a gradient descent stepthat maintains perpendic-
ularity. This version keepsβ fixed and optimizes forα. LineSearch2 uses the same algorithm, but
keepsα fixed and optimizes forβ. Note that̄x denotes the direction vector part ofx.

1: procedure LineSearch1(α, β, t, g, h, X)
2: repeat
3: y ← L(α, β, t, g, h, X)
4: λ←∇L(., β, t, g, h, X)
5: µ← λ
6: µ̄← µ̄− (µ̄T β̄)β̄
7: s← 0.5
8: while L(α + sµ, β, t, g, h, X) > y − 0.001s(µTλ) do
9: s← 0.9s

10: end while
11: α← α + sµ
12: ᾱ← ᾱ

|ᾱ|

13: until |L(α, β, t, g, h, X)− y| ≤ 0.01
14: return α
15: end procedure

3.5 The Algorithm

With the discussion in the previous sections we have a numberof criteria to decide whether a particular
α andβ define an interesting quantitative association rule. The final interestingness scoring function
L(α, β, g, t, h, X) simply calculates the sum of those scores

L(α, β, g, t, h, X) := l(α, β, X) + c(α, g, t, X) + r(α, β, X) + a(α, h) + a(β, h) (23)

A high score indicates that the association rule is uninteresting with regard to the selected parameter
settings, a low score means we found an interesting rule. As the scoring function is continuous,
there usually is a whole subspace of “good” rules and it is easy to modify a rule with a low score
to some small extent and obtain a rule with an even lower score. We are therefore aiming at finding
association rules with optimally low score, that is, the local optima of the scoring function, subject to
the constraint that̄αT β̄ = 0.

This constrained optimization problem can be tackled usingestablished methods from optimiza-
tion theory. A standard approach is to introduce a Lagrange multiplier and use one of the many
published optimization algorithms to solve the resulting optimization problem with2n + 3 variables.
This can be a hard optimization problem for large values ofn. We take a different approach that
alternatingly keepsα fixed while optimizingβ and vice versa. In this way one solves a sequence
of n + 1-dimensional optimization problems. Empirical results insection 4 indicate that only a few
iterations are sufficient to find such an optimum.

For the sake of simplicity we use a simple gradient descent method in each iteration. In the
following description of the algorithm we holdβ fixed and optimize forα. The other case can be
derived simply by usingβ as optimization variable and using the gradient with regardto β as search
direction. First, the algorithm calculates the gradientλ̄ = ∇L of L with regard toᾱ as the locally
best descent direction. However, we can not use this direction for the line search, because we might

10



Algorithm 3 A postprocessing algorithm to derive a sparse version of thefound association rule.
procedure MakeSparse(α, β, t)

Replace all values less thant in ᾱ with 0
Replace all values less thant in β̄ with 0
γ̄ ← ᾱ
for i = 1 to n do

if β̄i = 0 then
γ̄i ← 0

end if
end for
if |γ̄| > 0 then

β̄ ← β̄ − (γ̄T β̄)γ̄
|γ̄|2

end if
return ( ᾱ

|ᾱ|
, β̄

|β̄|
)

end procedure

end up with a vector that is not perpendicular toβ̄. We therefore calculatēµ = λ̄ − (λ̄T β̄)β̄, that
is, the vector component of̄λ, that is perpendicular tōβ. The line search is then performed in theµ̄
direction. Thus, after the line search we have the new valueᾱ′ = ᾱ + sµ̄ for some scalars that yields
the lowest score according toL along the line. The following equation shows that the new valueᾱ′ is
still perpendicular tōβ.

ᾱ′T β̄ = [ᾱ + s(λ̄− (λ̄T β̄)β̄)]T β̄

= ᾱT β̄ + sλ̄T β̄ − s(λ̄T β̄)β̄T β̄

= ᾱT β̄ + sλ̄T β̄ − sλ̄T β̄ (24)

= 0 (25)

(24) uses the fact that̄βT β̄ = |β̄|2 = 1, becausēβ has unit length and (25) follows, because the
starting vector̄α is perpendicular tōβ anyway. The interceptα0 is not subject of the perpendicularity
constraint and we can simply use the derivative ofL with regard toα0 as intercept component for the
line search. For the line search loop we use a simple backtracking approach with the Armijo condition
as termination criterion.

As any other optimization procedure, this algorithm can getstuck in local optima with comparably
high scores. For the sake of simplicity we use random restarts to obtain association rules with low
score. Of course, one can utilize simulated annealing or anyother global optimization strategy as
well.

3.6 Postprocessing and Visualization

In section 3.4 we introduced a penalty term for non-sparse vectors. If the user provides a high weight
h for this term, the vectors̄α andβ̄ of the resulting association rule contain many components near
zero and only a few large components. However, they are not necessarily sparse in the sense that
most components are zero. Fortunately, the hyperplanes do not change too much, if one simply
sets all components below a certain threshold to zero. In most cases this operation does not change
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Figure 4: A scatter plot of the left-hand side term and the right-hand side term of the fifth association
rule in table 1.

confidence, coverage and contrast too much. The only problemone may encounter is that the resulting
ᾱ and β̄ are not perpendicular anymore. As outlined in algorithm 3, this can be easily fixed by
determining the vector component ofβ̄, that is perpendicular tōα and does not modify the zero-
valued components in̄β.

In practice, finding and displaying an association rule is just a small step in the knowledge dis-
covery process. The user usually needs to validate and interpret the association rule, gather more
information about the phenomenon at hand and finally assess its usefulness. A nice property of quan-
titative association rules is the fact that the left-hand side and right-hand side conditions are essentially
projections from the instance space toR, together with a threshold. The projections calculate the dis-
tance between an instance and the condition’s hyperplane. We can therefore visualize the distances
between the instances and the two hyperplanes in a scatter plot, where the x-axis specifies the the
distance to theα hyperplane and the y-axis the distance to theβ plane. Such a diagram can be quite
useful to gather more information about the kind of dependency between the left-hand side and the
right-hand side of an association rule. For example, figure 4(visualizing the fifth rule in table 1)
suggests, that there might indeed be a (noisy) linear correlation between the left-hand side and the
right-hand side. Such information can be valuable for assessing the relevance and usefulness of the
pattern at hand.

4 Experimental Results

To assess the applicability and feasibility of the described algorithm, we implemented a version in
MATLAB. In the following paragraphs we describe experiments on two data sets. As a proof of the
principle, we give some interesting results on a microarraydata set and test the robustness of the
induced rules. Additionally, we assess the scalability of our implementation using the larger “Cover
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Id Quantitative Association Rule Score Cov. Supp. Contr. Conf.
(1) 0.13*PHO84 + 0.99*INO1< 0.02→ YER135C> 0.04 -122.1 0.38 0.34 0.64 0.89
(2) -0.17*SNZ1 - 0.98*GPH1> 0.04→ -111.6 0.43 0.36 0.56 0.83

-0.13*INO1 + 0.11*YDR010C - 0.98*YLL059C - 0.11*PGU1> 0
(3) SOR1< 0.04→ ZRT1> 0.03 -100.7 0.53 0.46 0.44 0.88
(4) YMR031W-A < 0.02→ -0.98*FIG1 + 0.11*PHO84 -93.0 0.47 0.37 0.68 0.79

+ 0.11*YOR382W+ 0.11*YHR126C> 0.06
(5) ZRT1> 0→ 0.10*PHO84 - 0.99*YLL059C> 0 -89.8 0.41 0.32 0.63 0.78

Table 1: Some of the generated quantitative association rules.

Type” data set [3].

4.1 Yeast Gene Expression

For our first experiment, we chose the gene expression data set of Hugheset al. [7]. The data set
was generated using microarray technology: the expressionlevels of 6316 genes in the yeast genome
were measured for 300 diverse mutations and chemical treatments of yeast cells. The compendium
is given as a table with 300 instances, where each value specifies the log base 10 of the fold change.
High positive values indicate overexpressed genes, negative values denote underexpressed genes.
We selected the 50 genes with the largest standard deviationfor our experiments. The goal of the
experiments was to show that the patterns are meaningful andpotentially useful for domain experts,
and that the algorithm is able to find non-random patterns.

Quantitatitive association rules based on half spaces are an interesting type of representation for
the analysis of microarray data, because biochemical networks usually consist of main pathways as
well as “side roads” that can be used if the other ways are blocked. This applies particularly to the
Hughes dataset, where the biochemical network is exposed toall sorts of stress (chemicals, etc).
Weighted sums of variables are a suitable means to model thiskind of phenomenon inonerule: the
big players obtain larger weights in the rule, while the substitutes obtain only smaller weights.

We performed experiments with thet parameter set to 0.5,g set to 1.0, and the sparseness pa-
rameterh set to 0.1, 0.3 and 0.5, respectively. Table 1 gives five of thebest rules, together with their
“interestingness score”, coverage, support, contrast andconfidence. As can be seen, a number of rules
with high confidence can be found. Contrast and coverage are centered around the target value of 0.5.

Rule (1) states that the less inositol and the less of a phosphate transporter is generated, the more
of a hypothetical transmembrane protein is generated. Inositol is part of membrane lipides and thus
important for cell growth. Phosphate uptake is also essential for the cell. It might be the case that
the cell reacts to a stop of cell growth with the generation ofthe transmembrane protein. Rule (2)
states that if the cell reduces SNZ1 and GPH1 (glycogen degradation) as a reaction to the deple-
tion of nutrients, then growth is also reduced (INO1) and newenergy resources are tapped (PGU1
– polygalacturonidase). Rule (3) states that if SOR1 is low,then ZRT1 is generated. SOR1 is a
zinc-dependent enzyme, and ZRT1 is a high-affinity zinc transport protein. Thus, the lack of SOR1
stimulates zinc transport. Rule (4) reflects the switch fromnormal growth to mating. Rule (5) states
that if the cell is in need of zinc, then it is also in need of phosphate, and YLL059C, supposedly an
inorganic phosphate transporter, becomes superfluous.

However, even though the rules do not contradict current wisdom on regulatory pathways, we
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Figure 5: Distribution of scores on the original (black) andthe permuted (grey) data sets.

have no statistical evidence about the significance of the rules. After all, it may well be that the
generated rules only describe random fluctuations instead of an inherent structural property. We
therefore performed a permutation test to assess the robustness of the rules. We permute the values
in each column of the data set randomly to generate a new data set with the same distribution, but no
structural relations between the columns. We then run the algorithm ten times on the permuted data
set and note the best score found. This process is repeated one hundred times to get an estimate of the
distribution of scores, that can be expected on random, but similar data. Figure 5 gives the resulting
histograms for the original and the permuted data. The scores for the permuted data are peaked around
-30, while the original data features a large number of association rules in the range between -50 and
-150. Thus, we can be highly confident, that the induced rulesdescribe indeed structural properties
of the yeast data set. In practical applications, we would recommend this randomization approach to
focus on significant findings.

4.2 Cover Type

The goal of the second experiment is to investigate the scalability of the optimization algorithm with
regard to the size of the data set. We therefore chose the “Cover Type” data set containing 581,012
instances from the UCI repository [3]. We removed the discrete attributes, leaving ten continuous
attributes describing cartographic properties of 30 x 30 meter land cells. We normalized the data
set, so that each column has a mean of zero and a standard deviation of one. We then applied the
optimization algorithm on subsets of different size, with the t parameter set to 0.5,g set to 1, andh
set to 0.5. The experiments were performed on a Pentium IV 2.8GHz machine. As the runtime of the
optimization algorithm depends on the number of line searchsteps and the runtime per line search,
the actual runtime varies for different random restarts.
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Data Set Overall Number of Runtime per
Size Runtime Line Searches Line Search
100 2.6 s 19 0.14 s

1,000 7.4 s 27 0.28 s
5,000 23 s 22 1.0 s
10,000 46.9 s 17 2.7 s
50,000 264 s 18 14.7 s
100,000 623 s 23 27.1 s
300,000 2004 s 23 87.2 s
500,000 3529 s 20 176.5 s

Table 2: Runtimes of the optimization algorithm as a function of data set size.

We therefore give the total runtime, the number of line searches that were performed, and the
runtime per line search for the various data set sizes in table 2. The table shows that the number of
line search steps remains below thirty for all data set sizesand that the runtime per search step scales
favorably with the data set size.

5 Related Work

The first approach to quantitative association rules was dueto Piatetsky-Shapiro [10], where the left-
hand side and right-hand side of the rules were tested for equality with numeric constants.

Most of the subsequent approaches to quantitative association rules can be categorized as either
interval-based [11, 9, 4, 15, 5, 13] or distribution-based [2, 12]. In the former case, the items on
the left-hand side and right-hand side of the rules are defined as tests for intervals of variables. In
the latter case, the numerical attributes in the right-handside are characterized by their means and
standard deviations.

The first interval-based approach discretizing the numerical attributes was proposed by Srikant
and Agrawal [11]. It is interesting to note that all previousapproaches based on intervals had to face
similar trade-offs balancing support and confidence as our half-space association rules. Fukudaet al.
[5] presented an efficient algorithm for quantitative association rules using computational geometry
and sampling methods. While it scales up well in the size of the database, the right-hand side is
restricted to exactly one categorical variable. Zhinget al. [15] proposed to cluster the data to improve
an interval-based approach. Fukudaet al. [4] and Yodaet al. [14] introduced variants with two
numerical variables on the left-hand side and one Boolean item on the right-hand side.

Ultimately, all interval-based methods have to discretizethe numerical attributes in one way or the
other, which inevitably leads to a loss of information. Regularities that are not axis-parallel cannot
be detected or have to be approximated by several quantitative association rules. Also, cumulative
effects of several numeric variables cannot easily be represented.

More recently, distribution-based approaches have been proposed: Lindell and Aumann [2] con-
sidered two types of rules. The first type contains several categorical variables on the left-hand side
and a vector of the means of several numerical variables on the right-hand side. The second type
consists of exactly one discretized numerical variable on the left-hand side and exactly one mean
on the right-hand side. Webb [12] contributed efficient algorithms for distribution-based association
rules. While this line of research is very interesting and has a high potential for applications, the
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expressiveness of such rules is also quite restricted, because it is not possible to relate arbitrary sets
of continuous variables. Quantitative association rules based on half spaces seem to be a special case
of projection pursuit[6], a fairly broad statistical concept developed in 1970’s. It is an open ques-
tion whether a reformulation of the present approach in the framework of projection pursuit would
bring any algorithmic improvement. Finally, the approach presented in this paper is also related to
research on subgroup discovery [8], where the goal is to search for subgroups in the population with
statistically interesting properties.

6 Conclusion

We proposed a new representation for quantitative association rules based on half spaces and an op-
timization setting for such rules. The approach does not require a discretization step and enables the
detection of regularities that are not axis-parallel. In the design of the algorithm, many trade-offs are
involved. Among others, we have to balance the confidence andthe coverage to find good rules. How-
ever, a relatively simple optimization algorithm is sufficient to find locally optimal half-space rules.
From an algorithmic point of view, many improvements and extensions are conceivable. For instance,
one could replace the scalar product with a kernel to obtain amore complex separation function or in-
corporate more sophisticated optimization techniques to improve the algorithm’s performance. Also,
the score function is obviously just one of several conceivable possibilities. Another point is that it
easy to incorporate user constraints in the process to support the user interactively in exploratory data
analysis. Finally, we believe that quantitative association rules based on half-spaces are an interesting
new class of patterns with a high potential for applications, e.g., in transcriptomics (microarray data)
and proteomics.

References

[1] R. Agrawal and R. Srikant. Fast algorithms for mining association rules. In J. B. Bocca, M. Jarke,
and C. Zaniolo, editors,Proc. 20th Int. Conf. Very Large Data Bases, VLDB, pages 487–499. Morgan
Kaufmann, 12–15 1994.

[2] Y. Aumann and Y. Lindell. A statistical theory for quantitative association rules.Journal of Intelligent
Information Systems, 20(3):255–283, 2003.

[3] C. Blake and C. Merz. UCI repository of machine learning databases, 1998.
[4] T. Fukuda, Y. Morimoto, S. Morishita, and T. Tokuyama. Data mining using two-dimensional optimized

association rules: Scheme, algorithms, and visualization. In Proc. ACM SIGMOD Int. Conf. Management
of Data, pages 13–23. ACM Press, 1996.

[5] T. Fukuda, Y. Morimoto, S. Morishita, and T. Tokuyama. Mining optimized association rules for numeric
attributes. InProc. ACM SIGACT-SIGMOD-SIGART Symposium on Principles ofDatabase Systems,
pages 182–191. ACM Press, 1996.

[6] P. Huber. Projection pursuit.The Annals of Statistics, 13(2):435–475, 1985.
[7] T. Hughes et al. Functional discovery via a compendium ofexpression profiles.Cell, 102:109–126, July

2000.
[8] W. Kloesgen. Exploration of simulation experiments by discovery. InProceedings of KDD-94 Workshop,

pages 251–262, 1994.
[9] R. J. Miller and Y. Yang. Association rules over intervaldata. InProc. ACM SIGMOD Int. Conf. Man-

agement of Data, pages 452–461. ACM Press, 1997.

16



[10] G. Piatetsky-Shapiro. Discovery, analysis and presentation of strong rules. In G. Piatetsky-Shapiro and
W. Frawley, editors,Knowledge Discovery in Databases, pages 229–248. AAAI/MIT Press, 1991.

[11] R. Srikant and R. Agrawal. Mining quantitative association rules in large relational tables. In H. V.
Jagadish and I. S. Mumick, editors,Proc. of the 1996 ACM SIGMOD International Conference on Man-
agement of Data, pages 1–12, 1996.

[12] G. I. Webb. Discovering associations with numeric variables. InProc. of the 7th ACM SIGKDD Interna-
tional Conference on Knowledge Discovery and Data Mining, pages 383–388. ACM Press, 2001.

[13] J. Wijsen and R. Meersman. On the complexity of mining quantitative association rules.Data Mining
and Knowledge Discovery, 2(3):263–281, 1998.

[14] K. Yoda, T. Fukuda, Y. Morimoto, S. Morishita, and T. Tokuyama. Computing optimized rectilinear
regions for association rules. InProc. 3rd International Conference on Knowledge Discoveryand Data
Mining, pages 96–103. AAAI Press, 1997.

[15] Z. Zhing, Y. Lu, and B. Zhang. An effective partitioning-combining algorithm for discovering quantitative
association rules. InProc. of the First Pacific-Asia Conference on Knowledge Discovery and Data Mining,
1997.

17


