TUM

INSTITUT FUR INFORMATIK

Routing flow through a strongly connected graph

Thomas Erlebach and Torben Hagerup

TUM-19917
Oktober 99

TECHNISCHE UNIVERSITAT MUNCHEN

TUM-INFO-10-19917-0/1.-FI
Alle Rechte vorbehalten
Nachdruck auch auszugsweise verboten

©1999

Druck: Institut f ur Informatik der
Technischen Universit at Munchen

Routing flow through
a strongly connected graph

Thomas Erlebach
Institut fir Informatik
Technische Universitat Miinchen
D-80290 Miinchen, Germany
erlebach@in.tum.de

Torben Hagerup
Fachbereich Informatik
Johann Wolfgang Goethe-Universitat Frankfurt
Robert-Mayer-Strafie 11-15
D-60054 Frankfurt am Main, Germany
hagerup@informatik.uni-frankfurt.de

Abstract

It is shown that, for every strongly connected network in which
every edge has capacity at least A, linear time suffices to send flow
from source vertices, each with a given supply, to sink vertices, each
with a given demand, provided that the total supply equals the total
demand and is bounded by A. This problem arises in a new maximum-
flow algorithm of Goldberg and Rao.

1 Introduction

A network is given by a directed graph G' = (V, E) together with a function
c¢: E — R, that maps each edge of G to a positive capacity; we will denote
the network succinctly by the tuple (V, E,¢). A pseudoflow in a network
(V,E,c) is a function f: E — R that satisfies 0 < f(e) < c(e) (the capacity
constraint) for all e € E. The ezcess of a pseudoflow f in a network (V, E, ¢)
at a vertex v € V is defined as

ef(v) = Z flu,v) — Z f(v,w).

It is natural to imagine the value of a pseudoflow f on a particular edge e
as the rate at which a certain commodity flows through e, the capacity of e
being the maximum rate possible. The excess at a vertex v is then the net
flow into v through all of its incident edges.

An instance I of the feasible-flow problem is given by a network (V, E, ¢)
and a function b : V' — R that maps each vertex v € V to an import at v; we
will denote I by the tuple (V, E, ¢, b). In the context of an instance (V, E, ¢, b)
of the feasible-flow problem, a pseudoflow f in the network (V, F, ¢) is called
a flow if ef(v) 4+ b(v) = 0 (the conservation constraint) holds for all v € V,
and the goal is simply to compute an arbitrary flow in the network. Infor-
mally, the problem is to route flow through the network from the vertices
with supplies (positive imports) to the vertices with demands (negative im-
ports). Summing the conservation constraints for all vertices shows that an
instance I = (V, E, ¢, b) of the feasible-flow problem has no solution unless
Y ey b(v) = 0. We will call I neat if) ., b(v) = 0 and the underlying
graph G = (V, E) is strongly connected. Even if the instance I is neat, it
may not have a solution, but a solution always exists if the edge capacities
are sufficiently large relative to the imports. As a measure of the difficulty
of a neat instance I = (V| E, ¢, b), we define the relative throughput of I as
the ratio (3, max{b(v),0})/min.ep c(e) of the total supply to the smallest
edge capacity.

Neat instances of the feasible-flow problem with relative throughput at
most 1 always have solutions and are quite easy to solve, the challenge being
to solve them fast. Goldberg and Rao [1] showed how to solve neat instances
with relative throughput bounded by % in linear time and stated that neat
instances with n vertices, m edges, and relative throughput bounded by 1 can
be solved in O(ma(m,n)) time, where « is an “inverse Ackermann” function,
by appealing to the wheels-within-wheels characterization of Knuth [3] and
the union-find data structure analyzed by Tarjan [5]. We show the following
result.

Theorem 1 FEvery neat instance (V, E, c,b) of the feasible-flow problem with
relative throughput at most 1 can be solved in O(|V|+ |E|) time.

Our algorithm realizing Theorem 1 is based on depth-first search and is
simple and fast, comparable in both respects to the algorithm of Goldberg
and Rao mentioned above that can handle only half as much flow.

We sketch the relevance of Theorem 1 to a new maximum-flow algorithm
of Goldberg and Rao, the binary blocking flow or BBF algorithm [1]. The
BBF algorithm maintains a flow that gradually evolves into a maximum flow
and repeatedly derives from the current residual network an auxiliary network
that, following [2], we will call the core. The BBF algorithm subsequently

contracts each strongly connected component of the core to a single vertex,
computes a blocking flow in the resulting acyclic network, and translates this
blocking flow to the original core to obtain a flow that is added to the current
flow in the full network.

Translating the blocking flow from the contracted network to the core
amounts to routing “through” each strongly connected component of the
core; i.e., it reduces to solving a collection of neat instances of the feasible-
flow problem. These instances are not necessarily (sufficiently easily) solv-
able, and the BBF algorithm reduces their relative throughputs as far as
necessary by canceling flow in the core before attempting to solve them,
with a corresponding detriment to the overall rate of progress. Our new re-
sult allows less flow to be canceled and may be used to speed up the BBF
algorithm.

2 The algorithm

In this section we prove Theorem 1. Let a neat instance I = (V, E, ¢, b) of
the feasible-flow problem with relative throughput at most 1 be given and
take G = (V, E), n = |V|, and m = |E|. We show how to solve I in O(n+m)
time. We first give a high-level description of our algorithm and prove its
correctness. Subsequently we show how to implement the algorithm to run
in linear time.

The algorithm works in three phases. Phase 1 runs in O(n + m) time
and constructs a depth-first search (DFS) tree T' = (V, Et) of G. Phases
2 and 3 are bottom-up traversals of 7" that run in O(n) time and compute,
respectively, the flow on all edges in E'\ Er and the flow on all edges in Er.

We use the following notational conventions: When ¢ is a real-valued
function defined on V', we denote by gt and g~ the positive and negative
parts of g; i.e., g7 (v) = max{g(v),0} and ¢~ (v) = min{g(v),0} forallv € V.
Moreover, for every subset S of V', we write g(S) for > ¢ g(v). For every
edge e = (u,v) € E, we call u and v the tail and the head of e, respectively,
and write u = tail(e) and v = head(e).

The high-level description of the algorithm is summarized in Fig. 1.
Phase 1 performs a DFS of GG starting at an arbitrary vertex r» € V' and ini-
tializes a pseudoflow f by setting f(e) = 0 for all e € E. The DFS is almost
identical to Tarjan’s algorithm for computing the strongly connected compo-
nents of a general directed graph [4]. It constructs a DFS tree T' = (V, Er)
of G rooted at r and defines the preorder number pre(v) of each v € V' by
assigning the numbers 1, ..., n to the vertices in the order of their discovery.
The actual output used by the subsequent processing is the inverse bijection
pre ! 2 {1,...,n} — V with, e.g., pre }(1) = r. Additionally, for every

Algorithm SCC-route:

{ Phase 1 }

Choose any vertex r € V;

DFS(r); { compute pre~!, parent, parentedge, and lowlink }
for e € E do f(e) < 0 od;

{ Phase 2 }
for v € V do ¢(v) < b(v) od;
for ¢ <— n downto 2 do
v < pre (i);
q < o(T,);
if ¢ > 0then {apushatov}
e < lowlink(v);
fle) « fle) + 4
¢(v) < ¢(v) — g
d(head(e)) < d(head(e)) + q
fi
od;

{ Phase 3 }
for v € V'\ {r} do f(parentedge(v)) - —B(T,) od,;

Figure 1: Algorithm for routing flow through a strongly connected graph.

v € V\ {r}, the DFS computes the parent parent(v) of v in T, the edge
parentedge(v) = (parent(v),v), and an edge lowlink(v) called the lowlink of
v. For all v € V, let T, be the set of all descendants of v in T' (including v
itself). Since no confusion results, we will also use “T,” to denote the subtree
of T induced by this set. For all v € V' \ {r}, lowlink(v) is an edge e with
tail(e) € T, that minimizes pre(head(e)) over all edges with tails in 7,. The
root r has no lowlink.

For u,v € V, we use u < v as a shorthand for pre(u) < pre(v). As G is
strongly connected, for every v € V' \ {r} there is an edge leaving T,; i.e.,
head(lowlink(v)) < v for allv € V\{r}. Let Ey, = {lowlink(v) | v € V\{r}}
be the set of all lowlink edges. For every subset S of V', we use

BS)=bS)+ >, flo- Y. fle)

ecErL,N((V\S)xS) ecErL,N(Sx(V\S))

to denote the total import at vertices in .S plus the net flow into S on lowlink
edges.
The purpose of Phase 2 is to reduce the feasible-flow problem in G to a

feasible-flow problem in T', which is then easily solved in Phase 3. The ver-
tices are processed in inverse preorder, i.e., in the order pre='(n), ..., pre=*(1).
If the current vertex v has more supply than what is needed in its subtree T,
the surplus is moved to a vertex with smaller preorder number by routing it
out of T, on the edge lowlink(v). We call this operation a push at v. To keep
track of the effects of push operations, we maintain for every vertex v € V
a quantity ¢(v), initialized to the value b(v). As part of a push at v, ¢(v) is
decreased and ¢(head(lowlink(v))) is increased correspondingly.

Phase 3 sets the flow on each edge (u,v) € Er to the unique value that
ensures that flow conservation holds for the subtree Ty, i.e., to —B(T}).

When arguing about quantities that change in the course of the execution
of the algorithm, we use “initially” to denote the time immediately after the
initialization of ¢ in Phase 2, and an overline denotes a final value current
at the end of the execution. E.g., for all v € V, ¢(v) = b(v) initially, and
¢(v) is the value of ¢(v) at the end of Phase 2 (since ¢(v) is not changed in
Phase 3).

We must demonstrate that the function f : £ — R computed by the
algorithm is indeed a flow. This is shown in the following lemmas. Let
A = bt (V) be the total supply of I. Since the relative throughput of I is at
most 1, c(e) > A for alle € E.

Lemma 1 For allv eV, ¢(T,) < 0.

Proof. During the processing of v in Phase 2, ¢(v) is decreased sufficiently to
make ¢(T,) < 0. Because Phase 2 processes the vertices in inverse preorder,
no term in the sum) .. ¢(w) = ¢(7T,) subsequently changes. O
Lemma 2 Forallv € V, ¢(v) > 0 immediately after every decrease in ¢(v).
Proof. Only a push at v can decrease ¢(v). By Lemma 1, applied to the
children of v, a push at v decreases ¢(v) to a nonnegative value. O
Lemma 3 For all (z,y) € Er, 0 < f(z,y) < A.

Proof. Since f(z,y) is zero initially and never decreases, f(z,y) > 0. To

see that f(x,y) < A, observe that f(z,y) + > wsy @7 (w) is bounded by A
initially and, by Lemma 2, never increases. g

Lemma 4 For all (u,v) € Er, 0 < f(u,v) <A

Proof. Our task is to show that —A < B(T;,) < 0. Initially, B(T,) = ¢(T,),
and this relation continues to hold until the end of the processing of v (in
Phase 2). Let B, denote the value of B(T,) at that time; i.e., B, = ¢(T,).
By Lemma 1, B, < 0. After the processing of v, B(T,) never increases, so
B(T,) < B, <0.

By what was observed above, the relation B(T,) —¢™(T;,) = ¢ (T,) holds
initially and until the end of the processing of v. Since ¢~ (7,) is at least —A
initially and, by Lemma 2, never decreases, B, > —A. What remains to
show is that B(T,) does not decrease below —A after the processing of v.

Let A denote the set of ancestors of v that have a lowlink edge e with
tail(e) € T, and let a be the vertex in A with minimal preorder number. The
quantity ® =Y . ¢*(w) is bounded by A initially and, by Lemma 2, never
increases. Consider a decrease by ¢ in B(T,) following the processing of v.
The decrease must happen as part of a push at a vertex z € A\ {v}, and
we have head(lowlink(z)) = head(lowlink(a)) < a. The decrease in B(T,)
is accompanied by a decrease from ¢ to zero in ¢(7,) and, by what we just
saw, by a decrease by ¢ in ®. Lemma 1, applied at all siblings of vertices
other than z on the path in 7" from z to v, shows that ¢(7,) is bounded
above by ® + B, immediately before and after the push at z, and therefore
the decrease in B(T,) cannot end with ® + B, < 0, i.e., with ® < —B,. Tt
follows that the total decrease in B(T,) after the processing of v is bounded
by max{A + B,,0} = A + B,, so that B(T,,) > B, — (A+ B,) = —-A. O

Lemma 5 f satisfies the conservation constraint for every vertex in V.

Proof. f(e) = 0 for alle € E\ (Ep U EL). For each vertex v € V with
children wy, ..., wy, we therefore find

d

e7(v) +b(v) = B({v}) - B(T,) + Y _ B(Ty,) = 0.

1=1

O

Lemmas 3 and 4 show that f satisfies the capacity constraints for all
edges in £, and Lemma 5 states that f satisfies the conservation constraints
for all vertices in V. This concludes the correctness proof for the algorithm of
Fig. 1. We illustrate the workings of the algorithm through a small example.

Fig. 2(a) shows the DFS tree (solid edges) and lowlink edges (dashed) of a
strongly connected graph. For ease of discussion, we identify each vertex with
its preorder number, shown inside the corresponding circle. The lowlink of
the vertex 3 is the edge (4, 2), for example. Nonzero import values are shown
beside the relevant vertices. During Phase 2, push operations are performed

6

1
. 0 0 0
- 0
o)
6 7
' ® O
8
6 7
6
(4
5
1
®1
(a) Flow on the nontree edges (b) Flow on the tree edges as
as calculated in Phase 2 calculated in Phase 3

Figure 2: The execution of the algorithm on an example network.

at the vertices 9, 7, 4, 3, and 2. The edge labels show the resulting flow on
the lowlink edges. The flow of value 8 on the edge (4,2), e.g., is the result
of a push at the vertex 4 that increases the flow on (4,2) from 0 to 2 and a
push at the vertex 3 that increases the flow on (4,2) by another 6 units.

Fig. 2(b) shows the DFS tree with edge labels representing the flow on
the tree edges calculated in Phase 3. For every vertex v, the label shown
next to v is the value —B({v}). The algorithm sets the flow on every tree
edge e equal to the sum of these values in the subtree below e.

We finally show how to implement Phases 2 and 3 of the algorithm in
O(n) time. The values ¢(7),) needed in Phase 2 (cf. Fig. 1) can be computed
on the fly in O(n) total time. It suffices to let every vertex v other than r
pass ¢(7,) to its parent u, where it will be added to the values coming from
siblings of v and to ¢(u). The values of ¢ are changed by push operations in
Phase 2, but this causes no difficulties: If a push is performed at a vertex v,
#(T,) is reduced to zero and no value need be passed to the parent of v; the
vertex z = head(lowlink(v)) will be processed later, so it suffices to pass the
change in ¢(2) to 2.

The values B(T,) that are needed in Phase 3 of the algorithm can be
computed in O(n) total time for all v € V' by a single sweep from the leaves
to the root of T'. At each vertex v, values coming from the children are added
to the initial value stored at v and, if v is not the root, the result is sent to

void SCC_route() {
int i,v,e;
int q; /* flow values are assumed to be integers */
DFS(0); /* O is chosen arbitrarily as the root */
for (e=0;e<m;e++) flel=0;
for (v=0;v<n;v++) fplvl=-b[v];
for (i=n;i>1;i--) {
v=preinv[i]; /* the vertex of preorder i */
q=b[v];
if (q<=0) blparent[v]]+=q; /* move demand to parent */
else { /* move supply over lowlink (a push at v) */
e=lowlink[v];
fle]l+=q; blhead[ell+=q; fpltaillell+=q; fplhead[el]l-=q;
}
}
for (i=n;i>1;i--) {
v=preinv[i];
fplparent [v]]+=f [parentedge[v]]=£fp[v];
}
}

Figure 3: An efficient implementation of the algorithm in C.

its parent. Rather than initializing the value at v with B({v}) once this
quantity has reached its final value at the end of Phase 2, it is convenient to
maintain the negative of the quantity throughout Phase 2.

A code fragment in executable C that implements our algorithm along the
lines suggested above is shown in Fig. 3. The sets V' and E are represented
by {0,...,n—1} and {0,...,m — 1}, respectively, where n and m are global
variables. The implementation uses arrays b, parent, parentedge, lowlink,
and fp indexed by vertices, arrays tail, head, and f indexed by edges, and
an array preinv indexed by preorder numbers that implements the bijection
pre~!. Declarations of these arrays are not shown. The (cumulative) values
of —B are stored in the array fp, and the input array b that specifies the
imports is also used to store the (cumulative) values of ¢.

Acknowledgment. The second author is grateful to Peter Sanders and
Jesper Traff for many useful discussions and for proving his first algorithm
incorrect.

References

[1]

2]

A. V. Goldberg and S. Rao, Beyond the flow decomposition barrier, J.
Assoc. Comput. Mach. 45 (1998), pp. 783-797.

T. Hagerup, P. Sanders, and J. L. Traff, An implementation of the binary
blocking flow algorithm, Proc. 2nd Workshop on Algorithm Engineering
(WAE 1998), pp. 143154, Res. Rep. No. MPI-1-98-1-019, Max-Planck-
Institut fiir Informatik, Saarbriicken, Germany.
http://www.mpi-sb.mpg.de/~wae98 /PROCEEDINGS.

D. E. Knuth, Wheels within wheels, J. Combinat. Theory (B) 16 (1974),
pp- 42-46.

R. Tarjan, Depth-first search and linear graph algorithms, SIAM J.
Comput. 1 (1972), pp. 146-160.

R. E. Tarjan, Efficiency of a good but not linear set union algorithm, J.
Assoc. Comput. Mach. 22 (1975), pp. 215-225.

