
T U M
I N S T I T U T F Ü R I N F O R M A T I K

Routing flow through a strongly connected graph

Thomas Erlebach and Torben Hagerup

ABCDEFGHIJKLMNO
TUM-I9917

Oktober 99

T E C H N I S C H E U N I V E R S I TÄ T M Ü N C H E N

TUM-INFO-10-I9917-0/1.-FI
Alle Rechte vorbehalten
Nachdruck auch auszugsweise verboten

c
1999

Druck: Institut f ür Informatik der
Technischen Universit ät M ünchen

Routing
ow througha strongly connected graphThomas ErlebachInstitut f�ur InformatikTechnische Universit�at M�unchenD{80290 M�unchen, Germanyerlebach@in.tum.deTorben HagerupFachbereich InformatikJohann Wolfgang Goethe-Universit�at FrankfurtRobert-Mayer-Stra�e 11{15D{60054 Frankfurt am Main, Germanyhagerup@informatik.uni-frankfurt.deAbstractIt is shown that, for every strongly connected network in whichevery edge has capacity at least �, linear time su�ces to send
owfrom source vertices, each with a given supply, to sink vertices, eachwith a given demand, provided that the total supply equals the totaldemand and is bounded by �. This problem arises in a new maximum-
ow algorithm of Goldberg and Rao.1 IntroductionA network is given by a directed graph G = (V;E) together with a functionc : E ! R+ that maps each edge of G to a positive capacity ; we will denotethe network succinctly by the tuple (V;E; c). A pseudo
ow in a network(V;E; c) is a function f : E ! R that satis�es 0 � f(e) � c(e) (the capacityconstraint) for all e 2 E. The excess of a pseudo
ow f in a network (V;E; c)at a vertex v 2 V is de�ned asef(v) = Xu:(u;v)2E f(u; v)� Xw:(v;w)2E f(v; w):1

It is natural to imagine the value of a pseudo
ow f on a particular edge eas the rate at which a certain commodity
ows through e, the capacity of ebeing the maximum rate possible. The excess at a vertex v is then the net
ow into v through all of its incident edges.An instance I of the feasible-
ow problem is given by a network (V;E; c)and a function b : V ! R that maps each vertex v 2 V to an import at v; wewill denote I by the tuple (V;E; c; b). In the context of an instance (V;E; c; b)of the feasible-
ow problem, a pseudo
ow f in the network (V;E; c) is calleda
ow if ef(v) + b(v) = 0 (the conservation constraint) holds for all v 2 V ,and the goal is simply to compute an arbitrary
ow in the network. Infor-mally, the problem is to route
ow through the network from the verticeswith supplies (positive imports) to the vertices with demands (negative im-ports). Summing the conservation constraints for all vertices shows that aninstance I = (V;E; c; b) of the feasible-
ow problem has no solution unlessPv2V b(v) = 0. We will call I neat if Pv2V b(v) = 0 and the underlyinggraph G = (V;E) is strongly connected. Even if the instance I is neat, itmay not have a solution, but a solution always exists if the edge capacitiesare su�ciently large relative to the imports. As a measure of the di�cultyof a neat instance I = (V;E; c; b), we de�ne the relative throughput of I asthe ratio (Pv2V maxfb(v); 0g)=mine2E c(e) of the total supply to the smallestedge capacity.Neat instances of the feasible-
ow problem with relative throughput atmost 1 always have solutions and are quite easy to solve, the challenge beingto solve them fast. Goldberg and Rao [1] showed how to solve neat instanceswith relative throughput bounded by 12 in linear time and stated that neatinstances with n vertices, m edges, and relative throughput bounded by 1 canbe solved in O(m�(m;n)) time, where � is an \inverse Ackermann" function,by appealing to the wheels-within-wheels characterization of Knuth [3] andthe union-�nd data structure analyzed by Tarjan [5]. We show the followingresult.Theorem 1 Every neat instance (V;E; c; b) of the feasible-
ow problem withrelative throughput at most 1 can be solved in O(jV j+ jEj) time.Our algorithm realizing Theorem 1 is based on depth-�rst search and issimple and fast, comparable in both respects to the algorithm of Goldbergand Rao mentioned above that can handle only half as much
ow.We sketch the relevance of Theorem 1 to a new maximum-
ow algorithmof Goldberg and Rao, the binary blocking
ow or BBF algorithm [1]. TheBBF algorithm maintains a
ow that gradually evolves into a maximum
owand repeatedly derives from the current residual network an auxiliary networkthat, following [2], we will call the core. The BBF algorithm subsequently2

contracts each strongly connected component of the core to a single vertex,computes a blocking
ow in the resulting acyclic network, and translates thisblocking
ow to the original core to obtain a
ow that is added to the current
ow in the full network.Translating the blocking
ow from the contracted network to the coreamounts to routing \through" each strongly connected component of thecore; i.e., it reduces to solving a collection of neat instances of the feasible-
ow problem. These instances are not necessarily (su�ciently easily) solv-able, and the BBF algorithm reduces their relative throughputs as far asnecessary by canceling
ow in the core before attempting to solve them,with a corresponding detriment to the overall rate of progress. Our new re-sult allows less
ow to be canceled and may be used to speed up the BBFalgorithm.2 The algorithmIn this section we prove Theorem 1. Let a neat instance I = (V;E; c; b) ofthe feasible-
ow problem with relative throughput at most 1 be given andtake G = (V;E), n = jV j, and m = jEj. We show how to solve I in O(n+m)time. We �rst give a high-level description of our algorithm and prove itscorrectness. Subsequently we show how to implement the algorithm to runin linear time.The algorithm works in three phases. Phase 1 runs in O(n + m) timeand constructs a depth-�rst search (DFS) tree T = (V;ET) of G. Phases2 and 3 are bottom-up traversals of T that run in O(n) time and compute,respectively, the
ow on all edges in E nET and the
ow on all edges in ET.We use the following notational conventions: When g is a real-valuedfunction de�ned on V , we denote by g+ and g� the positive and negativeparts of g; i.e., g+(v) = maxfg(v); 0g and g�(v) = minfg(v); 0g for all v 2 V .Moreover, for every subset S of V , we write g(S) for Pv2S g(v). For everyedge e = (u; v) 2 E, we call u and v the tail and the head of e, respectively,and write u = tail(e) and v = head(e).The high-level description of the algorithm is summarized in Fig. 1.Phase 1 performs a DFS of G starting at an arbitrary vertex r 2 V and ini-tializes a pseudo
ow f by setting f(e) = 0 for all e 2 E. The DFS is almostidentical to Tarjan's algorithm for computing the strongly connected compo-nents of a general directed graph [4]. It constructs a DFS tree T = (V;ET)of G rooted at r and de�nes the preorder number pre(v) of each v 2 V byassigning the numbers 1; : : : ; n to the vertices in the order of their discovery.The actual output used by the subsequent processing is the inverse bijectionpre�1 : f1; : : : ; ng ! V with, e.g., pre�1(1) = r. Additionally, for every3

Algorithm SCC-route:f Phase 1 gChoose any vertex r 2 V ;DFS(r); f compute pre�1, parent , parentedge, and lowlink gfor e 2 E do f(e) 0 od;f Phase 2 gfor v 2 V do �(v) b(v) od;for i n downto 2 dov pre�1(i);q �(Tv);if q > 0 then f a push at v ge lowlink(v);f(e) f(e) + q;�(v) �(v)� q;�(head(e)) �(head(e)) + q�od;f Phase 3 gfor v 2 V n frg do f(parentedge(v)) �B(Tv) od;Figure 1: Algorithm for routing
ow through a strongly connected graph.v 2 V n frg, the DFS computes the parent parent(v) of v in T , the edgeparentedge(v) = (parent(v); v), and an edge lowlink(v) called the lowlink ofv. For all v 2 V , let Tv be the set of all descendants of v in T (including vitself). Since no confusion results, we will also use \Tv" to denote the subtreeof T induced by this set. For all v 2 V n frg, lowlink(v) is an edge e withtail(e) 2 Tv that minimizes pre(head(e)) over all edges with tails in Tv. Theroot r has no lowlink.For u; v 2 V , we use u < v as a shorthand for pre(u) < pre(v). As G isstrongly connected, for every v 2 V n frg there is an edge leaving Tv; i.e.,head(lowlink(v)) < v for all v 2 V nfrg. Let EL = flowlink(v) j v 2 V nfrggbe the set of all lowlink edges. For every subset S of V , we useB(S) = b(S) + Xe2EL\((V nS)�S) f(e)� Xe2EL\(S�(V nS)) f(e)to denote the total import at vertices in S plus the net
ow into S on lowlinkedges.The purpose of Phase 2 is to reduce the feasible-
ow problem in G to a4

feasible-
ow problem in T , which is then easily solved in Phase 3. The ver-tices are processed in inverse preorder, i.e., in the order pre�1(n); : : : ; pre�1(1).If the current vertex v has more supply than what is needed in its subtree Tv,the surplus is moved to a vertex with smaller preorder number by routing itout of Tv on the edge lowlink(v). We call this operation a push at v. To keeptrack of the e�ects of push operations, we maintain for every vertex v 2 Va quantity �(v), initialized to the value b(v). As part of a push at v, �(v) isdecreased and �(head(lowlink(v))) is increased correspondingly.Phase 3 sets the
ow on each edge (u; v) 2 ET to the unique value thatensures that
ow conservation holds for the subtree Tv, i.e., to �B(Tv).When arguing about quantities that change in the course of the executionof the algorithm, we use \initially" to denote the time immediately after theinitialization of � in Phase 2, and an overline denotes a �nal value currentat the end of the execution. E.g., for all v 2 V , �(v) = b(v) initially, and�(v) is the value of �(v) at the end of Phase 2 (since �(v) is not changed inPhase 3).We must demonstrate that the function f : E ! R computed by thealgorithm is indeed a
ow. This is shown in the following lemmas. Let� = b+(V) be the total supply of I. Since the relative throughput of I is atmost 1, c(e) � � for all e 2 E.Lemma 1 For all v 2 V , �(Tv) � 0.Proof. During the processing of v in Phase 2, �(v) is decreased su�ciently tomake �(Tv) � 0. Because Phase 2 processes the vertices in inverse preorder,no term in the sum Pw2Tv �(w) = �(Tv) subsequently changes. utLemma 2 For all v 2 V , �(v) � 0 immediately after every decrease in �(v).Proof. Only a push at v can decrease �(v). By Lemma 1, applied to thechildren of v, a push at v decreases �(v) to a nonnegative value. utLemma 3 For all (x; y) 2 EL, 0 � f(x; y) � �.Proof. Since f(x; y) is zero initially and never decreases, f(x; y) � 0. Tosee that f(x; y) � �, observe that f(x; y) +Pw>y �+(w) is bounded by �initially and, by Lemma 2, never increases. utLemma 4 For all (u; v) 2 ET, 0 � f(u; v) � �.5

Proof. Our task is to show that �� � B(Tv) � 0. Initially, B(Tv) = �(Tv),and this relation continues to hold until the end of the processing of v (inPhase 2). Let Bv denote the value of B(Tv) at that time; i.e., Bv = �(Tv).By Lemma 1, Bv � 0. After the processing of v, B(Tv) never increases, soB(Tv) � Bv � 0.By what was observed above, the relation B(Tv)��+(Tv) = ��(Tv) holdsinitially and until the end of the processing of v. Since ��(Tv) is at least ��initially and, by Lemma 2, never decreases, Bv � ��. What remains toshow is that B(Tv) does not decrease below �� after the processing of v.Let A denote the set of ancestors of v that have a lowlink edge e withtail(e) 2 Tv and let a be the vertex in A with minimal preorder number. Thequantity � =Pw�a �+(w) is bounded by � initially and, by Lemma 2, neverincreases. Consider a decrease by q in B(Tv) following the processing of v.The decrease must happen as part of a push at a vertex z 2 A n fvg, andwe have head(lowlink(z)) = head(lowlink(a)) < a. The decrease in B(Tv)is accompanied by a decrease from q to zero in �(Tz) and, by what we justsaw, by a decrease by q in �. Lemma 1, applied at all siblings of verticesother than z on the path in T from z to v, shows that �(Tz) is boundedabove by � + Bv immediately before and after the push at z, and thereforethe decrease in B(Tv) cannot end with � + Bv < 0, i.e., with � < �Bv. Itfollows that the total decrease in B(Tv) after the processing of v is boundedby maxf�+Bv; 0g = �+Bv, so that B(Tv) � Bv � (� +Bv) = ��. utLemma 5 f satis�es the conservation constraint for every vertex in V .Proof. f(e) = 0 for all e 2 E n (ET [EL). For each vertex v 2 V withchildren w1; : : : ; wd, we therefore �ndef(v) + b(v) = B(fvg)� B(Tv) + dXi=1 B(Twi) = 0: utLemmas 3 and 4 show that f satis�es the capacity constraints for alledges in E, and Lemma 5 states that f satis�es the conservation constraintsfor all vertices in V . This concludes the correctness proof for the algorithm ofFig. 1. We illustrate the workings of the algorithm through a small example.Fig. 2(a) shows the DFS tree (solid edges) and lowlink edges (dashed) of astrongly connected graph. For ease of discussion, we identify each vertex withits preorder number, shown inside the corresponding circle. The lowlink ofthe vertex 3 is the edge (4; 2), for example. Nonzero import values are shownbeside the relevant vertices. During Phase 2, push operations are performed6

1�62�23+6 4850 �1
6 6 783 �4 97 +7 1 02 0�63 0�6 46 5511

66 6 70 �787 7 90 0

(a) Flow on the nontree edgesas calculated in Phase 2 (b) Flow on the tree edges ascalculated in Phase 3Figure 2: The execution of the algorithm on an example network.at the vertices 9, 7, 4, 3, and 2. The edge labels show the resulting
ow onthe lowlink edges. The
ow of value 8 on the edge (4; 2), e.g., is the resultof a push at the vertex 4 that increases the
ow on (4; 2) from 0 to 2 and apush at the vertex 3 that increases the
ow on (4; 2) by another 6 units.Fig. 2(b) shows the DFS tree with edge labels representing the
ow onthe tree edges calculated in Phase 3. For every vertex v, the label shownnext to v is the value �B(fvg). The algorithm sets the
ow on every treeedge e equal to the sum of these values in the subtree below e.We �nally show how to implement Phases 2 and 3 of the algorithm inO(n) time. The values �(Tv) needed in Phase 2 (cf. Fig. 1) can be computedon the
y in O(n) total time. It su�ces to let every vertex v other than rpass �(Tv) to its parent u, where it will be added to the values coming fromsiblings of v and to �(u). The values of � are changed by push operations inPhase 2, but this causes no di�culties: If a push is performed at a vertex v,�(Tv) is reduced to zero and no value need be passed to the parent of v; thevertex z = head(lowlink(v)) will be processed later, so it su�ces to pass thechange in �(z) to z.The values B(Tv) that are needed in Phase 3 of the algorithm can becomputed in O(n) total time for all v 2 V by a single sweep from the leavesto the root of T . At each vertex v, values coming from the children are addedto the initial value stored at v and, if v is not the root, the result is sent to7

void SCC_route() {int i,v,e;int q; /* flow values are assumed to be integers */DFS(0); /* 0 is chosen arbitrarily as the root */for (e=0;e<m;e++) f[e]=0;for (v=0;v<n;v++) fp[v]=-b[v];for (i=n;i>1;i--) {v=preinv[i]; /* the vertex of preorder i */q=b[v];if (q<=0) b[parent[v]]+=q; /* move demand to parent */else { /* move supply over lowlink (a push at v) */e=lowlink[v];f[e]+=q; b[head[e]]+=q; fp[tail[e]]+=q; fp[head[e]]-=q;}}for (i=n;i>1;i--) {v=preinv[i];fp[parent[v]]+=f[parentedge[v]]=fp[v];}} Figure 3: An e�cient implementation of the algorithm in C.its parent. Rather than initializing the value at v with B(fvg) once thisquantity has reached its �nal value at the end of Phase 2, it is convenient tomaintain the negative of the quantity throughout Phase 2.A code fragment in executable C that implements our algorithm along thelines suggested above is shown in Fig. 3. The sets V and E are representedby f0; : : : ; n� 1g and f0; : : : ; m� 1g, respectively, where n and m are globalvariables. The implementation uses arrays b, parent, parentedge, lowlink,and fp indexed by vertices, arrays tail, head, and f indexed by edges, andan array preinv indexed by preorder numbers that implements the bijectionpre�1. Declarations of these arrays are not shown. The (cumulative) valuesof �B are stored in the array fp, and the input array b that speci�es theimports is also used to store the (cumulative) values of �.Acknowledgment. The second author is grateful to Peter Sanders andJesper Tr�a� for many useful discussions and for proving his �rst algorithmincorrect.
8

References[1] A. V. Goldberg and S. Rao, Beyond the
ow decomposition barrier, J.Assoc. Comput. Mach. 45 (1998), pp. 783{797.[2] T. Hagerup, P. Sanders, and J. L. Tr�a�, An implementation of the binaryblocking
ow algorithm, Proc. 2nd Workshop on Algorithm Engineering(WAE 1998), pp. 143{154, Res. Rep. No. MPI{I{98{1{019, Max-Planck-Institut f�ur Informatik, Saarbr�ucken, Germany.http://www.mpi-sb.mpg.de/�wae98/PROCEEDINGS.[3] D.E. Knuth, Wheels within wheels, J. Combinat. Theory (B) 16 (1974),pp. 42{46.[4] R. Tarjan, Depth-�rst search and linear graph algorithms, SIAM J.Comput. 1 (1972), pp. 146{160.[5] R. E. Tarjan, E�ciency of a good but not linear set union algorithm, J.Assoc. Comput. Mach. 22 (1975), pp. 215{225.

9

