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Matrix Multilevel Methods and Preconditioning

Abstract

The Matrix-Multilevel approach is based on a purely matrix dependent description
of Multigrid and related methods. The formulation of Multilevel methods as singular
matrix extensions leads to the description of the Multilevel method as a preconditioned
iterative scheme, and illuminates the significance of the used prolongation, resp. re-
striction operator for the related preconditioner. As matrix dependent black box restric-
tionC we introduce a shifted form of the original matrixA, namelyC = B(:; 1 : 2 : n)
with B = �I�A, � a good upper bound for the largest eigenvalue ofA. This mapping
is chosen in such a way that via the related preconditioner the small eigenvalues are
enlarged while the maximum eigenvalue remains nearly unchanged. If the components
of each eigenvector ofA can be seen as a discretization of a continuous function, then
we derive estimates on the improved condition number after one step. We mainlycon-
sider symmetric positive definite matrices related to 1D-problems, but the results can
be directly generalized to nonsymmetric and higher dimensional problems.

1. The Twolevel Method

We consider a linear equationAx = b with a sparse ill-conditionedn � n matrixA. The aim is to design a purely algebraic multilevel method that can be appliedto
any matrix in order to reduce the condition number. First we restrict ourselfto the
symmetric positive definite case.

The Multigrid method allows the fastO(n) solution of linear equations arising
from elliptic PDE (see [1,3,9,10]). The method uses a sequence of grids, and the
restrictions and prolongations between the original problem formulated on the different
grids. We can consider such methods purely algebraicly based on the matrixA without
any geometrical information [13,8].

In the symmetric case the multilevel method is based on a mappingC for the
restriction and prolongation of the original linear system on a coarser problem. Then
we getCTAC, e.g. as ann=2� n=2 matrix related to the original problem formulated
on a coarse grid. Following [6] and the idea of generating systems we can write the
sequence of matrices on different levels also as a sequence of matrix extensions of the
form A(1) = A ; A(2) = � A ACCTA CTAC � = � ICT � A ( I C ) : (1)
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Let us first analyse the relation between the original equationAx = b and the
extended matrixA(2). If (yT zT )T is a solution of the extended system� A ACCTA CTAC �� yz � = � ba� ;
it is obvious that we have to seta = CT b, and thenx = y+Cz gives the solution of the
original problemAx = b. Furthermore, in view of (1), the kernel ofA(2) is spanned
by the vectors that fulfilly = �Cz, and hence the kernel is given by all vectors of the

form
��CI � z. Similarly with (1) the range ofA(2) is of the form

� ICT � x.

To derive the nonzero eigenvalues ofA(2) we consider the Rayleigh Quotient rela-

tive to the space that is orthogonal to the null spacey = � ICT �x. WithyT � ICT �A ( I C ) yyTy = xT ( I C )� ICT �A ( I C )� ICT � xxT ( I C )� ICT �x =xT (I + CCT )A(I + CCT )xxT (I + CCT )x = zT (I + CCT )1=2A(I + CCT )1=2zzT z ;
we see that the nontrivial spectrum ofA(2) is given by the eigenvalues of(I + CCT )A ; (2)
and furtherhmore the nonzero eigenvalues ofA(2) are related to the eigenvalues ofA
by �(A(2)) = �(A)(1 + �) with 0 � � � �max(CCT ).

Now we can think of the restrictionC also as a preconditioner of the formI+CCT
applied on the original matrixA (see also [2,14]). To be efficient the preconditioner
should enlarge the small eigenvalues ofA without generating larger than�max(A).
Then the condition number of the preconditioned system would be improved. Hence,
the main task is to find a sparse matrixC that is a good approximation on a subspace
related to the small eigenvalues. Similar problems are considered and solved in [4];
but to obtain the exact solution of such kind of problems is to expensive and can not
be used here.

As an example we restrict ourself to the special case that the size ofC is reduced to
one column. Then an optimal preconditioner should enlarge�1 = �min without chang-
ing �n = �max. Based on the eigensystem forA of the formA = QT�Q the problem
can be written as: Find a vectorw such that the matrix~� = ( I w )T � ( I w ) has
minimum condition number (neglecting the zero eigenvalue~�1 = 0). In view of the
interlace property (see e.g. [12]) we get0 = ~�1 � �1 � ~�2 � �2 ; ~�n � �n � ~�n+1 ;
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and the new condition number is bounded bycond((I + wwT )�) = ~�n+1~�2 � �n�2 :
An optimal solution is therefore given byC = �umin - the eigenvector related to the
smallest eigenvalue. Then� has to be chosen such that�2 � (1 + �2)�1 � �n, and the
condition number is improved by a factor�1=�2.

In general we are interested in a larger rank ofC which is also necessary to lead to
a notable improvement of the condition number for ill-conditioned matrices. Therefore
we now writeC in the form C = B P = B(:; J) (3)
with ann� n matrixB and an elemtary projectionP which is only related to picking
certain columns out ofB, given by the index setJ .

To make things easier we first describe the case thatC = B is a full n� n matrix.
Then we can chooseB = �(�I � A) with � = �max(A). This matrix has the desired
property:�min becomes large in (2) and�max remains the same. For this special case
we can fully analyse the resulting preconditioned system in order to find an optimal
value for�.

Letu be any eigenvector ofAwith length 1 related to an eigenvalue�, �1 � � � �.
Then� has to be chosen as large as possible withuT�I + �2(�I � A)(�I � A)T�Au = ��1 + �2(�� �)2� � � : (4)
Hence,�2 � 1�(���) . The function on the right hand side takes its minimum value for� = �=2, which leads to the optimal value� = 2=�. The change of the eigenvalues ofA under the transformation (2) is described by� �! f(�) = �(1 + 4�2 (�� �)2) :
In the interval[�1; �] the functionf has a relative maximum at� = �=2 of sizef(�=2) = �, a relative minimum for� = 5�=6 with f(5�=6) = 50�=54, a global
maximum for� = � with f(�) = �, and a global minimum for� = �1 withf(�1) = �1(1+ 4�2 (���1)2) � 5�1. Hence, by applyingI+BBT as preconditioner the
condition number is improved by a factor of 5. Note, that not only the smallest eigen-
value is enlarged, but the whole spectrum is compressed. For example all eigenvalues
of A in the interval[�=8; �] are mapped into the interval[65�=128; �] � [�=2; �], and
the interval[�=3; �] into [25=27�; �].

Now we return to the twolevel approach with nontrivialP . Then the above relation
(4) translates intouT (I + �2(�I � A)PP T (�I � A)T )Au = �(1 + �2(�� �)2kP Tuk2) � � : (5)
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Figure 1: Functionf(�) for � = 1
ThereforeP has to be chosen carefully in such a way that for every small eigen-

valueP Tu does not become to small. If the eigenvectors are continuous in the sense
that they can be seen as valuesg(j=n) for a continuous functiong, then e.g.P = I(:; 1 : 2 : n) gives kP Tuk2 � 1=2 for all eigenvectors. This leads to an optimal value
of �2 = 8=�2 and we can expect that the smallest eigenvalue is improved by a factor
of � 5; but now the related mappingC has only half the number of entries. Note,
that forA = (1=4) � tridiag(�1; 2;�1) this optimal factor 8 also appears by diagonal
(Jacobi) scaling of the extended system (1) (compare the BPX- or MDS-method [6]).
In this case the spectrum ofA(1) is no more contained in the interval[5�min; �], but
the eigenvalues ofA2 are again smaller than�.
Remark: The eigenvalues ofA2 = CTAC are closely related to the functiong(�) =�2(�� �)2�, and therefore the spectrum ofA2 is contained in the interval[�2(�� �min)2�min(A); (��)2(4=27)�] :
ForP = I(:; 1 : 2 : n), an eigenvectoru to a small eigenvalue ofA leads to a small
value of the Rayleigh Quotient related to the matrixA2 and the vectorP Tu. ThereforeP Tu is mainly contained in a subspace spanned by eigenvectors ofA2 that belong to
small eigenvalues.

For many examples there is another easy way to derive a matrixB with eigenvalues
in reversed order. Let us chooseB = jAj the matrix with the entriesBi;j = jAi;jj
(see [10,5] for such matrix dependent prolongation/restriction operators). ForA =tridiag(�1; 2;�1) this leads to the standard prolongation withB = tridiag(1; 2; 1).
Hence, for many matrices after diagonal scaling ofAwe can expect a similar behaviour
of the Multilevel approach related toB = jAj and toB = �I�A, because the diagonal
scaling transformsA nearly totridiag(�1; 2;�1).
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2. The Multilevel method

The analysis of the previous section describes a twolevel method. Now we have
to generalize the approach that it works in a multilevel fashion. Until now we have
arrived at the representationA = A1 = A(1), A2 = CT1 A1C1,A(2) = � A1 A1C1CT1 A1 CT1 A1C1 � = ( I C1 )T A1 ( I C1 ) ;
or in preconditioned form (I + C1CT1 )A1 :
Let us assume that the projectionC1 is chosen properly such that it strongly contains
the eigenvectors related to small eigenvalues. Then, on the next level wecan restrict
ourself to projections of the formC = C1C2. Now we can apply (2) a second time and
arrive at a preconditioner(I+C1C2CT2 CT1 )(I+C1CT1 )A1 = (I+C1CT1 +C1C2CT2 CT1 +C1C2CT2 CT1 C1CT1 )A1 :
To make the preconditioner symmetric positive definite we delete the last nonsymmet-
ric term and use onlyI + C1CT1 + C1C2CT2 CT1 = I + C1(I + C2CT2 )CT1 :

Then we have different formulas for the extended system:A(3) = 0B@ A AC1 AC1C2CT1 A CT1 AC1 CT1 AC1C2CT2 CT1 A CT2 CT1 AC1 CT2 CT1 AC1C21CA = 0B@ ICT1CT2 CT1 1CAA ( I C1 C1C2 )= ( I C1 ( I C2 ) )T A ( I C1 ( I C2 ) ) == � I 0 00 I C2 �T � A AC1CT1 A CT1 AC1 �� I 0 00 I C2 � == � I 0 00 I C2 �T ( I C1 )T A ( I C1 )� I 0 00 I C2 � ; (6)
and in preconditioned form(I + C1CT1 + C1C2CT2 CT1 )A = (I + C1(I + C2CT2 )CT1 )A
or� I 00 I + C2CT2 �� A AC1CT1 A CT1 AC1 � = � A AC1(I + C2CT2 )CT1 A (I + C2CT2 )CT1 AC1 � :(7)
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This leads to different heuristics for choosingC2. In view of (7) we can think ofC2 as a second preconditioning step related toA2 = CT1 AC1 and therefore we can setC2 = �2(�2I � A2)P2 : (8)
We can derive (8) also based on another approach. The new projectionC2 defines the
preconditioned system (I + C1CT1 + C1C2CT2 CT1 )A
and thus in the sense of (4) and (5) we getuTC1C2CT2 CT1 u = �21uT (�I � A)PC2CT2 P T (�I � A)Tu= �21(�� �min)2(uTminP )C2CT2 (P Tumin) == �21(�� �min)2(uTminP1)B2P2P T2 B2(P T1 umin) :
Now,B2 should be chosen in such a way that it gets large for the vectorsP T1 u related
to small eigenvalues ofA. In view of the previous remark at the end of Section 1 we
can expect that the vectorsP T1 u are related to small eigenvalues ofA2 which again
suggests to defineC2 via (8).

We can also formulate another way for choosingC2. Note, that the eigenvalues ofA2 are closely related to the functiong(�) = �2(� � �)2�. This shows that the large
eigenvalues ofA are also translated into very small eigenvalues ofA2. If we defineC2
with (8), then in this second step we try to enlarge these originally large eigenvalues
together with the small eigenvalues ofA. This suggests another way to defineC2,
namely again as a projection of the first level-matrix�I � A. If for exampleA is a
Toeplitz matrix then we can consider the Toeplitz matrix�I � A = T and chooseCj
as a submatrixT (1 : 2l; 2 : 2 : 2l) (for similar multigrid methods for Toeplitz matrices
see [7]).

In order to obtain similar improvements on the condition number on every level it
is necessary that all the derived smaller systems have similar porperties as the original
matrix A. If for exampleA2 is well conditioned then obviously another projection
will lead to no improvement of the spectrum. Hence, we have to chooseC andP
in such a way that the matrix~A = P TBTABP inherits important properties ofA.
In many cases the behaviour ofA on the vectoren = (1; :::; 1)T is very important
- this is related to the property that the rowsum of entries is often zero. Hence we
may ask thateTn=2 ~Aen=2 = en(J)TBTABen(J) � eTnAen=2. We obtain this property

by choosingB such thatBen(J) = en=2=p2. ForB = p2 � tridiag(1=4; 1=2; 1=4)
andJ = (2; 4; 6; ::::; n) (the usual Multigrid prolongation) this is obviously fullfilled.
In many cases after diagonal scaling this is also nearly satisfied for both mappingsB = �maxI � A andB = jAj.

Now we have defined a multilevel method based only on the original matrixA and
the maximum eigenvalues of the resulting systemsAj. It is necessary to include also
some kind of smoothing operation on every level to get fast convergence. Here wewill
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mainly consider the Jacobi method for smoothing. In (1) or (6) the Jacobi smoothing
is nothing else then diagonal preconditioning. Note, that in the same way one can use
Gauss-Seidel or any other levelwise method.

To include Jacobi smoothing let us consider the enlarged problemA(k) = 0BBBBBB@ A AC1 AC1C2 � � � AC1::CkCT1 A CT1 AC1 CT1 AC1C2 � � � CT1 AC1::Ck
... � ...
... � ...CTk ::CT1 A � � � � � � CTk ::CT1 AC1::Ck

1CCCCCCA =
= ( I C1 C1C2 � � � C1::Ck )T A ( I C1 C1C2 � � � C1::Ck )= ( I C1(I C2(I � � � (I Ck) � � �)) )T A ( I C1(I C2(I � � � (I Ck) � � �)) ) ; (9)

and in preconditioned form(I + C1CT1 + C1C2CT2 CT1 + � � � + C1::CkCTk ::CT1 )A =(I + C1(I + C2(I + � � � (I + CkCTk ) � � �)CT2 )CT1 )A = M (k)A : (10)
In the form (9) we can comprise any preconditioner on the matrixA(k), for ex-

ample Jacobi, Gauss-Seidel or ILU preconditioner, and employ the conjugate gradient
method with zero starting vector. But usually we want to compute only the small ma-
tricesAj and the projectionsCj on every level and not the whole systemA(k) much
less the - nearly dense - preconditionerM (k). Therefore, we will use only levelwise
block-diagonal preconditioners based on the level matricesAj.

From (9) we can translate preconditioners very easily to the form (10). In the
Jacobi case for example we haveDj = diag(Aj) = diag(CTj � � �CT1 AC1 � � �Cj) and

for every matrixAj we can useD�1=2j as left and right preconditioner. Then, withD = diag(D�1=21 ; � � � ; D�1=2k ) ;
(9) translates intoD 0BBBBBB@ A AC1 AC1C2 � � � AC1::CkCT1 A CT1 AC1 CT1 AC1C2 � � � CT1 AC1::Ck

... � ...

... � ...CTk ::CT1 A � � � � � � CTk ::CT1 AC1::Ck
1CCCCCCA D =� I D1=21 C1D�1=22 D1=22 C2D�1=23 � � ��T D�1=21 AD�1=21 � I D1=21 C1D�1=22 � � �� :
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Hence, we only have to replaceA by ~A = D�1=21 AD�1=21 , and each Cj by~Cj = D1=2j CjD�1=2j+1 . This leads to the new preconditioned form(I + ~C1(I + ~C2(I + � � � (I + ~Ck ~CTk ) � � �) ~CT2 ) ~CT1 ) ~A : (11)
Note that here the Jacobi scaling is also necessary to obtain that the matrices ~Aj

share the same properties (in the sense that the rowsums are nearly zero) .

3. Numerical Examples

For practical implementation of the method we will consider different variations:

- We will always include the diagonal preconditioner in the form (11).

- We will constructCj and ~Cj based onAj and an approximate maximum eigenvalue�j of ~Aj in the formCj = (�jI � Aj)P .

- We can compute�j - the approximation on the largest eigenvalue - on every level,
or always use�j = � = �max(A) . Note that if� is chosen properly then�max(Aj) � �max(A) for everyj.

As numerical examples we consider the finite difference discretization of the1D ellip-
tic PDE(a(x)xu(x))x = f(x) with Dirichlet boundary conditions for

(1) a(x) constant,
(2) a(x) = 1 + sin(8�x)2,
(3) a(x) = 1 + sin(16�x)2,
(4) a(x) = 1 + sin(32�x)2,
(5) a(x) = 1 + exp(�x)sin(8�x)2,
(6) a(x) = 1 + exp(2�x)sin(8�x)2,
(7) a(x) = 1 + exp(8�x)sin(8�x)2,
(8) a(x) = sin(�x)2.
(9) a(x) is piecewise constant with ten different values between0:1 and2:1.
(10)a(x) is piecewise constant with ten different values between0:1 and2:1E + 8.

In the first examples we always choose� as the exact eigenvalue ofA. The next
tables display the condition numbers for the matrix multilevel method based on
- estimating�j on every level (MML),
- only on the finest level (MML0),
- for the multigrid method written in the MDS-form that is strongly relatedto the BPX-
preconditioner [2,6],
- and for the Jacobi-preconditioned original problem.
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n = 2l MML MML0 jAj MDS D�1A
5 4.55 6.32 5.46 4.60 414.3
6 5.43 7.26 6.35 5.12 1.7E3
7 6.34 8.19 7.27 5.62 6.6E3
8 7.26 9.14 8.20 6.11 2.7E4

Table 1. Condition number example 1,a(x) = const.n = 2l MML MML0 jAj MDS D�1A
5 4.41 6.11 5.28 11.60 440.6
6 5.38 7.15 6.27 10.74 1.8E3
7 6.32 8.15 7.24 10.19 7.05E3
8 7.26 9.13 8.19 10.42 2.8E4

Table 2. Condition number example 2,a(x) = 1 + sin(8�x)2.n = 2l MML MML0 jAj MDS D�1A
5 4.31 6.04 5.23 5.75 466
6 5.25 7.02 6.14 29.2 1.8E3
7 6.25 8.07 7.16 25.3 7.0E3
8 7.23 9.09 8.16 22.6 2.8E4

Table 3. Condition number example 3,a(x) = 1 + sin(16�x)2.n = 2l MML MML0 jAj MDS D�1A
5 4.55 6.32 5.46 4.60 414
6 5.191 7.98 6.10 6.30 1.9E3
7 6.12 7.93 7.03 98.8 7.1E3
8 7.15 9.00 8.07 80.6 2.8E4

Table 4. Condition number example 4,a(x) = 1 + sin(32�x)2.n = 2l MML MML0 jAj MDS D�1A
5 4.37 6.08 5.28 36.4 605.4
6 5.37 7.16 6.28 32.00 2.2E3
7 6.32 8.16 7.25 29.9 8.8E3
8 7.26 9.13 8.20 31.2 3.6E4

Table 5. Condition number example 5,a(x) = 1 + exp(�x)sin(8�x)2.
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n = 2l MML MML0 jAj MDS D�1A
5 4.37 6.10 5.26 250.5 2.6E3
6 5.37 7.17 6.28 149.4 6.2E3
7 6.32 8.18 7.25 97.5 1.7E4
8 7.26 9.14 8.20 86.3 6.2E4

Table 6. Condition number example 6,a(x) = 1 + exp(2�x)sin(8�x)2.n = 2l MML MML0 jAj MDS D�1A
5 4.25 5.94 5.13 8.5E8 6.3E9
6 5.47 7.17 6.31 5.7E8 1.3E10
7 6.42 8.23 7.31 3.7E8 2.7E10
8 7.32 9.19 8.25 2.2E8 5.5E10

Table 7. Condition number example 7,a(x) = 1 + exp(8�x)sin(8�x)2.n = 2l MML MML0 jAj MDS D�1A
5 12.07 6.08 5.57 42.25 1.1E4
6 13.91 7.02 6.51 81.93 8.6E4
7 15.72 7.96 7.45 164.7 6.9E5
8 17.54 8.92 8.41 340.7 5.6E6

Table 8. Condition number example 8,a(x) = sin(�x)2.
Next, we compare the iteration numbers for different methods. In practice it is

not possible to use the exact maximum eigenvalue. Therefore we consider also upper
bounds or estimates for�. We define� as

- the exact maximum eigenvalue (� = �max(A))
- the 1-norm ofA (� = kAk1)
- as the Lanczos estimate�max aftermi Lanczos steps

- as �max + �min aftermi Lanczos steps (denoted bymi < 0 in Tables 9).

The right hand side in our numerical examples was chosen to be(1; :::; 1)T . The
stopping criterion is fulfilled if the exact relative residual is less then10�6. We compute� on every level, but we get nearly the same results if we use onlyA for choosing�.
In the following tables ’-’ denotes that the computation had to be omitted becauseit
would have been to expensive.
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� = n = 2l 28 29 210 211
MDS 117 119 121 122kAk1 122 130 120 124�max 15 - - -mi = 200 16 17 32 39mi = 150 15 25 32 46mi = 100 17 37 46 58mi = 50 42 58 69 89mi = 30 57 78 98 118mi = 10 108 123 183 256mi = �2 15 16 16 17jAj 15 16 16 17

Table 9. Iteration number for example 7,a(x) = 1 + exp(8�x)sin(8�x)2.
For example 1-8 we get nearly the same condition number for the different matrix

multilevel methods which is better than the multigrid condition numbers, and only
slightly growing in the sizen. From table 9 we see that the Lanczos estimate�max +�min andB = jAj give the best results.� = n = 2l 25 26 27 28 29 210 211

MDS 16 17 19 21 22 23 24
MML 14 15 15 15 16 17 17jAj 13 13 14 14 15 15 15

Table 10. Iteration number for example 8.� = n = 2l 25 26 27 28 29 210 211
MDS 23 27 33 41 49 56 64
MML 12 13 14 14 15 15 15jAj 12 13 14 14 15 15 15

Table 11. Iteration number for example 9.� = n = 2l 25 26 27 28 29 210 211
MDS 58 82 102 119 103 68 78
MML 11 13 14 15 16 16 16jAj 12 14 14 15 16 16 16

Table 12. Iteration number for example 10.
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These results show that the convergence in the matrix multilevel approach applied
on the different test examples does not depend on the functiona(x), and is only slightly
increasing with the problem size. The diagonal preconditioning that is used here is very
easy to parallelize; therefore the matrix multilevel approach is especially interesting in
a parallel environment.

4. Generalizations of the Matrix Multilevel Method

For the Jacobi or Gauss-Seidel iteration we often introduce damping factors. The
same is possible here if we replace the preconditioner in (10) by(I + !1C1(I + !2C2(I + :::)CT2 )CT1 ) = (I + !1C1CT1 + !2C1C2CT2 CT1 + :::) :
In view of (1) and the analysis of Section 1 a factor! < 1 may be necessary to
reduce the maximum eigenvalue to be� �. A factor! > 1 can be helpful for faster
convergence if it is possible to enlarge the small eigenvalues without changing�max.

If the matrixCTAC = A2 = LLT can be inverted we define a preconditioner for
the extended system (1) as a block diagonal matrix� diag(A)�1=2 00 L�T � ;
or a preconditioner fordiag(A)�1=2 A diag(A)�1=2 byM = I + diag(A)1=2CA�12 CT diag(A)1=2 :
This can be useful if we are not able to apply the full multilevel method and have to stop
at a certain level. Then we can include the inverse of the lastAj in the preconditioner.

ForA symmetric indefinite the eigenvalues are negative and positive. Hence, to
find a polynomial that enlarges the small eigenvalues without changing the large ones,
we can chooseB = �2I �A2. Then small eigenvalues� are replaced by�(1 + �) for
a factor� > 0. The main disadvantage of this approach is that the subproblemsAj are
loosing their sparsity. Hence, we have to stop at a levelj, or apply the full multilevel
method, but with total costs of at leastO(n log(n)).

If the smallest eigenvalue is negative but near zero we can use the originalapproach
and again setB = �I � A with � � �max(A). As example we consider the Finite-
Difference dicretization of the one-dimensional Helmholtz equation�(g(x)u0(x))0 +cu(x) = 0 with different values ofc andg(x) = 1 + exp(2x)sin(8x) (see [5]).
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c n = 2l �min MML (�max) mi=-2 MDS jAj
1 5 7.5E-4 9 8 30 7

6 3.2E-4 8 9 33 8
7 1.1E-4 10 10 26 10
8 3.2E-5 11 12 33 10
9 7.7E-6 12 13 37 12
10 - - 12 40 12

10 5 5.3E-4 8 8 28 8
6 2.5E-4 9 9 31 8
7 9.7E-5 10 10 27 9
8 2.7E-5 11 10 37 10
9 6.6E-6 11 10 46 11
10 - - 11 39 12

100 5 -6.6E-3 12 13 36 17
6 -1.3E-3 13 14 34 11
7 -2.7E-4 16 16 38 13
8 -6.5E-5 18 16 31 15
9 -1.6E-5 19 17 36 17
10 - - 23 41 14

1000 5 -3.0E-1 34 30 47 24
6 -5.3E-2 41 28 57 26
7 -1.2E-2 40 35 51 37
8 -2.9E-3 47 37 67 32
9 -7.2E-4 > 500 43 64 46
10 - - 46 62 41

Table 13. Iteration number for 1D Helmholtz equation

If A is nonsymmetric then for the mappingB we can use a low degree polynomialp(A) with p(0) = 1 andjp(x)j is small for the extreme eigenvalues ofA. In the normal
case,p(A;AT ) = j�maxj2I � AAT should be a good choice. To preserve the sparsity
of the restricted linear systemsAj, one can choose the identity for the prolongation
andp(A;AT ) for the restriction or vice versa.

For many examples we can again setB = �I � A with � � �max((A + AT )=2).
As numerical example we consider the Finite-difference discretization of the one-
dimensional Convection-Diffusion equation�(g(x)u0(x))0+cu0(x) = f(x)with Dirich-
let conditions for different values ofc andg(x) = 1 + exp(2x)sin(8x) (see [5]).
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c n = 2l MML (�max) MML(mi=-2) MDS jAj
1 5 9 9 35 8

6 10 10 29 9
7 10 10 33 10
8 11 10 29 10
9 - 11 34 11
10 - 13 55 12

10 5 10 10 25 10
6 12 11 29 11
7 12 12 27 13
8 15 14 36 14
9 - 14 32 17
10 - 14 39 15

100 5 24 24 33 33
6 21 21 34 33
7 20 20 33 20
8 24 24 40 24
9 - 28 39 27
10 - 33 42 32

1000 5 73 72 66 72
6 156 136 126 192
7 > 500 222 214 > 500
8 > 500 129 229 > 500
9 - 91 254 > 500
10 - 73 > 500 71

Table 14. Iteration number 1D Convection-Diffusion equation

The last exampleA = tridiag(1; 2; 1) shows that the matrix multilevel approach
can be applied to more general problems as the usual multigrid method.n = 2l MML(mi=-2) MDS

5 12 36
6 13 89
7 13 207
8 14 475
9 14 > 500
10 14 > 500

Table 15. Iteration number tridiag(1,2,1)
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If the linear system is related to ahigher dimensionalproblem we can introduce
a modified technique in order to capture the structure ofA in a better way. Let us
consider the 2D case and a separable PDE. Then, the matrixA can e.g. be written as a
Kronecker sum (see e.g. [11])A = (A1 
 I) + (I 
 A2) :
The matrixB that is applied in the Multigrid approach is given not by a Kronecker
sum but by a Kronecker productB1 
 B2 with Bi = tridiag(1; 2; 1). Hence, we will
also choose a matrixB as a Kronecker productB = B1
B2 and then useB to define
the matrixC in the formC = BP .

Now the eigenvalues and eigenvectors ofA are given by the sum of the eigenvalues
of A1 andA2, resp. the Kronecker product of the eigenvectors. Hence, every eigen-
vector ofA is of the formu = u1 
 u2. In view of the product rules for the Kronecker
product we getAu = ((A1 
 I) + (I 
 A2))(u1 
 u2) = (A1u1 
 u2) + (u1 
 A2u2) == (�1 + �2)u :
To find an efficient matrixB we again want to enlarge the small eigenvalues ofA
without changing the large ones. Hence, withBu = (B1 
 B2)(u1 
 u2) = (B1u1 
 B2u2)
we can choose B1 := (�1I � A1)�1 ; and B2 = (�2I � A2)�2
with �1 and�2 the maximum eigenvalues ofA1, resp.A2. Then the minimum eigen-
values are approximately enlarged by a factor1 + (�1�2�1�2)2. Furthermore, the
elementary projection matrixP can be chosen asP = P1
P2, and then on the second
level we get CTAC = (CT1 A1C1 
 CT2 C2) + (CT1 C1 
 CT2 A2C2) :
In the next step we again can define the restriction matrix via the Kroneckerproduct
where the first factor is designed to improve onCT1 A1C1, and the second factor is
related toCT2 A2C2. This is the direct generalization of the 1D approach to higher
dimensions via the Kronecker product. We can think of the prolongations also in the
formC = BP = (B1
B2)(P1
P2) = (B1P1
B2P2) = (B1P1
I) (I
B2P2) = F1F2 :
Hence in general we can writeA in the formA = A1 + � � �+ Ad, where each term is
related to thei-th direction. Then for eachAi we can define a matrixFi, and in total
we can setC = F1F2 � � �Fd.
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The advantage of this approach is that it better captures the structure ofA. If we
apply the original method on the 2D case, the twolevel method again leads to an im-
proved condition number, but in general one of the next matricesA(k) is more dense
and/or well-conditioned, and then the multilevel approach will give no improvement in
the following steps. Hence, sometimes it is necessary to modify the matrix multilevel
approach in order to generate subproblems with similar properties as the originalma-
trix A; only then a full multilevel method can be efficient. We will analyse the general
2D case in a forthcoming paper.

5. Conclusions

We have developed a purely matrix-dependent multilevel method for solving linear
equations. The prolongation/restriction operator is defined by a shiftB = �max(A)I�A, B(:; 1 : 2 : n), of the given matrix in order to enlarge�min(A). This idea can be
applied on every level of the method. The numerical results show an improvement
over the Multigrid approach in the preconditioned form (BPX,MDS). The method
can be generalized to indefinite, nonsymmetric, higher-dimensional problems and is
a promising approach to derive further new matrix-dependent Multigrid algorithms.
The derived approach can be seen as a modified polynomial preconditioner, modified
by elementary projections and the included Jacobi-scaling.
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