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Abstract

We introduce the boolean hierarchy of k-partitions over NP for k > 3 as a generalization
of the boolean hierarchy of sets (i.e., 2-partitions) over NP. Whereas the structure of the
latter hierarchy is rather simple the structure of the boolean hierarchy of k-partitions over
NP for k > 3 turns out to be much more complicated. We establish the Embedding Conjec-
ture which enables us to get a complete idea of this structure. This conjecture is supported
by several partial results.

Keywords. Computational complexity theory, classification problems, entailment, parti-
tions, boolean hierarchy, polynomial hierarchy, completeness, orders and lattices.

1 Introduction

To divide the real world into two parts like big and small, black and white, or good and bad
usually oversimplifies things. In most cases a partition into many parts is more appropriate.
For example, take marks in school, scores for papers submitted to a conference, salary groups,
or classes of risk. In mathematics, k-valued logic is just a language for dealing with k-valent
objects, and in the computer science field of artificial intelligence, this language has become
a powerful tool for reasoning about incomplete knowledge. In computational complexity for
instance, proper partitions, although not mentioned explicitly, emerge in connection with locally
definable acceptance types (cf. [23]).

“A preliminary version of this paper [29] was presented at the 17th Symposium on Theoretical Aspects of
Computer Science held in Lille, France, in February 2000.



Nevertheless, complexity theoreticians mainly investigate the complexity of sets, i.e., parti-
tions into two parts, or the complexity of functions, i.e., partitions into usually infinitely
many parts. Both extremes seem not appropriate for studying the computational complex-
ity of problems inherently being partitions into finitely many parts. If we study partitions
into at least three parts by means of encoding the components of partitions (e.g., as { (z,17) ‘
z 18 in the 4-th component }) then we may assume that many interesting phenomenons vanish
by the encoding. On the other side, though partitions can be considered as functions with finite
range, even the finite range allows combinatorial arguments because each component depends
only on the other finitely many components of the partition. We would lose this feature when
simply subsuming partitions under functions.

This paper studies, for the first time, systematically the computational complexity of partitions.
Herein we will follow the approach to collect “similar” problems in complexity classes and to
investigate relations among these classes. While complexity classes of sets represent decision
problems our complexity classes of partitions represent classification problems. Very important
classes of classification problems originate from questions concerning relations.

1.1 Classification and Decision Problems for Relations

Suppose that ~ is any binary relation on a basic set M. When giving an explicit definition of
~, we specify ~ in the following way: For two elements z,y € M, = ~ y if and only if some
definitional conditions hold for z and y. Thus the explicit specification of a relation has the
form of a decision problem. But once the relation ~ is fixed, the more natural question is to
determine for any given z and y how they behave with respect to ~: Is it true that both z ~ y
and y ~ z hold or only x ~ y holds or only y ~ z holds or is even nothing true? Questions of this
kind are significant in connection with, e.g., entailment issues as studied in automated reasoning,
database theory, and constraint programming, or congruence and isomorphism problems equally
of broad interest.

For a concrete example let us consider the entailment relation = for formulas of (two-valued)
propositional logic. For propositional formulas H and H' it is defined as

H = H' <=4 each satisfying assignment for H is a satisfying assignment for H'.

Given two arbitrary formulas there are the above four possible cases to classify according to
the behavior the formulas show with respect to ~p. We translate this into the partition
ENTAILMENT. The most natural way to define a partition is to fix its characteristic function.
For any partition A the characteristic function ¢4 says for every = to which component of A this
x belongs. So for any pair (H, H') of formulas we define

if H b= H' and H' | H,
if H: H' and H' = H,
if H=H' and H' £ H,
if Hi=H' and H' |= H.

/
CENTAILMENT(Ha H) —def

=W N

We should bring to mind that though the numbering of the cases to be distinguished is not
essential for the classification itself yet it leads to different partitions. We also should be aware
that for a collection of sets to be a partition it is not only necessary to have the pairwise
disjointness of all sets but also that each possible element must be contained in one of these sets.



Apparently there exist very close connections between ENTAILMENT and the decision problem
of whether H |= H' for given H and H'. Let us explain this in more detail. For we consider two
sets A and B that describe the decision problem formally: A is the set of all pairs (H, H') such
that H entails H' and B is the set of all pairs (H, H') such that H' entails H. The partition
ENTAILMENT and the sets A and B are intimately related in at least the following two ways:

1. Using the sets A and B the partition ENTAILMENT can be easily rewritten. So the first
component of ENTAILMENT, denoted by ENTAILMENT;, consists of all pairs of proposi-
tional formulas that do not belong to A or B. Opposite to this the fourth component of
ENTAILMENT, denoted by ENTAILMENTY, is nothing else than A N B. Since obviously A
and B are coNP-complete (note that H is a tautology if and only if HV —~H |= H) we eas-
ily observe that ENTAILMENT, is coNP-complete, whereas ENTAILMENT; is NP-complete.
Equally it is not hard to verify that both the second and the third component of the
entailment classification problem are complete for DP where DP [32] is the class of all set
differences of NP sets with NP sets.

2. The following generation principle is more fundamental. Let f be the function defined as
F0,00=1, f(0,1)=2, f(1,00=3, and f(1,1)=4. (1)

We immediately see that ENTAILMENT is exactly the partition being generated when f is
applied to the characteristic pair of the sets A and B. That means that for all propositional
formulas H and H' it holds that cgxrammext(H, H') = f(ca(H,H'),cg(H,H')). In this
manner the function f generates a whole class of partitions which we denote by coNP(f).
So ENTAILMENT belongs to the class coNP(f). In fact, it is one of the hardest among all
partitions in this class; it is in a sense complete for coNP(f).

Both junctures of the entailment classification problem with the entailment decision problem
make the boolean hierarchy over NP be involved in the study of complexity classes of partitions.
On the one hand, the classes NP, coNP, and DP occurring as classes reflecting the computational
difficulty of the projections of ENTAILMENT represent just the lowest levels of this complexity-
theoretic hierarchy. On the other hand, the generation principle we described above is precisely
the same as the one that generates the boolean hierarchy over NP at all.

1.2 The Boolean Hierarchy (of Sets) over NP

The boolean hierarchy over NP has been very extensively investigated in a series of papers, e.g.,
in [39, 10, 27, 8, 9, 7, 24, 38, 33]. Purely set-theoretically, the boolean hierarchy over a set
class is a very fundamental structure providing a detailed view on the closure of this class under
the boolean operations intersection, union, and complementation. The roots of such hierarchies
go back to Hausdorff [18] who observed normal forms of sets belonging to the boolean closure
of a set class. Underlining their great significance for computation theory, boolean hierarchies
have been studied for much more classes than NP such as for INP (or US) [17], UP [22], C_P
[16, 3], RP [4, 6], and partly for C_L [1] in complexity theory, for the recursively enumerable
sets [12, 13] in recursion theory, or for classes occurring in automata theory [37, 5, 14].

The most general way to define the boolean hierarchy over NP is as follows (see [39]): For a
boolean function f : {0,1}"" — {0,1}, which represents combinations of boolean operations,



and sets By,...,By, let f(Bi,...,By) denote the set whose characteristic function satisfies
that cy(p, ... B.)(¥) = f(eB, (2),...,cB, (z)) for all z. The class NP(f) consists of all sets
f(Bi,...,B,;) when varying the sets B; over NP. Up to the different ranges of functions and
the different base classes this is just the generation principle we have used above to obtain
a partition class capturing the complexity of ENTAILMENT. The boolean hierarchy over NP
consists of all these classes NP(f). Note that for the definition of the boolean hierarchy over
NP it does not make a difference if we take NP or coNP as the base class; we clearly prefer NP.
Wagner and Wechsung [39] have proved that every class NP(f) coincides with one of the classes
NP (i) or coNP(i) where NP(i) is the class of all sets which are the symmetric difference of 7 NP
sets and coNP(7) is the class of all complements of NP (i) sets. The family of these classes is also
known as the difference hierarchy [27]. Evidently, DP = NP(2).

It is not known whether the boolean hierarchy over NP is finite or equivalently, whether NP (7) =
coNP(7) for some i > 1. However, Kadin [24] succeeded to prove that a finite boolean hierarchy
over NP implies the finiteness of Meyer and Stockmeyer’s polynomial hierarchy [31, 36]; an event
which most researchers in computational complexity consider to be highly improbable.

1.3 The Boolean Hierarchy of k-Partitions over NP

Motivated by our example ENTAILMENT it is natural to introduce and to study the gener-
alization of the boolean hierarchy of sets over NP to the case of partitions into k parts (k-
partitions) for & > 3. Any set A is identified with the 2-partition (4, A). For a function
fAL2Y™ = {1,2,... .k} and sets By,..., B, we define a k-partition A = f(B1,...,Bp) by
the defining condition that c4(z) = f(cp, (z),...,cn,, (x)) for all . Note that the characteristic
functions here are characteristic functions of partitions (for a formal definition and explanation
of differences, see Section 2). The boolean hierarchy of k-partitions over NP consists of the
classes NP(f) =aer { f(B1,...,Bm) ‘ Bi,...,By € NP }. As we have seen by ENTAILMENT,
this hierarchy enables to measure the computational complexity of classification problems based
on relations for which the decision problems is in NP or coNP. The boolean hierarchy of sets
now appears in this hierarchy as the special case k = 2.

Whereas the boolean hierarchy of sets over NP has a very simple structure (note that NP (i) U
coNP(7) C NP(i + 1) N coNP(i 4+ 1) for all 4 > 1), the situation is much more complicated for
the boolean hierarchy of k-partitions in the case £ > 3. The main question is: Can we get an
overview on the structure of this hierarchy? This question is not answered completely so far,
but we will give partial answers, and we will establish a conjecture.

A function f : {1,2}™ — {1,2,...,k} which defines the class NP(f) of k-partitions corresponds
to the finite boolean lattice ({1,2}™, <) with the labeling function f where < means the vector-
ordering on the set of all m-tuples of {1,2}. Generalizing this idea we define for every finite
lattice G with labeling function f : G — {1,2,...,k} (for short: the k-lattice (G, f)) a class
NP(G, f) of k-partitions. This does not result in more classes: For every k-lattice (G, f) there
exists a finite function f’ such that NP(G, f) = NP(f’). However, the use of arbitrary lattices
instead of only boolean lattices simplifies many considerations. In particular every class in the
boolean hierarchy of k-partitions has a (essentially) unique description in terms of minimal k-
lattices. The above-mentioned difference hierarchy is just a special case of this description for
the boolean hierarchy of 2-partitions.



To get an idea of the structure of the boolean hierarchy of k-partitions over NP it is very
important to have a criterion to decide whether NP(G, f) C NP(G, f') for k-lattices (G, f) and
(G', f"). For that we define a relation < as follows: (G, f) < (G', f') if and only if there is a
monotonic ¢ : G — G’ such that f(z) = f'(¢(z)) for all z € G. The Embedding Lemma says
that (G, f) < (G, f') implies NP(G, f) C NP(G', f'), and the Embedding Conjecture expresses
our conviction that the converse is also true unless the polynomial hierarchy is finite.

For the Embedding Conjecture there exists much evidence. For k& = 2 we can, not surprisingly,
confirm this conjecture to be true. Moreover, we will give a theorem which enables us to verify
the Embedding Conjecture for k > 3 for a large class of k-lattices including all k-chains. The
proof of this theorem uses a new chain-technique that extends Kadin’s easy-hard arguments
(cf. [24]), developed for establishing the boolean and polynomial connection (for sets), to the
case of partitions. Further the conjecture holds true for two subclasses of k-lattices where the
chain-technique does not work. Here, two different proof techniques are needed that both are
inspired by results from the theory of selective sets in [20, 26, 21].

There is a machine-based approach to the boolean hierarchy of k-partitions over NP. Each
partition belonging to some class NP(f) can be accepted in a natural way by nondeterministic
polynomial-time machines with a notion of acceptance that depends on the function f. As
a consequence one can show that all these classes possess complete partitions with respect
to an appropriate many-one reduction. This reduction offers a translation of completeness
from the whole partition onto the components. For instance, since ENTAILMENT is complete
for coNP(f) with f as described in (1) we immediately obtain that each component of the
partition ENTAILMENT is complete for the component classes of coNP(f), i.e., ENTAILMENT;
is NP-complete, ENTAILMENT, and ENTAILMENT3 are NP(2)-complete, and ENTAILMENT is
coNP-complete, all as we have already discussed. However, there exists a partition, say A, which
is complete for another partition class such that all components of A are complete for the same
classes as the components of ENTAILMENT are, but A does not reduce to ENTAILMENT unless NP
is closed under complements (see Figure 15). This nicely illustrates that the study of partitions
allows finer distinctions between classification problems as in case of restricting investigations
to set encodings only.

1.4 Organization of the Paper

Section 2 contains the complexity-theoretical notions and notations that will be tacitly adopted
in the paper. In Section 3 we give a formal definition and some basic facts about the classes of the
boolean hierarchy of k-partitions over NP. The main goal of this paper is to gain an overview on
the structure of this hierarchy. To this end, in Section 4 we alternatively characterize partition
classes generated by finite functions in terms of labeled lattices. In Section 5 we study the relation
< on labeled lattices. In particular, it is shown that < induces a sufficient condition for inclusions
of partition classes. We further show in Section 6 that all classes in the boolean hierarchy of
k-partitions have (essentially) unique descriptions by minimal lattices. Section 7 contains the
derivation and discussion of the Embedding Conjecture which states that for k-lattices, being in
relation < is not only sufficient for inclusion but also necessary unless the polynomial hierarchy
is finite. A large part of this section is devoted to supporting the conjecture. Assuming the
Embedding Conjecture is true we give in Section 8 an instructive example of how complicated
the boolean hierarchy of k-partitions is already in the case k = 3. Finally, in Section 9 we present



a way to characterize partition classes generated by labeled lattices in terms of acceptance types
for nondeterministic machines. This leads to reducibility notions and completeness concepts.
This will be exemplified for ENTAILMENT.

2 Preliminaries

Sets. Let N = {0,1,2,...} and INy = {1,2,...}. The cardinality of an arbitrary finite set A
is denoted by ||A||. For sets A and B we use A\ B to denote the set-difference of A with B,
and we use AAB to denote the symmetric difference of A and B. For m > 1 let A™ denote the
m-fold cartesian product of A with itself.

Let P(M) be the power set of a fixed basic set M. For a set A C M, its complement in the
basic set M is denoted by A4, i.e., A = M \ A. The characteristic function c4 : M — {0,1} is
defined for all z € M as ca(x) =1 <=ger ¢ € A. Let K and K’ be classes of subsets of M, i.e.,
K,K' C P(M). We define

colC :def{Z‘AeK}, KAK =def{AﬂB‘A€K:,BEK:I},
KVK =g { AUB|A€K,BeK'}, K&K =4 {AAB|AcK,Bek }.

The classes K(i) and cofC(i) defined by IC(0) =ger {0} and (i 4 1) = K(7) ® K build the boolean
hierarchy over K that has many equivalent definitions (see [39, 10, 27, 8]).! Some of them can
be found in the following theorem.

Theorem 1 Let ), M € K, let K be closed under intersection and union, and let m € IN,..

1. K@em—-1)={ 4 UUT:_11(A23‘+1\A2]') | A1, ., Aoy €K and Ay C -+ C Ay ).

2. KK(2m) = { U, (Agj \ Asj_1) | Ay, Ao € K and Ay C -+ C Agp }.
3. K(2m) = K(2m — 1) A coK.

4. K@m +1) =K@2m) VK.

5. K(m+1) = cok(m) A K.

6. K(m+2)=K(m)V (KAcoK)=K(m)A(KVcoK).

7. K(m) UcoK(m) C K(m + 1) Ncok(m + 1).

BC(K) is the boolean closure of K, i.e., the smallest class which contains I and which is closed
under intersection, union, and complements.

Orders and Lattices. We need some notions from lattice theory and order theory (see e.g.,
[15, 11]). A pair (G, <) is a poset if < is a partial order on the set G. Usually, we talk about
the poset G. Where it is necessary we write (G, <) to specify the order. For a poset (G, <) the
poset (G,>) is the dual poset and is denoted by GP. A poset G is a chain if for all z,y € G

!Usually for K = NP, a level 0 is not considered in the way we do. The zero-level there is P. However for our
purposes it is more helpful to regard P not as an element of the boolean hierarchy (unless P = NP).



it holds that = < y or y < z (i.e., any two elements are comparable with respect to <), and a
poset G is an antichain if for all z,y € G it holds that x < y implies z = y (i.e., all elements are
pairwise incomparable with respect to <). A finite poset (G, <) is a lattice if for all z,y € G
there exist (a) exactly one maximal element z € G such that z < z and z < y (which will be
denoted by z Ay), and (b) exactly one minimal element z € G such that z > x and z > y (which
will be denoted by x V y). For a finite lattice G we denote by 15 the unique element greater
than or equal to all z € G and by 0O¢g the unique element less than or equal to all z € G. An
element = # 14 is said to be meet-irreducible iff x = a Ab implies z = a or z = b for all a,b € G.

Functions. Let M and M’ be any sets, and let f : M — M' be any function. The domain of f
is denoted by Dy. Foraset A C Dy, let f(A) = {f(z) | € A} and let f|4 denote the restriction
of f to A. In particular, the range of f which is denoted by Ry is f(Dy). The inverse of f is
denoted by f !, i.e, f': B — P(M) such that for ally € B, f '(y) ={z € M | f(z) =y}. If
f~'(y) is a singleton then we omit the braces. We use idys to denote the identity map on M given
by idas(z) = z for all z € M. Our use of the composition fo fis (f o f')(z) =qet f(f'(z)). If f
maps M to itself, then for m € N, f™ : M — M is the m-fold composition of f with itself. Let
M = {a,b} with a # b. Define @ = b and b = a. For any function f : M™ — M’ with m € IN,

let f? denote its dual function, that is, that function defined for all z = (z1,...,2,,) € M™ as
f2(z1,...,2m) =det f(TT,...,Tm). The vector (Z1,...,Tm) is denoted by Z.
Words. We will make no distinction between m-tuples (z1,...,zy,) over a finite set (alphabet)

M and words z1 ...z, of length m over M. We fix the finite alphabet ¥ = {0, 1} for considera-
tions about the input-output behavior of machines. More generally, let A be any finite alphabet.
A* is the set of all finite words that can be built with letters from A. For z,y € A*, z -y (or
xy for short) denotes the concatenation of x and y. The empty word is denoted by e. For a
given word © = x1 ... %, the reversed word x,,...x; is denoted by z®. For z € A*, |z| denotes
the length of z. For n € IN, AS" is the set of all words z € A* with |z| < n, and A=" is the
set of all words z € A* with |z| = n. If the alphabet A is ordered by <, then let <jx denote
the standard lexicographical order on A*, that is, for each z,y € A*, x <jx y if and only if (a)
z =y, (b) |z| <|y|, or (c) |z| = |y| and there is an i with z; = y; for all j € {1,...,7 — 1} but
z; < y;. Usually we consider words x and y of the same length n to be partially ordered by the
vector-ordering, that is, z <y iff z; < y; for all ¢ € {1,...,n}.

Basic Complexity Theory. The computational model we refer to is the standard Turing ma-
chine (for a formal description see, e.g., [40, 2]). We consider nondeterministic and deterministic
versions of Turing machines. A Turing machine that can produce outputs on a special output
tape is called a Turing transducer. We also consider Turing machines that have access to an
oracle. The notions translate accordingly to such oracle Turing machines. If we consider an
oracle Turing machine M accessing an oracle A then this is denoted by M4,

Polynomial-time Turing machines are Turing machines that for a fixed polynomial p, make
on every input z at most p(|z|) computation steps before reaching a final state. In case of
a nondeterministic polynomial-time Turing machine M, the set of all words accepted by M,
denoted by L(M), is the set of all words = € ¥* for which M, on input x, has at least one
computation path of at most p(|z|) steps of running, that ends in an accepting final state. NP
(P) is the class of all sets that are accepted by nondeterministic (deterministic) polynomial-time
Turing machines. NP? is the class of all sets that are accepted by nondeterministic polynomial-
time Turing machine accessing the set B. For a class K, NP* consists of all sets that belong to



NP? for some B € K. The polynomial hierarchy [31, 36] is inductively defined as follows.

S =aet P, 2, =aet NP¥#, and PH =4 | ] 37,

melN

D
m+

Let REC denote the class of all recursive sets, i.e., those sets that can be decided by deterministic
Turing machines. RE denotes the class of all recursively enumerable sets, i.e., the class of all
sets that are ranges of deterministic Turing transducers.

FP denotes the class of all functions that are computable by a deterministic polynomial-time
Turing transducer. We say that a set A C ¥* is polynomial-time many-one reducible to a set
B C ¥*, in symbols A <}, B, if and only if there exists a function f € FP such that for all
r€X*, 2 € A<= f(x) € B. A class K C P(X*) is closed under <}, if for all A, B C ©* it holds
that A <}, B and B € K imply that A € K. All classes in the polynomial hierarchy are closed
under <},. A set A is <h,-complete for K if A € K and B <%, A for all B € K. SATISFIABILITY,
denoting the set of all (encodings of) satisfiable propositional formulas, is an example of a set
<¥.-complete for NP.

We implicitly use the following correspondence val between %* and IN: For z € 3%, define
val(z) =qet |{y € £* | ¥ <iex }||- Note that val is polynomial-time computable and invertible.

It is often needed to encode tuples of words of * into one word of ¥*. Let (-, -)5 denote a standard
polynomial-time computable and polynomial-time invertible pairing function on finite words
(e.g., based on self-delimiting words; cf. [30]). This pairing function is used to define encodings
of arbitrary m-tuples as (z1,...,Zm) =det (M, (z1, (.., (Tm—1,Zm)2...)2)2)2. Conversely, if
a word (z1,...,Zy,) € X* is given then the function m;" denotes the projection to the j-th
component of the m-tuple, i.e., 77" ((x1,...,2n)) = x;. If h is any function mapping from A*

J
to X*, then we define the function (7",...,7/") o h : A* — ¥* with n < m to be for all z € A¥,

((miys - min) 0 h)(@) =qer (i (h(2)), ..., mi ) (h(2))).
Let poly denote the class of all functions f : IN — ¥* such that there exists a polynomial p with
|f(n)| < p(n) for all n € IN. For a class L C P(X*), the class IC/poly [25] is the class of all sets

A for which there exist a set B € K and a function f € poly (the advice function) such that for
all z € ¥* z € A <<= (z, f(|z|)) € B.

Partitions. Finally, let us make some notational conventions about partitions. For any set M,
a k-tuple A = (Ayq,..., A) with A; C M for each ¢ € {1,...,k} is said to be a k-partition of M
if and only if Ay UAsU---UA, = M and A;NA; =0 for all ¢, j with ¢ # j. The set A; is said to
be the i-th component of A. For two k-partitions A and B to be equal it is sufficient that A; C B;
for all 4 € {1,...,k}. Let ca : M — {1,...,k} be the characteristic function of a k-partition
A= (Ay,...,Ag) of M, that is, ca(z) =i if and only if x € A;. For KCy,..., K CP(M) let

(K1, Kk) =def { A ‘ A is k-partition of M and A; € K; for alli € {1,...,k} }
and for i € {1,...,k},
(Kiyoo o, Kicty 5 Kty -0, Ki) =der (K1, .o, Cimt, P(IM), Kig1,y ..., K).

For a class K of k-partitions, let &; =get { A; ‘ Ael } be the i-th projection of K. Obviously,
K C (Kiy,...,K;). In what follows we identify a set A with the 2-partition (A4, A). We thus
use a characteristic function which on the complement of A, differs to the usual one for sets.



However, using 2 on the complement instead of 0 has the advantage of corresponding well with
the vector-ordering as becomes clearer later in the paper. We identify a class K of sets with the
class (K, coK) = (K,-) = (+,coK) of 2-partitions.

3 Partition Classes Defined by Finite Functions

Let K be a class of subsets of M such that ), M € K and K is closed under intersection and
union. In the literature, one way to define the classes of the boolean hierarchy of sets over K
is as follows (see [39]). Let f : {1,2}"™ — {1,2} be a boolean function. For By,...,B,, € K
the set f(B1,...,By) is defined by cyp, . B.)(¥) = f(cB,(2),...,cB,,(z)). Then the classes
K(f) =def { f(B1,...,Bp) ‘ By,...,B, €K } form the boolean hierarchy over K. Using finite
functions f: {1,2}™ — {1,2,...,k} we generalize this definition (remember in which sense sets
are 2-partitions) to obtain the classes of the boolean hierarchy of k-partitions over K as follows.

Definition 2 Let k > 2.

1. For any function f:{1,2}"™ — {1,2,...,k} with m > 1 and for sets By,...,By, € K, the
k-partition f(Bi,...,Bm) is defined such that for all x € M,

Cf(Bl,---,Bm)(fE) = f(CBl (l"), ...»CB,, (gj))

2. For any function f :{1,2}"™ — {1,2,...,k} with m > 1, the class of k-partitions over K
defined by f is given by the class

’C(f) :def{f(Bla---aBm)‘Bla---aBmeK}-

3. The boolean hierarchy of k-partitions over K is defined to be the family

BH(K) =aet { £(f) | f:{1,2}™ = {1,2,...,k} and m > 1 }.
4. BCr(K) =gt UBH(K).

Obviously if i € {1,2,...,k} is not a value of f: {1,2}" — {1,2,...,k} then K(f); = {0}, that
is KC(f) does not really have an i-th component. Therefore we assume in what follows that f is
surjective.

The following proposition shows that every partition in K(f) consists of sets from the boolean
hierarchy over IC. This also justifies the use of the term boolean in the above definition.

Proposition 3 Let k > 2 and let f: {1,2}™ — {1,2,...,k} be any function with m > 1.

1. (K,...,K) CK(f) C (BC(K),...,BC(K)).
2. If K is closed under complements then K(f) = (K,...,K).
3. BC,(K) = (BC(K),...,BC(K)).



Proof.

1. We first show that I(f) C (BC(K),...,BC(K)). Let By,..., By, be sets in K, and consider
the k-partition A = f(By,...,Bp). For each i € {1,2,...,k}, we obtain

r €A \/ /\ cp;(z) = aj
j=1

f(a1 ...am):i

and consequently

A = U OB\l UB||- (2)

flar...am)=i a;j=1 a;=2

Clearly, this gives A; € K(2-||f~1(9)]).

Now we prove (K,...,K) C K(f). Let A be a k-partition in (K,...,K). For every
i€{1,2,...,k}, fix some v; € {1,2}"™ such that f(v;) =i. Define for all j € {1,2,...,m},
sets B; as

Bj =gef U A;.

v;<2i=112m=j
It is easily observed that for all a; ... a,, € {1,2}™,

N B= U 4 and (J B= |J A4

a;=1 v <a1...0m a;j=2 V<A1 ...0m
By Equation (2) we obtain A = f(By,...,Bny).
2. This statement is an immediate consequence of the first one.

3. The inclusion BCk(K) C (BC(K),...,BC(K)) follows directly from 1. For the converse
inclusion let A € (BC(K),...,BC(K)), i.e., there exists an r > 1 such that for all i €
{1,2,...,k}, A; € K(r). Hence there exist sets By,..., B, € K such that for all i €
{1,2,...,k},

Ai = Bi_1)r i1 DBty 2l DBy

Observe that for every a ... ak.,, there exists an i € {1,2,...,k} such that

<angj> i (Qﬁ) c 4.

Thus, we can define f: {1,2}*" — {1,2,...,k} such that for all a;...ay., € {1,2}F7,

f(al...ak.r) =1 <def (m Bj) N (m Fy) gAi,

a;=1 a;=2

and we obtain A = f(By,..., Bg.y).

10



For k = 2 the classes IC(f) of the boolean hierarchy BH2(K) of sets (2-partitions) have been com-
pletely characterized. For f :{1,2}™ — {1,2} let u(f) be the maximum number of alternations
of f-labels which can occur in a <-chain in ({1,2}", <).

Theorem 4 [39] For f:{1,2}" — {1,2},

LK) e
i) = { cok(u(f)) if F2m)

2,
1.

Consequently, BHy(K) = { K(m) ‘ m € Ny } U { cok(m) ‘ m € IN; }, and given a function
f {12} — {1,2} it is easy to determine the class K(m) or cokC(m) which coincides with K(f).
As already mentioned above, the classes of BHy(K) form a simple structure with respect to set
inclusion. There do not exist three classes in BH(K) which are incomparable in this sense.

It is the goal of this chapter to get insights into the structure of the boolean hierarchy BH;(NP)
of k-partitions over NP for £ > 3. What we can say at this point is, that already for £ = 3
the structure of BH;(NP) with respect to set inclusion is not as simple as for k& = 2 (unless
NP = coNP). This is shown by the following example.

Example 5 For a,b,c such that {a,b,c} = {1,2,3} define the function fu. : {1,2}> — {1,2,3}
by fabc(ll) = a, fabc(12) = fabc(21) = b, and fabc(22) = c. Obviously, NP(fabc)a = NP,
NP (fape)p = NP(2), and NP(fupe)e = coNP. Now let abc # a'b'c’. If NP(fupe) = NP(forper) then
NP = NP(2) or NP = coNP, or NP(2) = coNP. In each of these cases we obtain NP = coNP.
Consequently, if NP # coNP the siz classes NP (fape) are pairwise incomparable with respect to
set inclusion.

Definition 2 refers to a set class K with ), M € K and which is closed under intersection and
union. As K so coKC easily satisfies these conditions as well. Thus, all the definitions can be
applied to coK. The following theorem shows that there is a very close connection between
classes from BHy(K) and classes from BH(coK).

Theorem 6 K(f) = cok(f?) for all f:{1,2}™ — {1,2,...,k} with m > 1 and k > 2.

Proof. By symmetry, it suffices to show K(f) C cok(f?). Therefore, consider a partition A €
K(f). Then there are sets By, ..., By, € Ksuchthat A= f(By,...,Bp). Sinceforalla; ...a,, €
{1,2}™, f(ay...am) = f2(@y...@nm), we obtain that for all z € M,

flep, (@), cn,, () = [O(cp (@), e, (2)).
This gives A = f(By,...,Bn) = fo(Bi,...,By). Hence, A € cok(f?). O

In particular, BH,(K) and BHy(coK) coincide even if K is not closed under complements.

Corollary 7 BHy(K) = BHg(coK) for all k > 2.

11
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Figure 1: Partition defined by a boolean 3-lattice

4 Partition Classes Defined by Lattices

It turns out that, for f: {1,2}™ — {1,2,...,k}, a k-partition f(Bj,..., B;,) has a very natural
equivalent lattice-theoretical definition. Consider the boolean lattice {1,2}™ with the partial
vector-ordering <, and consider the function S : {1,2}" — K defined by

S(ala---aam) —def n Bia

a;=1

where we define an intersection over an empty index set to be M. For an example see Figure 1.
Note that S(2,...,2) = M and S(a Ab) = S(a) N S(b) for all a,b € {1,2}™. Defining

Ts(a) =qer S(a) \ | S(b
b<a

we obtain the i-th component of f(By,...,By,) as

f(Bi,....Bn)i= ] Ts(a)

ie., f(Bi,...,By) can also be given by the function S : {1,2}"™ — K.
On the other side, if we have any function S : {1,2}"" — K such that S(2,...,2) = M and
S(a Ab) = S(a)NS(b) for all a,b € {1,2}™ we can define

Bj =qef S(277112™77)  for j € {1,2,...,m},

and we obtain for i € {1,2,... k}
f(Bi,....Bn)i= |J Ts(a)
fla)=i

In this manner the class IC(f) of k-partitions is completely characterized by the labeled boolean
lattice (({1,2}™, <), f).

In this section we will see that classes of k-partitions can also be defined by weaker structures
than boolean algebras. Again we always suppose K to be a class such that (), M € K and which
is closed under intersection and union.

12



Definition 8 Let G be a lattice.

1. A mapping S : G — K is said to be a K-homomorphism on G if and only if
(a) S(1g) = M and
(b) S(a Ab)=S(a)NS(b) for all a,b € G.

2. For a K-homomorphism S on G and a € G, let

Ts(a) =qet S(a) \ | S(b).

b<a
Lemma 9 Let G be a lattice, and let S be a K-homomorphism on G.

1. Ts(a) € K A coK for every a € G.

2. S(a) = Up<, Ts(b) for every a € G.

3. The set of all Ts(a) for a € G yields a partition of M.
4

. S is completely determined by its values for the meet-irreducible elements.

That is, if S

and S" are two K-homomorphisms on G such that S(a) = S'(a) for all meet-irreducible

a € G then S(a) = S'(a) for all a € G.
Proof.

1. Observe Ts(a) = S(a) Ny, S(b) € K A cok since K is closed under union.

2. The direction “D” is obvious since Tis(b) C S(b) C S(a) for b < a. The converse inclusion
can be verified by induction on <. Obviously, S(0¢) = Ts(0¢). For a > 0 we obtain

S(a) =Ts(a) U | S(b) = Ts(a) U | J | Ts(e) = Ts(a) U | Ts(c) = | Ts(e)

b<a b<a c<b c<a c<a

3. We have to show that every x € M is contained in exactly one T's(a). Proving the existence

of such an a € G, define
H:def{a‘fEES(a)}

which is non-empty since J . S(a) = M. Since G is finite it follows that = € S(A\ H). Let

b<AH. Thenb¢ H, and hence z ¢ S(b). So, z € S(\ H)\Upcp n S(b) =

show the uniqueness assume that there is an a # A H such that z € Ts(a). Then z € S(a)
and hence a € H. Consequently, a > A H and we obtain z € S(a)\ U,., S(b) =

contradiction.

4. This is an immediate consequence of the definition of meet-irreducible elements and the

condition S(a A b) = S(a) N S(b) for K-homomorphisms.

13



Figure 2: Partition defined by a 3-lattice

Any pair (G, f) of an arbitrary finite poset G and a function f : G — {1,2,...,k} is called
a k-poset. A k-poset which is a lattice (boolean lattice) is called a k-lattice (boolean k-lattice,

resp.).

Lemma 9 provides the soundness of the following definition.

Definition 10 Let (G, f) be a k-lattice, k > 2.

1. For a K-homomorphism S on G, the k-partition defined by (G, f) and S is given by

(G,f,S) =def ( U TS(a') 1t U TS(a)) :

fla)=1 f(a)=k
2. The class of k-partitions defined by (G, f) is given by
K(G, f) =aet { (G, [,S) ‘ S is K-homomorphism on G }.

Example 11 Consider the 3-lattice (G, f) in Figure 2. The meet-irreducible elements of G are
a, b, and c. By point 4 of Lemma 9 every KC-homomorphism S : G — K is determined by fixing
S(a) = A, S(b) = B, and S(c) = C. By the definition of K-homomorphisms we get S(1) = M,
S(d) = S(aAb) = Sa)nSb) =ANDB, and S(0) = S(dAc) =Sd)nNSk)=AnBnC.
Furthermore, C = S(c) = S(cAb) = S(c) N S(b) =CNB, ie, CCB. We obtain

Ts(1) = M\ (AUB) = ANnB,
Ts(a) = A\ (ANDB) = ANB,
Ts(h) = B\ ((ANB)UC) = ANBNC,
Ts(c) = C\(ANBNOQO) = ANC,
Ts(d) = (ANB)\(ANBNC) = AnBNC,
Ts(0) = (ANBNCQ) = AncC.
Hence
(G, f,8) = (Ts(a) UTs(0),Ts(1) UTs(c), Ts(b) UTs(d))
— (An(BuC),An(BuUC),BN0),
and
K@G,f) = {(An(BUC),An(BUC),BNC) | A,B,C €K and CCB }
C  (K(3),c0K(3), K(2)).

14



The discussion at the beginning of the section yields the following proposition.

Proposition 12 K(f) = K£(({1,2}™,<), f) for all f: {1,2}™ — {1,2,...,k} withm > 1 and
k> 2.

So, if (G, f) is a boolean k-lattice then K(G, f) = K(f). But if (G, f) is an arbitrary k-lattice,
is K(G, f) also of the form K(f’) for a suitable function f’? The following theorem says that
this is generally true. This turns out to be very important for the further study of the structure
of the boolean hierarchy of k-partitions because instead of large boolean k-lattices one can deal
with usually much smaller equivalent k-lattices.

Theorem 13 For every k-lattice (G, f) there is an f': {1,2}™ — {1,2,...,k} with K(G, f) =

K(f"), where m is the number of meet-irreducible elements of G.

We postpone the proof of this theorem to Section 5 where we can make use of the Embedding
Lemma (Lemma 16).

Corollary 14 BH,(K) = { K(G, f) ‘ (G, f) is a k-lattice } for all k > 2.

5 Comparing Partition Classes

To study the structure of the boolean hierarchy of k-partitions over I it would be important to
have a criterion to decide whether K(G, f) C K(G', f') for any two k-lattices (G, f) and (G, f').
To this end we establish, more generally, a relation < between k-posets.

Definition 15 Let (G, f) and (G', f') be k-posets with k > 2.

(G, f) < (G, f") if and only if there is a monotonic mapping ¢ : G — G’ such that for
every x € G, f(z) = f'(p(x)).

2. (G, ) = (G, f') if and only if (G, f) < (G', f') and (G', f') < (G, [).
The following lemma gives a sufficient condition for (G, f) C K(G', f).

Lemma 16 (Embedding Lemma.) Let (G, f) and (G', f') be k-lattices with k > 2. If
(G, f) < (G, ["), then K(G, f) € K(G', [').

Proof. Let (G, f) and (G', f') be k-lattices with (G, f) < (G', f'). Let ¢ : G — G’ be a monotonic
mapping such that f(a) = f'(¢(a)) for every a € G. For a K-homomorphism S on G define the
mapping S’ : G' — K for all a € G’ by

a) =at |J SO

p(b)<

It is sufficient to prove that S’ is a K-homomorphism on G’ with (G, f,S) = (G', f',5), i.e
that
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Figure 3: A 3-chain equivalent to the boolean 3-lattice in Figure 1

1. §'(ler) = M,
2. S'"(aN'b)=S5"(a)nS'(b) for all a,b € G,
3. Ts(a) C Ts(p(a)) for all a € G.

This can be shown as follows:

1. We conclude S'(1¢/) = (B)< e S() D> S(lg) =M.

7

2. The inclusion “C” is valid because of the monotonicity of S’. For the converse inclusion
consider z € S'(a) N S'(b). There exist ¢,d € G such that p(c) <" a, p(d) <" b, z € S(c),
and z € S(d). We obtain p(cAd) <" p(c) N p(d) <"aAN'band z € S(c)NS(d) = S(cAd),
and consequently = € S’(a A’ b).

3. For a € G and z € Ts(a) we obtain z € S(a) C S'(p(a)). Assume that = & Ts/(p(a)).
Then there exists a ¢ <’ p(a) such that z € S’(c). Consequently, there exists a b € G such
that ¢(b) <’ ¢ and z € S(b). Hence x € S(a) N S(b) = S(a A b). Because of z € Ts(a) we
get a Ab £ a and thus a <b. We conclude ¢(a) <" ¢(b) <’ ¢, a contradiction.

0

Example 17 The 3-lattice (G, f) shown in Figure 1 and the 3-lattice (G', f') shown in Figure
3 are equivalent. This can be seen as follows: Define the functions ¢ : G — G' and ¢ : G' — G

b
' p(111) = p(121) = p(211) = a,
<p(112) = <p(221) = b,
p(122) = p(212) = p(222) = c,

and
P(a) =111, (b)) =112, and ¢P(c) = 222.

It is easy to see that p and 1 are monotonic, f(x) = f'(p(z)) for allz € G, and f'(z) = f(¢(x))
for all x € G'. By the Embedding Lemma we obtain K(G, f) = K(G', f') for all K. Obuviously,

K&, fY={(B,A,B\A)| A,B€K and AC B } = (cok,K,-) = (coK, K, K(2)).

Now we are able to prove Theorem 13 from Section 4.
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Proof. (Theorem 13) Let (G, f) be an arbitrary k-lattice, let I be the set of meet-irreducible
elements of G, and let

I, =get { b ‘ b > a and b meet-irreducible }

for every a € G. It is well known (cf. [15]) that A I, = a for every a € G. We define the boolean
k-lattice ((P(I),2),h) by
h(U) =aet f(\U) for UCT.

The function ¢ : G — P(I) defined by p(a) =qer I, is monotonic, and we get

h(g(a) = h(I.) = f(\ L) = f(a).
By the Embedding Lemma we obtain K(G,f) C K((P(I),2),h). On the other hand, the

function ¢ : P(I) — G defined by 9(U) =qer A U is monotonic, and we get

F@(U)) = F(A\U) =h(U).

Again by the Embedding Lemma we obtain IC((P(I),D),h) C K(G, f). So we get K(G, f) =
K((P(I),2),h), but (P(I),D) and ({1,2}/'], <) are isomorphic. 0

Combining this proof of Theorem 13 and the Embedding Lemma one can generalize Theorem 6
to the following theorem.

Theorem 18 K(G, f) = coK(G?, f) for all k-lattices (G, f) with k > 2.

Proof. Let (G, f) be any k-lattice. By Theorem 13 there is a function f’: {1,2}™ — {1,2,... ,k}
with K(G, f) = K(f'). In fact, the proof of Theorem 13 shows that (G, [f) = ({1,2}™, f).
Regarding the dual function f’8 we obtain that (G, f) = ({1,2}™, f’a). By Theorem 6 and the
Embedding Lemma, K(G, f) = K(f') = coK(f'?) = coK(G?, f). 0

6 Minimal Descriptions of Partition Classes

From Proposition 12 and Theorem 13 we know that the boolean hierarchy of k-partitions is
precisely the family of all partition classes over K generated by k-lattices. The advantage
of this characterization is that k-lattices allow often smaller descriptions of partition classes
than functions (as shown by Example 17). The usage of labeled lattices provides also another
advantage over functions: The minimal representations of partition classes using k-lattices are
essentially unique, i.e., unique up to isomorphism.

Definition 19 For k-posets (G, f) and (G', f') we write (G, f) =2 (G', f') and we say that (G, f)
and (G', f') are isomorphic if there exists a bijective function ¢ : G — G’ such that ¢ and @~
are monotonic and f'(¢(a)) = f(a) for every a € G.

Obviously, isomorphic k-lattices are equivalent, but there are equivalent k-lattices that are not
isomorphic. For example, add to any k-lattice (G, f) a new element a which is less than all
elements of G, and define f(a) = f(0g). The new k-lattice is equivalent but not isomorphic to

(G, f)-

17



Figure 4: Non-isomorphic minimal equivalent boolean 3-lattices

) is said to be minimal if there does not exist a

Definition 20 A finite k-lattice (k-poset) (G, f
G, f) = (G f") and |G| < [IG]].

k-lattice (k-poset, resp.) (G', f') such that (G,

In this section we will prove that equivalent minimal k-lattices are isomorphic. This is a basic
difference between k-lattices and k-valued functions (boolean k-lattices). Say that a function
f:{1,2}™ — {1,2,...,k} is minimal if there is no function of arity less than that of f, such
that the corresponding boolean k-lattices are equivalent. The simple example in Figure 4 shows
that minimal equivalent functions (boolean k-lattices) need not be isomorphic.

In order to prove our isomorphism theorem (Theorem 24) it seems to be easier to show this first
for the case of posets.

Lemma 21 Let (G, f) be a minimal k-poset, and let ¢ : G — G be a monotonic function such
that f(p(a)) = f(a) for all a € G. Then there exists an m > 1 with ¢™ = idq.

Proof. For every a € G let i, be the smallest number such that there exists a 7 > 4, with
¢ (a) = ¢’ (a), and let j, be the smallest such 5. Obviously,

o' ({a,0(a), * (@), .., " Ha)}) = {9 (a), ¢ H(a),..., " ()}

Note that the set {a,¢(a), p?(a),...,v"*"!(a)} has exactly j, elements and note also that the

set {¢'(a),pa*(a),...,pls"1(a)} has exactly j, — i, elements. Now assume i, > 0. Then
o' (G)|| < |G|l and (¢ (G), f) = (G, f) which contradicts the minimality of (G, f). Hence
io = 0 and ¢/ (a) = a. Now let m =[], jo and get ¢ = idg. O

Lemma 22 Fquivalent minimal k-posets are isomorphic.

Proof. Let (G, f) and (G', ') be equivalent minimal k-posets. There exist monotonic functions
p:G — G and ¢ : G’ — G such that f'(p(a)) = f(a) for all a € G and f(+)(a)) = f'(a) for
all ¢ € G'. Hence 1) o ¢ is monotonic and f(¢(¢(a)) = f(a) for all a« € G. By Lemma 21 there
exists an m > 1 such that (o)™ = idg. Also o1 is monotonic and f'(p(1(a)) = f'(a) for all
a € G', and there exists an n > 1 such that (¢ o))" = idg. Hence, 1o (po (o)™ 1) =idg,
(po(hop)™ o =idg, po (o)™ t:G — G'is monotonic, 1 : G’ — G is monotonic,
and f'(¢ o (o @)™ (a)) = f(a) for all a € G. Thus (G, f) = (G', f'). 0

Lemma 23 A minimal k-poset, which is equivalent to a k-lattice, is a k-lattice.
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Proof. Let (G, f) be a minimal k-poset, and let (G’, f') be a k-lattice such that (G, f) = (G', f')
via  : G = G' and ¢ : G — G. By Lemma 21 there exists an m > 1 such that (1) o )™ = idg.
We define

m—1

¢ =det po (Y o)
Then we obtain 9 o & = idg. To prove that G is a lattice it suffices to verify that

1. G has a supremum 1,

2. a A b exists for all a,b € G.
This can be done as follows:

1. For a € G we get £(a) < 1 and hence a = 1(&(a)) < ¢(1g). Consequently, 1 = 1 (1gr).

2. For a,b,c € G such that ¢ < a,b we get £(c) < &(a),£(b) and hence £(c) < &(a) A E(b) <
£(a),£(b). Consequently, ¢ = $(€(c)) < $(€(a) AE(D)) < $(€(a) = a,$(€(b)) = b. That
means a A b= 1(£(a) NED)).

From the preceding two lemmas we obtain immediately:

Theorem 24 Fquivalent minimal k-lattices are isomorphic. In other words, for every k-lattice
there exists a (up to isomorphism) unique minimal equivalent k-lattice.

This theorem ensures that we can always choose a unique starting point for investigations
involving classes of the boolean hierarchy of k-partitions. Moreover, when restricting to the
minimal k-lattices our relation < becomes a partial order (however, this is merely a fact based
on the selection of the minimal k-lattices as representatives of the equivalence classes with respect
to <).

7 The Embedding Conjecture

Let us come back to the Embedding Lemma which shows that (G, f) < (G’, f') implies (G, f) C
K(G', f"). Thus we have a sufficient criterion for inclusion of partition classes. It would be, how-
ever, very useful if the criterion would be also necessary. In this section we pose the conjecture
that this holds true for NP unless the polynomial hierarchy is finite. We support this conjecture
with several results.

7.1 On Inverting the Embedding Lemma
We are interested in proving the following theorem for the case K = NP. Note that for the

general formulation K is assumed to be such that (), M € K and K is closed under intersection
and union.
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Definition 25 We say that the Embedding Theorem for K holds if for all k-lattices (G, f) and
(G, f") it is true that (G, f) < (G', ') <= K(G, ) CK(G', ).

The difficult part of such theorems is the inversion of the Embedding Lemma, that is, the
direction from right to left. If once proven for a class I the Embedding Theorem gives the
complete information about BH(IC). The following theorem shows that Embedding Theorems
are in principle not out of reach:?

Theorem 26 Let (G, f) and (G, f') be k-lattices with k > 2. If K(G, f) C K(G', f") for every
class K with 0, M € K and which is closed under intersection and union, then (G, f) < (G, f').

Proof. Let (G, f) and (G', f') be k-lattices. For each set S C G, define D(S) as
D(S) =def { a € G| (3b € S)a<b) }.

Let K be the set of all D(S) for S C G. Clearly, (), G € K and K is closed under finite union
and intersection. Let S be the K-homomorphism on G defined for every a € G as

S(a) =qer D({a}).

Obviously, Ts(a) = {a} and consequently (f'(1),...,f (k) € K(G, f) C K(G", f'). Hence,
a K-homomorphism $' : G' — K on G’ exists such that U g—; Ts(d) = f71(@) for every
i €{1,2,...,k}. Define h : G — G’ to be the function which assigns to each a € G the uniquely
determined d € G’ such that a € Ty (d), i.e., h~'(d) = Ts/(d). Obviously, a € Ts(h(a)) and
f'(h(a)) = f(a). It remains to show that h is monotonic. Let a,b € G with a < b. Then
b € Ts (h(b)) C S'(h(b)), so a € S'(h(b)). From Lemma 9.2 there follows the existence of ¢ € G’
with ¢ < h(b) and a € Ts/(¢). Thus ¢ = h(a), hence h(a) < h(b). 0

Because of the second item of Proposition 3, we cannot hope to invert the Embedding Lemma
without an additional assumption to K. A plausible one might be a strict boolean hierarchy of
sets over K. And indeed, for many subclasses of k-lattices, assuming the strictness of BHy(K)
is strong enough to show the Embedding Theorem for K and for these subclasses of labeled
lattices.

For instance, we can prove that the Embedding Theorem for 2-lattices holds if we assume an
infinite BH2(K). To this end we first prove an analogue to Theorem 4 for 2-lattices. For a
2-lattice (G, f) let u(G, f) be the maximum number of alternations of f-labels which can occur
in a <-chain in the lattice G.

Theorem 27 For every 2-lattice (G, f),

C(KGG. ) iff(e) =2,
MG = { ok (u(G, 1)) if Fle) = 1.

2Note that a disproof of Theorem 26 would imply that for every reasonable /C, there exists a pair of k-lattices
that contradicts the Embedding Theorem for /.
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Proof. Let (G, f) be a 2-lattice. In the proof of Theorem 13 we defined a function h : {1,2}/"l —
{1,2} (remember that I is the set of meet-irreducible elements of G and that (P(I),D) and
({1,2}11, <) are isomorphic) such that (G, f) = ({1,2}/1,h). Thus, £(G, f) = K({1,2}V],h) =
K(h), w(G,f) = p({1,211h) = u(h), and f(1g) = h(2/"l). By Theorem 4 we obtain the
statement. U

Corollary 28 Assume that BHa(K) is infinite.

1. The minimal 2-lattice (G, f) such that K(G, f) = K(i) is a chain with i + 1 elements with
alternating labels 1 and 2 such that the mazimum of the chain has label 2.
2. The minimal 2-lattice (G, f) such that K(G, f) = coK(i) is a chain with i + 1 elements

with alternating labels 1 and 2 such that the mazimum of the chain has label 1.

As a consequence of Theorem 27 we get the validity of the (conditional) Embedding Theorem
for 2-lattices.

Theorem 29 Assume that BHo(K) is infinite. For 2-lattices (G, f) and (G', f') the following
statements are equivalent:

1. K(G, f) CK(G", ).
2. w(G, f) <u(G', f') or (WG, f) = u(G, [') and f(1c) = f'(1e)).
3. (G, f) < (G, f").

Proof.

e (1) = (2) is a consequence of Theorem 27.
e (3) = (1) follows from the Embedding Lemma.

e For (2) = (3) take a <-chain (cp,c1,...,¢ ) in G' with maximum number of alternations
between f'-labels, i.e., r = u(G', f') and f'(c;i—1) # f'(¢;) for i € {1,...,r}. For a € G
define ¢(a) as follows:

_ ci if f(lg) = f'(ler),
pla) =aer { civ1 if f(lg) # f'(1ar).

Here 7 is the maximum number of alternations between f-labels in a chain from a to 14.
Obviously, ¢ is monotonic and f'(p(a)) = f(a).

0

We now establish a theorem which shows that the Embedding Theorem for K holds for a large
subclass of k-lattices (unless BHo(K) is finite). At this, we make use of the following simple
principle.
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Figure 5: The 3-lattices of Example 32

Proposition 30 Let (G, f) and (G', f') be k-lattices with k > 2. Let h be a function mapping
{1,2,...,k} to{1,2,....,m}. If K(G, f) CK(G', f'), then K(G,ho f) C K(G',hof"). Moreover,
if h is injective, then the equivalence holds.

Let (G, f) be a k-lattice. For I,J C {1,2,...,k} with INJ = (), define ur s(G, f) to be the
maximum number of alternations between f-labels from I and f-labels from J in a chain of G
whose minimum has an f-label from I.

Theorem 31 Assume that BHy(K) is infinite. For k-lattices (G, f) and (G', f"), if K(G, f) C
K(G", ), then pr (G, f) < pr (G f') for all I,J C{1,2,...,k} with INJ = 0.

Proof. If I = () or J = 0, then pu7 ;(G, f) = 0 for all (G, f). So, suppose I and J to be non-
empty and I NJ = (). Consider the function h mapping elements from I to min/, elements
from J to min.J, and elements not in I or J to themselves. Then, for all k-lattices (G, f), it
holds iy 7 (G, f) = pn(ry ) (G, h o f). Therefore and because of Proposition 30, without loss
of generality, we can assume that I and J are singletons; I = {i},J = {j}, and i # j. For
convenience, we write y;;(G, f) instead of jug; (3 (G, f).

Let (G, f) and (G', f') be k-lattices. Let C be a maximal chain in G such that u;;(C, f|c) =
wii (G, f). Hence, K(C, f|lc) C K(G', f"). Since f|c : C — {i,5} we have also K(C, f|¢) C
K(G',h) for all h: G' — {1,2,...,k} such that h(a) = f'(a) if f'(a) € {3, 7}

If there is no b € G’ with f'(b) & {i,j}, then the claim is just the same already proven in
Theorem 29. So, fix some b € G' such that f'(b) & {i,j}. For each a € G', let G, be the set
{c € G’ | ¢ < a}. Define for a € G’

fla) ifa#b,
h(a) =qer { if @ = b and ;;(G, f'|gy) is even,
J if @ = b and ;5 (G}, f'|a;) is odd.

Hence, K(C, f|lc) C K(G',h) and pi;(G', f') < pij(G',h). Consider a maximal chain ag <
ar < -+ < ap in G’ such that r = p;;(G',h), h(as) € {i,5}, h(ap) = 4, and h(as—1) # h(as)
for s € {1,...,r}. If b & {ao,...,a,} then h(as) = f'(as) for all s = {0,1,...,r} and hence
wii(G's f1) > wij (G', h), thus pi; (G, f') = pij(G',h). Now let b = a; for some s € {0,1,...,7}.
Since f'(as_1) = h(as—1) # h(as) and, by definition, h(b) = h(as), the chain ag < a1 < -+ <
as—1 cannot be a maximum chain in G}, with alternating f’-labels starting with f’-label i. Hence
there exists such a chain by < by < --- < by_1 < by in (G}, f’|Gg) and consequently such a chain
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Figure 6: The 3-lattices critical for RE

bop < by <--- <bs_y <bg < agyr <--- <apin (G, f). This means p;;(G', f') > r = pij(G', h)
and hencea /J”L](G,a fl) = /J”L](G,v h)

Repeating this construction we obtain finally a function g : G' — {i,7} such that K(C, f|¢) C
K(G', ), 1ij(C, fle) = nij (G, f), and pij(G', g) = pij (G, f'). In fact, K(C, f|c) and £(G', g) are
classes of 2-partitions. By Theorem 29, we obtain u(C, f|c) < u(G',g) or, u(C, flc) = n(G', g)
and f(1¢) = g(1¢r), from which we can conclude p;;(C, flc) < pi; (G, g). 0

Example 32 Let (G, f) be the 3-lattice on the left-hand side and (G', f') be the 3-lattice on the
right-hand side of Figure 5. To show K(G, f) € K(G', f') if BHo(K) is infinite, let I = {1}
and J = {2}. Then we have pr ;(G,f) = 2 and pr (G, f") = 1. Hence, by Theorem 31,
K(G,f) € K(G', ") unless BHo(K) is finite. Reversely, let I = {1} and J = {2,3}. Then,
prg (G f") =3 and pr (G, f) = 2. Thus, again by Theorem 31, K(G', f') € K(G, f) unless
BH(K) is finite.

Theorem 29 and Theorem 31 suggest that a strict boolean hierarchy of sets is sufficient to
establish Embedding Theorems. However, there are classes for which the Embedding Theorem
does not hold though they have a strict boolean hierarchy. A very prominent example is the
class RE. Clearly, the recursively enumerable sets are closed under intersection and union and
contain () and ¥X*. The strictness of the boolean hierarchy of the recursively enumerable sets
goes back to Ershov [12].

Theorem 33 The Embedding Theorem for the recursively enumerable sets does not hold.

Proof. Let (G, f) be the left 3-lattice and (G’ f') be the right 3-lattice in Figure 6. Obviously,
(G,f) £ (G, f"). However, it holds that RE(G, f) C RE(G’, f'). To prove this we use the
following well-known property of the recursively enumerable sets (cf., e.g., [35]): For all recur-

sively enumerable sets A and B there are r ecursively enumerable sets C C A and D C B with
CUD=AUBand CND =0.

Now let (G, f,S) € RE(G, f). By the claim above there are sets C,D € RE with C U D =
S(a)uS),CNnD =0, C C S(a), and D C S(b). Since a RE-homomorphism on lattices only
depends on its values on the meet-irreducible elements, it is enough to define S’ on G’ as

S'"(a') =qes C, S' (V) =qet D, S'(c/) =ges CNS(b), and S'(d') =qer D N S(a).
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Figure 7: Counterexample to the mind-change technique

Clearly, it holds that S’(¢') C S'(a’), S'(d") C S'(V'), and S'(a") N S' (V) =0 = S' (') N S'(d').
Moreover we have the following:

(G 1,82 = Te(a')UTs(0cr) =T (a') = S'(a') \ S'(c') = C'\ (C'NS(b))
= (CUS((®)\Sb) =(5(a)uS(®)\Sb)=S5(a)\ (S(a)n
= S(a’)\S(OG):TS(a):(G7f78)2

The remaining equalities can be shown similarly to the equality of the second component. This
gives (G, f,S) = (G', f',S"). Hence, (G, f,S) € RE(G", f). 0

Most recently Selivanov [34] gave a complete characterization of the boolean hierarchy of parti-
tions over recursively enumerable sets which is based on a coarser embedding relation <’ than we
consider. With respect to that relation <, for the 3-lattices in Figure 6 it holds (G, f) <" (G, f).

Up to this theorem, all results so far hold for arbitrary classes with some simple closure proper-
ties. The forthcoming now makes use of the very nature of the class NP. As we have seen even
an infinite boolean hierarchy of sets is not sufficient to invert the Embedding Lemma. Since
the collapse of the boolean hierarchy over NP implies the collapse of the polynomial hierarchy
(cf. [24]) the following conjecture seems to be reasonable.

Embedding Conjecture. Assume the polynomial hierarchy is infinite. Let (G, f) and (G', f")
be k-lattices. Then NP(G, f) C NP(G', f') if and only if (G, f) < (G, f').

To provide evidence for the Embedding Conjecture we formulate in Subsection 7.2 a theorem
(Theorem 50) which shows that the conjecture is true for a much larger subclass of k-lattices
than touched by Theorem 31 including all 2-lattices (Corollary 49) and moreover, all k-chains
(Theorem 47). Furthermore, the 3-lattices in Figure 6 turn out to be not a counterexample for
the class NP. This is proven in Subsection 7.3.

7.2 Evidence I: The Case of k-Chains

We establish theorems that show that the Embedding Conjecture is true for a very large subclass
of k-lattices based on differences in the chain structure of the lattices. In Theorem 31 differences
concerning the mind changes in k-chains are considered. However, the theorem is not general
enough to cover all k-chains. As an example consider the two 3-chains in Figure 7. Let (G, f)
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be the left and (G’, f') be the right 3-chain. On the one hand, it is easy to calculate that
prg(G, f) = prs (G, f") for all I,J C {1,2,3} with TN J = 0. On the other hand, obviously
(G, f) £ (G, f) and (G',f") £ (G, f). So in order to support the Embedding Conjecture
we have to prove that NP(G, f) € NP(G', f') as well as NP(G', f') € NP(G, f) unless the
polynomial hierarchy is finite. In this subsection we will see how to do this. Proving such
theorems, we detect some normal forms of (hypothetical) inclusions between partition classes
enabling us a generalization of the easy-hard arguments developed by Kadin (cf. [24]) to the
context of partition classes.

7.2.1 Partition Classes Defined by Chains

We first emphasize some simplifications and peculiarities of partition classes over labeled chains.
As long as no further conditions are needed we consider general classes K with ), M € K and
that are closed under intersection and finite union. Partition classes over labeled chains are
characterized by ascending chains of sets from K.

We identify a k-chain (G, f) in a natural way with a word in {1,2,...,k}!, namely with
flay)f(ag) ... f(an) when a1 < ag < -+ < ap, a; € G, and n = ||G||. Words representing
k-chains are called k-words.

The relation < over k-lattices translates to a subword relation between k-words. For that, we
say that a k-word a is repetition-free if and only if a; # a; 11 for all 1 <4 < n. For an arbitrary
k-word « its repetition-free version a, is the word emerging from a when repeatedly replacing
each occurrence of ss to s, where s € {1,2,...,k}. Now, we can say that a < b for k-words a,b
if and only if a, is a subword of b. We say a = b whenever ¢ < b and b < a. If a and b are
repetition-free k-words then a = b is equivalent to a = b. Obviously, the relation < for k-words
corresponds with the relation < for k-chains. Repetition-free k-words correspond to minimal
k-chains. Dual k-chains correspond to reverse words.

There are some notations to bed adapted to k-words. Let a k-word a be given. Then a K-

homomorphism S on a is just a K-homomorphism on ({1,2,...,]|a|},a), the partition (a,S)
generated by S is the partition ({1,2,...,]a|},a,S), and, finally, K(a) = K({1,2,...,|al},a).
Here we have identified the k-word a with the function a : {1,2,...,]a|} — {1,2,...,k} given
by a(i) = a;.

If two k-words are comparable with respect to =<, there are possibly many monotonic mappings
witnessing the relation. This ambiguity is often disadvantageous. So we consider the canonical
embedding, mapping every letter of a k-word to the least possible letter in the other k-word.

Definition 34 Let a and o' be k-words, k > 1. The canonical embedding [a, '] of a into a’ is
a mapping from {0,1,2,...,|a|} to {0,1,2,...,]d'|} inductively defined as kla,a’](0) =ger 0 and
for 7 >0 as

kla,a'](j) =qef min{ r ‘ r>kla,d)(j — 1) Aaj =a, }

where min () is considered to be undefined.

If there is no reason for misunderstanding, then we omit [a,a’] in the description of the canonical
embedding.
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Proposition 35 Let a and o' be k-words. Then, a < a' if and only if the canonical embedding
k of a into a' is total.

Canonical embeddings make it possible to determine normal forms for £-homomorphisms wit-
nessing inclusions between partition classes.

Lemma 36 Let a and o' be repetition-free k-words. Let k be the canonical embedding of a into
a'. If K(a) C K(a'), then for every K-homomorphism S on a there is a K-homomorphism S’ on
a' such that (a,S) = (a',S") and S(j) C S'(k(j)) for all j € D,.

Proof. Since K(a) C K(a'), there is a -homomorphism V on o’ with (a,S) = (a’, V). We meet
the convention that S(0) = () and V(0) = (. Define S’ for all j < |a/| as

1ra .
S'(j) =qet V() U S (58?%% ) .

Obviously, S’ is an K-homomorphism on o with S(j) C S’(k(j)) for j € D,. Tt remains
to show (a,S) = (a',S"). We consider the partition (a’,S’) individually for every component
i €{1,2,...,k}. Fix a component 4, and consider Ts/(j) for j < |a/| with a’; = 4. We have two
different cases.

e Case 1. Suppose k(s) < j < k(s + 1) for an appropriate s, or k(max D,) < j. Then,
Ts(j) = S'GNS'(G—1)=V(EUSE)\ (VG —1)US(s) = (VH\V( —1))\S(s)
C Tyv(j)
Hence, Ts () € Ty (7) C (@, V)i = (a, ).

e Case 2. Suppose j = k(s) for an appropriate s. Then,

Ts(j) = S'GNS(G-D=VEHUSE)\V(E-DUS(s—1))
= [(VO\WVGE =1)\S(s = DIUIS()\S(s = 1)) \V (5 = D] € T (j) U Ts(s)-

Since as = a;(s) = a; = i, we obtain T/ (j) C Ty (j) UTs(s) C (a',V); U (a,8)i = (a,9);.
Overall, we have shown (a’,S"); C (a, S); for every i. Since (a/,V) and (a, S) are partitions, we
get the equalities (a',S"); = (a,S);. Thus, (a',5") = (a, S). 0

7.2.2 Hardest Inclusions

It is our goal to prove the finiteness of the polynomial hierarchy in case of having an inclusion
between partition classes which should not be true if the Embedding Conjecture would hold.
For the boolean hierarchy BHo(NP) it suffices to consider the inclusion NP(m) C coNP(m) for
m € INy or, in terms of 2-words,



The very simple structure of BHo(NP), trivially, yields the following: If for any m € IN,
there is an n < m with NP(m) C NP(n), or there is an I < m with NP(m) C coNP(/), then
NP(m) C coNP(m). Again, in terms of 2-words, that means: Let a be a repetition-free 2-word.
If for a there is an o' with a A @’ and NP(a) C NP(a'), then NP(a) C NP(@). Note that for such
a' it holds |a/| < |a|. For k-words with k& > 2 this length condition is not true. For instance,
consider 123 and 1(31)™2 for arbitrary m € IN,. Then, 123 A 1(31)™2, but |1(31)™2| can
be arbitrarily large. Can we nevertheless identify short k-words with hardest inclusions to be
considered?

In the following we give a positive answer to this question. To do that we need two lemmas.
Lemma 37 K(a) = cok(a®) for all k-words a.
Proof. Follows from Theorem 18. U

Lemma 38 Let a and a' be repetition-free k-words, k > 2. Let k be the canonical embedding of
a into a'. Let r € Dy so that a; # a, for all i > r. If K(a) C K(a'), then K(a) C K(a") where

a" emerges from a' when deleting from a' all the letters aj with j > k(r) and a’; = a,.

Proof. Let (a,S) € K(a) for K-homomorphism S on f. By Lemma 36, there is a -homomorphism
S" on a' with (a,S) = (d/,S") and S(j) C S'(k(j)) for all j € D,. It suffices to show Tq (j) =0
for all j > k(r) with a; = a,. Let a, = b. Since aj = a, = b, it holds Ts'(j) C (a',5")y =
(a,8), C S(r). Hence, S'(j) C S(r)u S’ (5 —1) C S'(k(r)) U S'(j —1) C S'(j — 1). The latter
holds because j > k(r). Thus, S'(j) = S’(j — 1), and consequently, Ts/(j) = 0. 0

Now we are able to prove the theorem which identifies short k-words of at most the double of
the length of a given k-word, but with a hard inclusion property.

Theorem 39 Let a be any repetition-free k-word of length n, k > 2. If there is a repetition-free
k-word o' with a £ a' and K(a) C K(a') then K(ajas...a,) C K(asajazas ... apan_1).

Proof. Let a' be a k-word such that a A o' and K(a) C K(a'). First we will transform o’ into
a k-word of a certain structure preserving the inclusion. Note that inserting new letters in a’
preserves K(a) C K(a'). Since a A @/, it holds that

a = wiaiweaows . .. wia;wiy,  with w; € ({1, 2,...,k}\ {aj})* and i < n.

Define the k-word b’ by appending a;i1a;12...a, 1 to @’ and then inserting as,as,...,a, into
the new k-word as follows:

V' =der W1a201W2a3G2WS . . . Wy —1 Gy p—1Wh.
Note that it holds that a A b'. By Lemma 38 we can simplify the words w;. We can set

U . *
b =def V1020102030203 ... Vp_1Gpan_1V, With v; € {aj11,0i12,...a,}" and v, = ¢,
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i.e., for all 4, v; is defined to be w; without the letters from {1,2,...,k} \ {a;,ait1,...,an}.
Using Lemma 37 and again Lemma 38, we can also simplify the words v;. Let b be defined as

/1
b™ =der U1a2a1U20302U3 - . . Up_10pAp_1
. *
with u; € ({al,ag, cesaim1y NA{aiv, aivo, .- ,an}) and u; = €.

Making all subwords a;_ju;a;j;1 repetition-free (note that this implies ajusas = aja3 and
Up—2Up—1Gn = Gn_2ay,), we get the repetition-free k-word b defined as

b =def 0120103022304032%4 . . . Zp—20n_10n—20n0n_1
. * .
with z; € ({al, agy ... a; 1} N{a;i11,a;49,... ,an}) fori e {3,4,...,n—2}.

In the remainder we will always suppose this k-word b. Note that b satisfies the conditions that
a 2 b and K(a) C K(b). Let x be the canonical embedding of a into b. Let m = |b|. It holds
that k(1) =2 and k(n — 1) = m. We define k" as £/'(j) = k(j —1) — 1 for all j € {2,...,n}. Let
S be any K-homomorphism on a. Since K(a) C K(b), and due to Lemma 36, there exists a K-
homomorphism V' on b such that (a,S) = (b,V) and S(j) C V(k(j)) for all j € {1,2,...,n—1}.
Define a mapping S’ for j € {1,2,...,m} as

b 146) if j € {1,2,m —1,m},
S'(5) =aet { V() NS(F)UV(2) ifj>2and &' (r) <j < (r+1).

It holds that S" : {1,2,...,m} — K and S’(j) C S'(j +1) for 1 < j < m, ie, S is a K-
homomorphism on b. Moreover, S’ satisfies the following conditions:

1. Forall j € {1,...,m}, if j € Rx U Ry, then Ts/(5) = 0,

2. (a,S) = (b,5").

Note that proving these two facts is sufficient for the theorem because of the equalities x'(j) =
k(j—1)—1forall j € {2,3,...,n}.

1. Let j ¢ R, UR,. Then, 2 = k(1) < j < k'(n), i.e., there is an r such that x'(r) < j <
k'(r 4+ 1). Consequently,

Ts(j) = S'GH\S'G-1)=((VHNSE)UVE)\((V(E -1 NS(r)uV(2)
= (V)\VE-1)nSr)\V(2) CTv() NS(r).
Let ¢ be maximal with x(¢) < j and a4 = bj. Let s be minimal with j < «(s) and
as = bj. The existence of both ¢ and s is assured due to the structure of b. Then, we have

Ts(j) € Tv(j) NS(r) C Ty (j) NS(s — 1). Moreover, a,_1 # b; since a is repetition-free.
The statement would be proven if we would know the following;:

(x) There is no t with ¢ <t < s and bj = ag = a; = a,.
Using (*) we can conclude: If z € Tg/(j), i.e., z € S(s—1) and x & V(j—1), then = & Ts(i)
for all g < i < s—1. Hence z € S(q) C V(k(q)) C V(j—1). This is a contradiction. Thus,

Ts (j) = 0.

28



It remains to prove (x). Assume the contrary to be true, i.e., there exists a t with ¢ <t < s
and b; = a4 = a; = a,. Then we have three cases yielding contradictions. The case j > x(t)
contradicts the maximality of ¢ and q # t. The case j < k'(t) contradicts the minimality
of s and s # t. In the case k'(t) < j < k(t) we conclude k(t — 1) — 1 < j < k(t) and, since
j ¢ Ry, k(t — 1) < j < k(t). But now, it holds that b; # b,;) = a;, contradicting b; = a.
Hence the assumption is false, i.e., such a ¢ does not exist.

2. It suffices to show T (j) C (a,S); for every j with b; = i. So, let j be so that b; = i.
There are two cases, j € Ry and j € R,

e Case j € Ry. If j = 51(2) = k(1) — 1 =1, then Ts(5) = Ty (j) C (b,V); = (a,S);.
So, let j = &/(r) for r > 2,i.e., j > 2 and i = bj = a,. Then,

Ts() = SO\S'G-1)=((VHNSE)VVEY\ V(i —1)nS(r—1)UV(2)

(V@ ASENN(VE-1)NnSr-1)) \ V(2)

(VOANVE=1D)nSrF) VS \S(r=1))nV(i=1)) € Tv(j) UTs(r)

(b; V)i U (a, )i = (a,5);.

e Case j € Ry . If additionally j & Ry, then by 1., Ts/(5) =0 C (a, S);. So, let j € Ry.
If j=2=k(l) or j =m = k(n —1), then Tg(j) = TV( ) C (b V)i = (a,9);. Tt
remains to argue for 2 = k(1) < j < k(n — 1). Then we have,

To(j) = SO\NS'G-1)=((VEHNSE)UVVE)\((V(-1)nS(r)uV(2)
= (VO\VGE-1D)nS() \ V(2) € Tv(h) € 0,V)i = (a,5):

c
c

0

Note that ajas...a, A asaiasas...apa,—1 for every repetition-free k-word a = aq ... a,. The-
orem 39 gives, e.g., that for the 3-word 123 it is enough to collapse the polynomial hierarchy
from NP(123) C NP(2132). Moreover, Theorem 39 is in some sense optimal. For repetition-free
2-words a, it holds a; = a;19. Hence, for a = a; ... a,, we have asajasas...ana, 1 =a.

7.2.3 The Embedding Theorem for k-Chains

We now prove the Embedding Conjecture true for k-words. First, we determine complete NP-
partitions for partition classes over k-words with a useful inductive structure.

Definition 40 Let L C ¥*. For any k-word a with |a| = n > 2 and ap—1 # an, the partition
L% is defined as follows

1. If n =2, then for alli € {1,2,...,k},

L ifi=aq,
L =qer § L ifi=ay,
@ Zf’L ¢ {al,ag}.
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2. If n > 2, then for all i € {1,2,...,k},

e et { { (331,332, - ,fl?n,1> r1 €LV <5E2,5E3,. .. ,fl?n,1> S L?Qa?’"'a" } ZfZ =aq,
C { (zmas st | @1 E LA (T2, 33, o) € L2 L if i £ ay.

Easy inductive arguments show that L% is really a partition. We need the definition of <},-
reduction for partitions: For k-partitions A and B it holds A <}, B iff there is a function
f € FP such that c4(x) = ep(f(x)) for all z € ¥*.

Theorem 41 Let L be a <h,-complete problem for NP. For any k-word a with |a] =n > 2 and
Un 1 # an, the partition L is <b,-complete for the partition class NP (a).

Proof. 1t is obvious that L® is in NP(a). The proof of hardness is by induction over the length
n of k-words. The base of induction n = 2 is obvious. So suppose the proposition is true for
all k-words of length n and consider an arbitrary partition A € NP(a) for a k-word a of length
n + 1, i.e., there is an NP-homomorphism S on a such that

Aq, = S(1) U L_J S(GI\S(j —1) and fori#a;, A; = U‘S(j)\S(j—l).

Clearly, S is also an NP-homomorphism on asas ... a1, and the defined partition A" belongs
to NP(asas . ..an11). Thus, since asas...ap11 is a k-word of length n, by the assumption of
the induction, A" <h, L8293--@n+1 via ¢ € FP. Further, S(1) <P, L via t € FP. Define 1) as

(@) Zaet (), (72 0 @) (@), (75 0 9)(3), ., (7L 0 ) ().
Clearly, ¢ € FP, and taking into account that S(1) C S(2) C--- C S(n + 1), it holds that
z€A, = zeSWorze |J SH\SG-1)
< t(z) € LV p(x) € L2 ntt
— (z) € Ly,
and for 7 # aq,
r€A < z¢SW)andze [JSH\SG-1)

a;=1
— tlz)¢LApx) e L?w?""a"“
<~ (z) € Lj.

Hence, 1) shows A <}, L% This completes the induction. ]
We apply the easy-hard technique invented by Kadin [24] to collapse the polynomial hierarchy

from a collapse of the boolean hierarchy BHs(NP). The proof consists of two parts that can be
isolated.

In the first part of the proof, an inclusion NP(m) C coNP(m) for some m € IN, is translated
downwards to the previous level m — 1 using a special polynomial advice called hard word.
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Inductively, this can even be translated to the lowest level NP C coNP/poly where the poly-
nomial advice is just a tuple of hard words. The second part of the proof uses this inclusion
NP C coNP /poly to collapse the polynomial hierarchy to its third level [41]. This part has been
improved many times in sophisticated ways to a deeper collapse (cf. [19, 33]) by a direct use of
hard words.

Both parts of the proof are differently reflected by definitions. The concept of hard sequences
plays the crucial role for the first part.

Definition 42 [24] Let L C ¥*. Let m € IN, n € INy, and h : ¥* — £*. A tuple (wi,...,w;)
is said to be a hard sequence for (L,m,n,h) if and only if either j =0 or

1.1<j<n-—1,

2. |wj| < m,

3. wj &L,

4. (W;-’H o h)({wiy. . ,Wjs Tji1y---s2n)) € L for all zji1,... 1, € BS™,

5. (wi,...,wj_1) is a hard sequence for (L,m,n,h).
We call j the order of a hard sequence (wy,...,wj). A hard sequence (wn,...,w;) for (L,m,n,h)
is said to be a maximal hard sequence for (L, m,n,h) if and only if for all wj;1 € X*, the tuple
(Wi,... ,wj,wjq1) is not a hard sequence for (L,m,n,h).

Note that hard sequences do always exist independently from the parameters chosen, namely,
at least hard sequences of order 0. Hence, maximal hard sequences do always exist as well.

A second concept central to collapsing the polynomial hierarchy in the context of the easy-hard
technique is that of a twister. The definition of a twister builds up on the concept of maximal
hard sequences.

Definition 43 Let L C ¥* and let n € INy. A function h : ¥* — ¥* is said to be an (L,n)-

twister if and only if h € FP and for all m € N and for all z € S, if (wi,,...,w;) is a
mazximal hard sequence for (L,m,n,h), then there are xjia,..., T, € NS such that
¢ L+ (mj oh)({wr,...,wj,T,Tjt0,...,7n)) € L.

The following result is the deepest collapse of the polynomial hierarchy currently known to follow

from the existence of some twisters. Note that twisters appear only implicitely in the literature
(19, 33].

Lemma 44 [19, 33] Let L be <h,-complete for NP. Letn € IN. If there exists an (L,n)-twister
then PH = XE(n — 1) & NP(n).

The next theorem generalizes the easy-hard technique to the case of partitions. This theorem
is the key to the Embedding Theorem for k-chains.
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Theorem 45 Let k > 2. Let a and a' be k-words with |a| = |a'| =n > 2, an—1 # an, a,,_; # al,
and a; # a} for all i < n. If NP(a) C NP(d'), then PH = ¥8(n — 2) ® NP(n — 1).

Proof. Let L be a <h,-complete set for NP. Thus, by assumption NP(a) C NP(a'), there is a
polynomial-time computable function h which witnesses the reduction L* <}, L. We will show
that h is an (L,n — 1)-twister. For that, we first have to prove the following claim.

Claim. If (wi,...,w;) is a hard sequence for (L,m,n—1,h), then for all zj41,...,Tp_1 € =™
and for all a € {1,2,...,k},

Qj41..-Gn
<$j+17 c ,fl?n,1> e L/

_ _ a’, ,..al,
= ((7r§-’+11, ey T T 0 R (W« ey Wiy i1y ey Tno1)) € Lo’

This claim can be proven inductively on the order j of hard sequences. The base of induction

j = 0/is just our given situation NP(a) C NP(a’). So, let (w1, ...,wj,wj+1) be a hard sequence for
(L,m,n—1,h). Thus, wj41 ¢ Land forall z;49,...,2,—1 € X" it holds that (m ;l_Hloh)((wl, e
Wi, Wjt1, Lj42s .-+, En—1)) & L. Hence, for b = a1,
(Tj40,. . Tnor) € L2
& wjy1 € Lor (Tji9,...,Tp_1) € LT
= (W1, Tj12,. ey Tpo1) € L 00 (since b = ajy1)
a’, ...al,
< (( ;1+11’ . Z %> h)((wl, sy Wiy Wi, T2y ,:Cn_1>) € LbﬁLl
(by induction hypothesis)
— (r ;:1 oh)((wi,...,wj,wjq1,Tj12,...,Tn-1)) ¢ L and
_ a,,...a
(( ;1+21, - ,WZ_D o h)((wl, ce ey Wiy Wi 1, T2y ,:Cn_1>) S LbﬁLZ
(since b # aj )
_ a,,...a
— ((W?JrQl"" :zl %>Oh)(<wla"'awjawj-i-laxj-i-%"'axn—1>) ELbJ+2 .
Now, consider b = a;- 41- Then we conclude
<$j+2, L ’xn_1> c LZj+2...an
< wjy1 ¢ Land (vj49,...,2p_1) € LT
= (Wjt1,Tj42, .-y Tpo1) € LT (since b # ajy1)
al,q...a,
< (( ;L+11’ . Z %> h)((wl, sy Wiy Wi 1, T2y ,:Cn_1>) € LbﬁLl
(by induction hypothesis)
— (7 ;:1 oh)((wi,...,wj,Wjt1,Tj42,...,Tp—1)) € L or
_ a, 5...al,
((7r§-’+21, T T o B)((wi, y Wi W1, Tjs2, .- Tp—1)) € L’
(since b = aj,,)
_ al, 5.0l
— ((W;L+21"" 7777: %>Oh)(<wla"'awjawj-i-laxj-i-%"'axn—1>) ELbJ+2 .
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For the remaining case, let b ¢ {a;11,a},}. Then

<$j+2, L ’xn_1> c LZj+2...an
< wjy1 ¢ Land (vj49,...,2p_1) € LT
= (Wjt1,Tj42, ..oy Tpo1) € LT (since b # ajy1)
_ _ a', ,...al
= ((7r§”+11, .. ,71'2_%> oh)((wi,...,Wj,Wjg1,Lj42,...,Tn—1)) € LbJ+1 "
(by induction hypothesis)
— (F;ZJ:II o h)((wl, ey W Wi, T2y ,xn_1>) ¢ L and
_ _ a’,,...al,
((W;-’+21, .. ,71'27%) o h)((Wiy. . Wj,Wjt1,Tj42,-- -, Tn_1)) € LbJ+2
(since b # aj ;)
_ _ a’,,...al,
= ((71';7”_'_21, .. ,71'27%) oh)((Wiy. .. Wj,Wjt1, Tj42,---,Tn_1)) € LbJ+2 .

This completes the induction, and thus, the claim is proved.

Now, we prove that A is an (L,n — 1)-twister, i.e., we have to show: If (wi,...,w;) is a maximal
hard sequence for (L, m,n —1,h), then for all z;,, € Y. there are Tj42,..yTp—1 € Y™ such
that
Tjiy1 € L = (ﬂ';lJ:ll oh)({wy,... s Wiy Tjdly - ,Tn—1)) € L.

There are different cases depending on the order j of the maximal hard sequence. If j = n—2 > 0,
then the assertion reduces exactly to the claim above, having in mind that a,_; # al,_;. If
Jj < mn — 2, then for every z;; € Y<™_ the sequence (wi,... ,wj, Tj+1) is not a hard sequence,
since (wy,...,w;) is maximal. Consequently, 741 € L or there are z;19,...,2,—1 € E=™ with
(71';1;11 oh)((wWiy.-. Wi, Tjs1,Zj42,...,Tn—1)) € L. Hence, z; 1 ¢ L implies the latter case. This
proves the direction from left to right. Conversely, the claim shows for all 7o, ..., 2,1 € =7
and b= aj ; # a1

aito...an
zjt1 € Land (zj49,...,2,-1) € Lb”z
-1
<~ (7T;-Z+1 o h)((wl, e Wiy T 1 T2y e e ,:En_1>) €L or
1 1 a., ,..al,
(<7T;-l+2 ooty o h)((wis .o Wi, T, Ty, oo Tno1)) € Lb]Jr2 .
Now, if there are z;42,...,Tp—1 € B5™ with (W;IJ:II oh)((wi,...,wj,Tj41,Zj42,...,Zn-1)) € L,
then ;1 ¢ L. Thus, h is an (L,n — 1)-twister, and using Lemma 44 we obtain the statement
desired. B

Theorem 46 merges hardest inclusions and the preceding theorem, yielding a upper bound for
the polynomial hierarchy collapse in case of unlikely inclusions of partition classes over k-words.

Theorem 46 Let a be any repetition-free k-word with k > 2. Let §, = ||{i | a; = aijy2}||. If there
is a k-word o’ with a A o’ and NP(a) C NP(a'), then PH = £5(2]a| — d, — 4) ®NP(2|a| — d, — 3).

Proof. For any k-word z = 21 ... z,, define the k-word Z to be the repetition-free version of the
word 29212322 ... Znzn—1. Clearly, it holds |Z| = 2|z| — §, — 2.
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Let w be a shortest repetition-free k-subword of a with w £ a'. Then, it holds |@w| < |a|. This
can be seen as follows: Assume that w emerges from a when only deleting the j-th letter in a
and making the remainder repetition-free. Then, d,, > d, — 2 (by considering the worst case
aj_2 = aj, aj_1 = a;j41, and a; = aj42). Thus,

] < 2(Jal = 1) — 6, — 2 < 2Ja] — (5 —2) — 4 = 2la| — 6, — 2 = [a].
By induction, we obtain || < |a| for arbitrary repetition-free k-subwords of a.

Because of w A ' and NP(w) C NP(a) C NP(d), it holds NP(w) C NP(w) by Theorem 39.
Let x be the canonical embedding of w into @w. Let |w| = n and |w| = m. Then, it holds
|D| =n — 1. Consider the k-word w' defined for all j < m by

;o wy i k(r—1) <j <k(r),
Wi Tty if§ > k(n —1).

Since |w| < ||, the k-word w' is well-defined. Moreover, the following facts are clearly true.

= |QI]| :m,

3. wl, #w! | (for @ this is true due to repetition-freeness).

In order to meet the assumptions of Theorem 45, it remains to prove w;- # w; for all 7 < m.
Assume the contrary to be true, i.e., there is a 7 < m such that w;- = wj. Let s be maximal
with (s — 1) < j. Then, w} = w, and consequently, x(s) = j. But this is a contradiction to
the repetition-freeness of w, if j = k(s — 1), or to the definition of the canonical embedding &, if
j > k(s —1) and s € Dy, or to w A b, if j > k(s — 1) and s = n. Hence, w; # ; for all j < m.
Now we can apply Theorem 45. Consequently, from our assumption NP(w') = NP(w) C NP (),
we obtain PH = ¥5(|w| — 2) & NP (o] — 1) C £5(|a] — 2) @ NP(|a] — 1). O

Summarizing all we have done so far we state the Embedding Theorem for k-chains as the formal
confirmation of the Embedding Conjecture for k-chains.

Theorem 47 (Embedding Theorem for NP with respect to k-chains.) Assume that
the polynomial hierarchy is infinite. Let (G, f) and (G',f') be k-chains with k > 2. Then,
(G, f) < (G, f') if and only if NP(G, f) C NP(G', f').

Proof. Without loss of generality, let a and a’ be repetition-free k-words representing (G, f) and
(G', f"). The direction from left to right is just the Embedding Lemma. For the other direction,
let a A o'. Suppose NP(a) C NP(a'). Then by Theorem 46, the polynomial hierarchy is finite
contradicting our assumption. Hence, NP(a) € NP(d’). 0

We get once more that the Embedding Conjecture is generally true for 2-lattices. This is a
consequence of Theorem 47 and the following simple proposition.

Proposition 48 FEvery 2-lattice is equivalent to its longest chain with alternating labels 1 and
2.

Corollary 49 Assume the polynomial hierarchy is infinite. For 2-lattices (G, f) and (G', f') it
holds that NP(G, f) C NP(G', f') if and only if (G, f) < (G, f).
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7.2.4 An Extension to k-Lattices

In the preceding we have proved the Embedding Theorem for k-chains. Now we apply this
theorem in order to get validity of the Embedding Conjecture for a large subclass of general
k-lattices.

Theorem 50 Assume that the polynomial hierarchy is infinite. Let (G, f) and (G', f') be k-
lattices. If NP(G, f) C NP(G', f'), then every minimal k-subchain of (G, f) occurs as a k-
subchain of (G', f').

Proof. Let NP(G, f) C NP(G', f'). Assume there is k-subchain (C, ¢), identified with the k-word
¢, such that (C,c) £ (G', f'). Let d',...,d™ be all k-words representing longest repetition-free
k-subchains of (G', f'), and let ; be the canonical embedding of ¢ into d’. Let r denote the
maximum of Dy, U---U D, . Define z to be the following k-word

Z  =def dllil(o)-l-l . dllil(l)—ldiz(o)-l-l ce di2(1)_1 . dlimm(o)-i-l . d?m(l)—lcl .

. di1(1)+1 Ce d’1€1(2)71dz2(1)+1 Ce dz2(2)71 Ce d?m(1)+1 e d?m(2)7162 .

1 1 2 2 m m
’ dnl(r71)+1 te dnl(r)fldiw(rflﬂ»l s dng(r)fl s dnm(r71)+1 s dnm(r)flcr'
Clearly, ¢ £ z and &/ < z for all j € {1,2,...,m}. We prove NP(G', f') C NP(z). For that, it
suffices to show (G', f') < ({1,2,...,|z|},2). We define a mapping ¢ : G' — {1,2,...,]|z|} for
x € G' as follows

o(2) =aer \/ A (K&, 2] o e, d) ().

e represents a chain through = j with e<dJ

We have to prove that ¢ is monotonic and f'(z) = z,). The latter is obviously true by
construction of ¢. For the monotonicity, let z,y € G' with x < y. Consider e representing a
chain through z. Since the value ¢(z) only depends on chain up to z, without loss of generality
we can suppose e to represent a chain additionally going through y and we can suppose j to
be so that (k[d,z] o kle,d’])(y) is minimal for all (k[d’, 2] o k[e,d’])(y) with e < d’. Hence,
o(z) < (k[d,2] o kle,d’])(y) < ¢(y), and thus, ¢ is monotonic. Now we have a situation
NP(c) C NP(G, f) € NP(G', f') C NP(z) but ¢ £ z. Consequently, by Theorem 47, this is
contradiction to the strictness of the polynomial hierarchy. Hence, our assumption was false,
and every repetition-free k-subchain of (G, f) is also a k-subchain of (G', f'). 0

As an example, Theorem 50 easily gives that the 3-lattices in Figure 2 and Figure 3 define
incomparable partition classes over NP, unless the polynomial hierarchy is finite.

7.3 Evidence II: Beyond Chains

Assume that the polynomial hierarchy does not collapse. By Theorem 50, if the k-lattice (G, f)
has a minimal k-subchain which is not a k-subchain of the k-lattice (G', f') then NP(G, f) €
NP(G, f').
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Figure 8: The upper triangle

But what about k-lattices which have the same minimal k-subchains? For example, take the 3-
lattices (G, f) and (G, f') represented in Figure 6, that have been used to vitiate the Embedding
Theorem for recursively enumerable sets. Since (G, f) £ (G, f') the Embedding Conjecture says
that NP(G, f) € NP(G', f'). However, Theorem 50 does not help to show this because each
subchain of (G, f) occurs in (G, f').

In the following we will see that we can prove theorems similar to Theorem 50 for some simple
substructures other than subchains. In particular, we get from Theorem 54 that for the 3-lattices
(G, f) and (G, f') in Figure 6, NP(G, f) € NP(G’, f') unless the polynomial hierarchy is finite.

7.3.1 The Upper Triangle

The first structure we investigate is the upper triangle as presented in Figure 8. The main result
with respect to upper triangles is Theorem 52. The key to prove this theorem is the following
lemma. The proof of this lemma is inspired by a work of Hemaspaandra et al. [20].

Lemma 51 If for all sets A,B € NP there exist sets C,D € NP such that C U D = ¥,
C CB\A, and D C A\ B, then NP = coNP.

Proof. Suppose that the premise of the lemma is true. Consider the sets A and B defined as

A =4 { (Fi,Fp) | Fi € SATISFIABILITY }
B =4 { (F1,F,) | F> € SATISFIABILITY }

Obviously, A and B belong to NP. The supposition implies that there are NP sets C' and D with
CuD=%* CCB\A,and D C A\ B. Let M; and M3 be nondeterministic polynomial-time
Turing machines accepting C and D, i.e., L(M;) = C and L(Ms) = D.

Recall that for a formula H, H € SATISFIABILITY if and only if Hy € SATISFIABILITY or
H{ € SATISFIABILITY.

Let My x My be that machine that on an input (Fy, F5) first simulates M; on F; (ending with
result ) and then simulates My on Fy (ending with result ). Consider M; x Mj on an input
(Hy, Hy) for a propositional formula H along an arbitrary computation path.

e Case (o,f) = (1,1). That is (Ho,H;) e CNDCB\A N A\B=(ANB)UAUB.

~ If (Hy, H,) € AN B, then H, Hy, H; € SATISFIABILITY.
— If (Hy,H,) € AU B, then H, Hy, H; ¢ SATISFIABILITY.
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All in all,
H € SATISFIABILITY <= Hjy € SATISFIABILITY.

e Case (a,3) = (1,0). That is, we know (Hy, H1) € C and we assume moreover, (Hy, Hy) €
C\D=EUFUG, where ECAUB, F=A\B, and G C AN B.

~ If (Hy, H,) € E C AU B, then H, Hy, H; ¢ SATISFIABILITY.

~ If (Hy, Hy) € G C AN B, then H, Hy, H; € SATISFIABILITY.
— If (Hy, Hy) € F = A\ B, then H, Hy € SATISFIABILITY.

All in all,
H € SATISFIABILITY <= Hjy € SATISFIABILITY.

e Case (o, ) = (0,1). Analogous arguments as for (a, ) = (1,0) show

H € SATISFIABILITY <= H; € SATISFIABILITY.

e Case (o, 8) = (0,0). Since C' U D = X* there is always an accepting path. Thus this case
is irrelevant.

Define M to be a machine that on input H works in the following way: M simulates M; x My
on (Hy, Hy) to answer the question H € SATISFIABILITY. M rejects along computation paths
with result (0,0). Along a computation path with result (1,1) or (1,0), M simulates M; x Mo
on input (Hyg, Hp1) to answer the question Hy € SATISFIABILITY. Along paths with (0,1), M
simulates My x My on (Hyg, H11) to answer the question Hy; € SATISFIABILITY. Continuing in
this way we obtain after n simulations of M7 x My where n is number of variables in H a question
Hya, ..., € SATISFIABILITY. Answer this question with negation of Hyyq,...a,- Clearly, M runs
in polynomial time and L(M) = SATISFIABILITY. Hence, SATISFIABILITY € coNP. O

Theorem 52 Assume that NP # coNP. Let (G,f) and (G',f") be k-lattices with k > 3.
If NP(G, f) C NP(G', f") then all k-subposets in (G, f) having the form as in Figure 8 with
pairwise different labels f(a), f(b), and f(c) do also occur in (G', f').

Proof. Let (G, f) and (G', f') be k-lattices. Suppose that NP(G, f) C NP(G', f'). Suppose that
there exists a k-subposet of (G, f) as described in Figure 8. So let {a,b,c} C G be such that
a < b, ¢ < b, a and c are incomparable, and ||{f(a), f(b), f(c)}|| = 3. Because of Proposition 30,
without loss of generality we can assume that f(a) =1, f(b) = 2, and f(c) = 3. The proof is by
contradiction. That is, we assume to the contrary that there exist no o’,b0’, ¢’ € G’ with a' < ¥V,

d<b, flla)y=1, f'(t/) =2, and f'(c) = 3.
Let A and B be arbitrary sets in NP. Define a mapping S : G — NP for all z € G as

X if z > b,

AUB ifz>a,z>c¢, and z 2 b,
S(z) =qet { A if z>aand z % c,

B if z2aand z > c,

ANB if z 2aand z # c.
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It is easily seen that S is an NP-homomorphism on G and that Ts(0g) = ANB, Ts(a) = A\ B,
Ts(c) = B\ A, and Ts(b) = AU B. Depending on the value f(0g) we have several k-partitions
defined by (G, f) and S. Without loss of generality, we can assume that f(0g) € {1,2,3,4}.
This gives the following four k-partitions:

(A4, AUB, B\A, 0, 0,...,0) iff0g) =1

(C.].5) = (A\B,(ANB)UAUB, B\ A4, 0, 0,....,0) iff(0c)=2
Y (A\ B, AUB, B, 0, 0,...,0) if f(0g)=3
(A\ B, AUB, B\ A, ANB,D,..., 0) if f(0g) =4

Since NP(G, f) C NP(G', f') there is an NP-homomorphism S’ on G’ with (G, f,S) = (G, ', S").
We consider the following sets of elements of G':

U =aqt {2z€d ‘ f'(z) =2A(Vz,z < 2)[f'(z) # 3] },
Us =daer {2€G | f(z)=2Az,2<2)[f(z) #1] }.

Since there exist no o', b, € G' with a’ < V', ¢ < ¥, f'(a') =1, f'(t) =2, and f'(c) =
holds that U3 UUs = { z € G’ | f'(z) =2 }. Define sets C and D as

C=qr AU | J 8'(z) and D=4 BU | §'(2).
zeU; z€Us

Clearly, C, D € NP. Moreover the following is true:

This can be verified as follows:

L Let 2 ¢ (U,ep, 8'(2)) U (U.er, S'(2)). Then z ¢ (G, f',S")2. We conclude
(G182 = (G f,8) UG, f,8:u(G, [, 8
= (G, [, U(G, [,8)3U(G, f,S)s C AUB.
Thus, z € AU B. Hence, for all € ¥* we have that z € C' U D.
2. Obviously, A C B\ A. Furthermore,

U Sl(z) C (Glaflasl)lU(Glaflasl)QU(Glaf,75,)4

= (G,f,S)1U(G,f,S)QU(G,f,S)4 = (Gafas)3 C B\A
Consequently, C C B\ A.

3. Analogous argumentation as for the second statement.

Since A and B were arbitrarily chosen, we can apply Lemma 51. This implies that NP = coNP.
Hence, a contradiction. O

38



Figure 9: The lower triangle

7.3.2 The Lower Triangle

The structure dual to the upper triangle is the lower triangle presented in Figure 9. Although
the proof of Theorem 54 which is here the main result similar to Theorem 52 uses the duality
of the structures, the key lemma for establishing the theorem works different to Lemma 51.
Interestingly, we are not able to prove the strong consequence that NP is closed under comple-
mentation as in Lemma 8 but only by taking polynomial advice. The proof involves techniques
of Ko [26] and Hemaspaandra et al. [21].

Lemma 53 If for all sets A, B € NP there exist sets C, D € NP such that AA\B C C, B\AC D,
and CN D =), then NP C coNP/poly.

Proof. Suppose that the premise of the lemma is true. Let L € NP. Define the sets A and B as
follows:

A =def { (x,y> ‘ min{xay} €L }
B —def { <$7y> ‘ max{x,y} €L }
The supposition implies that there are NP sets C and D with A\ B C C, B\ A C D, and

C N D ={. On an intuitive level, if z <y, then “(z,y) € C” means “if y € L then x € L”, and
“(x,y) € D” means “if x € L then y € L".

Let ng € IN be the smallest number such that LNY<"0 is non-empty. Let n > ng be an arbitrary
natural number. We construct a set S,, that will serve as an advice for strings of length < n.
Define for z € ¥=" the set B(z) as

B(z) =4t {2 €S | [z £ 2N (<2 (3,2) EC)A (2 <z — (2,2) € D)] V
(z <zA(z,2) ¢ CUD) }.

If G C LNXS", then for all ,z € G with x # z either z € B(z) or z € B(x). This gives
~(IGl o
Y IB(z) NG| = N for all G C LN 2= (3)
z€G

For a set G C B=", let y¢ be a word in G such that || B(yg) NG| > |B(z)NG]|| for all z € G. We
consider a certain sequence of sets {G1,Ga,...}. In particular, we are interested in the words
Ya;- Let y; denote yi;. Then for all j € IN,, the sets GG; are inductively defined as follows:

G1  =qef LNnysr ifj=1
Gj =aet Gj-1\ ({yj-1}UB(y;j—1)) ifj>2.
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The following can be shown by inductive arguments:

1G]]
271

|G < for all j € IN,. (4)

For j = 1, this obvious. For j > 2, using Equation (3) we easily observe that

G| -1
1B NGl > 192

Thus we can conclude

Gl = 1Y _ 1G]l _ il
1650 < 1651l - (14 10i=l= ) LGl A

From Equation (4) it immediately follows that there is a smallest r such that for all s > r,
Gs = (). Tt holds that » < 2 +log, [|G1|| < 2 +log, 2"+ < n + 3. Now let S,, be the set

Sn —def {y17y27 s 7’!/1“*1}-

Thus, ||S,|| < n + 2. Moreover, we obtain that S,, C L and that for all z € =", it holds:

e If z € L then there is an y € S, such that exactly one of the following statements is true:

—z=yor
— if x <y then (z,y) € C, and if y < z then (x,y) € D, or
—z<yand (z,y) ¢ CUD.

e If x ¢ L then it holds that for all y € S,,, all of the following statements are true:
- ¢ #yand
— if z < y then (z,y) € D and
— if y < z then (z,y) € C.

From this we can conclude that for all z € ©<7,

r € L <= there exists an y € S, such that z = y or the following is true:
if z <y then (z,y) ¢ D, and if y < x then (z,y) ¢ C.

Define a set A’ as follows:

A =gt { (&, T) | |5| 2o AT CES"A|T| < n+1A
FyeN[z=yVie<y— (z,9) §D)A(y<z— (z,9) ¢ O)]] }

It is easily seen that A’ is in coNP. Define the advice function h as

S, if n > ny,
hn) =aet { 0 ifn< ng.

Clearly, h has polynomial length in n, i.e., A € poly. Furthermore, we have that for all z € *,
r € L+ (z,h(|z])) € A"

Hence, L € coNP /poly. O
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Figure 10: A next step towards resolution of the Embedding Conjecture

Theorem 54 Assume that the polynomial hierarchy is infinite. Let (G, f) and (G', f') be k-
lattices with k > 3. If NP(G, f) C NP(G', f') then all k-subposets in (G, f) having the form as
in Figure 9 with pairwise different labels f(a), f(b), and f(c) do also occur in (G', f').

Proof. Let (G, f) and (G', f') be k-lattices. Suppose that NP(G, f) C NP(G', f'). Suppose
that there exists a k-subposet of (G, f) as described in Figure 9. So let {a,b,c} € G be such
that @ > b, ¢ > b, a and ¢ are incomparable, and ||{f(a), f(b), f(c)}|| = 3. We assume to the
contrary that there exist no o', b, € G' with o’ > V', ¢ > ¥, f'(d') = f(a), f'(b') = f(b), and
f'(e) = f(o).

Theorem 18 implies that coNP(G?, f) C coNP(G'?, f'). Thus, our situation translates exactly
to the situation in Theorem 52 with respect to coNP. Following the proof of Theorem 52 we
obtain that for all sets A, B € coNP, there exist sets C, D € coNP with CUD = ¥*, C C B\ A,
and D C A\ B. This easily implies that for all sets A, B € NP, there exist sets C, D € NP such
that CND =0, A\ BC C,and B\ A C D. By Lemma 53, it follows that NP C coNP /poly,
hence the polynomial hierarchy is finite. Thus we have a contradiction. 0

From Theorem 54 we easily see that, assuming an infinite polynomial hierarchy, NP(G, f) €
NP(G', f') for (G, f) being the left 3-lattice and (G’, f’) being the right 3-lattice in Figure 6.
So the counterexample to the Embedding Theorem for recursively enumerable sets is not a
counterexample to the Embedding Conjecture.

7.4 Next Steps Towards Resolution

All the theorems we proved in the last subsections to support the Embedding Conjecture are of
the following shape:

Assume the polynomial hierarchy is infinite. Let (G, f) and (G', f') be k-lattices. If
NP(G, f) C NP(G', f') then all k-subposets of (G, f) having a certain pattern P do
also occur in (G', f').

The patterns for which the according theorem holds are chains, lower, and upper triangles.
Progress towards an affirmative resolution of the conjecture means to enlarge this class of pat-
terns. Because the previous theorems all need different proof techniques we have not been able
to learn very much from these solutions. It will be important to prove new patterns step by step.
The pattern which is the next candidate to be resolved is pictured in Figure 10. The difficult
case is f(b) = f(c) and f(b) ¢ {f(a), f(d)}. Reference issues can be found in the following

section.
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Figure 11: Scheme of all boolean 3-lattices of the form ({1,2}?, f) with f(1,1,1) =1

8 On the Structure of BH;3(INP)

Assume the Embedding Conjecture is true and an infinite polynomial hierarchy. Then the
structure of the boolean hierarchy of k-partitions with respect to set inclusion is identical with
the partial order of <-equivalence classes of k-lattices with respect to <. To get an idea of the
complexity of the latter structure we will now present the partial order of all equivalence classes
of 3-lattices which include a boolean 3-lattice of the form ({1,2}3, f) with surjective f (for
non-surjective f these k-lattices do not really define 3-partitions). The 5796 different boolean
3-lattices of the form ({1,2}3, f) with surjective f are in 132 different equivalence classes.

Figure 11 shows the partial order of the 44 equivalence classes which contain boolean 3-lattices
of the form ({1,2}?, f) such that f(1,1,1) = 1. The cases f(1,1,1) = 2 and f(1,1,1) = 3 yield
isomorphic partial orders. A line from equivalence class G up to equivalence class G’ means that
(G, f) < (G, f") for every (G, f) € G and (G', f') € G’. We emphasize that such a study would
be intractable without the possibility to present boolean k-lattices by equivalent k-lattices. All
3-lattices in equivalence classes framed by the same dotted line have the same minimal labeled
subchains.

Figure 12 shows the middle part and Figure 13 shows the right part of the partial order in Figure
11. In both diagrams, each equivalence class is represented by the minimal 3-lattice. The left
part of the partial order in Figure 11 is symmetric to the right part where the labels 2 and 3
change their role.

Theorem 55 Assume the polynomial hierarchy is infinite. If in Figure 12 and Figure 13 there
is a thick line from class G up to class G’ then NP(G, f) C NP(G', f') for every (G, f) € G
and (G', f") € G”.

Every “thick line” in this theorem is an application of Theorem 50 besides the one’s marked by
A or V which are just Theorem 52 (for A) and Theorem 54 (for V).
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Figure 12: Closer look at the middle part of the scheme in Figure 11




2
3
3
1
2
1
3
1
2
1
2 2
1
A
2 2
1 1
2 3
1 1
2
2 2
1 1 3
3 2 2
1 1
1
.,
“'\ 2
3
1

Figure 13: Closer look at the right part of the scheme in Figure 11
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Figure 14: The 3-lattice £(m,n) for m,n € IN

At the end of this section we mention that the boolean hierarchy of 3-partitions over NP does
not have bounded width with respect to set inclusion unless the polynomial hierarchy collapses.

Proposition 56 Assume that the polynomial hierarchy is infinite. For every m € IN there exist
at least m partition classes in BH3(NP) that are incomparable with respect to set inclusion.

Proof. Let m € IN. We define m 3-chains that are incomparable with respect to <. Let
Gm = ({1,2,...,m}, <) be the chain with the natural order on {1,2,...,m}. For every i €
{1,2,...,m} let fi : G — {1,2,3} be the function defined as

. 1 if (j <iandjisodd)or (j>iand jis even),
fhi)y=1< 2 if (j <iandjiseven)or (5 >iand jis odd),
3 ifj =i

It is easy to see that for all 4,7 € G,, with i # j the 3-lattices (G, f,) and (Gm,fgl) are
incomparable with respect to <. Since the polynomial hierarchy is supposed to be strict, by the
Embedding Theorem for NP with respect to k-chains (Theorem 47) we obtain that all generated
partition classes are pairwise incomparable with respect to set inclusion. O

In fact, if the Embedding Conjecture is true and the polynomial hierarchy is strict then the
boolean hierarchy of 3-partitions has an infinite subfamily of partition classes that are pairwise
incomparable with respect to set inclusion. Even worse, under this assumption, BH3(NP) is not
well founded with respect to set inclusion then there exist infinite descending chains of partition
classes. For instance, consider the family of all 3-lattices £(m,n) for m,n € IN as depicted in
Figure 14. One can easily observe the following facts:

1. If an n € IN is fixed then for all m € IN it holds £(m,n) > £(m + 1,n). Hence we
have an infinite descending chain of 3-lattices thus inducing an infinite descending chain
of partition classes.

2. For all m,n € IN with m # n it holds that £(m,m) £ £(n,n) and £(n,n) £ £(m,m). This
gives the infinite antichain of 3-lattices, hence an infinite antichain of partition classes.
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9 Machines That Accept Partitions

In this section we will see how the partitions of classes in the boolean hierarchy of k-partitions
over NP can be accepted in a natural way by nondeterministic polynomial-time machines with
a notion of acceptance which depends on the generating functions.

Definition 57 Form € IN, a polynomial-time m-machine M is a nondeterministic polynomial-
time machine producing on every computation path an element from the set {0,1,...,m}. For
an input x let M (x) =get { 1#0 ‘ there exists a path of M on x with result i }

Obviously, a polynomial-time 1-machine is an ordinary nondeterministic polynomial-time ma-
chine. All the sets L;(M) =qef { z ‘ there exists a path of M on z with result 4 } are in NP
and we obtain M(z) = {7 | z € L;(M)} and cr, ) (z) = cprq) (i) for all .

Definition 58 For a function f : P({1,....,m}) — {l,...,k} and a polynomial-time m-
machine M let (M, f) be the k-partition defined by (s f)(x) = f(M(x)) for all z € ¥*.

Note that every function f : P({1,2,...,m}) — {1,2,...,k} can also be considered to be
the function f : {1,2}™ — {1,2,...,k} and vice versa by the relationships f(ai,...,am) =
f{i]a; =1}) for ar,...,am € {1,2} and f(A) = f(ca(l),...,ca(m)) for A C{1,2,...,m}.

Theorem 59 NP(f) = { (M, f) ‘ M is a polynomial-time m-machine } for all m € Ny and
all functions f: {1,2}™ — {1,2,...,k}.

Proof. To show the forwards inclusion let By,..., B, € NP. There are nondeterministic
polynomial-time machines My, ..., M, such that M; accepts B; for i € {1,2,...,m}. Define M
to be a nondeterministic polynomial-time machine which simulates M, ..., M,, in parallel but
when simulating M; it outputs i rather than 1. Obviously, for all i € {1,2,...,m}, L;(M) = B;
and we conclude

Cf(Bi,...Bn)(T) = flep (7),... ¢, (x) = fler, (@), cr,. () (T))
= flem@ (1), .-, eam)(m)) = f(M(z)) = cp) ().
For the inclusion “2” consider a polynomial-time m-machine M and conclude
conp)(®) = f(M(x)) = f(ear)(1)s-- s cary(m) = fler, () (@), -+ s e, () (7))
= CH(Ly(M)yors L (M) (T)-
O

Finally, we discuss completeness for the partition classes NP(f). We will see that it is easy to
construct from an arbitrary NP-complete problem a problem which is complete for NP(f).

We already used the notion of many-one reductions for partitions. We say that the k-partition
A is polynomial-time many-one reducible to the k-partition B (for short A <}, B) if and only
if there exists a polynomial-time computable function g such that ca(w) = eg(g(w)) for all w.
Note that in the case k = 2 this yields exactly the classical notion of polynomial-time many-one
reducibility for sets.

From Theorem 59 we easily obtain the following:
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Proposition 60 Let k > 2. All classes in BH(NP) and BCy(NP) are closed under <b,.

A k-partition A is <},-complete for a partition class C (which is closed under <},) if and only
if A€ C and B <, A for every k-partition B € C. Recall that m;" denote projections of an
encoded word w = (wy,...,wy,). For aset A C ¥* and a function f : {1,2}"™ — {1,2,...,k}
define the k-partition A(f) by

cacry(w) =qer f((caon")(w)(caony’)(w)...(caomy)(w))  forallw e X"

Theorem 61 Let f: {1,2}™ — {1,2,...k} with k > 2. Let A be <b,-complete for NP. Then
A(f) is <h,-complete for NP(f).

Proof. Defining A; =ger { w ‘ T (w) € A } for i € {1,2,...,m} we obtain A; € NP. For every
w € X* we conclude

capy(w) = f((caon)(w)...(caomy)(w)) = flea, (w)...ca, (w)) =cr(Ar,...,An).
Consequently, A(f) = f(A1,...,An) € NP(f).

Now take any Bj,...,B, € NP. Since A is <§,-complete for NP there exist polynomial-time
computable functions g1, ..., g, such that for every i € {1,2,...,m}, w € B; & g;(w) € A.

Defining g(w) =get (g1(w), ..., gm(w)) for every w € ¥*, we can conclude
CH(BryBm) (W) = fle (W), cp, (w)) = fllcaog)(w),...,(ca0gm)(w))
= flcaom®og)(w),...,(caompog)(w)) = caylg(w)).
Hence f(Bz,...,Bn) <h A(f). 0

As a natural example of complete partition, consider the classification problem ENTAILMENT we
have extensively discussed in the introductory chapter.

Theorem 62 ENTAILMENT is <h,-complete for NP(f) where f : {1,2}% — {1,2,3,4} is the
function defined as f(1,1) =1, f(1,2) =2, f(2,1) =3, and f(2,2) = 4.

Proof. Obviously, ENTAILMENT is in NP(f). Consider the partition SATISFIABILITY(f) which
is <h,-complete for NP(f) by Theorem 61. More explicitly:

SATISFIABILITY(f); = { (Fy, Fy) \ H, € SATISFIABILITY, Hy € SATISFIABILITY },
SATISFIABILITY(f)y = { (Fy, Fy) ‘ H, € SATISFIABILITY, Hy ¢ SATISFIABILITY },
SATISFIABILITY(f)s = { (Fi,Fy) ‘ H; ¢ SATISFIABILITY, Hy € SATISFIABILITY },
SATISFIABILITY(f)s = { (Fi,F2) | Hi ¢ SATISFIABILITY, Hy ¢ SATISFIABILITY }.

We have to show that SATISFIABILITY(f) <h, ENTAILMENT. This reduction is seen by the
following algorithm. On input (F}, F5), make the sets of variables in F; and in Fy disjoint, take
two new variables z; and z2 not involved in Fy or Fy, and output (FY, F3) where F| =4er 21 A Fi
and Fj =ger 22 A F. Obviously, the algorithm runs in polynomial time. Moreover, we have that

F| = F, <= F| ¢ SATISFIABILITY
F) = F| <= Fj ¢ SATISFIABILITY.

Thus (F, F5) € SATISFIABILITY(f); < (F}, F3) € ENTAILMENT;, for all ¢ € {1,2,3,4}. 0
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Figure 15: Classes with complete partitions having components of same complexities

Proving completeness results for entire partitions instead of only for the components allows finer
distinguishing the complexity of classification problems. Obviously, completeness translates from
the partition to the components: If the k-partition A is <},-complete for the partition class C
then for each i € {1,...,k}, A; is <h,-complete for the class C;. The converse direction need not
to hold as can be seen for the partition classes that are described by the 4-lattices in Figure 15.
Each class belongs to BH4(NP), thus has complete partitions. ENTAILMENT is just a complete
partition for the class generated by left 4-lattice in the figure. Let A be any <},-complete
partition for the class generated by the right 4-chain. Then for all i € {1,2,3,4} we have
ENTAILMENT; =h, A; but A does not reduce to ENTAILMENT unless NP = coNP as follows
easily from Theorem 31.

10 Conclusion

In the preceding sections, we have investigated the boolean hierarchy of k-partitions over NP for
k > 3 as a generalization of the boolean hierarchy of sets (i.e., 2-partitions) over NP. Whereas
the structure of the latter hierarchy is rather simple the structure of the boolean hierarchy of
k-partitions over NP for £ > 3 turned out to be much more complicated. We established the
Embedding Conjecture which enables us to get an overview on this structure. This conjecture
was supported by several partial results. A complete proof of or a counterexample to the Em-
bedding Conjecture for NP are left to find. However, a counterexample—two k-lattices (G, f)
and (G', ') with (G, f) £ (G', f'), but NP(G, f) C NP(G’, f')—may be hard to find since more
recently, it has been proven in [28] that the relation < induces a sufficient and necessary criterion
for relativizable inclusions.
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