
T U M
I N S T I T U T F Ü R I N F O R M A T I K

Evaluating Non-Square Sparse Bilinear Forms on
Multiple Vector Pairs in the I/O-Model

Gero Greiner Riko Jacob

ABCDE
FGHIJ
KLMNO

TUM-I1015
Oktober 10

T E C H N I S C H E U N I V E R S I T Ä T M Ü N C H E N

TUM-INFO-10-I1015-0/1.-FI
Alle Rechte vorbehalten
Nachdruck auch auszugsweise verboten

c©2010

Druck: Institut für Informatik der
Technischen Universität München

Evaluating Non-Square Sparse Bilinear Forms
on Multiple Vector Pairs in the I/O-Model

Gero Greiner and Riko Jacob

Technische Universität München

Abstract. We consider evaluating one bilinear form defined by a sparse
Ny ×Nx matrix A having h entries for w pairs of vectors. The model of
computation is the semiring I/O-model with main memory size M and
block size B. For a range of low densities (small h), we determine the I/O-
complexity of this task for all meaningful choices of Nx, Ny, w, M and
B, as long as M ≥ B2 (tall cache assumption). To this end, we present
asymptotically optimal algorithms and matching lower bounds. Moreover,
we show that this has essentially the same worst-case I/O-complexity as
multiplying the matrix A with w vectors.

1 Introduction

We consider the problem of computing w scalars z(i) = y(i)TAx(i), 1 ≤ i ≤ w,
where A is a sparse Ny ×Nx matrix with h non-zero entries, and all x(i) and y(i)

are (dense) vectors. This is highly related to the matrix vector products Ax(i),
1 ≤ i ≤ w, and we show that the complexity of both tasks in our model only
differs in reading the matrix up to w times. The evaluation of bilinear forms and
matrix vector products are important tasks in computational science: fields of
application include scientific computing, iterative linear system solvers, least-
squares problems, eigenvalue problems, data mining and web search. While, from
a traditional point of view, bilinear form and matrix vector product are easily
obtained with a number of multiplications equal to the number of matrix entries,
the sparseness sometimes induces irregular access patterns that lead to situations
where memory access becomes the bottleneck of computation. Empirical studies
show that for the naive algorithm, CPU-usage can be as low as 10% [6,9].

One way of dealing with this problem is the construction of algorithms where,
instead of CPU-cycles, the movement of data between layers of the memory
hierarchy is optimised. In this paper, we use a slight modification of the I/O-
model [1], the semiring I/O-model with the parameters M and B, denoting the
memory size, and the size of a block, see Section 2 for details. In this model,
Bender, Brodal, Fagerberg, Jacob and Vicari [2,3] determined the I/O-complexity
of computing the sparse matrix vector product for square matrices. These results
are generalised here to the case of non-square matrices. Furthermore, we extend
these results to the evaluation of multiple products, i.e., the matrix vector
products of multiple vectors with the same matrix. Considering the evaluation
of matrix vector products on multiple vectors is a step towards closing the gap

1

1. INTRODUCTION

between sparse matrix vector multiplication and sparse matrix dense matrix
multiplication since the set of w vectors x(i) constitutes a dense Nx×w matrix X.

The hardness of computing a bilinear product directly implies a similar
hardness for computing a matrix vector product because an algorithm for the
matrix vector product can be used to derive the bilinear form directly. The
converse can also be made precise: one can extract from an I/O-efficient algorithm
for the bilinear product a similarly I/O-efficient algorithm for the matrix vector
product. This is used to simplify some expositions.

Related work Evaluating the matrix vector product Ax for an N×N matrix A
with kN entries has been investigated in [3]. They show that the I/O-complexity
of this task for matrices in the so called column major layout, as will be defined
in Section 2, is Θ

(
min

{
kN
B logM

B

N
max{M,k} , kN

})
1, and for a layout chosen by

the program it is Θ
(

min
{
kN
B logM

B

N
Mk , kN

})
.

The multiplication of two dense matrices has been examined by Hong and
Kung in [5], showing a bound of Θ

(
N3

B
√
M

)
on the number of I/Os. Very recently,

in [4] the multiplication of a sparse matrix with a dense matrix was considered.
For sparse N ×N matrices with kN entries, it is shown that for certain ranges of
k, the performance can be increased by finding denser than average submatrices
of A. More precisely, a submatrix does not have to consist of a consecutive part of
the matrix, but is defined by the entries aij of A that belong to both, a set of row
indices Sr and a set of column indices Sc. It was proven that such submatrices
exist with a certain density greater or equal to a threshold δ, and that there are
matrices without any submatrices of higher density than δ.

The evaluation of bilinear forms in the I/O-model has been considered as an
optimisation problem in [7]. There it has been shown that an optimal program
for the evaluation of matrix vector products is NP-hard to find, even for B = 1.
In [8], the I/O-complexity of evaluating the bilinear form for a (non-square)
Ny ×Nx matrix with h entries that form a diagonal band, i.e., entries are only

placed near the diagonal, is determined to be Θ
(

h
BM + Nx+Ny

B

)
.

Our results In this work, we consider the case where the number of entries for
almost all submatrices in A is proportional to the number of rows and columns
of the submatrix. This is possible if the average number of entries per column
in A is some k ≤ Ny

M1−εNεx
with constant ε > 0. For such k, a modification of the

proof of [4] shows that the I/O-complexity of AX for any w ≥ B is Θ
(
wh
B

)
. This

will be stated in Section 6.3. As a lower bound, the proof directly extends to
the case of multiplying a sparse matrix with w vectors, even if the program is
allowed to choose the layout of the vectors.

The case of w ≤ B is examined here in detail, forming a bridge between the
results of [3] and [4]. For matrices of the described density (h/Nx ≤ Ny

M1−εNεx
), we

cover all dimensions of A, and parameters B, M and w ≤ B. However, for all

1 logb(x) := max{logb(x), 1}

2

1. INTRODUCTION

other choices of h, we present upper bounds in form of algorithms. For certain
cases where B/w is small the algorithms are indeed optimal for all ranges of h.

Furthermore, we show that evaluating the bilinear form has almost the same
I/O-complexity as multiplying vectors with the same matrix.

Theorem 1. Given a matrix A with fixed layout and fixed parameters M and B.
Evaluating w bilinear forms with A has the same semiring I/O-complexity as
evaluating the matrix vector product of A with w vectors if at least ` = Ω

(
hw
B

)
I/Os are required.

This result is explained in Section 4 and allows us to extend the results
from [3] to matrices in row major layout, i.e., where the entries are given in
external memory in a consecutive ordering by their row index, and their column
index to break ties. Moreover, our main results hold for bilinear forms and matrix
vector products, both, in column major and row major layout. Note that for
Theorem 2, the dimensions Nx and Ny have to be swapped if A is given in row
major layout.

For the complexity of the task, we are going to prove the following theorems
depending on the layout of the matrix A. Similar to [4], our bounds are only
asymptotically tight if we assume a tall cache, i.e., M ≥ B2. However, this is
only necessary to transpose X for some of the presented algorithms.

Our results for the case that the matrix A is stored in column major layout,
are given in the following theorem.

Theorem 2. Given an Ny×Nx matrix A with h entries in column major layout
and parameters M , B. Assume M ≥ 4B, h/Nx ≤ N ε

y, and logNx ≤ N ε
y for

some 0 < ε < 1. Then, evaluating w bilinear products with A has (worst-case)
complexity in the semiring I/O-model

Θ

(
min

{
h ,

h logNy
logNx

,
h

B
logM

B
min

{
Ny
M
,
NxNy
h

}
+
hw

B
logM

B

NxNy
hM

})
unless this term is asymptotically smaller than hw

B .

The lower bounds are obtained by a modification of the proof in [3] for a
single matrix vector multiplication, also keeping track of the different matrix
dimensions. Additionally, the lower bounds of Theorem 3 apply which yields the
second term of the sum.

On the algorithmic side, for very asymmetric matrices A, where the number
of columns is much higher than the number of rows, building a table of tuples
of elements of the y vectors can be superior to the direct algorithm. The direct
algorithm simply scans over A and loads for each aij the corresponding vector
elements x(1)

j , . . . , x
(w)
j and y

(1)
i , . . . , y

(w)
i to create products.

In [3], an algorithm is presented based on sorting the matrix entries to build
row sums. This sorting approach can be used to initially change the layout of A
to the best-case layout. Then, the sorting algorithm for best-case layout can be
applied for one vector pair after another.

For the best-case layout, i.e., if the algorithm is allowed to choose the layout
of the matrix, the following theorem holds.

3

1. INTRODUCTION

Theorem 3. Given an Ny×Nx matrix A with h entries in best-case layout and
parameters M , B. Assume M ≥ 4B, w ≤ B

20 , and h/Nx ≤ 6
√
Ny for Ny ≤ Nx.

Then, evaluating w bilinear products with A has (worst-case) complexity in the
semiring I/O-model

Θ

min

h , h log
(
NxNy logNx

BhM

)
logNx

,
hw

B
logM

B

NxNy
hM




unless this term is asymptotically smaller than hw
B .

The algorithms are similar to the ones for column major layout. The second
term of the complexity is met by an algorithm that creates tuples of vector
elements in the beginning, and then reads the matrix in tiles. The last term of
the minimum is a simple extension of the sorting algorithm in [3].

The lower bound instead has to be derived in a slightly different manner.
While one can simply adapt the lower bound of [3] to non-square matrices,
considering multiple vectors makes it more difficult. To tackle this, only the
vector x(i) that contributes the least I/O volume is considered.

All our algorithms require at least hw/B I/Os. In contrast, we do not know
a corresponding lower bound that would hold for all choices of the parameters.
However, if the dimensions are polynomially bounded in each other (which is
expressed using a condition on the density in the lemma), the results of [4] can
be extended to obtain a lower bound of Ω (hw/B) by the following lemma.

Lemma 1. Let A be a sparse Ny × Nx matrix with h non-zero entries for
Nx ≥ Ny. For an average number of entries per column h/Nx ≤ Ny

M1−εNεx
with

constant ε > 0, evaluating w bilinear products over a semiring requires Ω
(
hw
B

)
I/Os unless h < 32M

εw + 2M .

The proof of this lemma can be found in Section 6.3. Hence, for a Ny × Nx
matrix A with h = ω (M) non-zero entries, for Nx ≥ Ny but N2ε

x ≤ Ny, and
average number of entries per column h/Nx ≤

√
Ny/M , a lower bound of

Ω (hw/B) is given.

1.1 Outline

The outline of the paper is as follows: In Section 2, the model of computation is
introduced along with the terminology used in this paper. This is followed by the
necessary (technical) lemmas used in the proofs. In Section 4, it is proven that
bilinear forms and matrix vector product have essentially the same complexity.
The main results are then proven by providing (optimal) algorithms for upper
bounding the complexity in Section 5 and up to constant factors matching lower
bounds in Section 6.

4

2. MODEL OF COMPUTATION

2 Model of Computation

We use a combination of the I/O-model described in [1] and the model used
in [5], the so called semiring I/O-model introduced by Bender, Brodal, Fagerberg,
Jacob and Vicari in [3]. It models two layers of memory hierarchy, namely a slow
memory of unbounded size and a fast limited memory where calculations can be
performed. Programs are assumed to work for an arbitrary semiring.

Definition [3] The semiring I/O-machine consists of an internal memory which
can hold up to M elements at a time, and an external memory (aka disk) of
unbounded size which is organised in blocks (aka tracks) of B elements. The num-
bers constituting input, output and intermediate results are assumed to belong
to a commutative semiring S = (S,+, ·), i.e., a set S with operations addition
(+) and multiplication (·) that are associative, commutative, and multiplication
is distributive over addition. Further, there is a neutral element 0 for addition, 1
for multiplication and 0 is annihilating with respect to multiplication. In contrast
to rings and fields, inverse elements are neither guaranteed for addition nor for
multiplication, i.e., there is no subtraction or division. The current configuration
of a machine is described by the content M = (m1, . . . ,mM), mi ∈ S of internal
memory, and an infinite sequence of blocks ti ∈ SB , i ∈ N representing external
memory. The positions in internal and external memory will be denoted as cells.
An operation is a transformation of one configuration into another, which can be
one of the following types

• Computation: perform either an algebraic operation mi := mj +mk, mi :=
mj ·mk, set mi := 1, set mi := 0 (deletion) or assign mj := mi (copying).

• Input : move the elements of block ti from external memory to elements
mi1 , . . . ,miB inM for arbitrary i ∈ N, i1, . . . , iB ∈ [M]. Before the operation,
the elements in internal memory have to be mi1 = · · · = miB = 0, and after
the operation, the block ti is empty.

• Output : move elements mi1 , . . . ,miB of M to block ti for arbitrary i ∈ N,
i1, . . . , iB ∈ [M]. Before the operation, the block ti has to be empty, and
after the operation, mi1 = · · · = miB = 0 holds.

To the latter two, we also refer as I/O operations or simply I/Os.
Using this, we define a program P as a finite sequence of operations. The

number of I/O operations describes the I/O costs of P . For the lower bounds we
use the non-uniform notion that an algorithm is a family of programs where the
program can be chosen according to the parameters underlying the problem. In
particular, for matrix multiplications, the parameters are the dimensions, the
sparseness, the conformation of the matrix A, i.e., the position of the non-zero
entries in A, the memory size M and the block size B.

The input of a program is specified by the input variables x(i)
j , aij and y

(i)
j ,

with 1 ≤ i ≤ w, 1 ≤ j ≤ Nx, 1 ≤ k ≤ Ny. If an element p is operand of an
algebraic operation with result p′, we call p a predecessor of p′ and p′ a successor
of p. We extend this notation to the transitive closure such that any element
p used to derive p′ after several operations is called predecessor and p′ is its

5

3. MATH

successor. By the non-uniform nature of an algorithm, we can assume that all
intermediate results are predecessors of an output value (also called final result).
The requirement that a program must work for an arbitrary semiring allows
us to describe any intermediate result as a polynomial over input variables.
These polynomials can be normalised to be a sum of monomials, i.e., products
of variables multiplied by a natural number. The absence of inverse elements
induces that the set of variables of the polynomial describing p is a subset of the
variables of all successors. Similarly, if some product a · b is part of one of the
monomials of p, then this will be the case for all successors of p.

We use the notation [N] = {1, . . . , N} in order to classify all intermediate re-
sults in the following. Products of the form ajkx

(i)
k , y(i)

j ajk, x(i)
k y

(i)
j and y(i)

j ajkx
(i)
k ,

for 1 ≤ i ≤ w, j ∈ [Nx], k ∈ [Ny], are referred to as elementary products. Sums
of the form

∑
k∈Sx ajkx

(i)
k ,

∑
j∈Sy y

(i)
j ajk, and

∑
j∈Sy

∑
k∈Sx y

(i)
j ajkx

(i)
k , with

1 ≤ i ≤ w, Sx ⊆ [Nx] and Sy ⊆ [Ny], are called partial sums. Altogether, the
term canonical partial result refers to any of these forms. In the case of a matrix
vector multiplication only the first such form can arise as detailed in [3]. For the
case of evaluating a bilinear form, the distributive law can be useful, and some
additional arguments are necessary. First, observe that no intermediate result
that uses input from different pairs of vectors can be useful. Further, monomials
with coefficient > 1 or with more than one x(i)

k , y(i)
j , or ajk, are useless. The same

is true if there is a mismatch in row or column between matrix coefficient and
vector element. Hence, all monomials must be elementary products. Further, any
polynomial with at least two monomials that are elementary products of different
type will continue to have this property and are disallowed. Also a non-trivial
sum of at least monomials of type x(i)

k y
(i)
j is useless because it eventually has to

be multiplied with some ajk which would lead to some mismatching monomials.
Since we can assume that every program requires at least one I/O, when

writing complexity using O, Θ, or Ω at least 1 is meant.

3 Math

The observations and lemmas in this section can be found, or are extensions of
lemmas in [3] and [4].

Observation 1 For 0 ≤ x ≤ 1/2, it holds that ln(1− x) ≥ −2x.

Proof. Consider f(x) = ln(1− x) + 2x. Observe f(0) = 0 and f ′(x) = −1
1−x + 2 =

1
x−1 + 2 ≥ −1

1/2 + 2 = 0. Hence, f(x) ≥ 0 for 0 ≤ x ≤ 1/2. ut

Observation 2 For 0 < a ≤ e, for any x > 0 it holds x ≥ a lnx.

Proof. The first derivation of f(x) = x− a lnx is f ′(x) = 1− a/x. Hence, x = a
is an extremal point with function value f(a) = a− a ln a ≥ 0 since ln a ≤ 1. The
second derivation yields f ′′(x) = 2a/x which is strictly positive for all values of
a, x ≥ 0. Thus, the extremal point is a minimum. ut

6

3. MATH

Observation 3 For x ≥ y ≥ 1 it holds(
x

y

)y (a)

≤
(
x

y

)
(b)

≤
(
ex

y

)y
.

Proof. Inequality (a) is obvious since x−i
y−i ≥ x

y holds for all i ≥ 0. Inequality (b)
is given by Stirling’s Inequality weakened to y! ≥

(
y
e

)y and x!
(x−y)! ≤ xy. ut

Observation 4 For n ≥ k ≥ a ≥ 1 it holds(
n

k

)
≥
(
n− k
k

)a(
n

k − a

)
.

Proof. By definition of binomial coefficients(
n

k

)
·
(

n

k − a

)−1

=
n!(n− k + a)!(k − a)!

(n− k)!k!n!
=

a∏
i=1

n− k + i

k − a+ i
≥
(
n− k
k

)a
.

ut

Observation 5 For D, f, x ≥ 0, the inequality D ln fD > x is fulfilled if D >
2x

ln 2xf .

Proof. Substituting D yields

D ln fD >
2x

ln 2xf
ln
(
f

2x
ln 2xf

)
≥ 2x

ln 2xf
ln
√

2xf = x

where we use
√

2xf ≥ 2 ln
√

2xf given by Observation 2. ut

Lemma 2. Let b ≥ 2 and s, t > 0. For all positive real numbers x, we have
x ≥ logb(s/x)

t ⇒ x ≥ 1
2

logb(s·t)
t .

Proof. See Lemma B.2 in [3].

Lemma 3. Assume 2 log kNx ≥ B
w log 6M

B , Ny ≤ Nx ≤ N2
y , k ≤ 6

√
Ny, B ≥ 2,

1 ≤ w ≤ B
20 and M ≥ B2. Then for Nx ≥ 230, it holds wNy

eBkM > 15
√
Ny.

Proof. By M ≥ B2 and B ≥ 2, we have log 6M
B ≥ log 12 > 3. Thus B

w ≤
2 log kNx
log 6M

B

≤ 4
3 logNx ≤ 4

3
6
√
Nx for Nx ≥ 230.

To see the claim, we rewrite the first assumption as (kNx)2w/B ≥ 6M
B .

With B
w ≥ 20, and k ≤ 6

√
Ny we get:

√
M ≤ M

B ≤ 1
6 (kNx)2w/B ≤ 1

6N
13/60
y .

Hence, together with B
w ≤ 4

3
6
√
Nx ≤ 4

3
3
√
Ny, we have wNy

eBkM ≥ 27N2/3
y

e 6
√
NyN

13
30
y

≥
15
√
Ny .

ut

7

4. TRANSFORMATIONS

4 Transformations

In this section, we discuss how a program that evaluates bilinear forms can be
transformed into one that computes matrix vector multiplications. In this, the
operations that create elementary products play an important role. We say that
an operation (it must be a multiplication) creates an elementary product, if
the elementary product is one of the monomials of the result, but not part of
any monomial in the direct predecessors. One multiplication can create many
elementary products, but the total number of such operations is limited by the
total number of elementary products. This relies upon the following Lemma,
which is easy to prove.

Lemma 4. In a normalised semiring I/O program evaluating a bilinear form on
multiple vector pairs, no elementary product is created twice.

Proof. In a normalized program, every elementary product that is ever created
will become part of one of the w final results. If two intermediate results that
both contain the same elementary product are added or multiplied, the result is
useless. Hence, no correct normalized program can produce the same elementary
product twice. ut

For the proof of Theorem 1, we present transformations in both directions in
the following lemmas. Note that the layout of the matrix A is not of concern, it
just has to be the same for both tasks.

Lemma 5. If the matrix vector products Ax(i) for 1 ≤ i ≤ w can be computed
for an arbitrary semiring with ` I/Os, then the bilinear forms y(i)TAx(i) can be
evaluated with at most 2`+ 1 I/Os.

Proof. For each single vector pair x(i),y(i), the bilinear product is computed by
multiplying y(i) with the corresponding result vector c(i) = Ax(i). Thus, one
additional scan of the blocks of y(i) that corresponds to the non-zero entries
of c(i) suffices. Because the algorithm at least wrote each c(i), this scanning of y(i)

for each 1 ≤ i ≤ w takes certainly no more than an additional ` I/Os. Together
with writing the results, the bilinear forms are evaluated with at most 2` + 1
I/Os. ut

Lemma 6. If the bilinear forms y(i)TAx(i), 1 ≤ i ≤ w can be evaluated in the
semiring I/O-model with internal memory size M and block size B using ` I/Os,
then the w products c(i) = Ax(i) can be computed using 2`+ d4wh/Be I/Os with
internal memory size M +B and block size B.

Proof. Let P be a program to evaluate the w bilinear forms using ` I/Os. By
Lemma 4, there is a program P̂ for the same task, which computes only canonical
partial results and avoids producing an elementary product more than once, with
at most ` I/Os.

We can then use P̂ to construct a program for the matrix vector products.
This construction is based on the following idea. During a simulation of P̂ ,

8

4. TRANSFORMATIONS

canonical partial results can be extracted, and written to external memory. In a
second phase, P̂ is simulated time-reversed, as will be described later on, and
the movement of y(i)

j variables in P̂ can be used to lead the previously extracted
results to the corresponding dimension in y(i). In the end, the memory cells,
where y(i) is expected for P , constitute c(i).

Construction For the first phase, we create a program
−→
P for the semiring I/O-

machine with internal memory size M +B. We use the first M cells in memory
for a simulation of P̂ , and reserve the last B cells (mM+1, . . . ,mM+B) =: B for
further output operations. Let p be the maximal index of a block in external
memory that is accessed by P̂ . During

−→
P , the i-th output of elements in B will

be written to block tp+i.
During the simulation of P̂ , the following additional operation is performed.

Modification 1: If a computation σ in P̂ performs a multiplication of an element
mr consisting of some y(i)

j , i.e., mr = y
(i)
j , mr = y

(i)
j x

(i)
k , or mr =

∑
j∈S y

(i)
j ajk

for S ⊆ [Ny], with an element ms then ms is copied into an empty position of B
immediately before σ is performed. For further analysis, we call a copy operation
created by Modification 1 a snapshots and σ its associated operation. If B is full
after a snapshot operation, i.e., no element in B is 0, an output of B is performed
after the associated operation.

The program
−→
P is executed with input A and x(i), 1 ≤ i ≤ w as given, but all

vectors y(1) = · · · = y(w) = (1, . . . , 1). For each elementary product y(i)
j ajkx

(i)
k

created in P̂ , there are at most two elements copied to B (the corresponding x(i)
k

and ajk). Recall that in P̂ elementary products are only created once. Since there
are at most wh complete elementary products of the form y

(i)
j ajkx

(i)
k necessary,

−→
P performs no more than `+

⌈
2wh
B

⌉
I/Os.

For the second phase, we have to time-reverse
−→
P . Additionally, we remove all

elements in the simulation of P̂ that do not consist of a polynomial containing
some y(i)

j . By definition, an input becomes an output when time is inverted, and
vice versa. Hence, we only have to define how to handle computation operations.
To this end, each copy operation of P̂ that sets mr := ms becomes a sum
operation ms := ms +mr in the time-reversed program

←−
P . Each sum operation

mq := mr+ms in
−→
P becomes a copy operation mr := ms := mq in

←−
P . Operations

of
−→
P that set a cell to 0 or 1 can simply be ignored in

←−
P , i.e., nothing has to be

created.
The additional copy operations introduced in

−→
P are only made when some

y
(i)
j is involved in a computation operation σ. Considering the different cases of

computation operations, the elements that where extracted in
−→
P can now be

copied, multiplied, or added into one of the cells that are accessed by σ. For each
operation σ that is associated to a snapshot, the corresponding snapshot element
s is by construction in B before σ should be performed in

←−
P . Say σ is of the

form mq := mr ·ms and mr is a polynomial containing y(i)
j in

−→
P . Modification 2:

Then, instead of σ, s is copied into mr. Additionally, the operation mr := mr ·mq

9

4. TRANSFORMATIONS

is performed. Note that this describes all remaining multiplication operations
after removing partial results of P̂ that do not consist of monomials including
some y(i)

j .

After the run of
−→
P as described above,

←−
P is run where each of the input

elements z(i) is considered as 1. This finishes the second phase and the result
vector c(i) can be found at the positions of y(i) in external memory for 1 ≤ i ≤ w.

Correctness Note that in a normalised program canonical partial results never
contain input variables from different vector pairs. Hence, it suffices to consider
the operations of each vector separated.

In the following, we denote a cell mr that contains y(i)
j in

−→
P as y(i)

j -container

in
←−
P . Observe, that if an elementary product is written into an y

(i)
j -container

in
←−
P , it will finally be contained as a summand in the initial position of y(i)

j in

external memory. Since mr is an input variable in
−→
P , there is no other algebraic

operation performed with it before. It can only result from a direct input of y(i)
j

or be a copy of it. In case it was copied in
−→
P , it is simply summed up with other

results in the time-inverted
←−
P . Eventually, with the initial input of y(i)

j in
−→
P ,

i.e., its final output in
←−
P , the sum of elementary products is written to the cell

where y(i)
j is expected as an input for P .

During P̂ , elementary products can either be created explicitly during an
operation, i.e., there is an element mq := y

(i)
j ajkx

(i)
k in internal memory, or

implicitly, caused by distributive law. If they are created explicitly, this can result
from a multiplication operation σ : mq := mr ·ms with

a) mr = y
(i)
j and ms = aijx

(i)
k ,

b) mr = y
(i)
j aij and ms = x

(i)
k , or

c) mr = y
(i)
j x

(i)
k and ms = aij .

The first case is the simplest one. By Modification 1, a snapshot of the elementary
product ajkx

(i)
k is made in

−→
P . In

←−
P , by Modification 2, this snapshot element is

copied into mr which is a y(i)
j -container. Since in

−→
P the result mq is eventually

summed with other results (if existent) to compose z(i), in
←−
P , mq is a copy of

z(i) = 1. Hence, the additional multiplication mr := mr ·mq will not modify mr.
For case b), there is a snapshot produced of x(i)

k in
−→
P by Modification 1. By

Modification 2, in
←−
P the snapshot element x(i)

k is copied into mr and not further
modified since mq = 1 holds. Since in

−→
P , mr contains the product y(i)

j ajk, there

is an operation σ′ : m′q := m′r ·m′s with m′r = y
(i)
j and m′s = ajk before σ in

−→
P .

Thus, there is a snapshot made of ajk during
−→
P by Modification 1. In

←−
P , the

snapshot element x(i)
k is traveling backwards, and before σ′, it holds m′q = x

(i)
k . By

Modification 2, instead of σ′, the snapshot ajk is copied into m′r. Then, m′q = x
(i)
k

is multiplied to m′r such that it now contains the elementary product ajkx
(i)
k .

10

5. ALGORITHMS

This elementary product belongs to c(i)j and is now in a y(i)
j -container. Case c) is

analogous to case b), but with roles of x(i)
k and ajk interchanged.

If the elementary products are not created explicitly, then there must be a
multiplication of mr = y

(i)
j with a sum ms =

∑
k∈S ajkx

(i)
k , or a multiplication

mr = x
(i)
k with ms =

∑
j∈S′ y

(i)
j ajk. In the first case, there is a snapshot of

ms =
∑
k∈S ajkx

(i)
k made during the first phase. By Modification 2, ms is then

copied into the cell mr in
←−
P , which is a y(i)

j -container.
The second case is slightly more complicated. In this case, by Modification 1,

there is a snapshot of x(i)
k performed in

−→
P . In

←−
P , x(i)

k is then copied into ms by
Modification 2. Each operation that summed partial results together, building∑
j∈S′ y

(i)
j ajk, is transformed into a copy operation in

←−
P , copying x(i)

k . Recall

that due to the semiring, each of the monomials y(i)
j ajk, j ∈ S′ is derived from an

independent multiplication operation in
−→
P . For each j ∈ S′, when the operation

σ′ : m′q := m′r ·m′s is performed with m′r = y
(i)
j and m′s = ajk before σ in

−→
P ,

then we have m′q = x
(i)
k before σ′ in

←−
P . By Modification 2, instead of σ′, the

snapshot of m′s is copied into the cell m′r. Then, m′q is multiplied to m′r forming

the elementary product ajkx
(i)
k . Since m′r further contained the input variable

y
(i)
j in

−→
P , it is a y(i)

j -container, and the elementary product will be summed into
the corresponding field in external memory.

Since every canonical partial result that includes some y(i)
j has an input of

the element y(i)
j as its predecessor in

−→
P , in the time-reversed

←−
P , all created

partial results will be transferred to the initial position of y(i)
j in external memory.

Furthermore, since all hw complete elementary products y(i)
j ajkx

(i)
k have to be

created for the bilinear product, and an y(i)
j is a predecessor for each, the created

vectors c(i), 1 ≤ i ≤ w are complete. ut

5 Algorithms

Note that all the presented algorithms can be used for both, evaluating matrix
vector products and bilinear forms, by Theorem 1. This yields asymptotically the
same upper bounds for both problems. If an algorithm is described for bilinear
forms and has to be transformed to evaluating matrix vector products, an
internal memory size M/2 can be used for the algorithms to meet the conditions
of Lemma 6 without changing the asymptotic behaviour.

5.1 Direct Algorithm

The computation of w ≤ B bilinear forms is possible with O (h) I/Os by con-
sidering the non-zero entries of A in an arbitrary order. For every entry ajk

the elementary products x(1)
k ajky

(1)
j , . . . , x

(w)
k ajky

(w)
j are added to the respective

11

5. ALGORITHMS

current partial sums z(1), . . . , z(w). For this to inccur only a constant number
of I/Os, the values x(1)

k , . . . , x
(w)
k need to be stored in one block (or at least

consecutively on disk), similarly to y(1)
j , . . . , y

(w)
j . This can be achieved by trans-

posing the matrices X =
[
x(1) . . . x(w)

]
and Y =

[
y(1) . . . y(w)

]
, which takes

O ((Nx +Ny)/B) = O (h) I/Os [1], given the tall cache assumption M ≥ B2.

5.2 Sorting Based Algorithm

In [3] a sorting based approach for evaluating the product Ax for square matrices
is presented. These algorithms can be extended straightforwardly to the matrix
vector product of a non-square matrix A with one vector x.

Column Major Layout If A is given in column major layout the algorithm
works as follows: In a first step scan over x and A simultaneously, and multiply
the elements of x into A to create elementary products. If M > h/Nx, i.e.,
internal memory is bigger than the average number of entries per column, then
loading A (that consists now of elementary products) in runs of M elements, and
sorting the elements by row index in internal memory yields h/M pre-sorted runs.
Otherwise, the columns of A constitute Nx sorted runs. Using the M/B-way
Merge sort from [1], the r = min{Nx, h/M} runs are sorted according to their
row indices until there are h/Ny runs remaining. This merging process takes

O
(
h
B logM/B rNy/h

)
I/Os. By summing elementary products that belong to the

same row immediately throughout the merging, each of the h/Ny remaining runs
contains at most Ny elements. Finally, all runs are summed into the first run,
which is possible with O (h/B) I/Os. Thus, the result vector c := Ax is created
with O

(
h
B logM/B min

{
NxNy
h ,

Ny
M

})
I/Os.

Best-Case Layout For the best-case layout, we assume the non-zero entries of
A to be separated into meta-columns consisting of M −B consecutive columns
where each meta-column is written in row major layout in external memory.
This allows us to load the M −B vector elements x(j−1)(M−B)+1, . . . ,xj(M−B)

corresponding to the j-th meta-column of A into internal memory. Then, in the
remaining block in internal memory, the corresponding meta-column of A can be
scanned, and elementary products are created and written into A. Afterwards,
the algorithm works similarly to the description above: Meta-columns are merged
together until there are h/Ny runs left, where throughout the merging process
elementary products of the same row in A are summed immediately. The h/Ny
runs are finally summed into the first run that will constitute the result vector c
in the end. Since there are dNx/(M −B)e pre-sorted runs in the beginning, the
task is possible with O

(
h
B logM/B

NxNy
Mh

)
I/Os.

With slight modifications, this algorithm can also be described for a broader
class of layouts. For this class of best-case layouts, the matrix A is given as a split-
up of its columns into meta-columns where each meta-column is written in row
major layout. Columns of a meta-column have to be continuous, each column is

12

5. ALGORITHMS

assigned to only one meta-column, and each meta-columns consist of an arbitrary
number of columns, but at most M − B. Additionally, the number of meta-
columns is at most dNx/Be+ 2 dh/Nye. Since each meta-column consists of no
more than M −B continuous columns, for each meta-column, the corresponding
elements of x can all be loaded into internal memory, and the meta-column
is scanned to create elementary products which are then written back to A.
Afterwards, if Nx/B > h/Ny, meta-columns are merged together using Merge
sort until there are at most h/Ny runs. Since in this case there are no more than

3 dNx/Be meta-columns, O
(
h
B logM/B

NxNy
Bh

)
= O

(
h
B logM/B

NxNy
Mh

)
I/Os are

sufficient. Otherwise, if h/Ny ≥ Nx/B, there are at most 3 dh/Nye meta-columns.
Since meta-columns and runs are in row major layout, with one scan of each
meta-column / run, elements from the same row can be summed together, and
meta-columns / runs become a single column. All created columns can then be
summed into the first column with O

(
h
Ny
· NyB

)
I/Os. Hence, in all cases, the

matrix vector product for a matrix A given in a layout meeting the conditions
described can be determined with O

(
h
B logM/B

NxNy
Mh

)
I/Os.

Multiple Vectors For the evaluation of w matrix vector products, the algo-
rithms can simply be run for each single vector, which increases the running time
by a factor w. However, for column major layout, it can be faster to transform
the layout of A into one belonging to the class of generalized best-case layouts
described above, and then use that algorithm for each single vector.

The transformation of the layout has two cases, depending on the parameters.
The first case handles situations with Nx ≤ h/(M − B), where the average
column consists of more than M − B already sorted entries. Then the Nx
columns are bottom up merged using the M/B-way Merge sort, each time
reducing the number of meta-columns by a factor of M/B. This is continued
as long as the resulting meta columns have width at most M − B, and the
number of meta columns is still greater than h/Ny. Hence, the running time

of this merging is O
(
h
B logM/B min

{
M,

NxNy
h

})
I/Os, and there are at most

max {dNx/(M −B)e , dh/Nye} meta-columns that can contain less than Ny/2
entries, i.e., they form a generalised best case layout.

The second case assumes h/(M −B) ≤ Nx, and mimics the creation of initial
runs of length M −B. The possibility of columns having vastly different number
of entries makes this slightly more involved. First, the columns of A are split
into 2h/Ny continuous groups such that each group contains at most Ny entries.
Then, each group that spans at most M − B columns is transformed into row
major layout using the classical M/B-way Merge sort in O

(
h
B logM/B

Ny
M

)
I/Os.

Groups that span more than M − B columns are divided into subgroups that
span at most M −B. This can be achieved by greedily assigning the blocks of a
group to subgroups such that each subgroup spans no more than M −B columns.
Splitting blocks that belong to two columns is possible with O (Nx/M) I/Os.
The subgroups are then transformed into row major layout using Merge sort.

13

5. ALGORITHMS

Since there are at most Ny/B blocks per group, this can be done with another

O
(
h
B logM/B

Ny
M

)
I/Os.

Because one block spans at most B columns, each of the subgroups, except at
most one per group, spans at least M −2B columns. Since we assume M ≥ 4B in
this paper, for each group, there can be at most one meta-column with span less
than 2B. Hence, in the created layout, we have at most dNx/(2B)e+ d2h/Nye
meta-columns, each spanning at most M − B columns, and the algorithm for
the class of generalised best-case layouts can be applied.

5.3 Table Based Algorithm

For very asymmetric cases of A where Nx � Ny, the construction of tuples of
rows of Y, such that arbitrary dimensions of each vector can be loaded within
one I/O, can be superior. We present the following algorithms in the setting of
evaluating bilinear products.

Column Major Layout The bilinear forms y(i)TAx(i) for w vector pairs can
be evaluated with O

(
max

{
wh
B , h

logNy
logNx

})
I/Os as follows. The algorithm starts

by creating a table of all c-tuples of rows of Y in lexicographical order of the row
indices. To this end, define c := min

{⌊
B
w

⌋
− 1,

⌊
logNx
2 logNy

⌋}
such that a c-tuple of

rows of Y does not exceed one block. Since we assume that Y is in column major
layout, it first has to be transposed which is possible with O (wNy/B) I/Os (cf.
Section 5.1). Further, since we assume a tall cache, i.e. M ≥ B2, internal memory
can hold c blocks at a time and one for the output of a created tuple.

A table of all c-tuples can be created by scanning over the transposed Y for
each of the c tuple dimensions: For every B-th tuple, a new block of Y is loaded
for the least significant position of the tuple. The other positions i = 1, . . . , c− 1
change only every N i

y tuple, yielding in total another O(1/B) I/Os per tuple.
Hence, the I/Os are dominated by writing the generated tuples to external
memory. The size of the output table is wcN c

y ≤ wc
√
Nx ≤ wNx, where the last

inequality relies upon c ≤ 1
2 logNx ≤

√
Nx, which is true for all Nx. The table

can easily be created in O (wNx/B) I/Os, a term dominated by the I/Os needed
to read X.

After creating a table of all c-tuples of rows of Y, the algorithm simultaneously
scans the entries of A and the corresponding elements of X. To this end, X is
transposed first. Since we have M ≥ 4B, we use one block for the scanning of A,
one for elements of X, one for a c-tuple of Y, and the last block to sum elementary
results together for each of the w ≤ B vectors. Throughout the scanning of A,
for each c ≤ B entries ai1,j1 , . . . , aic,jc , the c-tuple containing the corresponding
rows i1, . . . ic of Y is loaded, and elementary products for each pair of vectors
are created. These can be summed immediately into the block reserved for the
results. Hence, O (h/c) I/Os are sufficient to evaluate the w bilinear forms.

Best-case Layout If w < B and Nx ≥ N2
y , the table-based approach for

column major layout can be improved using a different layout of A. Similar to
the column major case, the matrices X and Y are transposed in the beginning.

14

5. ALGORITHMS

Again, we create a table of c-tuples of rows of Y, but for different c. Further-
more, we assume again that c is at most B/w. But in contrast to the column
major case, the tables are created only for ranges of elements instead. To this
end, the matrix A is organised in tiles with dimensions s × t such that each
tile contains on average (M − B)/w non-zero entries. Using this, a tile can be
loaded and all elementary products can be created while still one free block is
available in internal memory to read and write vector elements. However, for
the ease of calculations, we use M/(2w) as the number of entries per tile. The
dimensions of the tiles will be determined throughout this section. Note that the
width of a tile becomes larger than MB/w such that it is not possible to keep all
required vector elements of one dimension in internal memory for more than one
tile, i.e. both X and Y have to be accessed for each tile again. For the width s of
a tile, on average there are s h

NxNy
non-zero entries per row in each tile. Thus, on

average, d = cNxNy
sh rows of a tile contain c non-zero entries, and it is sufficient

to create dNy/de tables of c-tuples of rows di + 1, . . . ,min {d(i+ 1), Ny} of Y,
for 0 ≤ i ≤ dNy/de − 1.

The algorithm works in rounds where in each round a tile of A is loaded into
internal memory, and the corresponding rows of X are scanned and multiplied to
the entries of A. Then, the elements of Y are read in c-tuples for each c entries
of A to create elementary products. Since the tuples are only created for ranges
of rows of Y, it can be necessary to load multiple tuples for a range of d rows,
and it might be necessary to load a tuple from which only few elements are used.
However, on average at most 2 tuples are loaded for each d rows of a tile.

Loading the tuples hence incurs on average M
wc I/Os per round. We also

allow M
wc I/Os per round for loading rows of X, each consisting of w vector

entries. This yields a width s = MB
w2c for each tile in A. Because a tile of A

shall contain M/(2w) entries on average, for the height t of a tile, it has to hold
tMB
w2c

h
NxNy

= M
2w , that is t = wcNxNy

2hB . As described before, it is sufficient to create
tuples only for each d rows of Y where d is the number of rows within a tile
having c entries on average. Using the dimensions of a tile, we find the value of d
to be d = cNxNy

sh = w2c2NxNy
hBM .

Now, we choose c as big as possible, such that the size of all tables together
does not exceed the size of X, i.e., cNyd wd

c ≤ wNx. By construction, d rows of
a tile in A contain on average c entries. Observe that if d < c, i.e., the average
number of non-zero entries per row in a tile is more than 1, there can only be one
(ordered) tuple which can be obtained by simply reading Y. Moreover, setting
d = c = B/w in this case yields an algorithm requiring O

(
hw
B

)
I/Os.

Thus, we consider in the following the case that c ≤ d. It then suffices to
maximise c for Nywdc ≤ wNx. Substituting d yields

(
w2c2NxNy
hBM

)c
≤ Nx

Ny
, and by

taking logarithms we get c log
(
c2
w2NxNy
hBM

)
≤ log Nx

Ny
. From this we can already

restrict ourselves to c ≤ log Nx
Ny

, such that we get

c

(
2 log log

Nx
Ny

+ log
w2NxNy
hBM

)
≤ log

Nx
Ny

,

15

5. ALGORITHMS

and set

c =

 log Nx
Ny

2 log log Nx
Ny

+ log w2NxNy
BhM

 .
Since wc ≤ B the number of I/Os is dominated by the table accesses. If c ≤ 1,
the direct algorithm can be applied, otherwise we get a performance of

O

h2 log log Nx
Ny

+ log w2NxNy
hBM

log Nx
Ny

 = O
(
h

2 log logNx + log w2NxNy
hBM

logNx

)

where we use N2
y ≤ Nx.

In the following, we consider the complexity of this algorithm for the cases
where it is asymptotically superior over the other presented algorithms. First,
note that the term w2NxNy

hBM never becomes smaller than w2 > 1 unless the
sorting based algorithm would be optimal. If the sorting based algorithm is not
asymptotically optimal, NxNy

hM > M
B has to hold (otw. a simple scanning bound

of Ω
(
hw
B

)
matches its complexity). Hence, for the cases where the table based

algorithm is the only asymptotically optimal algorithm of the presented ones, we
can assume w2NxNy

hBM > w2M
B2 ≥ w2 where the last inequality is obtained by the

tall cache assumption. This simplifies the complexity such that it is now

O
(
h

2 log logNx + log w2NxNy
hBM

logNx

)
= O

h log
(
wNxNy
hBM logNx

)
logNx

 .

Furthermore, it can be shown that the leading term of the logarithm will
never be w, and can hence be ignored in Theorem 3. Observe that the assumption
NxNy
hBM log2Nx < w implies that the table based algorithm is not superior over the
sorting based algorithm: In this case, we have

c >

⌊
log Nx

Ny

3 logw

⌋
>

logNx
6 logw

− 1 >
logNx

6 logM/B
− 1

where we use the tall cache M/B ≥ B > w, and Nx ≥ N2
y . Since we can

assume c ≥ 2 for the case of being superior and having c ≤ B/w, we get
B
w logM/B ≥ 1

12 logNx. Thus, it holds

log
(
wNxNy
hBM

B
w logM/B

)
B
w logM/B

≤
12 log

(
wNxNy
hBM logNx

)
logNx

such that the number of I/Os for the sorting based algorithm is asymptotically
not higher than the number of I/Os of the table based algorithm. Hence, if the
table based algorithm is superior, the asymptotical behaviour can be written as

O

h ·max

 log
(
NxNy
hBM logNx

)
logNx

,
w

B


 .

16

6. LOWER BOUNDS

6 Lower bounds

For the lower bounds, we only consider matrix vector products. By Theorem 1
this also implies lower bounds for bilinear products.

6.1 Column Major Layout

The following lower bound is only for single matrix vector products. However,
on the algorithmic side, it makes sense to change the layout of A for multiple
evaluations into best-case layout. Hence, the lower bounds of Theorem 2 are a
combination of Lemma 7, and the lower bound for best-case layout in Section 6.2.

Note that the lower bounds do not require the tall cache assumption M ≥ B2.

Lemma 7. Computing over an arbitrary semiring the matrix vector product
with an Ny × Nx matrix A with h entries, stored in column major layout has
(worst-case) I/O-complexity for M,B with M ≥ 4B

Ω

(
min

{
h

B
logM

B

Ny
M

,
h

B
logM

B

NxNy
h

, h , hmax
{

1
B
,

logNy
logNx

}})
.

Proof. To proof this lemma, the dimensions of A have to be simply replaced in
the proof in [3] which yields(

Ny
k

)Nx
≤
((

M +B

B

)
h

)`
· τ

for

τ =


3h for k > B,
1 for k = B,(
2B
k

)Nx for k < B

where we have k = h/Nx.
For k < B, by taking logarithms we get

h log
Ny
k
≤ `

(
log h+B log

e(M +B)
B

)
+ h log(2eB/k) .

Because of M +B < 4M/3 since M ≥ 4B, and e4M/3 < 4M we have

` ≥ h log Ny
2eB

log h+B log 4M
B

. (1)

For k ≥ B, we have

h log
Ny
k
≤ `

(
log h+B log

e(M +B)
B

)
+ h log 3

17

6. LOWER BOUNDS

which yields

` ≥ h log Ny
3k

log h+B log 4M
B

. (2)

Combining (1) and (2), we obtain

` ≥ h
log Ny

max{3k,2eB}

log h+B log 4M
B

, (3)

and it remains to distinguish the leading terms of the denominator.
For log h ≤ B log 4M

B this asymptotically matches the sorting based algorithm.
Since M ≥ 4B, we get l ≥ h

4B logM/B
Ny

max{3k,2eB} ≥ h
8B logM/B

Ny
max{k,B} for

log4
Ny

max{k,B} > 8, otherwise, a scanning bound of h
B holds for reading A. Finally,

if B > k, the matching bound is obtained since logM/B
Ny
B = 1 + logM/B

Ny
M .

Now, consider the case of log h > B log 4M
B . This is equivalent to B <

log kNx
log(4M/B) ≤ 1

4 (k + logNx) since we have M ≥ 4B and k ≤ Ny. Assume k < Nε
y

and logNx < Nε
y for some 0 < ε < 1. Using this and h ≤ NxNy, we have

` ≥ h
log Ny

max{3k,2eB}

2 log h
≥ h logN1−ε

y

2 log(NxNy)
= h

(1− ε) logNy
2 logNx + 2 logNy

.

Distinguishing the leading terms of the denominator, we get

` ≥ h1− ε
4

min
{

1,
logNy
logNx

}
.

ut

6.2 Best-case Layout

As described in Section 2, for the best-case layout it is up to the program to
choose the layout of A. The proof of Lemma 7 is based on the task of computing
row sums. To obtain a lower bound for the best-case layout, we have to use a
different approach because producing row sums is trivial when using a row major
layout. Therefore, we consider the sequence of configurations of a program and
follow the movement of input variables of X and partial results of Y. Furthermore,
we allow accessing A for free. This can only weaken the lower bound.

We count the number of different matrix conformations that can be handled
by programs for matrix vector multiplication with ` I/Os. For a given program,
the conformation of a matrix can be identified by considering multiplication
operations including input variables, and their results: When there is an input
variable x

(i)
j loaded, and it is used to form an elementary product that is a

predecessor of c(i)k , this describes the existence of a non-zero entry aik in A.
Hence, by tracking all copies of input variables x(i)

j and all elements that are

18

6. LOWER BOUNDS

predecessors of a unique result c(i)k (this can be elementary products or partial
sums), and by choosing the positions in a program where multiplications involving
such elements are performed, the conformation of a matrix is uniquely determined.
To do this, it suffices to consider the tracking of elements only for one of the
w matrix vectors multiplication. All this information will be called trace in the
following.

In order to describe the trace, we normalise programs which changes the
number of I/Os only by constant factors. The following normalisation is a variation
of [5, Theorem 3.1].

Lemma 8. Assume there is an I/O program A performing ` I/Os for parame-
ters M and B. Then there is an I/O program B computing the same function
performing at most 3` + M/B I/Os for parameters 2M and B, that works in
rounds: Each round consists of 2M/B input operations, an arbitrary number of
computation operations followed by 2M/B output operations such that after each
round internal memory is empty.

Proof. A program B can be created by splitting the computation of A into rounds
of M/B consecutive I/Os. With the additional memory, input and output can be
serialised as claimed. The final memory content of each round can be transferred
to the next round with 2M/B I/Os. ut

In the following, we consider programs in rounds according to the above
lemma. For the ease of notation, we ignore the doubling of internal memory
since it will not change the asymptotic behaviour. To determine the traces of
input variables and result predecessors in a round-based program, we consider
the transfer of blocks between rounds, i.e. a block that is output by one round
and input by another.

The movements of input variables can be described as follows. For a vector
x(k), we consider the subset TV (k)

,i ⊆ [Nx] of indices of elements x(k)
i in a block i

and trace the copying and deletion of variables in each round. For the trace of
a predecessor of a unique result c(k)j , we abstract from the element itself, and

consider only the index of the result j. Hence, we have the subset TR(k)
,i ⊆ [Ny]

of indices of unique result predecessors transferred by block i.
As written before, it suffices to consider the traces for one pair of input and

result vector only. Every block of an I/O can be separated into values belonging
to the w different tasks implied by the different pairs of vectors. Hence, for the
l-th I/O, we have the number u(k)

l of elements belonging to vector pair k. By
averaging we have

∑
0≤l≤` u

(k)
l ≤ B`/w for some k, and we determine the traces

for this pair of vectors in the following.

Describing the traces Because we will describe the traces of programs by
blocks transferred between rounds, we view the input variables as output of
rounds with no cost. Further, since we are aware that the task is possible in O (h),
we are only interested in lower bounds at most h such that we assume ` ≤ h in
the following. Let R be the total number of rounds. For each block that is an
output of a round, and input of another round there are R2 ≤ h2 possibilities

19

6. LOWER BOUNDS

to choose the origin and destination of the block. Because there are `/2 blocks
transferred, h` is an upper bound on the total number of possible macroscopic
structures of how blocks travel between rounds.

Further, the values of u(k)
l can be chosen which yields at most B` possibilities.

Every traced element that is transferred by a block can terminate at the destina-
tion, i.e., it is not copied further. Hence, there are 2`B/w choices of terminating
elements. Each of the si non-terminal incoming elements of round i can appear
up to M/B times in the outgoing blocks, namely once per outgoing block. Hence,
there are

(
siM/B
ti

)
possibilities to choose the ti outgoing elements of round i, for

some ti ≥ si. Since we have
∑

1≤i≤R ti ≤ B`/w, the total number of possibilities
for this is bounded by

(
M`/w
B`/w

)
.

Finally, we have to specify the subset of possible multiplications that are
actually performed. To this end, let Wi be the number of partial results output by
round i. Together with the number of vector variables Ui loaded in round i, there
are

∑
i≤` BM

UiWi possible multiplications with matrix entries during the program.
Additionally, we have the conditions Ui ≤M , Wi ≤M , and

∑
i≤` BM

(Ui +Wi) ≤
`B
w . The term

∑
i≤` BM

UiWi is hence maximised for Ui = Wi = M , for some
indices i ∈ I, I ⊆ [` BM] with |I| ≤ `B

2Mw , and the size of the set of possible
multiplications is at most `B

2Mw ·M2 < `MB
w . From this, we select a subset of

size h, yielding no more than
(
`MB/(2w)

h

)
possibilities.

Calculations With the above discussion, we get(
NxNy
h

)
≤ h` ·B` · 2`B/w ·

(
`M/w

`B/w

)
·
(`MB

w

h

)
.

W.l.o.g. we assume Nx ≥ Ny in the following. Furthermore, define k = h/Nx,
i.e., the average number of entries per column. Taking logarithms, estimating
binomials according to Observation 3, and rearranging terms yields

` ≥ h log Ny
k − log e`MB

wh

log h+ logB + B
w (1 + log eM

B)
.

In the following, we can assume h ≥M ≥ B, and thus

`

h
≥

log
(
Ny
k · wh

e`MB

)
2 log h+ B

w (log 6M
B)

.

Otherwise, if h ≤M , the task is trivial and a scanning bound of Ω
(
h
B

)
for reading

A suffices. Applying Lemma 2 (x = `/h, t = 2 log h + B
w (log 6M

B), s = wNy
ekMB),

and estimating t ≥ logNx + 3Bw , we get

2`
h
≥

log
(
wNy
ekMB ·

(
3B
w + logNx

))
2 log h+ B

w (log 6M
B)

.

20

6. LOWER BOUNDS

Now, it remains to distinguish according to the leading term in the denominator.
Case 1 (2 log h ≤ B

w (log 6M
B)) yields

`

h
≥ log Ny

kM

4Bw (log 6M
B)

.

Using M ≥ 4B, we get

` ≥ hw

B

log Ny
kM

4 · 5
2 log M

B

=
hw

10B
logM

B

Ny
kM

which matches the sorting based bound.
Case 2 (2 log h > B

w (log 6M
B)) yields

2`
h
≥

log
(
wNy
BekM logNx

)
4 log h

>
log
(

Ny
BekM logNx

)
4 log h

which matches the bound obtained by the table based algorithm.
Recall that the table based upper bound requires Nx ≥ N2

y . However, for
Nx ≤ N2

y , a linear lower bound is obtained as follows. By Lemma 3, assuming
k ≤ 6

√
Ny and B ≥ 20w, we get for the case Nx ≥ 230

2`
h
≥ log wNy

BekM

2 log h
≥ log 15

√
Ny

2(2 + 1/6) logNy
≥ 1

65

Otherwise, if Ny ≤ Nx < 230, also h is bounded from above, and thus, the
task is trivially possible in O (1).

For a large class of matrices a bound of Ω
(
hw
B

)
can be used to derive better

constant factors for Nx < 230. This bound is obtained by an extension of the
lower bound in [4] to non-square matrices, and is is given in the following section.

6.3 Extension of results from [4]

In this section, we present a lower bound of Ω
(
hw
B

)
on the number of I/Os for

certain parameter ranges. To this end, we show that by loadingM elements from A
only few elementary products can be obtained. For the sake of illustration, we
consider the matrix A as an adjacency matrix of a bipartite graph G = (U∪V,E),
|U | = Nx, |V | = Ny, where aij 6= 0 constitutes a connection between the j-th
node of U and the i-th node of V . By bounding the degree of subgraphs with
at most M edges, a lower bound on the number of I/Os for the matrix vector
product can be stated.

Lemma 9 ([4], Modification Lemma 4). Let G be the family of bipartite
graphs G = (U ∪ V,E) with |U | = Nx, |V | = Ny and |E| = h for h ≤ NxNy/2.

21

6. LOWER BOUNDS

For any M ≤ h there is a graph G ∈ G such that G contains no subgraph
GS = (US ∪ VS , ES) with |ES | = M and average degree

D′M > max

 8 ln Nx+Ny
2M

ln 16NxNy ln2 Nx+Ny
2M

hM

, e4 ·
√

hM

NxNy

 . (4)

Proof. We will show this by upper bounding the number of graphs containing
at least one such dense subgraph and compare this to the cardinality of G. The
upper bound is given by the number of possibilities to choose 2M/D′M vertices
from U ∪V and the number of possibilities to insert M edges between the selected
vertices. Furthermore, the remaining h−M edges are chosen arbitrarily within
the graph. The former presumes 2M/D′M ≤ Nx + Ny. However, since M ≤ h

and D′M >
√

hM
NxNy

this is implied. Further, we can assume D′M ≤
√
M since

this is the maximum average degree of a subgraph consisting of M edges. Hence,
if the inequality(

Nx +Ny
2M/D′M

)(
(M/D′M)2

M

)(
NxNy
h−M

)
<

(
NxNy
h

)
holds for the parameters given, Lemma 9 is proven. Observation 4 yields(

Nx +Ny
2M/D′M

)(
(M/D′M)2

M

)
<

(
NxNy − h

h

)M
.

Estimating binomial coefficients according to Observation 3, taking logarithms
and multiplying by D′M/M , we obtain

2 ln
eD′M (Nx +Ny)

2M
+D′M ln

eM

D′M
2 < D′M ln

NxNy
h

+D′M ln
(

1− h

NxNy

)
.

The last term can be estimated for h ≤ NxNy/2 by Observation 1 resulting in

2 ln
eD′M (Nx +Ny)

2M
+D′M ln

eM

D′M
2 < D′M ln

NxNy
h
−D′M

2h
NxNy

.

And by simple equivalence transformations, we obtain

D′M ln
D′M

2
NxNy
hM

> 2 ln
Nx +Ny

2M︸ ︷︷ ︸
Term 1

+ 2 ln eD′M +D′M

(
1 + 2

h

NxNy

)
︸ ︷︷ ︸

Term 2

. (5)

Equation 5 is implied if Terms 1 and 2 are both bounded by 1
2D
′
M ln D′M

2NxNy
hM .

We first check this for Term 2 only. By Observation 2, it holds ln(eD′M) ≤ D′M .
Thus,

1
2
D′M ln

D′M
2
NxNy
hM

> 2 ln(eD′M) + 2D′M

22

6. LOWER BOUNDS

is implied by D′M > e4 ·
√

hM
NxNy

yielding the second term of the maximum in the

final inequality (7). For any such D′M Inequality 5 holds if

D′M ln
D′M

√
NxNy√
hM

> 2 ln
Nx +Ny

2M
. (6)

By substitution of D′M by e4 ·
√

hM
NxNy

, inequality (6) already holds if
√
h >

1
2e4

√
NxNy
M ln Nx+Ny

2M . For
√
h ≤ 1

2e4

√
NxNy
M ln Nx+Ny

2M , we use Observation 5 with

f =
√

NxNy
hM and x = 2 ln Nx+Nx

2M yielding the first term of the maximum in (7).
Altogether, for

D′M > max

 8 ln Nx+Ny
2M

ln 16NxNy ln2 Nx+Ny
2M

hM

, e4 ·
√

hM

NxNy

 (7)

not all possible graphs in G are covered and therefore, Lemma 9 holds. Since the

second term is a sufficient bound for any
√
h > 1

2e4

√
NxNy
M ln Nx+Ny

2M , we use ln
instead of ln to derive a closed formula by bounding the first term. Finally, note
that D′M > 4 holds for h ≥ max {Nx, Ny}. ut

Using this, Lemma 5 from [4] applies, and we can finally proof Lemma 1.

Lemma 10 ([4], Lemma 5).
For any M ≤ h, there is a graph G ∈ G such that G contains at most M − 1

edges in subgraphs GS = (US ∪ VS , ES) with |ES | ≤ M and average degree
D′ ≥ 2D′M .

Proof (Proof of Lemma 1). To use Lemma 10, we normalise programs into rounds
according to Lemma 8 of Section 6.2. Since for the evaluation of w bilinear forms
in the semiring I/O-model wh elementary products have to be created, by giving
an upper bound on the number of elementary products that can be created
during one round, a lower bound on the number of required rounds and I/Os is
obtained.

By Lemma 10, there are at most w(M − 1) elementary products which might
be calculated faster than the rest. For the remaining hw − wM + w elementary
products, the following holds. Consider a round-based program to evaluate w
bilinear forms with A. Within each round, there are at most 2M elements of
A loaded. Thus, for each vector pair, the number of newly created elementary
products that can be achieved during this round is some mi ≤ 2M . By Lemma 10,
for the i-th pair of vectors, at least 2mi/D

′
2M elements have to be loaded to

create mi elementary products. Since from X and Y there can be as well no more
than 2M elements in internal memory during the round,

∑
i 2mi/D

′
2M ≤ 2M

vector elements are loaded to obtain
∑
imi elementary products. Hence, the

number of elementary products created throughout one round is bounded from
above by 2MD′2M .

23

7. ACKNOWLEDGEMENT

For the average number of entries in A per column being h/Nx ≤ Ny
M1−εNεx

with constant ε > 0, we have D′2M upper bounded by 8/ε. This yields a lower
bound on the number of rounds of

ε(hw − wM + w)
16M

.

Thus, we get a lower bound of

M

B

(
ε(hw − wM + w)

16M
− 1
)

= Ω
(
hw

B

)
I/Os for h ≥ 32M

εw + 2M . Note that the task becomes trivial for h = O (M). ut

7 Acknowledgement

Thanks to Dan Roche and Clement Pernet for asking the question about multi-
plying many vector pairs. Many thanks to an anonymous referee for suggestions
on an earlier draft of this article.

References

1. A. Aggarwal and J. S. Vitter. The input/output complexity of sorting and related
problems. Communications of the ACM, 31(9):1116–1127, 1988.

2. M. A. Bender, G. S. Brodal, R. Fagerberg, R. Jacob, and E. Vicari. Optimal sparse
matrix dense vector multiplication in the I/O-model. In Proceedings of SPAA ’07,
pages 61–70, New York, NY, USA, 2007. ACM.

3. M. A. Bender, G. S. Brodal, R. Fagerberg, R. Jacob, and E. Vicari. Optimal sparse
matrix dense vector multiplication in the I/O-model. Theory of Computing Systems,
47:934–962, 2010.

4. G. Greiner and R. Jacob. The I/O complexity of sparse matrix dense matrix
multiplication. In Proceedings of LATIN’10, volume 6034 of Lecture Notes in
Computer Science, pages 143–156. Springer, 2010.

5. Hong, Jia-Wei and H. T. Kung. I/O complexity: The red-blue pebble game. In
Proceedings of STOC ’81, pages 326–333, New York, NY, USA, 1981. ACM.

6. R. Jacob and M. Schnupp. Experimental performance of I/O-optimal sparse matrix
dense vector multiplication algorithms within main memory. Technical Report
TUM-I1017, Technische Universität München, 2010.

7. T. Lieber. Combinatorial approaches to optimizing sparse matrix dense vector
multiplication in the I/O-model. Master’s thesis, Informatik Technische Universität
München, 2009.

8. F. F. Roos, R. Jacob, J. Grossmann, B. Fischer, J. M. Buhmann, W. Gruissem,
S. Baginsky, and P. Widmayer. Pepsplice: cache-efficient search algorithms for
comprehensive identification of tandem mass spectra. Bioinformatics, 23(22):3016–
3023, 2007.

9. R. W. Vuduc. Automatic Performance Tuning of Sparse Matrix Kernels. PhD thesis,
University of California, Berkeley, Fall 2003.

24

