Put your Model Checker on Diet:
Verification on Local States *

Michaela Huhn! and Peter Niebert! and Frank Wallner?

! Institut fiir Informatik, Universitat Hildesheim,
Postfach 101363, D-31113 Hildesheim, Germany,
{huhn niebert}@informatik.uni-hildesheim.de
2 Institut fir Informatik, Technische Universitit Miinchen
D-80290 Minchen, Germany
wallnerf@informatik.tu-muenchen.de

Abstract. Net unfoldings are a well-known partial order semantics for
Petri nets, very suited to act as models for branching-time logics inter-
preted on local states. We demonstrate how these local logics (in partic-
ular a distributed p-calculus) can be used to express properties from the
point of view of one component in a distributed system. Thus — in con-
trast to interleaving branching time logics — in general they do not refer
to the entire space of global states. We show that verification of local
properties can be done by applying standard model checking algorithms
known for interleaving branching time logics. The key is to extract a
finite (usually small), local transition system bisimilar to the unfolding.
The construction is based on the finite prefix of a net unfolding defined

by McMillan.

1 Introduction

One of the causes of the state explosion problem limiting verification of finite
state systems is the representation of concurrency as interleaving. Recently pro-
posed partial order methods [Pel93, GW91, Val91] avoid the exploration of the
entire state space for model checking by reductions according to the partial order
semantics of the system, where certain interleaving properties are preserved.
Instead of reducing the interleaving model, verification can also be done di-
rectly on the partially ordered object: Net unfoldings® [NPW80, Eng91] provide
a partial order branching time semantics for Petri nets. McMillan [McM92] has
shown how to use net unfoldings for efficient deadlock detection and reachabil-
ity analysis of finite-state Petri nets. He described the construction of a “finite
prefix” of the (usually infinite) unfolding containing every reachable global state.
We show in this paper that McMillan’s construction is a very adequate basis
for model checking branching time logics interpreted on local states. Here we

* This work was partially supported by: the SFB 342, Teilprojekt A3 of the DFG; and
by the Human Capital and Mobility Cooperation Network “EXPRESS” (Expressiv-
ity of Languages for Concurrency).

 Also known as (branching) non-sequential processes.

understand a local state as the representation of the view of a single component
onto the system, taking into account that the individual components have only
partial information on a system’s global state. Such logics allow to express partial
order properties of distributed systems in a natural way, while the expression of
properties, that refer to a certain interleaving of concurrent events, is impossible.
For the linear time case, such logics have been investigated by Thiagarajan in
[Thi94, Thi95], local branching time logics were introduced in [LT87, LRT92].

We consider systems — described in terms of Petri nets — composed of sequen-
tial, non-deterministic subsystems, which synchronously communicate by means
of common actions. As a logic we propose a distributed p-calculus, interpreted
solely at the local states of the contributing components.

The basic operator is an indexed modality (a); meaning “next a for the com-
ponents ¢ € J”. Using fixpoints, local CTL-operators (cf. Sec.3) or the knowl-
edge operator O; from [LRT92] can be encoded. Thus, the distributed p-calculus
serves as a powerful low-level logic, in which other local branching time logics
can be expressed. We demonstrate the use of the logic for specification on a
multi-party network protocol.

The distributed p-calculus corresponds directly to the sequential p-calculus
[Koz83] interpreted on the local configurations of the system’s unfolding. Since
the (local) state space of the unfolding is in general infinite, our aim is to ex-
tract a bissmelar, finite-state representation of the unfolding. This representation
immediately can be used by proved interleaving model checkers [CS93, CES86],
yielding efficient automated verification.

It was already observed by Esparza in [Esp94] that the McMillan prefix can
be used for model checking S4 (the modal logic based on the reachability relation
of the global state space).

We show that for any local configuration of the system’s unfolding we find
a bisimilar local configuration in the finite prefix — no matter whether we take
McMillan’s original definition or the improved prefix construction given in [ERV96].
But the proof does not indicate which event within the prefix can serve as a rep-
resentative for an event lying outside the prefix. The major problem to solve is to
make the proof constructive, i.e. to determine a bisimilar representative for those
events outside the prefix that are direct local successors of events within the pre-
fix — without extending the prefix until these events are present. In particular,
we have to find out whether such a successor exists at all.*

Since the resulting local transition system does not contain more states than
the prefix contains events, the input for model checkers can be dramatically
smaller than the transition system of the global state space. Nevertheless, during
the construction of the local transition system we sometimes have to inspect
global configurations contained in the prefix. Complexity considerations show
that the representation of the algorithm given in Sec. 4 can be improved such
that it never exceeds the costs of building the global state space.

* Since a direct local successor in one component may require an enormous number of
causal predecessors in another component, it is not clear in advance when a further
extension is sufficient to decide on the existence of a local successor.

The paper is structured as follows. In Section 2 we introduce basic definitions
of the models we will use. In Section 3 we introduce the distributed p-calculus
and 1ts formal semantics, and illustrate them with examples. In Section 4 we
show how to use the finite prefix for constructing a finite local transition system
on which conventional model checkers apply.

2 Distributed nets and their unfoldings

We begin with the indispensable basic definitions and the class of Petri nets that
serve as our system models. For further details on nets, cf. [Rei85].

Petri nets. Let P and T be disjoint, finite sets of places and {ransitions. The
elements of PUT are called nodes. A net is a triple N = (P, T, F') with a flow
relation FPC(PxT) U (T x P), which we identify with its characteristic function
on the set (P xT) U (T x P). The preset *x and the postset x* of the node
are defined as *z:={ye PUT | F(y,z)=1} and 2* :={ye PUT | F(x,y)=1}.
The preset (postset) of a set X of nodes is given by the union of the presets
(postsets) of all nodes in X. We assume *z U x* # () for every node .

A marking of a net is a mapping P — IN. We call ¥ = (N, Mp) a net
system with initial marking My if N = (P,T,F) is a net and My a marking
of N. A marking M enables the transition t if for each p€ P, F(p,t) < M(p).
In this case the transition can occur, leading to the new marking M’, given by
M'(p) = M(p) + F(t,p) — F(p,1) for every place p. We denote this occurrence

by M-+ M'. If there exists a chain Mot—1> Mlt—2> ...2% M, then the sequence
o = t1ty .. .1, is called occurrence sequence and we write M 2 M,,. M is called
a reachable marking of X if there exists an occurrence sequence o, such that
My Z M. Two transitions t1,ts are concurrently enabled at M if M enables ¢,
and ¢ is enabled at M’ where M'(p) = M(p) — F(p,t1) for each p.

We will exclusively regard I-safe systems, in which all reachable markings
map each place to 0 or 1. Each marking can thus be identified with the set of
places it maps to 1, and so M C P for every reachable marking M .

A system is called sequential if every reachable marking concurrently enables
exactly one transition.

Distributed net systems. Let {¥; = (P, 1}, F;, M?)|i € I} be a family of
1-safe, sequential net systems with pairwise disjoint sets P; of places, indexed
by a finite set I of locations. The distributed net system X1 = (N, My) is the
union of the subsystems X;:

p=Jp, T=\Jn, r=Urn, Mo=JM .

i€l iel iel iel
Clearly, X7 1s 1-safe. The intended interpretation of such a system is a collec-
tion of sequential, non-deterministic processes with communication capabilities,
namely the common transitions. We understand the common execution of a joint

transition as a communication event. The location loc(x) of a node z is defined
by loc(z) :={iel|xe P, UT;}.

T e
Soul

Fig. 1. Distributed net Fig. 2. Branching process

Fig. 1 shows a distributed net system consisting of three subsystems. The
upper net can be seen as a producer, the lower as a consumer, and in between
there is a single buffer cell, communicating with the producer and the consumer.

Branching processes. Two nodes x1, 25 of a net (P, T, F) are in conflict, de-
noted x;# o, if there exist two distinct transitions 1,1, such that *#; N *ty #£ 0,
and (t1, 1), (t2, z2) belong to the reflexive and transitive closure of F. If x#«,
we say x is in self-conflict.

An occurrence net [NPWS80] is a net N = (B, E, F') where the irreflexive
transitive closure of the flow relation F' is well-founded and acyclic (and thus
a (strict) partial order which we denote by <). Furtheron |*b] < 1 for every
b€ B, and no transition is in self-conflict. The reflexive closure of < determines
a partial order, called causal relation and written as <. In occurrence nets we
speak of conditions and events instead of places and transitions, respectively.
Min(N) denotes the minimal elements of N with respect to <, and Max(X) the
causally maximal elements of the set X of nodes.

Given two nets N; = (P, T;, F;) for i € {1,2}, the mapping h : P, UT) —
Py UT5 is called net homomorphism if it embeds Py into P and T} into 75 as
well, and if for every t €T the restriction of h to *¢, denoted h|s¢, is a bijection
between *t and *h(t), and analogue for hlss .

A branching process [Eng91] of a net system X = (N, M) is a pair f =
(N',m) where N' = (B, E,F') is an occurrence net and # : N’ — N is a net
homomorphism, such that the restriction of 7 to Min(N”) is a bijection between
Min(N') and M, and additionally for all ey, es € E: if w(e1) = m(es) and *e; =
*ey then e; = es. Loosely speaking, we unfold the net N to an occurrence net
N’, obeying the rules determined by the conditions for 7, and labelling each
node z of N’ with the corresponding node w(x) of N. Referring to distributed
net systems, the location loc(z) of a node z of N’ is given by loc(z) = loc(w(z)).
By Ej we denote the set of J-events, i.e., By :={e€E | J Cloc(e)}.

Given two distinct branching processes 8 = (N1, 1) and 2 = (Na, m2) of X,
we say that (1 and By are isomorphic if there exists a bijective homomorphism

h : Ny — N, such that the composition w5 o h equals 7. If h 1s injective, such
that hlarin(n,) 1s @ bijection between Min(N;) and Min(N3), and By C By and
Ey CE,y, we call 81 a prefiz of 83. Notice that a prefix is uniquely determined
by its set of events or its set of conditions. In [Eng91] it is shown that a net
system has a unique maximal branching process up to isomorphism, which we
call the unfolding of ¥, and denote by Unf. Fig. 2 shows a prefix of the infinite
unfolding of the net system of Fig. 1.

Configurations and Cuts. A configuration C of an occurrence net is a causally
downward-closed, conflict-free set of events, i.e., for each e € C: if ¢/ < e then
'€, and for all e,/ € C': =(e#e’).

If Max(C') is a singleton, say {e}, we speak of the local configuration of e
and denote it by |e. It is given by the set of all the preceding events, 1.e.,
le={e'€FE|e < e}. As usual, we identify each finite configuration C' with the
state of the system that is reached after all the events in C' have occurred. A
local configuration then defines a local state. The set of local configurations of
a branching process § is denoted by Cioe(8). In order to simplify the handling,
we introduce a virtual event symbol L that can be seen as initial event with an
empty preset and Min(N) as postset. | L then denotes the empty configuration.
We extend the set of events of Unf to F; := FU{L} and set loc(L) = 1.

In distributed systems, we define the i-view |'C of a configuration C as

['C:={e€C |3 €(CNEy) e=xe}

The i-view is a configuration: the empty configuration if C'N Ef;3 = 0, and the
local configuration of the (unique) maximal ¢-event in C', otherwise. This follows
from the sequentiality of the subsystems. Thus, |'C' can be understood as the
most recent local state of the subsystem ¢ € I that the whole system is aware of
in the global state C'. The i-view of the configuration |e is written as |’e.

Two nodes of an occurrence net are concurrent if they are neither in conflict
nor causally related. A set B’ of conditions of an occurrence net is called a co-
set if any two elements of B’ are concurrent. A co-set is called a cut if it is a
maximal co-set w.r.t. set inclusion. There is a tight interrelation between finite
configurations and cuts: the set of conditions

Cut(C) = (Min(N) U C*)\ *C

where C' is a finite configuration, is a cut. The corresponding set of places
7(Cut((')) is a reachable marking, denoted by M(C') and called final state of
the configuration C'. Notice that for every reachable marking M of the system
there exist a (not necessarily unique) finite configuration C' of the correspond-
ing branching process, such that M(C) = M. We call C' and ¢’ M-equivalent,
denoted C' =4 €', if M(C) = M(C").

An elementary property of two M-equivalent configurations C',C” is that
their “future” is equal, 1.e., there exists an isomorphism between the part of Unf

that lies behind of C' and that one behind C’, formally,
B(C) is isomorphic to B(C’) it C=pm ',

where 8(C) :={x € BUFE |3b e Cut(C). b <z A Vye& Cut(C). ~(x#y)}.

In the case of e =x¢ | ¢’ and ||e| < || €|, the branching process 3(|e) can
be seen as (| e’) “shifted backward”. Any configuration C” containing |e’ thus
can be shifted backward to an M-equivalent configuration C' containing |e.

In [Esp94] this idea was formalised as follows: let Ijjl denote the isomorphism
from g(le’) to f(le), and C be a configuration of Unf. The (', e)-shift of C,
denoted shift(. ¢)(C'), is defined by

' _f(c if ¢C
shift (@) = {1 70 1o i o

Local successor relation. For J C I, we call the configuration C’ a .J-successor
of the configuration C, written as C' = €', if C' is a state that lies in the future
of €', such that on the path from C to C” all the components 7 in J execute
exactly one event e, and nothing happens after e. Formally, C % C' iff

CCC' and EIeEMaX(C”).ViEJ.(C'\C)ﬂE{i}:{e}.

3 The distributed p-calculus

In this section we define the syntax and semantics of a version of the p-calculus
[Koz83] that is adequate to describe local properties of the components of a
distributed system. More precisely, the formulae of the logic are interpreted over
the local configurations of the unfolding of a distributed net system. The logic is
adapted from a similar linear time logic for Mazurkiewicz traces [Nie95]. We will
indicate how the local approach can be used for the specification and verification
of distributed systems, and show that our logic naturally can be transferred to
the conventional framework of global states.

Syntax. Let (N, My) be a distributed net system, Unf = (N',) its unfolding,
and [: T — Act a labelling of the transitions of N; with actions taken from
the alphabet Act. We identify the corresponding labelling of events with [, i.e.,
l(e) = l(n(e)) for e in Unf. The abstract syntax of the logic is given by

o n=plople|lene | Ve | (g | [ase | prye | veyp

where the atomic propositions p range over the set P of places of the distributed
net, x over a set V) of propositional variables, a over Act, and J over 2/ \ {). The
intended meaning of {(a); ¢ is that there exists a next local state |e such that
l(e) = a and no event of any of the locations in J will happen before e. The
operators ¢ and v bind the variables. A formula that does not contain any free
variable is closed. We use the basic propositions true and false as abbreviations
for vy.y and py.y, respectively, and define (-); ¢ := \/ 4., (@)s ¢ and [-]; ¢ 1=
Aacacilalr ¢ where a € Act.

We only allow negation of atomic propositions. However, the logic is closed
under negation, because every operator has its dual and negations can be drawn
inside down to the atomic propositions.

6

Semantics. The semantics of a formula ¢ of our logic is a set of local configu-
rations (satisfying it), and is written as [p]™ C Ci.(Unf), where Unf is the
unfolding under consideration and v : V — 26<(U"f) ig a valuation function for
the variables. Since Unf is clear from the context, we omit this superscript, and
if also v is understood, we simply write [¢]. For |e € [¢] we also write |e = ¢.
We inductively define the semantics according to the following rules:

[plo = {le| p e M(le)} [ple = {le| p& M(le)}
[[30 A 1/)]]1) = [[30]]1) N [[1/)]]1) [[30 N 1/)]]1) = [[30]]1) U [[1/)]]1)
[ve.pl, = U{A 1 AC [[@]]v[x::A]} [pe.ele = N{A | [[@]]v[x::A] C A}

[{a)s el ={le | 3¢ €Ey.l(e') =a and |e-= |/ and |e'€[e]u}
[lalsele ={le | Y’ € Ey. if I(¢/)=a and |e- e’ then |e'€[e]s}

where v[y := A](y) = A, and for z # y we have v[y := A](z) = v(z). We say that
system X satisfies the formula ¢, denoted by X | ¢, if the empty configuration
| L belongs to [¢].

Note that a local state | e may satisfy an atomic proposition p that does not
belong to the location of e. Thus, the proposed logic allows to express properties
corresponding to the local view that one component has onto other components.

We briefly comment on the assertions expressible by the proposed language.
Single-located formulae are simply formulae of the standard p-calculus, inter-
preted on the corresponding subsystem. For instance, ¥ = va.p A [-]; ¢ means
that on every path of the ¢-component ¢ holds at every local state — ‘p always
holds in . If we substitute [-]; by ([-]; # A{-); true) in ¥, we additionally express
that the mentioned path is of infinite length since for every local state of ¢ there
must exist a successor. The assertion ‘eventually ¢ will hold in i’ is given by
px.oV ([-]; # A {-); true), and ‘e holds in ¢ infinitely often’ can be formalized as
vy.px.(pV [];) A-liy A {-); true. Notice, however, that this formula may hold
even if there exist global runs in which the i-component only executes a finite
number of events. It actually states that if ¢ executes infinitely many events in
the future then it will satisfy ¢ infinitely often.

The more interesting properties, of course, are expressed by formulae referring
to distinct subsystems. Let ¥ be the above mentioned ‘¢ always holds in ¢”. Then
px.[-]; ¢ V [-]; ¥ means that component j will eventually communicate with 4,
and afterwards ¢ holds indefinitely in .

If J = {4,j,k} then the formula vy.[-l; y A (p — (a)strue) describes that
whenever p holds in ¢ then #’s next a-action may be a synchronization with j
and k, where a also for j and k is the next step.

It is useful to translate a local logic reminding of CTL [CES86] to our logic.
Localised variants of the two next operators, EX; and AX; are already part
of the syntax, namely (-}; and [-];. The set of locations specifies, for which

components this event is a next step. Similarly we now define the until-operators
of CTL with locations:

E(eUs) == pyv V(e A {)sy)
A(pUs o) = py b V (e A[-lgy A {-) 5 true).

Other CTL-like operators, such as AGy,AF;,EGy, EF; can in turn be defined
using the until-operators in the standard way. E(¢Uy ¢) specifies a J-local line
of events along which ¢ holds until ¢ 1s satisfied.

Example. To give a flavour of the usage of our logic, and in order to show
that it is indeed reasonable to argue in terms of local properties, we inspect the
following echo-algorithm [Wal95].

Assume a (strongly connected) network N consisting of a set of agents Ag
that includes initiator Ag. Each agent A; communicates exclusively with her
direct neighbours N; = {4;,,..., 4; } € Ag, and each agent (but the initiator)
behaves the same way, as shown in Fig. 3. At any time the initiator wants to flood
the whole network with a wake-up signal, each agent — after receiving a wake-
up — executes a local computation and sends back an accept signal afterwards.
Whenever the initiator reaches state terminatedy, she wants to be sure that every
agent in the network has executed her local computation.

The first transition of an agent A; is to receive a wake-up from one of her
neighbours A; € N;, and simultaneously to send a wake-up to her other neigh-
bours 4; € N; \ {4z}, firing whkup;(k), and changing her state to starf;. Then
she executes her local computation. Afterwards she awaits the accept-signal
from those of her neighbours which she waked up. Simultaneously she sends
the accept-signal to the one neighbour from whom she had received the wake-up
(acpti(k)). Eventually she will spontaneously return to her initial state sleeping;.

For every pair (A;, 4;) of neighbours there exist channels (¢, j) and (j, ¢), that
are initially all empty, and synchronise with the wake-up resp. accept transitions
of the agents. To simplify the formulae we label each transition wkup;(j) by wkup
and each acpt;(§) by acpt.

One of the most interesting system characteristics that is expressible as a
local property is that the protocol achieves synchronisation of all agents: the
initiator cannot be terminated before all agents are in the state accepted.

X = AGo(terminatedy — N\, accepted;)

Another property of interest guarantees that no agent A; can be in accepted; if
any of her neighbours still is sleeping, expressed by

YE /\ AG;(accepted; — /\jEN, —sleeping;)
i>1

A third property is that in the first round of the protocol after the initial wkup
each agent A; will wake up in her next step.®

X E [wkuplo /\ (whkup); true A [~wkup]; false®
i<1
® In a later round of the protocol all agents wake up only in their second step after
the initialising wkupy because in the local view of the initiator the others have to
execute their restart action ret first.
b [-ali@ = /\beAct,—{a} [b]: ¢, i.e. [-a]; false says ‘nothing than @ must occur next in 7 .

initiator Ag agent A; channel(i, j) (i,7 #0)

S uzel o
@ ' 0 / sleeping (keEN\{s}, leN;\{t})
whupo C e acpti(j) wkup:(k)
it & start;
0 o0" O T
reto solve;
acpto wkup;(1) acpt; (1)
[] Odonei
/ For the channel (0,4) substitute
acptz(zn) the transitions from empty to filled

) by the single transition wkupg.
) acpti(i1)

terminateds For the channel (¢,0) the only

transition from filled to

empty is acceptq.
accepted;

Fig. 3. Components for the echo-algorithm.

Transition systems semantics

Now we want to show that the unfolding can be understood as a local transition
system 7T,y with transitions labelled by indexed actions ay, J C I, and with
the local configurations of Unf as set of states. It will be immediate that on
Ty the distributed p-calculus corresponds to the standard p-calculus over the

modified action alphabet Act = {ay | a € Act,J C I}.
p-calculus and bisimulation. The syntax of the py-calculus [Koz83] is given by

¢ = p|lplae]| ond | oVe | (a)g | [a¢ | pe.o | va.o

where p € P,z € V, and a € Acty. The semantics of the p-calculus is defined
over transition systems 7 = (S, sg, —, Actr, P, 1) where S is a set of states, Actr
an action alphabet, sg € S the initial state, — C S x Actr xS the transition rela-
tion, and I : § — 2 an interpretation mapping the states onto the propositions.
As usual, we write s = s’ if (s,a,5") € —.

The semantics of a p-calculus formula ¢ over a given transition system 7 is
denoted by [¢]7 C S, where v is the valuation function for the variables. We
write s =7 ¢ if s € [#],. The semantics is defined inductively by:

[plo = {s | pe1(s)} [=plo ={s| p¢1(s)}
[¢ A x]o = [2]v 0 [x]w ¢V x]o = [#]v U [x]v
[ve.glo =U{A | AC [[¢]]v[x::A]} [px.¢], = A | [[¢]]v[x::A] C A}
[{a)p]ly ={s | 3s' €5.s = s and s €[d],}
llal¢]lo ={s | Vs €S. if s = s then s’ €[d],}

It is well-known that the distinguishing power of the p-calculus is limited to
standard bisimulation: A relation R C 7 x 7 is called a bisimulation iff for any

s R s" it holds that I(s) = I(s") and for all a € Actr

— if s % 51, then there exists s) with s’ = s} and s; R s, and dually
— if 8 % s, then there exists s; with s % s; and 51 R s}.

Two states s and s’ are called bisimilar, denoted s ~ s’ iff there exists a bisim-
ulation R with s R s’. We also write 7 ~ 7' if for the initial states sq ~ s(. It
was shown by Milner [Mil89] (see also [Sti92]) that

s~ s implies s =7 ¢ < s’ =7 ¢ for all closed p-calculus formulae ¢.

The local transition system Zp,r. Let Unf be the unfolding of a distributed
net system Y. Then the local transition system extracted from Unfis given by
Tong = {Croe(Unf), | L, —, Act, P,I) where leZ Je'iff JeZ | and I(¢)) = a,
and the interpretation of propositions I(|e) = M(|e) for all |e.

Propositionl. Letl |e1, |es € Tyns. Then leq ~ |es iff ler =m0 |es.

By definition, if |eq #aq | €2, they are not bisimilar. Conversely, if |e1 =a4 |ea
then, based on the isomorphism Z£2, we define a relation R by setting e} R |ef
iff |e; C e}, les C |eby and Z22(e]) = eb. It is easily checked, that in fact R is
a bisimulation and of course |e; R |es. a

Let ¢ be a formula of the distributed p-calculus. Then ¢ denotes the formula
where each occurrence of {a); is substituted by {(as), and similarly [a]; by [as].

Proposition2. |e = iff le =7 & for any |e € Cioe(Unf).

4 Model checking

In this section we develop the technical tools required to achieve efficient verifica-
tion techniques for the logic. In fact we will not give an algorithm for the model
checking procedure itself. Rather we give a construction, which reduces the model
checking problem for the distributed p-calculus to a suitable input for well un-
derstood algorithms known from sequential model checking like [CES86, CS93].
As a first step, we will show that there exists a finife transition system 7y,
bisimilar to the usually infinite system 7ir,¢. This finite system 7r;, can be
defined over the set of local configurations of the complete finite prefiz introduced
by McMillan [McM92]. Secondly, we give an algorithm for constructing Ty, .

The finite prefix

In [McM92], McMillan showed how to construct a finite prefix of the unfolding
of a finite-state net system in which every reachable marking is represented by
some cut. We will use this prefix to obtain a finite transition system with local
states, which is bisimilar to the unfolding.

10

Let Unf=(N’,) be the unfolding of a net system, where N'=(B, E, F'). A
cut-off event is an event e € £/ whose local configuration’s final state coincides
with the final state of a smaller local configuration, formally:

Ae'e By :|le] < |le]and | e/ = |e.

Notice that in general for each cut-off event e there may be several corresponding
events ¢/ with the above property. In the sequel, we fix one of them and refer
to it as corr(e). The prefix Fin is then defined as the unique prefix of Unf with
Epin CE| as set of events, where E'r;, s characterised by

e € Epy, 1T noevent ¢ < e is a cut-off event.

It is easy to prove that Fin is finite for net systems with finitely many reachable
markings.

The prefix Fin is usually much smaller than the state space of the system.
However, it can also be larger. In [ERV96] it is shown how to improve McMillan’s
construction. The main idea is to determine cut-off events not by comparing the
size of the local configurations of events (which does not produce any cut-off
event when the sizes are equal), but other partial orders instead. In the prefix
generated by the refined algorithm, if e and €’ are two different non-cut-off events,
then the markings M(|e) and M(|e’) are also different. Therefore, the number
of non-cut-off events never exceeds the number of reachable states, and so the
prefix can never be larger than the state space (up to a small constant).

The finite, local transition system Zz;,

Now we show that there exists a finite transition system Tr;, ~ Ty, such that
the states of 7g;, are at most the local configurations of the finite prefix.

Observe that McMillan’s construction in fact guarantees that for each local
configuration |e in Unf there exists an M-equivalent corresponding configu-
ration |e’ in Fin, ie., |e ~ |e in Ty, and ¢ € Ep,. The only reason for
e ¢ Epi, can be that e supersedes a cut-off belonging to Fin and therefore itself
is a cut-off. By induction it is possible to find a corresponding event for e within
Epip.

For the following, we select for each equivalence class of bisimilar config-
urations |e in Unf a unique representative | corr(e) in Fin which is minimal
w.r.t. the size of || corr(e)|. (In case of using the improved prefix [ERV96], corr(e)
is selected from the non-cut-off events in Ep;, and thus uniquely determined.)

If we have two bisimilar states |e; ~ |es in Ty, we can replace each tran-
sition e 2 ey by |e 2L |es for any source state |e and obtain a transition
system ’T(’]nf bisimilar with 777,y on all states and with the same state space.

Since we have selected for all local configurations | e, | e’ bisimilar representa-
tives | corr(e), | corr(e’) in Fin, we can (imaginarily) “bend” all the transitions
le 2 |e in Tuns to transitions | corr(e) 2L | corr(e’) in Fin (possibly merging
infinitely many transitions into one). Since corr(e) is unique and minimal, af-
terwards all local states |e reachable from | L via transitions are non-cut-offs.

11

Now we discard all cut-off events (whether contained in Fin or not). We call
the resulting transition system 7p;,. Observe that 7g;, 1s even smaller than Fin
itself, since cut-offs are discarded. We obtain:

Proposition3. Tpi, ~ Tyyy.

Moreover, we have in fact obtained the minimal transition system bisimilar
to T (which is determined uniquely up to isomorphism). By Proposition 2 we
obtain as corollary:

Theorem4. For any closed formula ¢ of the distributed p-calculus it holds that
ILEe if |LEr, ¢

Thus we can reduce the model checking problem of the distributed p-calculus
for some distributed net system to the model-checking problem of the standard
p-calculus over 7p;,, . Moreover, 1t is guaranteed that 7ry, is not bigger than the
global state space of the distributed net system — and often much smaller.

An algorithm to compute Tp;, . By now we know that 7p;, exists, the ques-
tion remains, how we can compute it. We propose an algorithm that takes Fin as
input and moreover uses the structural information, which the algorithm com-
puting Fin has built up:

— a function corr mapping any event e in F'in to a unique non-cut-off eg, such
that e =a e’ implies corr(e) = corr(e’) = eg. The codomain of corr is
called Eg.p, C EFrin, the set of representative events. Note that {|e | e €
Erep} forms the state space of Tpyp.

— a function shift*, which maps any configuration C' = C of Unf contain-
ing some cut-off to a configuration shift*(C') = C" = C), not containing a
cut-off, hence being present in Fin. This function works by repeatedly ap-
plying Ciq1 1= shift(c, corr(e;))(Ci) With e; being a cut-off in Flin contained
in C;. shift" terminates, because the sequence 4, Cy, .. decreases in the un-
derlying (well-founded) order (e.g. contains less and less events in the case
of the McMillan order). Obviously this function implies the existence of an
isomorphism Z between B(C') and B(shift*(C)), which is the composition

of the isomorphisms Ij(;w(el) induced by the chosen cut-off events. More-

over, shift*(|e) is strictly smaller than |e (in the underlying order) for any

e € B(C), and hence for any e, for which C' = |e.

The most important part of the algorithm is the recursive procedure successors
which, when called from the top level with a triple (le, J,a), returns the az-
successors for |e in Tp;,. More generally, successors performs depthfirst search
through triples (C, J, a), where C' is an arbitrary, not necessarily local configu-
ration not containing a cut-off, J is a non-empty subset of locations, and a is an
action. It determines the subset of events in Eg.p, that represent the a-labelled
J-successors of C'. Formally, e € successors(C, J,a) iff there exists |e/ in Unf,
which is M-equivalent to |e, {(¢') = a and C' = |¢€’.

12

type Vertex = { C: Configuration; J: LocationSet; a: ActionLabel;
pathmark: bool ; (* for depth first search *) }

prefix_successors(C, J,a) = {|corr(e) | e € Epyp A le)=a A C L |e}

inheritable_extension(C, e, J,a) = (Vi € J. (le \ C)N E; = §)

(* predicate ensuring, that joining |e to C adds no i-events for i € J *)
compatible_cutoffs(C) = {e | e is cut-off and |e U C is a configuration in Fin}

proc successors(C, J, a): ConfigurationSet;
{ wvar result: ConfigurationSet; (* result accumulator for the current vertex *)
Vertex v := findvertex(C,J,a); (* lookup in hash table, if not found then *)
(* create new vertex with pathmark = false *)
if v.pathmark then return §; fi (* we have closed a cycle *)
result := prefix_successors(C, J, a); (* directly accessible successors *)
v.pathmark:=true; (* put vertex on path *)
for e. € compatible_cutoffs(C') do
(* find successors outside the prefix behind e. *)
if inheritable_extension(C, e., J, a) then
result := result U successors(shift* (C U |e.), J, a);
fi
od ;
v.pathmark:=false; (* take vertex from path *)
return result;

}

proc Computed gy, ;

{ InitializeTransitionSystem(ts,Fin) (* extract state space from Fin *)
for e € FPrep,a € Act,0 £ J C 1 do
for |e’ € successors(le,J,a) do
add transition |e 4 le’
od
od
}

Fig.4. The conceptual algorithm to compute Tp;,

The procedure works as follows. Assume there exists at least one ¢’ anywhere
in Unfwith €' |¢’; then there are two possibilities:

— One of these ¢’ lies in the prefix. This is easy to determine. The corresponding
event corr(e’) € Egep is given back by prefix_successors(C, J, a).

— There exist such events ¢/, but none of them lies in the prefix. The reason
for ¢’ ¢ Fpip, is the existence of a cut-off e, € Ep;y,, such that e, < e’. So we
can do a case analysis over the compatible cut-offs. A cut-off e, is compatible
with C' if it is not in conflict with C' 1.e., |e. U is a configuration in Fin.

13

If there is a compatible e., such that (Je.\ C)N E; = @ for all i € J then for
at least one of them, we have (C'U |e.) > |¢’. In this case we inherit the
transition C' % |¢’.

In the second case, we loop over all compatible cut-offs e, looking at the con-
figuration C, := C'U | e,. If the J-successors of C, are J-successors of C' (which
is determined by inheritable_extension(C\e., J,a)) we want to search for the
successors(C., J,a). But if any ¢’ with {(¢’) = a and C. = | ¢’ exists, then there
also exists a bisimilar ¢’ for C* := shift"(C.) (by the isomorphism), where more-
over |e” is smaller than |e’. So successors is recursively called with (C*, J, a).
Note that C* contains no cut-off.

Hence we apply depthfirst search with respect to triples (C, J, a). Cycles may
occur (if we hit a triple (C, J, a) with pathmark= true), at which we break off
to ensure termination. Note that the search space is limited by the fact that '
is represented in Fin and does not contain cut-offs.

It remains to show that the termination is correct: Assume an e’ with {(e/) = a
and (C' 5 |e’) exists. Then we choose from all these suitable J-successors a
minimal one named epi, . Whenever a configuration (C'U| e.) is shifted with shift”
to obtain a configuration C” for the next call of successors, also ep;y, is shifted to a
stricly smaller e/ ... Thus in case we hit a configuration C' twice, when searching
for a-labelled J-successors, emin is mapped by the various shift*s to a strictly
smaller event e}, which contradicts the minimality of epi,. Thus whenever a
configuration is investigated a second time for a-labelled J-successors, we know
that there cannot be one.

The main procedure Compute7p;, thus only has to loop about all possible
triples (|e, J, a) with e € Eg.p to check for transitions |e 2L e’ in Tryp and to
insert the results of successors. Concluding the above discussion, we obtain:

Theorem 5. The algorithm ComputeTp;, computes Tpyy,.

Note that at top level, successors i1s only called with local configurations
C, but the extension of C' with cut-offs requires that we can also handle some
global configurations. Further note that we present the algorithm in figure 4
with emphasis on understandability, not efficiency: many vertices (C, J, a) will
be explored very often, leading to an unsatisfying runtime. However it is very
easy to modify the algorithm so that every vertex (C,J,a) is explored at most
once, essentially by storing intermediate results with the vertices in the hash-
table. Then the runtime of the algorithm is proportional to the size of the search
space. Since we have to deal with some global configurations, in principle the
search space can grow to the size of the global transition system, but no larger.

However 1t can very well be, that the number of wvisited global states re-
mains small compared to the number of all global states existing. Only practical
experiments can give an answer here.

Heuristic improvements. Apart of the improvements mentioned above, the
algorithm also allows for several heuristic improvements to save unnecessary

14

computation. For instance, it is impossible that a state |e has any aj-successor
if the J-places in M(|e) are not contained in *¢ for any a-labelled transition ¢
of the original net, and thus successors(|e, J, a) need not to be called.

Moreover, the algorithm can be combined with on-the-fly algorithms (some-
times called local model checking), by only calling successors, when the model
checker needs to find the aj-successors of some state.

5 Conclusion

We introduced a distributed version of the p-calculus and showed its use in
describing branching time properties of distributed algorithms based on local
states. We reduced the model checking problem for this new logic to the well-
investigated model-checking problem of sequential logics over transition systems.

How expensive is all this? The computation of Ty, can be as costly as gen-
erating the global state space (although we believe that often it will be much
cheaper), the resulting system Tpy, is typically much smaller than the global
transition system. The transformation of the formulae is for free. So the cost of
computing 7p;, does not affect the runtime of the standard model checker in
the next phase.

The scenario we presented is not limited to our logic. In fact, it can be used
for any logic, which is based on local states, as they are present in 7py,. For
instance [Pel93, Thi95] have proposed linear time logics, where the formulae
are boolean combinations of linear time formulae that refer to a single location.
The subclass of formulae, that are conjunctions of purely local formulae, can
be checked with a standard linear time model checker on 7g;,. There are many
examples known, where Fin 1s much smaller than the interleaving based reduced
state spaces used e.g. in [Pel93].

We plan to implement a prototype of our proposed model checking system
within the PEP environment [Be94].

Acknowledgment. We thank P.S. Thiagarajan for discussions on location based
logics. Burkhard Graves has helped our understanding of the subtleties of Fin.
Special thanks to Javier Esparza, whose contribution to this work in its initial
phase was very important.

References

[Be94] E. Best and H. Fleischhack (eds.). PEP: Programming environment based
on nets. Technical report, University of Hildesheim, 1994.

[CES86] E.M. Clarke, E.A. Emerson, and A.P. Sistla. Automatic verification of finite-
state concurrent systems using temporal logic specifications. ACM Transac-
tions on Programming Languages and Systems, 8(2):244-263, April 1986.

[CS93] R. Cleaveland and B. Steffen. A linear time model-checking algorithm for
the alternation-free modal mu-calculus. Formal Methods in System Design,
2:121- 147, 1993.

15

[Eng91]

[ERV96]

[Esp94]

[GW91]

[Koz83]

[LRT92]

[LT87]

[McM92]

[Mil89]
[Nie95]

J. Engelfriet. Branching processes of Petri nets. Acta Informatica, 28:575—
591, 1991.

J. Esparza, S. Romer, and W. Vogler. An Improvement of McMillan’s Un-
folding Algorithm. In T. Margaria and B. Steffen, editors, Tools and Algo-
rithms for the Construction and Analysis of Systems TACAS °96, volume
1055 of LNCS, pages 87-106, Passau, Germany, 1996. Springer.

J. Esparza. Model checking using net unfoldings. Science of Computer Pro-
gramming, 23:151-195, 1994.

P. Godefroid and P. Wolper. A Partial Approach to Model Checking. In
Proceedings of the 6th IEEFE Symposium on Logic in Computer Science, pages
406-415, Amsterdam, July 1991.

D. Kozen. Results on the propositional pg-calculus. Theoretical Computer
Science, 27:333-354, 1983.

K. Lodaya, R. Ramanujam, and P.S. Thiagarajan. Temporal logics for com-
municating sequential agents: 1. Int. Journal of Foundations of Computer
Science, 3(2):117-159, 1992.

K. Lodaya and P.S. Thiagarajan. A modal logic for a subclass of event struc-
tures. In T. Ottmann, editor, Automata, Languages and Programming, vol-
ume 267 of LNCS, pages 290-303. Springer, 1987.

K.L. McMillan. Using unfoldings to avoid the state explosion problem in the
verification of asynchronous circuits. In Proceedings of the jth Workshop on
Computer Aided Verification, pages 164-174, Montreal, 1992.

R. Milner. Communication and Concurrency. Prentice Hall, 1989.

P. Niebert. A v-calculus with local views for systems of sequential agents.

In MFCS, volume 969 of LNCS, 1995.

[NPW80] M. Nielsen, G. Plotkin, and G. Winskel. Petri nets, event structures and

[Pel93]

[Rei85]

[Sti92]

[Thi94]

[Thi95]

[Val91]

[Wal95]

domains. Theoretical Computer Science, 13(1):85-108, 1980.

D. Peled. All from one, one for all: on model checking using representatives.
In International Conference on Computer Aided Verification (CAV), volume
697 of LNCS, pages 409-423, Elounda, Greece, 1993.

W. Reisig. Petri Nets, volume 4 of EATCS Monographs on Theoretical Com-
puter Science. Springer, 1985.

C. Stirling. Modal and temporal logics. In S. Abramsky, D. Gabbay, and
T. Maibaum, editors, Handbook of Logic in Computer Science. Oxford Uni-
versity Press, 1992.

P.S. Thiagarajan. A Trace Based Extension of PTL. In Proceedings of the
9th IEEE Symposium on Logic in Computer Science, 1994.

P.S. Thiagarajan. A Trace Consistent Subset of PTL. In I. Lee and S.A.
Smolka, editors, Proceedings of CONCUR 95, volume 962 of LNCS, pages
438-452, Philadelphia, P.A., USA | 1995. Springer.

A. Valmari. Stubborn Sets for Reduced State Space Generation. In
G.Rozenberg, editor, Advances in Petri Nets 1990, volume 483 of LNCS,
pages 491-515. Springer, 1991.

R. Walter. Petrinetzmodelle verteilter Algorithmen — Beweistechnik und In-
tustion. PhD thesis, Humboldt- Universitat zu Berlin, Institut fir Informatik,
1995. edition VERSAL, W. Reisig (Hrsg.), Dieter Bertz Verlag.

16

