
T U M
I N S T I T U T F Ü R I N F O R M A T I K

The SDL Specification
of the Sliding Window Protocol

Revisited

Christian Facchi, Markus Haubner, Ursula Hinkel

������
TUM-I9614
März 1996

T E C H N I S C H E U N I V E R S I T Ä T M Ü N C H E N



TUM-INFO-03-1996-I9614-300/1.-FI
Alle Rechte vorbehalten
Nachdruck auch auszugsweise verboten

c
1996 MATHEMATISCHES INSTITUT UND
INSTITUT FÜR INFORMATIK
TECHNISCHE UNIVERSITÄT MÜNCHEN

Typescript: ---

Druck: Mathematisches Institut und
Institut für Informatik der
Technischen Universität München



The SDL Speci�cation of the Sliding WindowProtocol RevisitedChristian Facchi�, Markus Haubner, Ursula HinkelInstitut f�ur InformatikTechnische Universit�at M�unchenD-80290 M�unchenffacchi,haubnerm,hinkelg@informatik.tu-muenchen.deMarch 31, 1996AbstractWe present the results of a case study in which the use of SDL tools was analysedon the basis of the sliding window protocol. We chose the SDL speci�cation of theprotocol which was �rst published by the ISO. While editing and simulating theSDL speci�cation we found out that the speci�cation contains signi�cant errorsand does not meet the informal description of the protocol. We describe theseerrors and give a correct version of the SDL speci�cation.1 IntroductionCCITT1 and ISO have standardized the formal description techniques (FDT) Estelle,LOTOS, SDL and MSC for introducing formal methods in the area of distributed systemsin order to improve their quality. The speci�cation and description language SDL is oneof them. SDL is a widespread speci�cation language, which, in our opinion due to itsgraphical notation and structuring concepts, is well-suited for the formulation of largeand complicated speci�cations of distributed systems.We will present some results of [Hau95] in which the use of SDL tools is analysed.Because of its practical relevance and simplicity we chose the sliding window protocolas a case study for speci�cation. An SDL description of the sliding window protocol isgiven in [ISO91, Tur93]. The goal of [Hau95] was the transformation of this description�New address: Siemens AG, PN KE TCP31, D-81359 M�unchen, Christian.Facchi@pn.siemens.de1In 1993 the CCITT became the Telecommunication Standards Sector of the International Telecom-munication Union (ITU-T). If a document has been published by CCITT, this organization name isused instead of ITU-T in the sequel. 1



to the representation of the tools examining the functionality and the user adequacyof the tools. This was followed by an examination what features the tools o�er forsimulation and testing of SDL speci�cations. While editing and simulating the protocolwe found some incorrect parts within the speci�cation of the sliding window protocol[ISO91, Tur93]. The speci�cation does not meet the informal description of the protocolin [ISO91, Tur93]. We will explain these discrepancies by examples which we drew of thesimulation. Then we will present a corrected speci�cation with respect to the previouslyfound errors.This paper is organized as follows. In Section 2 we will give an informal introductionto the sliding window protocol. Section 3 contains an overview of SDL. The main part ofthis paper describes the errors that we found and their correction in Section 4. Section5 summarizes the results and draws a conclusion.2 The Sliding Window ProtocolThe sliding window protocol is a widespread protocol describing one possibility of thereliable information exchange between components. The sliding window protocol canbe used within the data link layer of the ISO/OSI basic reference model [ISO84]. Dueto its purpose it describes a point to point connection of two communication partnerswithout an intermediate relay station. The latter aspect is dealt with in higher layers ofthe ISO/OSI basic reference model. Note that the connection establishment and discon-nection phase are not part of the sliding window protocol. It serves only to establish abidirectional reliable and order preserving data transfer within an existing connection.The basic principle of a sliding window protocol is the usage of a sending and receivingbu�er. For the sender it is possible to transmit more than one message while awaitingan acknowledgement for messages which have been transmitted before. In hardwaredescription an equivalent property is called pipelining.The protocol can be described as follows ([St�95]): The sender and the receiver com-municate via channels that are lossy in the sense that messages may disappear. Messagesmay also be corrupted which has to be detectable by the protocol entity. Each message istagged with a sequence number. The sender is permitted to dispatch a bounded numberof messages with consecutive tags while awaiting their acknowledgements. The messagesare said to fall within the sender's window. At the other end, the receiver maintains areceiver's window, which contains messages that have been received but which to thispoint in time cannot be output because some message with a lower sequence number isstill to be received. The receiver repeatedly acknowledges the last message it has suc-cessfully transferred to the receiving user by sending the corresponding sequence numberback to the sender.We demonstrate the advantages of the sliding window protocol by an example: Sta-tion A wants to transmit 3 frames to its peer station B. Station A sends the frames 1, 2and 3 without waiting for an acknowledgement between the frames. Having received thethree frames station B responds by sending an acknowledgement for frame 3 to station2



A. Due to its practical relevance there exist a number of formal descriptions of thesliding window protocol [ISO91, MV93, Tur93, vdS95] in di�erent speci�cation techniquese.g. SDL, LOTOS, Estelle and process algebras.For evaluating the SDL tools we selected the SDL speci�cation of the sliding windowprotocol [ISO91, Tur93]. It is based on a sliding window protocol using \go back n"according to [Tan88]. For simplicity we describe only a unidirectional 
ow of data. Thusit is possible to distinguish two components: transmitter and receiver. Note that the 
owof acknowledgements is in the opposite direction to the data 
ow. Each frame is identi�edby a unique sequence number. As an abstraction of real protocols in which a wraparound may occur an unbounded range of sequence numbers is used in [ISO91, Tur93].The sequence number is attached to each data frame by the transmitter and it is laterused for the acknowledgement and for the determination of the frame's sequential order.The transmitter increments the sequence number for each new data element.lowestunack highestsent : : :: : : transmitter window sizeFigure 1: Transmitter windowThe transmitter window shown in Figure 1 is used for bu�ering the unacknowledgedframes. The variable lowestunack is used as an indicator for the lowest sequence numberof an unacknowledged frame which has not necessarily been sent. Initially it is set to1. The variable highestsent indicates the sequence number of the last sent frame and isinitialized by 0. Both values determine the size of the transmitting window bounded bythe constant tws.If the transmitter wants to send a data frame, then it has to check �rst whether theactual window size (highestsent� lowestunack) is less than tws. If this condition is notful�lled the data frame is not sent until it is possible. In the other case the transmitterincrements highestsent by one, emits the data combined with highestsent as sequencenumber and starts a timer for that sequence number. Whenever a correct acknowledge-ment (not corrupted and with a sequence number greater or equal than lowestunack)is received, then all timers for frames with lower sequence numbers beginning by the re-ceived one down to lowestunack are cancelled. Then lowestunack is set to the receivedsequence number incremented by one. When a timeout occurs all timers according to thesequence number of the message for which the timeout has occurred up to highestsentare reset and the corresponding frames are retransmitted in a sequential order start-ing with the message for which the timeout occurred. This includes also the repeated3



starting of the timers. : : :: : : nextrequired highestreceivedreceiver window sizeFigure 2: Receiver windowIn Figure 2 the second window which is located at the receiver is presented. Thereceiver window is used to bu�er the received frames which can not yet be handed out tothe user because some frame with a lower sequence number has not been received. Thevariable nextrequired, whose initial value is 1, is used to indicate the sequence numberof the next expected frame. The maximum size of the receiver window is described bythe constant rws. If a noncorrupted frame is received with a sequence number in therange of [nextrequired::nextrequired + rws� 1] all messages starting by nextrequiredup to the �rst not received message are delivered to the user. Then nextrequired isset to the number of the �rst not received message and nextrequired � 1 is sent as anacknowledgement to the transmitter.3 The Speci�cation and Description Language SDLSDL (Speci�cation and Description Language) is a formal language for the speci�cationof interactive, distributed systems. It provides both a graphical and a textual notation.SDL is intended for the speci�cation of protocols in telecommunication applications, butis now increasingly used in other application areas. SDL is recommended by the CCITTand the ITU-T. Its �rst version was issued in 1976, the most recent version known asSDL 92 is published as Z.100 ([CCI93]) and includes object oriented extensions. We willgive a short overview of SDL which explains the language constructs used in the laterdescription of the Sliding Window Protocol. Detailed introductions of SDL are given in[BH93, OFMP+94].SDL is used to describe the internal structure, the behaviour and the data of a system.An SDL system description is composed of blocks which are connected with each otherand with the environment by channels. A block is a set of processes which are connectedwith each other and the block environment by signalroutes. Blocks describe the internalstructure of a system whereas processes represent the behaviour of a system.A process is a communicating extended �nite state-machine, that is, a communicating�nite state automaton with the additional use of data variables. It consists of a �nitenumber of states and transitions connecting these states. A process reacts to stimuli4



represented by signal inputs. A process is either in a state waiting for input signals oractive, performing a transition.Each process is associated with an input port in which arriving signals are insertedin the order of arrival. Signals which are received by the process at the same time areplaced in random order. The input port acts as an unbounded FIFO-queue which holdsthe signals until they are consumed by the process. Whenever a process is in a state itaccepts stimuli from its input port. It removes the �rst signal from the input port. Theconsumption of this signal initiates a transition in which the process may execute someactions. The transition is terminated by a state or a stop symbol. Signals which arenot explicitly mentioned in a state as stimuli will implicitly be consumed without e�ect.This results in an empty transition leading back to the same state.A process may use local data variables which represent its data state. Values ofvariables are manipulated in tasks. Signals may carry data values. The data conceptis based on abstract data types. SDL o�ers some prede�ned data types like Boolean,Integer, Real or Charstring. The recommendation Z.105 ([IT95]) de�nes how the abstractsyntax notation ASN.1 ([CCI88]) can be used to describe data and messages in SDLspeci�cations.SDL provides a timer mechanism. A timer is set with an expiration time during atransition and runs independently from the process. Processes have access to the globalsystem time using the expression NOW. When a timer expires a timer signal is put intothe input port. A timer may be reset before its expiration.A procedure represents a self-contained part of a process. It can be parameterizedin the usual way by means of formal parameters. Procedures are useful when the samesequence of states and transitions appears repeatedly in a process speci�cation. A pro-cedure may be called during a transition of a process. The execution of the transition issuspended until the termination of the procedure call.4 An Analysis of the Sliding Window ProtocolIn this section we present the errors that we found in the SDL speci�cation of the slidingwindow protocol ([ISO91, Tur93]). We will �rst describe each error in an abstract wayand then we will show a scenario in which it occurs.We give only a short description of the structure of the SDL speci�cation which ispresented in full details in [Tur93]. The speci�cation is based on SDL88. Figure 3 givesan overview of the structure of the speci�cation but omits signals, channel identi�ersand data declarations.The SDL speci�cation of the protocol is composed of three blocks: TransmitterEn-tity, ReceiverEntity and Medium. The users of the transmitter and the receiver are partof the environment and interact with the system by signals. The two blocks Transmit-terEntity and ReceiverEntity communicate via channels with the block Medium. Theblock Medium models an unreliable medium and is described in Section 4.4.1. Theblock TransmitterEntity consists of the process Transmitter which includes two proce-5



Receiver
Medium

system Sliding Window Protocol

block ReceiverEntity
to/from Medium to/from Medium

to the receiving usermessages

messagesto the receiving user

TransmitterEntity ReceiverEntity

from the sending user block TransmitterEntityTransmitter

from the sending usermessages

messages
Figure 3: The structure of the SDL speci�cationdures: ReleaseTimers and Retransmit. The block ReceiverEntity consists of the processReceiver which includes the procedure DeliverMessages.4.1 Errors Concerning the Sequence NumberIn the formal description of the sliding window protocol ([ISO91, Tur93]) unbounded se-quence numbers are attached to the messages. When it sends a message, the transmitterhas to start a timer for that message. Each message is related to an individual timer.However, the number of timers existing at the same time is bounded. In the followingwe describe an error which is based on this discrepancy.4.1.1 Description of the ErrorIn the process Transmitter, after a new message was sent, the timer is set to the sequencenumber of the message modulo tws by the statement \set(now + delta; tim(hs modtws))" (highestsent is abbreviated by hs). However, after a timeout, the parameter ofthe timer is treated as if it contained the sequence number itself and not the modulonumber (see left diagram in Figure 4).In the procedure Retransmit the same error occurs. Instead of the sequence number6



Data TransferWindow ClosedData TransferWindow Closed
ReleaseTimers(seqno,hs)Retransmit(seqno,hs,cq)

ReleaseTimers(seqno,hs)Retransmit(seqno,hs,cq)
tim (seqno)tim (seqno) seqno := hs -(hs - seqno) mod tws
Data TransferData Transfer

Data TransferWindow Closed

Part of the speci�cation of the process Transmit in [ISO91, Tur93] Corrected version of the speci�cation

process TransmitThis transition describes the reactionto the input of the timer signal.ReleaseTimers and Retransmit with thehas to be retransmitted.sequence number of the message whichparameter seqno which denotes theThe process Transmit calls the procedures
Window Closed Window Closed
Figure 4: The use of sequence numbers in Process Transmitterof the retransmitted message the sequence number modulo tws is sent and used to setthe timer (see left diagram in Figure 5).The procedure Retransmit calculates the sequence numbers of the messages to re-transmit modulo tws, so the receiver will not accept retransmitted messages that havesequence numbers which di�er from the modulo sequence number.4.1.2 Erroneous ScenarioSuppose the transmitter window size is 5 and the value of highestsent (abbreviated byhs) is 12. Suppose further the receiver is waiting for a retransmission of message 11,because message 11 was corrupted. Having received the timer signal, the transmitterwill retransmit the messages 11 and 12 with the sequence numbers 11 mod tws = 1 and12 mod tws = 2. The receiver already got the messages 1 and 2 , so it will ignore thenewly transmitted messages and will still be waiting for message 11. Now the slidingwindow protocol is in a livelock, where the transmitter will retransmit messages 11 and 12with sequence numbers 1 and 2 forever and the receiver will never accept them, becausetheir sequence numbers are lower than nextrequired.

7



p := p mod tws;p := (p + 1) mod tws, p := p + 1which have to be retransmittednumber of the message for which the Corrected version of the speci�cation

procedure Retransmit

Part of the speci�cation of the procedure Retransmit in [ISO91, Tur93]
tim(p mod tws))set(now+delta,The variable p denotes the sequencetimer has to be set.

Setting of timers for messagesby the Transmitter.set(now + delta, tim(p))
Figure 5: The setting of timers in the procedure Retransmit4.1.3 Correction of the Speci�cationIn order to solve this problem and to keep the changes to the speci�cation minimal,concerning the process Transmitter we insert the assignment seqno := hs � (hs �seqno) mod tws in a task after the input symbol of the timeout signal (see right di-agram in Figure 4). It calculates the correct sequence number from the modulo se-quence number and highestsent, so the correct sequence number will be passed tothe procedures ReleaseTimers and Retransmit. In the procedure Retransmit the line\p := (p + 1) mod tws" is changed into "p := p + 1" and in the task \p := p mod tws;set(now + delta; tim(p))" the assignment is removed and the set statement is changedinto \set(now + delta; tim(p mod tws))" (see right diagram in Figure 5).4.2 Errors Concerning the Closing of the Transmitter WindowThe transmitter has only a limited bu�er for messages which have been received but havenot yet been acknowledged. If this bu�er is �lled up, the transmitter does not acceptany more messages and the transmitter window is closed, as shown in Figure 6.4.2.1 Description of the ErrorIn the process Transmitter the transmitter window is closed too late. Even if thereare tws unacknowledged messages, lowestunack + tws is greater than highestsent andthe window is still open. As a consequence the next message that is sent will also usethe timer of the lowest unacknowledged message, although it is still in use. Thereforeone timer is used for two di�erent messages. If the lowest unacknowledged message isnot received correctly by the receiver the transmitter will not get a timeout for thismessage. The transmitter will not retransmit the message and the receiver will not pass8



message
Data Transfer Window Closed

hs < lu + twstrue false
Figure 6: Closing the transmitter windowon any messages until it will have received the missing message. Thus the sliding windowprotocol is in a livelock.4.2.2 Erroneous ScenarioSuppose tws = 5, highestsent(hs) = 5, lowestunack(lu) = 1 and the queue is set to< 1; 2; 3; 4; 5 > (�ve messages have been sent, they are all still unacknowledged)2. Thetransmitter window is full and should have been closed after message 5 had been sent.However, the evaluation of the condition hs < lu+tws (5 < 1+5) in the decision symbolreturns true, so the window is not closed. Suppose the transmitter sends message 6. Nowthe queue < 1; 2; 3; 4; 5; 6 > keeps more than tws elements. As a consequence the timerfor message 1 is overwritten with the timer for message 6, because in the set statementset (now + delta; tim (hs mod tws)) the timer instance 1 is attached to both messages.One message later than expected the condition hs < lu + tws (6 < 1 + 5) evaluates tofalse and the transmitter window is closed.4.2.3 Correction of the Speci�cationThe condition hs < lu + tws is changed into hs < lu + tws � 1, so the transmitterwindow will be closed one message earlier, just in time.2Note that the messages are represented only by their sequence numbers. For simplicity we haveomitted their content.

9



4.3 Errors Concerning the Spooling of the Transmitter Queuein the Retransmit ProcessDuring the retransmission of messages spooling of the messages stored in the transmitterqueue is necessary, because the message that got the timeout has to be retransmitted�rst. In the following we describe an error which occurs during this spooling process (seeFigure 7).
p - lu + 1k1 :=

spoolingk1 > 0 (true)(false) k1 := k1 - 1
of the message which has received the timeout.transmitter queue. The variable p denotes the sequence numberThis part of the speci�cation describes the spooling of theprocedure Retransmit

Figure 7: The spooling of the transmitter queue4.3.1 Description of the ErrorIn the procedure Retransmit the message queue is spooled to the �rst message to beretransmitted. However, the calculation of the messages that have to be spooled isincorrect, because the queue is always spooled one message further than it should be.As a result, when the messages are retransmitted the message bodies will not �t to theirsequence numbers.4.3.2 Erroneous ScenarioSuppose a scenario in which four messages are in the transmitter window,queue =< 1; 2; 3; 4 >, lu = 1.Now message 2 receives a timeout, so p = 2.The spooling of the messages in the queue starts:k1 := p� lu+ 1 = 2� 1 + 1 = 2k1 = 2 > 0The queue is rotated once: queue =< 2; 3; 4; 1 >Despite the fact that the messages are in the correct order the spooling of the messages10



continues.k1 := k1� 1 = 1k1 = 1 > 0 :The queue is rotated a second time: queue =< 3; 4; 1; 2 >k1 := k1� 1 = 0Now the value of k1 > 0 is false, the spooling is �nished and the retransmission starts.Message 2 is retransmitted with the �rst element in the queue so the new message hasthe sequence number 2, but the body of message 3. Sequence number 3 will be combinedwith message body 4 and sequence number 4 will be sent with the message body 1. Asthe checksums are calculated after the new combinations the receiver will not notice thealtered sequence of the message bodies and the message is corrupted.4.3.3 Correction of the Speci�cationTo correct the spooling in the procedure Retransmit the calculation of k1 has to bek1 := p� lu instead of k1 := p� lu+ 1 in Figure 7.4.4 Errors Concerning the MediumTransmitter and receiver exchange their data and acknowledgements over a medium.This medium models an unreliable channel, which can nondeterministically lose, cor-rupt, duplicate or re-order messages. However, in SDL88 there exists no means forexpressing nondeterminism. Therefore, in [ISO91, Tur93] hazards are introduced, asshown in Figure 8. The process MsgManager is responsible for the treatment of the datawithin the medium. Its nondeterministic behaviour is modelled by introducing the guardprocess MsgHazard. This process sends hazard signals to the MsgManager suggestingwhich operations are to be carried out by the MsgManager on the data which are storedin a queue: normal delivery (MNormal), loss (MLose), duplication (MDup), corruption(MCorrupt) or reordering (MReord) of messages.The treatment of acknowledgements within the medium is handled by the process Ack-Manager. For modelling its nondeterministic behaviour the process AckHazard is intro-duced and speci�ed similar to MsgHazard.4.4.1 Description of the ErrorA hazard may send signals to its manager, although its manager's queue is empty. Someoperations performed by the manager on the queue after having received a signal producean error if the queue is empty.4.4.2 Erroneous ScenarioSuppose message 3 waits in the queue mq to be transmitted:MediumMessageQueue : mq =< 3 >Suppose that the hazard signal MNormal appears:11



block Medium
MsgManager
MsgHazard
AckManager
AckHazard

mm
aa [(la)]

[(lm)]
ReceiverEntityAcknowledgements from
signallist lm = MNormal,MLose, MDup,
Data toReceiverEntity
signallist la = ANormal, ALose, ADup,MReord, MCorrupt;AReord, ACorrupt;

Acknowledgementsto TransmitterEntity
Data fromTransmitterEntity

Figure 8: Structure of the block Mediumqitem := qfirst(mq) = 3Now the queue is empty:mq := qrest(mq) = qnewMessage 3 is sent to the receiver.Suppose the hazard signal MNormal appears again:Then qitem is set to qfirst(mq) = qfirst(qnew)According to the axiom qfirst(qnew) == error! the execution of the SDL system willstop and an error message will be displayed.4.4.3 Correction of the Speci�cationTo prevent these errors the manager always checks if its message queue is empty when itgets a signal from its hazard. Only if the message queue is not empty the hazard signalwill be processed, otherwise the manager will not do anything.
12



5 ConclusionDuring the early stages of system development system designers interact with users tocapture the problem domain and to analyse the system's requirements. This results inan informal description of the behavior of the system usually based on natural language.If formal methods are used this requirement speci�cation is achieved by formal notationslike SDL, LOTOS, Estelle or MSC.The transition from an informal to a formal speci�cation is a crucial point in thedevelopment of systems. The formal requirement speci�cation has to be validated toensure that the formal description corresponds to the speci�er's intuition. This processis called validation. The validation of a speci�cation is very important, because later for-mal (or maybe informal) development steps are based on this requirement speci�cation.If in later development steps an inadequacy of the requirement speci�cation is found,an expensive rede�nition and reimplementation of the existing speci�cations and imple-mentations has to be done. Furthermore, based on a formal requirement speci�cationthe following steps can be carried out in a purely formal way ([BDD+93]).The use of formal methods forces a system developer to write precise and unambigu-ous speci�cations. That is the basis of the application of tools that o�er a syntacticcheck, validation and simulation of the speci�cation. Note that a formal requirementspeci�cation does not guarantee a correct speci�cation. It only describes the system'srequirements in an unambiguous way. By using validation techniques like e.g. simulationor proving some properties (see for instance [Jon90]), errors of the speci�cation can bedetected in early development steps. We �rst read the SDL speci�cations of the slidingwindow protocol without noticing the errors mentioned in Section 4. However, the sim-ulation in [Hau95] which is indeed a testing of some speci�cation's aspects showed theseinconsistencies. Note that these speci�cations were published �rst as a technical reportof ISO [ISO91] and then in [Tur93] without noticing any errors.Our analysis of the sliding window protocol has resulted in a signi�cant improvementof the corresponding SDL speci�cation. However, we cannot guarantee the absence of er-rors in the corrected speci�cation, because we only tested the speci�cation by simulationand so the number of errors decreased. In [St�95] it is outlined how Focus can be usedfor top-down development of SDL speci�cations which results in a correct SDL speci�-cation if the correctness of each re�nement step has been properly veri�ed. Especiallydue to a higher abstractness of a speci�cation the validation process can be simpli�ed.Although a formal speci�cation may contain errors (which of course should be avoided)it helps the designer to achieve a better understanding of the system to be built. Designinconsistencies, ambiguities and incompleteness are detected in an early stage of softwaredevelopment.
13



AcknowledgementsWe thank Manfred Broy, Stephan Merz, Franz Regensburger and Ekkart Rudolph whohave read earlier drafts of this paper and provided valuable feedback. We also thankVerilog and Siemens AG for their tool support. Especially the simulators of Geode fromVerilog and SICAT from Siemens AG helped us to �nd the errors in the SDL speci�cation.References[BDD+93] M. Broy, F. Dederichs, C. Dendorfer, M. Fuchs, T. F. Gritzner, and R. We-ber. The Design of Distributed Systems | An Introduction to focus.SFB-Bericht 342/2/92 A, Technische Universit�at M�unchen, January 1993.[BH93] R. Br�k and �. Haugen. Engineering Real Time Systems. Prentice Hall,1993.[Jon90] C. B. Jones. Systematic Software Development Using VDM. Prentice Hall,1990.[CCI88] CCITT. X.208, Speci�cation of Abstract Syntax Notation One (ASN.1).Blue Book, FASCICLE VIII.4, Recommendations X.200-X.219. CCITT,1988.[CCI93] CCITT. Recommendation Z.100, Speci�cation and Description Language(SDL). ITU, 1993.[Hau95] M. Haubner. Vergleich zweier SDL-Werkzeuge anhand des Sliding WindowProtokolls, 1995. Fortgeschrittenenpraktikum, in German.[ISO84] ISO. ISO 7498: Information Processing Systems - Open Systems Intercon-nection - Basic Reference Model, 1984.[ISO91] ISO/IEC. Information technology - Open System Interconection - Guide-lines for the Application of Estelle, LOTOS and SDL. Technical Re-port ISO/IEC/TR 10167, International Organization for StandardizationGeneva, 1991.[IT95] ITU-T. Recommendation Z.105, SDL92 Combined with ASN.1(SDL/ASN.1). ITU, 1995.[MV93] S. Mauw and G.J. Veltink. Algebraic Speci�cation of Communication Pro-tocols, volume Cambridge Tracts in Theoretical Computer Science 36. Cam-bridge University Press, 1993.[OFMP+94] A. Olsen, O. F�rgemand, B. M�ller-Pedersen, R. Reed and J. R. W. Smith.Systems Engineering Using SDL-92. Elsevier Science, 1994.14



[St�95] Ketil St�len. Development of SDL Speci�cations in focus. In Rolv Br�kand Amardeo Sarma, editors, SDL '95: with MSC in CASE, pages 269{278.North-Holland, 1995.[Tan88] Andrew S. Tanenbaum. Computer Networks (second Edition). PrenticeHall, 1988.[Tur93] Kenneth J. Turner, editor. Using Formal Description Techniques. JohnWiley & Sons, 1993.[vdS95] Jan L.A. van de Snepscheut. The Sliding-Window Protocol Revisited. For-mal Aspects of Computing, 7:3{17, 1995.

15


