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Abstract

There has been a long record of research for efficient join algorithms in RDBMS, but user-
defined join predicates in ORDBMS are typically evaluated using a restriction after forming the
complete Cartesian product. While there has been some research on join algorithms for non-
traditional data (e.g. spatial joins), today’s ORDBMS offer developers no general mechanism
that allows to implement user-defined join predicates in an efficient way. We propose the multi-
operator method to achieve this goal and show that it is suitable to implement joins with
complex user-defined predicates much more efficiently than today. Our approach fits well into
the architectural framework of current ORDBMS. A significant further benefit is that the multi-
operator method, in our view, can serve as an enabling technique for the parallel execution of
complex user-defined functions.

1. Introduction

Object-relational DBMS (ORDBMS) are the next great wave in database management systems [40].

ORDBMS have been proposed for all applications that need both complex queries and complex data

types. Many of these applications pose high requirements with respect to performance. Thus ORDBMS

need to exploit parallel database technology. This has recently led to significant development efforts for

parallel ORDBMS of some database vendors ([8], [32], [33], [34]).

Though this move to parallel ORDBMS stresses the demand for high performance, in our view, some

techniques for efficient query processing are still missing. One obvious example is the support for join

algorithms. There has been a lot of research on joins in RDBMS (see e.g. [12], [28] for a survey), but

this topic has not been covered in depth for ORDBMS. The state of the art is essentially that user-defined

join predicates in ORDBMS are evaluated by performing a nested-loops join that evaluates the user-

defined predicate on the Cartesian product. A similar approach for handling traditional equality join

predicates in RDBMS would make many queries slow. In ORDBMS the performance is deteriorated

even further, since user-defined predicates are often extremely expensive to evaluate. Thus an evaluation

of these predicates on the full Cartesian product (even if not materialized) results in prohibitively high

costs and unacceptable performance.

In the context of special application areas, there has been some research on efficient join algorithms
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for data types like spatial data (see e.g. [4], [35], [36], [42]). Unfortunately, some of these techniques

cannot be integrated well into current ORDBMS. The reason is that the current implementation model

for user-defined functions is too simple to allow for sophisticated implementations.

Our main contribution in this paper is to propose the multi-operator method as an implementation

technique to solve these fundamental problems. The multi-operator method allows to integrate complex

implementations of user-defined functions and predicates in ORDBMS with the best possible support

for parallel evaluation. The basic idea of the multi-operator method is to use multiple operators instead

of a single one which allows the decomposition of the user-defined function. This results into a simple,

yet powerful technique. We believe that it offers the potential for immense performance gains for many

object-relational applications. Performance measurements that we present later demonstrate this.

Our approach fits well into the overall architectural framework of current parallel ORDBMS. Thus

we are convinced that this method is easy to use for developers and can be supported in ORDBMS with-

out major difficulties. In fact, as we discuss later, there are other reasons for database vendors to support

this kind of interface.

The rest of this paper is organized as follows. We give an introduction to the problem in Section 2

along with some terminology. Section 3 introduces and discusses the multi-operator method. We discuss

a spatial join algorithm as an example application. Section 4 discusses the interface that is necessary to

make the multi-operator method available in ORDBMS. Section 5 reports on performance measure-

ments for our spatial join example and indicates significant performance gains. We cover the related

work in Section 6 and conclude the paper with a summary in Section 7.

2. User-Defined Functions in Object-Relational Query Processing

We will now provide the basic concepts and definitions that we use in this paper. We will concentrate

on the concepts for our specific query processing problem and refer the reader to the literature for the

general concepts of parallel relational ([12], [11], [2], [29]) and object-relational query processing ([40],

[6], [4], [35], [17], [40]). After an introduction to user-defined functions in Subsection 2.1, we discuss

the problem that we address here in Subsection 2.2, and in Subsection 2.3 we present a running example.

2.1. User-Defined Functions and Predicates

Every RDBMS comes with a fixed set of built-in functions. These functions can be either scalar func-

tions or aggregate functions (also called set or column functions). Ascalar functioncan be used in SQL

queries wherever an expression can be used. Typical scalar functions are arithmetic functions like + and

* or concat for string concatenation. A scalar function is applied to the values of some columns of a

row of an input table. By contrast, anaggregate functionis applied to the values of a single column of

either a group of rows or of all rows of an input table. Typical aggregate functions areMAX andSUM.

In ORDBMS it is possible to use auser-defined function(UDF) at nearly all places where a system-

provided built-in function can appear in SQL92. Thus there are two subsets of UDFs:user-defined sca-

lar functionsanduser-defined aggregate functions. A user-defined scalar function that returns a boolean
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value is auser-defined predicate (UDP).

2.2. Performance Problems with Complex UDFs in Current ORDBMS

We claim that there is currently not enough support for the efficient implementation of complex UDFs

in ORDBMS. We will demonstrate this in the following using a spatial join as an example of a complex

UDP. Our example is the following spatial query, which selects all pairs of polygons from a single table

that overlap with each other:

select *
from Polygon_Table a, Polygon_Table b
where overlaps(a.p_geometry, b.p_geometry)

How is this query evaluated in a current commercial ORDBMS? Let us assume that no spatial indexes

can be used to evaluate the join predicateoverlaps . Because this is not a traditional join (like an equi

join), no system will use a hash or a merge join. Hence, all ORDBMS will use a nested-loops join for

evaluation, i.e. the UDPoverlaps has to be evaluated on the full Cartesian product. Please note that in

this scenario data parallelism can be applied to the nested-loops join by partitioning the outer input

stream and replicating the inner input stream (at least, if the system supports data parallelism for UDFs

[23]). In general the developer must be able to disallow such a parallel evaluation, since the function that

implements the UDP might have a global state or side effects. In fact, most sophisticated algorithms

have such a global state or side effects, since it is often necessary to hold temporary data.

Despite parallel evaluation the performance of this straightforward approach is poor. It is known that

a much better performance can be achieved, if a filter and refine approach ([35], [36], [42], [4]) is taken.

This approach uses two phases: the filter phase finds pairs of candidates for the result using a relatively

inexpensive test. This test is only a rough filter in the sense that some false candidates can pass the test.

All candidate pairs are therefore tested with the original join predicate (the overlaps predicate) in the

refinement phase. It has been observed in the literature that this approach results in a much better per-

formance, as the filtering reduces the input for the refinement phase significantly and the latter is the

most expensive one. Typically the test in the filter phase is not evaluated using the exact geometries.

Rather a simple approximation like the bounding box is used for the test. This reduces the CPU costs

for the test and also reduces the storage requirements considerably. We will provide more details in the

next Subsection.

2.3. The PBSM Algorithm as an Example of a Sophisticated UDP Implementation

We will now use the Partition Based Spatial-Merge Join algorithm (PBSM) proposed in [36] for a

detailed example. We want to emphasize again that we are not aware of a practical way for developers

of DBMS class libraries [4] to implement such a sophisticated algorithm in any ORDBMS. It is the goal

of the multi-operator method to make this possible with full support for parallel evaluation.

The PBSM algorithm is based on a two-phase filter-and-refine-scheme and is processed sequentially,

though the authors of [36] believe that it can be parallelized efficiently. We will first give an outline of
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the algorithm. The input of the PBSM are two sets of spatial object geometries (like polygons). It is

assumed that each spatial object can be identified via an OID. We will assume that the spatial join pred-

icate is theoverlaps function. We will number the steps of the algorithm using numbers in brackets

like [1.1]. The first number denotes the phase, the second one the step within this phase.

The first phase is the filtering phase. It begins with creating key-pointer elements (step [1.1]), i.e.

(MBR, OID) pairs, where MBR denotes the minimum bounding rectangle. These key-pointer elements

are then written to temporary tables on disk (step [1.2]). Next a decision is made (step [1.3]): if the tem-

porary relations fit into main memory, the algorithm proceeds with step [1.4], otherwise with step [1.5].

In step [1.4] the candidate pairs are computed using the MBRs and a filter algorithm. The filter algorithm

is based on plane-sweeping techniques from computational geometry and is viewed as a kind of spatial-

merge join in [36]. This set of candidate pairs forms the input for the refinement phase. In step [1.5] the

data for the filter step is first partitioned. This begins with an estimation of the spatial universe (the MBR

of all spatial input objects) using data from the system catalog. Step [1.6] decomposes this universe into

P subparts. Given this partitioning of the space, the corresponding spatial data partitioning function is

applied to the temporary tables that contain the key-pointer elements (step [1.7]). Finally, partitions with

the same index are processed with the filter algorithm (step [1.8]). This produces the set of candidate

OID pairs for the refinement step.

The second phase, refinement, proceeds as follows. First, duplicates in the set of candidate pairs are

removed (step [2.1]). Such duplicates can occur, since the key-pointer elements are partially replicated

during the partitioning (to deal with spatial objects overlapping several partitions). In step [2.2] the OID

pairs are sorted on the OID of the first input (this will avoid random I/O). Then a subset of the base data

of the first input is fetched that fits into main memory and the corresponding OIDs are swizzled to main

memory (step [2.3]). Next the corresponding OIDs of the other input are sorted (step [2.4]). The tuples

corresponding to these OIDs are then read sequentially from disk (step [2.5]) and finally the exact join

predicate (i.e.overlaps ) is evaluated (step [2.6]). The algorithm proceeds by returning to step [2.3],

until all candidate pairs have been processed (step [2.7]).

Please note that the PBSM must manage intermediate results, retrieve objects based on their OID and

partition data using a special partitioning scheme.Currently there exists no technique that allows devel-

opers to integrate an algorithm with such features into an ORDBMS.Note that the complexity of the

PBSM algorithm is by no means an exception. As pointed out in [35] for the geo-spatial application

domain, complex UDFs often consist of multiple steps.

3. The Multi-Operator Method as a New Technique to Implement Complex UDFs

Next we will describe our approach to overcome the performance problems discussed in the previous

Section. We introduce the multi-operator method in Subsection 3.1 and discuss its principal benefits.

Subsection 3.2 illustrates the method by studying a multi-operator implementation of the PBSM algo-

rithm as an example.
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3.1. The Multi-Operator Method and its Benefits

The basic idea of the multi-operator method is quite simple. Current ORDBMS allow the implemen-

tation of a UDF only by means of a function that is executed within asingleoperator (e.g. a restriction,

projection or a nested-loops join) of a query execution plan. By contrast we will allow an implementa-

tion by means ofmultiple operators (i.e. by an operator graph, where the operators may invoke other

UDFs).

This method can be viewed as an extension and generalization of the well-known implementation

scheme used in relational engines for sort-merge joins. Here, instead of a single operator typically three

operators are used to implement this join algorithm: one sort operator for each of the inputs and an oper-

ator for the merge join. There are at least three good reasons for this design. The first reason is that a sort

operation is needed for other purposes (like producing a sorted output), too. Thus this operator can sim-

ply bereused. The second reason is that sometimes an input stream may already arrive sorted from pre-

vious operations - in this case no sort is needed and the superfluous sort operation can be eliminated. In

general,optimizationsof the query execution plan are enabled. The third reason is that using three oper-

ators instead of one allows to use moreparallelism. For example, the two inputs can be sorted in parallel

by means of the highly optimized system-provided parallel sort operation. All of these arguments -

reuse, optimizability, and parallelism - are in our view applicable to multi-operator implementations of

UDFs in general. This is not so much surprising, given that the operator concept is one of the basic

abstractions and building blocks used in query execution. Therefore replacing a single complex operator

by a set of simple ones offers the possibility for improved query execution plans due to the finer granu-

larity that is introduced.

As we will show below in detail, a multi-operator implementation supports all kinds of parallel exe-

cution, i.e. intra-operator parallelism, pipelining and independent parallelism. Even if a traditional

implementation by means of a single function is possible, it is often impossible to execute the operator

containing this function with data parallelism due to the complexity of the UDF implementation (e.g.

side effects, storage of temporary data). By contrast, a multi-operator implementation allows the devel-

oper to code the UDF in a set of operators, where each operator can possibly be executed in parallel and

where the DBMS knows the dataflow between the operators. We believe that the multi-operator method

provides the developer with the right method to provide the DBMS with an implementation that can be

executed in parallel, since operators are a natural granule for parallel execution in relational database

systems ([11], [12]).

The multi-operator method can achieve especially high performance gains when it is applied to UDPs

that can serve as join predicates as described in Subsection 2.2. In this case, a multi-operator implemen-

tation will allow to replace the standard execution plan consisting of a Cartesian product and a restriction

with the UDP by a multi-operator implementation of that UDP that is a user-defined join algorithm that

exploits multiple operators and several UDFs. It is easy to see that this will enhance the performance of

many object-relational queries, when one considers the importance of joins in relational systems: with-

out the various highly optimized join algorithms that avoid Cartesian products for the most commonly
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used join predicates, relational systems would have been hardly successful in the marketplace.

Figure 1 shows a schematic view of a multi-operator implementation for a UDP. Without special sup-

port a UDP is evaluated by means of a nested-loops join on the complete Cartesian product as shown on

the left side of Figure 1. A complex UDF often executes a number of steps, here N. The multi-operator

implementation allows to perform a number of processing steps (K steps in Figure 1) before the two

input relations are actually joined. Thus a part of the UDP can be pushed down. Please note, that now

no Cartesian product is needed. Instead, a specialized join algorithm (Step K + 1) can be used. After the

join some postprocessing is done. In general, the preprocessing steps will have often the goal to map

user-defined data types to approximations (sometimes also called features) that are represented by built-

in data types. These approximations can then be processed with the traditional built-in operators to per-

form a filter step. The postprocessing steps then do the refinement based on the results of the filter step.

Note that the number of steps in the single-operator (N) and the multi-operator implementation (M)

may differ as already mentioned before. In general the design of both implementations may vary signif-

icantly. If the developer does a careful design, parallelism can be exploited to a full extent in the multi-

operator implementation.

3.2. A Multi-Operator Implementation of the PBSM Algorithm

To provide a detailed example application of the multi-operator method, we will now discuss, how

the PBSM algorithm from Subsection 2.3 can be redesigned and mapped to a multi-operator implemen-

tation (no details concerning the integration of PBSM into Paradise [35] are given in [36], but it seems

to be implemented by a new database operator). Of course, one goal of such a redesign should be to

allow as much parallelism as possible for the multi-operator implementation. Figure 2 shows on the right

side a multi-operator implementation of a simplified version of the PBSM algorithm. In the first step,

the key-pointer elements are generated for both inputs. These key-pointer elements are then partitioned.

It is necessary to have a common spatial partitioning for both input streams to be able to compute the

join by joining only corresponding partitions. The next operator joins the partitions and generates the

Figure 1: Multi-operator implementation of a UDP with implicit join

STEP K+2

JOIN (STEP K+1)
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candidate pairs. This corresponds to step [1.8] of PBSM. The second phase, refinement, starts with the

duplicate elimination. Then the next two operators fetch the exact geometries from disk using the OIDs.

Finally, the spatial join predicate is evaluated on the exact geometries for each candidate pair.

Several remarks w.r.t. the multi-operator implementation are in order. Our redesign did really sim-

plify the PBSM algorithm: there is no decision on the processing strategy based on the amount of tem-

porary data (cf. step [1.3] above). In a parallel processing scenario this is desirable, since it avoids a

blocking of the evaluation, until the decision is made. Furthermore, the refinement step was simplified

substantially, as there are no efforts to avoid random I/O. Though this will lead to higher resource

requirements for disk I/O, we believe it is much harder to avoid random I/O, if parallel evaluation is

used. There are also two major advantages of the overall design. First, pipelining parallelism can be

applied between all operators. Second, data parallelism can be used for all operators. Especially, the join

and the very expensive predicate in the refinement phase can be evaluated in parallel (see Figure 2).

When one compares this implementation with the original PBSM as described above, it is obvious

that all control structures (like conditional statements and loops, cf. steps [1.3] and [2.7] in Subsection

2.3) have been eliminated.As a direct benefit of this redesign, query parallelization as known from tra-

ditional relational DBMS is enabled and in addition the processing model of relational execution

Figure 2: Multi-operator implementation for a complex spatial join algorithm that
supports pipelining and intra-operator parallelism
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engines is matched perfectly. Thus it allows to implement efficient join algorithms for UDPs that can be

evaluated in parallel by existing object-relational execution engines.

4. Supporting the Multi-Operator Method in ORDBMS

The multi-operator method fits well into current system architectures. We want to point out here that

its implementation in a commercial ORDBMS requiresno changes of the core data base system. It is

only necessary to add a new interface to the current APIs (like embedded SQL, ODBC and JDBC) that

allows the execution of a query execution plan that is specified by the developer. In the following we

will argue why we believe that such an interface is useful for current DBMSs anyway.

We believe that there are several reasons why an interface that allows the specification and execution

of query execution plans is needed. We want to make clear that such an interface will only be used in

addition to SQL, not as a replacement. In our opinion this interface will typically be used by sophisti-

cated developers of third party software vendors that produce packaged applications like enterprise

resource planning software, geographic information systems, CAD software etc.

The first reason is that very often developers have the problem that they know an execution plan that

is better than the plan that is generated by the optimizer. There are many reasons for this situation like

for example erroneous selectivity estimation. Currently there is only the possibility to view the plan that

the optimizer has generated. If this plan is not the desired one, one can then try to manually transform

the corresponding SQL statement until one reaches a more satisfying result. This process can be both

time consuming and disappointing. There is a further shortcoming of this approach in practice. When

vendors upgrade their DBMS they often improve their optimizer somehow. While such improvements

may be beneficial for most queries they can degrade the performance of some others - maybe just the

important ones. Therefore developers face the problem that the optimizer might change the plan of the

‘tuned’ SQL query in the next release. Moreover the choice of the concrete execution plan might also

depend on database statistics and the settings of the various tuning knobs of the DBMS both of which

may vary from customer to customer. This makes it pretty hard to guarantee a good performance for a

specific query and to provide customer support. Obviously all these problems can be avoided if the exe-

cution plans are specified by the developer. On the other hand all these particular situations could be

taken care of by a comprehensive and sophisticated optimizer. However optimizer technology is not yet

there. Hence it can be seen as a conceivable step by some vendors to add support for this feature (cf. [1];

G. Lohman, personal communication).

The second reason for supporting query specification at the plan level is that the full power of the

query execution system cannot be unlocked by SQL. For example, it is well-known that in SQL sorting

can only be used in the outermost query block. This is sometimes too restrictive in practice [23]. When

developers can specify query execution plans directly they can go beyond these limits.

We believe that these points themselves justify the extension of the current APIs. The multi-operator

method adds just another reason, why such an interface is highly desirable. However, there is also a

drawback of this approach, if we add no further enhancements: without any query optimization, i.e.

when the query execution plans are executed exactly as specified by the developer, the plan is not auto-
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matically adapted to changes of the database like a drastically increased table size or changed value dis-

tributions. An improvement of this situation is to allow the DBMS the optimization ofsome, but not all

propertiesof a manually specified execution plan. For example one can allow the optimizer to remove

superfluous sort operators, or to optimize the join order, or to optimize the implementation methods of

the plan (e.g. switch from merge join to hash join), or to choose a different access path (using a table

scan instead of an index scan). In a rule-based optimizer like Cascades [13] this can be supported by

grouping the rule set into subsets. Then only some subsets of the whole rule set (for example only the

rules that eliminate superfluous sort operators) are activated when a manually crafted plan is optimized.

In this case, the developer must be enabled to specify which properties of the plan can be optimized.

Such specifications can be viewed as optimizer hints (see also [1]).

One could object that it is difficult for a developer to come up with a plan for a complex query like

one that involves many tables, many predicates and subqueries. However, the developer can always use

a query execution plan that is generated by the optimizer as a starting point. This plan can then be mod-

ified by the developer. For example, this allows to start with a join order that the optimizer considers as

good for a given database.

There are different possibilities how query execution plans can be specified. One possibility is to store

plans in tables (query explain tools of some vendors do this already [18]) and then allow developers to

update these plans and execute the modified ones. Graphical tools that visualize operator graphs and

allow their interactive manipulation are certainly desirable. Although interfaces for query execution

plans are not the focus of this paper, we describe the interface of our prototype that is based on a textual

description of operator graphs in Subsection 5.2.

5. Performance Evaluation

In this Section we will present initial performance measurements that indicate a significant perfor-

mance increase for the evaluation of complex UDFs according to the multi-operator method. Our exam-

ple is a query with a spatial join, similar to Subsections 2.2 and 3.2.

For our measurements we used the following environment:

• Hardware:
We performed our experiments using a SUN Ultra-2 workstation (model 2200) with 2 Ultra
SPARC-1 processors (200 MHz each), 1MB external cache, 512 MB main memory, and 2 SUN 4
GB hard disks.

• Software:
We conducted our initial performance measurements using our parallel ORDBMS prototype
MIDAS. MIDAS supports full intra-query parallelism on symmetric multi-processors (SMPs) and
networks of workstations and SMPs. Please refer to [31] and [3] for details.
To implement the different query execution plans for the spatial join we used an interface that
allows to describe query execution plans and that is described in Subsection 5.2. In addition we
defined and implemented some UDFs (using an interface similar to that of commercial ORDBMS).
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5.1. Experimental Scenario

We will demonstrate the performance of the multi-operator method for the example query from Sub-

section 2.2 that selects all pairs of overlapping polygons from a table with polygon geometries. We gen-

erated random data for our experiments due to two reasons. First, this eased control over our

experimental setting and second, we only wanted to demonstrate the benefits of the multi-operator

method. Especially, we were not focused on designing new algorithms for spatial joins. Thus using real

application data seemed not to be critical to our experiments.

We used 3 tables PG1, PG2, and PG3 that contained 1 000, 10 000 and 100 000 regular N-corners as

polygons. The polygons were generated with 3 random parameters: N (the number of corner points of

the polygon), the radius (distance of the corners to the center) and the location of the center in the 2

dimensional plane. The polygons of table PG2 were placed in a rectangle (our spatial universe) bounded

by the points (0, 0) and (100 000, 100 000). For the table PG1 we reduced the area of the spatial universe

by a factor of 10, for table PG3 we enlarged the area by a factor 10. Therefore, in the average the number

of polygons in an area of constant size is about the same for all tables. This results in a linear growth in

the number of overlapping polygon pairs in the three tables. The number of points per polygon was ran-

domly chosen between 3 and 98 with an average of about 50. The radius was chosen as 20 + N +r *

N; the value r is a random number between 0 and 1. This means that the more points a polygon had, the

larger its area. Table 1 provides some statistics about the three tables. As one can see, the number of

polygon pairs that actually do overlap increases roughly linearly with the cardinality of the table.

We stored the polygon data as a list of points in a VARCHAR data type and defined 3 tables PG1,

PG2, and PG3 to store the polygons together with an integer value as primary key:

CREATE TABLE PG1( INTEGER id PRIMARY KEY,
VARCHAR p_geometry)

The tables were stored on a single disk. We then implemented the UDFoverlaps(polygon1,

polygon2) that tests, whether the two argument polygons overlap. The function returns an integer

value of 1, if the two polygons overlap geometrically and 0 otherwise1. We used the C++-library LEDA

[30] for a rapid implementation of the geometric functionality.

To avoid including the time to display the result in the measurements, we simply counted the number

of result tuples. Given these explanations, our test query was simply the following, with Polygon_Table

being PG1, PG2, or PG3:

Test Query:

select count(*)
from Polygon_Table as a, Polygon_Table as b
where overlaps(a.p_geometry, b.p_geometry) = 1

The first implementation of the UDFoverlaps is straightforward: simply test whether the polygons

1.A Boolean return type would be more appropriate, but MIDAS currently does not support this.
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overlap using the exact geometry (the implementation uses a (slightly modified) plane-sweeping algo-

rithm from computational geometry provided by the LEDA library). In the following we will call this

functionexact_overlaps . Now we will explain how we tried to speed up the evaluation of theover-

laps predicate. The first step was to use a simple filter and refine scheme to improve the efficiency of

the implementation. The filtering step uses bounding boxes as approximations of the polygons. Bound-

ing boxes were represented by their lower left and upper right corner coordinates and were also repre-

sented as strings. We implemented this in the following function:

• filter_overlaps(polygon1, polygon2) :
Generate and overlap bounding boxes for the input polygons first, then overlap their exact geome-
tries, if necessary.

While filter_overlaps improves the performance of a single-operator implementation, it does

not support a multi-operator implementation based on the PBSM algorithm as described in Subsection

3.2. Thus we implemented three additional UDFs to provide suitable building blocks for the multi-oper-

ator method:

• bbox(polygon) :
Create a bounding box for a given polygon.

• bbox_overlaps(bbox1, bbox2):
Test whether two bounding boxes overlap.

• bbox_partition(bbox) :
Compute all buckets to which a given bounding box has to be copied.

The UDFbbox_overlaps does a relatively simple geometric test and is very inexpensive compared

to theexact_overlaps function for polygons. The partitioning functionbbox_partition divides

the spatial universe in B equally sized rectangular regions that we call buckets. The function then com-

putes all buckets, which a given bounding box overlaps. Since we divided both dimensions T times B is

equal to T2. The actual implementation has additional parameters not shown in the prototype of the func-

tion that define the data partitioning (e.g. the value T).

Now we are ready to describe the four implementations of the UDPoverlaps that we have

evaluated1:

Table 1: Statistics of the test data tables

table PG1 table PG2 table PG3

cardinality of table 1 000 10 000 100 000

disk space (KB) [clustered in B-tree] 736 6 464 71 584

avg(# corner points / polygon): 48.35 49.97 50.01

avg(area(polygon)) 31 276.7 32 689.8 32 754.3

# overlapping bounding boxes 1 188 12 144 121 460

# overlapping polygons 1 140 11 550 115 336
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• Plan A (naive implementation):
Execute the UDFexact_overlaps  on the Cartesian product .

• Plan B (filter and refine within a single UDF):
Execute the UDFfilter_overlaps  on the Cartesian product .

• Plan C (nested-loops join only with bounding boxes):
Generate the bounding boxes with the UDFbbox for both relationsa andb and store the bounding
boxes of the inner relationb temporarily together with the primary key column id. Then build the
Cartesian product of the result. Evaluate the UDFbbox_overlaps next. For all candidate pairs
retrieve the polygon data (via a B-tree) using a join on theid value and finally evaluate the UDF
exact_overlaps . Altogether plan C employs 4 UDFs in the plan:bbox (2x), bbox_overlaps
and exact_overlaps.

• Plan D (spatial partitioning and merge join):
Plan D extends plan C by using spatial partitioning for the bounding boxes by means of the function
bbox_partition . The bucket number is appended to each temporary tuple. This allows to join
the tuples that belong to corresponding buckets using a merge join on the bucket number. Thus the
functionbbox_overlaps is evaluated only on the set of all pairs of bounding boxes with the same
bucket number (and not on the complete Cartesian product like in plan C). Next the elimination of
duplicate candidate pairs is done and finally the UDPexact_overlaps is evaluated on the exact
geometries. Altogether plan C employs 6 UDFs in the plan:bbox (2x), bbox_partition (2x),
bbox_overlaps and exact_overlaps.

Please note that plans A and B are still traditional single-operator implementations, whereas plans C

and D are multi-operator implementations. Furthermore, the quality of the UDP implementation steadily

increases from the straightforward solution of plan A to the sophisticated solution of plan D, which is

very similar to the redesigned PBSM algorithm (cf. Subsection 3.2). These four plans were specified

using a textual notation that we describe in the following Subsection.

5.2. Textual Specification of Query Execution Plans in MIDAS

In MIDAS query execution plans can be specified in a text notation for internal test and debugging

purposes. However, one can also execute such plans from an application via the call level interface.

Figure 3 shows the textual description of plan C. Figure 4 presents the operator graph of this plan with

well-known terms for the operators. As can be seen in Figure 3, each node of the operator graph is lim-

ited by parentheses, has a unique label and contains the name of its operation and additional parameters.

An operator is either a bulk operator (that operates on a table like a restriction) or an item operator (that

operates on a tuple and serves to specify the functionality of a bulk operator - e.g. the predicate of a

restriction is specified by means of item operators). The sons of a node are nested within the description

of the node itself, which results in a LISP-like notation.

Next, we describe some of the operators that are shown in Figure 3. The SEL node represents the top

operator of SELECT queries. The GROUP operator does grouping and aggregation (the aggregate func-

tions are given as parameters of the node) and the TIMES operator builds a Cartesian product. The

1.We want to remark here that our prototype currently does not support real nested-loops joins, but is only able to perform a restriction after
forming the Cartesian product. But since the execution is demand-driven and tuple-at-a-time, the intermediate Cartesian product is not mate-
rialized. In addition, MIDAS does not support OIDs. For our tests, we replaced OIDs simply by the primary keyid .

a b×( )

a b×( )



13

RESTR operator performs a restriction, the REL operator does a relation scan (the table name is speci-

fied as a parameter). The EQ node specifies an equality predicate, the CONST node generates a constant

value of a specified data type and the ATTR node fetches an attribute value. One can refer to the

attributes of the input tuple of a parent node by means of the label of this node and the position of the

attribute within the tuple. The FUNC node allows to evaluate a (user-defined) function whose name is

given as parameter. Projections are done by the PROJ node that has a BUILD node as right son. The

sons of the BUILD node specify the attributes that appear in the output tuples of the PROJ node. A REL

node can also be used to describe an index scan, if it has an IVMK node as son. The latter serves to spec-

ify the key interval that must be accessed. The CORR node materializes an intermediate table and can

also be used to evaluate correlated subqueries.

Syntactic and semantic checks must

be done when the description of an

execution plan is parsed and trans-

formed into the internal representa-

tion of the DBMS. In MIDAS a part

of the routines that perform the

semantic checks for SQL state-

ments are simply reused for this

task. The text notation specifies the

structure of the operator tree, the

implementation methods for the

operators (e.g. the join methods)

and provides additional parameters

for the operators (for example, the

name of a UDSF). Additional

parameters that are needed for the

execution like the amount of main

memory that should be used for

sorting are set by the compiler based

on cost estimations or default val-

ues. The system can also convert the

execution plans of compiled SQL

statements into this textual format

to present them to developers.

Without optimizer hints an execu-

tion plan is executed ‘as is’ by the

DBMS. However, the developer can also specify that the following optimization phases should be

applied to the plan: join ordering, transformation of subqueries to joins (if possible), sort elimination,

optimization of projections, optimization of local restrictions, index access, use of temporary tables, and

(N1:sel   { no_update }
   (N2:group { count[*] }
      (N3:restr
         (N4:times
            (N5:times
               (N6:proj
                  (N7:restr
                     (N8:times
                        (N9:proj
                           (N10:rel   { pg1 } )
                           (N11:build
                              (N12:attr  { N9[1] } )
                              (N13:func  { ‘bbox’ }
                                 (N14:attr  { N9[2] } )   )))
                        (N15:corr
                           (N16:proj
                              (N17:rel   { pg1 } )
                              (N18:build
                                 (N19:attr  { N16[1] } )
                                 (N20:func  { ‘bbox’ }
                                    (N21:attr  { N16[2] } ) )))))
                     (N22:eq
                        (N23:func  { ‘bbox_overlaps’ }
                           (N24:attr  { N7[2] } )
                           (N25:attr  { N7[4] } ) )
                        (N26:const { 1 integer } ) ))
                  (N27:build
                     (N28:attr  { N6[1] } )
                     (N29:attr  { N6[3] } ) ))
               (N30:proj
                  (N31:rel   { pg1 }
                     (N32:ivmk  { eq }
                        (N33:attr  { N5[1] } ) ))
                  (N34:build
                     (N35:attr  { N30[2] } ) )))
            (N36:proj
               (N37:rel   { pg1 }
                  (N38:ivmk  { eq }
                     (N39:attr  { N4[2] } ) ))
               (N40:build
                  (N41:attr  { N36[2] } ) )))
         (N42:eq
            (N43:func  { ‘exact_overlaps’ }
               (N44:attr  { N3[3] } )
               (N45:attr  { N3[4] } ) )
            (N46:const { 1 integer } ) )))
)

Figure 3: Textual specification of plan C in MIDAS
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optimization of data modification commands. These options add much flexibility for developers. We

want to mention here that this interface was already available in TransBase, the commercial system that

served as base for the MIDAS development [41].

The parallelization approach of MIDAS [31] is operator-based. This means that data parallelism,

independent parallelism, and pipeline parallelism can be introduced by integrating specific SEND and

RECEIVE operators into the plan that manage the data partitioning, i.e. split and combine data streams.

The parallelization can be done by the parallelizer of the DBMS itself (which is based on Cascades [13])

or the developer can specify this manually. The latter is done by inserting SEND and RECEIVE nodes

into the textual description of the sequential execution plan. The other operators do not have to be mod-

ified. For automatic parallelization the UDFs that are used in the multi-operator implementation have to

be registered with meta data that describes how they can be parallelized (see [23] for details).

5.3. Performance Results

We present now some initial performance results. With respect to the absolute execution times, please

note that we used our prototype database system and did not fine tune our UDF implementations. But

the relative performance measures should give a first impression of the performance gains.

In Table 2 we present the sequential execution times in seconds for all plans. The last row shows the

time that is needed to do the exact geometry processing for the candidate pairs (refinement). Some exe-

cution times are not available, since we did not evaluate plans with execution times higher than 100 000

seconds (nearly 28 hours). Several conclusions can be drawn from Table 2: First, there are significant

performance increases for plans B, C, and D. Processing queries with expensive UDFs on large tables

in acceptable times obviously requires sophisticated implementations. Second, the multi-operator

method (plans C and D) allows to reduce the execution time drastically. Especially, it allows to reduce

σ : BBOX_OVERLAPS( ... )

SCAN ON PG1 SCAN ON PG1

CARTESIAN PRODUCT

π : GEOMETRY

INDEX SCAN ( PRIMARY KEY) ON PG1

π : GEOMETRY

FETCH

FETCH

π : PRIMARY KEY, BBOX π :  PRIMARY KEY, BBOX

σ : EXACT_OVERLAPS

INDEX-NL-JOIN

INDEX-NL-JOIN

π :  PRIMARY KEYS

TOP

AGGREGATION: COUNT *

Figure 4. Operator graph of plan C

INDEX SCAN ( PRIMARY KEY) ON PG1
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the complexity of the join operation from quadratic to near linear complexity, O(N *log(N)), as can be

seen for plan D. In plan D nearly all execution time is needed for the processing of the exact geometries.

Given the times for exact geometry processing, we can see that the overall execution times for plans B

and C still grow quadratically (i.e. they grow by a factor 100 when we move to a table that has 10 times

more tuples), if the overall execution time is dominated by the join costs. Since plan D uses spatial par-

titioning, the asymptotic complexity of the plan is determined by the merge join, i.e. it is only O(N

*log(N)). Thus the increase in the execution times is much slower. Since the total execution time of plan

D for the test tables is dominated by the time for refinement, the overall increase of the execution time

is roughly linear.

Table 3 demonstrates directly that the spatial partitioning allows to reduce the complexity of the join

operation from quadratic to near linear complexity. It shows the effect of different numbers of buckets

for the spatial partitioning on the number of replicated polygons and the execution time for plan D. In

addition we computed the execution time minus the time for refinement. As can be seen, the execution

time decreases, until the number of buckets approaches the number of polygons in the table. The execu-

tion time of plan D without refinement is reduced roughly linearly with an increasing number of buckets,

until the number of polygons per bucket is small. This is what we expected, as corresponding buckets

are joined with a nested-loops join. Therefore, if the number of buckets is increased by a factor K, the

time to join two buckets is reduced by K2, since the number of tuples in a bucket is reduced by a factor

of about K. Only if more buckets than polygons are used and the number of replicated polygons

increases, the overall execution time increases slightly. This is not surprising, since most of the time is

needed for exact geometry processing in these cases.

In Table 4 we present the effect of parallelism on the execution time. We executed plans B, C, and D

with a degree of parallelism of 2 for the nested-loops/merge join and the restriction by

exact_overlaps . Parallelization could be achieved as usual, i.e. for the nested-loops join by splitting

one input into 2 partitions and by replicating the other input and for the merge join by splitting both

inputs into 2 partitions using the join attribute (i.e. the bucket number). Then the restriction with

Table 2: Performance results of different sequential plans of the test query (time in sec.s)

sequential execution of plan table PG1 table PG 2 table PG3

A 13582.6 not avail. not avail.

B 430.9 41663.1 not avail.

C 50.8 3388.8 not avail.

Da

a. Please note that for plan D the results shown in Table 2 are for the spatial partitioning that yielded the lowest execution
time from Table 3.

17.6 189.6 1908.6

D (time without refinement) 0.6 6.5 96.2

D (time for refinement only) 17.0 183.1 1812.4
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exact_overlaps was evaluated on both resulting partitions. Since the execution is always CPU bound

and we used all processors of our machine, the maximum obtainable speedup is slightly less than two,

because the operating system uses some CPU resources. For sequential execution this operating system

overhead can be handled by the CPU that is not used for query processing. As one can see from the

speedup (shown in the shaded rows), all plans were able to profit from parallel execution, as we

expected, since the execution is CPU bound. The speedup is decreasing from plan B to D, since the exe-

cution becomes less CPU-bound and I/O parallelism was not fully exploited during these tests. We did

not evaluate plan A in parallel, as this plan is anyway not usable.

These initial performance results show clearly the impressive performance gains that are possible

with the multi-operator method (plan D compared to the single-operator implementation plan B). In

addition, the results show that parallelism can be applied to the multi-operator implementations in the

usual way to speed up processing further, i.e. by means of data parallelism and pipelining.

6. Related work

User-Defined Functions (UDFs) have attracted increasing interest of researchers as well as the indus-

try in recent years (see e.g. [1], [7], [15], [16], [24], [27], [32], [34], [38], [40]). However, most of the

work discusses only the non-parallel execution of UDFs, special implementation techniques like cach-

ing, or it is directed towards query optimization for UDFs. In [34] pipeline parallelism for functions as

well as intra-function parallelism are proposed, but no details of a framework for the implementation of

these concepts are given. In [35] support for the parallel implementation of ADTs and UDFs in the area

of geo-spatial applications is discussed. It is remarked that in this area complex multi-step operations

Table 3: Impact of number of buckets and replication on performance of plan D
(response time in sec.s)

# buckets

PG1:
number

of
replicated
polygons

PG1:
execution
time for
plan D

PG1:
exec. time
for plan D

without
refinement

PG 2:
number of
replicated
polygons

PG 2:
execution
time for
plan D

PG 2:
exec. time
for plan D

without
refinement

PG 3:
number of
replicated
polygons

PG3:
execution
time for
plan D

PG3:
exec. time
for plan D

without
refinement

1 0 53.9 36.9 0 3 696.8 3 513.7 0 not avail. not avail.

4 11 26.5 9.5 38 1 073.5 890.4 143  90 172.8 88 360.4

16 37 19.6 2.6 125 412.9 229.8 423 24 078.4 22 266.0

64 100 17.9 0.9 310 245.2 60.6 973 7 402.7 5 590.3

256  221 17.6 0.6 678 202.7 19.6 2 107 3 317.2 1 504.8

1 024 489 17.6 0.6 1 445 192.1 9.0 4 419 2 311.1 498.7

4 096 1 132 17.6 0.6 3 080 189.6 6.5 9 100 2 037.1 224.7

16 384 2 628 17.9 0.9 6 652 189.7 6.6 18 904 1 962.0 149.6

65 536 7 155 18.7 2.7 15 308 191.8 8.7 39 975 1 908.6 96.2

262 144 21 666 21.0 4.0 38 249 192.5 9.4 87 068 1 996.0 183.6
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are commonplace. Also special new join techniques [36] and other special implementation techniques

have been proposed, but no approach that allows the execution of such special techniques in current

ORDBMS was mentioned.

In [24] E-ADTs are proposed as a new approach for the architecture of ORDBMS. An ORDBMS is

envisioned as a collection of E-ADTs (enhanced ADTs). These E-ADTs encapsulate the complete func-

tionality and implementation of the ADTs. Especially all knowledge about the query language, its opti-

mization and the execution engine are encapsulated in the E-ADT. All E-ADT implementations are

linked via common interfaces. Furthermore the implementation of new E-ADTs can use a common

library with base services, e.g. for storage management. We believe that this is an interesting approach

that is in general more ambitious than the multi-operator method discussed here, but parallel execution

is not examined for E-ADTs. Basically it should be possible to use multi-operator implementations also

within the E-ADT approach. While the multi-operator method might be useful for the E-ADT approach,

in addition and in contrast to the E-ADT approach it fits very well to the architectures of current com-

mercial ORDBMS.

In [23] a framework for parallel processing of user-defined scalar and aggregate functions in

ORDBMS is proposed. This framework allows to specify for a given operator, whether data parallelism

can be used for evaluation. If data parallelism is applicable, the developer has to specify, which parti-

tioning functions are allowed. For aggregate functions, an implementation in two plan operators is pro-

posed to support parallelism (cf. [38] for a similar approach). Additionally, the possibility to specify

sorting as a preprocessing step is introduced. While these measures provide some limited support for the

parallel execution of user-defined functions that have a global context (like aggregation), the multi-oper-

ator method supports efficient and parallel execution for much more user-defined functions. Therefore

the multi-operator method should be seen as a further generalization and important supplementation of

[23]: The possibility to use several operators allows the developer to separate different parts of the

implementation. This will often allow to use data parallelism for the individual parts, though a data par-

Table 4: Performance results for parallel processing of plans B, C, and D (time in sec.s)

plan degree of parallelism table PG1 table PG 2 table PG3

B 1 430.9 41 663.1 not avail.

B 2 218.6 22 129.4 not avail.

speedup - 1.97 1.88 not avail.

C 1 50.8 3 388.8 not avail.

C 2  28.0 1 848.4 not avail.

speedup - 1.81 1.83 not avail.

D 1 17.6 189.6 2 037.1

D 2  11.2 111.1 1 094.3

speedup - 1.57 1.70 1.86
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allel execution might not be possible for a complex single-operator implementation with external effects

or a global state.

7. Summary

In this paper we have proposed the multi-operator method as a new technique for the integration of

algorithms for the efficient evaluation of user-defined functions. The goal of this method is to provide a

general implementation method that enables developers to implement efficient algorithms for complex

UDPs and execute them in ORDBMS. The main advantage of the multi-operator method is that in order

to support new database operations it is only necessary to write a few UDFs and place them in a database

operator graph. The alternative for developers would be to write a new specialized database operator (a

much more difficult task). However, this is not possible in current ORDBMS and currently there seems

also to be no appropriate technology for this. Hence the multi-operator method is in our view a feasible

and practical method that can be used without changes of the current ORDBMS core systems. The

multi-operator method offers some important further advantages: the finer granularity of the implemen-

tation structure enhancesreuse, optimization,and especiallyparallelization. This support for parallel

execution is a significant advantage of the multi-operator method.

An important application of the multi-operator method are user-defined join algorithms that allow

highly efficient implementations of UDPs as our performance measurements have demonstrated. We are

not aware of any other approach to the user-defined implementation of joins that fits well to the current

technology of parallel ORDBMS.
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