
TECHNISCHEUNIVERSIT�ATM �UNCHEN
INSTITUT F�UR INFORMATIKSonderforschungsbereich 342:Methoden und Werkzeuge f�ur die Nutzungparalleler Rechnerarchitekturen

Speci�cation of an Elevator ControlSystemFrank Strobl and Alexander Wisspeintner

TUM-I9906SFB-Bericht Nr. 342/04/99 AM�arz 99

TUM{INFO{03-I9906-200/1.{FIAlle Rechte vorbehaltenNachdruck auch auszugsweise verbotenc1999 SFB 342 Methoden und Werkzeuge f�urdie Nutzung paralleler ArchitekturenAnforderungen an: Prof. Dr. A. BodeSprecher SFB 342Institut f�ur InformatikTechnische Universit�at M�unchenD-80290 M�unchen, GermanyDruck: Fakult�at f�ur Informatik derTechnischen Universit�at M�unchen

Specification of an Elevator Control System

An AutoFocus Case Study

Frank Strobl and Alexander Wisspeintner

stroblf@informatik.tu-muenchen.de

wisspein@informatik.tu-muenchen.de

Institut für Informatik
Technische Universität München

2 Specification of an Elevator Control System – An AutoFocus Case Study

Abstract

In this paper we present a case study with AutoFocus, a tool prototype for the develop-
ment of distributed embedded systems. We develop a controller of an elevator system
using different description techniques to illustrate the development process. Further-
more we use the simulation component of AutoFocus, SimCenter, to validate the be-
havior of the specified system. Using a device independent interface SimCenter can
control both external multimedia applications for visualization as well as real hardware
for rapid prototyping. We use the AutoFocus specification of the elevator control sys-
tem to control a Fischertechnik model of an elevator.

Acknowledgement

Many people helped us during the development of this case study. We would especially
like to thank Franz Huber for his help as an expert of the AutoFocus CASE tool. He is
involved in the AutoFocus project since its beginning.

Special thanks go to Alexander Schmidt and Jan Philipps, who built the Fischertechnik
elevator model, supported us in many hardware specific questions and helped us writing
this paper.

Finally we want to thank Marc Sihling. He gave us the first introduction to AutoFocus
and helped us writing the documentation of this case study.

Contents

Specification of an Elevator Control System – An AutoFocus Case Study 3

Contents

1 Introduction 5

2 The Description Techniques of AutoFocus 6

2.1 System Structure Diagrams 6

2.2 State Transition Diagrams 7

2.3 Data Type Definitions 8

2.4 Extended Event Traces 8

3 The Elevator Control System 10

3.1 Requirements 10

3.2 Analysis 11

3.3 Architectural Design 11

3.4 Creating a new Project in AutoFocus 13

3.5 Interface and Structure Specification 14
3.5.1 SSD „System“ 15
3.5.2 SSD „Elevator Control System“ 16
3.5.3 SSD „Floors“ 17
3.5.4 SSD „Elevator“ 17

3.6 Specification of the behavior 18
3.6.1 STD “Floor Control“ 19
3.6.2 STD „Split“ 20
3.6.3 STD „Door Control“ 20
3.6.4 STD „Motor Control“ 22
3.6.5 STD “Central Elevator Control“ 23
3.6.6 STD “Init Elevator“ 25
3.6.7 STD “Search Request“ 25
3.6.8 STD “Stop Next Continue“ 28

3.7 Consistency of the Specification 29

Contents

4 Specification of an Elevator Control System – An AutoFocus Case Study

4 System Execution with SimCenter 31

4.1 Simulation of the elevator with SimCenter 31

4.2 The components “Floor Sim“ and “Door Sim“ 32

4.3 Error detection with EETs 33

4.4 Device Dependent Interface 35

4.5 Visualization with Formula Graphics 36

4.6 Prototyping with the Fischertechnik model 37

5 Conclusions 39

Appendix A: Additional Diagrams of the Elevator Control System 40

A.1 STDs 40

A.2 EETs 47

References 54

Introduction

Specification of an Elevator Control System – An AutoFocus Case Study 5

1 Introduction

For the last few years the importance of the development of software for embedded
systems has been rapidly increasing. More and more of the functionality of embedded
systems is realized by software instead of using expensive specialized hardware solu-
tions. This tendency will continue due to the decreasing hardware costs on the micro-
controller market.

In the early years of embedded systems, software development was focused on opti-
mizing the program code to cope with the limited hardware resources. Today advanced
micro-controllers are available, that remove many memory space and performance re-
strictions and allow more complex software solutions.

To cope with the complexity of embedded systems software it is important to ensure a
clear structure of the views of the description techniques and the development process
itself [2]. Both of these aspects should be supported by suitable development tools. In
addition, features like verification of correctness and validation of general statements
about the developed system are desirable. Tools supporting the development process in
the field of software engineering are called CASE-tools (Computer Aided Software En-
gineering). These tools support and automate procedures, methods, concepts and nota-
tions [10].

AutoFocus is a tool prototype to develop distributed embedded systems. Its origin and
background is the formal specification framework Focus [1]. It allows the graphical,
structured description and modeling of embedded and distributed systems. A simulation
component allows the developer to test the specified software system and to build pro-
totypes for the control software.

The description techniques offered by AutoFocus result in a specific software develop-
ment process. This process will be illustrated using the example of the specification of
an elevator control system. This case study is the result of a students project at the In-
stitute for Computer Science at the Technische Universität München.

In Section 2 of this report we introduce the basic description techniques of AutoFocus.

Section 3 contains an informal presentation of the elevator case study. The development
of the elevator control system in AutoFocus is explained in Section 4. Section 5 shows
how SimCenter can be used for simulating the specification and to drive the external
Fischertechnik model. We conclude with Section 6. An Appendix contains some further
diagrams and specifications which for reasons of brevity we have omitted from the main
text.

The Description Techniques of AutoFocus

6 Specification of an Elevator Control System – An AutoFocus Case Study

2 The Description Techniques of AutoFocus

To get a complete and structured understanding of a system, one has to examine it using
different point of views and different levels of abstractions.

In AutoFocus this is supported by four different description techniques:

• System Structure Diagrams (SSDs),

• State Transition Diagrams (STDs),

• Data Type Definitions (DTDs),

• Extended Event Traces (EETs).

Each description technique shows a different view of the system. Through a common
mathematical basis the integration of these views leads to a formal specification of the
whole system.

The AutoFocus description techniques support hierarchical development of a system.
Components or views can be atomic or they can themselves consist of sub-components
or substructures. Complex descriptions can be divided into smaller ones. The developer
can describe the system in less detail in early development phases. The system descrip-
tion is then more and more refined during further development until the system is de-
scribed in all details.

The description techniques offered by AutoFocus are described in the rest of this sec-
tion.

2.1 System Structure Diagrams

An embedded system is modeled in AutoFocus as a network of components that con-
nected with each other via channels. These channels allow message exchanges between
the individual components and between the components and the environment of the
embedded system. This network is described with AutoFocus System Structure Dia-
grams (SSDs).

Figure 2-1 shows a SSD. Squared labeled nodes symbolize components. These compo-
nents are connected with each other via labeled directed edges, called channels. At both
ends of an edge are small cycles called ports. Ports are the interfaces between the differ-
ent hierarchical layers. A connection to a sub-component, super-component or the sys-
tem environment is made via a port. Ports that are not part of a component in the SSD
belong to the interface to the hierarchically higher component or the environment of the
system.

Each component has a name and is connected via a set of ports to a set of input and out-
put channels. A channel is defined through its name and the data type of the corre-

The Description Techniques of AutoFocus

Specification of an Elevator Control System – An AutoFocus Case Study 7

sponding signal. SSDs shows the topological view of the system and the signature of
each component.

Component1 Component2

inten1:boolean

intern2:int
in:char out:int

Figure 2-1: System Structure Diagram

Semantically, each channel carries at most one signal at each time point. It is possible to
check whether a channel is empty, or whether it carries a specific data value.

Sub-components can be assigned to each component. In this way hierarchical system
descriptions can be specified. Moreover, state machine specifications (STDs, see below)
can be assigned to each component.

2.2 State Transition Diagrams

State Transition Diagrams (STDs) describe the behavior of a component. STDs are are
graphical represenations of extended finite state machines. They consist of states and
transitions (Figure 2-2).. States are represented as labeled ellipses; they can be marked
to represent start or end states. State changes take place by transitions. Transitions are
represented as directed edges between states.

Each transition can have a pre and post condition over local variables, an input expres-
sion to read signals from the component’s input channels, an output expression to send
signals via the component’s output channels. In addition, transitions can be labeled.

S tate1

S tate2

in?1:inter1!true:

intern2?3:intern1!fals e:

Figure 2-2: State Transition Diagram

Semantically, if the pre condition and the input expression are true, a transition is trig-
gered. In this case the signals described in the output expression are sent via channels.
Furthermore the post condition is evaluated. For simulation purposes, post conditions

The Description Techniques of AutoFocus

8 Specification of an Elevator Control System – An AutoFocus Case Study

are just a sequence of assignments to local state variables. More general post conditions
cannot be simulated, but can be useful for verification and validation tasks.

Table 2-1 shows the definition of the simple transition with the label “trans1”.

label pre input output post
trans1 t > 0 ch1?true, ch2?false ch3!true t=0

Table 2-1: Example transition

If the local variable t is greater the 0 and the signals “true” and “false” are read from the
channels “ch1” and “ch2”, this transition is fired. This results in sending the signal
“true” via “ch3”. Furthermore the value 0 is assigned to the variable “t”.

If more than one transition can be triggered (i.e., its precondition and input statement
are valid), one of the transitions is non-deterministically chosen. It is up to the develop-
ers to specify the state machines to get deterministic behavior of the whole system.

STDs are hierarchical, too: each state can contain a sub-STD. In AutoFocus, the hierar-
chical structure of hierarchical state machines is semantically mapped to a single flat
state machine.

The state machines in the components of an SSD are executed in parallel. AutoFocus
uses a global system clock to synchronize the whole system. Each machine can make
exactly one transition per clock cycle and all transitions within one clock cycle happen
simultaneously.

2.3 Data Type Definitions

It is possible to define new data types in AutoFocus. This is done in a style similar to
functional programming languages, such as Gofer. These data types can be used to de-
fine local variables within components and the signal types for communication chan-
nels.

2.4 Extended Event Traces

In addition to STDs there is a second description technique for behavior in AutoFocus:
Extended Event Traces (EETs) [14] describe the communication between different
components in a system run. The notation is a variant of the standardized Message Se-
quence Charts [13]. Each EET is assigned to a SSD and shows the temporal flow of the
communication between the components of the SSD and its environment (Figure 2-3).

EETs can be used for different purposes. They can describe elementary functionality at
an early development stadium to validate early requirements. Furthermore, the simula-
tion component SimCenter (Section 4.1) can generate EETs automatically during a
simulation session. EETs can then be used as a simulation protocol to support the trou-
bleshooting process.

The Description Techniques of AutoFocus

Specification of an Elevator Control System – An AutoFocus Case Study 9

Component1 Component2

in: 1

inter1: true

out: 10

inter2: 3

inter1: fals e

out: 0

Figure 2-3: Extended Event Trace

The Elevator Control System

10 Specification of an Elevator Control System – An AutoFocus Case Study

3 The Elevator Control System

To illustrate the advantages of AutoFocus and SimCenter, the classic example of an
elevator control system has been specified. This specification was part of our students
project at the Technische Universität München. An elevator control system has many of
the typical aspects of an embedded and distributed system, and it has a number of time
or safety critical requirements. This system is sufficient complex to allow to draw some
conclusions about realizing more complex projects with AutoFocus.

First we specify the static structure of our elevator control system with AutoFocus. The
behavior can be specified in SSDs. During the whole development process parts of the
system can be simulated and tested with SimCenter. Additional multimedia front end
applications can be used to create a realistic test environment. In this way it is possible
to develop a first prototype of the control software. Finally, a hardware interface allows
us to test the software system in its real environment. The specified software directly
controls an elevator model.

In the rest of this section the individual steps of the design process are described.

3.1 Requirements

The goal of our development of the elevator control system is to control an existing ele-
vator model. This model is built with Fischertechnik components. Consequently this
model defines part of the requirements on the control system. The elevator has four
floors and each floor has its request button and a control light. A sensor is located at
every floor. We can use these sensors to locate the current position of the elevator car.
The car itself consists of several parts: A door, which can be opened and closed by a
motor. Two sensors inform the control system about the door position. A light sensor
can detect objects while the door is closing. The elevator car engine moves the car up or
down.

Because of space limitations in the Fischertechnik there are some restrictions. The indi-
vidual floors do not have their own door in contrast to most real elevator systems. Each
floor has only one request button (not two, as is common in modern elevators), and the
car itself does not have any request button. However, when there is only one button at
each floor, the functionality of these car buttons is often equivalent to that of the corre-
sponding floor button.

Informally, the elevator behavior is defined as follows. If you press the request button at
a floor, the request light is switched on. The car moves to this floor within finite time.
When the floor is reached, the door opens, and the request lamp is turned off again. The
door stays open for some time (10 seconds) to allow passengers to enter or exit the car.
After this time, the door closes again. If, while the door closes, the optical sensor is in-
terrupted or the floor’s request button is pressed by a user, the door must open again
immediately. After a shorter waiting time (5 seconds) the door closes again.

The Elevator Control System

Specification of an Elevator Control System – An AutoFocus Case Study 11

The car is moved by the elevator motor. If the car should stop at a certain floor, the
motor is stopped immediately after the reception of a signal from the corresponding
floor sensor. The control system should send an additional signal to the motor, if the
motor should stop the car at the next floor. The motor uses this signal to reduce the car
speed. This enables the motor to stop the car at the exact floor position.

The requests from the individual floors can be served using different strategies. The
most important requirement for such a strategy is fairness. Every request must be served
in finite time. The strategy used in this specification is described in detail in Section 3.6

3.2 Analysis

Before we specify the elevator control system in AutoFocus, we split the large starting
problem into smaller sub problems.

First we look at a real elevator system, and determine its components. These compo-
nents will be mapped to the elevator control system specification. Figure 3-1 shows the
general model of an elevator. The elevator consists of two or more floors, a car and a
control system. Each floor has its request button and an elevator door. Every elevator
door owns a motor to open and close it. Door sensors are used to determine the door
position. Every button has an assigned control light. This light displays a request from
the corresponding floor. The car itself consists of several buttons, one car door and a
motor to move the car up and down. The component “Elevator Control System” con-
trols the behavior of the whole elevator system. This component decides which request
is served next (Section 3.1). The interface between the elevator control system and the
other components of the elevator system defines our system border of the embedded
system.

In this case study we do not specify a general elevator control system. Rather we de-
velop a special control system for the elevator model described in Section 3.1. This
model has four floors, no car buttons, and no floor doors.

3.3 Architectural Design

Now we can make a rough draft of the elevator control system. We use the general
model of an elevator system and map it to our Fischertechnik elevator model. Figure 3-2
shows the resulting component structure. This structure will be retained in essence dur-
ing the whole specification process. We do not make any statements about the commu-
nication structure at this phase. This structure will be defined later on using the
AutoFocus SSDs.

We refine the elevator control into two components. The new components are the car
component “Elevator Control” and the component “Floors”. “Floors” consists of four
floor control systems, which observe the request button with its control light and for-
ward requests to the central control system. The component “Elevator Control” consists
of three control components Each of these components is assigned to subsystem of the
elevator.

The Elevator Control System

12 Specification of an Elevator Control System – An AutoFocus Case Study

Elevator System

Floor Elevator Car

Door Button

Door
Motor

Door is
open

sensor

Door is
closed
sensor

Switch Light

Elevator Motor

12..*

2..*

1

1 1

111 1

1 1

1 1 1 1 1

Elevator Control
System

1

Figure 3-1: General model of an elevator system with one car in UML class diagram notation [10]

The Elevator Control System

Specification of an Elevator Control System – An AutoFocus Case Study 13

Elevator Control
System

Elevator Control

Floor
Control 1

Floor
Control 2

Floor
Control 3

Floors

Central
Elevator
Control

Door
Control

Motor
Control

Floor
Control 4

1

11

1 1

1 1 1 1 1 1 1

Figure 3-2: Model of the specific elevator control system in UML class diagram notation [10]

The main component of the elevator control system is “Central Elevator Control”. This
component realizes the strategy for serving the requests. Furthermore this component
controls the other units, “Door Control” and “Motor Control”.

It is actually not necessary to create class diagrams like shown in this section when
working with AutoFocus. You can also specify the structure directly in AutoFocus us-
ing SSDs. But in SSDs it is not possible to illustrate the different hierarchical layers in a
single diagram. A SSD only shows one hierarchical layer of the system. For this reason
it is meaningful to make a draft of the component structure before starting with the
specification in AutoFocus.

3.4 Creating a new Project in AutoFocus

Given the architectural structure of the system from Section 3.3, we can relize the fol-
lowing design using AutoFocus.

The Elevator Control System

14 Specification of an Elevator Control System – An AutoFocus Case Study

Figure 3-3: Project Browser in AutoFocus

First we create a new project in the project browser. You can manage all documents in
this central window. Thanks to a version control system (RCS), it is possible to manage
different versions of the specification documents. Figure 3-3 shows a screenshot of the
project browser. This screenshot has been made during the development of the elevator
control system.

3.5 Interface and Structure Specification

We use System Structure Diagrams (SSDs) to describe the static model in AutoFocus.
The static model describes the system components and the communication structure
between them. Now we use the model from Section 3.3 and map it to a more detailed
structure specification using AutoFocus and SSDs.

The Elevator Control System

Specification of an Elevator Control System – An AutoFocus Case Study 15

3.5.1 SSD „System“

First we design the top view of our elevator control system. The interface between the
control system and the environment is defined in this diagram. We adopt the component
“Elevator Control System” from Figure 3-2 (analysis phase) and place it into the system
SSD (Figure 3-4). Then all signals needed for controlling the elevator are added.

ElevatorControlSystem

light1:boolean

light2:boolean

light3:boolean

light4:boolean

button1:boolean

button3:boolean

button2:boolean

button4:boolean

opticalsensor:boolean

dooropen:boolean

doorclose:boolean

doorisclosed:boolean

doorisopen:boolean

floor1:boolean

floor2:boolean

floor3:boolean

floor4:boolean

motorup:boolean

motordown:boolean

stopnextfloorout:boolean

Figure 3-4: SSD „System“

We only use communication channels with the data type “Boolean” in this SSD: A
“Boolean” channel can transmit the signals “true” and “false”. This correspond directly
to the voltages 0 and 5 Volt used by the hardware model. The channels “button1-4” are
connected with the request buttons at the single floors. If the user presses a button, the
signal “true” should be transmitted via the corresponding channel. The channels “light1-
4” controls the request lamps at the different floors. If a continuous signal “true” is sent
via a light channel, the light turns on. A continuous signal “false” turns the request light
off. In this connection a continuous signal is a signal that is repeatedly sent every clock

The Elevator Control System

16 Specification of an Elevator Control System – An AutoFocus Case Study

cycle. The floor sensors of the elevator model communicate via the channels “floor1-4”
with the elevator control system. They inform the control system about the current po-
sition of the elevator car. We use the channels “dooropen” and “doorclose” respectively
“doorisopen” and “dooriscloosed” to control the elevator door. If the light sensor detects
an object between the car door and the door frame, it sends a message to the control
system via the channel “lightsensor”. The control system uses the channel
“stopnextfloorout” to announce a motor stop event at the next floor. Finally there are the
channels “motorup” and “motordown”. We use these channels to control the elevator
motor that moves car up and down.

3.5.2 SSD „Elevator Control System“

In the next step we further refine the component “Elevator Control System” of the SSD
“System”. It is split into the sub components “Floors” and “Elevator” (Figure 3-5). This
division meets the structure of a real elevator system, that consists of a car with an inte-
grated control system and several floors.

Floors Elevator

elok:int

flrequest1:boolean

flrequest2:boolean

flrequest3:boolean

flrequest4:boolean

button1:boolean

button2:boolean

button3:boolean

button4:boolean

light1:boolean

light2:boolean

light3:boolean

light4:boolean

floor1:boolean

floor2:boolean

floor3:boolean

floor4:boolean

dooropen:boolean

doorclose:boolean

doorisopen:boolean

doorisclosed:boolean

opticalsensor:boolean

motorup:boolean

motordown:boolean

stopnextfloorout:boolean

Figure 3-5: SS D „Elevator Control System“

There are several channels in this SSD that are only connected at one side to an other
component. These channels communicate with the higher hierarchical layer “System”
and define in this way the interface of the component “Elevator Control System”. The
channels for component-internal communication between “Floors” and “Elevator” are
new. We use the channels “flrequest1-4” to send new requests from the single floors to
the central control system. The central control system uses the channel “elok” to clear
floor requests after they have been served.

The Elevator Control System

Specification of an Elevator Control System – An AutoFocus Case Study 17

3.5.3 SSD „Floors“

The component “Floors” contains the floor control systems of each floor (Figure 3-6).
These single control systems are named “FloorControl1-4”. If the user presses a request
button, the signal “true” is sent via the corresponding “button” channel. The floor con-
trol system must turn on the request lamp by sending a continuous signal via one of the
“light1-4” channels. Furthermore the floor control system sends a message about the
new request via one of the “flrequest1-4” channels. We use continuous signals again for
this task. The channels “flrquest1-4” acts like a kind of memory storing the current re-
quest from the four floors.

FloorControl1

Split

FloorControl2

FloorControl3

FloorControl4

button1:boolean

light1:boolean flrequest1:boolean

elok:int

elok1:boolean

elok2:boolean

flrequest2:boolean

button2:boolean

light2:boolean

elok3:boolean

flrequest3:boolean

button3:boolean

light3:boolean

elok4:boolean

button4:boolean

light4:boolean flrequest4:boolean

Figure 3-6: SSD „Floors“

When the component “Elevator” sends a floor number via the channel “elok” to the
floor control system, the component “Split” forwards this message to the corresponding
“FloorControl” component, which then switches off the request lamp and clears the
request (by starting to send a continuous “false” via the corresponding “flrequest” chan-
nel).

3.5.4 SSD „Elevator“

In the component “Elevator” (Figure 3-7) the real control tasks are realized. It consists of
the components “Central Elevator Control”, “Door Control”, “Motor Control” and
“Stop Next Continue”.

The Elevator Control System

18 Specification of an Elevator Control System – An AutoFocus Case Study

The central control system can send a signal to the motor control system via the channel
“motorcom” that controls the moving direction of the car. „Motor Control“ should gen-
erate the signals “motorup“ and “motordown“ for direct motor controlling.

DoorControl

MotorControl

CentralElevatorControl

StopNextContinue

motorcom:int

doorcom:boolean

doorstate:boolean
opticalsensor:boolean

doorisopen:boolean

doorisclosed:boolean

flrequest1:boolean

flrequest2:boolean

flrequest3:boolean

flrequest4:boolean

floor1:boolean

floor2:boolean

floor3:boolean

floor4:boolean

motorup:boolean

motordown:boolean

elok:int

dooropen:boolean

doorclose:boolean

stopnextfloor:boolean

stopnextfloorout:boolean

Figure 3-7: SSD „Elevator“

The central control system can instruct the door control system to open the door. This is
done by sending a signal via the “doorcom” channel. In the opposite direction the cen-
tral control system can check if the door is open at the moment via the “doorstate”
channel. The component “Stop Next Continue” creates a continuous signal
“stopnextfloorcont” out of the signal “stopnextfloor”. This continuous signal is used by
the motor as described in Section 3.1.

3.6 Specification of the behavior

After specifying the static components and communication channels, we describe the
behavior of the elevator system. We specify state machines by STDs and assign them to
the SSD components.

The Elevator Control System

Specification of an Elevator Control System – An AutoFocus Case Study 19

3.6.1 STD “Floor Control“

First we describe the behavior of the components „Floor Control 1-4“. They just ob-
serve the request buttons and lights and forward requests to the central control station.
The STDs only have two states („LightOff“ and „LightOn“) and their functionality can
be compared with a switch. In the following example we describe the state machine of
the component „Floor Control 1“ (Figure 3-8). The state machines of the components
„Floor Control 2-4“ are similar.

SendRequest1

lightoff

LightOff

LightOn

OKsended

button1pressed

Figure 3-8: STD „Floor Control 1“

Table 3-1 shows all the transitions with their labels, conditions and output in the Auto-
Focus notation.

label pre Input output post
button1pressed Button1?true light1!true, flrequest1!true
lightoff Button1? flrequest1!false, light1!false
Oksent elok1?true flrequest1!false, light1!false
Sendrequest1 elok1? light1!true,flrequest1!true

Table 3-1: Transitions of „Floor Control 1“

After initialization of the elevator system, „Floor Control 1“ enter the state „LightOff“,
which means that there is no elevator request for the first floor and its request light is
off. Until the request button is pressed, the system stays in this state and sends the signal
„false“ in the transition „lightoff“ through the channels „light1“ and „flrequest1“.
When the button is pressed the transition „button1pressed“ triggers and the state ma-
chine changes to the state „LightOn“. Now the signal „true“ is sent through the channels
„light1“ and „flrequest1“ in the transition „SendRequest1“. The floor light is switched
on and an request signal is sent to the central control system. When the request is serv-
iced, i.e. when the elevator car arrived at the floor, the central control system sends the
signal „true“ and the state machines changes back to the state „LightOff“.

The Elevator Control System

20 Specification of an Elevator Control System – An AutoFocus Case Study

3.6.2 STD „Split“

The next step is to specify the behavior of the component „Split“. Together with the
components „Floor Control 1-4“ it forms the main component „Floors“. After describ-
ing the behavior of „Split“, also the behavior of the component „Floors“ is completely
defined.

OKto1

OKto2

OKto3 OKto4Wait

Figure 3-9: STD „Split“

When the central control system has finished working on an request, it sends the signal
„elok“ to the floor control. This signal has the type integer and transmits the corre-
sponding floor number of the finished request.

label pre input output post
OKto1 elok?1 elok1!true
OKto2 elok?2 elok2!true
OKto3 elok?3 elok3!true
OKto4 elok?4 elok4!true

Table 3-2: Transitions of „Split“

The component „Split” (Figure 3-9, Table 3-2) receives this signal and passes it on to
the corresponding floor control. For example if the value of „elok“ is three, the signal
„true“ is sent to the component „Floor Control 3“.

3.6.3 STD „Door Control“

After specifying the behavior of the component „Floors“ with all its details, we start
describing the behavior of the sub components of the component „Elevator“. The com-
ponents „Door Control“ and Motor Control“ are relatively simple compared to the cen-
tral component „Central Elevator Control“. We describe them first.

The component „DoorControl“ controls the car door. The requests to shut or open the
door are sent from the central elevator control system. When the elevator car reaches a
floor where a request is sent, it stops and the central elevator control sends the signal
„true“ through the channel „doorcom“ to the component „Door Control“, to start the
service of that floor.

When it receives this signal, „Door Control“ opens the car door, waits until the passen-
gers have entered or left the car and finally shuts the door again. When the door is
closed, “Door Control“ sends the signal “true“ through the channel “doorstate“ and the
central elevator control system services the next request.

The Elevator Control System

Specification of an Elevator Control System – An AutoFocus Case Study 21

Figure 3-10 shows the state machine of the component “Door Control”. The corre-
sponding transitions are described in Table 3-3. The state “Init” has a special purpose,
because it is used to make sure that the car door is closed and so the elevator system is
in a well-defined state when the system is started.

opendoor

doorisopen

closedoor

doorisclosed

waittimer

DoorIsClosed

DoorIsOpen

OpenDoor CloseDoor

Init

Wait

requestopen

doorisopensignal timeout

opticalsensorinterrupt

doorisclosedsignal

buttoninterrupt

settimer

systeminitready

Figure 3-10: STD „Door Control“

label pre input Output post
buttoninterrupt doorcom?true doorstate!false, doorclose!false,

dooropen!true
Timer=3

closedoor doorisclosed?,
opticalsensor?,doorcom?

doorclose!true, dooropen!false,
doorstate!false

doorisclosed doorcom? doorstate!true, dooropen!false,
doorclose!false

doorisclosedsignal doorisclosed?true doorstate!false, dooropen!false,
doorclose!false

doorisopen Timer>0 doorstate!false, dooropen!false,
doorclose!false

Timer=Timer-
1

doorisopensignal doorisopen?true doorstate!false, dooropen!false,
doorclose!false

opendoor doorisopen? dooropen!true, doorclose!false,
doorstate!false

opticalsensorinterr
upt

opticalsensor?true doorstate!false, doorclose!false,
dooropen!true

Timer=3

requestopen doorcom?true doorstate!false, dooropen!true,
doorclose!false

Timer=10

settimer Timer=5
systeminitready Timer==0
timeout Timer==0 doorclose!true, doorstate!false,

dooropen!false
waittimer Timer>0 Timer--

Table 3-3: Transitions of „Door Control“

The Elevator Control System

22 Specification of an Elevator Control System – An AutoFocus Case Study

The local variable “Timer” is used as a counter, which ensures that the car door stays
open for certain time after it is opened. Within the initialization the counter is also used
to guarantee that all simulation components have finished their initialization.

The two transitions “opticalsensorinterrupt” and “buttoninterrupt” implement the re-
quirements to immediately open the door, when either the optical sensor is interrupted
(i.e., the signal “true” is sent through the channel “opticalsensor”) or the request button
is pressed again while the door is closing (the central control system again sends an sig-
nal “doorcom” to the door control). In both cases the state machine changes to the state
“OpenDoor” and opens the door again.

3.6.4 STD „Motor Control“

The component “Motor Control” is used as the control system of the car motor. Figure
3-11 shows the corresponding state machine. Table 3-4 shows its transitions.

NoChangeUp

NoChangeDown

MotorUp2

MotorDown2

wait

wait2

Wait

Up

Down

MotorUp1

MotorDown1

StopUp

StopDown

Figure 3-11: STD „Motor Control“

Through the channel “motorcom”, which has the type “integer”, the central elevator
control system sends the direction into which the car is to move. The value “1” means
that the car has to be moved upwards and “2” means downwards. To stop the motor the
number “2” is sent through the channel. The component “Motor Control” transforms
this signals into continuous signals to control the motor through the channels “motorup”
and “motordown”.

The Elevator Control System

Specification of an Elevator Control System – An AutoFocus Case Study 23

label pre input output post
motordown1 motorcom?2 motorup!false, motordown!true
motordown2 motorcom?2 motordown!true, motorup!false
motorup1 motorcom?1 motorup!true, motordown!false
motorup2 motorcom?1 motorup!true, motordown!false
nochangedown motorcom? motordown!true, motorup!false
nochangeup motorcom? motorup!true, motordown!false
stopdown motorcom?0 motorup!false, motordown!false
stopup motorcom?0 motorup!false ,motordown!false
wait motorcom? motorup!false, motordown!false
wait2 motorcom?0 motorup!false, motordown!false

Table 3-4: Transitions of „Motor Control“

3.6.5 STD “Central Elevator Control“

The STD “Central Elevator Control” controls the other components. Furthermore it im-
plements the strategy to handle the incoming requests. We use the following strategy,
which is relatively easy to implement and used in most real elevator systems. The ele-
vator car has a priority direction. The car is moved in this direction until no more re-
quests come from this direction. Now the priority direction changes and the elevator can
work on requests from the other direction.

The corresponding state machine is quite complex and so it uses hierarchy. Figure 3-12
shows the main state machine. The states “Init Elevator” and “Search Request” contain
sub-STDs (Figure 3-13, Figure 3-14).

opendoor1

opendoor2

opendoor3

opendoor4

Floor1

Floor2

Floor3

Floor4

InitElevator

OpenCloseDoor1

SearchRequest

OpenCloseDoor2

OpenCloseDoor3

OpenCloseDoor4

up12

motorstop1

up23

up34stop

down43

down32

down21stop

return1

return2

return4

return3

startsearch1

motorstop2

motorstop3

motorstop4

startsearch2

startsearch3

startsearch4

up12stop

up23stop
down32stop

down43stop

continit

Figure 3-12: STD „Central Elevator Control“

The Elevator Control System

24 Specification of an Elevator Control System – An AutoFocus Case Study

label pre input output post
continit stnextfloor=true
down21st
op

(direction==2)&&
(stnextfloor==false)

doorstate?true,
floor2?true

motorcom!2,
stopnextfloor!true

currfloor=1;
stnextfloor=true

down32 (direction==2)&&
(stnextfloor==false)

doorstate?true,
floor3?true,
flrequest2?false

motorcom!2,
stopnextfloor!false

currfloor=2;
stnextfloor=false

down32st
op

(direction==2)&&
(stnextfloor==false)

doorstate?true,
flrequest2?true,
floor3?true

motorcom!2,
stopnextfloor!true

currfloor=2;
stnextfloor=true

down43 (direction==2)&&
(stnextfloor==false)

doorstate?true,
floor4?true,
flrequest3?false

motorcom!2,
stopnextfloor!false

currfloor=3;
stnextfloor=false

down43st
op

(direction==2)&&
(stnextfloor==false)

doorstate?true,
flrequest3?true,
floor4?true

motorcom!2,
stopnextfloor!true

currfloor=3;
stnextfloor=true

motorstop
1

stnextfloor==true flrequest1?true,
floor1?true

motorcom!0, elok!1,
doorcom!true

motorstop
2

stnextfloor==true flrequest2?true,
floor2?true

motorcom!0, elok!2,
doorcom!true

motorstop
3

stnextfloor==true flrequest3?true,
floor3?true

motorcom!0, elok!3,
doorcom!true

motorstop
4

stnextfloor==true flrequest4?true,
floor4?true

motorcom!0, elok!4,
doorcom!true

opendoor
1

flrequest1?true doorcom!true, elok!1

opendoor
2

flrequest2?true doorcom!true, elok!2

opendoor
3

flrequest3?true doorcom!true, elok!3

opendoor
4

flrequest4?true doorcom!true, elok!4

return1 currfloor==1
return2 currfloor==2
return3 currfloor==3
return4 currfloor==4
startsearc
h1

doorstate?true,
flrequest1?false

startsearc
h2

doorstate?true,
flrequest2?false

startsearc
h3

doorstate?true,
flrequest3?false

startsearc
h4

doorstate?true,
flrequest4?false

up12 (direction==1)&&
(stnextfloor==false)

doorstate?true,
floor1?true,
flrequest2?false

motorcom!1,
stopnextfloor!false

currfloor=2;
stnextfloor=false

up12stop (direction==1)&&
(stnextfloor==false)

doorstate?true,
floor1?true,
flrequest2?true

motorcom!1,
stopnextfloor!true

stnextfloor=true;
currfloor=2

up23 (direction==1)&&
(stnextfloor==false)

doorstate?true,
floor2?true,
flrequest3?false

motorcom!1,
stopnextfloor!false

currfloor=3;
stnextfloor=false

up23stop (direction==1)&&
(stnextfloor==false)

doorstate?true,
flrequest3?true,
floor2?true

motorcom!1,
stopnextfloor!true

currfloor=3;
stnextfloor=true

up34stop (direction==1)&&
(stnextfloor==false)

doorstate?true,
floor3?true

motorcom!1,
stopnextfloor!true

currfloor=4;
stnextfloor=true

Table 3-5: Transitions of „Central Elevator Control“

The Elevator Control System

Specification of an Elevator Control System – An AutoFocus Case Study 25

In the state “Init Elevator” the whole elevator system is initialized. This ensures that tthe
elevator begins its service in a well-defined state: when the car stays at the ground floor.
After initialization the state machine changes to the state “Search Request”. In the cor-
responding state machine (Section 3.6.7) all floors are searched for requests. The local
variable “currfloor” stores the number of the current floor. If an request is found the
state machine changes to state which corresponds the current state (“Floor 1-4”). Fur-
thermore the variable “direction” shows from which direction the request was sent. The
car moves in that direction and in every floor the next floor is inspected whether the
elevator car has to be stopped or not. If not the state machine changes to the next floor
state using the transitions “upxy” or “downxy” and the floor variable “currfloor” is re-
set. In the next state the procedure is repeated.

If there is a request on the next floor a signal is sent through the channel “stopnextfloor”
and the local variable “stnectfloor” is set to “true”. The state machine changes to the
following floor state using the transitions “upxystop” or “downxystop” and the variable
“currfloor” is also resetted.

In this state the central elevator system waits until the channels “floor1-4” shows that
the elevator car reached the right floor. To stop the motor and to open the door, signals
are sent to the components “Motor Control” and “Door Control”. Then the state ma-
chine changes to the state “OpenCloseDoor1-4”. While the control system waits until
the car door is closed again, the transition “opendoor1-4” can trigger if the request but-
ton is pressed in the current state. In this case, an interrupt signal is sent through the
channel “doorcom” to the component “Door Control”. When the door is finally closed
the state machine changes to the state “Search Request” and starts searching for a new
request. Table 3-5 shows the transition in detailed AutoFocus notation.

3.6.6 STD “Init Elevator“

The state machine “Init Elevator” (Figure 3-13 / Table 3-6) is a sub-STD of “Central
Elevator Control”. First it waits until the component “Door Control” has finished its
initialization, which means that the car door is closed. If the elevator car is already in
the first floor, the machine could directly change to state “OK”. Otherwise the motor
control is instructed to drive the elevator to the first floor. The transitions “already-
floor1” and “arrivedfloor1” are used to assign values to the important local variables.

3.6.7 STD “Search Request“

The state machine “Search request” delivers the next request to the main state machine
“Central Elevator Control”. It implements the strategy proposed in Section 3.6.5. Figure
3-14 shows the STD of this state machine. When you entry the state machine, the vari-
able “direction” stores the direction in which the elevator is driving to. This is also the
priority direction for the search for the next request.

The Elevator Control System

26 Specification of an Elevator Control System – An AutoFocus Case Study

dectimer

CloseDoor

OK

DriveDown

SetTimer

WaitTimer

allreadyfloor1

drivedown

arrivedfloor1

continit

initwaittimer

timeout

Figure 3-13: STD „Init Elevator“

label pre input output post
allreadyfloor1 floor1?true, doorstate?true currfloor=1; direction=1
arrivedfloor1 floor1?true motorcom!0 currfloor=1; direction=1
continit stnextfloor=true
dectimer Timer>0 Timer--
drivedown doorstate?true, floor1? motorcom!2
initwaittimer Timer=5
timeout Timer==0

Table 3-6: Transitions of „Init Elevator“

The Elevator Control System

Specification of an Elevator Control System – An AutoFocus Case Study 27

The search begins in one of the states “FloorX”, depending on the current floor level of
the car. The contents of channel “flrequestX” determine whether there is a request for
the current floor or not.

If not, the state machine changes to the next floor state in the priority direction. The
transitions “search12”, “search23”, “search34” and “search41” are used if the priority
direction has the value 1 (up). The transitions “search43“, “search32“, “search21“ and
“search14“ are used for the other direction. This is repeated until a request is found.

Floor4

Floor3

Floor2

Floor1

Found

Continue
searchfl12

searchfl23

searchfl34

searchfl41

searchfl43

searchfl32

searchfl14

foundfl1

foundfl2

foundfl3

foundfl4

searchfl21

foundequal

return1

return2
return4

return3

continit

startsearch1

startsearch2

startsearch3

startsearch4

foundup

founddown

Figure 3-14: STD „Search Request“

If a request is found, on of the “foundflX”-transitions triggers and the number of the
floor is stored in the local variable “foundfloor”. In the state “Found” one the transitions
“foundequal”, “foundup” and “founddown” triggers, corresponding to the direction
where the request has been found. For this the local variable “direction” is set to indi-
cate in which direction the car is to move; this determines the new priority direction,
which is used at next call of “Search Request”. The transitions “returnX” changes the
state to the current floor state with the help of the local variable “currfloor”.

Table 3-7 shows the transitions of the STD “Search Request”.

The Elevator Control System

28 Specification of an Elevator Control System – An AutoFocus Case Study

label pre input output post
continit
founddown Currfloor>foundfloor direction=2; stnextfloor=false
foundequal Currfloor==foundfloor stnextfloor=true
foundfl1 flrequest1?true foundfloor=1
foundfl2 flrequest2?true foundfloor=2
foundfl3 flrequest3?true foundfloor=3
foundfl4 flrequest4?true foundfloor=4
foundup currfloor<foundfloor direction=1; stnextfloor=false
return1 currfloor==1
return2 currfloor==2
return3 currfloor==3
return4 currfloor==4
searchfl12 direction==1 flrequest1?false
searchfl14 direction==2 flrequest1?false
searchfl21 direction==2 flrequest2?false
searchfl23 direction==1 flrequest2?false
searchfl32 direction==2 flrequest3?false
searchfl34 direction==1 flrequest3?false
searchfl41 direction==1 flrequest4?false
searchfl43 direction==2 flrequest4?false
startsearch1 doorstate?true, flrequest1?false
startsearch2 doorstate?true, flrequest2?false
startsearch3 doorstate?true, flrequest3?false
startsearch4 doorstate?true, flrequest4?false

Table 3-7: Transitions of „Search Request“

3.6.8 STD “Stop Next Continue“

The component “Stop Next Continue” is used to transform the single signal “true” from
the channel “stopnextfloor to a continuos signal “true”. This signal is sent through the
channel “stopnextfloorout”.

sendtruenoinput

sendtrueinput

sendfalsenoinput

sendfalseinputSendFalse

SendTrue

gottrue gotfalse

Figure 3-15: STD „Stop Next Continue“

The Elevator Control System

Specification of an Elevator Control System – An AutoFocus Case Study 29

The signal “false” on the channel “stopnextfloor” triggers the transition “gotfalse” and
the signal “false” is sent through the channel “stopnextfloorout”.

label pre input output post
gotfalse stopnextfloor?false stopnextfloorout!false
gottrue stopnextfloor?true stopnextfloorout!true
sendfalseinput stopnextfloor?false stopnextfloorout!false
sendfalsenoinput stopnextfloor? stopnextfloorout!false
sendtrueinput Stopnextfloor?true stopnextfloorout!true
sendtruenoinput Stopnextfloor? stopnextfloorout!true

Table 3-8: Transitions of „Stop Next Continue“

3.7 Consistency of the Specification

As AutoFocus uses different hierarchical views of a system, it is necessary to check the
consistency of the views. Therefore AutoFocus offers different consistency checks. You
can check for example whether each port is linked with a channel or whether the inter-
face of a component correspond to its substructure. For more flexibility the underlying
conditions are not fixed, but can be modified or extended by the user. Consistency con-
ditions are written in a declarative notation, similar to first-order logic (Figure 3-16).

Figure 3-16: Changing the condition of the test „Interface Correct“

The Elevator Control System

30 Specification of an Elevator Control System – An AutoFocus Case Study

During development the specified system is often not consistent. The consistency
checks are not automatically done when an STD or an SSD is changed, to allow the
developer more freedom in the design. Consistency checks are explicitly started by the
developer in the project browser.

For the elevator, we use only predefined consistency checks (Figure 3-17).

Figure 3-17: Consistency check of the elevator system

System Execution with SimCenter

Specification of an Elevator Control System – An AutoFocus Case Study 31

4 System Execution with SimCenter

After checking the consistency of the system, the behavior of the elevator system is
ready to be tested in a simulation environment. The formal background of AutoFocus
allows the simulation of system specifications based on the description techniques in-
troduced in Section 2. The tool SimCenter is the integrated simulation component of
AutoFocus. It generates Java code from AutoFocus system specifications. Each compo-
nent with specified behavior is translated into a Java class [4]. The structure of the
original specification is mapped to the Java code. SimCenter uses the generated Java
code to execute the system in a special simulation environment. During the simulation,
the user can observe different views of the system behavior in special windows, called
“animators”.

SSD animators show the data flow between the component and the environment. They
show the channel contents during the simulation. State machines, described with STD
diagrams, can be observed with the STD animators, where the current state of the STD
and the transition leading to that state are highlighted.

SimCenter can generate EETs automatically during the simulation. The user can ob-
serve these EETs in an EET animator window. Finally, there are so called “Variable
Animators” which can be used to examine the values of the local state variables.

In this section, we first describe how SimCenter is used for our elevator specification,
and how EETs can be generated to help in finding errors in the specifications. Then we
show how SimCenter can be connected to external applications to build custom views
of the specified system, for visualization or for prototyping. This is described in detail
in Sections 0 - 0.

4.1 Simulation of the elevator with SimCenter

To simulate the whole elevator system, we chose the SSD component “system” in the
project browser and start the menu item “Simulation”.

Figure 4-1 shows an “SSD Animator” for the elevator component “System” during a
simulation run.

In the figure you can see, that there is a request in the fourth floor (channel
“light4:true”), and the elevator car is moving up (“motorup:true”). In the same manner it
possible to show the sub components of “System” during the simulation.

The window “Environment” (Figure 4-2) is used for the interaction with the environ-
ment. All channels from and to the main component and their current signals are dis-
played. The values on the input channels of the main component can be explicitly
changed.

System Execution with SimCenter

32 Specification of an Elevator Control System – An AutoFocus Case Study

Figure 4-1: SSD Animator of the component „System“

For example if you write the value “true” on the channel “button2” during the simula-
tion, this means that a user of the elevator system pressed the request button in the sec-
ond floor and the elevator control system will react in the right manner.

4.2 The components “Floor Sim“ and “Door Sim“

During simulation of the elevator system the user effectively has to play the role of the
complete elevator environment. To help with this role, we built two new components
called “FloorSim” and “DoorSim” and inserted them into the SSD “System” (Figure
4-3). These components simulate the behavior of the Fischertechnik elevator model if it
is not connected. Moreover, they provide all the information needed for a graphical
front end to visualize the system behavior. The channels “deactivatefloorsim” and “de-
activatedoorsim” are used to switch these components off. The channels “deactivate-
floorok” and “deactivatedoorok” serves the acknowledgement signal after the
deactivation.

System Execution with SimCenter

Specification of an Elevator Control System – An AutoFocus Case Study 33

Figure 4-2: „Environment“ of the elevator system during the simulation

With deactivated simulation components the signals from the channels “floor1-4in” are
directly passed through from the hardware elevator model to the control system.

The signal from the door sensors and motor control unit are handled the same way.

The state machines of the simulation components can be found in the appendix; they are
quite complex in spite of their simple functionality.

4.3 Error detection with EETs

The automatically generated Event Traces (EETs) of SimCenter help to find errors in
the specification by simulation. EETs mirror the temporal order of the communication
between several components. Figure 4-4 shows the communication history within the
component “Elevator Control System”.

System Execution with SimCenter

34 Specification of an Elevator Control System – An AutoFocus Case Study

ElevatorControlSystem

DoorSim

FloorSim

light1:boolean

light2:boolean

light3:boolean

light4:boolean

button1:boolean

button3:boolean

button2:boolean

button4:boolean

opticalsensor:boolean

dooropen:boolean

doorclose:boolean

doorisclosed:boolean

doorisopen:boolean

floor1:boolean

floor2:boolean

floor3:boolean

floor4:boolean

motorup:boolean

motordown:boolean

floor2out:boolean

floor3out:boolean

floor4out:boolean

floor1in:boolean

floor2in:boolean

floor3in:boolean

floor4in:boolean

motorupout:boolean

motordownout:boolean

doorisopenout:boolean

doorisclosedin:boolean

doorisclosedout:boolean

doorisopenin:boolean

deactivatefloorsim:boolean

deactivatedoorsim:boolean

dooropenout:boolean

doorcloseout:boolean

floor1out:boolean

deactivatefloorok:boolean

deactivatedoorok:boolean
stopnextfloorout:boolean

Figure 4-3: SSD „System“ and the simulation components

Floors Elevator

flrequest3: false

light3: false

light1: false

flrequest1: false

flrequest2: false

light2: false

light4: false

flrequest4: false

motorup: false

motordown: false

floor1: true

Figure 4-4: EET of the component „Elevator Control System“

System Execution with SimCenter

Specification of an Elevator Control System – An AutoFocus Case Study 35

Within the diagram, time progresses from top to bottom. The arrows describe the com-
munication direction between the components. An arrow which has no link to a compo-
nent on one of its ends, represents a communication event with the environment of the
system or with a higher level in the SSD hierarchy. For example the signal “flre-
quest4:false” is sent from “Floors” to “Elevator” just before the signal “floor1:true”.

This kind of description serves as a different view to the dynamical behavior of the
system. It is often easier to detect functional errors of the system than in the STD speci-
fications.

The appendix contains a complete test run of the elevator control system.

4.4 Device Dependent Interface

SimCenter offers a special interface to external applications. This interface links the
simulated system and its environment. An external application is allowed to write and
read all channels which goes from and to the system. Graphical applications can be
connected to the simulated system to visualize the system behavior and to allow the
developer to show his customers the behavior of the system in a suggestive way.

The interface is divided in a device dependent and a device independent part. The de-
vice independent part is realized in Java and communicates with “Remote Method Invo-
cations” (RMIs) with the device dependent interface (DDI). The DDI transform the
RMI call into a form which is accessible to the external application. Its implementation
depends on the application.

The DDI can communicate with several applications at the same time. For the elevator
control system, one application is a multimedia application that provides independent
views of the systems; another application is the hardware interface to the Fischertechnik
model.

Since currently the DDI’s implementation is based on the Microsoft Windows message
system, it is possible to control arbitrary Windows applications. However, the DDI does
not includes a strategy to avoid conflicts. It is the developers job to ensure that the ap-
plications are well-behaved, and do not write to the same channel of the specified sys-
tem concurrently.

Every application offers another view to the environment of the system or a part of it.
The complete set of applications should be designed in a way that they can be inter-
preted as one component “Environment”. Then, from the view of the specified system,
it communicates just with only one external component.

The easiest solution is to allow only one application to write on system channels. In the
example of the elevator system only the hardware model is allowed to write on channels
from the environment to the system’s main component.

System Execution with SimCenter

36 Specification of an Elevator Control System – An AutoFocus Case Study

4.5 Visualization with Formula Graphics

Above we mentioned that the SimCenter can control several front-end applications
when simulating AutoFocus specifications. These application were built with the freely-
available multimedia tool “Formula Graphics”. Formula Graphics allows to design
multimedia presentations (which can interact with the user) in an easy way. For com-
plex presentations the tool offers a script language. We used this language to realize the
communication between the DDI of SimCenter and the applications.

We developed two multimedia applications. Figure 4-5 shows the graphical model of a
elevator system with four floors. All typical interactions between an elevator passenger
and an elevator are possible with this application. The lights on the left side show the
current floor of the car. The lights on the right side show whether there is a request in a
certain floor or not. The buttons are used to request the car at a floor. The demo button
activates a random test run.

Figure 4-5: Formula Graphics application „Elevator“

System Execution with SimCenter

Specification of an Elevator Control System – An AutoFocus Case Study 37

Figure 4-6 shows a completely different view on the system. It imitates a service panel,
which protocols how often the elevator arrived at a certain floor and how often that
floor was requested. Moreover, the total amount of requests and services is shown. This
application involved a completely different functionality than the visualization of the
elevator system. It just observes a part of the communication and represent the informa-
tion in another way.

Figure 4-6: Formula Graphics application „Service Panel“

Through of the simultaneous connection of both multimedia applications, SimCenter
offers different views of the specified system.

4.6 Prototyping with the Fischertechnik model

A goal of whole the project was it to control a Fischertechnik elevator model with the
AutoFocus specification and SimCenter, to test the specified system in a realistic way
without implementing it on the target platform. A first prototype of the embedded sys-
tem is realized in this way.

To control the Fischertechnik elevator we use a simple mutlti I/O card, which is com-
patible with the 8 Bit ISA bus of a common PC. To control the communication between
the I/O card and SimCenter, we developed yet another interface called “Elevator Con-
trol” (Figure 4-7).

The program transforms incoming messages from SimCenter into control sequences for
the I/O card. In other direction it controls the input ports of the I/O in fixed time inter-
vals and sends the results the SimCenter. Additional it shows the state of all incoming
and outgoing channels of the elevator model and allows with some special button the
direct control of the hardware.

The program was implemented in the C++ language. Like Formula Graphics, it runs on
a common Windows NT system.

System Execution with SimCenter

38 Specification of an Elevator Control System – An AutoFocus Case Study

Figure 4-7: The hardware controller „Elevator Control“

Conclusions

Specification of an Elevator Control System – An AutoFocus Case Study 39

5 Conclusions

In this paper we have shown an exemplary development process for an embedded sys-
tem using AutoFocus and SimCenter.

Using the different description technique of AutoFocus, it is possible to accelerate the
software development process. The simulation facilities of SimCenter allows the devel-
oper to produce system specifications with less errors. The open architecture of Sim-
Center offers new possibilities for embedding the system specification in a special test
environment; even the direct control of existing hardware is possible AutoFocus and
SimCenter open the door to system visualization and rapid prototyping. Both help to
validate customer requirements already in the early development phases.

Embedded systems consist of both hardware and software components. It is common to
develop the hardware and the software simultaneously. With AutoFocus single compo-
nents can easily be modified during the development process of the system. Therefore
components can be adapted to the needs of the current development phase. You can first
describe the environment of the system using software components. When a prototype
of the hardware is available, the software component can be replaced by hardware and
the specification can be tested in its real environment.

Still testing a specification of an embedded system does not allow to prove that the sys-
tem fulfills certain requirements. For this purpose the current and future work on Auto-
Focus includes the integration of model checker techniques and tools as well theorem
interactive provers.

A
ppendix

40
S

pecification of an E
levator C

ontrol S
ystem

 – A
n A

utoF
ocus C

ase S
tudy

A
ppendix A

: A
dditional D

iagram
s of the E

levator C
ontrol

S
ystem

A
.1

S
T

D
s

opentimerdown

closetimerdown

waittimerdown

norequest

nswait

nswaitopen

nswaitclose

nsisopen

nsisopenopennsisopenclose

nsisclosed

noisclosedopennsisclosedclose

Wait

WaitDoorOpen

WaitDoorClose

Init

NoSim

NoSimDoorIsOpen

NoSimDoorIsClosed

opendoor

openinterrupt

doorisopen

closedoor

closeinterrupt
doorisclosed

Init

deactivate

nsdoorisopen

nsdoorisopenopen

nsdoorisopenclose

nsnoopen

nsnoopenopen

nsnoopenclose

nsdoorisclosed

nsdoorisclosedopen

nsdoorisclosedclose

nsnoclosed

nsnoclosedopen

nsnoclosedclose

doorisclosedinit

doorisopeninit

F
igure A

-1:
S

T
D

 D
oor S

im

Appendix

Specification of an Elevator Control System – An AutoFocus Case Study 41

label pre input output post
closedoor Timer==0 doorclose?true,

deactivatedoorsim?
doorcloseout!true,
dooropenout!false

Timer=6

closeinterrupt doorclose?false doorcloseout!false,
dooropenout!false

Timer=0

closetimerdown Timer>0 doorclose?true doorcloseout!true,
dooropenout!false

Timer=Timer-1

deactivate deactivatedoorsim?true deactivatedoorok!true
doorisclosed Timer==0 doorclose?true doorisclosed!true,

doorisclosedout!true,
dooropenout!false,
doorcloseout!true

Timer=1

doorisclosedinit doorisclosedin?true, dooropen?,
doorclose?

doorisopen Timer==0 dooropen?true doorisopen!true,
doorisopenout!true,
dooropenout!true,
doorcloseout!false

Timer=1

doorisopeninit doorisopenin?true, dooropen?,
doorclose?

Init deactivatedoorok!true Timer=0
noisclosedopen doorisclosedin?, dooropen?true doorisclosed!true,

doorisclosedout!true,
dooropenout!true,
doorcloseout!false

norequest Timer==0 dooropen?false,
doorclose?false,
deactivatedoorsim?

dooropenout!false,
doorcloseout!false

nsdoorisclosed doorisclosedin?true,
dooropen?false, doorclose?false

doorisclosed!true,
doorisclosedout!true,
dooropenout!false,
doorcloseout!false

nsdoorisclosedclos
e

doorisclosedin?true,
doorclose?true

doorisclosed!true,
doorisclosedout!true,
dooropenout!false,
doorcloseout!true

nsdoorisclosedopen doorisclosedin?true,
dooropen?true

doorisclosed!true,
doorisclosedout!true,
dooropenout!true,
doorcloseout!false

nsdoorisopen doorisopenin?true,
doorclose?false, dooropen?false

doorisopenout!true,
doorisopen!true,
doorcloseout!false,
dooropenout!false

nsdoorisopenclose doorisopenin?true,
doorclose?true

doorisopen!true,
doorisopenout!true,
dooropenout!false,
doorcloseout!true

nsdoorisopenopen doorisopenin?true,
dooropen?true

doorisopen!true,
doorisopenout!true,
dooropenout!true,
doorcloseout!false

nsisclosed doorisclosedin?, dooropen?false,
doorclose?false

doorisclosed!true,
doorisclosedout!true,
dooropenout!false,
doorcloseout!false

nsisclosedclose doorisclosedin?, doorclose?true doorisclosed!true,
doorisclosedout!true,
dooropenout!false,
doorcloseout!true

nsisopen doorisopenin?, dooropen?false,
doorclose?false

doorisopen!true,
doorisopenout!true,
doorcloseout!false,
dooropenout!false

nsisopenclose doorisopenin?, doorclose?true doorisopen!true,
doorisopenout!true,
dooropenout!false,

Appendix

42 Specification of an Elevator Control System – An AutoFocus Case Study

doorcloseout!true
nsisopenopen doorisopenin?, dooropen?true doorisopen!true,

doorisopenout!true,
dooropenout!true,
doorcloseout!false

nsnoclosed doorisclosedin?false,
dooropen?false, doorclose?false

dooropenout!false,
doorcloseout!false

nsnoclosedclose doorisclosedin?false,
doorclose?true

dooropenout!false,
doorcloseout!true

nsnoclosedopen doorisclosedin?false,
dooropen?true

dooropenout!true,
doorcloseout!false

nsnoopen doorisopenin?false,
dooropen?false, doorclose?false

dooropenout!false,
doorcloseout!false

nsnoopenclose doorisopenin?false,
doorclose?true

dooropenout!false,
doorcloseout!true

nsnoopenopen doorisopenin?false,
dooropen?true

dooropenout!true,
doorcloseout!false

nswait doorisopenin?, doorisclosedin?,
dooropen?false, doorclose?false

dooropenout!false,
doorcloseout!false

nswaitclose doorisopenin?, doorisclosedin?,
doorclose?true

dooropenout!false,
doorcloseout!true

nswaitopen doorisclosedin?, doorisopenin?,
dooropen?true

dooropenout!true,
doorcloseout!false

opendoor Timer==0 dooropen?true,
deactivatedoorsim?

dooropenout!true,
doorcloseout!false

Timer=6

openinterrupt dooropen?false dooropenout!false,
doorcloseout!false

Timer=0

opentimerdown Timer>0 dooropen?true dooropenout!true,
doorcloseout!false

Timer=Timer-1

waittimerdown Timer>0 deactivatedoorsim? doorcloseout!false,
dooropenout!false

Timer=Timer-1

Table A-1: Transitions of Door Sim

A
ppendix

S
pecification of an E

levator C
ontrol S

ystem
 – A

n A
utoF

ocus C
ase S

tudy
43

NoRequest4

TimerUp4

NoRequest3

NoRequest2

NoRequest1

TimerDown3

TimerDown2

TimerDown1

TimerUp2

TimerUp3

nofloor

nofloorup

nofloordown

floor4on

floor4onup

floor4ondown

floor3on

floor3onup

floor3ondown

floor2on

floor2onup

floor2ondown

floor1on

floor1onup

floor1ondown

Init
Floor1

Floor2

Floor3

Floor4

InMove NoSim

NoSimFloor4

NoSimFloor3

NoSimFloor2

NoSimFloor1

InitVars

UpTo2

UpTo3

UpTo4

DownTo3

DownTo2

DownTo1

GoTo4Up

GoTo3Up

GoTo2Up

GoTo1Down

deactivate4

deactivate3

deactivate2

deactivate1

GoTo2Down

GoTo3Down

floor4

floor4up

floor4down

nofloor4

nofloor4up

nofloor4down

floor3
floor3up

floor3down
nofloor3

nofloor3up
nofloor3down

floor2
floor2up

floor2down
nofloor2

nofloor2up
nofloor2down

floor1

floor1up

floor1down

nofloor1

nofloor1up

nofloor1down

F
igure A

-2:
S

T
D

 F
loor S

im

Appendix

44 Specification of an Elevator Control System – An AutoFocus Case Study

label pre input output post
cont timer==0 deactivatefloorsim? timer=5
deactivate1 deactivatefloorsim?true deactivatefloorok!true
deactivate2 deactivatefloorsim?true deactivatefloorok!true
deactivate3 deactivatefloorsim?true deactivatefloorok!true
deactivate4 deactivatefloorsim?true deactivatefloorok!true
deactivateinit deactivatefloorsim?true deactivatefloorok!true
DownTo1 timer==0 motordown?true,

deactivatefloorsim?
motordownout!true,
motorupout!false

togo=1

DownTo2 timer==0 motordown?true,
deactivatefloorsim?

motordownout!true,
motorupout!false

togo=2

DownTo3 timer==0 motordown?true,
deactivatefloorsim?

motordownout!true,
motorupout!false

togo=3

floor1 floor1in?true, motorup?false,
motordown?false

floor1!true, floor1out!true,
motorupout!false,
motordownout!false

floor1down floor1in?true, motordown?true floor1!true, floor1out!true,
motorupout!false,
motordownout!true

floor1on floor1in?, motorup?false,
motordown?false

floor1!true, floor1out!true,
motorupout!false,
motordownout!false

floor1ondown floor1in?, motordown?true floor1!true, floor1out!true,
motorupout!false,
motordownout!true

floor1onup floor1in?, motorup?true floor1!true, floor1out!true,
motorupout!true,
motordownout!false

floor1up floor1in?true, motorup?true floor1!true, floor1out!true,
motorupout!true,
motordownout!false

floor2 floor2in?true, motorup?false,
motordown?false

floor2!true, floor2out!true,
motorupout!false,
motordownout!false

floor2down floor2in?true, motordown?true floor2!true, floor2out!true,
motorupout!false,
motordownout!true

floor2on floor2in?, motorup?false,
motordown?false

floor2!true, floor2out!true,
motorupout!false,
motordownout!false

floor2ondown floor2in?, motordown?true floor2!true, floor2out!true,
motorupout!false,
motordownout!true

floor2onup floor2in?, motorup?true floor2!true, floor2out!true,
motorupout!true,
motordownout!false

floor2up floor2in?true, motorup?true floor2!true, floor2out!true,
motorupout!true,
motordownout!false

floor3 floor3in?true, motorup?false,
motordown?false

floor3out!true, floor3!true,
motorupout!false,
motordownout!false

floor3down floor3in?true, motordown?true floor3!true, floor3out!true,
motorupout!false,
motordownout!true

floor3on floor3in?, motorup?false,
motordown?false

floor3!true, floor3out!true,
motorupout!false,
motordownout!false

floor3ondown floor3in?, motordown?true floor3!true, floor3out!true,
motorupout!false,
motordownout!true

floor3onup floor3in?, motorup?true floor3!true, floor3out!true,
motorupout!true,
motordownout!false

floor3up floor3in?true, motorup?true floor3!true, floor3out!true,
motorupout!true,

Appendix

Specification of an Elevator Control System – An AutoFocus Case Study 45

motordownout!false
floor4 floor4in?true, motorup?false,

motordown?false
floor4!true, floor4out!true,
motorupout!false,
motordownout!false

floor4down floor4in?true, motordown?true floor4!true, floor4out!true,
motorupout!false,
motordownout!true

floor4on floor4in?, motorup?false,
motordown?false

floor4!true, floor4out!true,
motorupout!false,
motordownout!false

floor4ondown floor4in?, motordown?true floor4!true, floor4out!true,
motorupout!false,
motordownout!true

floor4onup floor4in?, motorup?true floor4!true, floor4out!true,
motorupout!true,
motordownout!false

floor4up floor4in?true, motorup?true floor4!true, floor4out!true,
motorupout!true,
motordownout!false

GoTo1Down togo==1 motordown?true motordownout!true,
motorupout!false

timer=4

GoTo2Down togo==2 motordown?true motordownout!true,
motorupout!false

timer=4

GoTo2Up togo==2 motorup?true motorupout!true,
motordownout!false

timer=4

GoTo3Down togo==3 motordown?true motordownout!true,
motorupout!false

timer=4

GoTo3Up togo==3 motorup?true motorupout!true,
motordownout!false

timer=4

GoTo4Up togo==4 motorup?true motorupout!true,
motordownout!false

timer=4

deactivatefloorok!true togo=1; timer=5
nofloor floor1in?, floor2in?, floor3in?,

floor4in?, motorup?false,
motordown?false

motorupout!false,
motordownout!false

nofloor1 floor1in?false, motorup?false,
motordown?false

motorupout!false,
motordownout!false

nofloor1down floor1in?false, motordown?true motorupout!false,
motordownout!true

nofloor1up floor1in?false, motorup?true motorupout!true,
motordownout!false

nofloor2 floor2in?false, motordown?false,
motorup?false

motordownout!false,
motorupout!false

nofloor2down floor2in?false, motordown?true motorupout!false,
motordownout!true

nofloor2up floor2in?false, motorup?true motorupout!true,
motordownout!false

nofloor3 floor3in?false, motordown?false,
motorup?false

motordownout!false,
motorupout!false

nofloor3down floor3in?false, motordown?true motorupout!false,
motordownout!true

nofloor3up floor3in?false, motorup?true motorupout!true,
motordownout!false

nofloor4 floor4in?false, motorup?false,
motordown?false

motorupout!false,
motordownout!false

nofloor4down floor4in?false, motordown?true motorupout!false,
motordownout!true

nofloor4up floor4in?false, motorup?true motorupout!true,
motordownout!false

nofloordown floor1in?, floor2in?, floor3in?,
floor4in?, motordown?true

motorupout!false,
motordownout!true

nofloorup floor1in?, floor2in?, floor3in?,
floor4in?, motorup?true

motorupout!true,
motordownout!false

NoRequest1 motorup?false, motordown?false,
deactivatefloorsim?

floor1!true, floor1out!true,
motorupout!false,
motordownout!false

timer=0

Appendix

46 Specification of an Elevator Control System – An AutoFocus Case Study

NoRequest2 motorup?false, motordown?false,
deactivatefloorsim?

floor2!true, floor2out!true,
motorupout!false,
motordownout!false

timer=0

NoRequest3 motorup?false, motordown?false,
deactivatefloorsim?

floor3!true, floor3out!true,
motorupout!false,
motordownout!false

timer=0

NoRequest4 motorup?false, motordown?false,
deactivatefloorsim?

floor4!true, floor4out!true,
motorupout!false,
motordownout!false

timer=0

TimerDown1 timer>0 deactivatefloorsim?,
motordown?true

floor1!true, floor1out!true,
motorupout!false,
motordownout!true

timer--

TimerDown2 timer>0 deactivatefloorsim?,
motordown?true

floor2!true, floor2out!true,
motordownout!true,
motorupout!false

timer--

TimerDown3 timer>0 deactivatefloorsim?,
motordown?true

floor3!true, floor3out!true,
motordownout!true,
motorupout!false

timer--

TimerUp2 timer>0 deactivatefloorsim?, motorup?true floor2!true, floor2out!true,
motorupout!true,
motordownout!false

timer--

TimerUp3 timer>0 deactivatefloorsim?, motorup?true floor3!true, floor3out!true,
motorupout!true,
motordownout!false

timer--

TimerUp4 timer>0 deactivatefloorsim?, motorup?true floor4!true, floor4out!true,
motordownout!false,
motorupout!true

timer--

UpTo2 timer==0 motorup?true, deactivatefloorsim? motorupout!true,
motordownout!false

togo=2

UpTo3 timer==0 motorup?true, deactivatefloorsim? motorupout!true,
motordownout!false

togo=3

UpTo4 timer==0 motorup?true, deactivatefloorsim? motorupout!true,
motordownout!false

togo=4

Wait timer>0 deactivatefloorsim? timer--

Table A-2: Transitions of Floor Sim

Appendix

Specification of an Elevator Control System – An AutoFocus Case Study 47

A.2 EETs

ElevatorControlSystem DoorSim FloorSim StopNextContinue

light3: false
stopnextfloorout: false

deactivatefloorok: true

light1: false

light2: false
light4: false

motorup: false

motordown: false
deactivatedoorok: true

floor1: true
motorupout: false

motordownout: false

floor1out: true
dooropen: false
doorclose: true

dooropenout: false
doorcloseout: true

doorisclosed: true
doorisclosedout: true

doorclose: false
doorcloseout: false

button3: true
light3: true

stopnextfloor: false
motorup: true

motorupout: true
floor2: true

floor2out: true
stopnextfloor: true

stopnextfloorout: true
floor3: true

floor3out: true
motorup: false

dooropen: true
motorupout: false

dooropenout: true
light3: false

doorisopen: true

doorisopenout: true
dooropen: false

dooropenout: false
doorclose: true

doorcloseout: true
doorisclosed: true

doorisclosedout: true
doorclose: false

doorcloseout: false
button4: true
light4: true

stopnextfloor: true
motorup: true

Figure A-3: EET System

Appendix

48 Specification of an Elevator Control System – An AutoFocus Case Study

floor4: true
floor4out: true

motorup: false
dooropen: true

motorupout: false

light4: false
dooropenout: true

doorisopen: true
doorisopenout: true

dooropen: false

dooropenout: false
doorclose: true

doorcloseout: true
doorisclosed: true

doorisclosedout: true

doorclose: false
doorcloseout: false

button2: true
light2: true
button1: true

light1: true
stopnextfloor: false

stopnextfloorout: false
motordown: true

motordownout: true

floor3: true
floor3out: true

stopnextfloor: true
stopnextfloorout: true

floor2: true

floor2out: true
motordown: false

dooropen: true
motordownout: false

light2: false

dooropenout: true
doorisopen: true

doorisopenout: true
dooropen: false

dooropenout: false

doorclose: true
doorcloseout: true

doorisclosed: true
doorisclosedout: true

doorclose: false

doorcloseout: false
stopnextfloor: true

motordown: true

motordownout: true
floor1: true

floor1out: true
motordown: false
dooropen: true

motordownout: false
light1: false

dooropenout: true

ElevatorControlSystem DoorSim FloorSim StopNextContinue

motorupout: true

Figure A-4: EET System (continuation)

Appendix

Specification of an Elevator Control System – An AutoFocus Case Study 49

Floors Elevator

flrequest3: false

light3: false

light1: false

flrequest1: false

flrequest2: false

light2: false

light4: false

flrequest4: false

motorup: false

motordown: false

floor1: true

dooropen: false

doorclose: true

doorisclosed: true

doorclose: false

button3: true

flrequest3: true

light3: true

stopnextfloor: false

motorup: true

floor2: true

stopnextfloor: true

floor3: true

elok: 3

motorup: false

dooropen: true

flrequest3: false

light3: false

doorisopen: true

dooropen: false

doorclose: true

doorisclosed: true

doorclose: false

button4: true

light4: true

flrequest4: true

stopnextfloor: true

motorup: true

floor4: true

Figure A-5: EET Elevator Control System

Appendix

50 Specification of an Elevator Control System – An AutoFocus Case Study

elok: 4

motorup: false

dooropen: true

light4: false

flrequest4: false

doorisopen: true

dooropen: false

doorclose: true

doorisclosed: true

doorclose: false

button2: true

flrequest2: true

light2: true

button1: true

light1: true

flrequest1: true

stopnextfloor: false

motordown: true

floor3: true

stopnextfloor: true

floor2: true

elok: 2

motordown: false

dooropen: true

flrequest2: false

light2: false

doorisopen: true

dooropen: false

doorclose: true

doorisclosed: true

doorclose: false

stopnextfloor: true

motordown: true

floor1: true

elok: 1

motordown: false

dooropen: true

light1: false

flrequest1: false

Floors Elevator

Figure A-6: EET Elevator Control System (continuation)

Appendix

Specification of an Elevator Control System – An AutoFocus Case Study 51

FloorControl1 Split FloorControl2 FloorControl3 FloorControl4

flrequest3: false

light3: false

light1: false

flrequest1: false

flrequest2: false

light2: false

light4: false

flrequest4: false

button3: true

flrequest3: true

light3: true

elok: 3

elok3: true

flrequest3: false

light3: false

button4: true

light4: true

flrequest4: true

elok: 4

elok4: true

light4: false

flrequest4: false

button2: true

flrequest2: true

light2: true

button1: true

light1: true

flrequest1: true

elok: 2

elok2: true

flrequest2: false

light2: false

elok: 1

elok1: true

light1: false

flrequest1: false

Figure A-7: EET Floors

Appendix

52 Specification of an Elevator Control System – An AutoFocus Case Study

DoorControl MotorControl CentralElevatorControl

flrequest3: false
flrequest1: false

flrequest2: false

flrequest4: false

motorup: false

motordown: false

floor1: true

doorstate: false

dooropen: false

doorclose: true

doorisclosed: true

doorclose: false

doorstate: true

flrequest3: true

motorcom: 1

stopnextfloor: false

motorup: true

floor2: true

motorcom: 1

stopnextfloor: true

floor3: true

motorcom: 0

doorcom: true

elok: 3

motorup: false

doorstate: false

dooropen: true

flrequest3: false

doorisopen: true
dooropen: false

doorclose: true

doorisclosed: true

doorclose: false

doorstate: true

flrequest4: true

motorcom: 1

stopnextfloor: true

motorup: true

floor4: true

motorcom: 0

doorcom: true

elok: 4

motorup: false

Figure A-8: EET Elevator

Appendix

Specification of an Elevator Control System – An AutoFocus Case Study 53

DoorControl MotorControl CentralElevatorControl

flrequest3: false

flrequest1: false

flrequest2: false

flrequest4: false

motorup: false

motordown: false

floor1: true

doorstate: false

dooropen: false

doorclose: true

doorisclosed: true

doorclose: false

doorstate: true

flrequest3: true

motorcom: 1

stopnextfloor: false

motorup: true

floor2: true

motorcom: 1

stopnextfloor: true

floor3: true

motorcom: 0

doorcom: true

elok: 3

motorup: false

doorstate: false

dooropen: true

flrequest3: false

doorisopen: true

dooropen: false

doorclose: true

doorisclosed: true
doorclose: false

doorstate: true

flrequest4: true
motorcom: 1

stopnextfloor: true

motorup: true

floor4: true

motorcom: 0

doorcom: true

elok: 4

motorup: false

Figure A-9: EET Elevator (continuation)

References

54 Specification of an Elevator Control System – An AutoFocus Case Study

References

[1] M. Broy, F. Dederichs, C. Denhofer, M.Fuchs, T.F. Grilzner and R. Weber,
The design of distributed systems – an introduction to FOCUS,
Tech. Rep. TUM-I9203,
Technische Universität München, Institut für Informatik, 1992

[2] Franz Huber, Sascha Molterer, Bernhard Schätz, Oscar Slotosch and Al-
exander Vilbig,
Traffic Lights – An AutoFocus Case Study,
Technische Universität München, Institut für Informatik, 1997

[3] Joon-Sung Hong,
Object-Oriented Analysis and Design Method for Concurrent and Realtime
Systems,
CORE-TR96-001, 1996

[4] Franz Huber and Bernhard Schätz,
Rapid Prototyping with AutoFocus,
in Formale Beschreibungstechniken für verteilte Systeme, Seite 343-352,
A. Wolisz, I. Schieferdecker and A. Rennoch,
GMD Verlag, 1997

[5] Franz Huber, Bernhard Schätz and Geralf Einert,
Consistent Graphical Specifikation of Distributed Systems,
in FME 97, LNCS 1313, Seite 122-141, Peter Lucas John Fitzgerald, Cliff
B. Jones, Springer Verlag, 1997

[6] Radu Grosu, Cornel Klein, Bernhard Rumpe and Manfred Broy,
State Transition Diagramms,
Tech. Rep. TUM-I9630,
Technische Universität München, 1996

[7] Franz Huber, Bernhard Schätz, Alexander Schmidt, Katharina Spies,
AutoFocus – A Tool for Distributed Systems,
Institut für Informatik, Technische Universität München, 1996

[8] Franz Huber, Bernhard Schätz, Katharina Spies,
AutoFocus – Ein Werkzeugkonzept zur Beschreibung verteilter Systeme,
Institut für Informatik, Technische Universität München, 1996

[9] Manfred Broy, Eva Geisberger, Radu Grosu, Franz Huber, Bernhard
Rumpe, Bernhard Schätz, Alexander Schmidt, Oscar Slotosch, Katharina
Spies,
Das AutoFocus Bilderbuch – Eine anwenderorientierte Beschreibung,
Institut für Informatik, Technische Universität München, 1996

[10] Helmut Balzert,
Lehrbuch der Software-Technik – Software-Entwicklung,
Spektrum akademischer Verlag,
ISBN 3-8274-0042-2, 1996

References

Specification of an Elevator Control System – An AutoFocus Case Study 55

[11] Erich Gamma, Richard Helm, Ralph Johnson, John Vlissides,
Design Pattern – Elements of Reusable Object-Oriented Software,
Addison-Wesley Verlag,
ISBN 0-201-63361-2, 1995

[12] UML Summary, UML Semantics, UML Notation Guide,
Rational Software Cooperation, 1997

[13] International Telecommunication Union,
Recommendation Z. 120, Message Sequence Chart (MSC),
ITU, 1993

[14] M.Broy, H. Hußmann and B. Schätz,
Graphical Development of Consistent System Descriptions
Proceedings of FME’96 Formal Methods Europe, 1996

SFB 342: Methoden und Werkzeuge für die Nutzung paralleler
Rechnerarchitekturen

bisher erschienen :

Reihe A

Liste aller erschienenen Berichte von 1990-1994
auf besondere Anforderung

342/01/95 A Hans-Joachim Bungartz: Higher Order Finite Elements on Sparse Grids
342/02/95 A Tao Zhang, Seonglim Kang, Lester R. Lipsky: The Performance of Par-

allel Computers: Order Statistics and Amdahl’s Law
342/03/95 A Lester R. Lipsky, Appie van de Liefvoort: Transformation of the Kro-

necker Product of Identical Servers to a Reduced Product Space
342/04/95 A Pierre Fiorini, Lester R. Lipsky, Wen-Jung Hsin, Appie van de

Liefvoort: Auto-Correlation of Lag-k For Customers Departing From
Semi-Markov Processes

342/05/95 A Sascha Hilgenfeldt, Robert Balder, Christoph Zenger: Sparse Grids:
Applications to Multi-dimensional Schr¨odinger Problems

342/06/95 A Maximilian Fuchs: Formal Design of a Model-N Counter
342/07/95 A Hans-Joachim Bungartz, Stefan Schulte: Coupled Problems in Mi-

crosystem Technology
342/08/95 A Alexander Pfaffinger: Parallel Communication on Workstation Net-

works with Complex Topologies
342/09/95 A Ketil Stølen: Assumption/Commitment Rules for Data-flow Networks

- with an Emphasis on Completeness
342/10/95 A Ketil Stølen, Max Fuchs: A Formal Method for Hardware/Software Co-

Design
342/11/95 A Thomas Schnekenburger: The ALDY Load Distribution System
342/12/95 A Javier Esparza, Stefan Römer, Walter Vogler: An Improvement of

McMillan’s Unfolding Algorithm
342/13/95 A Stephan Melzer, Javier Esparza: Checking System Properties via Inte-

ger Programming
342/14/95 A Radu Grosu, Ketil Stølen: A Denotational Model for Mobile Point-to-

Point Dataflow Networks
342/15/95 A Andrei Kovalyov, Javier Esparza: A Polynomial Algorithm to Compute

the Concurrency Relation of Free-Choice Signal Transition Graphs
342/16/95 A Bernhard Sch¨atz, Katharina Spies: Formale Syntax zur logischen Kern-

sprache der Focus-Entwicklungsmethodik
342/17/95 A Georg Stellner: Using CoCheck on a Network of Workstations
342/18/95 A Arndt Bode, Thomas Ludwig, Vaidy Sunderam, Roland Wismüller:

Workshop on PVM, MPI, Tools and Applications
342/19/95 A Thomas Schnekenburger: Integration of Load Distribution into

ParMod-C

Reihe A

342/20/95 A Ketil Stølen: Refinement Principles Supporting the Transition from
Asynchronous to Synchronous Communication

342/21/95 A Andreas Listl, Giannis Bozas: Performance Gains Using Subpages for
Cache Coherency Control

342/22/95 A Volker Heun, Ernst W. Mayr: Embedding Graphs with Bounded
Treewidth into Optimal Hypercubes

342/23/95 A Petr Janˇcar, Javier Esparza: Deciding Finiteness of Petri Nets up to
Bisimulation

342/24/95 A M. Jung, U. Rüde: Implicit Extrapolation Methods for Variable Coeffi-
cient Problems

342/01/96 A Michael Griebel, Tilman Neunhoeffer, Hans Regler: Algebraic Multi-
grid Methods for the Solution of the Navier-Stokes Equations in Com-
plicated Geometries

342/02/96 A Thomas Grauschopf, Michael Griebel, Hans Regler: Additive
Multilevel-Preconditioners based on Bilinear Interpolation, Matrix De-
pendent Geometric Coarsening and Algebraic-Multigrid Coarsening for
Second Order Elliptic PDEs

342/03/96 A Volker Heun, Ernst W. Mayr: Optimal Dynamic Edge-Disjoint Embed-
dings of Complete Binary Trees into Hypercubes

342/04/96 A Thomas Huckle: Efficient Computation of Sparse Approximate In-
verses

342/05/96 A Thomas Ludwig, Roland Wism¨uller, Vaidy Sunderam, Arndt Bode:
OMIS — On-line Monitoring Interface Specification

342/06/96 A Ekkart Kindler: A Compositional Partial Order Semantics for Petri Net
Components

342/07/96 A Richard Mayr: Some Results on Basic Parallel Processes
342/08/96 A Ralph Radermacher, Frank Weimer: INSEL Syntax-Bericht
342/09/96 A P.P. Spies, C. Eckert, M. Lange, D. Marek, R. Radermacher, F. Weimer,

H.-M. Windisch: Sprachkonzepte zur Konstruktion verteilter Systeme
342/10/96 A Stefan Lamberts, Thomas Ludwig, Christian R¨oder, Arndt Bode: PFS-

Lib – A File System for Parallel Programming Environments
342/11/96 A Manfred Broy, Gheorghe S¸tefănescu: The Algebra of Stream Process-

ing Functions
342/12/96 A Javier Esparza: Reachability in Live and Safe Free-Choice Petri Nets is

NP-complete
342/13/96 A Radu Grosu, Ketil Stølen: A Denotational Model for Mobile Many-to-

Many Data-flow Networks
342/14/96 A Giannis Bozas, Michael Jaedicke, Andreas Listl, Bernhard Mitschang,

Angelika Reiser, Stephan Zimmermann: On Transforming a Sequential
SQL-DBMS into a Parallel One: First Results and Experiences of the
MIDAS Project

342/15/96 A Richard Mayr: A Tableau System for Model Checking Petri Nets with
a Fragment of the Linear Time� -Calculus

342/16/96 A Ursula Hinkel, Katharina Spies: Anleitung zur Spezifikation von mo-
bilen, dynamischen Focus-Netzen

Reihe A

342/17/96 A Richard Mayr: Model Checking PA-Processes
342/18/96 A Michaela Huhn, Peter Niebert, Frank Wallner: Put your Model Checker

on Diet: Verification on Local States
342/01/97 A Tobias M¨uller, Stefan Lamberts, Ursula Maier, Georg Stellner:

Evaluierung der Leistungsf”ahigkeit eines ATM-Netzes mit parallelen
Programmierbibliotheken

342/02/97 A Hans-Joachim Bungartz and Thomas Dornseifer: Sparse Grids: Recent
Developments for Elliptic Partial Differential Equations

342/03/97 A Bernhard Mitschang: Technologie f”ur Parallele Datenbanken - Bericht
zum Workshop

342/04/97 A nicht erschienen
342/05/97 A Hans-Joachim Bungartz, Ralf Ebner, Stefan Schulte: Hierarchische

Basen zur effizienten Kopplung substrukturierter Probleme der Struk-
turmechanik

342/06/97 A Hans-Joachim Bungartz, Anton Frank, Florian Meier, Tilman Neunho-
effer, Stefan Schulte: Fluid Structure Interaction: 3D Numerical Simu-
lation and Visualization of a Micropump

342/07/97 A Javier Esparza, Stephan Melzer: Model Checking LTL using Constraint
Programming

342/08/97 A Niels Reimer: Untersuchung von Strategien f¨ur verteiltes Last- und
Ressourcenmanagement

342/09/97 A Markus Pizka: Design and Implementation of the GNU INSEL-
Compiler gic

342/10/97 A Manfred Broy, Franz Regensburger, Bernhard Sch¨atz, Katharina Spies:
The Steamboiler Specification - A Case Study in Focus

342/11/97 A Christine Röckl: How to Make Substitution Preserve Strong Bisimilar-
ity

342/12/97 A Christian B. Czech: Architektur und Konzept des Dycos-Kerns
342/13/97 A Jan Philipps, Alexander Schmidt: Traffic Flow by Data Flow
342/14/97 A Norbert Fr¨ohlich, Rolf Schlagenhaft, Josef Fleischmann: Partitioning

VLSI-Circuits for Parallel Simulation on Transistor Level
342/15/97 A Frank Weimer: DaViT: Ein System zur interaktiven Ausf¨uhrung und

zur Visualisierung von INSEL-Programmen
342/16/97 A Niels Reimer, J¨urgen Rudolph, Katharina Spies: Von FOCUS nach IN-

SEL - Eine Aufzugssteuerung
342/17/97 A Radu Grosu, Ketil Stølen, Manfred Broy: A Denotational Model for

Mobile Point-to-Point Data-flow Networks with Channel Sharing
342/18/97 A Christian R¨oder, Georg Stellner: Design of Load Management for Par-

allel Applications in Networks of Heterogenous Workstations
342/19/97 A Frank Wallner: Model Checking LTL Using Net Unfoldings
342/20/97 A Andreas Wolf, Andreas Kmoch: Einsatz eines automatischen Theorem-

beweisers in einer taktikgesteuerten Beweisumgebung zur L¨osung eines
Beispiels aus der Hardware-Verifikation – Fallstudie –

342/21/97 A Andreas Wolf, Marc Fuchs: Cooperative Parallel Automated Theorem
Proving

Reihe A

342/22/97 A T. Ludwig, R. Wism¨uller, V. Sunderam, A. Bode: OMIS - On-line Mon-
itoring Interface Specification (Version 2.0)

342/23/97 A Stephan Merkel: Verification of Fault Tolerant Algorithms Using PEP
342/24/97 A Manfred Broy, Max Breitling, Bernhard Sch¨atz, Katharina Spies: Sum-

mary of Case Studies in Focus - Part II
342/25/97 A Michael Jaedicke, Bernhard Mitschang: A Framework for Parallel Pro-

cessing of Aggregat and Scalar Functions in Object-Relational DBMS
342/26/97 A Marc Fuchs: Similarity-Based Lemma Generation with Lemma-

Delaying Tableau Enumeration
342/27/97 A Max Breitling: Formalizing and Verifying TimeWarp with FOCUS
342/28/97 A Peter Jakobi, Andreas Wolf: DBFW: A Simple DataBase FrameWork

for the Evaluation and Maintenance of Automated Theorem Prover Data
(incl. Documentation)

342/29/97 A Radu Grosu, Ketil Stølen: Compositional Specification of Mobile Sys-
tems

342/01/98 A A. Bode, A. Ganz, C. Gold, S. Petri, N. Reimer, B. Schie-
mann, T. Schnekenburger (Herausgeber): ”‘Anwendungsbezogene
Lastverteilung”’, ALV’98

342/02/98 A Ursula Hinkel: Home Shopping - Die Spezifikation einer Kommunika-
tionsanwendung in FOCUS

342/03/98 A Katharina Spies: Eine Methode zur formalen Modellierung von Be-
triebssystemkonzepten

342/04/98 A Stefan Bischof, Ernst-W. Mayr: On-Line Scheduling of Parallel Jobs
with Runtime Restrictions

342/05/98 A St. Bischof, R. Ebner, Th. Erlebach: Load Balancing for Problems
with Good Bisectors and Applications in Finite Element Simulations:
Worst-case Analysis and Practical Results

342/06/98 A Giannis Bozas, Susanne Kober: Logging and Crash Recovery in
Shared-Disk Database Systems

342/07/98 A Markus Pizka: Distributed Virtual Address Space Management in the
MoDiS-OS

342/08/98 A Niels Reimer: Strategien f¨ur ein verteiltes Last- und Ressourcen-
management

342/09/98 A Javier Esparza, Editor: Proceedings of INFINITY’98
342/10/98 A Richard Mayr: Lossy Counter Machines
342/11/98 A Thomas Huckle: Matrix Multilevel Methods and Preconditioning
342/12/98 A Thomas Huckle: Approximate Sparsity Patterns for the Inverse of a

Matrix and Preconditioning
342/13/98 A Antonin Kucera, Richard Mayr: Weak Bisimilarity with Infinite-State

Systems can be Decided in Polynomial Time
342/01/99 A Antonin Kucera, Richard Mayr: Simulation Preorder on Simple Process

Algebras
342/02/99 A Johann Schumann, Max Breitling: Formalisierung und Beweis einer

Verfeinerung aus FOCUS mit automatischen Theorembeweisern – Fall-
studie –

Reihe A

342/03/99 A M. Bader, M. Schimper, Chr. Zenger: Hierarchical Bases for the Indef-
inite Helmholtz Equation

342/04/99 A Frank Strobl, Alexander Wisspeintner: Specification of an Elevator
Control System

SFB 342 : Methoden und Werkzeuge für die Nutzung paralleler
Rechnerarchitekturen

Reihe B

342/1/90 B Wolfgang Reisig: Petri Nets and Algebraic Specifications
342/2/90 B J¨org Desel: On Abstraction of Nets
342/3/90 B J¨org Desel: Reduction and Design of Well-behaved Free-choice Sys-

tems
342/4/90 B Franz Abstreiter, Michael Friedrich, Hans-Jürgen Plewan: Das

Werkzeug runtime zur Beobachtung verteilter und paralleler Pro-
gramme

342/1/91 B Barbara Paech1: Concurrency as a Modality
342/2/91 B Birgit Kandler, Markus Pawlowski: SAM: Eine Sortier- Toolbox -

Anwenderbeschreibung
342/3/91 B Erwin Loibl, Hans Obermaier, Markus Pawlowski: 2. Workshop ¨uber

Parallelisierung von Datenbanksystemen
342/4/91 B Werner Pohlmann: A Limitation of Distributed Simulation Methods
342/5/91 B Dominik Gomm, Ekkart Kindler: A Weakly Coherent Virtually Shared

Memory Scheme: Formal Specification and Analysis
342/6/91 B Dominik Gomm, Ekkart Kindler: Causality Based Specification and

Correctness Proof of a Virtually Shared Memory Scheme
342/7/91 B W. Reisig: Concurrent Temporal Logic
342/1/92 B Malte Grosse, Christian B. Suttner: A Parallel Algorithm for Set-of-

Support
Christian B. Suttner: Parallel Computation of Multiple Sets-of-Support

342/2/92 B Arndt Bode, Hartmut Wedekind: Parallelrechner: Theorie, Hardware,
Software, Anwendungen

342/1/93 B Max Fuchs: Funktionale Spezifikation einer Geschwindigkeitsregelung
342/2/93 B Ekkart Kindler: Sicherheits- und Lebendigkeitseigenschaften: Ein Lit-

eraturüberblick
342/1/94 B Andreas Listl; Thomas Schnekenburger; Michael Friedrich: Zum En-

twurf eines Prototypen für MIDAS

