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Nevertheless, omplexity theoretiians mainly investigate the omplexity of sets, i.e., parti-tions into two parts, or the omplexity of funtions, i.e., partitions into usually in�nitelymany parts. Both extremes seem not appropriate for studying the omputational omplex-ity of problems inherently being partitions into �nitely many parts. If we study partitionsinto at least three parts by means of enoding the omponents of partitions (e.g., as � (x; i) ��x is in the i-th omponent 	) then we may assume that many interesting phenomenons vanishby the enoding. On the other side, though partitions an be onsidered as funtions with �niterange, even the �nite range allows ombinatorial arguments beause eah omponent dependsonly on the other �nitely many omponents of the partition. We would lose this feature whensimply subsuming partitions under funtions.This paper studies, for the �rst time, systematially the omputational omplexity of partitions.Herein we will follow the approah to ollet \similar" problems in omplexity lasses and toinvestigate relations among these lasses. While omplexity lasses of sets represent deisionproblems our omplexity lasses of partitions represent lassi�ation problems. Very importantlasses of lassi�ation problems originate from questions onerning relations.1.1 Classi�ation and Deision Problems for RelationsSuppose that � is any binary relation on a basi set M . When giving an expliit de�nition of�, we speify � in the following way: For two elements x; y 2 M , x � y if and only if somede�nitional onditions hold for x and y. Thus the expliit spei�ation of a relation has theform of a deision problem. But one the relation � is �xed, the more natural question is todetermine for any given x and y how they behave with respet to �: Is it true that both x � yand y � x hold or only x � y holds or only y � x holds or is even nothing true? Questions of thiskind are signi�ant in onnetion with, e.g., entailment issues as studied in automated reasoning,database theory, and onstraint programming, or ongruene and isomorphism problems equallyof broad interest.For a onrete example let us onsider the entailment relation j= for formulas of (two-valued)propositional logi. For propositional formulas H and H 0 it is de�ned asH j= H 0 ()def eah satisfying assignment for H is a satisfying assignment for H 0:Given two arbitrary formulas there are the above four possible ases to lassify aording tothe behavior the formulas show with respet to �R. We translate this into the partitionEntailment. The most natural way to de�ne a partition is to �x its harateristi funtion.For any partition A the harateristi funtion A says for every x to whih omponent of A thisx belongs. So for any pair (H;H 0) of formulas we de�neEntailment(H;H 0) =def 8>><>>: 1 if H 6j= H 0 and H 0 6j= H;2 if H 6j= H 0 and H 0 j= H;3 if H j= H 0 and H 0 6j= H;4 if H j= H 0 and H 0 j= H:We should bring to mind that though the numbering of the ases to be distinguished is notessential for the lassi�ation itself yet it leads to di�erent partitions. We also should be awarethat for a olletion of sets to be a partition it is not only neessary to have the pairwisedisjointness of all sets but also that eah possible element must be ontained in one of these sets.2



Apparently there exist very lose onnetions between Entailment and the deision problemof whether H j= H 0 for given H and H 0. Let us explain this in more detail. For we onsider twosets A and B that desribe the deision problem formally: A is the set of all pairs (H;H 0) suhthat H entails H 0 and B is the set of all pairs (H;H 0) suh that H 0 entails H. The partitionEntailment and the sets A and B are intimately related in at least the following two ways:1. Using the sets A and B the partition Entailment an be easily rewritten. So the �rstomponent of Entailment, denoted by Entailment1, onsists of all pairs of proposi-tional formulas that do not belong to A or B. Opposite to this the fourth omponent ofEntailment, denoted by Entailment4, is nothing else than A \ B. Sine obviously Aand B are oNP-omplete (note that H is a tautology if and only if H _:H j= H) we eas-ily observe that Entailment4 is oNP-omplete, whereas Entailment1 is NP-omplete.Equally it is not hard to verify that both the seond and the third omponent of theentailment lassi�ation problem are omplete for DP where DP [32℄ is the lass of all setdi�erenes of NP sets with NP sets.2. The following generation priniple is more fundamental. Let f be the funtion de�ned asf(0; 0) = 1; f(0; 1) = 2; f(1; 0) = 3; and f(1; 1) = 4: (1)We immediately see that Entailment is exatly the partition being generated when f isapplied to the harateristi pair of the sets A and B. That means that for all propositionalformulas H and H 0 it holds that Entailment(H;H 0) = f(A(H;H 0); B(H;H 0)). In thismanner the funtion f generates a whole lass of partitions whih we denote by oNP(f).So Entailment belongs to the lass oNP(f). In fat, it is one of the hardest among allpartitions in this lass; it is in a sense omplete for oNP(f).Both juntures of the entailment lassi�ation problem with the entailment deision problemmake the boolean hierarhy over NP be involved in the study of omplexity lasses of partitions.On the one hand, the lasses NP, oNP, and DP ourring as lasses reeting the omputationaldiÆulty of the projetions of Entailment represent just the lowest levels of this omplexity-theoreti hierarhy. On the other hand, the generation priniple we desribed above is preiselythe same as the one that generates the boolean hierarhy over NP at all.1.2 The Boolean Hierarhy (of Sets) over NPThe boolean hierarhy over NP has been very extensively investigated in a series of papers, e.g.,in [39, 10, 27, 8, 9, 7, 24, 38, 33℄. Purely set-theoretially, the boolean hierarhy over a setlass is a very fundamental struture providing a detailed view on the losure of this lass underthe boolean operations intersetion, union, and omplementation. The roots of suh hierarhiesgo bak to Hausdor� [18℄ who observed normal forms of sets belonging to the boolean losureof a set lass. Underlining their great signi�ane for omputation theory, boolean hierarhieshave been studied for muh more lasses than NP suh as for 1NP (or US) [17℄, UP [22℄, C=P[16, 3℄, RP [4, 6℄, and partly for C=L [1℄ in omplexity theory, for the reursively enumerablesets [12, 13℄ in reursion theory, or for lasses ourring in automata theory [37, 5, 14℄.The most general way to de�ne the boolean hierarhy over NP is as follows (see [39℄): For aboolean funtion f : f0; 1gm ! f0; 1g, whih represents ombinations of boolean operations,3



and sets B1; : : : ; Bm let f(B1; : : : ; Bm) denote the set whose harateristi funtion satis�esthat f(B1;:::;Bm)(x) = f(B1(x); : : : ; Bm(x)) for all x. The lass NP(f) onsists of all setsf(B1; : : : ; Bm) when varying the sets Bi over NP. Up to the di�erent ranges of funtions andthe di�erent base lasses this is just the generation priniple we have used above to obtaina partition lass apturing the omplexity of Entailment. The boolean hierarhy over NPonsists of all these lasses NP(f). Note that for the de�nition of the boolean hierarhy overNP it does not make a di�erene if we take NP or oNP as the base lass; we learly prefer NP.Wagner and Wehsung [39℄ have proved that every lass NP(f) oinides with one of the lassesNP(i) or oNP(i) where NP(i) is the lass of all sets whih are the symmetri di�erene of i NPsets and oNP(i) is the lass of all omplements of NP(i) sets. The family of these lasses is alsoknown as the di�erene hierarhy [27℄. Evidently, DP = NP(2).It is not known whether the boolean hierarhy over NP is �nite or equivalently, whether NP(i) =oNP(i) for some i � 1. However, Kadin [24℄ sueeded to prove that a �nite boolean hierarhyover NP implies the �niteness of Meyer and Stokmeyer's polynomial hierarhy [31, 36℄; an eventwhih most researhers in omputational omplexity onsider to be highly improbable.1.3 The Boolean Hierarhy of k-Partitions over NPMotivated by our example Entailment it is natural to introdue and to study the gener-alization of the boolean hierarhy of sets over NP to the ase of partitions into k parts (k-partitions) for k � 3. Any set A is identi�ed with the 2-partition (A;A). For a funtionf : f1; 2gm ! f1; 2; : : : ; kg and sets B1; : : : ; Bm we de�ne a k-partition A = f(B1; : : : ; Bm) bythe de�ning ondition that A(x) = f(B1(x); : : : ; Bm(x)) for all x. Note that the harateristifuntions here are harateristi funtions of partitions (for a formal de�nition and explanationof di�erenes, see Setion 2). The boolean hierarhy of k-partitions over NP onsists of thelasses NP(f) =def � f(B1; : : : ; Bm) �� B1; : : : ; Bm 2 NP 	: As we have seen by Entailment,this hierarhy enables to measure the omputational omplexity of lassi�ation problems basedon relations for whih the deision problems is in NP or oNP. The boolean hierarhy of setsnow appears in this hierarhy as the speial ase k = 2.Whereas the boolean hierarhy of sets over NP has a very simple struture (note that NP(i) [oNP(i) � NP(i + 1) \ oNP(i + 1) for all i � 1), the situation is muh more ompliated forthe boolean hierarhy of k-partitions in the ase k � 3. The main question is: Can we get anoverview on the struture of this hierarhy? This question is not answered ompletely so far,but we will give partial answers, and we will establish a onjeture.A funtion f : f1; 2gm ! f1; 2; : : : ; kg whih de�nes the lass NP(f) of k-partitions orrespondsto the �nite boolean lattie (f1; 2gm;�) with the labeling funtion f where � means the vetor-ordering on the set of all m-tuples of f1; 2g. Generalizing this idea we de�ne for every �nitelattie G with labeling funtion f : G ! f1; 2; : : : ; kg (for short: the k-lattie (G; f)) a lassNP(G; f) of k-partitions. This does not result in more lasses: For every k-lattie (G; f) thereexists a �nite funtion f 0 suh that NP(G; f) = NP(f 0). However, the use of arbitrary lattiesinstead of only boolean latties simpli�es many onsiderations. In partiular every lass in theboolean hierarhy of k-partitions has a (essentially) unique desription in terms of minimal k-latties. The above-mentioned di�erene hierarhy is just a speial ase of this desription forthe boolean hierarhy of 2-partitions. 4



To get an idea of the struture of the boolean hierarhy of k-partitions over NP it is veryimportant to have a riterion to deide whether NP(G; f) � NP(G0; f 0) for k-latties (G; f) and(G0; f 0). For that we de�ne a relation � as follows: (G; f) � (G0; f 0) if and only if there is amonotoni ' : G ! G0 suh that f(x) = f 0('(x)) for all x 2 G. The Embedding Lemma saysthat (G; f) � (G0; f 0) implies NP(G; f) � NP(G0; f 0), and the Embedding Conjeture expressesour onvition that the onverse is also true unless the polynomial hierarhy is �nite.For the Embedding Conjeture there exists muh evidene. For k = 2 we an, not surprisingly,on�rm this onjeture to be true. Moreover, we will give a theorem whih enables us to verifythe Embedding Conjeture for k � 3 for a large lass of k-latties inluding all k-hains. Theproof of this theorem uses a new hain-tehnique that extends Kadin's easy-hard arguments(f. [24℄), developed for establishing the boolean and polynomial onnetion (for sets), to thease of partitions. Further the onjeture holds true for two sublasses of k-latties where thehain-tehnique does not work. Here, two di�erent proof tehniques are needed that both areinspired by results from the theory of seletive sets in [20, 26, 21℄.There is a mahine-based approah to the boolean hierarhy of k-partitions over NP. Eahpartition belonging to some lass NP(f) an be aepted in a natural way by nondeterministipolynomial-time mahines with a notion of aeptane that depends on the funtion f . Asa onsequene one an show that all these lasses possess omplete partitions with respetto an appropriate many-one redution. This redution o�ers a translation of ompletenessfrom the whole partition onto the omponents. For instane, sine Entailment is ompletefor oNP(f) with f as desribed in (1) we immediately obtain that eah omponent of thepartition Entailment is omplete for the omponent lasses of oNP(f), i.e., Entailment1is NP-omplete, Entailment2 and Entailment3 are NP(2)-omplete, and Entailment4 isoNP-omplete, all as we have already disussed. However, there exists a partition, say A, whihis omplete for another partition lass suh that all omponents of A are omplete for the samelasses as the omponents of Entailment are, but A does not redue to Entailment unless NPis losed under omplements (see Figure 15). This niely illustrates that the study of partitionsallows �ner distintions between lassi�ation problems as in ase of restriting investigationsto set enodings only.1.4 Organization of the PaperSetion 2 ontains the omplexity-theoretial notions and notations that will be taitly adoptedin the paper. In Setion 3 we give a formal de�nition and some basi fats about the lasses of theboolean hierarhy of k-partitions over NP. The main goal of this paper is to gain an overview onthe struture of this hierarhy. To this end, in Setion 4 we alternatively haraterize partitionlasses generated by �nite funtions in terms of labeled latties. In Setion 5 we study the relation� on labeled latties. In partiular, it is shown that � indues a suÆient ondition for inlusionsof partition lasses. We further show in Setion 6 that all lasses in the boolean hierarhy ofk-partitions have (essentially) unique desriptions by minimal latties. Setion 7 ontains thederivation and disussion of the Embedding Conjeture whih states that for k-latties, being inrelation � is not only suÆient for inlusion but also neessary unless the polynomial hierarhyis �nite. A large part of this setion is devoted to supporting the onjeture. Assuming theEmbedding Conjeture is true we give in Setion 8 an instrutive example of how ompliatedthe boolean hierarhy of k-partitions is already in the ase k = 3. Finally, in Setion 9 we present5



a way to haraterize partition lasses generated by labeled latties in terms of aeptane typesfor nondeterministi mahines. This leads to reduibility notions and ompleteness onepts.This will be exempli�ed for Entailment.2 PreliminariesSets. Let IN = f0; 1; 2; : : : g and IN+ = f1; 2; : : : g. The ardinality of an arbitrary �nite set Ais denoted by kAk. For sets A and B we use A n B to denote the set-di�erene of A with B,and we use A4B to denote the symmetri di�erene of A and B. For m � 1 let Am denote them-fold artesian produt of A with itself.Let P(M) be the power set of a �xed basi set M . For a set A � M , its omplement in thebasi set M is denoted by A, i.e., A = M n A. The harateristi funtion A : M ! f0; 1g isde�ned for all x 2M as A(x) = 1()def x 2 A. Let K and K0 be lasses of subsets of M , i.e.,K;K0 � P(M). We de�neoK =def � A �� A 2 K 	; K ^K0 =def � A \B �� A 2 K; B 2 K0 	;K _K0 =def � A [B �� A 2 K; B 2 K0 	; K �K0 =def � A4B �� A 2 K; B 2 K0 	:The lasses K(i) and oK(i) de�ned by K(0) =def f;g and K(i+1) = K(i)�K build the booleanhierarhy over K that has many equivalent de�nitions (see [39, 10, 27, 8℄).1 Some of them anbe found in the following theorem.Theorem 1 Let ;;M 2 K, let K be losed under intersetion and union, and let m 2 IN+.1. K(2m � 1) = � A1 [Sm�1j=1 (A2j+1 n A2j) �� A1; : : : ; A2m�1 2 K and A1 � � � � � A2m�1 	:2. K(2m) = � Smj=1(A2j nA2j�1) �� A1; : : : ; A2m 2 K and A1 � � � � � A2m 	:3. K(2m) = K(2m� 1) ^ oK:4. K(2m + 1) = K(2m) _ K.5. K(m+ 1) = oK(m) ^ K.6. K(m+ 2) = K(m) _ (K ^ oK) = K(m) ^ (K _ oK).7. K(m) [ oK(m) � K(m+ 1) \ oK(m+ 1).BC(K) is the boolean losure of K, i.e., the smallest lass whih ontains K and whih is losedunder intersetion, union, and omplements.Orders and Latties. We need some notions from lattie theory and order theory (see e.g.,[15, 11℄). A pair (G;�) is a poset if � is a partial order on the set G. Usually, we talk aboutthe poset G. Where it is neessary we write (G;�) to speify the order. For a poset (G;�) theposet (G;�) is the dual poset and is denoted by G� . A poset G is a hain if for all x; y 2 G1Usually for K = NP, a level 0 is not onsidered in the way we do. The zero-level there is P. However for ourpurposes it is more helpful to regard P not as an element of the boolean hierarhy (unless P = NP).6



it holds that x � y or y � x (i.e., any two elements are omparable with respet to �), and aposet G is an antihain if for all x; y 2 G it holds that x � y implies x = y (i.e., all elements arepairwise inomparable with respet to �). A �nite poset (G;�) is a lattie if for all x; y 2 Gthere exist (a) exatly one maximal element z 2 G suh that z � x and z � y (whih will bedenoted by x^y), and (b) exatly one minimal element z 2 G suh that z � x and z � y (whihwill be denoted by x _ y). For a �nite lattie G we denote by 1G the unique element greaterthan or equal to all x 2 G and by 0G the unique element less than or equal to all x 2 G. Anelement x 6= 1G is said to be meet-irreduible i� x = a^ b implies x = a or x = b for all a; b 2 G.Funtions. Let M and M 0 be any sets, and let f :M !M 0 be any funtion. The domain of fis denoted by Df . For a set A � Df , let f(A) = ff(x) j x 2 Ag and let f jA denote the restritionof f to A. In partiular, the range of f whih is denoted by Rf is f(Df ). The inverse of f isdenoted by f�1, i.e, f�1 : B ! P(M) suh that for all y 2 B, f�1(y) = fx 2M j f(x) = yg. Iff�1(y) is a singleton then we omit the braes. We use idM to denote the identity map onM givenby idM (x) = x for all x 2M . Our use of the omposition f Æ f 0 is (f Æ f 0)(x) =def f(f 0(x)). If fmapsM to itself, then for m 2 IN+, fm :M !M is the m-fold omposition of f with itself. LetM = fa; bg with a 6= b. De�ne a = b and b = a. For any funtion f :Mm !M 0 with m 2 IN+,let f� denote its dual funtion, that is, that funtion de�ned for all x = (x1; : : : ; xm) 2 Mm asf�(x1; : : : ; xm) =def f(x1; : : : ; xm): The vetor (x1; : : : ; xm) is denoted by x.Words. We will make no distintion between m-tuples (x1; : : : ; xm) over a �nite set (alphabet)M and words x1 : : : xm of length m over M . We �x the �nite alphabet � = f0; 1g for onsidera-tions about the input-output behavior of mahines. More generally, let � be any �nite alphabet.�� is the set of all �nite words that an be built with letters from �. For x; y 2 ��, x � y (orxy for short) denotes the onatenation of x and y. The empty word is denoted by ". For agiven word x = x1 : : : xm the reversed word xm : : : x1 is denoted by xR. For x 2 ��, jxj denotesthe length of x. For n 2 IN, ��n is the set of all words x 2 �� with jxj � n, and �=n is theset of all words x 2 �� with jxj = n. If the alphabet � is ordered by �, then let �lex denotethe standard lexiographial order on ��, that is, for eah x; y 2 ��, x �lex y if and only if (a)x = y, (b) jxj < jyj, or () jxj = jyj and there is an i with xj = yj for all j 2 f1; : : : ; i � 1g butxi < yi. Usually we onsider words x and y of the same length n to be partially ordered by thevetor-ordering, that is, x � y i� xi � yi for all i 2 f1; : : : ; ng.Basi Complexity Theory. The omputational model we refer to is the standard Turing ma-hine (for a formal desription see, e.g., [40, 2℄). We onsider nondeterministi and deterministiversions of Turing mahines. A Turing mahine that an produe outputs on a speial outputtape is alled a Turing transduer. We also onsider Turing mahines that have aess to anorale. The notions translate aordingly to suh orale Turing mahines. If we onsider anorale Turing mahine M aessing an orale A then this is denoted by MA.Polynomial-time Turing mahines are Turing mahines that for a �xed polynomial p, makeon every input x at most p(jxj) omputation steps before reahing a �nal state. In ase ofa nondeterministi polynomial-time Turing mahine M , the set of all words aepted by M ,denoted by L(M), is the set of all words x 2 �� for whih M , on input x, has at least oneomputation path of at most p(jxj) steps of running, that ends in an aepting �nal state. NP(P) is the lass of all sets that are aepted by nondeterministi (deterministi) polynomial-timeTuring mahines. NPB is the lass of all sets that are aepted by nondeterministi polynomial-time Turing mahine aessing the set B. For a lass K, NPK onsists of all sets that belong to7



NPB for some B 2 K. The polynomial hierarhy [31, 36℄ is indutively de�ned as follows.�p0 =def P; �pm+1 =def NP�pm ; and PH =def [m2IN�pm:Let REC denote the lass of all reursive sets, i.e., those sets that an be deided by deterministiTuring mahines. RE denotes the lass of all reursively enumerable sets, i.e., the lass of allsets that are ranges of deterministi Turing transduers.FP denotes the lass of all funtions that are omputable by a deterministi polynomial-timeTuring transduer. We say that a set A � �� is polynomial-time many-one reduible to a setB � ��, in symbols A �pm B, if and only if there exists a funtion f 2 FP suh that for allx 2 ��, x 2 A() f(x) 2 B. A lass K � P(��) is losed under �pm if for all A;B � �� it holdsthat A �pm B and B 2 K imply that A 2 K. All lasses in the polynomial hierarhy are losedunder �pm. A set A is �pm-omplete for K if A 2 K and B �pm A for all B 2 K. Satisfiability,denoting the set of all (enodings of) satis�able propositional formulas, is an example of a set�pm-omplete for NP.We impliitly use the following orrespondene val between �� and IN: For x 2 ��, de�neval(x) =def kfy 2 �� j y <lex xgk: Note that val is polynomial-time omputable and invertible.It is often needed to enode tuples of words of �� into one word of ��. Let h�; �i2 denote a standardpolynomial-time omputable and polynomial-time invertible pairing funtion on �nite words(e.g., based on self-delimiting words; f. [30℄). This pairing funtion is used to de�ne enodingsof arbitrary m-tuples as hx1; : : : ; xmi =def hm; hx1; h: : : ; hxm�1; xmi2 : : : i2i2i2. Conversely, ifa word hx1; : : : ; xmi 2 �� is given then the funtion �mj denotes the projetion to the j-thomponent of the m-tuple, i.e., �mj (hx1; : : : ; xmi) = xj . If h is any funtion mapping from ��to ��, then we de�ne the funtion h�mi1 ; : : : ; �mini Æ h : �� ! �� with n � m to be for all x 2 ��,(h�mi1 ; : : : ; �mini Æ h)(x) =def h�mi1 (h(x)); : : : ; �min(h(x))i:Let poly denote the lass of all funtions f : IN! �� suh that there exists a polynomial p withjf(n)j � p(n) for all n 2 IN. For a lass K � P(��), the lass K=poly [25℄ is the lass of all setsA for whih there exist a set B 2 K and a funtion f 2 poly (the advie funtion) suh that forall x 2 ��, x 2 A() hx; f(jxj)i 2 B.Partitions. Finally, let us make some notational onventions about partitions. For any set M ,a k-tuple A = (A1; : : : ; Ak) with Ai �M for eah i 2 f1; : : : ; kg is said to be a k-partition of Mif and only if A1[A2[ � � � [Ak =M and Ai\Aj = ; for all i; j with i 6= j. The set Ai is said tobe the i-th omponent of A. For two k-partitions A and B to be equal it is suÆient that Ai � Bifor all i 2 f1; : : : ; kg. Let A : M ! f1; : : : ; kg be the harateristi funtion of a k-partitionA = (A1; : : : ; Ak) of M , that is, A(x) = i if and only if x 2 Ai. For K1; : : : ;Kk � P(M) let(K1; : : : ;Kk) =def � A �� A is k-partition of M and Ai 2 Ki for all i 2 f1; : : : ; kg 	and for i 2 f1; : : : ; kg,(K1; : : : ;Ki�1; �;Ki+1; : : : ;Kk) =def (K1; : : : ;Ki�1;P(M);Ki+1; : : : ;Kk):For a lass K of k-partitions, let Ki =def � Ai �� A 2 K 	 be the i-th projetion of K. Obviously,K � (K1; : : : ;Kk). In what follows we identify a set A with the 2-partition (A;A). We thususe a harateristi funtion whih on the omplement of A, di�ers to the usual one for sets.8



However, using 2 on the omplement instead of 0 has the advantage of orresponding well withthe vetor-ordering as beomes learer later in the paper. We identify a lass K of sets with thelass (K; oK) = (K; �) = (�; oK) of 2-partitions.3 Partition Classes De�ned by Finite FuntionsLet K be a lass of subsets of M suh that ;;M 2 K and K is losed under intersetion andunion. In the literature, one way to de�ne the lasses of the boolean hierarhy of sets over Kis as follows (see [39℄). Let f : f1; 2gm ! f1; 2g be a boolean funtion. For B1; : : : ; Bm 2 Kthe set f(B1; : : : ; Bm) is de�ned by f(B1;:::;Bm)(x) = f(B1(x); : : : ; Bm(x)). Then the lassesK(f) =def � f(B1; : : : ; Bm) �� B1; : : : ; Bm 2 K 	 form the boolean hierarhy over K. Using �nitefuntions f : f1; 2gm ! f1; 2; : : : ; kg we generalize this de�nition (remember in whih sense setsare 2-partitions) to obtain the lasses of the boolean hierarhy of k-partitions over K as follows.De�nition 2 Let k � 2.1. For any funtion f : f1; 2gm ! f1; 2; : : : ; kg with m � 1 and for sets B1; : : : ; Bm 2 K, thek-partition f(B1; : : : ; Bm) is de�ned suh that for all x 2M ,f(B1;:::;Bm)(x) = f(B1(x); : : : ; Bm(x)):2. For any funtion f : f1; 2gm ! f1; 2; : : : ; kg with m � 1, the lass of k-partitions over Kde�ned by f is given by the lassK(f) =def � f(B1; : : : ; Bm) �� B1; : : : ; Bm 2 K 	:3. The boolean hierarhy of k-partitions over K is de�ned to be the familyBHk(K) =def � K(f) �� f : f1; 2gm ! f1; 2; : : : ; kg and m � 1 	:4. BCk(K) =def SBHk(K):Obviously if i 2 f1; 2; : : : ; kg is not a value of f : f1; 2gm ! f1; 2; : : : ; kg then K(f)i = f;g, thatis K(f) does not really have an i-th omponent. Therefore we assume in what follows that f issurjetive.The following proposition shows that every partition in K(f) onsists of sets from the booleanhierarhy over K. This also justi�es the use of the term boolean in the above de�nition.Proposition 3 Let k � 2 and let f : f1; 2gm ! f1; 2; : : : ; kg be any funtion with m � 1.1. (K; : : : ;K) � K(f) � (BC(K); : : : ;BC(K)).2. If K is losed under omplements then K(f) = (K; : : : ;K).3. BCk(K) = (BC(K); : : : ;BC(K)). 9



Proof.1. We �rst show that K(f) � (BC(K); : : : ;BC(K)). Let B1; : : : ; Bm be sets in K, and onsiderthe k-partition A = f(B1; : : : ; Bm). For eah i 2 f1; 2; : : : ; kg, we obtainx 2 Ai () _f(a1:::am)=i m̂j=1 Bj (x) = ajand onsequently Ai = [f(a1:::am)=i 240� \aj=1Bj1A � 0� [aj=2Bj1A35 : (2)Clearly, this gives Ai 2 K(2 � kf�1(i)k).Now we prove (K; : : : ;K) � K(f). Let A be a k-partition in (K; : : : ;K). For everyi 2 f1; 2; : : : ; kg, �x some vi 2 f1; 2gm suh that f(vi) = i. De�ne for all j 2 f1; 2; : : : ;mg,sets Bj as Bj =def [vi�2j�112m�j Ai:It is easily observed that for all a1 : : : am 2 f1; 2gm,\aj=1 Bj = [vl�a1:::amAl and [aj=2 Bj = [vl<a1:::amAl:By Equation (2) we obtain A = f(B1; : : : ; Bm).2. This statement is an immediate onsequene of the �rst one.3. The inlusion BCk(K) � (BC(K); : : : ;BC(K)) follows diretly from 1. For the onverseinlusion let A 2 (BC(K); : : : ;BC(K)), i.e., there exists an r � 1 suh that for all i 2f1; 2; : : : ; kg, Ai 2 K(r). Hene there exist sets B1; : : : ; Bk�r 2 K suh that for all i 2f1; 2; : : : ; kg, Ai = B(i�1)�r+14B(i�1)�r+24� � � 4Bi�r:Observe that for every a1 : : : ak�r, there exists an i 2 f1; 2; : : : ; kg suh that \aj=1Bj! \  \aj=2Bj! � Ai:Thus, we an de�ne f : f1; 2gk�r ! f1; 2; : : : ; kg suh that for all a1 : : : ak�r 2 f1; 2gk�r,f(a1 : : : ak�r) = i ()def  \aj=1Bj! \  \aj=2Bj! � Ai;and we obtain A = f(B1; : : : ; Bk�r).
❑10



For k = 2 the lasses K(f) of the boolean hierarhy BH2(K) of sets (2-partitions) have been om-pletely haraterized. For f : f1; 2gm ! f1; 2g let �(f) be the maximum number of alternationsof f -labels whih an our in a �-hain in (f1; 2gm ;�).Theorem 4 [39℄ For f : f1; 2gm ! f1; 2g,K(f) = � K(�(f)) if f(2m) = 2;oK(�(f)) if f(2m) = 1:Consequently, BH2(K) = � K(m) �� m 2 IN+ 	 [ � oK(m) �� m 2 IN+ 	, and given a funtionf : f1; 2gm ! f1; 2g it is easy to determine the lass K(m) or oK(m) whih oinides with K(f).As already mentioned above, the lasses of BH2(K) form a simple struture with respet to setinlusion. There do not exist three lasses in BH2(K) whih are inomparable in this sense.It is the goal of this hapter to get insights into the struture of the boolean hierarhy BHk(NP)of k-partitions over NP for k � 3. What we an say at this point is, that already for k = 3the struture of BHk(NP) with respet to set inlusion is not as simple as for k = 2 (unlessNP = oNP). This is shown by the following example.Example 5 For a; b;  suh that fa; b; g = f1; 2; 3g de�ne the funtion fab : f1; 2g2 ! f1; 2; 3gby fab(11) = a, fab(12) = fab(21) = b, and fab(22) = . Obviously, NP(fab)a = NP,NP(fab)b = NP(2), and NP(fab) = oNP. Now let ab 6= a0b00. If NP(fab) = NP(fa0b00) thenNP = NP(2) or NP = oNP, or NP(2) = oNP. In eah of these ases we obtain NP = oNP.Consequently, if NP 6= oNP the six lasses NP(fab) are pairwise inomparable with respet toset inlusion.De�nition 2 refers to a set lass K with ;;M 2 K and whih is losed under intersetion andunion. As K so oK easily satis�es these onditions as well. Thus, all the de�nitions an beapplied to oK. The following theorem shows that there is a very lose onnetion betweenlasses from BHk(K) and lasses from BHk(oK).Theorem 6 K(f) = oK(f�) for all f : f1; 2gm ! f1; 2; : : : ; kg with m � 1 and k � 2.Proof. By symmetry, it suÆes to show K(f) � oK(f�). Therefore, onsider a partition A 2K(f). Then there are sets B1; : : : ; Bm 2 K suh that A = f(B1; : : : ; Bm). Sine for all a1 : : : am 2f1; 2gm, f(a1 : : : am) = f�(a1 : : : am), we obtain that for all x 2M ,f(B1(x); : : : ; Bm(x)) = f�(B1(x); : : : ; Bm(x)):This gives A = f(B1; : : : ; Bm) = f�(B1; : : : ; Bm). Hene, A 2 oK(f�). ❑In partiular, BHk(K) and BHk(oK) oinide even if K is not losed under omplements.Corollary 7 BHk(K) = BHk(oK) for all k � 2.11
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Figure 1: Partition de�ned by a boolean 3-lattie4 Partition Classes De�ned by LattiesIt turns out that, for f : f1; 2gm ! f1; 2; : : : ; kg, a k-partition f(B1; : : : ; Bm) has a very naturalequivalent lattie-theoretial de�nition. Consider the boolean lattie f1; 2gm with the partialvetor-ordering �, and onsider the funtion S : f1; 2gm ! K de�ned byS(a1; : : : ; am) =def \ai=1Bi;where we de�ne an intersetion over an empty index set to be M . For an example see Figure 1.Note that S(2; : : : ; 2) =M and S(a ^ b) = S(a) \ S(b) for all a; b 2 f1; 2gm. De�ningTS(a) =def S(a) � [b<aS(b)we obtain the i-th omponent of f(B1; : : : ; Bm) asf(B1; : : : ; Bm)i = [f(a)=i TS(a);i.e., f(B1; : : : ; Bm) an also be given by the funtion S : f1; 2gm ! K.On the other side, if we have any funtion S : f1; 2gm ! K suh that S(2; : : : ; 2) = M andS(a ^ b) = S(a) \ S(b) for all a; b 2 f1; 2gm we an de�neBj =def S(2j�112m�j) for j 2 f1; 2; : : : ;mg;and we obtain for i 2 f1; 2; : : : ; kgf(B1; : : : ; Bm)i = [f(a)=i TS(a):In this manner the lass K(f) of k-partitions is ompletely haraterized by the labeled booleanlattie ((f1; 2gm;�); f).In this setion we will see that lasses of k-partitions an also be de�ned by weaker struturesthan boolean algebras. Again we always suppose K to be a lass suh that ;;M 2 K and whihis losed under intersetion and union. 12



De�nition 8 Let G be a lattie.1. A mapping S : G! K is said to be a K-homomorphism on G if and only if(a) S(1G) =M and(b) S(a ^ b) = S(a) \ S(b) for all a; b 2 G.2. For a K-homomorphism S on G and a 2 G, letTS(a) =def S(a) � [b<aS(b):Lemma 9 Let G be a lattie, and let S be a K-homomorphism on G.1. TS(a) 2 K ^ oK for every a 2 G.2. S(a) = Sb�a TS(b) for every a 2 G.3. The set of all TS(a) for a 2 G yields a partition of M .4. S is ompletely determined by its values for the meet-irreduible elements. That is, if Sand S0 are two K-homomorphisms on G suh that S(a) = S0(a) for all meet-irreduiblea 2 G then S(a) = S0(a) for all a 2 G.Proof.1. Observe TS(a) = S(a) \Sb<a S(b) 2 K ^ oK sine K is losed under union.2. The diretion \�" is obvious sine TS(b) � S(b) � S(a) for b � a. The onverse inlusionan be veri�ed by indution on <. Obviously, S(0G) = TS(0G). For a > 0G we obtainS(a) = TS(a) [ [b<aS(b) = TS(a) [[b<a[�bTS() = TS(a) [ [<aTS() = [�aTS():3. We have to show that every x 2M is ontained in exatly one TS(a). Proving the existeneof suh an a 2 G, de�ne H =def � a �� x 2 S(a) 	whih is non-empty sineSa2G S(a) =M . Sine G is �nite it follows that x 2 S(VH). Letb < VH. Then b 62 H, and hene x 62 S(b). So, x 2 S(VH)nSb<VH S(b) = TS(VH). Toshow the uniqueness assume that there is an a 6= VH suh that x 2 TS(a). Then x 2 S(a)and hene a 2 H. Consequently, a > VH and we obtain x 62 S(a)nSb<a S(b) = TS(a), aontradition.4. This is an immediate onsequene of the de�nition of meet-irreduible elements and theondition S(a ^ b) = S(a) \ S(b) for K-homomorphisms.
❑13
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Figure 2: Partition de�ned by a 3-lattieAny pair (G; f) of an arbitrary �nite poset G and a funtion f : G ! f1; 2; : : : ; kg is alleda k-poset. A k-poset whih is a lattie (boolean lattie) is alled a k-lattie (boolean k-lattie,resp.).Lemma 9 provides the soundness of the following de�nition.De�nition 10 Let (G; f) be a k-lattie, k � 2.1. For a K-homomorphism S on G, the k-partition de�ned by (G; f) and S is given by(G; f; S) =def 0� [f(a)=1 TS(a) ; : : : ; [f(a)=k TS(a)1A :2. The lass of k-partitions de�ned by (G; f) is given byK(G; f) =def � (G; f; S) �� S is K-homomorphism on G 	:Example 11 Consider the 3-lattie (G; f) in Figure 2. The meet-irreduible elements of G area, b, and . By point 4 of Lemma 9 every K-homomorphism S : G! K is determined by �xingS(a) = A, S(b) = B, and S() = C. By the de�nition of K-homomorphisms we get S(1) = M ,S(d) = S(a ^ b) = S(a) \ S(b) = A \ B, and S(0) = S(d ^ ) = S(d) \ S() = A \ B \ C.Furthermore, C = S() = S( ^ b) = S() \ S(b) = C \B, i.e., C � B. We obtainTS(1) = M n (A [B) = A \B;TS(a) = A n (A \B) = A \B;TS(b) = B n ((A \B) [C) = A \B \ C;TS() = C n (A \B \ C) = A \C;TS(d) = (A \B) n (A \B \ C) = A \B \ C;TS(0) = (A \B \C) = A \C:Hene (G; f; S) = (TS(a) [ TS(0); TS(1) [ TS(); TS(b) [ TS(d))= (A \ (B [ C); A \ (B [ C); B \ C);and K(G; f) = � (A \ (B [ C); A \ (B [ C); B \ C) �� A;B;C 2 K and C � B 	� (K(3); oK(3);K(2)): 14



The disussion at the beginning of the setion yields the following proposition.Proposition 12 K(f) = K((f1; 2gm ;�); f) for all f : f1; 2gm ! f1; 2; : : : ; kg with m � 1 andk � 2.So, if (G; f) is a boolean k-lattie then K(G; f) = K(f). But if (G; f) is an arbitrary k-lattie,is K(G; f) also of the form K(f 0) for a suitable funtion f 0? The following theorem says thatthis is generally true. This turns out to be very important for the further study of the strutureof the boolean hierarhy of k-partitions beause instead of large boolean k-latties one an dealwith usually muh smaller equivalent k-latties.Theorem 13 For every k-lattie (G; f) there is an f 0 : f1; 2gm ! f1; 2; : : : ; kg with K(G; f) =K(f 0), where m is the number of meet-irreduible elements of G.We postpone the proof of this theorem to Setion 5 where we an make use of the EmbeddingLemma (Lemma 16).Corollary 14 BHk(K) = � K(G; f) �� (G; f) is a k-lattie 	 for all k � 2.5 Comparing Partition ClassesTo study the struture of the boolean hierarhy of k-partitions over K it would be important tohave a riterion to deide whether K(G; f) � K(G0; f 0) for any two k-latties (G; f) and (G0; f 0).To this end we establish, more generally, a relation � between k-posets.De�nition 15 Let (G; f) and (G0; f 0) be k-posets with k � 2.1. (G; f) � (G0; f 0) if and only if there is a monotoni mapping ' : G ! G0 suh that forevery x 2 G, f(x) = f 0('(x)).2. (G; f) � (G0; f 0) if and only if (G; f) � (G0; f 0) and (G0; f 0) � (G; f).The following lemma gives a suÆient ondition for K(G; f) � K(G0; f 0).Lemma 16 (Embedding Lemma.) Let (G; f) and (G0; f 0) be k-latties with k � 2. If(G; f) � (G0; f 0), then K(G; f) � K(G0; f 0).Proof. Let (G; f) and (G0; f 0) be k-latties with (G; f) � (G0; f 0). Let ' : G! G0 be a monotonimapping suh that f(a) = f 0('(a)) for every a 2 G. For a K-homomorphism S on G de�ne themapping S0 : G0 ! K for all a 2 G0 byS0(a) =def ['(b)�0aS(b):It is suÆient to prove that S0 is a K-homomorphism on G0 with (G; f; S) = (G0; f 0; S0), i.e.,that 15
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Figure 3: A 3-hain equivalent to the boolean 3-lattie in Figure 11. S0(1G0) =M ,2. S0(a ^0 b) = S0(a) \ S0(b) for all a; b 2 G,3. TS(a) � TS0('(a)) for all a 2 G.This an be shown as follows:1. We onlude S0(1G0) = S'(b)�01G0 S(b) � S(1G) =M .2. The inlusion \�" is valid beause of the monotoniity of S0. For the onverse inlusiononsider x 2 S0(a) \ S0(b). There exist ; d 2 G suh that '() �0 a, '(d) �0 b, x 2 S(),and x 2 S(d). We obtain '(^ d) �0 '()^0 '(d) �0 a^0 b and x 2 S()\S(d) = S(^ d),and onsequently x 2 S0(a ^0 b).3. For a 2 G and x 2 TS(a) we obtain x 2 S(a) � S0('(a)). Assume that x 62 TS0('(a)).Then there exists a  <0 '(a) suh that x 2 S0(). Consequently, there exists a b 2 G suhthat '(b) �0  and x 2 S(b). Hene x 2 S(a) \ S(b) = S(a ^ b). Beause of x 2 TS(a) weget a ^ b 6< a and thus a � b. We onlude '(a) �0 '(b) �0 , a ontradition.

❑Example 17 The 3-lattie (G; f) shown in Figure 1 and the 3-lattie (G0; f 0) shown in Figure3 are equivalent. This an be seen as follows: De�ne the funtions ' : G! G0 and  : G0 ! Gby '(111) = '(121) = '(211) = a;'(112) = '(221) = b;'(122) = '(212) = '(222) = ;and  (a) = 111;  (b) = 112; and  () = 222:It is easy to see that ' and  are monotoni, f(x) = f 0('(x)) for all x 2 G, and f 0(x) = f( (x))for all x 2 G0. By the Embedding Lemma we obtain K(G; f) = K(G0; f 0) for all K. Obviously,K(G0; f 0) = � (B;A;B n A) �� A;B 2 K and A � B 	 = (oK;K; �) = (oK;K;K(2)):Now we are able to prove Theorem 13 from Setion 4.16



Proof. (Theorem 13) Let (G; f) be an arbitrary k-lattie, let I be the set of meet-irreduibleelements of G, and let Ia =def � b �� b � a and b meet-irreduible 	for every a 2 G. It is well known (f. [15℄) that V Ia = a for every a 2 G. We de�ne the booleank-lattie ((P(I);�); h) by h(U) =def f(^U) for U � I:The funtion ' : G! P(I) de�ned by '(a) =def Ia is monotoni, and we geth('(a)) = h(Ia) = f(^ Ia) = f(a):By the Embedding Lemma we obtain K(G; f) � K((P(I);�); h). On the other hand, thefuntion  : P(I)! G de�ned by  (U) =def VU is monotoni, and we getf( (U)) = f(^U) = h(U):Again by the Embedding Lemma we obtain K((P(I);�); h) � K(G; f). So we get K(G; f) =K((P(I);�); h), but (P(I);�) and (f1; 2gjIj;�) are isomorphi. ❑Combining this proof of Theorem 13 and the Embedding Lemma one an generalize Theorem 6to the following theorem.Theorem 18 K(G; f) = oK(G� ; f) for all k-latties (G; f) with k � 2.Proof. Let (G; f) be any k-lattie. By Theorem 13 there is a funtion f 0 : f1; 2gm ! f1; 2; : : : ; kgwith K(G; f) = K(f 0). In fat, the proof of Theorem 13 shows that (G; f) � (f1; 2gm; f 0).Regarding the dual funtion f 0� we obtain that (G� ; f) � (f1; 2gm; f 0�). By Theorem 6 and theEmbedding Lemma, K(G; f) = K(f 0) = oK(f 0�) = oK(G� ; f). ❑6 Minimal Desriptions of Partition ClassesFrom Proposition 12 and Theorem 13 we know that the boolean hierarhy of k-partitions ispreisely the family of all partition lasses over K generated by k-latties. The advantageof this haraterization is that k-latties allow often smaller desriptions of partition lassesthan funtions (as shown by Example 17). The usage of labeled latties provides also anotheradvantage over funtions: The minimal representations of partition lasses using k-latties areessentially unique, i.e., unique up to isomorphism.De�nition 19 For k-posets (G; f) and (G0; f 0) we write (G; f) �= (G0; f 0) and we say that (G; f)and (G0; f 0) are isomorphi if there exists a bijetive funtion ' : G ! G0 suh that ' and '�1are monotoni and f 0('(a)) = f(a) for every a 2 G.Obviously, isomorphi k-latties are equivalent, but there are equivalent k-latties that are notisomorphi. For example, add to any k-lattie (G; f) a new element a whih is less than allelements of G, and de�ne f(a) = f(0G). The new k-lattie is equivalent but not isomorphi to(G; f). 17
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11Figure 4: Non-isomorphi minimal equivalent boolean 3-lattiesDe�nition 20 A �nite k-lattie (k-poset) (G; f) is said to be minimal if there does not exist ak-lattie (k-poset, resp.) (G0; f 0) suh that (G; f) � (G0; f 0) and kG0k < kGk.In this setion we will prove that equivalent minimal k-latties are isomorphi. This is a basidi�erene between k-latties and k-valued funtions (boolean k-latties). Say that a funtionf : f1; 2gm ! f1; 2; : : : ; kg is minimal if there is no funtion of arity less than that of f , suhthat the orresponding boolean k-latties are equivalent. The simple example in Figure 4 showsthat minimal equivalent funtions (boolean k-latties) need not be isomorphi.In order to prove our isomorphism theorem (Theorem 24) it seems to be easier to show this �rstfor the ase of posets.Lemma 21 Let (G; f) be a minimal k-poset, and let ' : G! G be a monotoni funtion suhthat f('(a)) = f(a) for all a 2 G. Then there exists an m � 1 with 'm = idG.Proof. For every a 2 G let ia be the smallest number suh that there exists a j > ia with'ia(a) = 'j(a), and let ja be the smallest suh j. Obviously,'ia �fa; '(a); '2(a); : : : ; 'ja�1(a)g� = f'ia(a); 'ia+1(a); : : : ; 'ja�1(a)g:Note that the set fa; '(a); '2(a); : : : ; 'ja�1(a)g has exatly ja elements and note also that theset f'ia(a); 'ia+1(a); : : : ; 'ja�1(a)g has exatly ja � ia elements. Now assume ia > 0. Thenk'ia(G)k < kGk and ('ia(G); f) � (G; f) whih ontradits the minimality of (G; f). Heneia = 0 and 'ja(a) = a. Now let m =Qa2G ja and get 'm = idG. ❑Lemma 22 Equivalent minimal k-posets are isomorphi.Proof. Let (G; f) and (G0; f 0) be equivalent minimal k-posets. There exist monotoni funtions' : G ! G0 and  : G0 ! G suh that f 0('(a)) = f(a) for all a 2 G and f( (a)) = f 0(a) forall a 2 G0. Hene  Æ ' is monotoni and f( ('(a)) = f(a) for all a 2 G. By Lemma 21 thereexists an m � 1 suh that ( Æ')m = idG. Also 'Æ is monotoni and f 0('( (a)) = f 0(a) for alla 2 G0, and there exists an n � 1 suh that (' Æ )n = idG0 . Hene,  Æ (' Æ ( Æ')mn�1) = idG,(' Æ ( Æ ')mn�1) Æ  = idG0 , ' Æ ( Æ ')mn�1 : G! G0 is monotoni,  : G0 ! G is monotoni,and f 0(' Æ ( Æ ')mn�1(a)) = f(a) for all a 2 G. Thus (G; f) �= (G0; f 0). ❑Lemma 23 A minimal k-poset, whih is equivalent to a k-lattie, is a k-lattie.18



Proof. Let (G; f) be a minimal k-poset, and let (G0; f 0) be a k-lattie suh that (G; f) � (G0; f 0)via ' : G! G0 and  : G0 ! G. By Lemma 21 there exists an m � 1 suh that ( Æ')m = idG.We de�ne � =def ' Æ ( Æ ')m�1:Then we obtain  Æ � = idG. To prove that G is a lattie it suÆes to verify that1. G has a supremum 1G,2. a ^ b exists for all a; b 2 G.This an be done as follows:1. For a 2 G we get �(a) � 1G0 and hene a =  (�(a)) �  (1G0). Consequently, 1G =  (1G0).2. For a; b;  2 G suh that  � a; b we get �() � �(a); �(b) and hene �() � �(a) ^ �(b) ��(a); �(b). Consequently,  =  (�()) �  (�(a) ^ �(b)) �  (�(a)) = a;  (�(b)) = b. Thatmeans a ^ b =  (�(a) ^ �(b)).
❑From the preeding two lemmas we obtain immediately:Theorem 24 Equivalent minimal k-latties are isomorphi. In other words, for every k-lattiethere exists a (up to isomorphism) unique minimal equivalent k-lattie.This theorem ensures that we an always hoose a unique starting point for investigationsinvolving lasses of the boolean hierarhy of k-partitions. Moreover, when restriting to theminimal k-latties our relation � beomes a partial order (however, this is merely a fat basedon the seletion of the minimal k-latties as representatives of the equivalene lasses with respetto �).7 The Embedding ConjetureLet us ome bak to the Embedding Lemma whih shows that (G; f) � (G0; f 0) impliesK(G; f) �K(G0; f 0). Thus we have a suÆient riterion for inlusion of partition lasses. It would be, how-ever, very useful if the riterion would be also neessary. In this setion we pose the onjeturethat this holds true for NP unless the polynomial hierarhy is �nite. We support this onjeturewith several results.7.1 On Inverting the Embedding LemmaWe are interested in proving the following theorem for the ase K = NP. Note that for thegeneral formulation K is assumed to be suh that ;;M 2 K and K is losed under intersetionand union. 19



De�nition 25 We say that the Embedding Theorem for K holds if for all k-latties (G; f) and(G0; f 0) it is true that (G; f) � (G0; f 0)()K(G; f) � K(G0; f 0).The diÆult part of suh theorems is the inversion of the Embedding Lemma, that is, thediretion from right to left. If one proven for a lass K the Embedding Theorem gives theomplete information about BHk(K). The following theorem shows that Embedding Theoremsare in priniple not out of reah:2Theorem 26 Let (G; f) and (G0; f 0) be k-latties with k � 2. If K(G; f) � K(G0; f 0) for everylass K with ;;M 2 K and whih is losed under intersetion and union, then (G; f) � (G0; f 0).Proof. Let (G; f) and (G0; f 0) be k-latties. For eah set S � G, de�ne D(S) asD(S) =def � a 2 G �� (9b 2 S)[a � b℄ 	:Let K be the set of all D(S) for S � G. Clearly, ;; G 2 K and K is losed under �nite unionand intersetion. Let S be the K-homomorphism on G de�ned for every a 2 G asS(a) =def D(fag):Obviously, TS(a) = fag and onsequently �f�1(1); : : : ; f�1(k)� 2 K(G; f) � K(G0; f 0). Hene,a K-homomorphism S0 : G0 ! K on G0 exists suh that Sf 0(d)=i TS0(d) = f�1(i) for everyi 2 f1; 2; : : : ; kg. De�ne h : G! G0 to be the funtion whih assigns to eah a 2 G the uniquelydetermined d 2 G0 suh that a 2 TS0(d), i.e., h�1(d) = TS0(d). Obviously, a 2 TS0(h(a)) andf 0(h(a)) = f(a). It remains to show that h is monotoni. Let a; b 2 G with a � b. Thenb 2 TS0(h(b)) � S0(h(b)), so a 2 S0(h(b)). From Lemma 9.2 there follows the existene of  2 G0with  � h(b) and a 2 TS0(). Thus  = h(a), hene h(a) � h(b). ❑Beause of the seond item of Proposition 3, we annot hope to invert the Embedding Lemmawithout an additional assumption to K. A plausible one might be a strit boolean hierarhy ofsets over K. And indeed, for many sublasses of k-latties, assuming the stritness of BH2(K)is strong enough to show the Embedding Theorem for K and for these sublasses of labeledlatties.For instane, we an prove that the Embedding Theorem for 2-latties holds if we assume anin�nite BH2(K). To this end we �rst prove an analogue to Theorem 4 for 2-latties. For a2-lattie (G; f) let �(G; f) be the maximum number of alternations of f -labels whih an ourin a �-hain in the lattie G.Theorem 27 For every 2-lattie (G; f),K(G; f) = � K(�(G; f)) if f(1G) = 2;oK(�(G; f)) if f(1G) = 1:2Note that a disproof of Theorem 26 would imply that for every reasonable K, there exists a pair of k-lattiesthat ontradits the Embedding Theorem for K. 20



Proof. Let (G; f) be a 2-lattie. In the proof of Theorem 13 we de�ned a funtion h : f1; 2gjIj !f1; 2g (remember that I is the set of meet-irreduible elements of G and that (P(I);�) and(f1; 2gjIj;�) are isomorphi) suh that (G; f) � (f1; 2gjIj; h). Thus, K(G; f) = K(f1; 2gjIj; h) =K(h), �(G; f) = �(f1; 2gjIj; h) = �(h), and f(1G) = h(2jIj). By Theorem 4 we obtain thestatement. ❑Corollary 28 Assume that BH2(K) is in�nite.1. The minimal 2-lattie (G; f) suh that K(G; f) = K(i) is a hain with i+ 1 elements withalternating labels 1 and 2 suh that the maximum of the hain has label 2.2. The minimal 2-lattie (G; f) suh that K(G; f) = oK(i) is a hain with i + 1 elementswith alternating labels 1 and 2 suh that the maximum of the hain has label 1.As a onsequene of Theorem 27 we get the validity of the (onditional) Embedding Theoremfor 2-latties.Theorem 29 Assume that BH2(K) is in�nite. For 2-latties (G; f) and (G0; f 0) the followingstatements are equivalent:1. K(G; f) � K(G0; f 0).2. �(G; f) < �(G0; f 0) or ��(G; f) = �(G0; f 0) and f(1G) = f 0(1G0)�.3. (G; f) � (G0; f 0).Proof.� (1)) (2) is a onsequene of Theorem 27.� (3)) (1) follows from the Embedding Lemma.� For (2) ) (3) take a �-hain (0; 1; : : : ; r) in G0 with maximum number of alternationsbetween f 0-labels, i.e., r = �(G0; f 0) and f 0(i�1) 6= f 0(i) for i 2 f1; : : : ; rg. For a 2 Gde�ne '(a) as follows: '(a) =def � i if f(1G) = f 0(1G0);i+1 if f(1G) 6= f 0(1G0):Here i is the maximum number of alternations between f -labels in a hain from a to 1G.Obviously, ' is monotoni and f 0('(a)) = f(a).
❑We now establish a theorem whih shows that the Embedding Theorem for K holds for a largesublass of k-latties (unless BH2(K) is �nite). At this, we make use of the following simplepriniple. 21
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11 231321Figure 5: The 3-latties of Example 32Proposition 30 Let (G; f) and (G0; f 0) be k-latties with k � 2. Let h be a funtion mappingf1; 2; : : : ; kg to f1; 2; : : : ;mg. If K(G; f) � K(G0; f 0), then K(G;hÆf) � K(G0; hÆf 0). Moreover,if h is injetive, then the equivalene holds.Let (G; f) be a k-lattie. For I; J � f1; 2; : : : ; kg with I \ J = ;, de�ne �I;J(G; f) to be themaximum number of alternations between f -labels from I and f -labels from J in a hain of Gwhose minimum has an f -label from I.Theorem 31 Assume that BH2(K) is in�nite. For k-latties (G; f) and (G0; f 0), if K(G; f) �K(G0; f 0), then �I;J(G; f) � �I;J(G0; f 0) for all I; J � f1; 2; : : : ; kg with I \ J = ;.Proof. If I = ; or J = ;, then �I;J(G; f) = 0 for all (G; f). So, suppose I and J to be non-empty and I \ J = ;. Consider the funtion h mapping elements from I to min I, elementsfrom J to minJ , and elements not in I or J to themselves. Then, for all k-latties (G; f), itholds �I;J(G; f) = �h(I);h(J)(G;h Æ f). Therefore and beause of Proposition 30, without lossof generality, we an assume that I and J are singletons; I = fig; J = fjg, and i 6= j. Foronveniene, we write �ij(G; f) instead of �fig;fjg(G; f).Let (G; f) and (G0; f 0) be k-latties. Let C be a maximal hain in G suh that �ij(C; f jC) =�ij(G; f). Hene, K(C; f jC ) � K(G0; f 0). Sine f jC : C ! fi; jg we have also K(C; f jC) �K(G0; h) for all h : G0 ! f1; 2; : : : ; kg suh that h(a) = f 0(a) if f 0(a) 2 fi; jg.If there is no b 2 G0 with f 0(b) 62 fi; jg, then the laim is just the same already proven inTheorem 29. So, �x some b 2 G0 suh that f 0(b) 62 fi; jg. For eah a 2 G0, let G0a be the setf 2 G0 j  � ag. De�ne for a 2 G0h(a) =def 8<: f 0(a) if a 6= b;i if a = b and �ij(G0b; f 0jG0b) is even;j if a = b and �ij(G0b; f 0jG0b) is odd:Hene, K(C; f jC) � K(G0; h) and �ij(G0; f 0) � �ij(G0; h). Consider a maximal hain a0 <a1 < � � � < ar in G0 suh that r = �ij(G0; h), h(as) 2 fi; jg, h(a0) = i, and h(as�1) 6= h(as)for s 2 f1; : : : ; rg. If b 62 fa0; : : : ; arg then h(as) = f 0(as) for all s = f0; 1; : : : ; rg and hene�ij(G0; f 0) � �ij(G0; h), thus �ij(G0; f 0) = �ij(G0; h). Now let b = as for some s 2 f0; 1; : : : ; rg.Sine f 0(as�1) = h(as�1) 6= h(as) and, by de�nition, h(b) = h(as), the hain a0 < a1 < � � � <as�1 annot be a maximum hain in G0b with alternating f 0-labels starting with f 0-label i. Henethere exists suh a hain b0 < b1 < � � � < bs�1 < bs in (G0b; f 0jG0b) and onsequently suh a hain22
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Figure 6: The 3-latties ritial for REb0 < b1 < � � � < bs�1 < bs < as+1 < � � � < ar in (G0; f 0). This means �ij(G0; f 0) � r = �ij(G0; h)and hene, �ij(G0; f 0) = �ij(G0; h).Repeating this onstrution we obtain �nally a funtion g : G0 ! fi; jg suh that K(C; f jC) �K(G0; g), �ij(C; f jC) = �ij(G; f), and �ij(G0; g) = �ij(G0; f 0). In fat, K(C; f jC) andK(G0; g) arelasses of 2-partitions. By Theorem 29, we obtain �(C; f jC) < �(G0; g) or, �(C; f jC) = �(G0; g)and f(1C) = g(1G0), from whih we an onlude �ij(C; f jC) � �ij(G0; g). ❑Example 32 Let (G; f) be the 3-lattie on the left-hand side and (G0; f 0) be the 3-lattie on theright-hand side of Figure 5. To show K(G; f) 6� K(G0; f 0) if BH2(K) is in�nite, let I = f1gand J = f2g. Then we have �I;J(G; f) = 2 and �I;J(G0; f 0) = 1. Hene, by Theorem 31,K(G; f) 6� K(G0; f 0) unless BH2(K) is �nite. Reversely, let I = f1g and J = f2; 3g. Then,�I;J(G0; f 0) = 3 and �I;J(G; f) = 2. Thus, again by Theorem 31, K(G0; f 0) 6� K(G; f) unlessBH2(K) is �nite.Theorem 29 and Theorem 31 suggest that a strit boolean hierarhy of sets is suÆient toestablish Embedding Theorems. However, there are lasses for whih the Embedding Theoremdoes not hold though they have a strit boolean hierarhy. A very prominent example is thelass RE. Clearly, the reursively enumerable sets are losed under intersetion and union andontain ; and ��. The stritness of the boolean hierarhy of the reursively enumerable setsgoes bak to Ershov [12℄.Theorem 33 The Embedding Theorem for the reursively enumerable sets does not hold.Proof. Let (G; f) be the left 3-lattie and (G0; f 0) be the right 3-lattie in Figure 6. Obviously,(G; f) 6� (G0; f 0). However, it holds that RE(G; f) � RE(G0; f 0). To prove this we use thefollowing well-known property of the reursively enumerable sets (f., e.g., [35℄): For all reur-sively enumerable sets A and B there are r eursively enumerable sets C � A and D � B withC [D = A [B and C \D = ;.Now let (G; f; S) 2 RE(G; f). By the laim above there are sets C;D 2 RE with C [ D =S(a) [ S(b), C \D = ;, C � S(a), and D � S(b). Sine a RE-homomorphism on latties onlydepends on its values on the meet-irreduible elements, it is enough to de�ne S0 on G0 asS0(a0) =def C; S0(b0) =def D; S0(0) =def C \ S(b); and S0(d0) =def D \ S(a):23
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Figure 7: Counterexample to the mind-hange tehniqueClearly, it holds that S0(0) � S0(a0), S0(d0) � S0(b0), and S0(a0) \ S0(b0) = ; = S0(0) \ S0(d0).Moreover we have the following:(G0; f 0; S0)2 = TS0(a0) [ TS0(0G0) = TS0(a0) = S0(a0) n S0(0) = C n (C \ S(b))= (C [ S(b)) n S(b) = (S(a) [ S(b)) n S(b) = S(a) n (S(a) \ S(b))= S(a) n S(0G) = TS(a) = (G; f; S)2The remaining equalities an be shown similarly to the equality of the seond omponent. Thisgives (G; f; S) = (G0; f 0; S0). Hene, (G; f; S) 2 RE(G0; f 0). ❑Most reently Selivanov [34℄ gave a omplete haraterization of the boolean hierarhy of parti-tions over reursively enumerable sets whih is based on a oarser embedding relation �0 than weonsider. With respet to that relation�0, for the 3-latties in Figure 6 it holds (G; f) �0 (G0; f 0).Up to this theorem, all results so far hold for arbitrary lasses with some simple losure proper-ties. The forthoming now makes use of the very nature of the lass NP. As we have seen evenan in�nite boolean hierarhy of sets is not suÆient to invert the Embedding Lemma. Sinethe ollapse of the boolean hierarhy over NP implies the ollapse of the polynomial hierarhy(f. [24℄) the following onjeture seems to be reasonable.Embedding Conjeture. Assume the polynomial hierarhy is in�nite. Let (G; f) and (G0; f 0)be k-latties. Then NP(G; f) � NP(G0; f 0) if and only if (G; f) � (G0; f 0).To provide evidene for the Embedding Conjeture we formulate in Subsetion 7.2 a theorem(Theorem 50) whih shows that the onjeture is true for a muh larger sublass of k-lattiesthan touhed by Theorem 31 inluding all 2-latties (Corollary 49) and moreover, all k-hains(Theorem 47). Furthermore, the 3-latties in Figure 6 turn out to be not a ounterexample forthe lass NP. This is proven in Subsetion 7.3.7.2 Evidene I: The Case of k-ChainsWe establish theorems that show that the Embedding Conjeture is true for a very large sublassof k-latties based on di�erenes in the hain struture of the latties. In Theorem 31 di�erenesonerning the mind hanges in k-hains are onsidered. However, the theorem is not generalenough to over all k-hains. As an example onsider the two 3-hains in Figure 7. Let (G; f)24



be the left and (G0; f 0) be the right 3-hain. On the one hand, it is easy to alulate that�I;J(G; f) = �I;J(G0; f 0) for all I; J � f1; 2; 3g with I \ J = ;. On the other hand, obviously(G; f) 6� (G0; f 0) and (G0; f 0) 6� (G; f). So in order to support the Embedding Conjeturewe have to prove that NP(G; f) 6� NP(G0; f 0) as well as NP(G0; f 0) 6� NP(G; f) unless thepolynomial hierarhy is �nite. In this subsetion we will see how to do this. Proving suhtheorems, we detet some normal forms of (hypothetial) inlusions between partition lassesenabling us a generalization of the easy-hard arguments developed by Kadin (f. [24℄) to theontext of partition lasses.7.2.1 Partition Classes De�ned by ChainsWe �rst emphasize some simpli�ations and peuliarities of partition lasses over labeled hains.As long as no further onditions are needed we onsider general lasses K with ;;M 2 K andthat are losed under intersetion and �nite union. Partition lasses over labeled hains areharaterized by asending hains of sets from K.We identify a k-hain (G; f) in a natural way with a word in f1; 2; : : : ; kgjGj, namely withf(a1)f(a2) : : : f(an) when a1 < a2 < � � � < an, ai 2 G, and n = kGk. Words representingk-hains are alled k-words.The relation � over k-latties translates to a subword relation between k-words. For that, wesay that a k-word a is repetition-free if and only if ai 6= ai+1 for all 1 � i < n. For an arbitraryk-word a its repetition-free version a� is the word emerging from a when repeatedly replaingeah ourrene of ss to s, where s 2 f1; 2; : : : ; kg. Now, we an say that a � b for k-words a; bif and only if a� is a subword of b. We say a � b whenever a � b and b � a. If a and b arerepetition-free k-words then a � b is equivalent to a = b. Obviously, the relation � for k-wordsorresponds with the relation � for k-hains. Repetition-free k-words orrespond to minimalk-hains. Dual k-hains orrespond to reverse words.There are some notations to bed adapted to k-words. Let a k-word a be given. Then a K-homomorphism S on a is just a K-homomorphism on (f1; 2; : : : ; jajg; a), the partition (a; S)generated by S is the partition (f1; 2; : : : ; jajg; a; S), and, �nally, K(a) = K(f1; 2; : : : ; jajg; a).Here we have identi�ed the k-word a with the funtion a : f1; 2; : : : ; jajg ! f1; 2; : : : ; kg givenby a(i) = ai.If two k-words are omparable with respet to �, there are possibly many monotoni mappingswitnessing the relation. This ambiguity is often disadvantageous. So we onsider the anonialembedding, mapping every letter of a k-word to the least possible letter in the other k-word.De�nition 34 Let a and a0 be k-words, k � 1. The anonial embedding �[a; a0℄ of a into a0 isa mapping from f0; 1; 2; : : : ; jajg to f0; 1; 2; : : : ; ja0jg indutively de�ned as �[a; a0℄(0) =def 0 andfor j > 0 as �[a; a0℄(j) =def min� r �� r � �[a; a0℄(j � 1) ^ aj = a0r 	where min; is onsidered to be unde�ned.If there is no reason for misunderstanding, then we omit [a; a0℄ in the desription of the anonialembedding. 25



Proposition 35 Let a and a0 be k-words. Then, a � a0 if and only if the anonial embedding� of a into a0 is total.Canonial embeddings make it possible to determine normal forms for K-homomorphisms wit-nessing inlusions between partition lasses.Lemma 36 Let a and a0 be repetition-free k-words. Let � be the anonial embedding of a intoa0. If K(a) � K(a0), then for every K-homomorphism S on a there is a K-homomorphism S0 ona0 suh that (a; S) = (a0; S0) and S(j) � S0(�(j)) for all j 2 D�.Proof. Sine K(a) � K(a0), there is a K-homomorphism V on a0 with (a; S) = (a0; V ). We meetthe onvention that S(0) = ; and V (0) = ;. De�ne S0 for all j � ja0j asS0(j) =def V (j) [ S� max�(s)�j s� :Obviously, S0 is an K-homomorphism on a0 with S(j) � S0(�(j)) for j 2 D�. It remainsto show (a; S) = (a0; S0). We onsider the partition (a0; S0) individually for every omponenti 2 f1; 2; : : : ; kg. Fix a omponent i, and onsider TS0(j) for j � ja0j with a0j = i. We have twodi�erent ases.� Case 1. Suppose �(s) < j < �(s+ 1) for an appropriate s, or �(maxD�) < j. Then,TS0(j) = S0(j)nS0(j � 1) = (V (j) [ S(s)) n (V (j � 1) [ S(s)) = (V (j)nV (j � 1)) nS(s)� TV (j):Hene, TS0(j) � TV (j) � (a0; V )i = (a; S)i.� Case 2. Suppose j = �(s) for an appropriate s. Then,TS0(j) = S0(j)nS0(j � 1) = (V (j) [ S(s)) n (V (j � 1) [ S(s� 1))= [(V (j)nV (j � 1)) nS(s� 1)℄ [ [(S(s)nS(s� 1)) nV (j � 1)℄ � TV (j) [ TS(s):Sine as = a0�(s) = a0j = i, we obtain TS0(j) � TV (j) [ TS(s) � (a0; V )i [ (a; S)i = (a; S)i:Overall, we have shown (a0; S0)i � (a; S)i for every i. Sine (a0; V ) and (a; S) are partitions, weget the equalities (a0; S0)i = (a; S)i. Thus, (a0; S0) = (a; S). ❑7.2.2 Hardest InlusionsIt is our goal to prove the �niteness of the polynomial hierarhy in ase of having an inlusionbetween partition lasses whih should not be true if the Embedding Conjeture would hold.For the boolean hierarhy BH2(NP) it suÆes to onsider the inlusion NP(m) � oNP(m) form 2 IN+ or, in terms of 2-words, NP(1212 : : :| {z }m+1 ) � NP(2121 : : :| {z }m+1 ):26



The very simple struture of BH2(NP), trivially, yields the following: If for any m 2 IN+there is an n < m with NP(m) � NP(n), or there is an l � m with NP(m) � oNP(l), thenNP(m) � oNP(m). Again, in terms of 2-words, that means: Let a be a repetition-free 2-word.If for a there is an a0 with a 6� a0 and NP(a) � NP(a0), then NP(a) � NP(a). Note that for suha0 it holds ja0j � jaj. For k-words with k > 2 this length ondition is not true. For instane,onsider 123 and 1(31)m2 for arbitrary m 2 IN+. Then, 123 6� 1(31)m2, but j1(31)m2j anbe arbitrarily large. Can we nevertheless identify short k-words with hardest inlusions to beonsidered?In the following we give a positive answer to this question. To do that we need two lemmas.Lemma 37 K(a) = oK(aR) for all k-words a.Proof. Follows from Theorem 18. ❑Lemma 38 Let a and a0 be repetition-free k-words, k � 2. Let � be the anonial embedding ofa into a0. Let r 2 D� so that ai 6= ar for all i > r. If K(a) � K(a0), then K(a) � K(a00) wherea00 emerges from a0 when deleting from a0 all the letters a0j with j > �(r) and a0j = ar.Proof. Let (a; S) 2 K(a) forK-homomorphism S on f . By Lemma 36, there is a K-homomorphismS0 on a0 with (a; S) = (a0; S0) and S(j) � S0(�(j)) for all j 2 D�. It suÆes to show TS0(j) = ;for all j > �(r) with a0j = ar. Let ar = b. Sine a0j = ar = b, it holds TS0(j) � (a0; S0)b =(a; S)b � S(r). Hene, S0(j) � S(r) [ S0(j � 1) � S0(�(r)) [ S0(j � 1) � S0(j � 1): The latterholds beause j > �(r). Thus, S0(j) = S0(j � 1), and onsequently, TS0(j) = ;. ❑Now we are able to prove the theorem whih identi�es short k-words of at most the double ofthe length of a given k-word, but with a hard inlusion property.Theorem 39 Let a be any repetition-free k-word of length n, k � 2. If there is a repetition-freek-word a0 with a 6� a0 and K(a) � K(a0) then K(a1a2 : : : an) � K(a2a1a3a2 : : : anan�1):Proof. Let a0 be a k-word suh that a 6� a0 and K(a) � K(a0). First we will transform a0 intoa k-word of a ertain struture preserving the inlusion. Note that inserting new letters in a0preserves K(a) � K(a0). Sine a 6� a0, it holds thata0 = w1a1w2a2w3 : : : wiaiwi+1 with wj 2 �f1; 2; : : : ; kg n fajg�� and i < n:De�ne the k-word b0 by appending ai+1ai+2 : : : an�1 to a0 and then inserting a2; a3; : : : ; an intothe new k-word as follows:b0 =def w1a2a1w2a3a2w3 : : : wn�1anan�1wn:Note that it holds that a 6� b0. By Lemma 38 we an simplify the words wj . We an setb00 =def v1a2a1v2a3a2v3 : : : vn�1anan�1vn with vi 2 fai+1; ai+2; : : : ang� and vn = ";27



i.e., for all i, vi is de�ned to be wi without the letters from f1; 2; : : : ; kg n fai; ai+1; : : : ; ang.Using Lemma 37 and again Lemma 38, we an also simplify the words vi. Let b000 be de�ned asb000 =def u1a2a1u2a3a2u3 : : : un�1anan�1with ui 2 �fa1; a2; : : : ; ai�1g \ fai+1; ai+2; : : : ; ang�� and u1 = ":Making all subwords ai�1uiai+1 repetition-free (note that this implies a1u2a3 � a1a3 andan�2un�1an � an�2an), we get the repetition-free k-word b de�ned asb =def a2a1a3a2z3a4a3z4 : : : zn�2an�1an�2anan�1with zi 2 �fa1; a2; : : : ; ai�1g \ fai+1; ai+2; : : : ; ang�� for i 2 f3; 4; : : : ; n� 2g:In the remainder we will always suppose this k-word b. Note that b satis�es the onditions thata 6� b and K(a) � K(b). Let � be the anonial embedding of a into b. Let m = jbj. It holdsthat �(1) = 2 and �(n� 1) = m. We de�ne �0 as �0(j) = �(j � 1)� 1 for all j 2 f2; : : : ; ng. LetS be any K-homomorphism on a. Sine K(a) � K(b), and due to Lemma 36, there exists a K-homomorphism V on b suh that (a; S) = (b; V ) and S(j) � V (�(j)) for all j 2 f1; 2; : : : ; n�1g.De�ne a mapping S0 for j 2 f1; 2; : : : ;mg asS0(j) =def � V (j) if j 2 f1; 2;m � 1;mg;(V (j) \ S(r)) [ V (2) if j > 2 and �0(r) � j < �0(r + 1):It holds that S0 : f1; 2; : : : ;mg ! K and S0(j) � S0(j + 1) for 1 � j < m, i.e., S0 is a K-homomorphism on b. Moreover, S0 satis�es the following onditions:1. For all j 2 f1; : : : ;mg, if j 62 R� [R�0 , then TS0(j) = ;,2. (a; S) = (b; S0).Note that proving these two fats is suÆient for the theorem beause of the equalities �0(j) =�(j � 1)� 1 for all j 2 f2; 3; : : : ; ng.1. Let j 62 R� [ R�0 . Then, 2 = �(1) < j < �0(n), i.e., there is an r suh that �0(r) < j <�0(r + 1). Consequently,TS0(j) = S0(j) n S0(j � 1) = ((V (j) \ S(r)) [ V (2)) n ((V (j � 1) \ S(r)) [ V (2))= ((V (j) n V (j � 1)) \ S(r)) n V (2) � TV (j) \ S(r):Let q be maximal with �(q) < j and aq = bj . Let s be minimal with j < �0(s) andas = bj . The existene of both q and s is assured due to the struture of b. Then, we haveTS0(j) � TV (j) \ S(r) � TV (j) \ S(s � 1). Moreover, as�1 6= bj sine a is repetition-free.The statement would be proven if we would know the following:(�) There is no t with q < t < s and bj = aq = at = as.Using (�) we an onlude: If x 2 TS0(j), i.e., x 2 S(s�1) and x 62 V (j�1), then x 62 TS(i)for all q < i � s�1. Hene x 2 S(q) � V (�(q)) � V (j�1). This is a ontradition. Thus,TS0(j) = ;. 28



It remains to prove (�). Assume the ontrary to be true, i.e., there exists a t with q < t < sand bj = aq = at = as. Then we have three ases yielding ontraditions. The ase j � �(t)ontradits the maximality of q and q 6= t. The ase j � �0(t) ontradits the minimalityof s and s 6= t. In the ase �0(t) < j < �(t) we onlude �(t� 1)� 1 < j < �(t) and, sinej =2 R�, �(t� 1) < j < �(t). But now, it holds that bj 6= b�(t) = at, ontraditing bj = at.Hene the assumption is false, i.e., suh a t does not exist.2. It suÆes to show TS0(j) � (a; S)i for every j with bj = i. So, let j be so that bj = i.There are two ases, j 2 R�0 and j 62 R�0 .� Case j 2 R�0 . If j = �0(2) = �(1) � 1 = 1, then TS0(j) = TV (j) � (b; V )i = (a; S)i.So, let j = �0(r) for r > 2, i.e., j > 2 and i = bj = ar. Then,TS0(j) = S0(j) n S0(j � 1) = ((V (j) \ S(r)) [ V (2)) n ((V (j � 1) \ S(r � 1)) [ V (2))= ((V (j) \ S(r)) n (V (j � 1) \ S(r � 1))) n V (2)� ((V (j) n V (j � 1)) \ S(r)) [ ((S(r) n S(r � 1)) \ V (j � 1)) � TV (j) [ TS(r)� (b; V )i [ (a; S)i = (a; S)i:� Case j 62 R�0. If additionally j 62 R�, then by 1:, TS0(j) = ; � (a; S)i. So, let j 2 R�.If j = 2 = �(1) or j = m = �(n � 1), then TS0(j) = TV (j) � (b; V )i = (a; S)i. Itremains to argue for 2 = �(1) < j < �(n� 1). Then we have,TS0(j) = S0(j) n S0(j � 1) = ((V (j) \ S(r)) [ V (2)) n ((V (j � 1) \ S(r)) [ V (2))= ((V (j) n V (j � 1)) \ S(r)) n V (2) � TV (j) � (b; V )i = (a; S)i:
❑Note that a1a2 : : : an 6� a2a1a3a2 : : : anan�1 for every repetition-free k-word a = a1 : : : an. The-orem 39 gives, e.g., that for the 3-word 123 it is enough to ollapse the polynomial hierarhyfrom NP(123) � NP(2132). Moreover, Theorem 39 is in some sense optimal. For repetition-free2-words a, it holds ai = ai+2. Hene, for a = a1 : : : an, we have a2a1a3a2 : : : anan�1 � a.7.2.3 The Embedding Theorem for k-ChainsWe now prove the Embedding Conjeture true for k-words. First, we determine omplete NP-partitions for partition lasses over k-words with a useful indutive struture.De�nition 40 Let L � ��. For any k-word a with jaj = n � 2 and an�1 6= an, the partitionLa is de�ned as follows1. If n = 2, then for all i 2 f1; 2; : : : ; kg,Lai =def 8<: L if i = a1;L if i = a2;; if i 62 fa1; a2g: 29



2. If n > 2, then for all i 2 f1; 2; : : : ; kg,Lai =def � � hx1; x2; : : : ; xn�1i �� x1 2 L _ hx2; x3; : : : ; xn�1i 2 La2a3 :::ani 	 if i = a1;� hx1; x2; : : : ; xn�1i �� x1 62 L ^ hx2; x3; : : : ; xn�1i 2 La2a3 :::ani 	 if i 6= a1:Easy indutive arguments show that La is really a partition. We need the de�nition of �pm-redution for partitions: For k-partitions A and B it holds A �pm B i� there is a funtionf 2 FP suh that A(x) = B(f(x)) for all x 2 ��.Theorem 41 Let L be a �pm-omplete problem for NP. For any k-word a with jaj = n � 2 andan�1 6= an, the partition Lf is �pm-omplete for the partition lass NP(a).Proof. It is obvious that La is in NP(a). The proof of hardness is by indution over the lengthn of k-words. The base of indution n = 2 is obvious. So suppose the proposition is true forall k-words of length n and onsider an arbitrary partition A 2 NP(a) for a k-word a of lengthn+ 1, i.e., there is an NP-homomorphism S on a suh thatAa1 = S(1) [ [aj=a1j>2 S(j)nS(j � 1) and for i 6= a1; Ai = [aj=iS(j)nS(j � 1):Clearly, S is also an NP-homomorphism on a2a3 : : : an+1, and the de�ned partition A0 belongsto NP(a2a3 : : : an+1). Thus, sine a2a3 : : : an+1 is a k-word of length n, by the assumption ofthe indution, A0 �pm La2a3:::an+1 via ' 2 FP. Further, S(1) �pm L via t 2 FP. De�ne  as (x) =def ht(x); (�n�11 Æ ')(x); (�n�12 Æ ')(x); : : : ; (�n�1n�1 Æ ')(x)i:Clearly,  2 FP, and taking into aount that S(1) � S(2) � � � � � S(n+ 1), it holds thatx 2 Aa1 () x 2 S(1) or x 2 [aj=a1j>2 S(j)nS(j � 1)() t(x) 2 L _ '(x) 2 La2a3:::an+1a1()  (x) 2 Laa1and for i 6= a1, x 2 Ai () x 62 S(1) and x 2 [aj=iS(j)nS(j � 1)() t(x) 62 L ^ '(x) 2 La2a3:::an+1i()  (x) 2 Lai :Hene,  shows A �pm La. This ompletes the indution. ❑We apply the easy-hard tehnique invented by Kadin [24℄ to ollapse the polynomial hierarhyfrom a ollapse of the boolean hierarhy BH2(NP). The proof onsists of two parts that an beisolated.In the �rst part of the proof, an inlusion NP(m) � oNP(m) for some m 2 IN+ is translateddownwards to the previous level m � 1 using a speial polynomial advie alled hard word.30



Indutively, this an even be translated to the lowest level NP � oNP=poly where the poly-nomial advie is just a tuple of hard words. The seond part of the proof uses this inlusionNP � oNP=poly to ollapse the polynomial hierarhy to its third level [41℄. This part has beenimproved many times in sophistiated ways to a deeper ollapse (f. [19, 33℄) by a diret use ofhard words.Both parts of the proof are di�erently reeted by de�nitions. The onept of hard sequenesplays the ruial role for the �rst part.De�nition 42 [24℄ Let L � ��. Let m 2 IN, n 2 IN+, and h : �� ! ��. A tuple h!1; : : : ; !jiis said to be a hard sequene for (L;m; n; h) if and only if either j = 0 or1. 1 � j � n� 1,2. j!j j � m,3. !j 62 L,4. (�nj+1 Æ h)(h!1; : : : ; !j ; xj+1; : : : ; xni) 62 L for all xj+1; : : : ; xn 2 ��m,5. h!1; : : : ; !j�1i is a hard sequene for (L;m; n; h).We all j the order of a hard sequene h!1; : : : ; !ji. A hard sequene h!1; : : : ; !ji for (L;m; n; h)is said to be a maximal hard sequene for (L;m; n; h) if and only if for all !j+1 2 ��, the tupleh!1; : : : ; !j ; !j+1i is not a hard sequene for (L;m; n; h).Note that hard sequenes do always exist independently from the parameters hosen, namely,at least hard sequenes of order 0. Hene, maximal hard sequenes do always exist as well.A seond onept entral to ollapsing the polynomial hierarhy in the ontext of the easy-hardtehnique is that of a twister. The de�nition of a twister builds up on the onept of maximalhard sequenes.De�nition 43 Let L � �� and let n 2 IN+. A funtion h : �� ! �� is said to be an (L; n)-twister if and only if h 2 FP and for all m 2 IN and for all x 2 ��m, if h!1; ; : : : ; !ji is amaximal hard sequene for (L;m; n; h), then there are xj+2; : : : ; xn 2 ��m suh thatx 62 L() (�nj+1 Æ h)(h!1; : : : ; !j ; x; xj+2; : : : ; xni) 2 L:The following result is the deepest ollapse of the polynomial hierarhy urrently known to followfrom the existene of some twisters. Note that twisters appear only impliitely in the literature[19, 33℄.Lemma 44 [19, 33℄ Let L be �pm-omplete for NP. Let n 2 IN+. If there exists an (L; n)-twisterthen PH = �p2(n� 1)�NP(n).The next theorem generalizes the easy-hard tehnique to the ase of partitions. This theoremis the key to the Embedding Theorem for k-hains.31



Theorem 45 Let k � 2. Let a and a0 be k-words with jaj = ja0j = n � 2, an�1 6= an, a0n�1 6= a0n,and ai 6= a0i for all i � n. If NP(a) � NP(a0), then PH = �p2(n� 2)�NP(n� 1).Proof. Let L be a �pm-omplete set for NP. Thus, by assumption NP(a) � NP(a0), there is apolynomial-time omputable funtion h whih witnesses the redution La �pm La0 . We will showthat h is an (L; n� 1)-twister. For that, we �rst have to prove the following laim.Claim. If h!1; : : : ; !ji is a hard sequene for (L;m; n�1; h), then for all xj+1; : : : ; xn�1 2 ��mand for all a 2 f1; 2; : : : ; kg,hxj+1; : : : ; xn�1i 2 Laj+1:::ana() (h�n�1j+1 ; : : : ; �n�1n�1i Æ h)(h!1; : : : ; !j; xj+1; : : : ; xn�1i) 2 La0j+1:::a0na :This laim an be proven indutively on the order j of hard sequenes. The base of indutionj = 0 is just our given situation NP(a) � NP(a0). So, let h!1; : : : ; !j; !j+1i be a hard sequene for(L;m; n�1; h). Thus, !j+1 62 L and for all xj+2; : : : ; xn�1 2 ��m it holds that (�n�1j+1 Æh)(h!1; : : : ;!j; !j+1; xj+2; : : : ; xn�1i) 62 L. Hene, for b = aj+1,hxj+2; : : : ; xn�1i 2 Laj+2:::anb() !j+1 2 L or hxj+2; : : : ; xn�1i 2 Laj+2:::anb() h!j+1; xj+2; : : : ; xn�1i 2 Laj+1:::anb (sine b = aj+1)() (h�n�1j+1 ; : : : ; �n�1n�1i Æ h)(h!1; : : : ; !j ; !j+1; xj+2; : : : ; xn�1i) 2 La0j+1:::a0nb (by indution hypothesis)() (�n�1j+1 Æ h)(h!1; : : : ; !j ; !j+1; xj+2; : : : ; xn�1i) 62 L and(h�n�1j+2 ; : : : ; �n�1n�1i Æ h)(h!1; : : : ; !j ; !j+1; xj+2; : : : ; xn�1i) 2 La0j+2:::a0nb(sine b 6= a0j+1)() (h�n�1j+2 ; : : : ; �n�1n�1i Æ h)(h!1; : : : ; !j ; !j+1; xj+2; : : : ; xn�1i) 2 La0j+2:::a0nb :Now, onsider b = a0j+1. Then we onludehxj+2; : : : ; xn�1i 2 Laj+2:::anb() !j+1 62 L and hxj+2; : : : ; xn�1i 2 Laj+2:::anb() h!j+1; xj+2; : : : ; xn�1i 2 Laj+1:::anb (sine b 6= aj+1)() (h�n�1j+1 ; : : : ; �n�1n�1i Æ h)(h!1; : : : ; !j ; !j+1; xj+2; : : : ; xn�1i) 2 La0j+1:::a0nb (by indution hypothesis)() (�n�1j+1 Æ h)(h!1; : : : ; !j ; !j+1; xj+2; : : : ; xn�1i) 2 L or(h�n�1j+2 ; : : : ; �n�1n�1i Æ h)(h!1; : : : ; !j; !j+1; xj+2; : : : ; xn�1i) 2 La0j+2:::a0nb(sine b = a0j+1)() (h�n�1j+2 ; : : : ; �n�1n�1i Æ h)(h!1; : : : ; !j ; !j+1; xj+2; : : : ; xn�1i) 2 La0j+2:::a0nb :32



For the remaining ase, let b 62 faj+1; a0j+1g. Thenhxj+2; : : : ; xn�1i 2 Laj+2:::anb() !j+1 62 L and hxj+2; : : : ; xn�1i 2 Laj+2:::anb() h!j+1; xj+2; : : : ; xn�1i 2 Laj+1:::anb (sine b 6= aj+1)() (h�n�1j+1 ; : : : ; �n�1n�1i Æ h)(h!1; : : : ; !j ; !j+1; xj+2; : : : ; xn�1i) 2 La0j+1:::a0nb (by indution hypothesis)() (�n�1j+1 Æ h)(h!1; : : : ; !j ; !j+1; xj+2; : : : ; xn�1i) 62 L and(h�n�1j+2 ; : : : ; �n�1n�1i Æ h)(h!1; : : : ; !j; !j+1; xj+2; : : : ; xn�1i) 2 La0j+2:::a0nb(sine b 6= a0j+1)() (h�n�1j+2 ; : : : ; �n�1n�1i Æ h)(h!1; : : : ; !j ; !j+1; xj+2; : : : ; xn�1i) 2 La0j+2:::a0nb :This ompletes the indution, and thus, the laim is proved.Now, we prove that h is an (L; n� 1)-twister, i.e., we have to show: If h!1; : : : ; !ji is a maximalhard sequene for (L;m; n� 1; h), then for all xj+1 2 ��m there are xj+2; : : : ; xn�1 2 ��m suhthat xj+1 62 L() (�n�1j+1 Æ h)(h!1; : : : ; !j; xj+1; : : : ; xn�1i) 2 L:There are di�erent ases depending on the order j of the maximal hard sequene. If j = n�2 > 0,then the assertion redues exatly to the laim above, having in mind that an�1 6= a0n�1. Ifj < n � 2, then for every xj+1 2 ��m, the sequene h!1; : : : ; !j; xj+1i is not a hard sequene,sine h!1; : : : ; !ji is maximal. Consequently, xj+1 2 L or there are xj+2; : : : ; xn�1 2 ��m with(�n�1j+1 Æ h)(h!1; : : : ; !j ; xj+1; xj+2; : : : ; xn�1i) 2 L. Hene, xj+1 62 L implies the latter ase. Thisproves the diretion from left to right. Conversely, the laim shows for all xj+2; : : : ; xn�1 2 ��mand b = a0j+1 6= aj+1xj+1 62 L and hxj+2; : : : ; xn�1i 2 Laj+2:::anb() (�n�1j+1 Æ h)(h!1; : : : ; !j ; xj+1; xj+2; : : : ; xn�1i) 2 L or(h�n�1j+2 ; : : : ; �n�1n�1i Æ h)(h!1; : : : ; !j; xj+1; xj+2; : : : ; xn�1i) 2 La0j+2:::a0nb :Now, if there are xj+2; : : : ; xn�1 2 ��m with (�n�1j+1 Æ h)(h!1; : : : ; !j; xj+1; xj+2; : : : ; xn�1i) 2 L,then xj+1 62 L. Thus, h is an (L; n � 1)-twister, and using Lemma 44 we obtain the statementdesired. ❑Theorem 46 merges hardest inlusions and the preeding theorem, yielding a upper bound forthe polynomial hierarhy ollapse in ase of unlikely inlusions of partition lasses over k-words.Theorem 46 Let a be any repetition-free k-word with k � 2. Let Æa = kfi j ai = ai+2gk. If thereis a k-word a0 with a 6� a0 and NP(a) � NP(a0), then PH = �p2(2jaj� Æa�4)�NP(2jaj� Æa�3).Proof. For any k-word z = z1 : : : zn, de�ne the k-word ẑ to be the repetition-free version of theword z2z1z3z2 : : : znzn�1. Clearly, it holds jẑj = 2jzj � Æz � 2.33



Let w be a shortest repetition-free k-subword of a with w 6� a0. Then, it holds jŵj � jâj. Thisan be seen as follows: Assume that w emerges from a when only deleting the j-th letter in aand making the remainder repetition-free. Then, Æw � Æa � 2 (by onsidering the worst aseaj�2 = aj , aj�1 = aj+1, and aj = aj+2). Thus,jŵj � 2(jaj � 1)� Æw � 2 � 2jaj � (Æa � 2)� 4 = 2jaj � Æa � 2 = jâj:By indution, we obtain jŵj � jâj for arbitrary repetition-free k-subwords of a.Beause of w 6� a0 and NP(w) � NP(a) � NP(a0), it holds NP(w) � NP(ŵ) by Theorem 39.Let � be the anonial embedding of w into ŵ. Let jwj = n and jŵj = m. Then, it holdsjD�j = n� 1. Consider the k-word w0 de�ned for all j � m byw0j =def � wr if �(r � 1) � j < �(r);wn if j � �(n� 1):Sine jwj � jŵj, the k-word w0 is well-de�ned. Moreover, the following fats are learly true.1. jw0j = jŵj = m,2. w0 � w,3. w0m 6= w0m�1 (for ŵ this is true due to repetition-freeness).In order to meet the assumptions of Theorem 45, it remains to prove w0j 6= ŵj for all j � m.Assume the ontrary to be true, i.e., there is a j � m suh that w0j = ŵj. Let s be maximalwith �(s � 1) � j. Then, w0j = ws and onsequently, �(s) = j. But this is a ontradition tothe repetition-freeness of w, if j = �(s� 1), or to the de�nition of the anonial embedding �, ifj > �(s� 1) and s 2 D�, or to w 6� ŵ, if j > �(s� 1) and s = n. Hene, w0j 6= ŵj for all j � m.Now we an apply Theorem 45. Consequently, from our assumption NP(w0) = NP(w) � NP(ŵ),we obtain PH = �p2(jŵj � 2)�NP(jŵj � 1) � �p2(jâj � 2)�NP(jâj � 1). ❑Summarizing all we have done so far we state the Embedding Theorem for k-hains as the formalon�rmation of the Embedding Conjeture for k-hains.Theorem 47 (Embedding Theorem for NP with respet to k-hains.) Assume thatthe polynomial hierarhy is in�nite. Let (G; f) and (G0; f 0) be k-hains with k � 2. Then,(G; f) � (G0; f 0) if and only if NP(G; f) � NP(G0; f 0):Proof. Without loss of generality, let a and a0 be repetition-free k-words representing (G; f) and(G0; f 0). The diretion from left to right is just the Embedding Lemma. For the other diretion,let a 6� a0. Suppose NP(a) � NP(a0). Then by Theorem 46, the polynomial hierarhy is �niteontraditing our assumption. Hene, NP(a) 6� NP(a0). ❑We get one more that the Embedding Conjeture is generally true for 2-latties. This is aonsequene of Theorem 47 and the following simple proposition.Proposition 48 Every 2-lattie is equivalent to its longest hain with alternating labels 1 and2.Corollary 49 Assume the polynomial hierarhy is in�nite. For 2-latties (G; f) and (G0; f 0) itholds that NP(G; f) � NP(G0; f 0) if and only if (G; f) � (G0; f 0).34



7.2.4 An Extension to k-LattiesIn the preeding we have proved the Embedding Theorem for k-hains. Now we apply thistheorem in order to get validity of the Embedding Conjeture for a large sublass of generalk-latties.Theorem 50 Assume that the polynomial hierarhy is in�nite. Let (G; f) and (G0; f 0) be k-latties. If NP(G; f) � NP(G0; f 0), then every minimal k-subhain of (G; f) ours as a k-subhain of (G0; f 0).Proof. Let NP(G; f) � NP(G0; f 0). Assume there is k-subhain (C; ), identi�ed with the k-word, suh that (C; ) 6� (G0; f 0). Let d1; : : : ; dm be all k-words representing longest repetition-freek-subhains of (G0; f 0), and let �j be the anonial embedding of  into dj . Let r denote themaximum of D�1 [ � � � [D�m . De�ne z to be the following k-wordz =def d1�1(0)+1 : : : d1�1(1)�1d2�2(0)+1 : : : d2�2(1)�1 : : : dm�m(0)+1 : : : dm�m(1)�11 �� d1�1(1)+1 : : : d1�1(2)�1d2�2(1)+1 : : : d2�2(2)�1 : : : dm�m(1)+1 : : : dm�m(2)�12 �� : : : �� d1�1(r�1)+1 : : : d1�1(r)�1d2�2(r�1)+1 : : : d2�2(r)�1 : : : dm�m(r�1)+1 : : : dm�m(r)�1r:Clearly,  6� z and dj � z for all j 2 f1; 2; : : : ;mg. We prove NP(G0; f 0) � NP(z). For that, itsuÆes to show (G0; f 0) � (f1; 2; : : : ; jzjg; z). We de�ne a mapping ' : G0 ! f1; 2; : : : ; jzjg forx 2 G0 as follows'(x) =def _e represents a hain through x ^j with e�dj (�[dj ; z℄ Æ �[e; dj ℄)(x):We have to prove that ' is monotoni and f 0(x) = z'(x). The latter is obviously true byonstrution of '. For the monotoniity, let x; y 2 G0 with x � y. Consider e representing ahain through x. Sine the value '(x) only depends on hain up to x, without loss of generalitywe an suppose e to represent a hain additionally going through y and we an suppose j tobe so that (�[dj ; z℄ Æ �[e; dj ℄)(y) is minimal for all (�[di; z℄ Æ �[e; di℄)(y) with e � di. Hene,'(x) � (�[dj ; z℄ Æ �[e; dj ℄)(y) � '(y), and thus, ' is monotoni. Now we have a situationNP() � NP(G; f) � NP(G0; f 0) � NP(z) but  6� z. Consequently, by Theorem 47, this isontradition to the stritness of the polynomial hierarhy. Hene, our assumption was false,and every repetition-free k-subhain of (G; f) is also a k-subhain of (G0; f 0). ❑As an example, Theorem 50 easily gives that the 3-latties in Figure 2 and Figure 3 de�neinomparable partition lasses over NP, unless the polynomial hierarhy is �nite.7.3 Evidene II: Beyond ChainsAssume that the polynomial hierarhy does not ollapse. By Theorem 50, if the k-lattie (G; f)has a minimal k-subhain whih is not a k-subhain of the k-lattie (G0; f 0) then NP(G; f) 6�NP(G0; f 0). 35



af(a) f()bf(b)
Figure 8: The upper triangleBut what about k-latties whih have the same minimal k-subhains? For example, take the 3-latties (G; f) and (G0; f 0) represented in Figure 6, that have been used to vitiate the EmbeddingTheorem for reursively enumerable sets. Sine (G; f) 6� (G0; f 0) the Embedding Conjeture saysthat NP(G; f) 6� NP(G0; f 0). However, Theorem 50 does not help to show this beause eahsubhain of (G; f) ours in (G0; f 0).In the following we will see that we an prove theorems similar to Theorem 50 for some simplesubstrutures other than subhains. In partiular, we get from Theorem 54 that for the 3-latties(G; f) and (G0; f 0) in Figure 6, NP(G; f) 6� NP(G0; f 0) unless the polynomial hierarhy is �nite.7.3.1 The Upper TriangleThe �rst struture we investigate is the upper triangle as presented in Figure 8. The main resultwith respet to upper triangles is Theorem 52. The key to prove this theorem is the followinglemma. The proof of this lemma is inspired by a work of Hemaspaandra et al. [20℄.Lemma 51 If for all sets A;B 2 NP there exist sets C;D 2 NP suh that C [ D = ��,C � B n A, and D � A nB, then NP = oNP.Proof. Suppose that the premise of the lemma is true. Consider the sets A and B de�ned asA =def � hF1; F2i �� F1 2 Satisfiability 	B =def � hF1; F2i �� F2 2 Satisfiability 	Obviously, A and B belong to NP. The supposition implies that there are NP sets C and D withC [D = ��, C � B nA, and D � A n B. Let M1 and M2 be nondeterministi polynomial-timeTuring mahines aepting C and D, i.e., L(M1) = C and L(M2) = D.Reall that for a formula H, H 2 Satisfiability if and only if H0 2 Satisfiability orH1 2 Satisfiability.Let M1 �M2 be that mahine that on an input hF1; F2i �rst simulates M1 on F1 (ending withresult �) and then simulates M2 on F2 (ending with result �). Consider M1 �M2 on an inputhH0;H1i for a propositional formula H along an arbitrary omputation path.� Case (�; �) = (1; 1). That is hH0;H1i 2 C \D � B n A \ A n B = (A \B) [A [B:{ If hH0;H1i 2 A \B, then H;H0;H1 2 Satisfiability.{ If hH0;H1i 2 A [B, then H;H0;H1 62 Satisfiability.36



All in all, H 2 Satisfiability() H0 2 Satisfiability:� Case (�; �) = (1; 0). That is, we know hH0;H1i 2 C and we assume moreover, hH0;H1i 2C nD = E [ F [G, where E � A [B, F = A n B, and G � A \B.{ If hH0;H1i 2 E � A [B, then H;H0;H1 62 Satisfiability.{ If hH0;H1i 2 G � A \B, then H;H0;H1 2 Satisfiability.{ If hH0;H1i 2 F = A n B, then H;H0 2 Satisfiability.All in all, H 2 Satisfiability() H0 2 Satisfiability:� Case (�; �) = (0; 1). Analogous arguments as for (�; �) = (1; 0) showH 2 Satisfiability() H1 2 Satisfiability:� Case (�; �) = (0; 0). Sine C [D = �� there is always an aepting path. Thus this aseis irrelevant.De�ne M to be a mahine that on input H works in the following way: M simulates M1 �M2on hH0;H1i to answer the question H 2 Satisfiability. M rejets along omputation pathswith result (0; 0). Along a omputation path with result (1; 1) or (1; 0), M simulates M1 �M2on input hH00;H01i to answer the question H0 2 Satisfiability. Along paths with (0; 1), Msimulates M1 �M2 on (H10;H11) to answer the question H1 2 Satisfiability. Continuing inthis way we obtain after n simulations ofM1�M2 where n is number of variables inH a questionH�0�1:::�n 2 Satisfiability. Answer this question with negation of H�0�1:::�n . Clearly,M runsin polynomial time and L(M) = Satisfiability. Hene, Satisfiability 2 oNP. ❑Theorem 52 Assume that NP 6= oNP. Let (G; f) and (G0; f 0) be k-latties with k � 3.If NP(G; f) � NP(G0; f 0) then all k-subposets in (G; f) having the form as in Figure 8 withpairwise di�erent labels f(a), f(b), and f() do also our in (G0; f 0).Proof. Let (G; f) and (G0; f 0) be k-latties. Suppose that NP(G; f) � NP(G0; f 0). Suppose thatthere exists a k-subposet of (G; f) as desribed in Figure 8. So let fa; b; g � G be suh thata < b,  < b, a and  are inomparable, and kff(a); f(b); f()gk = 3. Beause of Proposition 30,without loss of generality we an assume that f(a) = 1, f(b) = 2, and f() = 3. The proof is byontradition. That is, we assume to the ontrary that there exist no a0; b0; 0 2 G0 with a0 < b0,0 < b0, f 0(a0) = 1, f 0(b0) = 2, and f 0() = 3.Let A and B be arbitrary sets in NP. De�ne a mapping S : G! NP for all z 2 G asS(z) =def 8>>>><>>>>: �� if z � b;A [B if z � a; z � ; and z 6� b;A if z � a and z 6� ;B if z 6� a and z � ;A \B if z 6� a and z 6� :37



It is easily seen that S is an NP-homomorphism on G and that TS(0G) = A\B, TS(a) = A nB,TS() = B n A, and TS(b) = A [B. Depending on the value f(0G) we have several k-partitionsde�ned by (G; f) and S. Without loss of generality, we an assume that f(0G) 2 f1; 2; 3; 4g.This gives the following four k-partitions:(G; f; S) = 8>>><>>>: � A; A [B; B n A; ;; ;; : : : ; ;� if f(0G) = 1�A n B; (A \B) [A [B; B n A; ;; ;; : : : ; ;� if f(0G) = 2�A n B; A [B; B; ;; ;; : : : ; ;� if f(0G) = 3�A n B; A [B; B n A; A \B; ;; : : : ; ;� if f(0G) = 4Sine NP(G; f) � NP(G0; f 0) there is an NP-homomorphism S0 onG0 with (G; f; S) = (G0; f 0; S0).We onsider the following sets of elements of G0:U1 =def � z 2 G0 �� f 0(z) = 2 ^ (8x; x � z)[f 0(x) 6= 3℄ 	;U3 =def � z 2 G0 �� f 0(z) = 2 ^ (8x; x � z)[f 0(x) 6= 1℄ 	:Sine there exist no a0; b0; 0 2 G0 with a0 < b0, 0 < b0, f 0(a0) = 1, f 0(b0) = 2, and f 0() = 3, itholds that U1 [ U3 = � z 2 G0 �� f 0(z) = 2 	. De�ne sets C and D asC =def A [ [z2U1 S0(z) and D =def B [ [z2U3 S0(z):Clearly, C;D 2 NP. Moreover the following is true:1. C [D = ��,2. C � B nA,3. D � A nB.This an be veri�ed as follows:1. Let x =2 �Sz2U1 S0(z)� [ �Sz2U3 S0(z)�. Then x =2 (G0; f 0; S0)2. We onlude(G0; f 0; S0)2 = (G0; f 0; S0)1 [ (G0; f 0; S0)3 [ (G0; f 0; S0)4= (G; f; S)1 [ (G; f; S)3 [ (G; f; S)4 � A [B:Thus, x 2 A [B. Hene, for all x 2 �� we have that x 2 C [D.2. Obviously, A � B n A. Furthermore,[z2U1 S0(z) � (G0; f 0; S0)1 [ (G0; f 0; S0)2 [ (G0; f 0; S0)4= (G; f; S)1 [ (G; f; S)2 [ (G; f; S)4 = (G; f; S)3 � B n A:Consequently, C � B n A.3. Analogous argumentation as for the seond statement.Sine A and B were arbitrarily hosen, we an apply Lemma 51. This implies that NP = oNP.Hene, a ontradition. ❑38



af(a) f()bf(b)Figure 9: The lower triangle7.3.2 The Lower TriangleThe struture dual to the upper triangle is the lower triangle presented in Figure 9. Althoughthe proof of Theorem 54 whih is here the main result similar to Theorem 52 uses the dualityof the strutures, the key lemma for establishing the theorem works di�erent to Lemma 51.Interestingly, we are not able to prove the strong onsequene that NP is losed under omple-mentation as in Lemma 8 but only by taking polynomial advie. The proof involves tehniquesof Ko [26℄ and Hemaspaandra et al. [21℄.Lemma 53 If for all sets A;B 2 NP there exist sets C;D 2 NP suh that AnB � C, BnA � D,and C \D = ;, then NP � oNP=poly.Proof. Suppose that the premise of the lemma is true. Let L 2 NP. De�ne the sets A and B asfollows: A =def � hx; yi �� minfx; yg 2 L 	B =def � hx; yi �� maxfx; yg 2 L 	The supposition implies that there are NP sets C and D with A n B � C, B n A � D, andC \D = ;. On an intuitive level, if x � y, then \hx; yi 2 C" means \if y 2 L then x 2 L", and\hx; yi 2 D" means \if x 2 L then y 2 L".Let n0 2 IN be the smallest number suh that L\��n0 is non-empty. Let n � n0 be an arbitrarynatural number. We onstrut a set Sn that will serve as an advie for strings of length � n.De�ne for z 2 ��n the set B(z) asB(z) =def � x 2 ��n �� [x 6= z ^ (x < z ! hx; zi 2 C) ^ (z < x! hx; zi 2 D)℄ _(x < z ^ hx; zi =2 C [D) 	:If G � L \��n, then for all x; z 2 G with x 6= z either x 2 B(z) or z 2 B(x). This givesXz2G kB(z) \Gk = �kGk2 � for all G � L \ ��n: (3)For a set G � ��n, let yG be a word in G suh that kB(yG)\Gk � kB(x)\Gk for all x 2 G. Weonsider a ertain sequene of sets fG1; G2; : : : g. In partiular, we are interested in the wordsyGj . Let yj denote yGj . Then for all j 2 IN+, the sets Gj are indutively de�ned as follows:G1 =def L \ ��n if j = 1Gj =def Gj�1 n �fyj�1g [B(yj�1)� if j � 2:39



The following an be shown by indutive arguments:kGjk � kG1k2j�1 for all j 2 IN+: (4)For j = 1, this obvious. For j � 2, using Equation (3) we easily observe thatkB(yj�1) \Gj�1k � kGj�1k � 12 :Thus we an onludekGjk � kGj�1k ��1 + kGj�1k � 12 � � kGj�1k2 � kG1k2j�1 :From Equation (4) it immediately follows that there is a smallest r suh that for all s � r,Gs = ;. It holds that r � 2 + log2 kG1k � 2 + log2 2n+1 � n+ 3: Now let Sn be the setSn =def fy1; y2; : : : ; yr�1g:Thus, kSnk � n+ 2. Moreover, we obtain that Sn � L and that for all x 2 ��n, it holds:� If x 2 L then there is an y 2 Sn suh that exatly one of the following statements is true:{ x = y or{ if x < y then hx; yi 2 C, and if y < x then hx; yi 2 D, or{ x < y and hx; yi =2 C [D.� If x =2 L then it holds that for all y 2 Sn, all of the following statements are true:{ x 6= y and{ if x < y then hx; yi 2 D and{ if y < x then hx; yi 2 C.From this we an onlude that for all x 2 ��n,x 2 L () there exists an y 2 Sn suh that x = y or the following is true:if x < y then hx; yi =2 D; and if y < x then hx; yi =2 C:De�ne a set A0 as follows:A0 =def � hx; T i �� jxj � n0 ^ T � ��n ^ kTk � n+ 1 ^(9y 2 T )�x = y _ [(x < y ! hx; yi =2 D) ^ (y < x! hx; yi =2 C)℄� 	It is easily seen that A0 is in oNP. De�ne the advie funtion h ash(n) =def � Sn if n � n0;; if n < n0:Clearly, h has polynomial length in n, i.e., h 2 poly. Furthermore, we have that for all x 2 ��,x 2 L() hx; h(jxj)i 2 A0:Hene, L 2 oNP=poly. ❑40



dba f(d)f(b)f(a) f()Figure 10: A next step towards resolution of the Embedding ConjetureTheorem 54 Assume that the polynomial hierarhy is in�nite. Let (G; f) and (G0; f 0) be k-latties with k � 3. If NP(G; f) � NP(G0; f 0) then all k-subposets in (G; f) having the form asin Figure 9 with pairwise di�erent labels f(a), f(b), and f() do also our in (G0; f 0).Proof. Let (G; f) and (G0; f 0) be k-latties. Suppose that NP(G; f) � NP(G0; f 0). Supposethat there exists a k-subposet of (G; f) as desribed in Figure 9. So let fa; b; g 2 G be suhthat a > b,  > b, a and  are inomparable, and kff(a); f(b); f()gk = 3. We assume to theontrary that there exist no a0; b0; 0 2 G0 with a0 > b0, 0 > b0, f 0(a0) = f(a), f 0(b0) = f(b), andf 0() = f().Theorem 18 implies that oNP(G� ; f) � oNP(G0� ; f 0). Thus, our situation translates exatlyto the situation in Theorem 52 with respet to oNP. Following the proof of Theorem 52 weobtain that for all sets A;B 2 oNP, there exist sets C;D 2 oNP with C [D = ��, C � B n A,and D � A nB. This easily implies that for all sets A;B 2 NP, there exist sets C;D 2 NP suhthat C \D = ;, A n B � C, and B n A � D. By Lemma 53, it follows that NP � oNP=poly,hene the polynomial hierarhy is �nite. Thus we have a ontradition. ❑From Theorem 54 we easily see that, assuming an in�nite polynomial hierarhy, NP(G; f) 6�NP(G0; f 0) for (G; f) being the left 3-lattie and (G0; f 0) being the right 3-lattie in Figure 6.So the ounterexample to the Embedding Theorem for reursively enumerable sets is not aounterexample to the Embedding Conjeture.7.4 Next Steps Towards ResolutionAll the theorems we proved in the last subsetions to support the Embedding Conjeture are ofthe following shape:Assume the polynomial hierarhy is in�nite. Let (G; f) and (G0; f 0) be k-latties. IfNP(G; f) � NP(G0; f 0) then all k-subposets of (G; f) having a ertain pattern P doalso our in (G0; f 0).The patterns for whih the aording theorem holds are hains, lower, and upper triangles.Progress towards an aÆrmative resolution of the onjeture means to enlarge this lass of pat-terns. Beause the previous theorems all need di�erent proof tehniques we have not been ableto learn very muh from these solutions. It will be important to prove new patterns step by step.The pattern whih is the next andidate to be resolved is pitured in Figure 10. The diÆultase is f(b) = f() and f(b) =2 ff(a); f(d)g. Referene issues an be found in the followingsetion. 41



Figure 11: Sheme of all boolean 3-latties of the form (f1; 2g3; f) with f(1; 1; 1) = 18 On the Struture of BH3(NP)Assume the Embedding Conjeture is true and an in�nite polynomial hierarhy. Then thestruture of the boolean hierarhy of k-partitions with respet to set inlusion is idential withthe partial order of �-equivalene lasses of k-latties with respet to �. To get an idea of theomplexity of the latter struture we will now present the partial order of all equivalene lassesof 3-latties whih inlude a boolean 3-lattie of the form (f1; 2g3; f) with surjetive f (fornon-surjetive f these k-latties do not really de�ne 3-partitions). The 5796 di�erent boolean3-latties of the form (f1; 2g3; f) with surjetive f are in 132 di�erent equivalene lasses.Figure 11 shows the partial order of the 44 equivalene lasses whih ontain boolean 3-lattiesof the form (f1; 2g3; f) suh that f(1; 1; 1) = 1. The ases f(1; 1; 1) = 2 and f(1; 1; 1) = 3 yieldisomorphi partial orders. A line from equivalene lassG up to equivalene lassG' means that(G; f) < (G0; f 0) for every (G; f) 2 G and (G0; f 0) 2 G'. We emphasize that suh a study wouldbe intratable without the possibility to present boolean k-latties by equivalent k-latties. All3-latties in equivalene lasses framed by the same dotted line have the same minimal labeledsubhains.Figure 12 shows the middle part and Figure 13 shows the right part of the partial order in Figure11. In both diagrams, eah equivalene lass is represented by the minimal 3-lattie. The leftpart of the partial order in Figure 11 is symmetri to the right part where the labels 2 and 3hange their role.Theorem 55 Assume the polynomial hierarhy is in�nite. If in Figure 12 and Figure 13 thereis a thik line from lass G up to lass G' then NP(G; f) � NP(G0; f 0) for every (G; f) 2 Gand (G0; f 0) 2 G'.Every \thik line" in this theorem is an appliation of Theorem 50 besides the one's marked by^ or _ whih are just Theorem 52 (for ^) and Theorem 54 (for _).42
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Figure 12: Closer look at the middle part of the sheme in Figure 1143
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Figure 14: The 3-lattie L(m;n) for m;n 2 INAt the end of this setion we mention that the boolean hierarhy of 3-partitions over NP doesnot have bounded width with respet to set inlusion unless the polynomial hierarhy ollapses.Proposition 56 Assume that the polynomial hierarhy is in�nite. For every m 2 IN there existat least m partition lasses in BH3(NP) that are inomparable with respet to set inlusion.Proof. Let m 2 IN. We de�ne m 3-hains that are inomparable with respet to �. LetGm = (f1; 2; : : : ;mg;�) be the hain with the natural order on f1; 2; : : : ;mg. For every i 2f1; 2; : : : ;mg let f im : Gm ! f1; 2; 3g be the funtion de�ned asf im(j) = 8<: 1 if (j < i and j is odd) or (j > i and j is even);2 if (j < i and j is even) or (j > i and j is odd);3 if j = i:It is easy to see that for all i; j 2 Gm with i 6= j the 3-latties (Gm; f im) and (Gm; f jm) areinomparable with respet to �. Sine the polynomial hierarhy is supposed to be strit, by theEmbedding Theorem for NP with respet to k-hains (Theorem 47) we obtain that all generatedpartition lasses are pairwise inomparable with respet to set inlusion. ❑In fat, if the Embedding Conjeture is true and the polynomial hierarhy is strit then theboolean hierarhy of 3-partitions has an in�nite subfamily of partition lasses that are pairwiseinomparable with respet to set inlusion. Even worse, under this assumption, BH3(NP) is notwell founded with respet to set inlusion then there exist in�nite desending hains of partitionlasses. For instane, onsider the family of all 3-latties L(m;n) for m;n 2 IN as depited inFigure 14. One an easily observe the following fats:1. If an n 2 IN is �xed then for all m 2 IN it holds L(m;n) > L(m + 1; n). Hene wehave an in�nite desending hain of 3-latties thus induing an in�nite desending hainof partition lasses.2. For allm;n 2 IN withm 6= n it holds that L(m;m) 6� L(n; n) and L(n; n) 6� L(m;m). Thisgives the in�nite antihain of 3-latties, hene an in�nite antihain of partition lasses.45



9 Mahines That Aept PartitionsIn this setion we will see how the partitions of lasses in the boolean hierarhy of k-partitionsover NP an be aepted in a natural way by nondeterministi polynomial-time mahines witha notion of aeptane whih depends on the generating funtions.De�nition 57 For m 2 IN+ a polynomial-timem-mahineM is a nondeterministi polynomial-time mahine produing on every omputation path an element from the set f0; 1; : : : ;mg. Foran input x let M(x) =def � i 6= 0 �� there exists a path of M on x with result i 	:Obviously, a polynomial-time 1-mahine is an ordinary nondeterministi polynomial-time ma-hine. All the sets Li(M) =def � x �� there exists a path of M on x with result i 	 are in NPand we obtain M(x) = fi j x 2 Li(M)g and Li(M)(x) = M(x)(i) for all x.De�nition 58 For a funtion f : P(f1; : : : ;mg) ! f1; : : : ; kg and a polynomial-time m-mahine M let (M;f) be the k-partition de�ned by (M;f)(x) = f(M(x)) for all x 2 ��.Note that every funtion f : P(f1; 2; : : : ;mg) ! f1; 2; : : : ; kg an also be onsidered to bethe funtion f : f1; 2gm ! f1; 2; : : : ; kg and vie versa by the relationships f(a1; : : : ; am) =f(fi j ai = 1g) for a1; : : : ; am 2 f1; 2g and f(A) = f(A(1); : : : ; A(m)) for A � f1; 2; : : : ;mg.Theorem 59 NP(f) = � (M;f) �� M is a polynomial-time m-mahine 	 for all m 2 IN+ andall funtions f : f1; 2gm ! f1; 2; : : : ; kg.Proof. To show the forwards inlusion let B1; : : : ; Bm 2 NP. There are nondeterministipolynomial-time mahines M1; : : : ;Mm suh that Mi aepts Bi for i 2 f1; 2; : : : ;mg. De�ne Mto be a nondeterministi polynomial-time mahine whih simulates M1; : : : ;Mm in parallel butwhen simulating Mi it outputs i rather than 1. Obviously, for all i 2 f1; 2; : : : ;mg, Li(M) = Biand we onludef(B1 ;:::;Bm)(x) = f(B1(x); : : : ; Bm(x)) = f(L1(M)(x); : : : ; Lm(M)(x))= f(M(x)(1); : : : ; M(x)(m)) = f(M(x)) = (M;f)(x):For the inlusion \�" onsider a polynomial-time m-mahine M and onlude(M;f)(x) = f(M(x)) = f(M(x)(1); : : : ; M(x)(m)) = f(L1(M)(x); : : : ; Lm(M)(x))= f(L1(M);:::;Lm(M))(x):
❑Finally, we disuss ompleteness for the partition lasses NP(f). We will see that it is easy toonstrut from an arbitrary NP-omplete problem a problem whih is omplete for NP(f).We already used the notion of many-one redutions for partitions. We say that the k-partitionA is polynomial-time many-one reduible to the k-partition B (for short A �pm B) if and onlyif there exists a polynomial-time omputable funtion g suh that A(w) = B(g(w)) for all w.Note that in the ase k = 2 this yields exatly the lassial notion of polynomial-time many-onereduibility for sets.From Theorem 59 we easily obtain the following:46



Proposition 60 Let k � 2. All lasses in BHk(NP) and BCk(NP) are losed under �pm.A k-partition A is �pm-omplete for a partition lass C (whih is losed under �pm) if and onlyif A 2 C and B �pm A for every k-partition B 2 C. Reall that �mj denote projetions of anenoded word w = hw1; : : : ; wmi. For a set A � �� and a funtion f : f1; 2gm ! f1; 2; : : : ; kgde�ne the k-partition A(f) byA(f)(w) =def f((A Æ �m1 )(w)(A Æ �m2 )(w) : : : (A Æ �mm)(w)) for all w 2 ��:Theorem 61 Let f : f1; 2gm ! f1; 2; : : : kg with k � 2. Let A be �pm-omplete for NP. ThenA(f) is �pm-omplete for NP(f).Proof. De�ning Ai =def � w �� �mi (w) 2 A 	 for i 2 f1; 2; : : : ;mg we obtain Ai 2 NP. For everyw 2 �� we onludeA(f)(w) = f((A Æ �m1 )(w) : : : (A Æ �mm)(w)) = f(A1(w) : : : Am(w)) = f (A1; : : : ; Am):Consequently, A(f) = f(A1; : : : ; Am) 2 NP(f).Now take any B1; : : : ; Bm 2 NP. Sine A is �pm-omplete for NP there exist polynomial-timeomputable funtions g1; : : : ; gm suh that for every i 2 f1; 2; : : : ;mg, w 2 Bi , gi(w) 2 A.De�ning g(w) =def hg1(w); : : : ; gm(w)i for every w 2 ��, we an onludef(B1;:::;Bm)(w) = f(B1(w); : : : ; Bm(w)) = f((A Æ g1)(w); : : : ; (A Æ gm)(w))= f((A Æ �m1 Æ g)(w); : : : ; (A Æ �mm Æ g)(w)) = A(f)(g(w)):Hene f(B1; : : : ; Bm) �pm A(f). ❑As a natural example of omplete partition, onsider the lassi�ation problem Entailment wehave extensively disussed in the introdutory hapter.Theorem 62 Entailment is �pm-omplete for NP(f) where f : f1; 2g2 ! f1; 2; 3; 4g is thefuntion de�ned as f(1; 1) = 1, f(1; 2) = 2, f(2; 1) = 3, and f(2; 2) = 4.Proof. Obviously, Entailment is in NP(f). Consider the partition Satisfiability(f) whihis �pm-omplete for NP(f) by Theorem 61. More expliitly:Satisfiability(f)1 = � hF1; F2i �� H1 2 Satisfiability;H2 2 Satisfiability 	;Satisfiability(f)2 = � hF1; F2i �� H1 2 Satisfiability;H2 =2 Satisfiability 	;Satisfiability(f)3 = � hF1; F2i �� H1 =2 Satisfiability;H2 2 Satisfiability 	;Satisfiability(f)4 = � hF1; F2i �� H1 =2 Satisfiability;H2 =2 Satisfiability 	:We have to show that Satisfiability(f) �pm Entailment. This redution is seen by thefollowing algorithm. On input hF1; F2i, make the sets of variables in F1 and in F2 disjoint, taketwo new variables z1 and z2 not involved in F1 or F2, and output hF 01; F 02i where F 01 =def z1 ^F1and F 02 =def z2 ^F2. Obviously, the algorithm runs in polynomial time. Moreover, we have thatF 01 j= F 02 () F 01 =2 SatisfiabilityF 02 j= F 01 () F 02 =2 Satisfiability:Thus hF1; F2i 2 Satisfiability(f)i , hF 01; F 02i 2 Entailmenti for all i 2 f1; 2; 3; 4g. ❑47



14 32 1234Figure 15: Classes with omplete partitions having omponents of same omplexitiesProving ompleteness results for entire partitions instead of only for the omponents allows �nerdistinguishing the omplexity of lassi�ation problems. Obviously, ompleteness translates fromthe partition to the omponents: If the k-partition A is �pm-omplete for the partition lass Cthen for eah i 2 f1; : : : ; kg, Ai is �pm-omplete for the lass Ci. The onverse diretion need notto hold as an be seen for the partition lasses that are desribed by the 4-latties in Figure 15.Eah lass belongs to BH4(NP), thus has omplete partitions. Entailment is just a ompletepartition for the lass generated by left 4-lattie in the �gure. Let A be any �pm-ompletepartition for the lass generated by the right 4-hain. Then for all i 2 f1; 2; 3; 4g we haveEntailmenti �pm Ai but A does not redue to Entailment unless NP = oNP as followseasily from Theorem 31.10 ConlusionIn the preeding setions, we have investigated the boolean hierarhy of k-partitions over NP fork � 3 as a generalization of the boolean hierarhy of sets (i.e., 2-partitions) over NP. Whereasthe struture of the latter hierarhy is rather simple the struture of the boolean hierarhy ofk-partitions over NP for k � 3 turned out to be muh more ompliated. We established theEmbedding Conjeture whih enables us to get an overview on this struture. This onjeturewas supported by several partial results. A omplete proof of or a ounterexample to the Em-bedding Conjeture for NP are left to �nd. However, a ounterexample|two k-latties (G; f)and (G0; f 0) with (G; f) 6� (G0; f 0), but NP(G; f) � NP(G0; f 0)|may be hard to �nd sine morereently, it has been proven in [28℄ that the relation � indues a suÆient and neessary riterionfor relativizable inlusions.Aknowledgments. For helpful hints and disussions we are grateful to Lane A. Hemaspaandra(Rohester), Vitor L. Selivanov (Novosibirsk), and Wolfgang Thomas (Aahen).Referenes[1℄ E. Allender, R. Beals, and M. Ogihara. The omplexity of matrix rank and feasible systems of linearequations. Computational Complexity, 8:99{126, 1999.[2℄ J. L. Bal�azar, J. D��az, and J. Gabarr�o. Strutural Complexity I. Texts in Theoretial ComputerSiene. An EATCS Series. Springer-Verlag, Berlin, 2nd edition, 1995.[3℄ R. Beigel, R. Chang, and M. Ogiwara. A relationship between di�erene hierarhies and relativizedpolynomial hierarhies. Mathematial Systems Theory, 26(3):293{310, 1993.48



[4℄ A. Bertoni, D. Brushi, D. Joseph, M. Sitharam, and P. Young. Generalized boolean hierarhiesand boolean hierarhies over RP. In Proeedings 7th International Conferene on Fundamentalsin Computation Theory, volume 380 of Leture Notes in Computer Siene, pages 35{46. Springer-Verlag, Berlin, 1989.[5℄ B. Borhert, D. Kuske, and F. Stephan. On existentially �rst-order de�nable languages and theirrelation to NP. RAIRO Theoretial Informatis and Appliations, 33(3):257{270, 1999.[6℄ D. Brushi, D. Joseph, and P. Young. Strong separations for the boolean hierarhy over RP. Inter-national Journal of Foundations of Computer Siene, 1(3):201{217, 1990.[7℄ J.-Y. Cai. Probability one separation of the boolean hierarhy. In Proeedings 4th Symposium onTheoretial Aspets of Computer Siene, volume 38 of Leture Notes in Computer Siene, pages148{158. Springer-Verlag, Berlin, 1987.[8℄ J.-Y. Cai, T. Gundermann, J. Hartmanis, L. A. Hemahandra, V. Sewelson, K. W. Wagner, andG. Wehsung. The boolean hierarhy I: Strutural properties. SIAM Journal on Computing,17(6):1232{1252, 1988.[9℄ J.-Y. Cai, T. Gundermann, J. Hartmanis, L. A. Hemahandra, V. Sewelson, K. W. Wagner, andG. Wehsung. The boolean hierarhy II: Appliations. SIAM Journal on Computing, 18:95{111,1989.[10℄ J.-Y. Cai and L. Hemahandra. The Boolean hierarhy: Hardware over NP. In Proeedings 1stStruture in Complexity Theory Conferene, volume 223 of Leture Notes in Computer Siene,pages 105{124. Springer-Verlag, Berlin, 1986.[11℄ B. A. Davey and H. A. Priestley. Introdution to Latties and Order. Cambridge University Press,Cambridge, 1990.[12℄ Y. L. Ershov. A hierarhy of sets I. Algebra i Logika, 7(1):47{74, 1968. In Russian.[13℄ Y. L. Ershov. A hierarhy of sets II. Algebra i Logika, 7(4):15{47, 1968. In Russian.[14℄ C. Gla�er and H. Shmitz. The boolean struture of dot-depth one. In Proeedings 2nd InternationalWorkshop on Desriptional Complexity of Automata, Grammars, and Related Strutures, London,Ontario, 2000.[15℄ G. Gr�atzer. General Lattie Theory. Akademie-Verlag, Berlin, 1978.[16℄ T. Gundermann, N. A. Nasser, and G. Wehsung. A survey on ounting lasses. In Proeedings5th Struture in Complexity Theory Conferene, pages 140{153. IEEE Computer Soiety Press, LosAlamitos, 1990.[17℄ T. Gundermann and G. Wehsung. Nondeterministi Turing mahines with modi�ed aeptane.In Proeedings 12th Symposium on Mathematial Foundations of Computer Siene, volume 233 ofLeture Notes in Computer Siene, pages 396{404. Springer-Verlag, Berlin, 1986.[18℄ F. Hausdor�. Grundz�uge der Mengenlehre. Veit, Leipzig, 1914.[19℄ E. Hemaspaandra, L. A. Hemaspaandra, and H. Hempel. What's up with downward ollapse: Usingthe easy-hard tehnique to link boolean and polynomial hierarhy ollapses. Complexity TheoryColumn 21, ACM-SIGACT Newsletter, 29(3):10{22, 1998.[20℄ L. A. Hemaspaandra, A. Hoene, A. V. Naik, M. Ogihara, A. L. Selman, T. Thierauf, and J. Wang.Nondeterministially seletive sets. International Journal of Foundations of Computer Siene,6(4):403{416, 1995.[21℄ L. A. Hemaspaandra, A. V. Naik, M. Ogihara, and A. L. Selman. Computing solutions uniquelyollapses the polynomial hierarhy. SIAM Journal on Computing, 25(4):697{708, 1996.[22℄ L. A. Hemaspaandra and J. Rothe. Unambiguous omputation: Boolean hierarhies and sparseTuring-omplete sets. SIAM Journal on Computing, 26(3):634{653, 1997.49



[23℄ U. Hertrampf. Loally de�nable aeptane types|the three-valued ase. In Proeedings 1st LatinAmerian Symposium on Theoretial Informatis, volume 583 of Leture Notes in Computer Siene,pages 262{271. Springer-Verlag, Berlin, 1992.[24℄ J. Kadin. The polynomial time hierarhy ollapses if the Boolean hierarhy ollapses. SIAM Journalon Computing, 17(6):1263{1282, 1988. Erratum in same journal 20(2):404, 1991.[25℄ R. M. Karp and R. J. Lipton. Some onnetions between nonuniform and uniform omplexity lasses.In Proeedings 12th ACM Symposium on Theory of Computing, pages 302{309, 1980. An extendedversion appeared as: Turing mahines that take advie, L'Enseignment Math�ematique, 2nd series,1982, pages 191-209.[26℄ K. Ko. On self-reduibility and weak P-seletivity. Journal of Computer and System Sienes,26:209{221, 1983.[27℄ J. K�obler, U. Sh�oning, and K. W. Wagner. The di�erene and truth-table hierarhies for NP.RAIRO Theoretial Informatis and Appliations, 21(4):419{435, 1987.[28℄ S. Kosub. On NP-partitions over posets with an appliation to reduing the set of solutions ofNP problems. In Proeedings 25th Symposium on Mathematial Foundations of Computer Siene,volume 1893 of Leture Notes in Computer Siene, pages 467{476. Springer-verlag, Berlin, 2000.[29℄ S. Kosub and K.W. Wagner. The boolean hierarhy of NP-partitions. In Proeedings 17th Symposiumon Theoretial Aspets of Computer Siene, volume 1770 of Leture Notes in Computer Siene,pages 157{168. Springer-Verlag, Berlin, 2000.[30℄ M. Li and P. M. B. Vit�anyi. An Introdution to Kolmogorov Complexity and Its Appliations.Graduate Texts in Computer Siene. Springer-Verlag, New York, 2nd edition, 1997.[31℄ A. R. Meyer and L. J. Stokmeyer. The equivalene problem for regular expressions with squaringrequires exponential time. In Proeedings 13th Symposium on Swithing and Automata Theory, pages125{129. IEEE Computer Soiety Press, Los Alamitos, 1972.[32℄ C. H. Papadimitriou and M. Yannakakis. The omplexity of faets (and some faets of omplexity).Journal of Computer and System Sienes, 28(2):244{259, 1984.[33℄ S. Reith and K. W. Wagner. On boolean lowness and boolean highness. Theoretial ComputerSiene, 261(2):305{321, 2001.[34℄ V. L. Selivanov. Boolean hierarhy of partitions over reduible bases. Tehnial Report 276, Julius-Maximilians-Universit�at W�urzburg, Institut f�ur Informatik, Marh 2001.[35℄ R. I. Soare. Reursively Enumerable Sets and Degrees. Perspetives in Mathematial Logi. Springer-Verlag, Berlin, 1987.[36℄ L. Stokmeyer. The polynomial-time hierarhy. Theoretial Computer Siene, 3:1{22, 1977.[37℄ K. W. Wagner. On !-regular sets. Information and Control, 43:123{177, 1979.[38℄ K. W. Wagner. Bounded query lasses. SIAM Journal on Computing, 19:833{846, 1990.[39℄ K. W. Wagner and G. Wehsung. On the boolean losure of NP. Extended abstrat as: G. Weh-sung. On the boolean losure of NP. Proeedings 5th International Conferene on Fundamentals inComputation Theory, volume 199 of Leture Notes in Computer Siene, pages 485-493, Berlin, 1985.[40℄ K. W. Wagner and G. Wehsung. Computational Complexity. Deutsher Verlag der Wissenshaften,Berlin, 1986.[41℄ C. K. Yap. Some onsequenes of non-uniform onditions on uniform lasses. Theoretial ComputerSiene, 26:287{300, 1983. 50


