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A Veri�cation Environment for I/O Automata{ Part II: Theorem Proving and Model Checking {Olaf M�uller�Institut f�ur Informatik, Technische Universit�at M�unchen, Germany.Email: mueller@in.tum.deAbstractWe describe a veri�cation framework for I/O automata in Isabelle. It includes a tempo-ral logic, proof support for showing implementation relations between live I/O automata,and a combination of Isabelle with model checking via a veri�ed abstraction theory. Theunderlying domain-theoretic sequence model turned out to be especially adequate forthese purposes. Furthermore, using a tailored combination of Isabelle's logics HOL andHOLCF we achieve two complementary goals: expressiveness for proving meta theory(HOLCF) and simplicity and e�ciency for system veri�cation (HOL).1 IntroductionI/O automata [26, 15] are used to model reactive, distributed systems. In this paper wepresent an extensive framework for the veri�cation of I/O automata in Isabelle, combinedwith model checking tools. This framework is based upon several extensions to the standardtheory of I/O automata which are described in part I of this paper [31].These extensions comprise �rst of all a linear-time temporal logic, called Temporal Logic ofSteps (TLS), which is similar to TLA [23], but evaluates formulas over sequences of alternatingstates and actions, which in addition may be �nite. The applications of TLS are twofold.First, it can be used to de�ne and reason about live I/O automata by establishing liveimplementation relations. Second, TLS can be employed as a property speci�cation languagefor I/O automata. Furthermore, in [31] for both TLS applications abstraction rules have beendeveloped which allow to reduce reasoning about a large or even in�nite automaton to a �niteand smaller automaton. Together with translations to appropriate model checkers this formsthe basis for an e�ective combination of Isabelle with a model checker as external oracle.In this paper we describe how all these notions have been embedded in Isabelle. Theaim is to build a setting, in which the theory of I/O automata itself is veri�ed (we only usede�nitional theory extensions), but that at the same time enables e�cient system veri�cationfor the user. This is accomplished by combining Isabelle's object logics HOL and HOLCF insuch a way, that the user employs only the simpler logic HOL, whereas the use of the moreexpressive, but di�cult HOLCF is restricted to meta-theoretic arguments.The framework is based upon a semantic model of lazy lists using Scott's domain theory,as provided by Isabelle/HOLCF [32]. In a comparison [11] to other sequence formalizations,�Research supported by BMBF, KorSys 1



which all incorporated functions on natural numbers in some way, this sequence model turnedout to be the most adequate.TLS is not encoded directly, but as an instance of a generic temporal logic TL, which isevaluated over state sequences. This enables us to study the adequateness of our domain-theoretic sequence model in a more general setting, and, furthermore, reveals the connectionto standard temporal logics over state sequences [28, 21].The abstraction theory generates proof obligations which are delegated to model checkingtools. for this purpose, translations are given to the STeP model checker [5] and to �cke [4].Both translations are illustrated by means of a simple example.Due to lack of space we only present the main de�nitions and theorems and omit proofs.For full details concerning the entire developments in Isabelle the interested reader is referredto the author's PhD thesis [30]. Furthermore, the theories are part of the Isabelle distributionwhich is available at the following www-page:http://www.in.tum.de/~isabelle/library/HOLCF/IOA.1.1 Structure of the PaperThe paper is organized as follows. In x2 we brie
y introduce the tools used in our framework.In x3 and x4 the models for sequences and basic I/O automata are presented. x5 describesthe generic temporal logic TL, x6 its instance to the temporal logic of steps TLS. In x7 TLSis used to describe live I/O automata. Abstraction rules are derived in x8, which are appliedto the combination of Isabelle with model checking in x9. In x10 and x11 we present somerelated work and conclude.2 PreliminariesIn this section we brie
y introduce the components of our toolbox.2.1 The Theorem Proving SystemIsabelle [36] is a generic theorem proving environment that supports a number of object logics.We only use Isabelle's instantiation of higher-order logic (HOL) and its extension to domaintheory (HOLCF) [32].HOL is based on Church's formulation of simple type theory [9], which has been augmentedby polymorphism, type classes like in Haskell, and extension mechanisms for de�ning newconstants and types. The syntax is that of simply typed �-calculus with an ML-style �rst orderlanguage of types. In this paper we employ standard mathematical notation, which, however,di�ers only slightly from the syntax in Isabelle. Type abbreviations, constant declarations,de�nitions and theorems are introduced by the keywords types, consts, defs, and thms,respectively.HOLCF conservatively extends HOL with concepts of domain theory such as completepartial orders, continuous functions and a �xpoint operator. Whereas HOL is restrictedto total functions, HOLCF allows arbitrary recursive function de�nitions and is thereforeespecially useful for handling in�nite or partial objects. In HOLCF Isabelle's type classes areused to distinguish between HOL types and domains. We write �C if a type � is of class C .The default type class of HOL is term, the default type class of HOLCF is pcpo. The latteris equipped with a complete partial order v and a least element ?. There is a special type2



for continuous function between pcpos, the type constructor is denoted by !c in contrastto the standard HOL constructor !. Abstraction and application of continuous functions isdenoted by � (instead of �) and f `t (instead of f t). There is a tailored tactic that dischargesadmissibility obligations. HOLCF includes a datatype package that allows the convenientde�nition of recursive domains.2.2 The Model Checking ToolsSTeP [5] is a theorem proving environment, comprising several decision procedures and a LTLmodel checker. In comparison to Isabelle, it is tailored to the speci�c needs of the logic ofManna/Pnueli [28] and thus o�ers much less 
exibility and extensibility. In our tool box wemake only use of STeP's model checker in order to verify temporal formulas.�cke [4] is a model checker for Park's �-calculus1, based on BDD technology. We use itin order to verify implementation relations between I/O automata.3 Finite and In�nite SequencesUsing the HOLCF domain package, possibly in�nite sequences are de�ned by the simplerecursive domain equationdomain (�)seq = nil j HD � ] (lazyTL (�)seq)where nil and the right-associative \cons"-operator ] are the constructors and HD and TL the selectorsof the datatype. As ] is strict in its �rst argument and lazy in the second, sequences of type (�) seqcome in three 
avors: �nite total (ending with nil), �nite partial (ending with ?), and in�nite.Due to the domain constructions performed by the domain package, the de�nition of (�)seq requiresthe argument type to be in type class pcpo. However, it will turn out to be crucial that elements ofsequences can be handled in plain HOL. Therefore types of class term are lifted to 
at domains byintroducing a type constructor (�) lift using the HOL datatype packagedatatype (�term) lift = Undef j Def (�term)and de�ning the least element and the approximation ordering asdefs ? � Undefx v y � (x = Undef _ x = y)Note that ? and v are overloaded and this de�nition only �xes their meaning at type (�term)lift . Wede�ne an unpacking function the :: (�)lift ! � such that the (Def x ) = x and the(Undef ) = arbitrarywhere arbitrary is a �xed, but unknown value.Now we can de�ne a type of sequences that permits elements of type class term together with acorresponding \cons"-operator:types (�term)sequence = ((�term) lift)seqconsts Cons :: �term ! (�term)sequence !c (�term)sequencedefs Cons � �x : �xs : (Def x ) ] xsIsabelle's syntax mechanism is used to write x x̂s instead of Cons x `xs . Finite sequences a1^: : : ân n̂ilare abbreviated by [a1; : : : ; an !] and partial sequences a1̂ : : : ân ?̂ by [a1; : : : ; an?]. The corresponding1For an introduction into syntax and semantics of Park's �-calculus see [34, 7]. We assume a typed versionwith �nite carrier sets (see [3]). Park's �-calculus can express any property of the modal �-calculus [20].3



sequence 
avors are characterized by the predicates Finite and Partial . From now on the default typeclass is assumed to be term, thus we will omit the explicit typing subscripts.Recursive functions on sequences are de�ned as �xpoints, from which the characterizing recursiveequations are derived automatically by a tactic. For example, Map has typeconsts Map :: (�! �)! (�)sequence !c (�)sequenceand the following rewrite rulesthms Map f `? = ?Map f `nil = nilMap f `(x^xs) = f (x )^Map f `xsare automatically derived from the de�nitiondefs Map f = �x `(�h:�s : case s of nil ) nilj (x^xs) ) f (x )^(h`xs))According to domain theory, the argument of �x in this de�nition has to be a continuous functionin order to guarantee the existence of the least �xed point. This continuity requirement is handledautomatically by type checking, as every occuring function is constructed using the continuous functiontype !c.As the characterizing equations are derived automatically, we will omit the �xpoint de�nition fromnow on. The equations for � (concatenation) and Filter are given below.consts � :: (�)sequence !c (�)sequence !c (�)sequenceFilter :: (� ! bool)! (�)sequence !c (�)sequencedefs ? � y = ?nil � y = y(x^xs) � y = x^(xs � y)Filter P `? = ?Filter P `nil = nilFilter P `(x^xs) = if P(x ) then x^Filter P `xselse Filter P `xsBoolean predicates on sequences can be de�ned by means of an auxiliary continuous predicate, whichyields one of the truth values ?, TT , or FF of the domain tr of truthvalues. As an example we presentthe Forall predicate, which uses an auxiliary Forallc predicate (and the conjunction andalso on tr):consts Forall :: (� ! bool )! (�)sequence ! boolForallc :: (� ! bool )! (�)sequence !c trdefs Forallc P `? = ?Forallc P `nil = TTForallc P `(x^xs) = Def (P x ) andalso Forallc P `xsthms Forall P xs � Forallc P `xs 6= FFForall P ? = TrueForall P nil = TrueForall P (x^xs) = P(x ) ^ Forall P xsThe usual proof principle for sequences is structural induction. In contrast to �nite structural inductionit contains an admissibility requirement (adm).thms adm(P) P(?) P(nil) 8x ; xs :P(xs)) P(x^xs)8y : P(y) (induct)4



Of course, the �nite version is available as well.thms P(nil) 8x ; xs :P(xs) ^ Finite(xs)) P(x^xs)8y : Finite(y) ) P(y) (�n-induct)Finally, there are co-inductive proof principles, namely the take-lemmathms 8n: take n `s = take n `ts = t (take-lemma)and the bisimulation rule, which follows easily from the take lemma.thms bisim(R) (s ; t) 2 Rs = t (bisimulation)Here, the predicate bisim expressing bisimularity is de�ned as follows:consts bisim :: ((�)sequence � (�)sequence)set ! booldefs bisim(R) � 8s t : (s ; t) 2 R )(s = ? ) t = ?) ^(s = nil ) t = nil) ^(9s s 0: s = a^s 0 ) 9b t 0: t = b^t 0 ^ (s 0; t 0) 2 R ^ a = b)Thus, we get a sequence package, which allows powerful recursion like in�nite concatenation.Furthermore, in contrast to approaches which model sequences as functions on the natural numbers,operations like Filter that relocate elements in an unhomogenous way are treated easily. See [11] foran elaborate comparison of our sequence model with other formalizations, where our approach turnedout to be the most adequate.Furthermore, note the advantages of lifted sequence elements: proof procedures tailored for two-valued logic may be employed (cf. the ^ in the last equation for Forall ), and HOL theories and librariesmay be reused. About 170 theorems have been derived in the Isabelle setting, most of them in onestep by a tailored induction tactic.4 Safe I/O AutomataIn the sequel we merely sketch the embedding of safe I/O automata in Isabelle. For more details seethe author's PhD thesis [30].4.1 Basic I/O AutomataAn action signature models di�erent types of actions and is described astypes (�)signature = (�)set � (�)set � (�)setwhere the components may be extracted by the selector functions inputs, outputs, and internals ,respectively. We collectively refer to internals and outputs as locals , and to outputs and inputs asexternals . The union of all three action sets, which always have to be disjoint, is denoted by actions .A safe I/O automaton is a triple of an action signature, a set of start states, and a set of transitiontriples (called steps) described by the typetypes (�; �) ioa = (�)signature � (�)set � (� � �� �)setwhere the components may be extracted by the functions sig-of , starts-of , and trans-of , respectively.We write s a!A t for (s ; a; t) 2 trans-of (A). Furthermore the abbreviations act ; ext ; int ; in ; out ,and local are introduced for actions � sig-of , externals � sig-of , internals � sig-of , inputs � sig-of ,outputs � sig-of , and locals � sig-of , respectively. 5



There are several well-formedness requirements posed on safe I/O automata which are expressedby the predicate is-safe-IOA. It demands that the �rst component be an action signature, the secondbe an non-empty set of start states and the third be an input-enabled state transition relation, whoseactions stem from the action signature:defs is-sig-of (A) � is-sig (sig-of A)is-starts-of (A) � starts-of (A) 6= fgis-trans-of (A) � 8(s ; a; t) 2 trans-of (A): a 2 act(A)input-enabled(A) � 8a 2 in(A): 8s : 9t : s a!A tis-safe-IOA(A) � is-sig-of (A) ^ is-starts-of (A) ^is-trans-of (A) ^ input-enabled(A)The set of reachable states of an I/O automaton A is de�ned inductively as the least set of statessatisfying the following two rules:inductive s 2 starts-of (A)s 2 reachable(A) (reach-0) s 2 reachable(A) s a!A tt 2 reachable(A) (reach-n)Isabelle's syntax translation mechanism is used to write reachable A s for s 2 reachable A.A state predicate P :: � ! bool is called an invariant of an I/O automaton A if it holds for allreachable states:defs invariant A P � (8s : reachable A s ) P(s))For invariants the following associated proof rule has been derived.thms (8s : s 2 starts-of (A)) P(s)) (8s a t : reachable A s ^ P(s) ^ s a!A t ) P(t))invariant A PThere are composition operators for parallel composition, hiding of internal actions, and renaming.We present merely the parallel composition operator k:consts k :: (�; �) ioa ! (�; �) ioa ! (�; � � �) ioadefs A k B � (sig-comp (sig-of A) (sig-of B);f(u; v) j u 2 starts-of (A) ^ v 2 starts-of (B)g;f(s ; a; t) j (a 2 act(A) _ a 2 act(B)) ^if a 2 act(A) then (fst s) a!A (fst t)else (fst s) = (fst t) ^if a 2 act(B) then (snd s) a!B (snd t)else (snd s) = (snd t)g)Here, sig-comp de�nes the composition of signatures as follows:consts sig-comp :: (�)signature ! (�)signature ! (�)signaturedefs sig-comp s1 s2 � ((inputs(s1) [ inputs(s2)) n (outputs(s1) [ outputs(s2));outputs(s1) [ outputs(s2);internals(s1) [ internals(s2))For parallel composition compatibility is required which states that each action is an output action ofat most one I/O automaton and that internal action names are unique.consts compatible :: (�; �) ioa ! (�; �) ioa ! booldefs compatible A B � (out(A) \ out(B) = fg) ^(act(A) \ int(B) = fg) ^(act(B) \ int(A) = fg)6



4.2 Isabelle Syntax of I/O AutomataSo far, we de�ned I/O automata as parameterized tuples over arbitrary state and action types. In thesequel we will describe how concrete state spaces and actions are represented in Isabelle.Actions are de�ned easily using Isabelle's datatype construct. States are not represented byvariables, but as tuples, where each component represents a variable. Selector functions are introduced,whose names are identical to the variable names in the informal description. This approach conformswith [26].Let us illustrate this format with the simple example of a bu�er. The bu�er Buf is modeled bya variable queue of type (bool)list , which is initially empty. Actions and transitions are given in theusual precondition/e�ect style as:input S (m);m 2 bool outputR(m);m 2 boolpost: queue := queue@[m] pre: queue = m : rstpost: queue := rstIn Isabelle the action type of Buf is de�ned as datatype action = S (bool) j R(bool). The automatonBuf is then internally de�ned as follows, where queue is the identity on the (trivial) tuple of type(bool)list , and transitions are represented in a set comprehension format.Buf � (Buf -sig ; f[ ]g;Buf -trans ; fg; fg)Buf -sig � (Sm2boolfS (m)g;Sm2boolfR(m)g; fg)Buf -trans � f(s ; a; s 0) j case a ofS (m) ) queue(s 0) = queue(s)@[m]j R(m) ) queue(s) = m : rst ^ queue(s 0) = rstgThere is an automatic translation of the precondition/e�ect style into the set comprehension format.It is described in [18]. Therefore the user may always stay within his familiar speci�cation format.4.3 Executions and TracesExecution fragments of an I/O automaton A are (1) �nite or in�nite sequences of alternating statessi and actions ai , where (2) triples siaisi+1 represent steps of A. The �rst condition is encoded intothe type of an execution fragment, which is modeled by a pair of a start state and a sequence ofaction/state pairs:types (�; �)exec = � � (�� �)sequenceThe second condition is captured by the predicate is-exec-frag , which checks recursively if all transitionsare steps of A.consts is-exec-frag :: (�; �) ioa ! (�; �)exec ! booldefs is-exec-frag A (s ;?) = Trueis-exec-frag A (s ;nil) = Trueis-exec-frag A (s ; (a; t)^ex ) = s a!A t ^ is-exec-frag A (t ; ex )The derivation of the equations for is-exec-frag is analogous to that for Forall . Executions are executionfragments beginning with a start state.defs execs(A) � f(s ; ex ): s 2 starts-of (A) ^ is-exec-frag A (s ; ex )gA trace of A is the subsequence of external actions of an execution of A. It describes the visiblebehaviour of A.consts mk-trace :: (�; �) ioa ! (�� �)sequence !c �sequencedefs mk-trace A � �ex : Filter (�a: a 2 ext A) `(Map fst `ex )traces(A) � fmk-trace A `ex jex 9s : (s ; ex ) 2 execs(A)g7



e1 e1 e2e2Speci�cation LevelRe�nement MappingImplementation Level : : :: : :Figure 1: Re�nement mapping: ei are external actions, internal actions are omitted.4.4 Re�nement Notions and CompositionalitySafe implementation w.r.t. two I/O automata C and A is de�ned via trace inclusion. Furthermore,the external actions have to be the same.defs C �S A � in(C ) = in(A) ^ out(C ) = out(A) ^traces(C ) � traces(A)Such implementation relations between C and A are shown by simulations. Here we present onlyforward simulations and the simpler re�nement mappings (see Fig. 1). A re�nement mapping f is afunction between the state spaces of C and A that maps every start state of C to a start state of Aand guarantees for every step s a!C t of C the existence of a corresponding move of A, i.e. a �niteexecution fragment with �rst state f (s), last state f (t) and external behaviour a. A move is formalizedby the predicate is-move .consts is-move :: (�; �) ioa ! (�� �)sequence ! (� � �� �)! booldefs is-move A ex (s ; a; t) �is-exec-frag A (s ; ex ) ^ Finite(ex ) ^last-state (s ; ex ) = t ^mk-trace A `ex = (if a 2 ext(A) then [a!] else nil)where last-state :: (�; �) exec ! � denotes the �nal state of an execution, if it is �nite, otherwise anunspeci�ed value. The predicate is-ref-map characterizes re�nement mappings.consts is-ref-map :: (�1 ! �2)! (�; �1) ioa ! (�; �2) ioa ! booldefs is-ref-map f C A �(8s0 2 starts-of (C ): f (s0) 2 starts-of (A)) ^(8s t a: reachable C s ^ s a!C t) 9ex : is-move A ex (f s ; a; f t) )Forward simulations are de�ned by the predicate is-simulation :consts is-simulation :: (�1 � �2)set ! (�; �1) ioa ! (�; �2) ioa ! booldefs is-simulation R C A � (8s0 2 starts-of (C ): R[s0] \ starts-of (A) 6= fg) ^(8s s 0 t a: reachable C s ^ s a!C t ^ (s ; s 0) 2 R) 9t 0 ex : (t ; t 0) 2 R ^ is-move A ex (s 0; a; t 0) )Re�nement mappings are speci�c forward simulations:thms is-ref-map f C Ais-simulation f(i ; o): f (i) = og C AThe correctness of both concepts is therefore established by the following theorem:thms is-simulation R C A in(C ) = in(A) ^ out(C ) = out(A)C �S A8



Note the following important methodological point: the correctness theorem above has been provedmaking heavy use of HOLCF because it involves recursively de�ned sequences. However, the predicateis-simulation can be shown in the simpler logic HOL. Therefore actual re�nement proofs in applicationscan be done in HOL, whereas the more powerful but at the same time more complicated domain theoryis only utilized for the meta theory of I/O automata. This is a remarkable advantage of the decisionto use sequences with lifted elements.In [30] further meta-theoretic proofs in Isabelle are described, like non-interference and composi-tionality. The latter states the following
thms

is-trans-of (A1) ^ is-trans-of (A2) ^ is-trans-of (B1) ^ is-trans-of (B2)is-sig-of (A1) ^ is-sig-of (A2) ^ is-sig-of (B1) ^ is-sig-of (B2)compatible A1 B1 ^ compatible A2 B2A1 �S A2B1 �S B2(A1 k B1) �S (A2 k B2)and required almost 1000 proof steps making heavy use of coinductive proof principles.5 A Generic Temporal LogicIn this section we embed a generic temporal logic over �nite and in�nite sequences of states (called TL)into Isabelle. We use a shallow embedding, which means that we do not explicitly distinguish betweensyntax and semantics of temporal formulas. Instead, formulas are directly regarded as predicatesand temporal operators as predicate transformers. However, Isabelle's syntax facilities permit thesetransformers to be denoted by the usual syntax.We introduce a type for predicates and a corresponding notion of evaluation, which simply meansfunction application.types (�)pred = �! boolconsts j= :: �! (�)pred ! booldefs x j= P � P(x )The boolean connectives ^, _, :, ), and = are lifted to predicates in a pointwise way2. As (�)pred ispolymorphic, it is used to describe both state predicates and sequence predicates. The latter representthe temporal formulas of TL.types (�) temporal = ((�)sequence)predAs lifted boolean connectives already exist for this type, it su�ces to de�ne 2, 
, and h�i, where thelatter means lifting a state predicate to a temporal formula.consts h�i :: (�)pred ! (�) temporaldefs hPi � �s : P (the (HD `s))consts 2;
 :: (�) temporal ! (�) temporaldefs 2 P � �s : 8s2: s2 �+suf s ) P(s2)
 P � �s : if TL `s = ? then P(s) else P (TL `s)Here su�xes and non-empty su�xes are de�ned as follows:consts �suf ; �+suf :: (�)sequence ! (�)sequence ! booldefs s2 �suf s � 9s1: Finite(s1) ^ s = s1 � s2s2 �+suf s � s2 6= nil ^ s2 6= ? ^ (s2 �suf s)2Because it is always clear from the context whether a connective is lifted or not, we use the same symbols,although in Isabelle the syntax di�ers slightly. 9



Further temporal operators are de�ned as usual:defs 3 P � :2:PP ; Q � 2 (P ) 3Q)Validity of P means that it holds for all non-empty sequences3:defs j= P � 8s : s 6= nil ^ s 6= ?) s j= PTreatment of Finite Sequences. Obviously, the empty sequence represents a pathological case inevery temporal logic involving �nite computations. In the de�nitions above this is re
ected by thefact that nil j= hPi equals P(arbitrary), where arbitrary is a �xed, but unknown value. Thus nothingreasonable can be concluded for this case. We solve the problem by circumventing the cases s = ?and s = nil completely. They are excluded in the validity de�nition and the temporal operators arede�ned in such a way, that they do not introduce new statements of the form nil j= P or ? j= P . Thisis the reason why we de�ne 2 using only non-empty su�xes and use the TL operator for 
 only if thesequence consists of at least two elements.Domain-Theoretic Sequence Model and Temporal Logics. The domain-theoretic sequencemodel in HOLCF turned out to be surprisingly adequate for de�ning a temporal logic. As the de�nitionof the temporal operators shows, every theorem about TL boils down to sequence lemmas about HD ,TL, and � . Furthermore, admissibility obligations mostly cease to apply, as �+suf needs � with a�nite �rst argument only, so that �nite structural induction can be applied. If admissibility obligationsappear nevertheless, they can usually be discharged automatically, as HD ;TL, and � are de�ned ascontinuous operators.This simplicity is the result of a careful choice of the way the operators are formalized. In fact,a pointwise de�nition like in [28] would be infeasible in our sequence model (indexes are awkwardin our setting, see [11, 30]), the same holds for a 2 operator de�ned by some kind of drop operatormotivated by the semantics of TLA [23]. A number of di�erent attempts have already been madeto de�nitionally embed temporal logics in higher-order logic (e.g. [24, 39, 8]). Up to our knowledge,only in�nite sequences have been considered, which are represented by functions on natural numbers.It is not obvious how these approaches should be generalized to deal with �nite sequences as well.Furthermore, operators that deal with stuttering are not considered there. Take, for example, theoperator that eliminates stuttering by replacing all subsequences s � � � s by s . This would be some kindof �lter operation which is easily dealt with in our setting. In a functional setting, however, we face anoperator which relocates elements in an unhomogeneous way, which is extremely awkward to handleaccording to the results of [11]. Note, however, that adding in�nite stuttering is not computable andcan thus not be handled in our setting.Comparison with standard LTL. We will now show thatj=LTL P i� j= Pwhere j=LTL denotes validity in [28] or [21] and P is restricted to the operators of TL. There are tworequirements to satisfy: �rst, the temporal operators must have the same semantics, and second, itmust make no di�erence whether formulas are evaluated over �nite and in�nite sequences (for j=) orover in�nite sequences only (for j=LTL).The �rst requirement is not completely trivial as we did not de�ne the operators pointwise (as in[28]) in order to match our sequence model (see below), but it is easy to see. The second requirementis proved as follows. It is trivial that j= P implies j=LTL P , as j=LTL regards only the subset of in�niteexecutions considered by j=. For the other direction de�ne the operator r that adds in�nite stutteringas r� � 8><>: arbitrary if � = nil _ � = ?�snsn : : : if � = s0s1 : : : sn is �nite or partial� if � is in�nite3In Isabelle di�erent symbols are used for validity and evaluation to avoid ambiguities.10



Now, suppose j=LTL P , which means that P holds for all in�nite sequences. We have to show that Pholds for every non-empty sequence � as well. As r� j= P is in�nite in this case, we directly get theresult by the fact that � j= P equals r� j= P , which holds under the assumption � 62 fnil ;?g andfollows easily. This �nishes the proof.This relation can now be exploited to get a completeness result for TL simply by carrying itover from [21]. Below we prove some theorems in Isabelle, which represent a complete set of rulesw.r.t. validity in TL according to [21]4.thms j= P ) Q j= Pj= Q (mp) j= Pj= 
P (nex )j= P ) Q j= P ) 
Pj= P ) 2Q (ind)j= 
:P = :
P (ax1)j= 
(P ) Q)) (
P ) 
Q) (ax2)j= 2P ) (P ^
2P) (ax3)6 A Temporal Logic of StepsIn this section we use the generic temporal logic over sequences of the previous section to embed TLS[31, 30], i.e. a temporal logic over executions of I/O automata. In terms of an informal sequencemodel, the idea is to encode executions � = s0a1s1 : : : into a sequence of triples, where every triple(si ; ai+1; si+1) represents one step si ai+1! A si+1 of the automaton A. As �nite executions are asym-metric in the sense that they contain one more state than actions, a single stuttering triple (sn ;p; sn )is added for the �nal state sn of �nite executions, where p denotes an action disjoint from all actionsignatures. Intuitively, this stuttering triple ensures that �nite executions may possibly be continuedto in�nity. In fact, it has been shown in part I [31] that the evaluation of TLS formulas stays the samewhen extending executions by in�nite stuttering.6.1 De�nitionsIn Isabelle, the encoding consists of two parts. First, executions, which are represented as state/sequencepairs, are transformed into triple sequences. Note that hereby redundancy is introduced, as most ofthe states are represented twice. Second, the action type � is extended to (�) option , which ensuresthat the stuttering action, represented by None, is not already an element of the action type �. Bothtransformation tasks are performed by the function ex-to-seq de�ned below.consts ex-to-seq :: (�; �)exec ! (� � (�)option � �)sequencedefs ex-to-seq (s ; ex ) � ex-to-seqc `(mk-total ex ) sex-to-seq (s ;?) = [(s ;None; s)!]ex-to-seq (s ;nil) = [(s ;None; s)!]ex-to-seq (s ; (a; t)^ex ) = (s ;Some(a); t)^ex-to-seq (t ; ex )Note that ex-to-seq cannot be de�ned via a continuous auxiliary predicate ex-to-seqc immediately asdone for Forall , as adding a further element to a partial sequence is not even monotone. Instead, weuse a function mk-total which makes partial executions �nite by substituting the �nal ? by nil , before4Note that this completeness result cannot be proved within Isabelle as we use a shallow embedding.11



the expected ex-to-seqc is applied.consts mk-total :: (�)sequence ! (�)sequencedefs mk-total(s) � if Partial (s) then " t : Finite(t) ^ s = t � ?else sthms mk-total(?) = nilmk-total(nil) = nilmk-total(a^s) = a^(mk-total s)Note that mk-total reduces the occurring discontinuity to a generic function with the further advantagethat it may be reused for other discontinuous de�nitions as well, e.g. for de�ning fair merge.Formulas of TLS can now be de�ned as TL formulas, whose sequence elements are transitiontriples extended by an optional stuttering action None. Predicates over these triples are called steppredicates.types (�; �) ioa-temporal = (� � (�)option � �) temporal(�; �)step-pred = (� � (�)option � �)predEvaluating formulas over executions boils down to evaluating formulas over sequences using ex-to-seq .The usual validity notions are de�ned accordingly5.consts j=ex :: (�; �)exec ! (�; �) ioa-temporal ! boolj=ex :: (�; �) ioa-temporal ! boolj=A :: (�; �) ioa ! (�; �) ioa-temporal ! booldefs exec j=ex P � (ex-to-seq exec) j= Pj=ex P � 8exec: exec j=ex PA j=A P � 8exec 2 execs(A): exec j=ex PNote that for j=ex the boolean connectives have the same pointwise meaning as for j=, e.g. exec j=ex:P = exec 6j=ex P . This, however, does not hold for j=A.When talking about I/O automata it is often more convenient to use predicates on states andactions rather than step predicates, which always take the stuttering action into account. Thus, weintroduce the functions exts and exta which lift state and action predicates to step predicates. Possiblyoccurring stuttering actions force the resulting step predicate to evaluate to False .consts exts :: (�)pred ! (�; �)step-preddefs exts(P) � �(s ; a; t): P(s)consts exta :: (�)pred ! (�; �)step-preddefs exta(P) � �(s ; a 0; t): case a 0 ofNone ) Falsej Some a ) P(a)We use the syntactical abbreviations hPis = hexts(P)i and hPia = hexta(P)i.6.2 Some TheoremsValidity in TL, i.e. on sequences, is stronger than in TLS, i.e. on executions.thms j= P ) j=ex P (Val-Rel)5Once more the symbol j=ex is overloaded in a way not supported by Isabelle.12



The proof is simple: (Val-Rel) postulates that ex-to-seq(exec) j=ex P holds for every exec, providedthat s j=ex P holds for every s with s 6= ?^s 6= nil . This is true as ex-to-seq produces only non-emptysequences6.Thus, the theorems (ax1)� (ax3) carry over from j= to j=ex . Furthermore, the same holds for thetheorems (mp), (nex ), and (ind).Note that the other direction of (Val-Rel) is not true, as not every transition sequence is an imageunder ex-to-seq : there may be None elements occurring not only after the �nal state of non-in�niteexecutions, or non-identical successor states. Therefore, the completeness considerations for TL do notcarry over to TLS. However, the speci�c form of sequences generated by ex-to-seq can be captured bya temporal formula for each automaton step. Having derived these step formulas, it is often su�cientto use further on only rules for j= instead of j=ex . Thus, they build some kind of interface between TLand TLS.thms 8s t : P(s) ^ s a!A t ) Q(t)A j=A 2(hPis ^ h�x : x = aia ) 
hQis)The proof of this theorem shows that these formulas indeed incorporate the fact that ex-to-seq addsstuttering steps at the end of �nite executions only and produces always identical succeeding states.Thus, the application of these formulas yields temporal formulas, which can then be treated by standardLTL reasoning.7 Live I/O AutomataBelow, the I/O automaton model of x3 is extended to general liveness. Live I/O automata are repre-sented by a pair of a safe I/O automaton and a TLS formula.types (�; �) live-ioa = (�; �) ioa � (�; �) ioa-temporalA TLS formula P is said to be L-valid for a live I/O automaton (A;L) if it holds for all executions ofA under the further assumption L:defs (A;L) j=L P � A j=A (L) P)This re
ects the intuition that liveness conditions posed on a safe I/O automaton restrict its executions[15]. Live executions, traces, and implementations generalize the corresponding safe notions in acanonical way.defs live-execs (A;L) � fexec: exec 2 execs(A) ^ exec j=ex Lglive-traces (A;L) � fmk-trace A `(snd ex ) jex ex 2 live-execs (A;L)gC �L A � in(C ) = in(A) ^ out(C ) = out(A) ^live-traces(C ) � live-traces(A)Important cases of liveness are given by weak and strong fairness of an automaton A w.r.t. a set ofactions acts , which are de�ned by the formulas WF and SF .consts Enabled :: (�; �) ioa ! (�)set ! � ! boolWF ;SF :: (�; �) ioa ! (�)set ! (�; �) ioa-temporaldefs Enabled A acts s � 9a 2 acts : 9t : s a!A tWF A acts � 32hEnabled A actsis ) 23h�a: a 2 actsiaSF A acts � 23hEnabled A actsis ) 23h�a: a 2 actsia6Note that the cases s = ? and s = nil are the pathological cases of TL. As they are excluded by ex-to-seq ,the stuttering action p in TLS can, in a more abstract view, also be regarded as a remedy to rectify theinsu�ciency of general temporal logics involving non-in�nite computations.13



Note the particular meaning of WF and SF for �nite executions. The formulas 23P and 32Pexpress the same for �nite executions, namely that P holds for the �nal stuttering step (sn ;None; sn ).Thus, 23h�a:a 2 actsia is false, as the lifting function exta maps the stuttering action None to False .Therefore, WF and SF express that the last state sn is not enabled for any action in acts , whichcorresponds to the usual fairness de�nition using fairness sets [26].Re�nement mappings which transfer liveness from every execution of C to a corresponding one ofA are called live re�nement mappingsconsts is-live-refmap :: (�1 ! �2)! (�; �1) live-ioa ! (�; �2) live-ioa ! booldefs is-live-refmap f (C ;L) (A;M ) �is-ref-map f C A ^8exec 2 exec(C ): exec j=ex L ) (cor ref A f exec) j=ex Mwhere the corresponding execution (cor ref A f exec) is given by an in�nite concatenation of possiblemoves that correspond to the single steps of exec.consts cor ref :: (�; �2) ioa ! (�1 ! �2)! (�; �1)exec ! (�; �2)execdefs cor ref A f (s ;?) = (f s ;?)cor ref A f (s ;nil) = (f s ;nil)cor ref A f (s ; (a; t)^ex1) = (f s ; (" ex2: is-move A ex2 (f s ; a; f t))� snd (cor ref A f (t ; ex1))Live re�nement mappings are correct, i.e. they induce live implementation.thms is-live-refmap f (C ;L) (A;M ) in(C ) = in(A) ^ out(C ) = out(A)(C ;L) �L (A;M )Similarly, but a bit more tricky, is the de�nition of live forward simulations and their soundness proof.See [30].This theorem gives rise to the following proof method for showing that a live I/O automaton (C ;L)implements another live I/O automaton (A;M ) using temporal reasoning.� First, show that f is a re�nement mapping from C to A, i.e. prove the safety part.� Then assume an execution exec 2 execs(C ) with exec j=ex L� and prove (cor ref A f exec) j=ex M .In this proof method, L is evaluated over executions of C , whereas M is evaluated over executionsof A. Thus, it is not su�cient to merely apply temporal tautologies for the liveness proof. Ratherthere have to be means to switch between properties over an execution exec of C and those of thecorresponding execution exec0 := (cor ref A f exec) of A. For re�nement proofs restricted to fairness,such a switch is needed only once at the beginning of the proof: assume exec0 j=ex WF A acts to befalse. This implies that exec0 j=ex 23hEnabled Aactsis and exec0 j=ex :23h�a: a 2 actsia hold. Now,both properties about exec0 can be reduced to properties about exec using the following theorems:thms exec 2 execs(C ) ext(C ) = ext(A) � � ext(A)exec j=ex 23ha 2 �ia ) (cor ref A f exec) j=ex 23ha 2 �iaexec 2 execs(C ) 8s t : reachable C s ^ reachable A t ^ t j= Q ) s j= P(cor ref A f exec) j=ex 32hQis = exec j=ex 32hPisFor the remainder of the proof only temporal tautologies are needed.This approach has signi�cant advantages for our Isabelle environment. For fairness the two theo-rems above permit hiding HOLCF from the user, who operates only within the simpler HOL or usesstandard rules of temporal logic. 14



8 Abstraction RulesIn this section we derive abstraction rules, which permit reducing proof obligations about large oreven in�nite I/O automata to corresponding proof obligations about �nite and signi�cantly smallerautomata. Rules are provided for properties expressed both as temporal formula (proof obligation(C ;L) j=ex P) and as I/O automata (proof obligation (C ;LC ) �L (P ;LP )). In x9 we will show bymeans of an example how these rules can be used to combine Isabelle with model checking.Central are abstraction functions which represent speci�c re�nement mappings, namely homomor-phisms w.r.t. the transition relation.consts is-abs :: (�1 ! �2)! (�; �1) ioa ! (�; �2) ioa ! booldefs is-abs h C A � (8s0 2 starts-of C : (h s0) 2 starts-of A) ^(8s a: reachable C s ^ s a!C t ) (h s) a!A (h t) )The key idea of abstraction functions is that they induce a neater correspondence between executionsthan re�nement mappings do: the corresponding execution is given as a pointwise mapping, whichmeans that both executions always proceed within the same time raster.consts corabs :: (�1 ! �2)! (�; �1)exec ! (�; �2)execdefs corabs h (s ; ex ) � (h s ;Map (�(a; t): (a; h t)) `ex )Thus, we get as a special case of the soundness of re�nement mappings that abstraction functionsinduce safe implementation. This result is based on the fact, that (corabs h exec) is an execution of Aprovided that exec is an execution of C . We say that A is an automaton weakening of C .consts aut-weak :: (�; �2) ioa ! (�; �1) ioa ! (�1 ! �2)! booldefs aut-weak A C h � 8exec 2 execs(C ): corabs h exec 2 execs(A)thms is-abs h C Aaut-weak A C his-abs h C A in(C ) = in(A) ^ out(C ) = out(A)C �S AFor the safety part, we considered until now, everything has been analogous to re�nement mappings.For the liveness part, however, we get a signi�cant improvement: whereas cor ref permitted to transferonly speci�c patterns of fairness formulas from the corresponding execution (cor ref A f exec) to exec,the stronger corabs permits the analogous transfer for any kind of temporal formula, even in bothdirections. Such transfers are called temporal weakenings and temporal strengthenings, respectively.consts temp-strength; temp-weak ::(�; �2) ioa-temporal ! (�; �1) ioa-temporal ! (�1 ! �2)! booldefs temp-strength Q P h � 8exec: (corabs h exec) j=ex Q)) exec j=ex Ptemp-weak Q P h � temp-strength (:Q) (:P) hOur goal is to reduce them to associated step weakenings/strengthenings.consts step-strength; step-weak ::(�; �2)step-pred ! (�; �1)step-pred ! (�1 ! �2)! booldefs step-strength Q P h � 8s a t :Q (h s ; a; h t)) P (s ; a; t)step-weak Q P h � step-strength (:Q) (:P) h15



This is accomplished by the following set of theorems, which hold as well when interchanging temp-strengthwith temp-weak .thms temp-strength P1 Q1 h temp-strength P2 Q2 htemp-strength (P1 ? P2) (Q1 ?Q2) h ? 2 f^;_gtemp-weak P1 Q1 h temp-strength P2 Q2 htemp-strength (P1 ? P2) (Q1 ?Q2) h ? 2 f);;gtemp-strength P Q htemp-strength (?P) (?Q) h ? 2 f2;3;
gtemp-weak P Q htemp-strength (:P) (:Q) hstep-strength P Q htemp-strength (hPi) (hQi) hThese theorems form the basis for a tactic, called abs tac, which automatically reduces temporalstrengthenings/weakenings to step strengthenings/weakenings. This reduction represents a majoradvantage of our abstraction theory: the interactive theorem prover, verifying the abstraction's cor-rectness, has to reason about steps only (which can be done in the simpler HOL), whereas reasoningabout entire system runs may be left to the model checker.Now we can de�ne live abstractions and prove their correctness.consts is-live-abs :: (�1 ! �2)! (�; �1) live-ioa ! (�; �2) live-ioa ! booldefs is-live-abs h (C ;L) (A;M ) � is-abs h C A ^ temp-weak M L hthms is-live-abs h (C ;L) (A;M ) in(C ) = in(A) ^ out(C ) = out(A)(C ;L) �L (A;M )Finally, we can present the abstraction rules. Rules on the lhs treat safe I/O automata, the rhsconsiders live I/O automata. Note that after applying these rules the tactic abs tac has still to beinvoked.thms is-abs h C Atemp-strength Q P hA j=A QC j=A P is-live-abs h (C ;L) (A;M )temp-strength Q P h(A;M ) j=L Q(C ;L) j=L Pin(C ) = in(A) ^ out(C ) = out(A)in(Q) = in(P) ^ out(Q) = out(P)is-abs h1 C Ais-abs h2 Q PA �S QC �S P
in(C ) = in(A) ^ out(C ) = out(A)in(Q) = in(P) ^ out(Q) = out(P)is-live-abs h1 (C ;LC ) (A;LA)is-live-abs h2 (Q ;LQ) (P ;LP )(A;LA) �L (Q ;LQ)(C ;LC ) �L (P ;LP )There are two further rules, which allow to strengthen the abstract model if that appears to betoo weak to prove the desired property, or to weaken the concrete model, if that contains unnecessaryelements which hinder the intended abstraction. See [31, 30] for the underlying theory and the Isabelledistribution for their realization. 16



9 Combining Isabelle and Model CheckingThe abstraction rules of the previous section generate proof obligations which should be discharged bya model checker. These obligations have either the form (A;FA) j= P (for proving temporal properties)or (A;FA) �L (P ;FP ) (for proving implementation relations). In the following we present translationsto appropiate model checkers for each of them: the former is translated to STeP [5], the latter to �cke[4].9.1 Temporal Properties: Translation to STePThe tranlation to STeP is straight forward. I/O automata are transformed to transition systems [28],which represent the computational model of the STeP model checker [5]. TLS formulas are translatedinto Manna/Pnueli's LTL [28].The idea of the translation is to encode the explicit actions of I/O automata into the state spaceand to add a further idling action. Liveness conditions are not coded into fairness sets, but areconsidered as a further assumption of the temporal property to be proved.In the following we demonstarte the translation by the simple example of part I. This examplerepresents a rough simpli�cation of an industrial helicopter control system, which has also been veri�edusing our toolbox [30].Example 9.1The alarm management of a cockpit control system can be described in a very abstract way by astack. Alarms, which are initiated by the physical environment, are stored, then handled by the pilotand �nally acknowledged, which means that the respective alarm is removed from the stack. Whenadding a new alarm to the stack, any older occurrences of this particular alarm are removed, suchthat only the most urgent instance of an alarm has to be treated by the pilot. There are 16 alarms,Alarms = fPonR;Fuel ;Eng ; : : :g, which in the original speci�cation made it impossible to verify thesystem via model checking. Actually, the original system could only be model checked for not morethan four alarms. Note that the order of alarms in the stack has to be respected. However, for provingproperties which concern merely a single alarm, for example the important alarm PonR, (Point of noReturn), abstraction may be applied.The I/O automaton CockpitC is modeled by a list, called stack , which is initially empty. Wepresent the transitions of CockpitC in the usual informal format, which can easily be translated to ourIsabelle setting.input Alarm(a); a 2 Alarms output Ack(a); a 2 Alarmspost: stack := a : �lter (�x : x 6= a) stack pre: hd(stack) = a ^ stack 6= [ ]post: stack := tl(stack)The properties we want to prove about CockpitC are the following:defs P1 � 2(h�a: a = Alarm(PonR)ia ) 
h�stack : PonR 2 stackis)\Whenever PonR arrives, it is immediately stored in the stack"P2 � 2h�a: a 6= Alarm(PonR)ia ) 2:h�stack : PonR 2 stackis\If PonR never arrives, the system will never pretend this"For both properties it is merely relevant whether PonR is in the stack or not. Thus, we construct theabstract I/O automaton CockpitA which replaces the alarm stack by the boolean variable PonR-in,17



initially false, which indicates if PonR is stored.inputAlarm(a); a 2 Alarmspost: if a = PonR then PonR-in := trueoutputAck(a); a 2 Alarmspre: if a = PonR then PonR-inpost: if a = PonR then PonR-in := falseThe abstraction function h is obviously de�ned as follows:consts h :: (�)list ! booldefs h(stack) � PonR 2 stackAs CockpitA has been designed already with h in mind, the property is-abs h CockpitC CockpitA iseasily established within Isabelle/HOL7. Thus, according to the �rst abstraction rule of the previoussection, it remains to show that the corresponding abstract properties Qi for CockpitA, de�ned asdefs Q1 � 2(h�a: a = Alarm(PonR)ia ) 
h�PonR-in: PonR-inis)Q2 � 2h�a: a 6= Alarm(PonR)ia ) 2:h�PonR-in: PonR-inisare temporal strengthenings of the concrete Pi . These goals are reduced by abs tac to the obligationsh(stack) ) (PonR 2 stack) and (PonR 2 stack) ) h(stack), respectively, which both are trivialby de�nition. Therefore, the initial goals CockpitC j=A Pi have been reduced to the simpler goalsCockpitA j=A Qi , which can now be veri�ed by the STeP model checker. For this aim the I/Oautomaton CockpitA is encoded into a STeP transition system. This is done by encoding explicitactions into the state space using a variable Act. Note that thereby the occurrence of an action canbe observed only at the next state.Transition Systemtype actions = {AlarmP, AlarmNP, AckP, AckNP}local PonRin: boollocal Act: actionsInitially PonRin = falseTransition AlarmP NoFairness:enable trueassign PonRin := true, Act := AlarmPTransition AlarmNP NoFairness:enable trueassign PonRin := PonRin, Act := AlarmNPTransition AckP NoFairness:enable PonRinassign PonRin := false, Act := AckPTransition AckNP NoFairness:enable trueassign PonRin := PonRin, Act := AckNPThe following properties represent the Qi which are easily veri�ed by STeP.SPECPROPERTY P1: [](()Act=AlarmP --> ()PonRin)PROPERTY P2: []()Act!=AlarmP --> []!PonRin7Note that the invariant that there are no duplicates in the stack is needed to show that Ack(PonR) causesthe transition from PonR-in to :PonR-in. 18



9.2 Implementation Relations: Translation to the �-CalculusFor the restricted case of fair trace inclusion [22] suggests already a translation of fair I/O automatainto !-automata, which can be tested w.r.t. language containment using the COSPAN model checker.We, however, give a translation of forward simulations directly into the �-calculus. Thus, a �-calculus based model checker like �cke [4] can check forward simulations between I/O automata withoutthe overhead of changing to another semantic model. A further, practical advantage of this approachis the fact that there is already a tactic in Isabelle which invokes the �-calculus model checker �cke [4]as an external oracle. However, this approach only yields a complete decision procedure w.r.t. traceinclusion of two I/O automata A and P if P is deterministic and both A and P are safe.The following translation of forward simulations into the �-calculus has been completely automated[17]: there is a tactic in Isabelle, called is simulation C A, which delegates the existence proof of aforward simulation to �cke.Assume that a set of states SA for each I/O automaton A and a global set of actions A is given.Furthermore assume that every basic I/O automaton is characterized by the following boolean predi-cates. InA : A ! boolOutA : A ! boolIntA : A ! boolStartA : SA ! boolTransA : SA �A� SA ! boolWe skip the encoding of composition operators, they are straight forward. Internal steps, a �nitesequence of internal steps, and a move are described by the following predicates:IntStepA(s ; t) � 9a: IntA(a) ^ TransA(s ; a; t)IntStep�A � �P : �s ; t : (s = t) _ 9u: IntStepA(s ; u) ^ P(u; t)MoveA(s ; a; t) � (IntC (a) ^ IntStep�A(s ; t)) _9u1; u2: IntStep�A(s ; u1) ^ TransA(u1; a; u2) ^ IntStep�A(u2; t)Then, the existence of a forward simulation can be expressed byisSimCA � �P : �s1; t1: 8a; s2: TransC (s1; a; s2)) 9t2:MoveA(t1; a; t2) ^ P(s2; t2)SimExistsCA � 8a: InpC (a)$ InpA(a) ^OutC (a)$ OutA(a) ^8s ; t : StartC (s) ^ StartA(t)) isSimCA(s ; t)Example 9.2Consider once more the alarm system CockpitC and its abstract counterpart CockpitA under theabstraction h. We enhance the two automata by an output action Info which signals the presence ofnewly arrived alarms to the pilot.Extension to CockpitC Extension to CockpitAoutput Info(a); a 2 Alarms output Info(a); a 2 Alarmspre: hd(stack) = a pre: a = PonR ) PonR-inIt is easily shown that is abs h CockpitC CockpitA still holds with the additional Info action.This abstraction can be used to prove property P4, expressed by the following I/O automaton:the state is the same as for CockpitA, i.e. a boolean variable PonR-in, which is initially false. Theactions of P4 are:inputAlarm(a); a 2 Alarms output Info(a); a 2 Alarmspost: if a = PonR then PonR-in := true pre: a = PonR ) PonR-in19



The I/O automaton P4 expresses that every PonR alarm is not signaled to the pilot before it hasarrived, i.e. Alam and Info actions appear always in the desired order. Using the abstraction rule forimplementaion relations in the simpler fashion with P = P+ we may conclude the desired re�nementCockpitC �S P4 from the simpler CockpitA �S P4. As P4 is a deterministic automaton, we may usethe suggested translation to �cke to discharge this proof obligation. Actions and the automaton P4are encoded in �cke as follows.enum Alarms {PonR, Fuel, Eng};enum Actions {Alarm, Ack, Info};class Action {Actions act; Alarms arg;};class StateP4 {bool PonRin;};bool IntP4(Action a) a.act = Ack;bool StartP4(StateP4 s) s.PonRin = 0;bool TransP4(StateP4 s, Action a, StateP4 t)(casea.act = Alarm :(if(a.arg = PonR)(t.PonRin = 1)elset.PonRin = s.PonRin);a.act = Ack : 0;a.act = Info :(a.arg = PonR -> s.PonRin = 1) &t.PonRin = s.PonRin;esac);Encoding CockpitA in an analogous way with state type StateCo, start condition StartCo, andtransition relation TransCo we can encode the desired trace inclusion as follows.bool IntStepP4(StateP4 s, StateP4 t)exists Action a. IntP4(a) & TransP4(s,a,t);mu bool IntStepStarP4(StateP4 s, StateP4 t)s = t | (exists StateP4 u.IntStepP4(s, u) & IntStepStarP4(u, t));bool MoveP4(Action a, StateP4 x, StateP4 y)IntP4(a) & IntStepStarP4(x, y) |(exists StateP4 u1. IntStepStarP4(x, u1) &(exists StateP4 u2. TransP4(u1, a, u2) & IntStepStarP4(u2, y)));nu bool isSim(StateCo s1, StateP4 t1)forall Action a, StateCo s2.TransCo(s1, a, s2) ->(exists StateP4 t2. MoveP4(a, t1, t2) & isSim(s2, t2));bool SimExistsforall StateCo s, StateP4 t. StartCo(s) & StartP4(t) -> isSim(s,t);10 Related WorkThere are several other attempts to support I/O automata veri�cation by tools.20



The MIT distributed systems group, which originally developed I/O automata, has done substan-tial e�orts in verifying simulations between I/O automata using the Larch Prover (LP) [38]. A numberof case studies have been performed, involving timing based systems as well (e.g. [25, 37]). Currentwork [14] aims at a formal language for I/O automata which allows to develop tools like static typecheckers, simulators and code generators. The distinguishing feature to our work is is the fact thatLP is a theorem prover for �rst-order logic. This means that the abstract notions of I/O automataincorporating composition operators and behaviours cannot be expressed within the logic. Instead,results on paper are used to extract a set of proof obligations from the formal description of the system.In particular, reasoning about meta-theory is impossible.Archer and Heitmeyer [1, 2] veri�ed several benchmark problems modeled as Lynch/-Vaandragertimed automata [27] in PVS [33]. Their goal is to build a customized prover on top of PVS, which isdesigned to process proof steps that resemble in style and size the typical steps in hand proofs. This isaccomplished by tailored proof strategies, which resemble pretty much our specialized Isabelle tactics.However, their framework is restricted to invariant proofs, simulations are not taken into account untilnow. Furthermore, they do not consider meta-theory, although the logic of PVS would be powerfulenough.Further case studies have been performed with Coq [12] in the area of communication protocols[19, 6]. Again, they rely much more on unformalized meta-theory than we do.Inspired by our work, Gri�oen and Devillers [16] formalized the meta-theory of I/O automatain PVS [33] and proved the correctness of safe re�nement mappings, but not of forward simulations.However, de�ning and reasoning about in�nite concatenation turned out to be very awkward in theirfunctional sequence model [10] (cf. the discussion in [11]). Thus, they left out some crucial theorems.All approaches above consider neither temporal logics nor any issues of abstraction. Especiallythey do not cover a connection to model checking tools.Concerning temporal logics and abstraction, the only existing works merely deal with modelsdi�erent from I/O automata. Formal embeddings of temporal logic [24, 39, 8], however, are alwaysbased on functional sequence models in contrast to our algebraic sequence model. This results indisadvantages discussed in x11. An abstraction framework for TLA in Isabelle [29], even thoughremarkable for its practical usability, distinguishes itself from ours by being based on an axiomatization.11 Discussion and ConclusionWe gave an overview of the veri�cation framework for I/O automata in Isabelle, including temporallogics, proof support for live implementation relations, and the combination of Isabelle with modelchecking via abstraction. Some aspects had to be neglected or only glimpsed at, e.g. the coalgebraicproof support, improved abstraction rules, or the translations to model checkers. The entire I/Oautomata framework consists of 465 theorems, proved in 2332 proof steps. Its practical usability hasbeen proven by an industrial case study of a cockpit alarm system [30].In the following we discuss the advantages of our environment. First, we mention the more generalbene�ts of tool supported veri�cation, which gain, however, signi�cantly by our particular choice ofI/O automata, Isabelle, and higher-order logic.Con�dence in Speci�cation The expressiveness of higher-order logic and Isabelle's facilities forstructuring speci�cations and proofs (theories, lemmas, hierarchic simpli�cation sets, etc.) guar-antee a neat correspondence between the formal description and the actual speci�cation on theone hand (cf. the direct translation of I/O automata into Isabelle), and the proof scripts andthe informal, intuitive arguments on the other hand. This increases the con�dence in reallyspecifying and proving what one actually had in mind.Con�dence in Veri�cation Computer-assisted proofs are usually more reliable than manual proofs,as they force the user to supply details for all cases. There are two reasons why this con�dencein machine-checked proofs is even higher in our case than e.g. for proofs performed in PVS[33] or LP [13]. First, Isabelle itself is built according to the LCF system approach [35], which21



means that every proof is broken down to a small and clear set of primitive inferences. Second,we introduce new theories only in a de�nitional way, which ensures that no inconsistencies, forexample caused by contradictory axioms, can occur.Scalability Interactive provers like Isabelle in general scale up better than fully automatic proof toolslike model checkers. In addition, we believe that our I/O automata formalization is in particularquali�ed for full-scale applications, because of the following reason. First, abstraction allowsto signi�cantly reduce the complexity of proof tasks. Second, proof of both simulations andinvariants are essentially performed by case-splitting on actions and states, which increase onlylinear in the size of the components.Readability Isabelle provides syntactical facilities like mix�x operators and powerful translations.Furthermore, most of the standard mathematical symbols like 8, ^, 2 are supported8. Togetherwith the expressiveness of higher-order logic this increases readability and thus considerablyspeeds up interactive proofs and the search for errors in speci�cations.Rechecking During the course of carrying out a large proof, it is likely that de�nitions or lemmashave to be modi�ed. Furthermore, one likes to polish already completed proofs. This can muchsafer and easier be done with computer-assistance.There are further aspects which in particular pro�t from our methodology which combines HOLand HOLCF in such a way that both meta-theory and system veri�cation are handled in the adequatelogic, respectively. First, we discuss the rôle of HOL, i.e. the bene�ts for the user.Automation Isabelle's automatic proof procedures permit to discharge the large amount of trivial,intermediate steps or simple cases which usually appear in re�nement proofs. This applies inparticular to proof tools which are tailored for the use in HOL.Reuse HOL provides large data type libraries, which can be reused and need not be redone for eachapplication.Simplicity The conceptually simple HOL is much easier to use than HOLCF, which incorporates theentire complexity of Scott's domain theory.Second, we discuss the rôle of HOLCF, i.e. the advantages for establishing meta-theory.Expressiveness HOLCF provides in�nite datatypes and arbitrary recursion. This allows to de�neruns of automata and powerful recursive functions like in�nite concatenation or sophisticatedmerge functions, which turned out to be crucial for proving meta-theoretic results.Extensibility Having the meta-theory at our disposal, we have a greater degree of 
exibility becausewe do not need to hardwire certain proof methods but can derive new ones at any point.Besides our HOL/HOLCF methodology there is a further speci�c advantage of our tool environ-ment. It concerns the domain-theoretic sequence model, which turned out to be especially adequatefor extending meta theory to temporal logic and live I/O automata. In particular, in contrast toexisting TLA embeddings [24, 39, 8] it allows to incorporate �nite sequences and to deal with certainoperators that deal with stuttering.References[1] M. Archer and C. Heitmeyer. Human-style theorem proving using PVS. In E. Gunter, editor,Proc. 10th Int. Conf. on Theorem Proving in Higher Order Logics (TPHOL'97), volume 1275 ofLecture Notes in Computer Science, pages 33{48. Springer-Verlag, 1997.8Actually, the syntax employed in this paper represents only a slight modi�cation, concerning subscriptsand further special symbols. 22
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