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tWe introdu
e the boolean hierar
hy of k-partitions over NP for k � 3 as a generalizationof the boolean hierar
hy of sets (i.e., 2-partitions) over NP. Whereas the stru
ture of thelatter hierar
hy is rather simple the stru
ture of the boolean hierar
hy of k-partitions overNP for k � 3 turns out to be mu
h more 
ompli
ated. We establish the Embedding Conje
-ture whi
h enables us to get a 
omplete idea of this stru
ture. This 
onje
ture is supportedby several partial results.Keywords. Computational 
omplexity theory, 
lassi�
ation problems, entailment, parti-tions, boolean hierar
hy, polynomial hierar
hy, 
ompleteness, orders and latti
es.1 Introdu
tionTo divide the real world into two parts like big and small, bla
k and white, or good and badusually oversimpli�es things. In most 
ases a partition into many parts is more appropriate.For example, take marks in s
hool, s
ores for papers submitted to a 
onferen
e, salary groups,or 
lasses of risk. In mathemati
s, k-valued logi
 is just a language for dealing with k-valentobje
ts, and in the 
omputer s
ien
e �eld of arti�
ial intelligen
e, this language has be
omea powerful tool for reasoning about in
omplete knowledge. In 
omputational 
omplexity forinstan
e, proper partitions, although not mentioned expli
itly, emerge in 
onne
tion with lo
allyde�nable a

eptan
e types (
f. [23℄).�A preliminary version of this paper [29℄ was presented at the 17th Symposium on Theoreti
al Aspe
ts ofComputer S
ien
e held in Lille, Fran
e, in February 2000.1



Nevertheless, 
omplexity theoreti
ians mainly investigate the 
omplexity of sets, i.e., parti-tions into two parts, or the 
omplexity of fun
tions, i.e., partitions into usually in�nitelymany parts. Both extremes seem not appropriate for studying the 
omputational 
omplex-ity of problems inherently being partitions into �nitely many parts. If we study partitionsinto at least three parts by means of en
oding the 
omponents of partitions (e.g., as � (x; i) ��x is in the i-th 
omponent 	) then we may assume that many interesting phenomenons vanishby the en
oding. On the other side, though partitions 
an be 
onsidered as fun
tions with �niterange, even the �nite range allows 
ombinatorial arguments be
ause ea
h 
omponent dependsonly on the other �nitely many 
omponents of the partition. We would lose this feature whensimply subsuming partitions under fun
tions.This paper studies, for the �rst time, systemati
ally the 
omputational 
omplexity of partitions.Herein we will follow the approa
h to 
olle
t \similar" problems in 
omplexity 
lasses and toinvestigate relations among these 
lasses. While 
omplexity 
lasses of sets represent de
isionproblems our 
omplexity 
lasses of partitions represent 
lassi�
ation problems. Very important
lasses of 
lassi�
ation problems originate from questions 
on
erning relations.1.1 Classi�
ation and De
ision Problems for RelationsSuppose that � is any binary relation on a basi
 set M . When giving an expli
it de�nition of�, we spe
ify � in the following way: For two elements x; y 2 M , x � y if and only if somede�nitional 
onditions hold for x and y. Thus the expli
it spe
i�
ation of a relation has theform of a de
ision problem. But on
e the relation � is �xed, the more natural question is todetermine for any given x and y how they behave with respe
t to �: Is it true that both x � yand y � x hold or only x � y holds or only y � x holds or is even nothing true? Questions of thiskind are signi�
ant in 
onne
tion with, e.g., entailment issues as studied in automated reasoning,database theory, and 
onstraint programming, or 
ongruen
e and isomorphism problems equallyof broad interest.For a 
on
rete example let us 
onsider the entailment relation j= for formulas of (two-valued)propositional logi
. For propositional formulas H and H 0 it is de�ned asH j= H 0 ()def ea
h satisfying assignment for H is a satisfying assignment for H 0:Given two arbitrary formulas there are the above four possible 
ases to 
lassify a

ording tothe behavior the formulas show with respe
t to �R. We translate this into the partitionEntailment. The most natural way to de�ne a partition is to �x its 
hara
teristi
 fun
tion.For any partition A the 
hara
teristi
 fun
tion 
A says for every x to whi
h 
omponent of A thisx belongs. So for any pair (H;H 0) of formulas we de�ne
Entailment(H;H 0) =def 8>><>>: 1 if H 6j= H 0 and H 0 6j= H;2 if H 6j= H 0 and H 0 j= H;3 if H j= H 0 and H 0 6j= H;4 if H j= H 0 and H 0 j= H:We should bring to mind that though the numbering of the 
ases to be distinguished is notessential for the 
lassi�
ation itself yet it leads to di�erent partitions. We also should be awarethat for a 
olle
tion of sets to be a partition it is not only ne
essary to have the pairwisedisjointness of all sets but also that ea
h possible element must be 
ontained in one of these sets.2



Apparently there exist very 
lose 
onne
tions between Entailment and the de
ision problemof whether H j= H 0 for given H and H 0. Let us explain this in more detail. For we 
onsider twosets A and B that des
ribe the de
ision problem formally: A is the set of all pairs (H;H 0) su
hthat H entails H 0 and B is the set of all pairs (H;H 0) su
h that H 0 entails H. The partitionEntailment and the sets A and B are intimately related in at least the following two ways:1. Using the sets A and B the partition Entailment 
an be easily rewritten. So the �rst
omponent of Entailment, denoted by Entailment1, 
onsists of all pairs of proposi-tional formulas that do not belong to A or B. Opposite to this the fourth 
omponent ofEntailment, denoted by Entailment4, is nothing else than A \ B. Sin
e obviously Aand B are 
oNP-
omplete (note that H is a tautology if and only if H _:H j= H) we eas-ily observe that Entailment4 is 
oNP-
omplete, whereas Entailment1 is NP-
omplete.Equally it is not hard to verify that both the se
ond and the third 
omponent of theentailment 
lassi�
ation problem are 
omplete for DP where DP [32℄ is the 
lass of all setdi�eren
es of NP sets with NP sets.2. The following generation prin
iple is more fundamental. Let f be the fun
tion de�ned asf(0; 0) = 1; f(0; 1) = 2; f(1; 0) = 3; and f(1; 1) = 4: (1)We immediately see that Entailment is exa
tly the partition being generated when f isapplied to the 
hara
teristi
 pair of the sets A and B. That means that for all propositionalformulas H and H 0 it holds that 
Entailment(H;H 0) = f(
A(H;H 0); 
B(H;H 0)). In thismanner the fun
tion f generates a whole 
lass of partitions whi
h we denote by 
oNP(f).So Entailment belongs to the 
lass 
oNP(f). In fa
t, it is one of the hardest among allpartitions in this 
lass; it is in a sense 
omplete for 
oNP(f).Both jun
tures of the entailment 
lassi�
ation problem with the entailment de
ision problemmake the boolean hierar
hy over NP be involved in the study of 
omplexity 
lasses of partitions.On the one hand, the 
lasses NP, 
oNP, and DP o

urring as 
lasses re
e
ting the 
omputationaldiÆ
ulty of the proje
tions of Entailment represent just the lowest levels of this 
omplexity-theoreti
 hierar
hy. On the other hand, the generation prin
iple we des
ribed above is pre
iselythe same as the one that generates the boolean hierar
hy over NP at all.1.2 The Boolean Hierar
hy (of Sets) over NPThe boolean hierar
hy over NP has been very extensively investigated in a series of papers, e.g.,in [39, 10, 27, 8, 9, 7, 24, 38, 33℄. Purely set-theoreti
ally, the boolean hierar
hy over a set
lass is a very fundamental stru
ture providing a detailed view on the 
losure of this 
lass underthe boolean operations interse
tion, union, and 
omplementation. The roots of su
h hierar
hiesgo ba
k to Hausdor� [18℄ who observed normal forms of sets belonging to the boolean 
losureof a set 
lass. Underlining their great signi�
an
e for 
omputation theory, boolean hierar
hieshave been studied for mu
h more 
lasses than NP su
h as for 1NP (or US) [17℄, UP [22℄, C=P[16, 3℄, RP [4, 6℄, and partly for C=L [1℄ in 
omplexity theory, for the re
ursively enumerablesets [12, 13℄ in re
ursion theory, or for 
lasses o

urring in automata theory [37, 5, 14℄.The most general way to de�ne the boolean hierar
hy over NP is as follows (see [39℄): For aboolean fun
tion f : f0; 1gm ! f0; 1g, whi
h represents 
ombinations of boolean operations,3



and sets B1; : : : ; Bm let f(B1; : : : ; Bm) denote the set whose 
hara
teristi
 fun
tion satis�esthat 
f(B1;:::;Bm)(x) = f(
B1(x); : : : ; 
Bm(x)) for all x. The 
lass NP(f) 
onsists of all setsf(B1; : : : ; Bm) when varying the sets Bi over NP. Up to the di�erent ranges of fun
tions andthe di�erent base 
lasses this is just the generation prin
iple we have used above to obtaina partition 
lass 
apturing the 
omplexity of Entailment. The boolean hierar
hy over NP
onsists of all these 
lasses NP(f). Note that for the de�nition of the boolean hierar
hy overNP it does not make a di�eren
e if we take NP or 
oNP as the base 
lass; we 
learly prefer NP.Wagner and We
hsung [39℄ have proved that every 
lass NP(f) 
oin
ides with one of the 
lassesNP(i) or 
oNP(i) where NP(i) is the 
lass of all sets whi
h are the symmetri
 di�eren
e of i NPsets and 
oNP(i) is the 
lass of all 
omplements of NP(i) sets. The family of these 
lasses is alsoknown as the di�eren
e hierar
hy [27℄. Evidently, DP = NP(2).It is not known whether the boolean hierar
hy over NP is �nite or equivalently, whether NP(i) =
oNP(i) for some i � 1. However, Kadin [24℄ su

eeded to prove that a �nite boolean hierar
hyover NP implies the �niteness of Meyer and Sto
kmeyer's polynomial hierar
hy [31, 36℄; an eventwhi
h most resear
hers in 
omputational 
omplexity 
onsider to be highly improbable.1.3 The Boolean Hierar
hy of k-Partitions over NPMotivated by our example Entailment it is natural to introdu
e and to study the gener-alization of the boolean hierar
hy of sets over NP to the 
ase of partitions into k parts (k-partitions) for k � 3. Any set A is identi�ed with the 2-partition (A;A). For a fun
tionf : f1; 2gm ! f1; 2; : : : ; kg and sets B1; : : : ; Bm we de�ne a k-partition A = f(B1; : : : ; Bm) bythe de�ning 
ondition that 
A(x) = f(
B1(x); : : : ; 
Bm(x)) for all x. Note that the 
hara
teristi
fun
tions here are 
hara
teristi
 fun
tions of partitions (for a formal de�nition and explanationof di�eren
es, see Se
tion 2). The boolean hierar
hy of k-partitions over NP 
onsists of the
lasses NP(f) =def � f(B1; : : : ; Bm) �� B1; : : : ; Bm 2 NP 	: As we have seen by Entailment,this hierar
hy enables to measure the 
omputational 
omplexity of 
lassi�
ation problems basedon relations for whi
h the de
ision problems is in NP or 
oNP. The boolean hierar
hy of setsnow appears in this hierar
hy as the spe
ial 
ase k = 2.Whereas the boolean hierar
hy of sets over NP has a very simple stru
ture (note that NP(i) [
oNP(i) � NP(i + 1) \ 
oNP(i + 1) for all i � 1), the situation is mu
h more 
ompli
ated forthe boolean hierar
hy of k-partitions in the 
ase k � 3. The main question is: Can we get anoverview on the stru
ture of this hierar
hy? This question is not answered 
ompletely so far,but we will give partial answers, and we will establish a 
onje
ture.A fun
tion f : f1; 2gm ! f1; 2; : : : ; kg whi
h de�nes the 
lass NP(f) of k-partitions 
orrespondsto the �nite boolean latti
e (f1; 2gm;�) with the labeling fun
tion f where � means the ve
tor-ordering on the set of all m-tuples of f1; 2g. Generalizing this idea we de�ne for every �nitelatti
e G with labeling fun
tion f : G ! f1; 2; : : : ; kg (for short: the k-latti
e (G; f)) a 
lassNP(G; f) of k-partitions. This does not result in more 
lasses: For every k-latti
e (G; f) thereexists a �nite fun
tion f 0 su
h that NP(G; f) = NP(f 0). However, the use of arbitrary latti
esinstead of only boolean latti
es simpli�es many 
onsiderations. In parti
ular every 
lass in theboolean hierar
hy of k-partitions has a (essentially) unique des
ription in terms of minimal k-latti
es. The above-mentioned di�eren
e hierar
hy is just a spe
ial 
ase of this des
ription forthe boolean hierar
hy of 2-partitions. 4



To get an idea of the stru
ture of the boolean hierar
hy of k-partitions over NP it is veryimportant to have a 
riterion to de
ide whether NP(G; f) � NP(G0; f 0) for k-latti
es (G; f) and(G0; f 0). For that we de�ne a relation � as follows: (G; f) � (G0; f 0) if and only if there is amonotoni
 ' : G ! G0 su
h that f(x) = f 0('(x)) for all x 2 G. The Embedding Lemma saysthat (G; f) � (G0; f 0) implies NP(G; f) � NP(G0; f 0), and the Embedding Conje
ture expressesour 
onvi
tion that the 
onverse is also true unless the polynomial hierar
hy is �nite.For the Embedding Conje
ture there exists mu
h eviden
e. For k = 2 we 
an, not surprisingly,
on�rm this 
onje
ture to be true. Moreover, we will give a theorem whi
h enables us to verifythe Embedding Conje
ture for k � 3 for a large 
lass of k-latti
es in
luding all k-
hains. Theproof of this theorem uses a new 
hain-te
hnique that extends Kadin's easy-hard arguments(
f. [24℄), developed for establishing the boolean and polynomial 
onne
tion (for sets), to the
ase of partitions. Further the 
onje
ture holds true for two sub
lasses of k-latti
es where the
hain-te
hnique does not work. Here, two di�erent proof te
hniques are needed that both areinspired by results from the theory of sele
tive sets in [20, 26, 21℄.There is a ma
hine-based approa
h to the boolean hierar
hy of k-partitions over NP. Ea
hpartition belonging to some 
lass NP(f) 
an be a

epted in a natural way by nondeterministi
polynomial-time ma
hines with a notion of a

eptan
e that depends on the fun
tion f . Asa 
onsequen
e one 
an show that all these 
lasses possess 
omplete partitions with respe
tto an appropriate many-one redu
tion. This redu
tion o�ers a translation of 
ompletenessfrom the whole partition onto the 
omponents. For instan
e, sin
e Entailment is 
ompletefor 
oNP(f) with f as des
ribed in (1) we immediately obtain that ea
h 
omponent of thepartition Entailment is 
omplete for the 
omponent 
lasses of 
oNP(f), i.e., Entailment1is NP-
omplete, Entailment2 and Entailment3 are NP(2)-
omplete, and Entailment4 is
oNP-
omplete, all as we have already dis
ussed. However, there exists a partition, say A, whi
his 
omplete for another partition 
lass su
h that all 
omponents of A are 
omplete for the same
lasses as the 
omponents of Entailment are, but A does not redu
e to Entailment unless NPis 
losed under 
omplements (see Figure 15). This ni
ely illustrates that the study of partitionsallows �ner distin
tions between 
lassi�
ation problems as in 
ase of restri
ting investigationsto set en
odings only.1.4 Organization of the PaperSe
tion 2 
ontains the 
omplexity-theoreti
al notions and notations that will be ta
itly adoptedin the paper. In Se
tion 3 we give a formal de�nition and some basi
 fa
ts about the 
lasses of theboolean hierar
hy of k-partitions over NP. The main goal of this paper is to gain an overview onthe stru
ture of this hierar
hy. To this end, in Se
tion 4 we alternatively 
hara
terize partition
lasses generated by �nite fun
tions in terms of labeled latti
es. In Se
tion 5 we study the relation� on labeled latti
es. In parti
ular, it is shown that � indu
es a suÆ
ient 
ondition for in
lusionsof partition 
lasses. We further show in Se
tion 6 that all 
lasses in the boolean hierar
hy ofk-partitions have (essentially) unique des
riptions by minimal latti
es. Se
tion 7 
ontains thederivation and dis
ussion of the Embedding Conje
ture whi
h states that for k-latti
es, being inrelation � is not only suÆ
ient for in
lusion but also ne
essary unless the polynomial hierar
hyis �nite. A large part of this se
tion is devoted to supporting the 
onje
ture. Assuming theEmbedding Conje
ture is true we give in Se
tion 8 an instru
tive example of how 
ompli
atedthe boolean hierar
hy of k-partitions is already in the 
ase k = 3. Finally, in Se
tion 9 we present5



a way to 
hara
terize partition 
lasses generated by labeled latti
es in terms of a

eptan
e typesfor nondeterministi
 ma
hines. This leads to redu
ibility notions and 
ompleteness 
on
epts.This will be exempli�ed for Entailment.2 PreliminariesSets. Let IN = f0; 1; 2; : : : g and IN+ = f1; 2; : : : g. The 
ardinality of an arbitrary �nite set Ais denoted by kAk. For sets A and B we use A n B to denote the set-di�eren
e of A with B,and we use A4B to denote the symmetri
 di�eren
e of A and B. For m � 1 let Am denote them-fold 
artesian produ
t of A with itself.Let P(M) be the power set of a �xed basi
 set M . For a set A � M , its 
omplement in thebasi
 set M is denoted by A, i.e., A = M n A. The 
hara
teristi
 fun
tion 
A : M ! f0; 1g isde�ned for all x 2M as 
A(x) = 1()def x 2 A. Let K and K0 be 
lasses of subsets of M , i.e.,K;K0 � P(M). We de�ne
oK =def � A �� A 2 K 	; K ^K0 =def � A \B �� A 2 K; B 2 K0 	;K _K0 =def � A [B �� A 2 K; B 2 K0 	; K �K0 =def � A4B �� A 2 K; B 2 K0 	:The 
lasses K(i) and 
oK(i) de�ned by K(0) =def f;g and K(i+1) = K(i)�K build the booleanhierar
hy over K that has many equivalent de�nitions (see [39, 10, 27, 8℄).1 Some of them 
anbe found in the following theorem.Theorem 1 Let ;;M 2 K, let K be 
losed under interse
tion and union, and let m 2 IN+.1. K(2m � 1) = � A1 [Sm�1j=1 (A2j+1 n A2j) �� A1; : : : ; A2m�1 2 K and A1 � � � � � A2m�1 	:2. K(2m) = � Smj=1(A2j nA2j�1) �� A1; : : : ; A2m 2 K and A1 � � � � � A2m 	:3. K(2m) = K(2m� 1) ^ 
oK:4. K(2m + 1) = K(2m) _ K.5. K(m+ 1) = 
oK(m) ^ K.6. K(m+ 2) = K(m) _ (K ^ 
oK) = K(m) ^ (K _ 
oK).7. K(m) [ 
oK(m) � K(m+ 1) \ 
oK(m+ 1).BC(K) is the boolean 
losure of K, i.e., the smallest 
lass whi
h 
ontains K and whi
h is 
losedunder interse
tion, union, and 
omplements.Orders and Latti
es. We need some notions from latti
e theory and order theory (see e.g.,[15, 11℄). A pair (G;�) is a poset if � is a partial order on the set G. Usually, we talk aboutthe poset G. Where it is ne
essary we write (G;�) to spe
ify the order. For a poset (G;�) theposet (G;�) is the dual poset and is denoted by G� . A poset G is a 
hain if for all x; y 2 G1Usually for K = NP, a level 0 is not 
onsidered in the way we do. The zero-level there is P. However for ourpurposes it is more helpful to regard P not as an element of the boolean hierar
hy (unless P = NP).6



it holds that x � y or y � x (i.e., any two elements are 
omparable with respe
t to �), and aposet G is an anti
hain if for all x; y 2 G it holds that x � y implies x = y (i.e., all elements arepairwise in
omparable with respe
t to �). A �nite poset (G;�) is a latti
e if for all x; y 2 Gthere exist (a) exa
tly one maximal element z 2 G su
h that z � x and z � y (whi
h will bedenoted by x^y), and (b) exa
tly one minimal element z 2 G su
h that z � x and z � y (whi
hwill be denoted by x _ y). For a �nite latti
e G we denote by 1G the unique element greaterthan or equal to all x 2 G and by 0G the unique element less than or equal to all x 2 G. Anelement x 6= 1G is said to be meet-irredu
ible i� x = a^ b implies x = a or x = b for all a; b 2 G.Fun
tions. Let M and M 0 be any sets, and let f :M !M 0 be any fun
tion. The domain of fis denoted by Df . For a set A � Df , let f(A) = ff(x) j x 2 Ag and let f jA denote the restri
tionof f to A. In parti
ular, the range of f whi
h is denoted by Rf is f(Df ). The inverse of f isdenoted by f�1, i.e, f�1 : B ! P(M) su
h that for all y 2 B, f�1(y) = fx 2M j f(x) = yg. Iff�1(y) is a singleton then we omit the bra
es. We use idM to denote the identity map onM givenby idM (x) = x for all x 2M . Our use of the 
omposition f Æ f 0 is (f Æ f 0)(x) =def f(f 0(x)). If fmapsM to itself, then for m 2 IN+, fm :M !M is the m-fold 
omposition of f with itself. LetM = fa; bg with a 6= b. De�ne a = b and b = a. For any fun
tion f :Mm !M 0 with m 2 IN+,let f� denote its dual fun
tion, that is, that fun
tion de�ned for all x = (x1; : : : ; xm) 2 Mm asf�(x1; : : : ; xm) =def f(x1; : : : ; xm): The ve
tor (x1; : : : ; xm) is denoted by x.Words. We will make no distin
tion between m-tuples (x1; : : : ; xm) over a �nite set (alphabet)M and words x1 : : : xm of length m over M . We �x the �nite alphabet � = f0; 1g for 
onsidera-tions about the input-output behavior of ma
hines. More generally, let � be any �nite alphabet.�� is the set of all �nite words that 
an be built with letters from �. For x; y 2 ��, x � y (orxy for short) denotes the 
on
atenation of x and y. The empty word is denoted by ". For agiven word x = x1 : : : xm the reversed word xm : : : x1 is denoted by xR. For x 2 ��, jxj denotesthe length of x. For n 2 IN, ��n is the set of all words x 2 �� with jxj � n, and �=n is theset of all words x 2 �� with jxj = n. If the alphabet � is ordered by �, then let �lex denotethe standard lexi
ographi
al order on ��, that is, for ea
h x; y 2 ��, x �lex y if and only if (a)x = y, (b) jxj < jyj, or (
) jxj = jyj and there is an i with xj = yj for all j 2 f1; : : : ; i � 1g butxi < yi. Usually we 
onsider words x and y of the same length n to be partially ordered by theve
tor-ordering, that is, x � y i� xi � yi for all i 2 f1; : : : ; ng.Basi
 Complexity Theory. The 
omputational model we refer to is the standard Turing ma-
hine (for a formal des
ription see, e.g., [40, 2℄). We 
onsider nondeterministi
 and deterministi
versions of Turing ma
hines. A Turing ma
hine that 
an produ
e outputs on a spe
ial outputtape is 
alled a Turing transdu
er. We also 
onsider Turing ma
hines that have a

ess to anora
le. The notions translate a

ordingly to su
h ora
le Turing ma
hines. If we 
onsider anora
le Turing ma
hine M a

essing an ora
le A then this is denoted by MA.Polynomial-time Turing ma
hines are Turing ma
hines that for a �xed polynomial p, makeon every input x at most p(jxj) 
omputation steps before rea
hing a �nal state. In 
ase ofa nondeterministi
 polynomial-time Turing ma
hine M , the set of all words a

epted by M ,denoted by L(M), is the set of all words x 2 �� for whi
h M , on input x, has at least one
omputation path of at most p(jxj) steps of running, that ends in an a

epting �nal state. NP(P) is the 
lass of all sets that are a

epted by nondeterministi
 (deterministi
) polynomial-timeTuring ma
hines. NPB is the 
lass of all sets that are a

epted by nondeterministi
 polynomial-time Turing ma
hine a

essing the set B. For a 
lass K, NPK 
onsists of all sets that belong to7



NPB for some B 2 K. The polynomial hierar
hy [31, 36℄ is indu
tively de�ned as follows.�p0 =def P; �pm+1 =def NP�pm ; and PH =def [m2IN�pm:Let REC denote the 
lass of all re
ursive sets, i.e., those sets that 
an be de
ided by deterministi
Turing ma
hines. RE denotes the 
lass of all re
ursively enumerable sets, i.e., the 
lass of allsets that are ranges of deterministi
 Turing transdu
ers.FP denotes the 
lass of all fun
tions that are 
omputable by a deterministi
 polynomial-timeTuring transdu
er. We say that a set A � �� is polynomial-time many-one redu
ible to a setB � ��, in symbols A �pm B, if and only if there exists a fun
tion f 2 FP su
h that for allx 2 ��, x 2 A() f(x) 2 B. A 
lass K � P(��) is 
losed under �pm if for all A;B � �� it holdsthat A �pm B and B 2 K imply that A 2 K. All 
lasses in the polynomial hierar
hy are 
losedunder �pm. A set A is �pm-
omplete for K if A 2 K and B �pm A for all B 2 K. Satisfiability,denoting the set of all (en
odings of) satis�able propositional formulas, is an example of a set�pm-
omplete for NP.We impli
itly use the following 
orresponden
e val between �� and IN: For x 2 ��, de�neval(x) =def kfy 2 �� j y <lex xgk: Note that val is polynomial-time 
omputable and invertible.It is often needed to en
ode tuples of words of �� into one word of ��. Let h�; �i2 denote a standardpolynomial-time 
omputable and polynomial-time invertible pairing fun
tion on �nite words(e.g., based on self-delimiting words; 
f. [30℄). This pairing fun
tion is used to de�ne en
odingsof arbitrary m-tuples as hx1; : : : ; xmi =def hm; hx1; h: : : ; hxm�1; xmi2 : : : i2i2i2. Conversely, ifa word hx1; : : : ; xmi 2 �� is given then the fun
tion �mj denotes the proje
tion to the j-th
omponent of the m-tuple, i.e., �mj (hx1; : : : ; xmi) = xj . If h is any fun
tion mapping from ��to ��, then we de�ne the fun
tion h�mi1 ; : : : ; �mini Æ h : �� ! �� with n � m to be for all x 2 ��,(h�mi1 ; : : : ; �mini Æ h)(x) =def h�mi1 (h(x)); : : : ; �min(h(x))i:Let poly denote the 
lass of all fun
tions f : IN! �� su
h that there exists a polynomial p withjf(n)j � p(n) for all n 2 IN. For a 
lass K � P(��), the 
lass K=poly [25℄ is the 
lass of all setsA for whi
h there exist a set B 2 K and a fun
tion f 2 poly (the advi
e fun
tion) su
h that forall x 2 ��, x 2 A() hx; f(jxj)i 2 B.Partitions. Finally, let us make some notational 
onventions about partitions. For any set M ,a k-tuple A = (A1; : : : ; Ak) with Ai �M for ea
h i 2 f1; : : : ; kg is said to be a k-partition of Mif and only if A1[A2[ � � � [Ak =M and Ai\Aj = ; for all i; j with i 6= j. The set Ai is said tobe the i-th 
omponent of A. For two k-partitions A and B to be equal it is suÆ
ient that Ai � Bifor all i 2 f1; : : : ; kg. Let 
A : M ! f1; : : : ; kg be the 
hara
teristi
 fun
tion of a k-partitionA = (A1; : : : ; Ak) of M , that is, 
A(x) = i if and only if x 2 Ai. For K1; : : : ;Kk � P(M) let(K1; : : : ;Kk) =def � A �� A is k-partition of M and Ai 2 Ki for all i 2 f1; : : : ; kg 	and for i 2 f1; : : : ; kg,(K1; : : : ;Ki�1; �;Ki+1; : : : ;Kk) =def (K1; : : : ;Ki�1;P(M);Ki+1; : : : ;Kk):For a 
lass K of k-partitions, let Ki =def � Ai �� A 2 K 	 be the i-th proje
tion of K. Obviously,K � (K1; : : : ;Kk). In what follows we identify a set A with the 2-partition (A;A). We thususe a 
hara
teristi
 fun
tion whi
h on the 
omplement of A, di�ers to the usual one for sets.8



However, using 2 on the 
omplement instead of 0 has the advantage of 
orresponding well withthe ve
tor-ordering as be
omes 
learer later in the paper. We identify a 
lass K of sets with the
lass (K; 
oK) = (K; �) = (�; 
oK) of 2-partitions.3 Partition Classes De�ned by Finite Fun
tionsLet K be a 
lass of subsets of M su
h that ;;M 2 K and K is 
losed under interse
tion andunion. In the literature, one way to de�ne the 
lasses of the boolean hierar
hy of sets over Kis as follows (see [39℄). Let f : f1; 2gm ! f1; 2g be a boolean fun
tion. For B1; : : : ; Bm 2 Kthe set f(B1; : : : ; Bm) is de�ned by 
f(B1;:::;Bm)(x) = f(
B1(x); : : : ; 
Bm(x)). Then the 
lassesK(f) =def � f(B1; : : : ; Bm) �� B1; : : : ; Bm 2 K 	 form the boolean hierar
hy over K. Using �nitefun
tions f : f1; 2gm ! f1; 2; : : : ; kg we generalize this de�nition (remember in whi
h sense setsare 2-partitions) to obtain the 
lasses of the boolean hierar
hy of k-partitions over K as follows.De�nition 2 Let k � 2.1. For any fun
tion f : f1; 2gm ! f1; 2; : : : ; kg with m � 1 and for sets B1; : : : ; Bm 2 K, thek-partition f(B1; : : : ; Bm) is de�ned su
h that for all x 2M ,
f(B1;:::;Bm)(x) = f(
B1(x); : : : ; 
Bm(x)):2. For any fun
tion f : f1; 2gm ! f1; 2; : : : ; kg with m � 1, the 
lass of k-partitions over Kde�ned by f is given by the 
lassK(f) =def � f(B1; : : : ; Bm) �� B1; : : : ; Bm 2 K 	:3. The boolean hierar
hy of k-partitions over K is de�ned to be the familyBHk(K) =def � K(f) �� f : f1; 2gm ! f1; 2; : : : ; kg and m � 1 	:4. BCk(K) =def SBHk(K):Obviously if i 2 f1; 2; : : : ; kg is not a value of f : f1; 2gm ! f1; 2; : : : ; kg then K(f)i = f;g, thatis K(f) does not really have an i-th 
omponent. Therefore we assume in what follows that f issurje
tive.The following proposition shows that every partition in K(f) 
onsists of sets from the booleanhierar
hy over K. This also justi�es the use of the term boolean in the above de�nition.Proposition 3 Let k � 2 and let f : f1; 2gm ! f1; 2; : : : ; kg be any fun
tion with m � 1.1. (K; : : : ;K) � K(f) � (BC(K); : : : ;BC(K)).2. If K is 
losed under 
omplements then K(f) = (K; : : : ;K).3. BCk(K) = (BC(K); : : : ;BC(K)). 9



Proof.1. We �rst show that K(f) � (BC(K); : : : ;BC(K)). Let B1; : : : ; Bm be sets in K, and 
onsiderthe k-partition A = f(B1; : : : ; Bm). For ea
h i 2 f1; 2; : : : ; kg, we obtainx 2 Ai () _f(a1:::am)=i m̂j=1 
Bj (x) = ajand 
onsequently Ai = [f(a1:::am)=i 240� \aj=1Bj1A � 0� [aj=2Bj1A35 : (2)Clearly, this gives Ai 2 K(2 � kf�1(i)k).Now we prove (K; : : : ;K) � K(f). Let A be a k-partition in (K; : : : ;K). For everyi 2 f1; 2; : : : ; kg, �x some vi 2 f1; 2gm su
h that f(vi) = i. De�ne for all j 2 f1; 2; : : : ;mg,sets Bj as Bj =def [vi�2j�112m�j Ai:It is easily observed that for all a1 : : : am 2 f1; 2gm,\aj=1 Bj = [vl�a1:::amAl and [aj=2 Bj = [vl<a1:::amAl:By Equation (2) we obtain A = f(B1; : : : ; Bm).2. This statement is an immediate 
onsequen
e of the �rst one.3. The in
lusion BCk(K) � (BC(K); : : : ;BC(K)) follows dire
tly from 1. For the 
onversein
lusion let A 2 (BC(K); : : : ;BC(K)), i.e., there exists an r � 1 su
h that for all i 2f1; 2; : : : ; kg, Ai 2 K(r). Hen
e there exist sets B1; : : : ; Bk�r 2 K su
h that for all i 2f1; 2; : : : ; kg, Ai = B(i�1)�r+14B(i�1)�r+24� � � 4Bi�r:Observe that for every a1 : : : ak�r, there exists an i 2 f1; 2; : : : ; kg su
h that \aj=1Bj! \  \aj=2Bj! � Ai:Thus, we 
an de�ne f : f1; 2gk�r ! f1; 2; : : : ; kg su
h that for all a1 : : : ak�r 2 f1; 2gk�r,f(a1 : : : ak�r) = i ()def  \aj=1Bj! \  \aj=2Bj! � Ai;and we obtain A = f(B1; : : : ; Bk�r).
❑10



For k = 2 the 
lasses K(f) of the boolean hierar
hy BH2(K) of sets (2-partitions) have been 
om-pletely 
hara
terized. For f : f1; 2gm ! f1; 2g let �(f) be the maximum number of alternationsof f -labels whi
h 
an o

ur in a �-
hain in (f1; 2gm ;�).Theorem 4 [39℄ For f : f1; 2gm ! f1; 2g,K(f) = � K(�(f)) if f(2m) = 2;
oK(�(f)) if f(2m) = 1:Consequently, BH2(K) = � K(m) �� m 2 IN+ 	 [ � 
oK(m) �� m 2 IN+ 	, and given a fun
tionf : f1; 2gm ! f1; 2g it is easy to determine the 
lass K(m) or 
oK(m) whi
h 
oin
ides with K(f).As already mentioned above, the 
lasses of BH2(K) form a simple stru
ture with respe
t to setin
lusion. There do not exist three 
lasses in BH2(K) whi
h are in
omparable in this sense.It is the goal of this 
hapter to get insights into the stru
ture of the boolean hierar
hy BHk(NP)of k-partitions over NP for k � 3. What we 
an say at this point is, that already for k = 3the stru
ture of BHk(NP) with respe
t to set in
lusion is not as simple as for k = 2 (unlessNP = 
oNP). This is shown by the following example.Example 5 For a; b; 
 su
h that fa; b; 
g = f1; 2; 3g de�ne the fun
tion fab
 : f1; 2g2 ! f1; 2; 3gby fab
(11) = a, fab
(12) = fab
(21) = b, and fab
(22) = 
. Obviously, NP(fab
)a = NP,NP(fab
)b = NP(2), and NP(fab
)
 = 
oNP. Now let ab
 6= a0b0
0. If NP(fab
) = NP(fa0b0
0) thenNP = NP(2) or NP = 
oNP, or NP(2) = 
oNP. In ea
h of these 
ases we obtain NP = 
oNP.Consequently, if NP 6= 
oNP the six 
lasses NP(fab
) are pairwise in
omparable with respe
t toset in
lusion.De�nition 2 refers to a set 
lass K with ;;M 2 K and whi
h is 
losed under interse
tion andunion. As K so 
oK easily satis�es these 
onditions as well. Thus, all the de�nitions 
an beapplied to 
oK. The following theorem shows that there is a very 
lose 
onne
tion between
lasses from BHk(K) and 
lasses from BHk(
oK).Theorem 6 K(f) = 
oK(f�) for all f : f1; 2gm ! f1; 2; : : : ; kg with m � 1 and k � 2.Proof. By symmetry, it suÆ
es to show K(f) � 
oK(f�). Therefore, 
onsider a partition A 2K(f). Then there are sets B1; : : : ; Bm 2 K su
h that A = f(B1; : : : ; Bm). Sin
e for all a1 : : : am 2f1; 2gm, f(a1 : : : am) = f�(a1 : : : am), we obtain that for all x 2M ,f(
B1(x); : : : ; 
Bm(x)) = f�(
B1(x); : : : ; 
Bm(x)):This gives A = f(B1; : : : ; Bm) = f�(B1; : : : ; Bm). Hen
e, A 2 
oK(f�). ❑In parti
ular, BHk(K) and BHk(
oK) 
oin
ide even if K is not 
losed under 
omplements.Corollary 7 BHk(K) = BHk(
oK) for all k � 2.11
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Figure 1: Partition de�ned by a boolean 3-latti
e4 Partition Classes De�ned by Latti
esIt turns out that, for f : f1; 2gm ! f1; 2; : : : ; kg, a k-partition f(B1; : : : ; Bm) has a very naturalequivalent latti
e-theoreti
al de�nition. Consider the boolean latti
e f1; 2gm with the partialve
tor-ordering �, and 
onsider the fun
tion S : f1; 2gm ! K de�ned byS(a1; : : : ; am) =def \ai=1Bi;where we de�ne an interse
tion over an empty index set to be M . For an example see Figure 1.Note that S(2; : : : ; 2) =M and S(a ^ b) = S(a) \ S(b) for all a; b 2 f1; 2gm. De�ningTS(a) =def S(a) � [b<aS(b)we obtain the i-th 
omponent of f(B1; : : : ; Bm) asf(B1; : : : ; Bm)i = [f(a)=i TS(a);i.e., f(B1; : : : ; Bm) 
an also be given by the fun
tion S : f1; 2gm ! K.On the other side, if we have any fun
tion S : f1; 2gm ! K su
h that S(2; : : : ; 2) = M andS(a ^ b) = S(a) \ S(b) for all a; b 2 f1; 2gm we 
an de�neBj =def S(2j�112m�j) for j 2 f1; 2; : : : ;mg;and we obtain for i 2 f1; 2; : : : ; kgf(B1; : : : ; Bm)i = [f(a)=i TS(a):In this manner the 
lass K(f) of k-partitions is 
ompletely 
hara
terized by the labeled booleanlatti
e ((f1; 2gm;�); f).In this se
tion we will see that 
lasses of k-partitions 
an also be de�ned by weaker stru
turesthan boolean algebras. Again we always suppose K to be a 
lass su
h that ;;M 2 K and whi
his 
losed under interse
tion and union. 12



De�nition 8 Let G be a latti
e.1. A mapping S : G! K is said to be a K-homomorphism on G if and only if(a) S(1G) =M and(b) S(a ^ b) = S(a) \ S(b) for all a; b 2 G.2. For a K-homomorphism S on G and a 2 G, letTS(a) =def S(a) � [b<aS(b):Lemma 9 Let G be a latti
e, and let S be a K-homomorphism on G.1. TS(a) 2 K ^ 
oK for every a 2 G.2. S(a) = Sb�a TS(b) for every a 2 G.3. The set of all TS(a) for a 2 G yields a partition of M .4. S is 
ompletely determined by its values for the meet-irredu
ible elements. That is, if Sand S0 are two K-homomorphisms on G su
h that S(a) = S0(a) for all meet-irredu
iblea 2 G then S(a) = S0(a) for all a 2 G.Proof.1. Observe TS(a) = S(a) \Sb<a S(b) 2 K ^ 
oK sin
e K is 
losed under union.2. The dire
tion \�" is obvious sin
e TS(b) � S(b) � S(a) for b � a. The 
onverse in
lusion
an be veri�ed by indu
tion on <. Obviously, S(0G) = TS(0G). For a > 0G we obtainS(a) = TS(a) [ [b<aS(b) = TS(a) [[b<a[
�bTS(
) = TS(a) [ [
<aTS(
) = [
�aTS(
):3. We have to show that every x 2M is 
ontained in exa
tly one TS(a). Proving the existen
eof su
h an a 2 G, de�ne H =def � a �� x 2 S(a) 	whi
h is non-empty sin
eSa2G S(a) =M . Sin
e G is �nite it follows that x 2 S(VH). Letb < VH. Then b 62 H, and hen
e x 62 S(b). So, x 2 S(VH)nSb<VH S(b) = TS(VH). Toshow the uniqueness assume that there is an a 6= VH su
h that x 2 TS(a). Then x 2 S(a)and hen
e a 2 H. Consequently, a > VH and we obtain x 62 S(a)nSb<a S(b) = TS(a), a
ontradi
tion.4. This is an immediate 
onsequen
e of the de�nition of meet-irredu
ible elements and the
ondition S(a ^ b) = S(a) \ S(b) for K-homomorphisms.
❑13
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Figure 2: Partition de�ned by a 3-latti
eAny pair (G; f) of an arbitrary �nite poset G and a fun
tion f : G ! f1; 2; : : : ; kg is 
alleda k-poset. A k-poset whi
h is a latti
e (boolean latti
e) is 
alled a k-latti
e (boolean k-latti
e,resp.).Lemma 9 provides the soundness of the following de�nition.De�nition 10 Let (G; f) be a k-latti
e, k � 2.1. For a K-homomorphism S on G, the k-partition de�ned by (G; f) and S is given by(G; f; S) =def 0� [f(a)=1 TS(a) ; : : : ; [f(a)=k TS(a)1A :2. The 
lass of k-partitions de�ned by (G; f) is given byK(G; f) =def � (G; f; S) �� S is K-homomorphism on G 	:Example 11 Consider the 3-latti
e (G; f) in Figure 2. The meet-irredu
ible elements of G area, b, and 
. By point 4 of Lemma 9 every K-homomorphism S : G! K is determined by �xingS(a) = A, S(b) = B, and S(
) = C. By the de�nition of K-homomorphisms we get S(1) = M ,S(d) = S(a ^ b) = S(a) \ S(b) = A \ B, and S(0) = S(d ^ 
) = S(d) \ S(
) = A \ B \ C.Furthermore, C = S(
) = S(
 ^ b) = S(
) \ S(b) = C \B, i.e., C � B. We obtainTS(1) = M n (A [B) = A \B;TS(a) = A n (A \B) = A \B;TS(b) = B n ((A \B) [C) = A \B \ C;TS(
) = C n (A \B \ C) = A \C;TS(d) = (A \B) n (A \B \ C) = A \B \ C;TS(0) = (A \B \C) = A \C:Hen
e (G; f; S) = (TS(a) [ TS(0); TS(1) [ TS(
); TS(b) [ TS(d))= (A \ (B [ C); A \ (B [ C); B \ C);and K(G; f) = � (A \ (B [ C); A \ (B [ C); B \ C) �� A;B;C 2 K and C � B 	� (K(3); 
oK(3);K(2)): 14



The dis
ussion at the beginning of the se
tion yields the following proposition.Proposition 12 K(f) = K((f1; 2gm ;�); f) for all f : f1; 2gm ! f1; 2; : : : ; kg with m � 1 andk � 2.So, if (G; f) is a boolean k-latti
e then K(G; f) = K(f). But if (G; f) is an arbitrary k-latti
e,is K(G; f) also of the form K(f 0) for a suitable fun
tion f 0? The following theorem says thatthis is generally true. This turns out to be very important for the further study of the stru
tureof the boolean hierar
hy of k-partitions be
ause instead of large boolean k-latti
es one 
an dealwith usually mu
h smaller equivalent k-latti
es.Theorem 13 For every k-latti
e (G; f) there is an f 0 : f1; 2gm ! f1; 2; : : : ; kg with K(G; f) =K(f 0), where m is the number of meet-irredu
ible elements of G.We postpone the proof of this theorem to Se
tion 5 where we 
an make use of the EmbeddingLemma (Lemma 16).Corollary 14 BHk(K) = � K(G; f) �� (G; f) is a k-latti
e 	 for all k � 2.5 Comparing Partition ClassesTo study the stru
ture of the boolean hierar
hy of k-partitions over K it would be important tohave a 
riterion to de
ide whether K(G; f) � K(G0; f 0) for any two k-latti
es (G; f) and (G0; f 0).To this end we establish, more generally, a relation � between k-posets.De�nition 15 Let (G; f) and (G0; f 0) be k-posets with k � 2.1. (G; f) � (G0; f 0) if and only if there is a monotoni
 mapping ' : G ! G0 su
h that forevery x 2 G, f(x) = f 0('(x)).2. (G; f) � (G0; f 0) if and only if (G; f) � (G0; f 0) and (G0; f 0) � (G; f).The following lemma gives a suÆ
ient 
ondition for K(G; f) � K(G0; f 0).Lemma 16 (Embedding Lemma.) Let (G; f) and (G0; f 0) be k-latti
es with k � 2. If(G; f) � (G0; f 0), then K(G; f) � K(G0; f 0).Proof. Let (G; f) and (G0; f 0) be k-latti
es with (G; f) � (G0; f 0). Let ' : G! G0 be a monotoni
mapping su
h that f(a) = f 0('(a)) for every a 2 G. For a K-homomorphism S on G de�ne themapping S0 : G0 ! K for all a 2 G0 byS0(a) =def ['(b)�0aS(b):It is suÆ
ient to prove that S0 is a K-homomorphism on G0 with (G; f; S) = (G0; f 0; S0), i.e.,that 15
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Figure 3: A 3-
hain equivalent to the boolean 3-latti
e in Figure 11. S0(1G0) =M ,2. S0(a ^0 b) = S0(a) \ S0(b) for all a; b 2 G,3. TS(a) � TS0('(a)) for all a 2 G.This 
an be shown as follows:1. We 
on
lude S0(1G0) = S'(b)�01G0 S(b) � S(1G) =M .2. The in
lusion \�" is valid be
ause of the monotoni
ity of S0. For the 
onverse in
lusion
onsider x 2 S0(a) \ S0(b). There exist 
; d 2 G su
h that '(
) �0 a, '(d) �0 b, x 2 S(
),and x 2 S(d). We obtain '(
^ d) �0 '(
)^0 '(d) �0 a^0 b and x 2 S(
)\S(d) = S(
^ d),and 
onsequently x 2 S0(a ^0 b).3. For a 2 G and x 2 TS(a) we obtain x 2 S(a) � S0('(a)). Assume that x 62 TS0('(a)).Then there exists a 
 <0 '(a) su
h that x 2 S0(
). Consequently, there exists a b 2 G su
hthat '(b) �0 
 and x 2 S(b). Hen
e x 2 S(a) \ S(b) = S(a ^ b). Be
ause of x 2 TS(a) weget a ^ b 6< a and thus a � b. We 
on
lude '(a) �0 '(b) �0 
, a 
ontradi
tion.

❑Example 17 The 3-latti
e (G; f) shown in Figure 1 and the 3-latti
e (G0; f 0) shown in Figure3 are equivalent. This 
an be seen as follows: De�ne the fun
tions ' : G! G0 and  : G0 ! Gby '(111) = '(121) = '(211) = a;'(112) = '(221) = b;'(122) = '(212) = '(222) = 
;and  (a) = 111;  (b) = 112; and  (
) = 222:It is easy to see that ' and  are monotoni
, f(x) = f 0('(x)) for all x 2 G, and f 0(x) = f( (x))for all x 2 G0. By the Embedding Lemma we obtain K(G; f) = K(G0; f 0) for all K. Obviously,K(G0; f 0) = � (B;A;B n A) �� A;B 2 K and A � B 	 = (
oK;K; �) = (
oK;K;K(2)):Now we are able to prove Theorem 13 from Se
tion 4.16



Proof. (Theorem 13) Let (G; f) be an arbitrary k-latti
e, let I be the set of meet-irredu
ibleelements of G, and let Ia =def � b �� b � a and b meet-irredu
ible 	for every a 2 G. It is well known (
f. [15℄) that V Ia = a for every a 2 G. We de�ne the booleank-latti
e ((P(I);�); h) by h(U) =def f(^U) for U � I:The fun
tion ' : G! P(I) de�ned by '(a) =def Ia is monotoni
, and we geth('(a)) = h(Ia) = f(^ Ia) = f(a):By the Embedding Lemma we obtain K(G; f) � K((P(I);�); h). On the other hand, thefun
tion  : P(I)! G de�ned by  (U) =def VU is monotoni
, and we getf( (U)) = f(^U) = h(U):Again by the Embedding Lemma we obtain K((P(I);�); h) � K(G; f). So we get K(G; f) =K((P(I);�); h), but (P(I);�) and (f1; 2gjIj;�) are isomorphi
. ❑Combining this proof of Theorem 13 and the Embedding Lemma one 
an generalize Theorem 6to the following theorem.Theorem 18 K(G; f) = 
oK(G� ; f) for all k-latti
es (G; f) with k � 2.Proof. Let (G; f) be any k-latti
e. By Theorem 13 there is a fun
tion f 0 : f1; 2gm ! f1; 2; : : : ; kgwith K(G; f) = K(f 0). In fa
t, the proof of Theorem 13 shows that (G; f) � (f1; 2gm; f 0).Regarding the dual fun
tion f 0� we obtain that (G� ; f) � (f1; 2gm; f 0�). By Theorem 6 and theEmbedding Lemma, K(G; f) = K(f 0) = 
oK(f 0�) = 
oK(G� ; f). ❑6 Minimal Des
riptions of Partition ClassesFrom Proposition 12 and Theorem 13 we know that the boolean hierar
hy of k-partitions ispre
isely the family of all partition 
lasses over K generated by k-latti
es. The advantageof this 
hara
terization is that k-latti
es allow often smaller des
riptions of partition 
lassesthan fun
tions (as shown by Example 17). The usage of labeled latti
es provides also anotheradvantage over fun
tions: The minimal representations of partition 
lasses using k-latti
es areessentially unique, i.e., unique up to isomorphism.De�nition 19 For k-posets (G; f) and (G0; f 0) we write (G; f) �= (G0; f 0) and we say that (G; f)and (G0; f 0) are isomorphi
 if there exists a bije
tive fun
tion ' : G ! G0 su
h that ' and '�1are monotoni
 and f 0('(a)) = f(a) for every a 2 G.Obviously, isomorphi
 k-latti
es are equivalent, but there are equivalent k-latti
es that are notisomorphi
. For example, add to any k-latti
e (G; f) a new element a whi
h is less than allelements of G, and de�ne f(a) = f(0G). The new k-latti
e is equivalent but not isomorphi
 to(G; f). 17
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3
11Figure 4: Non-isomorphi
 minimal equivalent boolean 3-latti
esDe�nition 20 A �nite k-latti
e (k-poset) (G; f) is said to be minimal if there does not exist ak-latti
e (k-poset, resp.) (G0; f 0) su
h that (G; f) � (G0; f 0) and kG0k < kGk.In this se
tion we will prove that equivalent minimal k-latti
es are isomorphi
. This is a basi
di�eren
e between k-latti
es and k-valued fun
tions (boolean k-latti
es). Say that a fun
tionf : f1; 2gm ! f1; 2; : : : ; kg is minimal if there is no fun
tion of arity less than that of f , su
hthat the 
orresponding boolean k-latti
es are equivalent. The simple example in Figure 4 showsthat minimal equivalent fun
tions (boolean k-latti
es) need not be isomorphi
.In order to prove our isomorphism theorem (Theorem 24) it seems to be easier to show this �rstfor the 
ase of posets.Lemma 21 Let (G; f) be a minimal k-poset, and let ' : G! G be a monotoni
 fun
tion su
hthat f('(a)) = f(a) for all a 2 G. Then there exists an m � 1 with 'm = idG.Proof. For every a 2 G let ia be the smallest number su
h that there exists a j > ia with'ia(a) = 'j(a), and let ja be the smallest su
h j. Obviously,'ia �fa; '(a); '2(a); : : : ; 'ja�1(a)g� = f'ia(a); 'ia+1(a); : : : ; 'ja�1(a)g:Note that the set fa; '(a); '2(a); : : : ; 'ja�1(a)g has exa
tly ja elements and note also that theset f'ia(a); 'ia+1(a); : : : ; 'ja�1(a)g has exa
tly ja � ia elements. Now assume ia > 0. Thenk'ia(G)k < kGk and ('ia(G); f) � (G; f) whi
h 
ontradi
ts the minimality of (G; f). Hen
eia = 0 and 'ja(a) = a. Now let m =Qa2G ja and get 'm = idG. ❑Lemma 22 Equivalent minimal k-posets are isomorphi
.Proof. Let (G; f) and (G0; f 0) be equivalent minimal k-posets. There exist monotoni
 fun
tions' : G ! G0 and  : G0 ! G su
h that f 0('(a)) = f(a) for all a 2 G and f( (a)) = f 0(a) forall a 2 G0. Hen
e  Æ ' is monotoni
 and f( ('(a)) = f(a) for all a 2 G. By Lemma 21 thereexists an m � 1 su
h that ( Æ')m = idG. Also 'Æ is monotoni
 and f 0('( (a)) = f 0(a) for alla 2 G0, and there exists an n � 1 su
h that (' Æ )n = idG0 . Hen
e,  Æ (' Æ ( Æ')mn�1) = idG,(' Æ ( Æ ')mn�1) Æ  = idG0 , ' Æ ( Æ ')mn�1 : G! G0 is monotoni
,  : G0 ! G is monotoni
,and f 0(' Æ ( Æ ')mn�1(a)) = f(a) for all a 2 G. Thus (G; f) �= (G0; f 0). ❑Lemma 23 A minimal k-poset, whi
h is equivalent to a k-latti
e, is a k-latti
e.18



Proof. Let (G; f) be a minimal k-poset, and let (G0; f 0) be a k-latti
e su
h that (G; f) � (G0; f 0)via ' : G! G0 and  : G0 ! G. By Lemma 21 there exists an m � 1 su
h that ( Æ')m = idG.We de�ne � =def ' Æ ( Æ ')m�1:Then we obtain  Æ � = idG. To prove that G is a latti
e it suÆ
es to verify that1. G has a supremum 1G,2. a ^ b exists for all a; b 2 G.This 
an be done as follows:1. For a 2 G we get �(a) � 1G0 and hen
e a =  (�(a)) �  (1G0). Consequently, 1G =  (1G0).2. For a; b; 
 2 G su
h that 
 � a; b we get �(
) � �(a); �(b) and hen
e �(
) � �(a) ^ �(b) ��(a); �(b). Consequently, 
 =  (�(
)) �  (�(a) ^ �(b)) �  (�(a)) = a;  (�(b)) = b. Thatmeans a ^ b =  (�(a) ^ �(b)).
❑From the pre
eding two lemmas we obtain immediately:Theorem 24 Equivalent minimal k-latti
es are isomorphi
. In other words, for every k-latti
ethere exists a (up to isomorphism) unique minimal equivalent k-latti
e.This theorem ensures that we 
an always 
hoose a unique starting point for investigationsinvolving 
lasses of the boolean hierar
hy of k-partitions. Moreover, when restri
ting to theminimal k-latti
es our relation � be
omes a partial order (however, this is merely a fa
t basedon the sele
tion of the minimal k-latti
es as representatives of the equivalen
e 
lasses with respe
tto �).7 The Embedding Conje
tureLet us 
ome ba
k to the Embedding Lemma whi
h shows that (G; f) � (G0; f 0) impliesK(G; f) �K(G0; f 0). Thus we have a suÆ
ient 
riterion for in
lusion of partition 
lasses. It would be, how-ever, very useful if the 
riterion would be also ne
essary. In this se
tion we pose the 
onje
turethat this holds true for NP unless the polynomial hierar
hy is �nite. We support this 
onje
turewith several results.7.1 On Inverting the Embedding LemmaWe are interested in proving the following theorem for the 
ase K = NP. Note that for thegeneral formulation K is assumed to be su
h that ;;M 2 K and K is 
losed under interse
tionand union. 19



De�nition 25 We say that the Embedding Theorem for K holds if for all k-latti
es (G; f) and(G0; f 0) it is true that (G; f) � (G0; f 0)()K(G; f) � K(G0; f 0).The diÆ
ult part of su
h theorems is the inversion of the Embedding Lemma, that is, thedire
tion from right to left. If on
e proven for a 
lass K the Embedding Theorem gives the
omplete information about BHk(K). The following theorem shows that Embedding Theoremsare in prin
iple not out of rea
h:2Theorem 26 Let (G; f) and (G0; f 0) be k-latti
es with k � 2. If K(G; f) � K(G0; f 0) for every
lass K with ;;M 2 K and whi
h is 
losed under interse
tion and union, then (G; f) � (G0; f 0).Proof. Let (G; f) and (G0; f 0) be k-latti
es. For ea
h set S � G, de�ne D(S) asD(S) =def � a 2 G �� (9b 2 S)[a � b℄ 	:Let K be the set of all D(S) for S � G. Clearly, ;; G 2 K and K is 
losed under �nite unionand interse
tion. Let S be the K-homomorphism on G de�ned for every a 2 G asS(a) =def D(fag):Obviously, TS(a) = fag and 
onsequently �f�1(1); : : : ; f�1(k)� 2 K(G; f) � K(G0; f 0). Hen
e,a K-homomorphism S0 : G0 ! K on G0 exists su
h that Sf 0(d)=i TS0(d) = f�1(i) for everyi 2 f1; 2; : : : ; kg. De�ne h : G! G0 to be the fun
tion whi
h assigns to ea
h a 2 G the uniquelydetermined d 2 G0 su
h that a 2 TS0(d), i.e., h�1(d) = TS0(d). Obviously, a 2 TS0(h(a)) andf 0(h(a)) = f(a). It remains to show that h is monotoni
. Let a; b 2 G with a � b. Thenb 2 TS0(h(b)) � S0(h(b)), so a 2 S0(h(b)). From Lemma 9.2 there follows the existen
e of 
 2 G0with 
 � h(b) and a 2 TS0(
). Thus 
 = h(a), hen
e h(a) � h(b). ❑Be
ause of the se
ond item of Proposition 3, we 
annot hope to invert the Embedding Lemmawithout an additional assumption to K. A plausible one might be a stri
t boolean hierar
hy ofsets over K. And indeed, for many sub
lasses of k-latti
es, assuming the stri
tness of BH2(K)is strong enough to show the Embedding Theorem for K and for these sub
lasses of labeledlatti
es.For instan
e, we 
an prove that the Embedding Theorem for 2-latti
es holds if we assume anin�nite BH2(K). To this end we �rst prove an analogue to Theorem 4 for 2-latti
es. For a2-latti
e (G; f) let �(G; f) be the maximum number of alternations of f -labels whi
h 
an o

urin a �-
hain in the latti
e G.Theorem 27 For every 2-latti
e (G; f),K(G; f) = � K(�(G; f)) if f(1G) = 2;
oK(�(G; f)) if f(1G) = 1:2Note that a disproof of Theorem 26 would imply that for every reasonable K, there exists a pair of k-latti
esthat 
ontradi
ts the Embedding Theorem for K. 20



Proof. Let (G; f) be a 2-latti
e. In the proof of Theorem 13 we de�ned a fun
tion h : f1; 2gjIj !f1; 2g (remember that I is the set of meet-irredu
ible elements of G and that (P(I);�) and(f1; 2gjIj;�) are isomorphi
) su
h that (G; f) � (f1; 2gjIj; h). Thus, K(G; f) = K(f1; 2gjIj; h) =K(h), �(G; f) = �(f1; 2gjIj; h) = �(h), and f(1G) = h(2jIj). By Theorem 4 we obtain thestatement. ❑Corollary 28 Assume that BH2(K) is in�nite.1. The minimal 2-latti
e (G; f) su
h that K(G; f) = K(i) is a 
hain with i+ 1 elements withalternating labels 1 and 2 su
h that the maximum of the 
hain has label 2.2. The minimal 2-latti
e (G; f) su
h that K(G; f) = 
oK(i) is a 
hain with i + 1 elementswith alternating labels 1 and 2 su
h that the maximum of the 
hain has label 1.As a 
onsequen
e of Theorem 27 we get the validity of the (
onditional) Embedding Theoremfor 2-latti
es.Theorem 29 Assume that BH2(K) is in�nite. For 2-latti
es (G; f) and (G0; f 0) the followingstatements are equivalent:1. K(G; f) � K(G0; f 0).2. �(G; f) < �(G0; f 0) or ��(G; f) = �(G0; f 0) and f(1G) = f 0(1G0)�.3. (G; f) � (G0; f 0).Proof.� (1)) (2) is a 
onsequen
e of Theorem 27.� (3)) (1) follows from the Embedding Lemma.� For (2) ) (3) take a �-
hain (
0; 
1; : : : ; 
r) in G0 with maximum number of alternationsbetween f 0-labels, i.e., r = �(G0; f 0) and f 0(
i�1) 6= f 0(
i) for i 2 f1; : : : ; rg. For a 2 Gde�ne '(a) as follows: '(a) =def � 
i if f(1G) = f 0(1G0);
i+1 if f(1G) 6= f 0(1G0):Here i is the maximum number of alternations between f -labels in a 
hain from a to 1G.Obviously, ' is monotoni
 and f 0('(a)) = f(a).
❑We now establish a theorem whi
h shows that the Embedding Theorem for K holds for a largesub
lass of k-latti
es (unless BH2(K) is �nite). At this, we make use of the following simpleprin
iple. 21



3 2
11 231321Figure 5: The 3-latti
es of Example 32Proposition 30 Let (G; f) and (G0; f 0) be k-latti
es with k � 2. Let h be a fun
tion mappingf1; 2; : : : ; kg to f1; 2; : : : ;mg. If K(G; f) � K(G0; f 0), then K(G;hÆf) � K(G0; hÆf 0). Moreover,if h is inje
tive, then the equivalen
e holds.Let (G; f) be a k-latti
e. For I; J � f1; 2; : : : ; kg with I \ J = ;, de�ne �I;J(G; f) to be themaximum number of alternations between f -labels from I and f -labels from J in a 
hain of Gwhose minimum has an f -label from I.Theorem 31 Assume that BH2(K) is in�nite. For k-latti
es (G; f) and (G0; f 0), if K(G; f) �K(G0; f 0), then �I;J(G; f) � �I;J(G0; f 0) for all I; J � f1; 2; : : : ; kg with I \ J = ;.Proof. If I = ; or J = ;, then �I;J(G; f) = 0 for all (G; f). So, suppose I and J to be non-empty and I \ J = ;. Consider the fun
tion h mapping elements from I to min I, elementsfrom J to minJ , and elements not in I or J to themselves. Then, for all k-latti
es (G; f), itholds �I;J(G; f) = �h(I);h(J)(G;h Æ f). Therefore and be
ause of Proposition 30, without lossof generality, we 
an assume that I and J are singletons; I = fig; J = fjg, and i 6= j. For
onvenien
e, we write �ij(G; f) instead of �fig;fjg(G; f).Let (G; f) and (G0; f 0) be k-latti
es. Let C be a maximal 
hain in G su
h that �ij(C; f jC) =�ij(G; f). Hen
e, K(C; f jC ) � K(G0; f 0). Sin
e f jC : C ! fi; jg we have also K(C; f jC) �K(G0; h) for all h : G0 ! f1; 2; : : : ; kg su
h that h(a) = f 0(a) if f 0(a) 2 fi; jg.If there is no b 2 G0 with f 0(b) 62 fi; jg, then the 
laim is just the same already proven inTheorem 29. So, �x some b 2 G0 su
h that f 0(b) 62 fi; jg. For ea
h a 2 G0, let G0a be the setf
 2 G0 j 
 � ag. De�ne for a 2 G0h(a) =def 8<: f 0(a) if a 6= b;i if a = b and �ij(G0b; f 0jG0b) is even;j if a = b and �ij(G0b; f 0jG0b) is odd:Hen
e, K(C; f jC) � K(G0; h) and �ij(G0; f 0) � �ij(G0; h). Consider a maximal 
hain a0 <a1 < � � � < ar in G0 su
h that r = �ij(G0; h), h(as) 2 fi; jg, h(a0) = i, and h(as�1) 6= h(as)for s 2 f1; : : : ; rg. If b 62 fa0; : : : ; arg then h(as) = f 0(as) for all s = f0; 1; : : : ; rg and hen
e�ij(G0; f 0) � �ij(G0; h), thus �ij(G0; f 0) = �ij(G0; h). Now let b = as for some s 2 f0; 1; : : : ; rg.Sin
e f 0(as�1) = h(as�1) 6= h(as) and, by de�nition, h(b) = h(as), the 
hain a0 < a1 < � � � <as�1 
annot be a maximum 
hain in G0b with alternating f 0-labels starting with f 0-label i. Hen
ethere exists su
h a 
hain b0 < b1 < � � � < bs�1 < bs in (G0b; f 0jG0b) and 
onsequently su
h a 
hain22
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Figure 6: The 3-latti
es 
riti
al for REb0 < b1 < � � � < bs�1 < bs < as+1 < � � � < ar in (G0; f 0). This means �ij(G0; f 0) � r = �ij(G0; h)and hen
e, �ij(G0; f 0) = �ij(G0; h).Repeating this 
onstru
tion we obtain �nally a fun
tion g : G0 ! fi; jg su
h that K(C; f jC) �K(G0; g), �ij(C; f jC) = �ij(G; f), and �ij(G0; g) = �ij(G0; f 0). In fa
t, K(C; f jC) andK(G0; g) are
lasses of 2-partitions. By Theorem 29, we obtain �(C; f jC) < �(G0; g) or, �(C; f jC) = �(G0; g)and f(1C) = g(1G0), from whi
h we 
an 
on
lude �ij(C; f jC) � �ij(G0; g). ❑Example 32 Let (G; f) be the 3-latti
e on the left-hand side and (G0; f 0) be the 3-latti
e on theright-hand side of Figure 5. To show K(G; f) 6� K(G0; f 0) if BH2(K) is in�nite, let I = f1gand J = f2g. Then we have �I;J(G; f) = 2 and �I;J(G0; f 0) = 1. Hen
e, by Theorem 31,K(G; f) 6� K(G0; f 0) unless BH2(K) is �nite. Reversely, let I = f1g and J = f2; 3g. Then,�I;J(G0; f 0) = 3 and �I;J(G; f) = 2. Thus, again by Theorem 31, K(G0; f 0) 6� K(G; f) unlessBH2(K) is �nite.Theorem 29 and Theorem 31 suggest that a stri
t boolean hierar
hy of sets is suÆ
ient toestablish Embedding Theorems. However, there are 
lasses for whi
h the Embedding Theoremdoes not hold though they have a stri
t boolean hierar
hy. A very prominent example is the
lass RE. Clearly, the re
ursively enumerable sets are 
losed under interse
tion and union and
ontain ; and ��. The stri
tness of the boolean hierar
hy of the re
ursively enumerable setsgoes ba
k to Ershov [12℄.Theorem 33 The Embedding Theorem for the re
ursively enumerable sets does not hold.Proof. Let (G; f) be the left 3-latti
e and (G0; f 0) be the right 3-latti
e in Figure 6. Obviously,(G; f) 6� (G0; f 0). However, it holds that RE(G; f) � RE(G0; f 0). To prove this we use thefollowing well-known property of the re
ursively enumerable sets (
f., e.g., [35℄): For all re
ur-sively enumerable sets A and B there are r e
ursively enumerable sets C � A and D � B withC [D = A [B and C \D = ;.Now let (G; f; S) 2 RE(G; f). By the 
laim above there are sets C;D 2 RE with C [ D =S(a) [ S(b), C \D = ;, C � S(a), and D � S(b). Sin
e a RE-homomorphism on latti
es onlydepends on its values on the meet-irredu
ible elements, it is enough to de�ne S0 on G0 asS0(a0) =def C; S0(b0) =def D; S0(
0) =def C \ S(b); and S0(d0) =def D \ S(a):23
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Figure 7: Counterexample to the mind-
hange te
hniqueClearly, it holds that S0(
0) � S0(a0), S0(d0) � S0(b0), and S0(a0) \ S0(b0) = ; = S0(
0) \ S0(d0).Moreover we have the following:(G0; f 0; S0)2 = TS0(a0) [ TS0(0G0) = TS0(a0) = S0(a0) n S0(
0) = C n (C \ S(b))= (C [ S(b)) n S(b) = (S(a) [ S(b)) n S(b) = S(a) n (S(a) \ S(b))= S(a) n S(0G) = TS(a) = (G; f; S)2The remaining equalities 
an be shown similarly to the equality of the se
ond 
omponent. Thisgives (G; f; S) = (G0; f 0; S0). Hen
e, (G; f; S) 2 RE(G0; f 0). ❑Most re
ently Selivanov [34℄ gave a 
omplete 
hara
terization of the boolean hierar
hy of parti-tions over re
ursively enumerable sets whi
h is based on a 
oarser embedding relation �0 than we
onsider. With respe
t to that relation�0, for the 3-latti
es in Figure 6 it holds (G; f) �0 (G0; f 0).Up to this theorem, all results so far hold for arbitrary 
lasses with some simple 
losure proper-ties. The forth
oming now makes use of the very nature of the 
lass NP. As we have seen evenan in�nite boolean hierar
hy of sets is not suÆ
ient to invert the Embedding Lemma. Sin
ethe 
ollapse of the boolean hierar
hy over NP implies the 
ollapse of the polynomial hierar
hy(
f. [24℄) the following 
onje
ture seems to be reasonable.Embedding Conje
ture. Assume the polynomial hierar
hy is in�nite. Let (G; f) and (G0; f 0)be k-latti
es. Then NP(G; f) � NP(G0; f 0) if and only if (G; f) � (G0; f 0).To provide eviden
e for the Embedding Conje
ture we formulate in Subse
tion 7.2 a theorem(Theorem 50) whi
h shows that the 
onje
ture is true for a mu
h larger sub
lass of k-latti
esthan tou
hed by Theorem 31 in
luding all 2-latti
es (Corollary 49) and moreover, all k-
hains(Theorem 47). Furthermore, the 3-latti
es in Figure 6 turn out to be not a 
ounterexample forthe 
lass NP. This is proven in Subse
tion 7.3.7.2 Eviden
e I: The Case of k-ChainsWe establish theorems that show that the Embedding Conje
ture is true for a very large sub
lassof k-latti
es based on di�eren
es in the 
hain stru
ture of the latti
es. In Theorem 31 di�eren
es
on
erning the mind 
hanges in k-
hains are 
onsidered. However, the theorem is not generalenough to 
over all k-
hains. As an example 
onsider the two 3-
hains in Figure 7. Let (G; f)24



be the left and (G0; f 0) be the right 3-
hain. On the one hand, it is easy to 
al
ulate that�I;J(G; f) = �I;J(G0; f 0) for all I; J � f1; 2; 3g with I \ J = ;. On the other hand, obviously(G; f) 6� (G0; f 0) and (G0; f 0) 6� (G; f). So in order to support the Embedding Conje
turewe have to prove that NP(G; f) 6� NP(G0; f 0) as well as NP(G0; f 0) 6� NP(G; f) unless thepolynomial hierar
hy is �nite. In this subse
tion we will see how to do this. Proving su
htheorems, we dete
t some normal forms of (hypotheti
al) in
lusions between partition 
lassesenabling us a generalization of the easy-hard arguments developed by Kadin (
f. [24℄) to the
ontext of partition 
lasses.7.2.1 Partition Classes De�ned by ChainsWe �rst emphasize some simpli�
ations and pe
uliarities of partition 
lasses over labeled 
hains.As long as no further 
onditions are needed we 
onsider general 
lasses K with ;;M 2 K andthat are 
losed under interse
tion and �nite union. Partition 
lasses over labeled 
hains are
hara
terized by as
ending 
hains of sets from K.We identify a k-
hain (G; f) in a natural way with a word in f1; 2; : : : ; kgjGj, namely withf(a1)f(a2) : : : f(an) when a1 < a2 < � � � < an, ai 2 G, and n = kGk. Words representingk-
hains are 
alled k-words.The relation � over k-latti
es translates to a subword relation between k-words. For that, wesay that a k-word a is repetition-free if and only if ai 6= ai+1 for all 1 � i < n. For an arbitraryk-word a its repetition-free version a� is the word emerging from a when repeatedly repla
ingea
h o

urren
e of ss to s, where s 2 f1; 2; : : : ; kg. Now, we 
an say that a � b for k-words a; bif and only if a� is a subword of b. We say a � b whenever a � b and b � a. If a and b arerepetition-free k-words then a � b is equivalent to a = b. Obviously, the relation � for k-words
orresponds with the relation � for k-
hains. Repetition-free k-words 
orrespond to minimalk-
hains. Dual k-
hains 
orrespond to reverse words.There are some notations to bed adapted to k-words. Let a k-word a be given. Then a K-homomorphism S on a is just a K-homomorphism on (f1; 2; : : : ; jajg; a), the partition (a; S)generated by S is the partition (f1; 2; : : : ; jajg; a; S), and, �nally, K(a) = K(f1; 2; : : : ; jajg; a).Here we have identi�ed the k-word a with the fun
tion a : f1; 2; : : : ; jajg ! f1; 2; : : : ; kg givenby a(i) = ai.If two k-words are 
omparable with respe
t to �, there are possibly many monotoni
 mappingswitnessing the relation. This ambiguity is often disadvantageous. So we 
onsider the 
anoni
alembedding, mapping every letter of a k-word to the least possible letter in the other k-word.De�nition 34 Let a and a0 be k-words, k � 1. The 
anoni
al embedding �[a; a0℄ of a into a0 isa mapping from f0; 1; 2; : : : ; jajg to f0; 1; 2; : : : ; ja0jg indu
tively de�ned as �[a; a0℄(0) =def 0 andfor j > 0 as �[a; a0℄(j) =def min� r �� r � �[a; a0℄(j � 1) ^ aj = a0r 	where min; is 
onsidered to be unde�ned.If there is no reason for misunderstanding, then we omit [a; a0℄ in the des
ription of the 
anoni
alembedding. 25



Proposition 35 Let a and a0 be k-words. Then, a � a0 if and only if the 
anoni
al embedding� of a into a0 is total.Canoni
al embeddings make it possible to determine normal forms for K-homomorphisms wit-nessing in
lusions between partition 
lasses.Lemma 36 Let a and a0 be repetition-free k-words. Let � be the 
anoni
al embedding of a intoa0. If K(a) � K(a0), then for every K-homomorphism S on a there is a K-homomorphism S0 ona0 su
h that (a; S) = (a0; S0) and S(j) � S0(�(j)) for all j 2 D�.Proof. Sin
e K(a) � K(a0), there is a K-homomorphism V on a0 with (a; S) = (a0; V ). We meetthe 
onvention that S(0) = ; and V (0) = ;. De�ne S0 for all j � ja0j asS0(j) =def V (j) [ S� max�(s)�j s� :Obviously, S0 is an K-homomorphism on a0 with S(j) � S0(�(j)) for j 2 D�. It remainsto show (a; S) = (a0; S0). We 
onsider the partition (a0; S0) individually for every 
omponenti 2 f1; 2; : : : ; kg. Fix a 
omponent i, and 
onsider TS0(j) for j � ja0j with a0j = i. We have twodi�erent 
ases.� Case 1. Suppose �(s) < j < �(s+ 1) for an appropriate s, or �(maxD�) < j. Then,TS0(j) = S0(j)nS0(j � 1) = (V (j) [ S(s)) n (V (j � 1) [ S(s)) = (V (j)nV (j � 1)) nS(s)� TV (j):Hen
e, TS0(j) � TV (j) � (a0; V )i = (a; S)i.� Case 2. Suppose j = �(s) for an appropriate s. Then,TS0(j) = S0(j)nS0(j � 1) = (V (j) [ S(s)) n (V (j � 1) [ S(s� 1))= [(V (j)nV (j � 1)) nS(s� 1)℄ [ [(S(s)nS(s� 1)) nV (j � 1)℄ � TV (j) [ TS(s):Sin
e as = a0�(s) = a0j = i, we obtain TS0(j) � TV (j) [ TS(s) � (a0; V )i [ (a; S)i = (a; S)i:Overall, we have shown (a0; S0)i � (a; S)i for every i. Sin
e (a0; V ) and (a; S) are partitions, weget the equalities (a0; S0)i = (a; S)i. Thus, (a0; S0) = (a; S). ❑7.2.2 Hardest In
lusionsIt is our goal to prove the �niteness of the polynomial hierar
hy in 
ase of having an in
lusionbetween partition 
lasses whi
h should not be true if the Embedding Conje
ture would hold.For the boolean hierar
hy BH2(NP) it suÆ
es to 
onsider the in
lusion NP(m) � 
oNP(m) form 2 IN+ or, in terms of 2-words, NP(1212 : : :| {z }m+1 ) � NP(2121 : : :| {z }m+1 ):26



The very simple stru
ture of BH2(NP), trivially, yields the following: If for any m 2 IN+there is an n < m with NP(m) � NP(n), or there is an l � m with NP(m) � 
oNP(l), thenNP(m) � 
oNP(m). Again, in terms of 2-words, that means: Let a be a repetition-free 2-word.If for a there is an a0 with a 6� a0 and NP(a) � NP(a0), then NP(a) � NP(a). Note that for su
ha0 it holds ja0j � jaj. For k-words with k > 2 this length 
ondition is not true. For instan
e,
onsider 123 and 1(31)m2 for arbitrary m 2 IN+. Then, 123 6� 1(31)m2, but j1(31)m2j 
anbe arbitrarily large. Can we nevertheless identify short k-words with hardest in
lusions to be
onsidered?In the following we give a positive answer to this question. To do that we need two lemmas.Lemma 37 K(a) = 
oK(aR) for all k-words a.Proof. Follows from Theorem 18. ❑Lemma 38 Let a and a0 be repetition-free k-words, k � 2. Let � be the 
anoni
al embedding ofa into a0. Let r 2 D� so that ai 6= ar for all i > r. If K(a) � K(a0), then K(a) � K(a00) wherea00 emerges from a0 when deleting from a0 all the letters a0j with j > �(r) and a0j = ar.Proof. Let (a; S) 2 K(a) forK-homomorphism S on f . By Lemma 36, there is a K-homomorphismS0 on a0 with (a; S) = (a0; S0) and S(j) � S0(�(j)) for all j 2 D�. It suÆ
es to show TS0(j) = ;for all j > �(r) with a0j = ar. Let ar = b. Sin
e a0j = ar = b, it holds TS0(j) � (a0; S0)b =(a; S)b � S(r). Hen
e, S0(j) � S(r) [ S0(j � 1) � S0(�(r)) [ S0(j � 1) � S0(j � 1): The latterholds be
ause j > �(r). Thus, S0(j) = S0(j � 1), and 
onsequently, TS0(j) = ;. ❑Now we are able to prove the theorem whi
h identi�es short k-words of at most the double ofthe length of a given k-word, but with a hard in
lusion property.Theorem 39 Let a be any repetition-free k-word of length n, k � 2. If there is a repetition-freek-word a0 with a 6� a0 and K(a) � K(a0) then K(a1a2 : : : an) � K(a2a1a3a2 : : : anan�1):Proof. Let a0 be a k-word su
h that a 6� a0 and K(a) � K(a0). First we will transform a0 intoa k-word of a 
ertain stru
ture preserving the in
lusion. Note that inserting new letters in a0preserves K(a) � K(a0). Sin
e a 6� a0, it holds thata0 = w1a1w2a2w3 : : : wiaiwi+1 with wj 2 �f1; 2; : : : ; kg n fajg�� and i < n:De�ne the k-word b0 by appending ai+1ai+2 : : : an�1 to a0 and then inserting a2; a3; : : : ; an intothe new k-word as follows:b0 =def w1a2a1w2a3a2w3 : : : wn�1anan�1wn:Note that it holds that a 6� b0. By Lemma 38 we 
an simplify the words wj . We 
an setb00 =def v1a2a1v2a3a2v3 : : : vn�1anan�1vn with vi 2 fai+1; ai+2; : : : ang� and vn = ";27



i.e., for all i, vi is de�ned to be wi without the letters from f1; 2; : : : ; kg n fai; ai+1; : : : ; ang.Using Lemma 37 and again Lemma 38, we 
an also simplify the words vi. Let b000 be de�ned asb000 =def u1a2a1u2a3a2u3 : : : un�1anan�1with ui 2 �fa1; a2; : : : ; ai�1g \ fai+1; ai+2; : : : ; ang�� and u1 = ":Making all subwords ai�1uiai+1 repetition-free (note that this implies a1u2a3 � a1a3 andan�2un�1an � an�2an), we get the repetition-free k-word b de�ned asb =def a2a1a3a2z3a4a3z4 : : : zn�2an�1an�2anan�1with zi 2 �fa1; a2; : : : ; ai�1g \ fai+1; ai+2; : : : ; ang�� for i 2 f3; 4; : : : ; n� 2g:In the remainder we will always suppose this k-word b. Note that b satis�es the 
onditions thata 6� b and K(a) � K(b). Let � be the 
anoni
al embedding of a into b. Let m = jbj. It holdsthat �(1) = 2 and �(n� 1) = m. We de�ne �0 as �0(j) = �(j � 1)� 1 for all j 2 f2; : : : ; ng. LetS be any K-homomorphism on a. Sin
e K(a) � K(b), and due to Lemma 36, there exists a K-homomorphism V on b su
h that (a; S) = (b; V ) and S(j) � V (�(j)) for all j 2 f1; 2; : : : ; n�1g.De�ne a mapping S0 for j 2 f1; 2; : : : ;mg asS0(j) =def � V (j) if j 2 f1; 2;m � 1;mg;(V (j) \ S(r)) [ V (2) if j > 2 and �0(r) � j < �0(r + 1):It holds that S0 : f1; 2; : : : ;mg ! K and S0(j) � S0(j + 1) for 1 � j < m, i.e., S0 is a K-homomorphism on b. Moreover, S0 satis�es the following 
onditions:1. For all j 2 f1; : : : ;mg, if j 62 R� [R�0 , then TS0(j) = ;,2. (a; S) = (b; S0).Note that proving these two fa
ts is suÆ
ient for the theorem be
ause of the equalities �0(j) =�(j � 1)� 1 for all j 2 f2; 3; : : : ; ng.1. Let j 62 R� [ R�0 . Then, 2 = �(1) < j < �0(n), i.e., there is an r su
h that �0(r) < j <�0(r + 1). Consequently,TS0(j) = S0(j) n S0(j � 1) = ((V (j) \ S(r)) [ V (2)) n ((V (j � 1) \ S(r)) [ V (2))= ((V (j) n V (j � 1)) \ S(r)) n V (2) � TV (j) \ S(r):Let q be maximal with �(q) < j and aq = bj . Let s be minimal with j < �0(s) andas = bj . The existen
e of both q and s is assured due to the stru
ture of b. Then, we haveTS0(j) � TV (j) \ S(r) � TV (j) \ S(s � 1). Moreover, as�1 6= bj sin
e a is repetition-free.The statement would be proven if we would know the following:(�) There is no t with q < t < s and bj = aq = at = as.Using (�) we 
an 
on
lude: If x 2 TS0(j), i.e., x 2 S(s�1) and x 62 V (j�1), then x 62 TS(i)for all q < i � s�1. Hen
e x 2 S(q) � V (�(q)) � V (j�1). This is a 
ontradi
tion. Thus,TS0(j) = ;. 28



It remains to prove (�). Assume the 
ontrary to be true, i.e., there exists a t with q < t < sand bj = aq = at = as. Then we have three 
ases yielding 
ontradi
tions. The 
ase j � �(t)
ontradi
ts the maximality of q and q 6= t. The 
ase j � �0(t) 
ontradi
ts the minimalityof s and s 6= t. In the 
ase �0(t) < j < �(t) we 
on
lude �(t� 1)� 1 < j < �(t) and, sin
ej =2 R�, �(t� 1) < j < �(t). But now, it holds that bj 6= b�(t) = at, 
ontradi
ting bj = at.Hen
e the assumption is false, i.e., su
h a t does not exist.2. It suÆ
es to show TS0(j) � (a; S)i for every j with bj = i. So, let j be so that bj = i.There are two 
ases, j 2 R�0 and j 62 R�0 .� Case j 2 R�0 . If j = �0(2) = �(1) � 1 = 1, then TS0(j) = TV (j) � (b; V )i = (a; S)i.So, let j = �0(r) for r > 2, i.e., j > 2 and i = bj = ar. Then,TS0(j) = S0(j) n S0(j � 1) = ((V (j) \ S(r)) [ V (2)) n ((V (j � 1) \ S(r � 1)) [ V (2))= ((V (j) \ S(r)) n (V (j � 1) \ S(r � 1))) n V (2)� ((V (j) n V (j � 1)) \ S(r)) [ ((S(r) n S(r � 1)) \ V (j � 1)) � TV (j) [ TS(r)� (b; V )i [ (a; S)i = (a; S)i:� Case j 62 R�0. If additionally j 62 R�, then by 1:, TS0(j) = ; � (a; S)i. So, let j 2 R�.If j = 2 = �(1) or j = m = �(n � 1), then TS0(j) = TV (j) � (b; V )i = (a; S)i. Itremains to argue for 2 = �(1) < j < �(n� 1). Then we have,TS0(j) = S0(j) n S0(j � 1) = ((V (j) \ S(r)) [ V (2)) n ((V (j � 1) \ S(r)) [ V (2))= ((V (j) n V (j � 1)) \ S(r)) n V (2) � TV (j) � (b; V )i = (a; S)i:
❑Note that a1a2 : : : an 6� a2a1a3a2 : : : anan�1 for every repetition-free k-word a = a1 : : : an. The-orem 39 gives, e.g., that for the 3-word 123 it is enough to 
ollapse the polynomial hierar
hyfrom NP(123) � NP(2132). Moreover, Theorem 39 is in some sense optimal. For repetition-free2-words a, it holds ai = ai+2. Hen
e, for a = a1 : : : an, we have a2a1a3a2 : : : anan�1 � a.7.2.3 The Embedding Theorem for k-ChainsWe now prove the Embedding Conje
ture true for k-words. First, we determine 
omplete NP-partitions for partition 
lasses over k-words with a useful indu
tive stru
ture.De�nition 40 Let L � ��. For any k-word a with jaj = n � 2 and an�1 6= an, the partitionLa is de�ned as follows1. If n = 2, then for all i 2 f1; 2; : : : ; kg,Lai =def 8<: L if i = a1;L if i = a2;; if i 62 fa1; a2g: 29



2. If n > 2, then for all i 2 f1; 2; : : : ; kg,Lai =def � � hx1; x2; : : : ; xn�1i �� x1 2 L _ hx2; x3; : : : ; xn�1i 2 La2a3 :::ani 	 if i = a1;� hx1; x2; : : : ; xn�1i �� x1 62 L ^ hx2; x3; : : : ; xn�1i 2 La2a3 :::ani 	 if i 6= a1:Easy indu
tive arguments show that La is really a partition. We need the de�nition of �pm-redu
tion for partitions: For k-partitions A and B it holds A �pm B i� there is a fun
tionf 2 FP su
h that 
A(x) = 
B(f(x)) for all x 2 ��.Theorem 41 Let L be a �pm-
omplete problem for NP. For any k-word a with jaj = n � 2 andan�1 6= an, the partition Lf is �pm-
omplete for the partition 
lass NP(a).Proof. It is obvious that La is in NP(a). The proof of hardness is by indu
tion over the lengthn of k-words. The base of indu
tion n = 2 is obvious. So suppose the proposition is true forall k-words of length n and 
onsider an arbitrary partition A 2 NP(a) for a k-word a of lengthn+ 1, i.e., there is an NP-homomorphism S on a su
h thatAa1 = S(1) [ [aj=a1j>2 S(j)nS(j � 1) and for i 6= a1; Ai = [aj=iS(j)nS(j � 1):Clearly, S is also an NP-homomorphism on a2a3 : : : an+1, and the de�ned partition A0 belongsto NP(a2a3 : : : an+1). Thus, sin
e a2a3 : : : an+1 is a k-word of length n, by the assumption ofthe indu
tion, A0 �pm La2a3:::an+1 via ' 2 FP. Further, S(1) �pm L via t 2 FP. De�ne  as (x) =def ht(x); (�n�11 Æ ')(x); (�n�12 Æ ')(x); : : : ; (�n�1n�1 Æ ')(x)i:Clearly,  2 FP, and taking into a

ount that S(1) � S(2) � � � � � S(n+ 1), it holds thatx 2 Aa1 () x 2 S(1) or x 2 [aj=a1j>2 S(j)nS(j � 1)() t(x) 2 L _ '(x) 2 La2a3:::an+1a1()  (x) 2 Laa1and for i 6= a1, x 2 Ai () x 62 S(1) and x 2 [aj=iS(j)nS(j � 1)() t(x) 62 L ^ '(x) 2 La2a3:::an+1i()  (x) 2 Lai :Hen
e,  shows A �pm La. This 
ompletes the indu
tion. ❑We apply the easy-hard te
hnique invented by Kadin [24℄ to 
ollapse the polynomial hierar
hyfrom a 
ollapse of the boolean hierar
hy BH2(NP). The proof 
onsists of two parts that 
an beisolated.In the �rst part of the proof, an in
lusion NP(m) � 
oNP(m) for some m 2 IN+ is translateddownwards to the previous level m � 1 using a spe
ial polynomial advi
e 
alled hard word.30



Indu
tively, this 
an even be translated to the lowest level NP � 
oNP=poly where the poly-nomial advi
e is just a tuple of hard words. The se
ond part of the proof uses this in
lusionNP � 
oNP=poly to 
ollapse the polynomial hierar
hy to its third level [41℄. This part has beenimproved many times in sophisti
ated ways to a deeper 
ollapse (
f. [19, 33℄) by a dire
t use ofhard words.Both parts of the proof are di�erently re
e
ted by de�nitions. The 
on
ept of hard sequen
esplays the 
ru
ial role for the �rst part.De�nition 42 [24℄ Let L � ��. Let m 2 IN, n 2 IN+, and h : �� ! ��. A tuple h!1; : : : ; !jiis said to be a hard sequen
e for (L;m; n; h) if and only if either j = 0 or1. 1 � j � n� 1,2. j!j j � m,3. !j 62 L,4. (�nj+1 Æ h)(h!1; : : : ; !j ; xj+1; : : : ; xni) 62 L for all xj+1; : : : ; xn 2 ��m,5. h!1; : : : ; !j�1i is a hard sequen
e for (L;m; n; h).We 
all j the order of a hard sequen
e h!1; : : : ; !ji. A hard sequen
e h!1; : : : ; !ji for (L;m; n; h)is said to be a maximal hard sequen
e for (L;m; n; h) if and only if for all !j+1 2 ��, the tupleh!1; : : : ; !j ; !j+1i is not a hard sequen
e for (L;m; n; h).Note that hard sequen
es do always exist independently from the parameters 
hosen, namely,at least hard sequen
es of order 0. Hen
e, maximal hard sequen
es do always exist as well.A se
ond 
on
ept 
entral to 
ollapsing the polynomial hierar
hy in the 
ontext of the easy-hardte
hnique is that of a twister. The de�nition of a twister builds up on the 
on
ept of maximalhard sequen
es.De�nition 43 Let L � �� and let n 2 IN+. A fun
tion h : �� ! �� is said to be an (L; n)-twister if and only if h 2 FP and for all m 2 IN and for all x 2 ��m, if h!1; ; : : : ; !ji is amaximal hard sequen
e for (L;m; n; h), then there are xj+2; : : : ; xn 2 ��m su
h thatx 62 L() (�nj+1 Æ h)(h!1; : : : ; !j ; x; xj+2; : : : ; xni) 2 L:The following result is the deepest 
ollapse of the polynomial hierar
hy 
urrently known to followfrom the existen
e of some twisters. Note that twisters appear only impli
itely in the literature[19, 33℄.Lemma 44 [19, 33℄ Let L be �pm-
omplete for NP. Let n 2 IN+. If there exists an (L; n)-twisterthen PH = �p2(n� 1)�NP(n).The next theorem generalizes the easy-hard te
hnique to the 
ase of partitions. This theoremis the key to the Embedding Theorem for k-
hains.31



Theorem 45 Let k � 2. Let a and a0 be k-words with jaj = ja0j = n � 2, an�1 6= an, a0n�1 6= a0n,and ai 6= a0i for all i � n. If NP(a) � NP(a0), then PH = �p2(n� 2)�NP(n� 1).Proof. Let L be a �pm-
omplete set for NP. Thus, by assumption NP(a) � NP(a0), there is apolynomial-time 
omputable fun
tion h whi
h witnesses the redu
tion La �pm La0 . We will showthat h is an (L; n� 1)-twister. For that, we �rst have to prove the following 
laim.Claim. If h!1; : : : ; !ji is a hard sequen
e for (L;m; n�1; h), then for all xj+1; : : : ; xn�1 2 ��mand for all a 2 f1; 2; : : : ; kg,hxj+1; : : : ; xn�1i 2 Laj+1:::ana() (h�n�1j+1 ; : : : ; �n�1n�1i Æ h)(h!1; : : : ; !j; xj+1; : : : ; xn�1i) 2 La0j+1:::a0na :This 
laim 
an be proven indu
tively on the order j of hard sequen
es. The base of indu
tionj = 0 is just our given situation NP(a) � NP(a0). So, let h!1; : : : ; !j; !j+1i be a hard sequen
e for(L;m; n�1; h). Thus, !j+1 62 L and for all xj+2; : : : ; xn�1 2 ��m it holds that (�n�1j+1 Æh)(h!1; : : : ;!j; !j+1; xj+2; : : : ; xn�1i) 62 L. Hen
e, for b = aj+1,hxj+2; : : : ; xn�1i 2 Laj+2:::anb() !j+1 2 L or hxj+2; : : : ; xn�1i 2 Laj+2:::anb() h!j+1; xj+2; : : : ; xn�1i 2 Laj+1:::anb (sin
e b = aj+1)() (h�n�1j+1 ; : : : ; �n�1n�1i Æ h)(h!1; : : : ; !j ; !j+1; xj+2; : : : ; xn�1i) 2 La0j+1:::a0nb (by indu
tion hypothesis)() (�n�1j+1 Æ h)(h!1; : : : ; !j ; !j+1; xj+2; : : : ; xn�1i) 62 L and(h�n�1j+2 ; : : : ; �n�1n�1i Æ h)(h!1; : : : ; !j ; !j+1; xj+2; : : : ; xn�1i) 2 La0j+2:::a0nb(sin
e b 6= a0j+1)() (h�n�1j+2 ; : : : ; �n�1n�1i Æ h)(h!1; : : : ; !j ; !j+1; xj+2; : : : ; xn�1i) 2 La0j+2:::a0nb :Now, 
onsider b = a0j+1. Then we 
on
ludehxj+2; : : : ; xn�1i 2 Laj+2:::anb() !j+1 62 L and hxj+2; : : : ; xn�1i 2 Laj+2:::anb() h!j+1; xj+2; : : : ; xn�1i 2 Laj+1:::anb (sin
e b 6= aj+1)() (h�n�1j+1 ; : : : ; �n�1n�1i Æ h)(h!1; : : : ; !j ; !j+1; xj+2; : : : ; xn�1i) 2 La0j+1:::a0nb (by indu
tion hypothesis)() (�n�1j+1 Æ h)(h!1; : : : ; !j ; !j+1; xj+2; : : : ; xn�1i) 2 L or(h�n�1j+2 ; : : : ; �n�1n�1i Æ h)(h!1; : : : ; !j; !j+1; xj+2; : : : ; xn�1i) 2 La0j+2:::a0nb(sin
e b = a0j+1)() (h�n�1j+2 ; : : : ; �n�1n�1i Æ h)(h!1; : : : ; !j ; !j+1; xj+2; : : : ; xn�1i) 2 La0j+2:::a0nb :32



For the remaining 
ase, let b 62 faj+1; a0j+1g. Thenhxj+2; : : : ; xn�1i 2 Laj+2:::anb() !j+1 62 L and hxj+2; : : : ; xn�1i 2 Laj+2:::anb() h!j+1; xj+2; : : : ; xn�1i 2 Laj+1:::anb (sin
e b 6= aj+1)() (h�n�1j+1 ; : : : ; �n�1n�1i Æ h)(h!1; : : : ; !j ; !j+1; xj+2; : : : ; xn�1i) 2 La0j+1:::a0nb (by indu
tion hypothesis)() (�n�1j+1 Æ h)(h!1; : : : ; !j ; !j+1; xj+2; : : : ; xn�1i) 62 L and(h�n�1j+2 ; : : : ; �n�1n�1i Æ h)(h!1; : : : ; !j; !j+1; xj+2; : : : ; xn�1i) 2 La0j+2:::a0nb(sin
e b 6= a0j+1)() (h�n�1j+2 ; : : : ; �n�1n�1i Æ h)(h!1; : : : ; !j ; !j+1; xj+2; : : : ; xn�1i) 2 La0j+2:::a0nb :This 
ompletes the indu
tion, and thus, the 
laim is proved.Now, we prove that h is an (L; n� 1)-twister, i.e., we have to show: If h!1; : : : ; !ji is a maximalhard sequen
e for (L;m; n� 1; h), then for all xj+1 2 ��m there are xj+2; : : : ; xn�1 2 ��m su
hthat xj+1 62 L() (�n�1j+1 Æ h)(h!1; : : : ; !j; xj+1; : : : ; xn�1i) 2 L:There are di�erent 
ases depending on the order j of the maximal hard sequen
e. If j = n�2 > 0,then the assertion redu
es exa
tly to the 
laim above, having in mind that an�1 6= a0n�1. Ifj < n � 2, then for every xj+1 2 ��m, the sequen
e h!1; : : : ; !j; xj+1i is not a hard sequen
e,sin
e h!1; : : : ; !ji is maximal. Consequently, xj+1 2 L or there are xj+2; : : : ; xn�1 2 ��m with(�n�1j+1 Æ h)(h!1; : : : ; !j ; xj+1; xj+2; : : : ; xn�1i) 2 L. Hen
e, xj+1 62 L implies the latter 
ase. Thisproves the dire
tion from left to right. Conversely, the 
laim shows for all xj+2; : : : ; xn�1 2 ��mand b = a0j+1 6= aj+1xj+1 62 L and hxj+2; : : : ; xn�1i 2 Laj+2:::anb() (�n�1j+1 Æ h)(h!1; : : : ; !j ; xj+1; xj+2; : : : ; xn�1i) 2 L or(h�n�1j+2 ; : : : ; �n�1n�1i Æ h)(h!1; : : : ; !j; xj+1; xj+2; : : : ; xn�1i) 2 La0j+2:::a0nb :Now, if there are xj+2; : : : ; xn�1 2 ��m with (�n�1j+1 Æ h)(h!1; : : : ; !j; xj+1; xj+2; : : : ; xn�1i) 2 L,then xj+1 62 L. Thus, h is an (L; n � 1)-twister, and using Lemma 44 we obtain the statementdesired. ❑Theorem 46 merges hardest in
lusions and the pre
eding theorem, yielding a upper bound forthe polynomial hierar
hy 
ollapse in 
ase of unlikely in
lusions of partition 
lasses over k-words.Theorem 46 Let a be any repetition-free k-word with k � 2. Let Æa = kfi j ai = ai+2gk. If thereis a k-word a0 with a 6� a0 and NP(a) � NP(a0), then PH = �p2(2jaj� Æa�4)�NP(2jaj� Æa�3).Proof. For any k-word z = z1 : : : zn, de�ne the k-word ẑ to be the repetition-free version of theword z2z1z3z2 : : : znzn�1. Clearly, it holds jẑj = 2jzj � Æz � 2.33



Let w be a shortest repetition-free k-subword of a with w 6� a0. Then, it holds jŵj � jâj. This
an be seen as follows: Assume that w emerges from a when only deleting the j-th letter in aand making the remainder repetition-free. Then, Æw � Æa � 2 (by 
onsidering the worst 
aseaj�2 = aj , aj�1 = aj+1, and aj = aj+2). Thus,jŵj � 2(jaj � 1)� Æw � 2 � 2jaj � (Æa � 2)� 4 = 2jaj � Æa � 2 = jâj:By indu
tion, we obtain jŵj � jâj for arbitrary repetition-free k-subwords of a.Be
ause of w 6� a0 and NP(w) � NP(a) � NP(a0), it holds NP(w) � NP(ŵ) by Theorem 39.Let � be the 
anoni
al embedding of w into ŵ. Let jwj = n and jŵj = m. Then, it holdsjD�j = n� 1. Consider the k-word w0 de�ned for all j � m byw0j =def � wr if �(r � 1) � j < �(r);wn if j � �(n� 1):Sin
e jwj � jŵj, the k-word w0 is well-de�ned. Moreover, the following fa
ts are 
learly true.1. jw0j = jŵj = m,2. w0 � w,3. w0m 6= w0m�1 (for ŵ this is true due to repetition-freeness).In order to meet the assumptions of Theorem 45, it remains to prove w0j 6= ŵj for all j � m.Assume the 
ontrary to be true, i.e., there is a j � m su
h that w0j = ŵj. Let s be maximalwith �(s � 1) � j. Then, w0j = ws and 
onsequently, �(s) = j. But this is a 
ontradi
tion tothe repetition-freeness of w, if j = �(s� 1), or to the de�nition of the 
anoni
al embedding �, ifj > �(s� 1) and s 2 D�, or to w 6� ŵ, if j > �(s� 1) and s = n. Hen
e, w0j 6= ŵj for all j � m.Now we 
an apply Theorem 45. Consequently, from our assumption NP(w0) = NP(w) � NP(ŵ),we obtain PH = �p2(jŵj � 2)�NP(jŵj � 1) � �p2(jâj � 2)�NP(jâj � 1). ❑Summarizing all we have done so far we state the Embedding Theorem for k-
hains as the formal
on�rmation of the Embedding Conje
ture for k-
hains.Theorem 47 (Embedding Theorem for NP with respe
t to k-
hains.) Assume thatthe polynomial hierar
hy is in�nite. Let (G; f) and (G0; f 0) be k-
hains with k � 2. Then,(G; f) � (G0; f 0) if and only if NP(G; f) � NP(G0; f 0):Proof. Without loss of generality, let a and a0 be repetition-free k-words representing (G; f) and(G0; f 0). The dire
tion from left to right is just the Embedding Lemma. For the other dire
tion,let a 6� a0. Suppose NP(a) � NP(a0). Then by Theorem 46, the polynomial hierar
hy is �nite
ontradi
ting our assumption. Hen
e, NP(a) 6� NP(a0). ❑We get on
e more that the Embedding Conje
ture is generally true for 2-latti
es. This is a
onsequen
e of Theorem 47 and the following simple proposition.Proposition 48 Every 2-latti
e is equivalent to its longest 
hain with alternating labels 1 and2.Corollary 49 Assume the polynomial hierar
hy is in�nite. For 2-latti
es (G; f) and (G0; f 0) itholds that NP(G; f) � NP(G0; f 0) if and only if (G; f) � (G0; f 0).34



7.2.4 An Extension to k-Latti
esIn the pre
eding we have proved the Embedding Theorem for k-
hains. Now we apply thistheorem in order to get validity of the Embedding Conje
ture for a large sub
lass of generalk-latti
es.Theorem 50 Assume that the polynomial hierar
hy is in�nite. Let (G; f) and (G0; f 0) be k-latti
es. If NP(G; f) � NP(G0; f 0), then every minimal k-sub
hain of (G; f) o

urs as a k-sub
hain of (G0; f 0).Proof. Let NP(G; f) � NP(G0; f 0). Assume there is k-sub
hain (C; 
), identi�ed with the k-word
, su
h that (C; 
) 6� (G0; f 0). Let d1; : : : ; dm be all k-words representing longest repetition-freek-sub
hains of (G0; f 0), and let �j be the 
anoni
al embedding of 
 into dj . Let r denote themaximum of D�1 [ � � � [D�m . De�ne z to be the following k-wordz =def d1�1(0)+1 : : : d1�1(1)�1d2�2(0)+1 : : : d2�2(1)�1 : : : dm�m(0)+1 : : : dm�m(1)�1
1 �� d1�1(1)+1 : : : d1�1(2)�1d2�2(1)+1 : : : d2�2(2)�1 : : : dm�m(1)+1 : : : dm�m(2)�1
2 �� : : : �� d1�1(r�1)+1 : : : d1�1(r)�1d2�2(r�1)+1 : : : d2�2(r)�1 : : : dm�m(r�1)+1 : : : dm�m(r)�1
r:Clearly, 
 6� z and dj � z for all j 2 f1; 2; : : : ;mg. We prove NP(G0; f 0) � NP(z). For that, itsuÆ
es to show (G0; f 0) � (f1; 2; : : : ; jzjg; z). We de�ne a mapping ' : G0 ! f1; 2; : : : ; jzjg forx 2 G0 as follows'(x) =def _e represents a 
hain through x ^j with e�dj (�[dj ; z℄ Æ �[e; dj ℄)(x):We have to prove that ' is monotoni
 and f 0(x) = z'(x). The latter is obviously true by
onstru
tion of '. For the monotoni
ity, let x; y 2 G0 with x � y. Consider e representing a
hain through x. Sin
e the value '(x) only depends on 
hain up to x, without loss of generalitywe 
an suppose e to represent a 
hain additionally going through y and we 
an suppose j tobe so that (�[dj ; z℄ Æ �[e; dj ℄)(y) is minimal for all (�[di; z℄ Æ �[e; di℄)(y) with e � di. Hen
e,'(x) � (�[dj ; z℄ Æ �[e; dj ℄)(y) � '(y), and thus, ' is monotoni
. Now we have a situationNP(
) � NP(G; f) � NP(G0; f 0) � NP(z) but 
 6� z. Consequently, by Theorem 47, this is
ontradi
tion to the stri
tness of the polynomial hierar
hy. Hen
e, our assumption was false,and every repetition-free k-sub
hain of (G; f) is also a k-sub
hain of (G0; f 0). ❑As an example, Theorem 50 easily gives that the 3-latti
es in Figure 2 and Figure 3 de�nein
omparable partition 
lasses over NP, unless the polynomial hierar
hy is �nite.7.3 Eviden
e II: Beyond ChainsAssume that the polynomial hierar
hy does not 
ollapse. By Theorem 50, if the k-latti
e (G; f)has a minimal k-sub
hain whi
h is not a k-sub
hain of the k-latti
e (G0; f 0) then NP(G; f) 6�NP(G0; f 0). 35



af(a) f(
)
bf(b)
Figure 8: The upper triangleBut what about k-latti
es whi
h have the same minimal k-sub
hains? For example, take the 3-latti
es (G; f) and (G0; f 0) represented in Figure 6, that have been used to vitiate the EmbeddingTheorem for re
ursively enumerable sets. Sin
e (G; f) 6� (G0; f 0) the Embedding Conje
ture saysthat NP(G; f) 6� NP(G0; f 0). However, Theorem 50 does not help to show this be
ause ea
hsub
hain of (G; f) o

urs in (G0; f 0).In the following we will see that we 
an prove theorems similar to Theorem 50 for some simplesubstru
tures other than sub
hains. In parti
ular, we get from Theorem 54 that for the 3-latti
es(G; f) and (G0; f 0) in Figure 6, NP(G; f) 6� NP(G0; f 0) unless the polynomial hierar
hy is �nite.7.3.1 The Upper TriangleThe �rst stru
ture we investigate is the upper triangle as presented in Figure 8. The main resultwith respe
t to upper triangles is Theorem 52. The key to prove this theorem is the followinglemma. The proof of this lemma is inspired by a work of Hemaspaandra et al. [20℄.Lemma 51 If for all sets A;B 2 NP there exist sets C;D 2 NP su
h that C [ D = ��,C � B n A, and D � A nB, then NP = 
oNP.Proof. Suppose that the premise of the lemma is true. Consider the sets A and B de�ned asA =def � hF1; F2i �� F1 2 Satisfiability 	B =def � hF1; F2i �� F2 2 Satisfiability 	Obviously, A and B belong to NP. The supposition implies that there are NP sets C and D withC [D = ��, C � B nA, and D � A n B. Let M1 and M2 be nondeterministi
 polynomial-timeTuring ma
hines a

epting C and D, i.e., L(M1) = C and L(M2) = D.Re
all that for a formula H, H 2 Satisfiability if and only if H0 2 Satisfiability orH1 2 Satisfiability.Let M1 �M2 be that ma
hine that on an input hF1; F2i �rst simulates M1 on F1 (ending withresult �) and then simulates M2 on F2 (ending with result �). Consider M1 �M2 on an inputhH0;H1i for a propositional formula H along an arbitrary 
omputation path.� Case (�; �) = (1; 1). That is hH0;H1i 2 C \D � B n A \ A n B = (A \B) [A [B:{ If hH0;H1i 2 A \B, then H;H0;H1 2 Satisfiability.{ If hH0;H1i 2 A [B, then H;H0;H1 62 Satisfiability.36



All in all, H 2 Satisfiability() H0 2 Satisfiability:� Case (�; �) = (1; 0). That is, we know hH0;H1i 2 C and we assume moreover, hH0;H1i 2C nD = E [ F [G, where E � A [B, F = A n B, and G � A \B.{ If hH0;H1i 2 E � A [B, then H;H0;H1 62 Satisfiability.{ If hH0;H1i 2 G � A \B, then H;H0;H1 2 Satisfiability.{ If hH0;H1i 2 F = A n B, then H;H0 2 Satisfiability.All in all, H 2 Satisfiability() H0 2 Satisfiability:� Case (�; �) = (0; 1). Analogous arguments as for (�; �) = (1; 0) showH 2 Satisfiability() H1 2 Satisfiability:� Case (�; �) = (0; 0). Sin
e C [D = �� there is always an a

epting path. Thus this 
aseis irrelevant.De�ne M to be a ma
hine that on input H works in the following way: M simulates M1 �M2on hH0;H1i to answer the question H 2 Satisfiability. M reje
ts along 
omputation pathswith result (0; 0). Along a 
omputation path with result (1; 1) or (1; 0), M simulates M1 �M2on input hH00;H01i to answer the question H0 2 Satisfiability. Along paths with (0; 1), Msimulates M1 �M2 on (H10;H11) to answer the question H1 2 Satisfiability. Continuing inthis way we obtain after n simulations ofM1�M2 where n is number of variables inH a questionH�0�1:::�n 2 Satisfiability. Answer this question with negation of H�0�1:::�n . Clearly,M runsin polynomial time and L(M) = Satisfiability. Hen
e, Satisfiability 2 
oNP. ❑Theorem 52 Assume that NP 6= 
oNP. Let (G; f) and (G0; f 0) be k-latti
es with k � 3.If NP(G; f) � NP(G0; f 0) then all k-subposets in (G; f) having the form as in Figure 8 withpairwise di�erent labels f(a), f(b), and f(
) do also o

ur in (G0; f 0).Proof. Let (G; f) and (G0; f 0) be k-latti
es. Suppose that NP(G; f) � NP(G0; f 0). Suppose thatthere exists a k-subposet of (G; f) as des
ribed in Figure 8. So let fa; b; 
g � G be su
h thata < b, 
 < b, a and 
 are in
omparable, and kff(a); f(b); f(
)gk = 3. Be
ause of Proposition 30,without loss of generality we 
an assume that f(a) = 1, f(b) = 2, and f(
) = 3. The proof is by
ontradi
tion. That is, we assume to the 
ontrary that there exist no a0; b0; 
0 2 G0 with a0 < b0,
0 < b0, f 0(a0) = 1, f 0(b0) = 2, and f 0(
) = 3.Let A and B be arbitrary sets in NP. De�ne a mapping S : G! NP for all z 2 G asS(z) =def 8>>>><>>>>: �� if z � b;A [B if z � a; z � 
; and z 6� b;A if z � a and z 6� 
;B if z 6� a and z � 
;A \B if z 6� a and z 6� 
:37



It is easily seen that S is an NP-homomorphism on G and that TS(0G) = A\B, TS(a) = A nB,TS(
) = B n A, and TS(b) = A [B. Depending on the value f(0G) we have several k-partitionsde�ned by (G; f) and S. Without loss of generality, we 
an assume that f(0G) 2 f1; 2; 3; 4g.This gives the following four k-partitions:(G; f; S) = 8>>><>>>: � A; A [B; B n A; ;; ;; : : : ; ;� if f(0G) = 1�A n B; (A \B) [A [B; B n A; ;; ;; : : : ; ;� if f(0G) = 2�A n B; A [B; B; ;; ;; : : : ; ;� if f(0G) = 3�A n B; A [B; B n A; A \B; ;; : : : ; ;� if f(0G) = 4Sin
e NP(G; f) � NP(G0; f 0) there is an NP-homomorphism S0 onG0 with (G; f; S) = (G0; f 0; S0).We 
onsider the following sets of elements of G0:U1 =def � z 2 G0 �� f 0(z) = 2 ^ (8x; x � z)[f 0(x) 6= 3℄ 	;U3 =def � z 2 G0 �� f 0(z) = 2 ^ (8x; x � z)[f 0(x) 6= 1℄ 	:Sin
e there exist no a0; b0; 
0 2 G0 with a0 < b0, 
0 < b0, f 0(a0) = 1, f 0(b0) = 2, and f 0(
) = 3, itholds that U1 [ U3 = � z 2 G0 �� f 0(z) = 2 	. De�ne sets C and D asC =def A [ [z2U1 S0(z) and D =def B [ [z2U3 S0(z):Clearly, C;D 2 NP. Moreover the following is true:1. C [D = ��,2. C � B nA,3. D � A nB.This 
an be veri�ed as follows:1. Let x =2 �Sz2U1 S0(z)� [ �Sz2U3 S0(z)�. Then x =2 (G0; f 0; S0)2. We 
on
lude(G0; f 0; S0)2 = (G0; f 0; S0)1 [ (G0; f 0; S0)3 [ (G0; f 0; S0)4= (G; f; S)1 [ (G; f; S)3 [ (G; f; S)4 � A [B:Thus, x 2 A [B. Hen
e, for all x 2 �� we have that x 2 C [D.2. Obviously, A � B n A. Furthermore,[z2U1 S0(z) � (G0; f 0; S0)1 [ (G0; f 0; S0)2 [ (G0; f 0; S0)4= (G; f; S)1 [ (G; f; S)2 [ (G; f; S)4 = (G; f; S)3 � B n A:Consequently, C � B n A.3. Analogous argumentation as for the se
ond statement.Sin
e A and B were arbitrarily 
hosen, we 
an apply Lemma 51. This implies that NP = 
oNP.Hen
e, a 
ontradi
tion. ❑38



af(a) f(
)
bf(b)Figure 9: The lower triangle7.3.2 The Lower TriangleThe stru
ture dual to the upper triangle is the lower triangle presented in Figure 9. Althoughthe proof of Theorem 54 whi
h is here the main result similar to Theorem 52 uses the dualityof the stru
tures, the key lemma for establishing the theorem works di�erent to Lemma 51.Interestingly, we are not able to prove the strong 
onsequen
e that NP is 
losed under 
omple-mentation as in Lemma 8 but only by taking polynomial advi
e. The proof involves te
hniquesof Ko [26℄ and Hemaspaandra et al. [21℄.Lemma 53 If for all sets A;B 2 NP there exist sets C;D 2 NP su
h that AnB � C, BnA � D,and C \D = ;, then NP � 
oNP=poly.Proof. Suppose that the premise of the lemma is true. Let L 2 NP. De�ne the sets A and B asfollows: A =def � hx; yi �� minfx; yg 2 L 	B =def � hx; yi �� maxfx; yg 2 L 	The supposition implies that there are NP sets C and D with A n B � C, B n A � D, andC \D = ;. On an intuitive level, if x � y, then \hx; yi 2 C" means \if y 2 L then x 2 L", and\hx; yi 2 D" means \if x 2 L then y 2 L".Let n0 2 IN be the smallest number su
h that L\��n0 is non-empty. Let n � n0 be an arbitrarynatural number. We 
onstru
t a set Sn that will serve as an advi
e for strings of length � n.De�ne for z 2 ��n the set B(z) asB(z) =def � x 2 ��n �� [x 6= z ^ (x < z ! hx; zi 2 C) ^ (z < x! hx; zi 2 D)℄ _(x < z ^ hx; zi =2 C [D) 	:If G � L \��n, then for all x; z 2 G with x 6= z either x 2 B(z) or z 2 B(x). This givesXz2G kB(z) \Gk = �kGk2 � for all G � L \ ��n: (3)For a set G � ��n, let yG be a word in G su
h that kB(yG)\Gk � kB(x)\Gk for all x 2 G. We
onsider a 
ertain sequen
e of sets fG1; G2; : : : g. In parti
ular, we are interested in the wordsyGj . Let yj denote yGj . Then for all j 2 IN+, the sets Gj are indu
tively de�ned as follows:G1 =def L \ ��n if j = 1Gj =def Gj�1 n �fyj�1g [B(yj�1)� if j � 2:39



The following 
an be shown by indu
tive arguments:kGjk � kG1k2j�1 for all j 2 IN+: (4)For j = 1, this obvious. For j � 2, using Equation (3) we easily observe thatkB(yj�1) \Gj�1k � kGj�1k � 12 :Thus we 
an 
on
ludekGjk � kGj�1k ��1 + kGj�1k � 12 � � kGj�1k2 � kG1k2j�1 :From Equation (4) it immediately follows that there is a smallest r su
h that for all s � r,Gs = ;. It holds that r � 2 + log2 kG1k � 2 + log2 2n+1 � n+ 3: Now let Sn be the setSn =def fy1; y2; : : : ; yr�1g:Thus, kSnk � n+ 2. Moreover, we obtain that Sn � L and that for all x 2 ��n, it holds:� If x 2 L then there is an y 2 Sn su
h that exa
tly one of the following statements is true:{ x = y or{ if x < y then hx; yi 2 C, and if y < x then hx; yi 2 D, or{ x < y and hx; yi =2 C [D.� If x =2 L then it holds that for all y 2 Sn, all of the following statements are true:{ x 6= y and{ if x < y then hx; yi 2 D and{ if y < x then hx; yi 2 C.From this we 
an 
on
lude that for all x 2 ��n,x 2 L () there exists an y 2 Sn su
h that x = y or the following is true:if x < y then hx; yi =2 D; and if y < x then hx; yi =2 C:De�ne a set A0 as follows:A0 =def � hx; T i �� jxj � n0 ^ T � ��n ^ kTk � n+ 1 ^(9y 2 T )�x = y _ [(x < y ! hx; yi =2 D) ^ (y < x! hx; yi =2 C)℄� 	It is easily seen that A0 is in 
oNP. De�ne the advi
e fun
tion h ash(n) =def � Sn if n � n0;; if n < n0:Clearly, h has polynomial length in n, i.e., h 2 poly. Furthermore, we have that for all x 2 ��,x 2 L() hx; h(jxj)i 2 A0:Hen
e, L 2 
oNP=poly. ❑40



dba 
f(d)f(b)f(a) f(
)Figure 10: A next step towards resolution of the Embedding Conje
tureTheorem 54 Assume that the polynomial hierar
hy is in�nite. Let (G; f) and (G0; f 0) be k-latti
es with k � 3. If NP(G; f) � NP(G0; f 0) then all k-subposets in (G; f) having the form asin Figure 9 with pairwise di�erent labels f(a), f(b), and f(
) do also o

ur in (G0; f 0).Proof. Let (G; f) and (G0; f 0) be k-latti
es. Suppose that NP(G; f) � NP(G0; f 0). Supposethat there exists a k-subposet of (G; f) as des
ribed in Figure 9. So let fa; b; 
g 2 G be su
hthat a > b, 
 > b, a and 
 are in
omparable, and kff(a); f(b); f(
)gk = 3. We assume to the
ontrary that there exist no a0; b0; 
0 2 G0 with a0 > b0, 
0 > b0, f 0(a0) = f(a), f 0(b0) = f(b), andf 0(
) = f(
).Theorem 18 implies that 
oNP(G� ; f) � 
oNP(G0� ; f 0). Thus, our situation translates exa
tlyto the situation in Theorem 52 with respe
t to 
oNP. Following the proof of Theorem 52 weobtain that for all sets A;B 2 
oNP, there exist sets C;D 2 
oNP with C [D = ��, C � B n A,and D � A nB. This easily implies that for all sets A;B 2 NP, there exist sets C;D 2 NP su
hthat C \D = ;, A n B � C, and B n A � D. By Lemma 53, it follows that NP � 
oNP=poly,hen
e the polynomial hierar
hy is �nite. Thus we have a 
ontradi
tion. ❑From Theorem 54 we easily see that, assuming an in�nite polynomial hierar
hy, NP(G; f) 6�NP(G0; f 0) for (G; f) being the left 3-latti
e and (G0; f 0) being the right 3-latti
e in Figure 6.So the 
ounterexample to the Embedding Theorem for re
ursively enumerable sets is not a
ounterexample to the Embedding Conje
ture.7.4 Next Steps Towards ResolutionAll the theorems we proved in the last subse
tions to support the Embedding Conje
ture are ofthe following shape:Assume the polynomial hierar
hy is in�nite. Let (G; f) and (G0; f 0) be k-latti
es. IfNP(G; f) � NP(G0; f 0) then all k-subposets of (G; f) having a 
ertain pattern P doalso o

ur in (G0; f 0).The patterns for whi
h the a

ording theorem holds are 
hains, lower, and upper triangles.Progress towards an aÆrmative resolution of the 
onje
ture means to enlarge this 
lass of pat-terns. Be
ause the previous theorems all need di�erent proof te
hniques we have not been ableto learn very mu
h from these solutions. It will be important to prove new patterns step by step.The pattern whi
h is the next 
andidate to be resolved is pi
tured in Figure 10. The diÆ
ult
ase is f(b) = f(
) and f(b) =2 ff(a); f(d)g. Referen
e issues 
an be found in the followingse
tion. 41



Figure 11: S
heme of all boolean 3-latti
es of the form (f1; 2g3; f) with f(1; 1; 1) = 18 On the Stru
ture of BH3(NP)Assume the Embedding Conje
ture is true and an in�nite polynomial hierar
hy. Then thestru
ture of the boolean hierar
hy of k-partitions with respe
t to set in
lusion is identi
al withthe partial order of �-equivalen
e 
lasses of k-latti
es with respe
t to �. To get an idea of the
omplexity of the latter stru
ture we will now present the partial order of all equivalen
e 
lassesof 3-latti
es whi
h in
lude a boolean 3-latti
e of the form (f1; 2g3; f) with surje
tive f (fornon-surje
tive f these k-latti
es do not really de�ne 3-partitions). The 5796 di�erent boolean3-latti
es of the form (f1; 2g3; f) with surje
tive f are in 132 di�erent equivalen
e 
lasses.Figure 11 shows the partial order of the 44 equivalen
e 
lasses whi
h 
ontain boolean 3-latti
esof the form (f1; 2g3; f) su
h that f(1; 1; 1) = 1. The 
ases f(1; 1; 1) = 2 and f(1; 1; 1) = 3 yieldisomorphi
 partial orders. A line from equivalen
e 
lassG up to equivalen
e 
lassG' means that(G; f) < (G0; f 0) for every (G; f) 2 G and (G0; f 0) 2 G'. We emphasize that su
h a study wouldbe intra
table without the possibility to present boolean k-latti
es by equivalent k-latti
es. All3-latti
es in equivalen
e 
lasses framed by the same dotted line have the same minimal labeledsub
hains.Figure 12 shows the middle part and Figure 13 shows the right part of the partial order in Figure11. In both diagrams, ea
h equivalen
e 
lass is represented by the minimal 3-latti
e. The leftpart of the partial order in Figure 11 is symmetri
 to the right part where the labels 2 and 3
hange their role.Theorem 55 Assume the polynomial hierar
hy is in�nite. If in Figure 12 and Figure 13 thereis a thi
k line from 
lass G up to 
lass G' then NP(G; f) � NP(G0; f 0) for every (G; f) 2 Gand (G0; f 0) 2 G'.Every \thi
k line" in this theorem is an appli
ation of Theorem 50 besides the one's marked by^ or _ whi
h are just Theorem 52 (for ^) and Theorem 54 (for _).42
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Figure 14: The 3-latti
e L(m;n) for m;n 2 INAt the end of this se
tion we mention that the boolean hierar
hy of 3-partitions over NP doesnot have bounded width with respe
t to set in
lusion unless the polynomial hierar
hy 
ollapses.Proposition 56 Assume that the polynomial hierar
hy is in�nite. For every m 2 IN there existat least m partition 
lasses in BH3(NP) that are in
omparable with respe
t to set in
lusion.Proof. Let m 2 IN. We de�ne m 3-
hains that are in
omparable with respe
t to �. LetGm = (f1; 2; : : : ;mg;�) be the 
hain with the natural order on f1; 2; : : : ;mg. For every i 2f1; 2; : : : ;mg let f im : Gm ! f1; 2; 3g be the fun
tion de�ned asf im(j) = 8<: 1 if (j < i and j is odd) or (j > i and j is even);2 if (j < i and j is even) or (j > i and j is odd);3 if j = i:It is easy to see that for all i; j 2 Gm with i 6= j the 3-latti
es (Gm; f im) and (Gm; f jm) arein
omparable with respe
t to �. Sin
e the polynomial hierar
hy is supposed to be stri
t, by theEmbedding Theorem for NP with respe
t to k-
hains (Theorem 47) we obtain that all generatedpartition 
lasses are pairwise in
omparable with respe
t to set in
lusion. ❑In fa
t, if the Embedding Conje
ture is true and the polynomial hierar
hy is stri
t then theboolean hierar
hy of 3-partitions has an in�nite subfamily of partition 
lasses that are pairwisein
omparable with respe
t to set in
lusion. Even worse, under this assumption, BH3(NP) is notwell founded with respe
t to set in
lusion then there exist in�nite des
ending 
hains of partition
lasses. For instan
e, 
onsider the family of all 3-latti
es L(m;n) for m;n 2 IN as depi
ted inFigure 14. One 
an easily observe the following fa
ts:1. If an n 2 IN is �xed then for all m 2 IN it holds L(m;n) > L(m + 1; n). Hen
e wehave an in�nite des
ending 
hain of 3-latti
es thus indu
ing an in�nite des
ending 
hainof partition 
lasses.2. For allm;n 2 IN withm 6= n it holds that L(m;m) 6� L(n; n) and L(n; n) 6� L(m;m). Thisgives the in�nite anti
hain of 3-latti
es, hen
e an in�nite anti
hain of partition 
lasses.45



9 Ma
hines That A

ept PartitionsIn this se
tion we will see how the partitions of 
lasses in the boolean hierar
hy of k-partitionsover NP 
an be a

epted in a natural way by nondeterministi
 polynomial-time ma
hines witha notion of a

eptan
e whi
h depends on the generating fun
tions.De�nition 57 For m 2 IN+ a polynomial-timem-ma
hineM is a nondeterministi
 polynomial-time ma
hine produ
ing on every 
omputation path an element from the set f0; 1; : : : ;mg. Foran input x let M(x) =def � i 6= 0 �� there exists a path of M on x with result i 	:Obviously, a polynomial-time 1-ma
hine is an ordinary nondeterministi
 polynomial-time ma-
hine. All the sets Li(M) =def � x �� there exists a path of M on x with result i 	 are in NPand we obtain M(x) = fi j x 2 Li(M)g and 
Li(M)(x) = 
M(x)(i) for all x.De�nition 58 For a fun
tion f : P(f1; : : : ;mg) ! f1; : : : ; kg and a polynomial-time m-ma
hine M let (M;f) be the k-partition de�ned by 
(M;f)(x) = f(M(x)) for all x 2 ��.Note that every fun
tion f : P(f1; 2; : : : ;mg) ! f1; 2; : : : ; kg 
an also be 
onsidered to bethe fun
tion f : f1; 2gm ! f1; 2; : : : ; kg and vi
e versa by the relationships f(a1; : : : ; am) =f(fi j ai = 1g) for a1; : : : ; am 2 f1; 2g and f(A) = f(
A(1); : : : ; 
A(m)) for A � f1; 2; : : : ;mg.Theorem 59 NP(f) = � (M;f) �� M is a polynomial-time m-ma
hine 	 for all m 2 IN+ andall fun
tions f : f1; 2gm ! f1; 2; : : : ; kg.Proof. To show the forwards in
lusion let B1; : : : ; Bm 2 NP. There are nondeterministi
polynomial-time ma
hines M1; : : : ;Mm su
h that Mi a

epts Bi for i 2 f1; 2; : : : ;mg. De�ne Mto be a nondeterministi
 polynomial-time ma
hine whi
h simulates M1; : : : ;Mm in parallel butwhen simulating Mi it outputs i rather than 1. Obviously, for all i 2 f1; 2; : : : ;mg, Li(M) = Biand we 
on
lude
f(B1 ;:::;Bm)(x) = f(
B1(x); : : : ; 
Bm(x)) = f(
L1(M)(x); : : : ; 
Lm(M)(x))= f(
M(x)(1); : : : ; 
M(x)(m)) = f(M(x)) = 
(M;f)(x):For the in
lusion \�" 
onsider a polynomial-time m-ma
hine M and 
on
lude
(M;f)(x) = f(M(x)) = f(
M(x)(1); : : : ; 
M(x)(m)) = f(
L1(M)(x); : : : ; 
Lm(M)(x))= 
f(L1(M);:::;Lm(M))(x):
❑Finally, we dis
uss 
ompleteness for the partition 
lasses NP(f). We will see that it is easy to
onstru
t from an arbitrary NP-
omplete problem a problem whi
h is 
omplete for NP(f).We already used the notion of many-one redu
tions for partitions. We say that the k-partitionA is polynomial-time many-one redu
ible to the k-partition B (for short A �pm B) if and onlyif there exists a polynomial-time 
omputable fun
tion g su
h that 
A(w) = 
B(g(w)) for all w.Note that in the 
ase k = 2 this yields exa
tly the 
lassi
al notion of polynomial-time many-oneredu
ibility for sets.From Theorem 59 we easily obtain the following:46



Proposition 60 Let k � 2. All 
lasses in BHk(NP) and BCk(NP) are 
losed under �pm.A k-partition A is �pm-
omplete for a partition 
lass C (whi
h is 
losed under �pm) if and onlyif A 2 C and B �pm A for every k-partition B 2 C. Re
all that �mj denote proje
tions of anen
oded word w = hw1; : : : ; wmi. For a set A � �� and a fun
tion f : f1; 2gm ! f1; 2; : : : ; kgde�ne the k-partition A(f) by
A(f)(w) =def f((
A Æ �m1 )(w)(
A Æ �m2 )(w) : : : (
A Æ �mm)(w)) for all w 2 ��:Theorem 61 Let f : f1; 2gm ! f1; 2; : : : kg with k � 2. Let A be �pm-
omplete for NP. ThenA(f) is �pm-
omplete for NP(f).Proof. De�ning Ai =def � w �� �mi (w) 2 A 	 for i 2 f1; 2; : : : ;mg we obtain Ai 2 NP. For everyw 2 �� we 
on
lude
A(f)(w) = f((
A Æ �m1 )(w) : : : (
A Æ �mm)(w)) = f(
A1(w) : : : 
Am(w)) = 
f (A1; : : : ; Am):Consequently, A(f) = f(A1; : : : ; Am) 2 NP(f).Now take any B1; : : : ; Bm 2 NP. Sin
e A is �pm-
omplete for NP there exist polynomial-time
omputable fun
tions g1; : : : ; gm su
h that for every i 2 f1; 2; : : : ;mg, w 2 Bi , gi(w) 2 A.De�ning g(w) =def hg1(w); : : : ; gm(w)i for every w 2 ��, we 
an 
on
lude
f(B1;:::;Bm)(w) = f(
B1(w); : : : ; 
Bm(w)) = f((
A Æ g1)(w); : : : ; (
A Æ gm)(w))= f((
A Æ �m1 Æ g)(w); : : : ; (
A Æ �mm Æ g)(w)) = 
A(f)(g(w)):Hen
e f(B1; : : : ; Bm) �pm A(f). ❑As a natural example of 
omplete partition, 
onsider the 
lassi�
ation problem Entailment wehave extensively dis
ussed in the introdu
tory 
hapter.Theorem 62 Entailment is �pm-
omplete for NP(f) where f : f1; 2g2 ! f1; 2; 3; 4g is thefun
tion de�ned as f(1; 1) = 1, f(1; 2) = 2, f(2; 1) = 3, and f(2; 2) = 4.Proof. Obviously, Entailment is in NP(f). Consider the partition Satisfiability(f) whi
his �pm-
omplete for NP(f) by Theorem 61. More expli
itly:Satisfiability(f)1 = � hF1; F2i �� H1 2 Satisfiability;H2 2 Satisfiability 	;Satisfiability(f)2 = � hF1; F2i �� H1 2 Satisfiability;H2 =2 Satisfiability 	;Satisfiability(f)3 = � hF1; F2i �� H1 =2 Satisfiability;H2 2 Satisfiability 	;Satisfiability(f)4 = � hF1; F2i �� H1 =2 Satisfiability;H2 =2 Satisfiability 	:We have to show that Satisfiability(f) �pm Entailment. This redu
tion is seen by thefollowing algorithm. On input hF1; F2i, make the sets of variables in F1 and in F2 disjoint, taketwo new variables z1 and z2 not involved in F1 or F2, and output hF 01; F 02i where F 01 =def z1 ^F1and F 02 =def z2 ^F2. Obviously, the algorithm runs in polynomial time. Moreover, we have thatF 01 j= F 02 () F 01 =2 SatisfiabilityF 02 j= F 01 () F 02 =2 Satisfiability:Thus hF1; F2i 2 Satisfiability(f)i , hF 01; F 02i 2 Entailmenti for all i 2 f1; 2; 3; 4g. ❑47



14 32 1234Figure 15: Classes with 
omplete partitions having 
omponents of same 
omplexitiesProving 
ompleteness results for entire partitions instead of only for the 
omponents allows �nerdistinguishing the 
omplexity of 
lassi�
ation problems. Obviously, 
ompleteness translates fromthe partition to the 
omponents: If the k-partition A is �pm-
omplete for the partition 
lass Cthen for ea
h i 2 f1; : : : ; kg, Ai is �pm-
omplete for the 
lass Ci. The 
onverse dire
tion need notto hold as 
an be seen for the partition 
lasses that are des
ribed by the 4-latti
es in Figure 15.Ea
h 
lass belongs to BH4(NP), thus has 
omplete partitions. Entailment is just a 
ompletepartition for the 
lass generated by left 4-latti
e in the �gure. Let A be any �pm-
ompletepartition for the 
lass generated by the right 4-
hain. Then for all i 2 f1; 2; 3; 4g we haveEntailmenti �pm Ai but A does not redu
e to Entailment unless NP = 
oNP as followseasily from Theorem 31.10 Con
lusionIn the pre
eding se
tions, we have investigated the boolean hierar
hy of k-partitions over NP fork � 3 as a generalization of the boolean hierar
hy of sets (i.e., 2-partitions) over NP. Whereasthe stru
ture of the latter hierar
hy is rather simple the stru
ture of the boolean hierar
hy ofk-partitions over NP for k � 3 turned out to be mu
h more 
ompli
ated. We established theEmbedding Conje
ture whi
h enables us to get an overview on this stru
ture. This 
onje
turewas supported by several partial results. A 
omplete proof of or a 
ounterexample to the Em-bedding Conje
ture for NP are left to �nd. However, a 
ounterexample|two k-latti
es (G; f)and (G0; f 0) with (G; f) 6� (G0; f 0), but NP(G; f) � NP(G0; f 0)|may be hard to �nd sin
e morere
ently, it has been proven in [28℄ that the relation � indu
es a suÆ
ient and ne
essary 
riterionfor relativizable in
lusions.A
knowledgments. For helpful hints and dis
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