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Abstract

We describe a verification framework for I/O automata in Isabelle. It includes a tempo-
ral logic, proof support for showing implementation relations between live I/O automata,
and a combination of Isabelle with model checking via a verified abstraction theory. The
underlying domain-theoretic sequence model turned out to be especially adequate for
these purposes. Furthermore, using a tailored combination of Isabelle’s logics HOL and
HOLCF we achieve two complementary goals: expressiveness for proving meta theory
(HOLCF) and simplicity and efficiency for system verification (HOL).

1 Introduction

I/O automata [26, 15] are used to model reactive, distributed systems. In this paper we
present an extensive framework for the verification of I/O automata in Isabelle, combined
with model checking tools. This framework is based upon several extensions to the standard
theory of I/O automata which are described in part I of this paper [31].

These extensions comprise first of all a linear-time temporal logic, called Temporal Logic of
Steps (TLS), which is similar to TLA [23], but evaluates formulas over sequences of alternating
states and actions, which in addition may be finite. The applications of TLS are twofold.
First, it can be used to define and reason about live I/O automata by establishing live
implementation relations. Second, TLS can be employed as a property specification language
for I/O automata. Furthermore, in [31] for both TLS applications abstraction rules have been
developed which allow to reduce reasoning about a large or even infinite automaton to a finite
and smaller automaton. Together with translations to appropriate model checkers this forms
the basis for an effective combination of Isabelle with a model checker as external oracle.

In this paper we describe how all these notions have been embedded in Isabelle. The
aim is to build a setting, in which the theory of I/O automata itself is verified (we only use
definitional theory extensions), but that at the same time enables efficient system verification
for the user. This is accomplished by combining Isabelle’s object logics HOL and HOLCF in
such a way, that the user employs only the simpler logic HOL, whereas the use of the more
expressive, but difficult HOLCF is restricted to meta-theoretic arguments.

The framework is based upon a semantic model of lazy lists using Scott’s domain theory,
as provided by Isabelle/HOLCF [32]. In a comparison [11] to other sequence formalizations,
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which all incorporated functions on natural numbers in some way, this sequence model turned
out to be the most adequate.

TLS is not encoded directly, but as an instance of a generic temporal logic TL, which is
evaluated over state sequences. This enables us to study the adequateness of our domain-
theoretic sequence model in a more general setting, and, furthermore, reveals the connection
to standard temporal logics over state sequences [28, 21].

The abstraction theory generates proof obligations which are delegated to model checking
tools. for this purpose, translations are given to the STeP model checker [5] and to pcke [4].
Both translations are illustrated by means of a simple example.

Due to lack of space we only present the main definitions and theorems and omit proofs.
For full details concerning the entire developments in Isabelle the interested reader is referred
to the author’s PhD thesis [30]. Furthermore, the theories are part of the Isabelle distribution
which is available at the following www-page:
http://www.in.tum.de/"isabelle/library/HOLCF/I0A.

1.1 Structure of the Paper

The paper is organized as follows. In §2 we briefly introduce the tools used in our framework.
In §3 and §4 the models for sequences and basic I/O automata are presented. §5 describes
the generic temporal logic TL, §6 its instance to the temporal logic of steps TLS. In §7 TLS
is used to describe live I/O automata. Abstraction rules are derived in §8, which are applied
to the combination of Isabelle with model checking in §9. In §10 and §11 we present some
related work and conclude.

2 Preliminaries

In this section we briefly introduce the components of our toolbox.

2.1 The Theorem Proving System

Isabelle [36] is a generic theorem proving environment that supports a number of object logics.
We only use Isabelle’s instantiation of higher-order logic (HOL) and its extension to domain
theory (HOLCF) [32].

HOL is based on Church’s formulation of simple type theory [9], which has been augmented
by polymorphism, type classes like in Haskell, and extension mechanisms for defining new
constants and types. The syntax is that of simply typed A-calculus with an ML-style first order
language of types. In this paper we employ standard mathematical notation, which, however,
differs only slightly from the syntax in Isabelle. Type abbreviations, constant declarations,
definitions and theorems are introduced by the keywords types, consts, defs, and thms,
respectively.

HOLCEF conservatively extends HOL with concepts of domain theory such as complete
partial orders, continuous functions and a fixpoint operator. Whereas HOL is restricted
to total functions, HOLCF allows arbitrary recursive function definitions and is therefore
especially useful for handling infinite or partial objects. In HOLCF Isabelle’s type classes are
used to distinguish between HOL types and domains. We write 7¢ if a type 7 is of class C.
The default type class of HOL is term, the default type class of HOLCF is pcpo. The latter
is equipped with a complete partial order C and a least element L. There is a special type



for continuous function between pcpos, the type constructor is denoted by —. in contrast
to the standard HOL constructor —. Abstraction and application of continuous functions is
denoted by A (instead of A\) and f ‘¢ (instead of f t). There is a tailored tactic that discharges
admissibility obligations. HOLCF includes a datatype package that allows the convenient
definition of recursive domains.

2.2 The Model Checking Tools

STeP [5] is a theorem proving environment, comprising several decision procedures and a LTL
model checker. In comparison to Isabelle, it is tailored to the specific needs of the logic of
Manna/Pnueli [28] and thus offers much less flexibility and extensibility. In our tool box we
make only use of STeP’s model checker in order to verify temporal formulas.

pcke [4] is a model checker for Park’s p-calculus!, based on BDD technology. We use it
in order to verify implementation relations between I/O automata.

3 Finite and Infinite Sequences

Using the HOLCF domain package, possibly infinite sequences are defined by the simple
recursive domain equation

domain (a)seq = nil | HD af(lazy TL («) seq)

where nil and the right-associative “cons”-operator # are the constructors and HD and TL the selectors
of the datatype. As f is strict in its first argument and lazy in the second, sequences of type (a) seq
come in three flavors: finite total (ending with nil), finite partial (ending with 1), and infinite.

Due to the domain constructions performed by the domain package, the definition of (a)seq requires
the argument type to be in type class pcpo. However, it will turn out to be crucial that elements of
sequences can be handled in plain HOL. Therefore types of class term are lifted to flat domains by
introducing a type constructor («) lift using the HOL datatype package

datatype (aierm) lift = Undef | Def (aterm)
and defining the least element and the approximation ordering as

defs L = Undef
(x = Undef Vz =1y)

z Ly

Note that L and C are overloaded and this definition only fixes their meaning at type (cterm ) lift. We
define an unpacking function the :: (o) lift — « such that the (Def z) = = and the(Undef) = arbitrary
where arbitrary is a fixed, but unknown value.

Now we can define a type of sequences that permits elements of type class term together with a
corresponding “cons”-operator:

types  (Qterm) sequence = ((Qgerm) lift) seq
consts  Cons :: Qterm — (Qerm ) Sequence — ¢ (Qperm) Sequence
defs Cons = Az. Azs. (Def ) f s

Isabelle’s syntax mechanism is used to write z"zs instead of Cons z ‘zs. Finite sequences a;” ... a, nil
are abbreviated by [ay, ..., a,!] and partial sequences a;"...%a,,"L by [a1, ..., a,?]. The corresponding

'For an introduction into syntax and semantics of Park’s u-calculus see [34, 7]. We assume a typed version
with finite carrier sets (see [3]). Park’s p-calculus can express any property of the modal u-calculus [20].



sequence flavors are characterized by the predicates Finite and Partial. From now on the default type
class is assumed to be term, thus we will omit the explicit typing subscripts.

Recursive functions on sequences are defined as fixpoints, from which the characterizing recursive
equations are derived automatically by a tactic. For example, Map has type

consts Map :: (a— B) = (a)sequence —. () sequence

and the following rewrite rules

thms Mapf‘L = 1
Map f “nil = nil
Map f “(z"zs) = f(z) Map f ‘xs

are automatically derived from the definition

defs Map f = fiz‘(Ah.As . case s of nil = il
| (&"zs) = f(z)" (h'zs))

According to domain theory, the argument of fiz in this definition has to be a continuous function
in order to guarantee the existence of the least fixed point. This continuity requirement is handled
automatically by type checking, as every occuring function is constructed using the continuous function
type —..

As the characterizing equations are derived automatically, we will omit the fixpoint definition from
now on. The equations for @ (concatenation) and Filter are given below.

consts @ i () sequence — . (a) sequence — . () sequence

Filter i (a = bool) — (a) sequence — . (a) sequence
defs 1l ay = 1

nil @y =y

(z°zs) © y = z'(zs ® y)

Filter P*1L = 1

Filter P ‘nil = nil

Filter P ‘(z"xs) = if P(z) then z"Filter P ‘zs

else Filter P ‘zs

Boolean predicates on sequences can be defined by means of an auxiliary continuous predicate, which
yields one of the truth values L, T'T, or FF of the domain #¢r of truthvalues. As an example we present
the Forall predicate, which uses an auxiliary Forall. predicate (and the conjunction andalso on tr):

consts  Forall i (a = bool) — (a) sequence — bool
Forall, i (a = bool) = («) sequence — . tr
defs Forall, P ‘1L = 1

TT
Def (P ) andalso Forall, P ‘zs

Forall, P ‘nil
Forall, P *(z"xs)

thms  Forall P s = Forall, P ‘zs # FF
Forall P L = True
Forall P nil = True
Forall P (x"zs) = P(z) A Forall P xs

The usual proof principle for sequences is structural induction. In contrast to finite structural induction
it contains an admissibility requirement (adm).

adm(P) P(Ll) P(nil) Vz,zs.P(zs)= P(z"xs)
Vy. P(y)

thms

(induct)



Of course, the finite version is available as well.

P(nil) Vz,xs. P(xs) A Finite(zs) = P(z"xs)
Yy. Finite(y) = P(y)

thms

(fin-induct)

Finally, there are co-inductive proof principles, namely the take-lemma

thms Vn. take n ‘s = take n ‘t
s=1

(take-lemma)

and the bisimulation rule, which follows easily from the take lemma.

bisim(R) (s,t) € R

th
ms Py

(bisimulation)

Here, the predicate bisim expressing bisimularity is defined as follows:

consts  bisim i ((«) sequence x («) sequence) set — bool
defs bisim(R) = Vst.(s,t) € R=
(s=L=>t=1)A
(s = nil = t = nil) A
(Fss'.s=a"s"=>3Tbt' . t=0"t'A(s',t') € RANa=0D)

Thus, we get a sequence package, which allows powerful recursion like infinite concatenation.
Furthermore, in contrast to approaches which model sequences as functions on the natural numbers,
operations like Filter that relocate elements in an unhomogenous way are treated easily. See [11] for
an elaborate comparison of our sequence model with other formalizations, where our approach turned
out to be the most adequate.

Furthermore, note the advantages of lifted sequence elements: proof procedures tailored for two-
valued logic may be employed (cf. the A in the last equation for Forall), and HOL theories and libraries
may be reused. About 170 theorems have been derived in the Isabelle setting, most of them in one
step by a tailored induction tactic.

4 Safe I/O Automata

In the sequel we merely sketch the embedding of safe I/O automata in Isabelle. For more details see
the author’s PhD thesis [30].

4.1 Basic I/O Automata

An action signature models different types of actions and is described as
types («) signature = («) set x (o) set x («) set

where the components may be extracted by the selector functions inputs, outputs, and internals,
respectively. We collectively refer to internals and outputs as locals, and to outputs and inputs as
externals. The union of all three action sets, which always have to be disjoint, is denoted by actions.

A safe I/0 automaton is a triple of an action signature, a set of start states, and a set of transition
triples (called steps) described by the type

types (a,0)ioa = (a)signature x (o) set X (0 X a X o) set

where the components may be extracted by the functions sig-of, starts-of , and trans-of , respectively.
We write s 4 t for (s,a,t) € trans-of (A). Furthermore the abbreviations act, ext, int, in, out,
and local are introduced for actions o sig-of, externals o sig-of, internals o sig-of, inputs o sig-of,
outputs o sig-of , and locals o sig-of , respectively.



There are several well-formedness requirements posed on safe I/O automata which are expressed
by the predicate is-safe-IOA. It demands that the first component be an action signature, the second
be an non-empty set of start states and the third be an input-enabled state transition relation, whose
actions stem from the action signature:

defs is-sig-of (A
is-starts-of (A

input-enabled (A

is-sig (sig-of A)

starts-of (A) # {}

Y(s,a,t) € trans-of (A). a € act(A)
Va € in(A).Vs.It. s B4t

(4)
(4)
is-trans-of (A)
(4)
is-safe-I0A(A) = is-sig-of (A) A is-starts-of (A) A
is-trans-of (A) A input-enabled (A)

The set of reachable states of an I/O automaton A is defined inductively as the least set of states
satisfying the following two rules:

s € starts-of (A)
s € reachable(A)

s € reachable(A) s 54t
t € reachable(A)

(reach-0)

inductive (reach-n)

Isabelle’s syntax translation mechanism is used to write reachable A s for s € reachable A.
A state predicate P :: 0 — bool is called an invariant of an I/O automaton A if it holds for all
reachable states:

defs invariant AP = (Vs.reachable A s = P(s))
For invariants the following associated proof rule has been derived.

thms (Vs.s € starts-of (A) = P(s)) (Vs at.reachable As ANP(s)A s 54t = P(t))
invariant A P

There are composition operators for parallel composition, hiding of internal actions, and renaming.
We present merely the parallel composition operator ||:

consts [ (a,0) @00 = (a,7)i0a — (a,0 X T)ioa

defs A||B = (sig-comp (sig-of A) (sig-of B),
{(u,v) | u € starts-of (A) A v € starts-of (B)},
{(s,a,t) | (a € act(A)V a € act(B)) A

if a € act(A) then (fsts) S (fstt)
else (fsts)=(fstt) A

if a € act(B) then (snd s) g (snd t)
else (snds) = (snd t)})

Here, sig-comp defines the composition of signatures as follows:

consts  sig-comp () signature — () signature — () signature
defs sig-comp s1 52 = ((inputs(s1) U inputs(sz)) \ (outputs(s1) U outputs(sz)),
outputs(s1) U outputs(ss),

internals(s;) U internals(sz))

For parallel composition compatibility is required which states that each action is an output action of
at most one I/O automaton and that internal action names are unique.

(a,0) i0a — (a, T)i0a — bool
(out(A4) Nout(B) ={}) A
(act(A) Nint(B) ={}) A
(act(B) Nint(A4) ={})

consts compatible
defs compatible AB =



4.2 Isabelle Syntax of I/O Automata

So far, we defined I/O automata as parameterized tuples over arbitrary state and action types. In the
sequel we will describe how concrete state spaces and actions are represented in Isabelle.

Actions are defined easily using Isabelle’s datatype construct. States are not represented by
variables, but as tuples, where each component represents a variable. Selector functions are introduced,
whose names are identical to the variable names in the informal description. This approach conforms
with [26].

Let us illustrate this format with the simple example of a buffer. The buffer Buf is modeled by
a variable queue of type (bool)list, which is initially empty. Actions and transitions are given in the
usual precondition/effect style as:

input S(m), m € bool output R(m), m € bool
post: queue := queue@[m] pre: queue = m : rst
post: queue := rst

In Isabelle the action type of Buf is defined as datatype action = S(bool) | R(bool). The automaton
Buf is then internally defined as follows, where queue is the identity on the (trivial) tuple of type
(bool)list, and transitions are represented in a set comprehension format.

Buf = (Buf-sig, {[]}, Buf -trans, {},{})
Buf -sig = (Umepoor1S(m) 1 Umepoort 2(m) },{})
Buf-trans = {(s,a,s’)| case a of
S(m) = queue(s') = queue(s)Q[m]
| R(m) = queue(s)=m:rstA queue(s') = rst}
There is an automatic translation of the precondition/effect style into the set comprehension format.
It is described in [18]. Therefore the user may always stay within his familiar specification format.

4.3 Executions and Traces

Ezecution fragments of an I/O automaton A are (1) finite or infinite sequences of alternating states
s; and actions a;, where (2) triples s;a;s;+1 represent steps of A. The first condition is encoded into
the type of an execution fragment, which is modeled by a pair of a start state and a sequence of
action/state pairs:

types («,0)ezec = o X (a X o) sequence

The second condition is captured by the predicate is-exec-frag, which checks recursively if all transitions
are steps of A.

consts is-exec-frag x (a,0)ioa = (a,0)exec — bool
defs is-exec-frag A (s, L) = True

is-exec-frag A (s, nil) = True

is-exec-frag A (s, (a,t)"ex) = sS4t Ais-evec-frag A (t,ex)

The derivation of the equations for is-exec-frag is analogous to that for Forall. Ezecutions are execution
fragments beginning with a start state.

defs execs(A) = {(s,ex).s € starts-of (A) A is-exec-frag A (s, ex)}

A trace of A is the subsequence of external actions of an execution of A. It describes the visible
behaviour of A.

consts mk-trace it (a,0)i0a6 = (a X 0) sequence — . a sequence
defs mk-trace A = Aex. Filter (Aa. a € ext A) ‘(Map fst ‘ex)
traces(A) = {mhk-trace A‘ex |¢z Is. (s, ex) € execs(A)}
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Figure 1: Refinement mapping: e; are external actions, internal actions are omitted.

4.4 Refinement Notions and Compositionality

Safe implementation w.r.t. two I/O automata C and A is defined via trace inclusion. Furthermore,
the external actions have to be the same.

defs C =<5 A = in(C)=in(A) A out(C) = out(4) A
traces(C) C traces(A)

Such implementation relations between C and A are shown by simulations. Here we present only
forward simulations and the simpler refinement mappings (see Fig. 1). A refinement mapping f is a
function between the state spaces of C' and A that maps every start state of C' to a start state of A
and guarantees for every step s —¢ t of C the existence of a corresponding move of A, i.e. a finite
execution fragment with first state f(s), last state f(¢) and external behaviour a. A move is formalized
by the predicate is-mowve.

consts is-move :: (a,0)i0a = (o X o) sequence — (0 X a X o) — bool
defs is-move A ex (s,a,t) =

is-exec-frag A (s, ex) A Finite(ex) A

last-state (s, ex) =t A

mk-trace A ‘ex = (if a € ext(A) then [al] else nil)

where last-state :: («,0) exec — o denotes the final state of an execution, if it is finite, otherwise an
unspecified value. The predicate is-ref-map characterizes refinement mappings.

consts is-ref-map :: (01 = 02) = (@, 01) 900 — (@, 02) j0a — bool
defs is-ref-map f C A =
(Vso € starts-of (C). f(s0) € starts-of (A)) A
(Vs t a. reachable C s A s Sc t
= Jex. is-move A ex (f s,a,f t))

Forward simulations are defined by the predicate is-simulation:

consts is-simulation (01 X 02)set = (a,01)i0a — (a0, 02) j0a — bool
defs is-simulation R C A = (Vso € starts-of (C). R[so] N starts-of (A) # {}) A
(Vs s' t a. reachable C s A s ot A(s,s') €R
= Jt' ex. (t,t') € R A is-move A ex (s',a,t'))

Refinement mappings are specific forward simulations:

is-ref-map f C A
is-simulation {(i, 0). f(i) =0} C A

thms

The correctness of both concepts is therefore established by the following theorem:

is-simulation R C' A in(C) = in(A) A out(C) = out(A)
C=s A

thms




Note the following important methodological point: the correctness theorem above has been proved
making heavy use of HOLCF because it involves recursively defined sequences. However, the predicate
is-sitmulation can be shown in the simpler logic HOL. Therefore actual refinement proofs in applications
can be done in HOL, whereas the more powerful but at the same time more complicated domain theory
is only utilized for the meta theory of I/O automata. This is a remarkable advantage of the decision
to use sequences with lifted elements.

In [30] further meta-theoretic proofs in Isabelle are described, like non-interference and composi-
tionality. The latter states the following

is-trans-of (A1) A is-trans-of (A2) A is-trans-of (By) A is-trans-of (Bs)
is-sig-of (A1) N is-sig-of (A2) A is-sig-of (B1) A is-sig-of (Bz)
compatible Ay By N\ compatible As B
A1 25 Ao
By 25 By
(A1 || Br) =5 (A2 || Be)

thms

and required almost 1000 proof steps making heavy use of coinductive proof principles.

5 A Generic Temporal Logic

In this section we embed a generic temporal logic over finite and infinite sequences of states (called TL)
into Isabelle. We use a shallow embedding, which means that we do not explicitly distinguish between
syntax and semantics of temporal formulas. Instead, formulas are directly regarded as predicates
and temporal operators as predicate transformers. However, Isabelle’s syntax facilities permit these
transformers to be denoted by the usual syntax.

We introduce a type for predicates and a corresponding notion of evaluation, which simply means
function application.

types (a)pred = « — bool
consts _|E_ & a— (a)pred — bool
defs ztE=EP = P(z)

The boolean connectives A, V, =, =, and = are lifted to predicates in a pointwise way?. As (a)pred is
polymorphic, it is used to describe both state predicates and sequence predicates. The latter represent
the temporal formulas of TL.

types («)temporal = ((«)sequence)pred

As lifted boolean connectives already exist for this type, it suffices to define O, O, and (—), where the
latter means lifting a state predicate to a temporal formula.

consts (=) = (a)pred — (a)temporal
defs (PYy = M\s.P(the(HD ‘s))
consts 0,0 :: (a)temporal — (a)temporal
defs OP = As.Vsa. s Sjuf s = P(s9)
OP = Ms.if TL‘s = 1 then P(s)else P (TL"s)
Here suffixes and non-empty suffixes are defined as follows:
consts <y, Sjuf () sequence — («) sequence — bool
defs $2 <guf S = ds. Finite(s)) ANs =81 D s2
Sy §:‘uf S = s #FnilAsyF# LA(s2 <suf 8)

2Because it is always clear from the context whether a connective is lifted or not, we use the same symbols,
although in Isabelle the syntax differs slightly.



Further temporal operators are defined as usual:

defs O P = -—-0O-P
PvQ = 0(P>00Q)

Validity of P means that it holds for all non-empty sequences?:

defs EP = Vs.s#nilAs#L=>skEP

Treatment of Finite Sequences. Obviously, the empty sequence represents a pathological case in
every temporal logic involving finite computations. In the definitions above this is reflected by the
fact that nil |= (P) equals P(arbitrary), where arbitrary is a fixed, but unknown value. Thus nothing
reasonable can be concluded for this case. We solve the problem by circumventing the cases s = L
and s = nil completely. They are excluded in the validity definition and the temporal operators are
defined in such a way, that they do not introduce new statements of the form nil = P or L |= P. This
is the reason why we define O using only non-empty suffixes and use the T'L operator for O only if the
sequence consists of at least two elements.

Domain-Theoretic Sequence Model and Temporal Logics. The domain-theoretic sequence
model in HOLCEF turned out to be surprisingly adequate for defining a temporal logic. As the definition
of the temporal operators shows, every theorem about TL boils down to sequence lemmas about HD,
TL, and & . Furthermore, admissibility obligations mostly cease to apply, as gju needs @ with a
finite first argument only, so that finite structural induction can be applied. If admissibility obligations
appear nevertheless, they can usually be discharged automatically, as HD, TL, and @ are defined as
continuous operators.

This simplicity is the result of a careful choice of the way the operators are formalized. In fact,
a pointwise definition like in [28] would be infeasible in our sequence model (indexes are awkward
in our setting, see [11, 30]), the same holds for a O operator defined by some kind of drop operator
motivated by the semantics of TLA [23]. A number of different attempts have already been made
to definitionally embed temporal logics in higher-order logic (e.g. [24, 39, 8]). Up to our knowledge,
only infinite sequences have been considered, which are represented by functions on natural numbers.
It is not obvious how these approaches should be generalized to deal with finite sequences as well.
Furthermore, operators that deal with stuttering are not considered there. Take, for example, the
operator that eliminates stuttering by replacing all subsequences s - - - s by s. This would be some kind
of filter operation which is easily dealt with in our setting. In a functional setting, however, we face an
operator which relocates elements in an unhomogeneous way, which is extremely awkward to handle
according to the results of [11]. Note, however, that adding infinite stuttering is not computable and
can thus not be handled in our setting.

Comparison with standard LTL. We will now show that
':LTL P iff ': P

where |=p7r denotes validity in [28] or [21] and P is restricted to the operators of TL. There are two
requirements to satisfy: first, the temporal operators must have the same semantics, and second, it
must make no difference whether formulas are evaluated over finite and infinite sequences (for |=) or
over infinite sequences only (for |=r7r).

The first requirement is not completely trivial as we did not define the operators pointwise (as in
[28]) in order to match our sequence model (see below), but it is easy to see. The second requirement
is proved as follows. It is trivial that = P implies |=171 P, as =17 regards only the subset of infinite
executions considered by |=. For the other direction define the operator V that adds infinite stuttering
as

arbitrary if o =nilvVo =1
Vo = OSpSp ... if 0 = 8381 ...8, is finite or partial
o if o is infinite

3In Isabelle different symbols are used for validity and evaluation to avoid ambiguities.
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Now, suppose =7, P, which means that P holds for all infinite sequences. We have to show that P
holds for every non-empty sequence o as well. As Vo |= P is infinite in this case, we directly get the
result by the fact that o |= P equals Vo |= P, which holds under the assumption o ¢ {nil, L} and
follows easily. This finishes the proof.

This relation can now be exploited to get a completeness result for TL simply by carrying it
over from [21]. Below we prove some theorems in Isabelle, which represent a complete set of rules
w.r.t. validity in TL according to [21]*.

thms EP=Q =P
FQ
EP=@Q =P=O0OP

mp) L (new)

EoP

—P=0Q (ind)
E O-P =-0OP (azl)
EOP = Q)= (OP=0Q) (az2)
EOP = (PAOOP) (az3)

6 A Temporal Logic of Steps

In this section we use the generic temporal logic over sequences of the previous section to embed TLS
[31, 30], i.e. a temporal logic over executions of I/O automata. In terms of an informal sequence
model, the idea is to encode executions @ = sga; ;1 --. into a sequence of triples, where every triple
(Si, @it1, Sit+1) Tepresents one step s; ailA si+1 of the automaton A. As finite executions are asym-
metric in the sense that they contain one more state than actions, a single stuttering triple (s, v/, $»)
is added for the final state s, of finite executions, where / denotes an action disjoint from all action
signatures. Intuitively, this stuttering triple ensures that finite executions may possibly be continued
to infinity. In fact, it has been shown in part I [31] that the evaluation of TLS formulas stays the same
when extending executions by infinite stuttering.

6.1 Definitions

In Isabelle, the encoding consists of two parts. First, executions, which are represented as state/sequence
pairs, are transformed into triple sequences. Note that hereby redundancy is introduced, as most of

the states are represented twice. Second, the action type a is extended to («) option, which ensures

that the stuttering action, represented by Nomne, is not already an element of the action type a. Both

transformation tasks are performed by the function ez-to-seq defined below.

consts ez-to-seq :: (a,0) exec — (0 X (@) option X o) sequence

defs ex-to-seq (s, ex) = ex-to-seq. ‘(mk-total ex) s
ex-to-seq (s, L) = [(s, None, s)!]
ex-to-seq (s, nil) = |[(s, None,s)!]
ex-to-seq (s, (a,t)"ex) = (s,Some(a),t) ex-to-seq (t, ex)

Note that ez-to-seq cannot be defined via a continuous auxiliary predicate ez-to-seq. immediately as
done for Forall, as adding a further element to a partial sequence is not even monotone. Instead, we
use a function mk-total which makes partial executions finite by substituting the final L by nil, before

“Note that this completeness result cannot be proved within Isabelle as we use a shallow embedding.
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the expected ex-to-seq. is applied.

consts mk-total i () sequence — () sequence
defs mk-total(s) = if Partial(s) then e t. Finite(t) As =1t @ L
else s
thms  mk-total(L) = nil
mk-total(nil) = nil
mk-total(a”s) = a"(mk-total s)

Note that mk-total reduces the occurring discontinuity to a generic function with the further advantage
that it may be reused for other discontinuous definitions as well, e.g. for defining fair merge.

Formulas of TLS can now be defined as TL formulas, whose sequence elements are transition
triples extended by an optional stuttering action None. Predicates over these triples are called step
predicates.

types («,0)ioa-temporal (o x () option X o) temporal

(«, o) step-pred = (o x () option x o) pred

Evaluating formulas over executions boils down to evaluating formulas over sequences using ex-to-seq.
The usual validity notions are defined accordingly®.

consts __ e - (o, 0) exec = (a, o) ioa-temporal — bool
Fer - i (a,0)ioa-temporal — bool
—FEa - (o, 0) i0a — («, o) ioa-temporal — bool

defs exec ey P
|:ea: P
AEaP

(ezx-to-seq exec) = P

Yezec. exec =, P

Vezec € exvecs(A). exec |=¢y P

Note that for =, the boolean connectives have the same pointwise meaning as for |=, e.g. ezec =,
-P = exec e, P. This, however, does not hold for |=4.

When talking about I/O automata it is often more convenient to use predicates on states and
actions rather than step predicates, which always take the stuttering action into account. Thus, we
introduce the functions exts and ext, which lift state and action predicates to step predicates. Possibly
occurring stuttering actions force the resulting step predicate to evaluate to False.

consts ezt i (o)pred — (a,0) step-pred
defs exts(P) A(s, a,t). P(s)

consts e, = (a)pred = («,0) step-pred
defs exty(P) A(s,a’,t). cased of
None = False

| Somea = P(a)

We use the syntactical abbreviations (P)s = (exts(P)) and (P), = (exty(P)).

6.2 Some Theorems

Validity in TL, i.e. on sequences, is stronger than in TLS, i.e. on executions.

thms FEP = E&P (Val-Rel)

®Once more the symbol |=.. is overloaded in a way not supported by Isabelle.
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The proof is simple: (Val-Rel) postulates that ez-to-seq(ezxec) |=., P holds for every ezec, provided
that s [Eey P holds for every s with s # L As # nil. This is true as ez-to-seq produces only non-empty
sequences®.

Thus, the theorems (azl) — (az3) carry over from = to |=¢,;. Furthermore, the same holds for the
theorems (mp), (nez), and (ind).

Note that the other direction of ( Val-Rel) is not true, as not every transition sequence is an image
under ez-to-seq: there may be None elements occurring not only after the final state of non-infinite
executions, or non-identical successor states. Therefore, the completeness considerations for TL do not
carry over to TLS. However, the specific form of sequences generated by ex-to-seq can be captured by
a temporal formula for each automaton step. Having derived these step formulas, it is often sufficient
to use further on only rules for |= instead of |=,,. Thus, they build some kind of interface between TL
and TLS.

thms Vs t. P(s) A sS4t => Q1)
AEAO(P)s AN{Az. = a)y = O(Q)s)

The proof of this theorem shows that these formulas indeed incorporate the fact that ex-to-seq adds
stuttering steps at the end of finite executions only and produces always identical succeeding states.
Thus, the application of these formulas yields temporal formulas, which can then be treated by standard
LTL reasoning.

7 Live I/O Automata

Below, the I/O automaton model of §3 is extended to general liveness. Live I/O automata are repre-
sented by a pair of a safe I/O automaton and a TLS formula.

types («,0)live-ioa = (a,0)i0a X («,0)ioa-temporal

A TLS formula P is said to be L-valid for a live I/O automaton (A4, L) if it holds for all executions of
A under the further assumption L:

defs (A, L)ELP = Ala (L= P)

This reflects the intuition that liveness conditions posed on a safe I/O automaton restrict its executions
[15]. Live executions, traces, and implementations generalize the corresponding safe notions in a
canonical way.

defs live-execs (A, L) = {exec. exec € execs(A) A exec |Eer L}
live-traces (A, L) {mk-trace A ‘(snd ez) |.; ex € live-execs (A, L)}
C =LA in(C) =in(A) A out(C) = out(A) A
live-traces(C') C live-traces(A)

Important cases of liveness are given by weak and strong fairness of an automaton A w.r.t. a set of
actions acts, which are defined by the formulas WF and SF'.

consts  FEnabled i («a,0)ioa — () set — o — bool
WF,SF it (a,0)i00 — (@) set = (o, 0) ioa-temporal
defs Enabled Aacts s = Ja € acts. It. s S4 t
WF A acts = <OO(Enabled A acts)s = OC(Aa. a € acts),
SF A acts = OO(Enabled A acts)s = OO(Aa. a € acts),

5Note that the cases s = L and s = nil are the pathological cases of TL. As they are excluded by ez-to-seq,
the stuttering action ,/ in TLS can, in a more abstract view, also be regarded as a remedy to rectify the
insufficiency of general temporal logics involving non-infinite computations.
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Note the particular meaning of WF and SF for finite executions. The formulas OGP and $OP
express the same for finite executions, namely that P holds for the final stuttering step (s, , None, s;,).
Thus, OO (Aa. a € acts), is false, as the lifting function ext, maps the stuttering action None to False.
Therefore, WF and SF express that the last state s, is not enabled for any action in acts, which
corresponds to the usual fairness definition using fairness sets [26].

Refinement mappings which transfer liveness from every execution of C to a corresponding one of
A are called live refinement mappings

consts is-live-refrnap :: (01 — 02) = (o, 01) live-ioa — (@, o2) live-ioa — bool
defs is-live-refmap f (C,L) (A, M) =

is-ref-map f C AN

Vexec € exec(C). exec ey L = (cor™ Af exec) Few M

where the corresponding execution (cor™ A f exec) is given by an infinite concatenation of possible
moves that correspond to the single steps of exec.

consts cor™ :: (a,09)i0a — (07 = 02) = (a, 01) exec — (a, 03) exec

defs cor™ Af (s, 1) = (fs,1)
cor™ A f (s, nil) = (f s,nil)
cor™ Af (s,(a,t)er;) = (fs,(cew. is-move A exs (f 5,a,ft))

@ snd (cor™ Af (t,ex))
Live refinement mappings are correct, i.e. they induce live implementation.

is-live-refmap f (C,L) (A, M) in(C) = in(A) A out(C) = out(A)
(C,L) <1 (A, M)

thms

Similarly, but a bit more tricky, is the definition of live forward simulations and their soundness proof.
See [30].

This theorem gives rise to the following proof method for showing that a live I/O automaton (C, L)
implements another live I/O automaton (A4, M) using temporal reasoning.

e First, show that f is a refinement mapping from C to A, i.e. prove the safety part.
e Then assume an execution ezec € execs(C) with ezvec |=ey L
e and prove (cor™ Af exec) |=ep M.

In this proof method, L is evaluated over executions of C', whereas M is evaluated over executions
of A. Thus, it is not sufficient to merely apply temporal tautologies for the liveness proof. Rather
there have to be means to switch between properties over an execution ezec of C' and those of the
corresponding execution ezec’ := (cor™ A f exec) of A. For refinement proofs restricted to fairness,
such a switch is needed only once at the beginning of the proof: assume exec’ |=¢;, WF A acts to be
false. This implies that ezec’ |=¢, OO (Enabled A acts)s and ezec’ = OO (Aa. a € acts), hold. Now,
both properties about exec’ can be reduced to properties about ezec using the following theorems:

exec € execs(C) ext(C) = ext(A) A C ext(A)
ezec Eep OC(a €AYy = (cor™ Af exec) Eep OO0 (a € A),

thms

exec € execs(C) Vs t.reachable C s A reachable AtAt|E Q= sEP
(cor™! Af evec) Fep OO(Q)s =  exec Fep OO(P)s

For the remainder of the proof only temporal tautologies are needed.

This approach has significant advantages for our Isabelle environment. For fairness the two theo-
rems above permit hiding HOLCF from the user, who operates only within the simpler HOL or uses
standard rules of temporal logic.
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8 Abstraction Rules

In this section we derive abstraction rules, which permit reducing proof obligations about large or
even infinite I/O automata to corresponding proof obligations about finite and significantly smaller
automata. Rules are provided for properties expressed both as temporal formula (proof obligation
(C,L) |Eez P) and as I/O automata (proof obligation (C,L¢c) < (P,Lp)). In §9 we will show by
means of an example how these rules can be used to combine Isabelle with model checking.

Central are abstraction functions which represent specific refinement mappings, namely homomor-
phisms w.r.t. the transition relation.

consts is-abs x (01 = 09) = (a,01) 900 — (o, 02) i0a — bool
defs issabsh C A = (Vso € starts-of C. (h sp) € starts-of A) A
(Vs a.reachable C s\ s 5ot = (hs) 54 (ht))

The key idea of abstraction functions is that they induce a neater correspondence between executions
than refinement mappings do: the corresponding execution is given as a pointwise mapping, which
means that both executions always proceed within the same time raster.

consts cor?®® :: (op = 03) = (a,01) evec — (o, 02) exec
defs cor® h (s,ex) = (h s, Map (A(a,t). (a,h t)) ‘ex)

Thus, we get as a special case of the soundness of refinement mappings that abstraction functions
induce safe implementation. This result is based on the fact, that (cor®® h ezec) is an execution of A
provided that ezec is an execution of C. We say that A is an automaton weakening of C.

consts  aut-weak :: (a,09)i0a — (a,01)i0a — (01 — 02) — bool
defs aut-weak A C h = Vexec € execs(C). cor®s h exec € evecs(A)
thms is-abs h C' A

aut-weak A C h

issabs h C A in(C) = in(A) A out(C) = out(A)
C=<s A

For the safety part, we considered until now, everything has been analogous to refinement mappings.
For the liveness part, however, we get a significant improvement: whereas cor™/ permitted to transfer
only specific patterns of fairness formulas from the corresponding execution (cor™/ A f exec) to ewxec,
the stronger cor?® permits the analogous transfer for any kind of temporal formula, even in both
directions. Such transfers are called temporal weakenings and temporal strengthenings, respectively.

consts temp-strength, temp-weak ::
(«, 02) ioa-temporal — (a, 1) ioa-temporal — (o1 — o2) — bool
defs temp-strength Q P h = Vexec. (cor®®® h evec) e Q) = exec ey P
temp-weak Q) P h = temp-strength (—Q) (—=P) h

Our goal is to reduce them to associated step weakenings/strengthenings.
consts step-strength, step-weak ::
(at, 09) step-pred — (o, 01) step-pred — (01 — 02) — bool
defs step-strength Q Ph =Vsat. Q (hs,a,ht)= P (s,a,t)
step-weak Q P h = step-strength (—Q) (=P) h
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This is accomplished by the following set of theorems, which hold as well when interchanging temp-strength
with temp-weak.

temp-strength P Q1 h  temp-strength P> Q2 h
temp-strength (Py % Py) (Q1 x Q2) h

thms

* € {A,V}

temp-weak Py Qy h  temp-strength Py Qs h
temp-strength (P1 x P2) (Q1 * Q2) h

* € {=,~}

temp-strength P Q) h
temp-strength (xP) (xQ) h

*€{0,0,0}

temp-weak P Q h
temp-strength (—P) (—Q) h

step-strength P Q h
temp-strength ((P)) ({(@)) h

These theorems form the basis for a tactic, called abs_tac, which automatically reduces temporal
strengthenings/weakenings to step strengthenings/weakenings. This reduction represents a major
advantage of our abstraction theory: the interactive theorem prover, verifying the abstraction’s cor-
rectness, has to reason about steps only (which can be done in the simpler HOL), whereas reasoning
about entire system runs may be left to the model checker.

Now we can define live abstractions and prove their correctness.

consts is-live-abs :: (01 = 03) = (a,01) live-ioa — («, o) live-ioa — bool
defs is-live-abs h (C, L) (A, M) = is-abs h C A A temp-weak M L h
thms  is-live-abs h (C,L) (A, M) in(C) = in(A) A out(C) = out(A)

(C,L) = (A, M)

Finally, we can present the abstraction rules. Rules on the lhs treat safe I/O automata, the rhs
considers live I/O automata. Note that after applying these rules the tactic abs_tac has still to be
invoked.

thms
is-abs h C' A is-live-abs h (C, L) (A, M)
temp-strength Q) P h temp-strength Q) P h
AFaQ (4, M) =1 Q
CEaP (C,L) =L P
in(C) = in(4) A out(C) = out(A) in(C) = in(A4) A out(C) = out(A)
in(Q) = in(P) A out(Q) = out(P) in(Q) = in(P) A out(Q) = out(P)
is-abs hy C A is-live-abs by (C,L¢) (A, La)
is-abs hy Q P is-live-abs hy (Q, Lg) (P, Lp)
A=s5Q (4,La) 21 (Q, Lq)
C=<sP (C,L¢) =21 (P, Lp)

There are two further rules, which allow to strengthen the abstract model if that appears to be
too weak to prove the desired property, or to weaken the concrete model, if that contains unnecessary

elements which hinder the intended abstraction. See [31, 30] for the underlying theory and the Isabelle
distribution for their realization.
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9 Combining Isabelle and Model Checking

The abstraction rules of the previous section generate proof obligations which should be discharged by
a model checker. These obligations have either the form (A, F4) = P (for proving temporal properties)
or (A,F4) <y (P, Fp) (for proving implementation relations). In the following we present translations
to appropiate model checkers for each of them: the former is translated to STeP [5], the latter to ucke
[4].

9.1 Temporal Properties: Translation to STeP

The tranlation to STeP is straight forward. I/O automata are transformed to transition systems [28],
which represent the computational model of the STeP model checker [5]. TLS formulas are translated
into Manna/Pnueli’s LTL [28].

The idea of the translation is to encode the explicit actions of I/O automata into the state space
and to add a further idling action. Liveness conditions are not coded into fairness sets, but are
considered as a further assumption of the temporal property to be proved.

In the following we demonstarte the translation by the simple example of part I. This example
represents a rough simplification of an industrial helicopter control system, which has also been verified
using our toolbox [30].

Example 9.1
The alarm management of a cockpit control system can be described in a very abstract way by a
stack. Alarms, which are initiated by the physical environment, are stored, then handled by the pilot
and finally acknowledged, which means that the respective alarm is removed from the stack. When
adding a new alarm to the stack, any older occurrences of this particular alarm are removed, such
that only the most urgent instance of an alarm has to be treated by the pilot. There are 16 alarms,
Alarms = {PonR, Fuel, Eng, ...}, which in the original specification made it impossible to verify the
system via model checking. Actually, the original system could only be model checked for not more
than four alarms. Note that the order of alarms in the stack has to be respected. However, for proving
properties which concern merely a single alarm, for example the important alarm PonR, (Point of no
Return), abstraction may be applied.

The I/O automaton Cockpitc is modeled by a list, called stack, which is initially empty. We
present the transitions of Cockpitc in the usual informal format, which can easily be translated to our
Isabelle setting.

input Alarm(a), a € Alarms output Ack(a), a € Alarms
post: stack := a : filter (Az. z # a) stack pre: hd(stack) = a A stack # []
post: stack := tl(stack)

The properties we want to prove about Cockpitc are the following:

defs P, = O((Aa.a = Alarm(PonR)), = O(Astack. PonR € stack)s)
“Whenever PonR arrives, it is immediately stored in the stack”

O(Aa. a # Alarm(PonR)), = O-(Astack. PonR € stack)s
“If PonR never arrives, the system will never pretend this”

Py

For both properties it is merely relevant whether PonR is in the stack or not. Thus, we construct the
abstract I/O automaton Cockpita which replaces the alarm stack by the boolean variable PonR-in,
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initially false, which indicates if PonR is stored.

input Alarm(a), a € Alarms
post: if a = PonR then PonR-in := true

output Ack(a), a € Alarms
pre: if a = PonR then PonR-in
post: if a = PonR then PonR-in := false

The abstraction function h is obviously defined as follows:

consts h i (a)list — bool
defs h(stack) = PonR € stack

As Cockpity has been designed already with A in mind, the property is-abs h Cockpitc Cockpity is
easily established within Isabelle/HOL?. Thus, according to the first abstraction rule of the previous
section, it remains to show that the corresponding abstract properties @; for Cockpity, defined as

defs @ = 0O(\a. a = Alarm(PonR)), = O(APonR-in. PonR-in)s)
(> = O(Aa.a # Alarm(PonR)), = O-(APonR-in. PonR-in)s

are temporal strengthenings of the concrete P;. These goals are reduced by abs_tac to the obligations
h(stack) = (PonR € stack) and (PonR € stack) = h(stack), respectively, which both are trivial
by definition. Therefore, the initial goals Cockpitc =4 P; have been reduced to the simpler goals
Cockpita =4 @i, which can now be verified by the STeP model checker. For this aim the I/0
automaton Cockpits is encoded into a STeP transition system. This is done by encoding explicit
actions into the state space using a variable Act. Note that thereby the occurrence of an action can
be observed only at the next state.

Transition System

type actions = {AlarmP, AlarmNP, AckP, AckNP}
local PonRin: bool
local Act: actions
Initially PonRin = false
Transition AlarmP NoFairness:

enable true

assign PonRin := true, Act := AlarmP
Transition AlarmNP NoFairness:

enable true

assign PonRin := PonRin, Act := AlarmNP
Transition AckP NoFairness:

enable PonRin

assign PonRin := false, Act := AckP
Transition AckNP NoFairness:

enable true

assign PonRin := PonRin, Act := AckNP

The following properties represent the @; which are easily verified by STeP.

SPEC
PROPERTY P1: [](()Act=AlarmP ——> ()PonRin)
PROPERTY P2: []()Act!=AlarmP --> []'PonRin

"Note that the invariant that there are no duplicates in the stack is needed to show that Ack(PonR) causes
the transition from PonR-in to -PonR-in.
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9.2 Implementation Relations: Translation to the p-Calculus

For the restricted case of fair trace inclusion [22] suggests already a translation of fair I/O automata
into w-automata, which can be tested w.r.t. language containment using the COSPAN model checker.

We, however, give a translation of forward simulations directly into the p-calculus. Thus, a u-
calculus based model checker like pcke [4] can check forward simulations between I/O automata without
the overhead of changing to another semantic model. A further, practical advantage of this approach
is the fact that there is already a tactic in Isabelle which invokes the p-calculus model checker pcke [4]
as an external oracle. However, this approach only yields a complete decision procedure w.r.t. trace
inclusion of two I/O automata A and P if P is deterministic and both A and P are safe.

The following translation of forward simulations into the p-calculus has been completely automated
[17]: there is a tactic in Isabelle, called is_simulation C A, which delegates the existence proof of a
forward simulation to ucke.

Assume that a set of states Sy for each I/O automaton A and a global set of actions A is given.
Furthermore assume that every basic I/O automaton is characterized by the following boolean predi-
cates.

Ing : A — bool

Outy : A — bool

Ints : A — bool

Starts : Sa — bool

Transs : Sa x A x Sa — bool

We skip the encoding of composition operators, they are straight forward. Internal steps, a finite
sequence of internal steps, and a move are described by the following predicates:

IntStepa(s,t) = 3Fa. Inta(a) A Transa(s, a,t)
IntStep’ = pP.As,t.(s =1t)V Iu. IntStepa(s,u) A P(u,t)
Movea (s, a,t) (Intc(a) A IntStep’ (s, t)) V
Jur, up. IntStep’ (s, u1) A Transa(ui, a, u2) A IntStep’ (usz, t)

Then, the existence of a forward simulation can be expressed by

isSimoa = vP. As1,t.Ya, 8. Transc(s1, a, $2) = Jt2. Movea (b1, a,t2) A P(s2, 1)

SimEzistsca = Va.Inpc(a) < Inpa(a) A Outc(a) < Outa(a) A
Vs, t. Startc(s) A Starta(t) = isSimca(s,t)

Example 9.2

Consider once more the alarm system Cockpitc and its abstract counterpart Cockpity under the
abstraction h. We enhance the two automata by an output action Info which signals the presence of
newly arrived alarms to the pilot.

Extension to Cockpitc Extension to Cockpity
output Info(a),a € Alarms output Info(a), a € Alarms
pre: hd(stack) = a pre: a = PonR = PonR-in

It is easily shown that is_abs h Cockpitc Cockpity still holds with the additional Info action.

This abstraction can be used to prove property Py, expressed by the following I/O automaton:
the state is the same as for Cockpity, i.e. a boolean variable PonR-in, which is initially false. The
actions of P, are:

input Alarm(a), a € Alarms output Info(a),a € Alarms
post: if ¢ = PonR then PonR-in := true pre: a = PonR = PonR-in
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The I/O automaton P4 expresses that every PonR alarm is not signaled to the pilot before it has
arrived, i.e. Alam and Info actions appear always in the desired order. Using the abstraction rule for
implementaion relations in the simpler fashion with P = PT we may conclude the desired refinement
Cockpitc <g P, from the simpler Cockpity <g P,. As P, is a deterministic automaton, we may use
the suggested translation to ucke to discharge this proof obligation. Actions and the automaton Py
are encoded in pucke as follows.

enum Alarms {PonR, Fuel, Eng};

enum Actions {Alarm, Ack, Info};

class Action {Actions act; Alarms arg;};
class StateP4 {bool PonRin;};

bool IntP4(Action a) a.act = Ack;
bool StartP4(StateP4 s) s.PonRin = 0;
bool TransP4(StateP4 s, Action a, StateP4 t)
(case
a.act = Alarm :
(if (a.arg = PonR)
(t.PonRin = 1)
else
t.PonRin = s.PonRin);
a.act = Ack : 0;
a.act = Info :
(a.arg = PonR -> s.PonRin = 1) &
t.PonRin = s.PonRin;
esac);

Encoding Cockpits in an analogous way with state type StateCo, start condition StartCo, and
transition relation TransCo we can encode the desired trace inclusion as follows.

bool IntStepP4(StateP4 s, StateP4 t)
exists Action a. IntP4(a) & TransP4(s,a,t);

mu bool IntStepStarP4(StateP4 s, StateP4 t)
s =t | (exists StateP4 u.
IntStepP4(s, u) & IntStepStarP4(u, t));

bool MoveP4(Action a, StateP4 x, StateP4 y)
IntP4(a) & IntStepStarP4(x, y) |
(exists StateP4 ul. IntStepStarP4(x, ul) &
(exists StateP4 u2. TransP4(ul, a, u2) & IntStepStarP4(u2, y)));

nu bool isSim(StateCo s1, StateP4 t1)
forall Action a, StateCo s2.
TransCo(sl, a, s2) ->
(exists StateP4 t2. MoveP4(a, tl, t2) & isSim(s2, t2));

bool SimExists
forall StateCo s, StateP4 t. StartCo(s) & StartP4(t) -> isSim(s,t);

10 Related Work

There are several other attempts to support I/O automata verification by tools.

20



The MIT distributed systems group, which originally developed I/O automata, has done substan-
tial efforts in verifying simulations between I/O automata using the Larch Prover (LP) [38]. A number
of case studies have been performed, involving timing based systems as well (e.g. [25, 37]). Current
work [14] aims at a formal language for I/O automata which allows to develop tools like static type
checkers, simulators and code generators. The distinguishing feature to our work is is the fact that
LP is a theorem prover for first-order logic. This means that the abstract notions of I/O automata
incorporating composition operators and behaviours cannot be expressed within the logic. Instead,
results on paper are used to extract a set of proof obligations from the formal description of the system.
In particular, reasoning about meta-theory is impossible.

Archer and Heitmeyer [1, 2] verified several benchmark problems modeled as Lynch/-Vaandrager
timed automata [27] in PVS [33]. Their goal is to build a customized prover on top of PVS, which is
designed to process proof steps that resemble in style and size the typical steps in hand proofs. This is
accomplished by tailored proof strategies, which resemble pretty much our specialized Isabelle tactics.
However, their framework is restricted to invariant proofs, simulations are not taken into account until
now. Furthermore, they do not consider meta-theory, although the logic of PVS would be powerful
enough.

Further case studies have been performed with Coq [12] in the area of communication protocols
[19, 6]. Again, they rely much more on unformalized meta-theory than we do.

Inspired by our work, Griffioen and Devillers [16] formalized the meta-theory of I/O automata
in PVS [33] and proved the correctness of safe refinement mappings, but not of forward simulations.
However, defining and reasoning about infinite concatenation turned out to be very awkward in their
functional sequence model [10] (cf. the discussion in [11]). Thus, they left out some crucial theorems.

All approaches above consider neither temporal logics nor any issues of abstraction. Especially
they do not cover a connection to model checking tools.

Concerning temporal logics and abstraction, the only existing works merely deal with models
different from I/O automata. Formal embeddings of temporal logic [24, 39, 8], however, are always
based on functional sequence models in contrast to our algebraic sequence model. This results in
disadvantages discussed in §11. An abstraction framework for TLA in Isabelle [29], even though
remarkable for its practical usability, distinguishes itself from ours by being based on an axiomatization.

11 Discussion and Conclusion

We gave an overview of the verification framework for I/O automata in Isabelle, including temporal
logics, proof support for live implementation relations, and the combination of Isabelle with model
checking via abstraction. Some aspects had to be neglected or only glimpsed at, e.g. the coalgebraic
proof support, improved abstraction rules, or the translations to model checkers. The entire I/O
automata framework consists of 465 theorems, proved in 2332 proof steps. Its practical usability has
been proven by an industrial case study of a cockpit alarm system [30].

In the following we discuss the advantages of our environment. First, we mention the more general
benefits of tool supported verification, which gain, however, significantly by our particular choice of
I/O automata, Isabelle, and higher-order logic.

Confidence in Specification The expressiveness of higher-order logic and Isabelle’s facilities for
structuring specifications and proofs (theories, lemmas, hierarchic simplification sets, etc.) guar-
antee a neat correspondence between the formal description and the actual specification on the
one hand (cf. the direct translation of I/O automata into Isabelle), and the proof scripts and
the informal, intuitive arguments on the other hand. This increases the confidence in really
specifying and proving what one actually had in mind.

Confidence in Verification Computer-assisted proofs are usually more reliable than manual proofs,
as they force the user to supply details for all cases. There are two reasons why this confidence
in machine-checked proofs is even higher in our case than e.g. for proofs performed in PVS
[33] or LP [13]. First, Isabelle itself is built according to the LCF system approach [35], which
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means that every proof is broken down to a small and clear set of primitive inferences. Second,
we introduce new theories only in a definitional way, which ensures that no inconsistencies, for
example caused by contradictory axioms, can occur.

Scalability Interactive provers like Isabelle in general scale up better than fully automatic proof tools
like model checkers. In addition, we believe that our I/O automata formalization is in particular
qualified for full-scale applications, because of the following reason. First, abstraction allows
to significantly reduce the complexity of proof tasks. Second, proof of both simulations and
invariants are essentially performed by case-splitting on actions and states, which increase only
linear in the size of the components.

Readability Isabelle provides syntactical facilities like mixfix operators and powerful translations.
Furthermore, most of the standard mathematical symbols like V, A, € are supported®. Together
with the expressiveness of higher-order logic this increases readability and thus considerably
speeds up interactive proofs and the search for errors in specifications.

Rechecking During the course of carrying out a large proof, it is likely that definitions or lemmas
have to be modified. Furthermore, one likes to polish already completed proofs. This can much
safer and easier be done with computer-assistance.

There are further aspects which in particular profit from our methodology which combines HOL
and HOLCF in such a way that both meta-theory and system verification are handled in the adequate
logic, respectively. First, we discuss the role of HOL, i.e. the benefits for the user.

Automation Isabelle’s automatic proof procedures permit to discharge the large amount of trivial,
intermediate steps or simple cases which usually appear in refinement proofs. This applies in
particular to proof tools which are tailored for the use in HOL.

Reuse HOL provides large data type libraries, which can be reused and need not be redone for each
application.

Simplicity The conceptually simple HOL is much easier to use than HOLCF, which incorporates the
entire complexity of Scott’s domain theory.

Second, we discuss the role of HOLCEF, i.e. the advantages for establishing meta-theory.

Expressiveness HOLCF provides infinite datatypes and arbitrary recursion. This allows to define
runs of automata and powerful recursive functions like infinite concatenation or sophisticated
merge functions, which turned out to be crucial for proving meta-theoretic results.

Extensibility Having the meta-theory at our disposal, we have a greater degree of flexibility because
we do not need to hardwire certain proof methods but can derive new ones at any point.

Besides our HOL/HOLCF methodology there is a further specific advantage of our tool environ-
ment. It concerns the domain-theoretic sequence model, which turned out to be especially adequate
for extending meta theory to temporal logic and live I/O automata. In particular, in contrast to
existing TLA embeddings [24, 39, 8] it allows to incorporate finite sequences and to deal with certain
operators that deal with stuttering.
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