
Put your Model Checker on Diet:Veri�cation on Local States ?Michaela Huhn1 and Peter Niebert1 and Frank Wallner21 Institut f�ur Informatik, Universit�at Hildesheim,Postfach 101363, D-31113 Hildesheim, Germany,fhuhn,niebertg@informatik.uni-hildesheim.de2 Institut f�ur Informatik, Technische Universit�at M�unchenD-80290 M�unchen, Germanywallnerf@informatik.tu-muenchen.deAbstract. Net unfoldings are a well-known partial order semantics forPetri nets, very suited to act as models for branching-time logics inter-preted on local states. We demonstrate how these local logics (in partic-ular a distributed �-calculus) can be used to express properties from thepoint of view of one component in a distributed system. Thus { in con-trast to interleaving branching time logics { in general they do not referto the entire space of global states. We show that veri�cation of localproperties can be done by applying standard model checking algorithmsknown for interleaving branching time logics. The key is to extract a�nite (usually small), local transition system bisimilar to the unfolding.The construction is based on the �nite pre�x of a net unfolding de�nedby McMillan.1 IntroductionOne of the causes of the state explosion problem limiting veri�cation of �nitestate systems is the representation of concurrency as interleaving. Recently pro-posed partial order methods [Pel93, GW91, Val91] avoid the exploration of theentire state space for model checking by reductions according to the partial ordersemantics of the system, where certain interleaving properties are preserved.Instead of reducing the interleaving model, veri�cation can also be done di-rectly on the partially ordered object: Net unfoldings3 [NPW80, Eng91] providea partial order branching time semantics for Petri nets. McMillan [McM92] hasshown how to use net unfoldings for e�cient deadlock detection and reachabil-ity analysis of �nite-state Petri nets. He described the construction of a \�nitepre�x" of the (usually in�nite) unfolding containing every reachable global state.We show in this paper that McMillan's construction is a very adequate basisfor model checking branching time logics interpreted on local states. Here we? This work was partially supported by: the SFB 342, Teilprojekt A3 of the DFG; andby the Human Capital and Mobility Cooperation Network \EXPRESS" (Expressiv-ity of Languages for Concurrency).3 Also known as (branching) non-sequential processes.

understand a local state as the representation of the view of a single componentonto the system, taking into account that the individual components have onlypartial information on a system's global state. Such logics allow to express partialorder properties of distributed systems in a natural way, while the expression ofproperties, that refer to a certain interleaving of concurrent events, is impossible.For the linear time case, such logics have been investigated by Thiagarajan in[Thi94, Thi95], local branching time logics were introduced in [LT87, LRT92].We consider systems { described in terms of Petri nets { composed of sequen-tial, non-deterministic subsystems, which synchronously communicate by meansof common actions. As a logic we propose a distributed �-calculus, interpretedsolely at the local states of the contributing components.The basic operator is an indexed modality haiJ meaning \next a for the com-ponents i 2 J". Using �xpoints, local CTL-operators (cf. Sec.3) or the knowl-edge operator 2i from [LRT92] can be encoded. Thus, the distributed �-calculusserves as a powerful low-level logic, in which other local branching time logicscan be expressed. We demonstrate the use of the logic for speci�cation on amulti-party network protocol.The distributed �-calculus corresponds directly to the sequential �-calculus[Koz83] interpreted on the local con�gurations of the system's unfolding. Sincethe (local) state space of the unfolding is in general in�nite, our aim is to ex-tract a bisimilar, �nite-state representation of the unfolding. This representationimmediately can be used by proved interleaving model checkers [CS93, CES86],yielding e�cient automated veri�cation.It was already observed by Esparza in [Esp94] that the McMillan pre�x canbe used for model checking S4 (the modal logic based on the reachability relationof the global state space).We show that for any local con�guration of the system's unfolding we �nda bisimilar local con�guration in the �nite pre�x { no matter whether we takeMcMillan's original de�nition or the improved pre�x construction given in [ERV96].But the proof does not indicate which event within the pre�x can serve as a rep-resentative for an event lying outside the pre�x. The major problem to solve is tomake the proof constructive, i.e. to determine a bisimilar representative for thoseevents outside the pre�x that are direct local successors of events within the pre-�x { without extending the pre�x until these events are present. In particular,we have to �nd out whether such a successor exists at all.4Since the resulting local transition system does not contain more states thanthe pre�x contains events, the input for model checkers can be dramaticallysmaller than the transition system of the global state space. Nevertheless, duringthe construction of the local transition system we sometimes have to inspectglobal con�gurations contained in the pre�x. Complexity considerations showthat the representation of the algorithm given in Sec. 4 can be improved suchthat it never exceeds the costs of building the global state space.4 Since a direct local successor in one component may require an enormous number ofcausal predecessors in another component, it is not clear in advance when a furtherextension is su�cient to decide on the existence of a local successor.2

The paper is structured as follows. In Section 2 we introduce basic de�nitionsof the models we will use. In Section 3 we introduce the distributed �-calculusand its formal semantics, and illustrate them with examples. In Section 4 weshow how to use the �nite pre�x for constructing a �nite local transition systemon which conventional model checkers apply.2 Distributed nets and their unfoldingsWe begin with the indispensable basic de�nitions and the class of Petri nets thatserve as our system models. For further details on nets, cf. [Rei85].Petri nets. Let P and T be disjoint, �nite sets of places and transitions. Theelements of P [T are called nodes. A net is a triple N = (P; T; F) with a owrelation F � (P�T) [(T�P), which we identify with its characteristic functionon the set (P�T) [(T�P). The preset �x and the postset x� of the node xare de�ned as �x :=fy2P [T j F (y; x)=1g and x� :=fy2P [T j F (x; y)=1g.The preset (postset) of a set X of nodes is given by the union of the presets(postsets) of all nodes in X. We assume �x [x� 6= ; for every node x.A marking of a net is a mapping P ! IN. We call � = (N;M0) a netsystem with initial marking M0 if N = (P; T; F) is a net and M0 a markingof N . A marking M enables the transition t if for each p2P , F (p; t) � M (p).In this case the transition can occur, leading to the new markingM 0, given byM 0(p) = M (p) + F (t; p)� F (p; t) for every place p. We denote this occurrenceby M t! M 0. If there exists a chain M0 t1! M1 t2! : : : tn! Mn then the sequence� = t1t2 : : : tn is called occurrence sequence and we write M0 �!Mn. M is calleda reachable marking of � if there exists an occurrence sequence �, such thatM0 �!M . Two transitions t1; t2 are concurrently enabled at M if M enables t1,and t2 is enabled at M 0, where M 0(p) = M (p) � F (p; t1) for each p.We will exclusively regard 1-safe systems, in which all reachable markingsmap each place to 0 or 1. Each marking can thus be identi�ed with the set ofplaces it maps to 1, and so M�P for every reachable markingM .A system is called sequential if every reachable marking concurrently enablesexactly one transition.Distributed net systems. Let f�i = (Pi; Ti; Fi;M0i) j i 2 Ig be a family of1-safe, sequential net systems with pairwise disjoint sets Pi of places, indexedby a �nite set I of locations. The distributed net system �I = (NI ;M0) is theunion of the subsystems �i:P = [i2I Pi ; T = [i2I Ti ; F = [i2I Fi ; M0 = [i2IM0i :Clearly, �I is 1-safe. The intended interpretation of such a system is a collec-tion of sequential, non-deterministic processes with communication capabilities,namely the common transitions. We understand the common execution of a jointtransition as a communication event. The location loc(x) of a node x is de�nedby loc(x) := fi 2 I jx 2 Pi [Tig. 3

1p

2t

1t

2p

p
76

p

t3

4t

p4

t 5

5
p

3pFig. 1. Distributed net
1c e1

c2

c3

c4

e2

c7

c6

3e c8

e4

5e

9c

c10

e6

e7

e8c11 c15

t1p
1

p
2 t2 p

1 t1 p
2 t2 p

1

c5
p

6
p7 p

6
c12

p7

p3t4

p
4p3 t3

t5 p5

c14

p
4t3

c13
p

6Fig. 2. Branching processFig. 1 shows a distributed net system consisting of three subsystems. Theupper net can be seen as a producer, the lower as a consumer, and in betweenthere is a single bu�er cell, communicating with the producer and the consumer.Branching processes. Two nodes x1; x2 of a net (P; T; F) are in conict, de-noted x1#x2, if there exist two distinct transitions t1; t2 such that �t1\ �t2 6= ;,and (t1; x1); (t2; x2) belong to the reexive and transitive closure of F . If x#x,we say x is in self-conict.An occurrence net [NPW80] is a net N = (B;E; F) where the irreexivetransitive closure of the ow relation F is well-founded and acyclic (and thusa (strict) partial order which we denote by �). Furtheron j �bj � 1 for everyb2B, and no transition is in self-conict. The reexive closure of � determinesa partial order, called causal relation and written as �. In occurrence nets wespeak of conditions and events instead of places and transitions, respectively.Min(N) denotes the minimal elements of N with respect to �, and Max(X) thecausally maximal elements of the set X of nodes.Given two nets Ni = (Pi; Ti; Fi) for i 2 f1; 2g, the mapping h : P1 [T1 !P2 [T2 is called net homomorphism if it embeds P1 into P2 and T1 into T2 aswell, and if for every t2T1 the restriction of h to �t, denoted hj�t, is a bijectionbetween �t and �h(t), and analogue for hjt� .A branching process [Eng91] of a net system � = (N;M0) is a pair � =(N 0; �) where N 0 = (B;E; F) is an occurrence net and � : N 0 ! N is a nethomomorphism, such that the restriction of � to Min(N 0) is a bijection betweenMin(N 0) and M0 and additionally for all e1; e22E: if �(e1) = �(e2) and �e1 =�e2 then e1 = e2. Loosely speaking, we unfold the net N to an occurrence netN 0, obeying the rules determined by the conditions for �, and labelling eachnode x of N 0 with the corresponding node �(x) of N . Referring to distributednet systems, the location loc(x) of a node x of N 0 is given by loc(x) = loc(�(x)).By EJ we denote the set of J-events, i.e., EJ := fe2E j J� loc(e)g.Given two distinct branching processes �1 = (N1; �1) and �2 = (N2; �2) of �,we say that �1 and �2 are isomorphic if there exists a bijective homomorphism4

h : N1 ! N2, such that the composition �2 � h equals �1. If h is injective, suchthat hjMin(N1) is a bijection between Min(N1) and Min(N2), and B1�B2 andE1�E2, we call �1 a pre�x of �2. Notice that a pre�x is uniquely determinedby its set of events or its set of conditions. In [Eng91] it is shown that a netsystem has a unique maximal branching process up to isomorphism, which wecall the unfolding of �, and denote by Unf . Fig. 2 shows a pre�x of the in�niteunfolding of the net system of Fig. 1.Con�gurations and Cuts. A con�guration C of an occurrence net is a causallydownward-closed, conict-free set of events, i.e., for each e 2C: if e0 � e thene02C, and for all e; e02C : :(e#e0).If Max(C) is a singleton, say feg, we speak of the local con�guration of eand denote it by #e. It is given by the set of all the preceding events, i.e.,#e = fe02E j e0 � eg. As usual, we identify each �nite con�guration C with thestate of the system that is reached after all the events in C have occurred. Alocal con�guration then de�nes a local state. The set of local con�gurations ofa branching process � is denoted by Cloc(�). In order to simplify the handling,we introduce a virtual event symbol ? that can be seen as initial event with anempty preset and Min(N) as postset. #? then denotes the empty con�guration.We extend the set of events of Unf to E? := E [f?g and set loc(?) = I.In distributed systems, we de�ne the i-view #iC of a con�guration C as#iC := fe2C j 9e02 (C \Efig) : e � e0gThe i-view is a con�guration: the empty con�guration if C \Efig = ;, and thelocal con�guration of the (unique) maximal i-event in C, otherwise. This followsfrom the sequentiality of the subsystems. Thus, #iC can be understood as themost recent local state of the subsystem i 2 I that the whole system is aware ofin the global state C. The i-view of the con�guration #e is written as #ie.Two nodes of an occurrence net are concurrent if they are neither in conictnor causally related. A set B0 of conditions of an occurrence net is called a co-set if any two elements of B0 are concurrent. A co-set is called a cut if it is amaximal co-set w.r.t. set inclusion. There is a tight interrelation between �nitecon�gurations and cuts: the set of conditionsCut(C) = (Min(N) [C�) n �Cwhere C is a �nite con�guration, is a cut. The corresponding set of places�(Cut(C)) is a reachable marking, denoted by M(C) and called �nal state ofthe con�guration C. Notice that for every reachable marking M of the systemthere exist a (not necessarily unique) �nite con�guration C of the correspond-ing branching process, such that M(C) = M . We call C and C 0 M-equivalent ,denoted C =M C0, if M(C) =M(C 0).An elementary property of two M-equivalent con�gurations C;C0 is thattheir \future" is equal, i.e., there exists an isomorphism between the part of Unfthat lies behind of C and that one behind C 0, formally,�(C) is isomorphic to �(C 0) if C =M C0;5

where �(C) := fx 2 B [E j 9b 2 Cut(C): b � x ^ 8y 2 Cut(C): :(x#y)g.In the case of #e =M #e0 and j#ej < j#e0j, the branching process �(#e) canbe seen as �(#e0) \shifted backward". Any con�guration C 0 containing #e0 thuscan be shifted backward to an M-equivalent con�guration C containing #e.In [Esp94] this idea was formalised as follows: let Ie0e denote the isomorphismfrom �(#e0) to �(#e), and C be a con�guration of Unf. The (e0; e)-shift of C,denoted shift(e0;e)(C), is de�ned byshift(e0;e)(C) := �C if e0 =2 C#e [Ie0e (C n #e0) if e0 2 CLocal successor relation. For J � I, we call the con�gurationC0 a J-successorof the con�guration C, written as C J! C0, if C0 is a state that lies in the futureof C, such that on the path from C to C 0 all the components i in J executeexactly one event e, and nothing happens after e. Formally, C J! C0 i�C � C0 and 9e 2Max(C 0): 8i 2 J: (C0 nC) \Efig = feg:3 The distributed �-calculusIn this section we de�ne the syntax and semantics of a version of the �-calculus[Koz83] that is adequate to describe local properties of the components of adistributed system. More precisely, the formulae of the logic are interpreted overthe local con�gurations of the unfolding of a distributed net system. The logic isadapted from a similar linear time logic for Mazurkiewicz traces [Nie95]. We willindicate how the local approach can be used for the speci�cation and veri�cationof distributed systems, and show that our logic naturally can be transferred tothe conventional framework of global states.Syntax. Let (NI ;M0) be a distributed net system, Unf = (N 0; �) its unfolding,and l : T ! Act a labelling of the transitions of NI with actions taken fromthe alphabet Act. We identify the corresponding labelling of events with l, i.e.,l(e) = l(�(e)) for e in Unf. The abstract syntax of the logic is given by' ::= p j :p j x j ' ^ ' j ' _ ' j haiJ ' j [a]J ' j �x:' j �x:'where the atomic propositions p range over the set P of places of the distributednet, x over a set V of propositional variables, a over Act, and J over 2I n ;. Theintended meaning of haiJ ' is that there exists a next local state #e such thatl(e) = a and no event of any of the locations in J will happen before e. Theoperators � and � bind the variables. A formula that does not contain any freevariable is closed. We use the basic propositions true and false as abbreviationsfor �y:y and �y:y, respectively, and de�ne h-iJ ' := Wa2ActhaiJ ' and [-]J ' :=Va2Act[a]J ' where a 2 Act.We only allow negation of atomic propositions. However, the logic is closedunder negation, because every operator has its dual, and negations can be drawninside down to the atomic propositions.6

Semantics. The semantics of a formula ' of our logic is a set of local con�gu-rations (satisfying it), and is written as [[']]Unfv � Cloc(Unf), where Unf is theunfolding under consideration and v : V ! 2Cloc(Unf) is a valuation function forthe variables. Since Unf is clear from the context, we omit this superscript, andif also v is understood, we simply write [[']]. For #e 2 [[']] we also write #e j= '.We inductively de�ne the semantics according to the following rules:[[p]]v = f#e j p 2M(#e)g [[:p]]v = f#e j p =2 M(#e)g[[' ^]]v = [[']]v \ [[]]v [[' _]]v = [[']]v [[[]]v[[�x:']]v = SfA j A � [[']]v[x:=A]g [[�x:']]v = TfA j [[']]v[x:=A] � Ag[[haiJ ']]v = f#e j 9e0 2 EJ : l(e0) = a and #e J! #e0 and #e02 [[']]vg[[[a]J ']]v = f#e j 8e0 2 EJ : if l(e0) = a and #e J! #e0 then #e02 [[']]vgwhere v[y := A](y) = A, and for z 6= y we have v[y := A](z) = v(z). We say thatsystem � satis�es the formula ', denoted by � j= ', if the empty con�guration#? belongs to [[']].Note that a local state #e may satisfy an atomic proposition p that does notbelong to the location of e. Thus, the proposed logic allows to express propertiescorresponding to the local view that one component has onto other components.We briey comment on the assertions expressible by the proposed language.Single-located formulae are simply formulae of the standard �-calculus, inter-preted on the corresponding subsystem. For instance, 	 = �x:' ^ [-]i x meansthat on every path of the i-component ' holds at every local state { `' alwaysholds in i'. If we substitute [-]i x by ([-]i x^h-ii true) in 	 , we additionally expressthat the mentioned path is of in�nite length since for every local state of i theremust exist a successor. The assertion `eventually ' will hold in i' is given by�x:' _ ([-]i x ^ h-ii true), and `' holds in i in�nitely often' can be formalized as�y:�x:('_ [-]i x) ^ [-]i y ^ h-ii true. Notice, however, that this formula may holdeven if there exist global runs in which the i-component only executes a �nitenumber of events. It actually states that if i executes in�nitely many events inthe future then it will satisfy ' in�nitely often.The more interesting properties, of course, are expressed by formulae referringto distinct subsystems. Let 	 be the above mentioned `' always holds in i'. Then�x:[-]j x _ [-]i 	 means that component j will eventually communicate with i,and afterwards ' holds inde�nitely in i.If J = fi; j; kg then the formula �y:[-]i y ^ (p ! haiJ true) describes thatwhenever p holds in i then i's next a-action may be a synchronization with jand k, where a also for j and k is the next step.It is useful to translate a local logic reminding of CTL [CES86] to our logic.Localised variants of the two next operators, EXJ and AXJ are already partof the syntax, namely h-iJ and [-]J . The set of locations speci�es, for whichcomponents this event is a next step. Similarly we now de�ne the until-operatorsof CTL with locations:E('UJ) := �y: _ (' ^ h-iJ y)A('UJ) := �y: _ (' ^ [-]J y ^ h-iJ true):7

Other CTL-like operators, such as AGJ ;AFJ ;EGJ ;EFJ can in turn be de�nedusing the until-operators in the standard way. E('UJ) speci�es a J-local lineof events along which ' holds until is satis�ed.Example. To give a avour of the usage of our logic, and in order to showthat it is indeed reasonable to argue in terms of local properties, we inspect thefollowing echo-algorithm [Wal95].Assume a (strongly connected) network N consisting of a set of agents Agthat includes initiator A0. Each agent Ai communicates exclusively with herdirect neighbours Ni = fAi1 ; : : : ; Aing�Ag, and each agent (but the initiator)behaves the same way, as shown in Fig. 3. At any time the initiator wants to oodthe whole network with a wake-up signal, each agent { after receiving a wake-up { executes a local computation and sends back an accept signal afterwards.Whenever the initiator reaches state terminated0, she wants to be sure that everyagent in the network has executed her local computation.The �rst transition of an agent Ai is to receive a wake-up from one of herneighbours Ak 2Ni, and simultaneously to send a wake-up to her other neigh-bours Aj 2 Ni n fAkg, �ring wkupi(k), and changing her state to starti. Thenshe executes her local computation. Afterwards she awaits the accept-signalfrom those of her neighbours which she waked up. Simultaneously she sendsthe accept-signal to the one neighbour from whom she had received the wake-up(acpti(k)). Eventually she will spontaneously return to her initial state sleepingi.For every pair (Ai; Aj) of neighbours there exist channels (i; j) and (j; i), thatare initially all empty, and synchronise with the wake-up resp. accept transitionsof the agents. To simplify the formulae we label each transition wkupi(j) by wkupand each acpti(j) by acpt.One of the most interesting system characteristics that is expressible as alocal property is that the protocol achieves synchronisation of all agents: theinitiator cannot be terminated before all agents are in the state accepted.� j= AG0(terminated0 ! Vi�1 acceptedi)Another property of interest guarantees that no agent Ai can be in acceptedi ifany of her neighbours still is sleeping, expressed by� j= î�1AGi(acceptedi ! Vj2Ni :sleepingj)A third property is that in the �rst round of the protocol after the initial wkupeach agent Ai will wake up in her next step.5� j= [wkup]0 î�1 hwkupii true ^ [-wkup]i false65 In a later round of the protocol all agents wake up only in their second step afterthe initialising wkup0 because in the local view of the initiator the others have toexecute their restart action ret �rst.6 [-a]i ' �Vb2Acti�fag [b]i ', i.e. [-a]i false says `nothing than a must occur next in i'.8

acpti(j) acptj(l)emptyi;jwkupj(i) wkupi(k)�lledi;jsleepingi
terminated0wait0initiator A0quiet0 retiret0 wkup0acpt0 For the channel (i; 0) the onlytransition from �lled toempty is accept0.by the single transition wkup0.the transitions from empty to �lledFor the channel (0; i) substitute

agent Aiwkupi(i1) wkupi(in)
acpti(i1) acpti(in)acceptedisolveistartidonei

channel(i;j) (i; j 6= 0)(k2Ninfjg; l2Njnfig)
Fig. 3. Components for the echo-algorithm.Transition systems semanticsNow we want to show that the unfolding can be understood as a local transitionsystem TUnf with transitions labelled by indexed actions aJ , J � I, and withthe local con�gurations of Unf as set of states. It will be immediate that onTUnf the distributed �-calculus corresponds to the standard �-calculus over themodi�ed action alphabet gAct = faJ j a 2 Act; J � Ig.�-calculus and bisimulation. The syntax of the �-calculus [Koz83] is given by� ::= p j :p j x j � ^ � j � _ � j hai� j [a]� j �x:� j �x:�where p 2 P , x 2 V, and a 2 ActT . The semantics of the �-calculus is de�nedover transition systems T = hS; s0;!; ActT ; P; Ii where S is a set of states, ActTan action alphabet, s0 2 S the initial state,!� S�ActT �S the transition rela-tion, and I : S ! 2P an interpretation mapping the states onto the propositions.As usual, we write s a! s0 if (s; a; s0) 2 !.The semantics of a �-calculus formula � over a given transition system T isdenoted by [[�]]Tv � S, where v is the valuation function for the variables. Wewrite s j=T � if s 2 [[�]]v. The semantics is de�ned inductively by:[[p]]v = fs j p 2 I(s)g [[:p]]v = fs j p =2 I(s)g[[�^ �]]v = [[�]]v \ [[�]]v [[�_ �]]v = [[�]]v [[[�]]v[[�x:�]]v = SfA j A � [[�]]v[x:=A]g [[�x:�]]v = TfA j [[�]]v[x:=A] � Ag[[hai�]]v = fs j 9s0 2 S : s a! s0 and s02 [[�]]vg[[[a]�]]v = fs j 8s0 2 S : if s a! s0 then s02 [[�]]vg9

It is well-known that the distinguishing power of the �-calculus is limited tostandard bisimulation: A relation R � T � T is called a bisimulation i� for anys R s0 it holds that I(s) = I(s0) and for all a 2 ActT{ if s a! s1, then there exists s01 with s0 a! s01 and s1 R s01, and dually{ if s0 a! s01, then there exists s1 with s a! s1 and s1 R s01.Two states s and s0 are called bisimilar, denoted s � s0, i� there exists a bisim-ulation R with s R s0. We also write T � T 0 if for the initial states s0 � s00. Itwas shown by Milner [Mil89] (see also [Sti92]) thats � s0 implies s j=T � , s0 j=T � for all closed �-calculus formulae �.The local transition system TUnf . Let Unf be the unfolding of a distributednet system �. Then the local transition system extracted from Unf is given byTUnf = hCloc(Unf); #?;!;gAct; P; Ii where #e aJ! #e0 i� #e J! #e0 and l(e0) = a,and the interpretation of propositions I(#e) =M(#e) for all #e.Proposition1. Let #e1; #e2 2 TUnf . Then #e1 � #e2 i� #e1 =M #e2.By de�nition, if #e1 6=M #e2, they are not bisimilar. Conversely, if #e1 =M #e2then, based on the isomorphism Ie2e1 , we de�ne a relation R by setting #e01 R #e02i� #e1 � #e01, #e2 � #e02 and Ie2e1 (e01) = e02. It is easily checked, that in fact R isa bisimulation and of course #e1 R #e2. 2Let ' be a formula of the distributed �-calculus. Then ~' denotes the formulawhere each occurrence of haiJ is substituted by haJ i, and similarly [a]J by [aJ].Proposition2. #e j= ' i� #e j=T ~' for any #e 2 Cloc(Unf).4 Model checkingIn this section we develop the technical tools required to achieve e�cient veri�ca-tion techniques for the logic. In fact we will not give an algorithm for the modelchecking procedure itself. Rather we give a construction, which reduces the modelchecking problem for the distributed �-calculus to a suitable input for well un-derstood algorithms known from sequential model checking like [CES86, CS93].As a �rst step, we will show that there exists a �nite transition system TFinbisimilar to the usually in�nite system TUnf . This �nite system TFin can bede�ned over the set of local con�gurations of the complete �nite pre�x introducedby McMillan [McM92]. Secondly, we give an algorithm for constructing TFin .The �nite pre�xIn [McM92], McMillan showed how to construct a �nite pre�x of the unfoldingof a �nite-state net system in which every reachable marking is represented bysome cut. We will use this pre�x to obtain a �nite transition system with localstates, which is bisimilar to the unfolding.10

Let Unf =(N 0; �) be the unfolding of a net system, where N 0=(B;E; F). Acut-o� event is an event e2E? whose local con�guration's �nal state coincideswith the �nal state of a smaller local con�guration, formally:9 e02E? : j#e0j < j#ej and #e0 =M #e:Notice that in general for each cut-o� event e there may be several correspondingevents e0 with the above property. In the sequel, we �x one of them and referto it as corr(e). The pre�x Fin is then de�ned as the unique pre�x of Unf withEFin�E? as set of events, where EFin is characterised bye 2 EFin i� no event e0 � e is a cut-o� event.It is easy to prove that Fin is �nite for net systems with �nitely many reachablemarkings.The pre�x Fin is usually much smaller than the state space of the system.However, it can also be larger. In [ERV96] it is shown how to improve McMillan'sconstruction. The main idea is to determine cut-o� events not by comparing thesize of the local con�gurations of events (which does not produce any cut-o�event when the sizes are equal), but other partial orders instead. In the pre�xgenerated by the re�ned algorithm, if e and e0 are two di�erent non-cut-o� events,then the markingsM(#e) andM(#e0) are also di�erent. Therefore, the numberof non-cut-o� events never exceeds the number of reachable states, and so thepre�x can never be larger than the state space (up to a small constant).The �nite, local transition system TFinNow we show that there exists a �nite transition system TFin � TUnf , such thatthe states of TFin are at most the local con�gurations of the �nite pre�x.Observe that McMillan's construction in fact guarantees that for each localcon�guration #e in Unf there exists an M-equivalent corresponding con�gu-ration #e0 in Fin, i.e., #e � #e0 in TUnf , and e0 2 EFin . The only reason fore =2 EFin can be that e supersedes a cut-o� belonging to Fin and therefore itselfis a cut-o�. By induction it is possible to �nd a corresponding event for e withinEFin .For the following, we select for each equivalence class of bisimilar con�g-urations #e in Unf a unique representative #corr(e) in Fin which is minimalw.r.t. the size of j#corr(e)j. (In case of using the improved pre�x [ERV96], corr(e)is selected from the non-cut-o� events in EFin and thus uniquely determined.)If we have two bisimilar states #e1 � #e2 in TUnf we can replace each tran-sition #e aJ! #e1 by #e aJ! #e2 for any source state #e and obtain a transitionsystem T 0Unf bisimilar with TUnf on all states and with the same state space.Since we have selected for all local con�gurations #e; #e0 bisimilar representa-tives #corr(e); #corr(e0) in Fin, we can (imaginarily) \bend" all the transitions#e aJ! #e0 in TUnf to transitions #corr(e) aJ! #corr(e0) in Fin (possibly mergingin�nitely many transitions into one). Since corr(e) is unique and minimal, af-terwards all local states #e reachable from #? via transitions are non-cut-o�s.11

Now we discard all cut-o� events (whether contained in Fin or not). We callthe resulting transition system TFin . Observe that TFin is even smaller than Finitself, since cut-o�s are discarded. We obtain:Proposition3. TFin � TUnf .Moreover, we have in fact obtained the minimal transition system bisimilarto TUnf (which is determined uniquely up to isomorphism). By Proposition 2 weobtain as corollary:Theorem4. For any closed formula ' of the distributed �-calculus it holds that#? j= ' i� #? j=TFin ~'.Thus we can reduce the model checking problem of the distributed �-calculusfor some distributed net system to the model-checking problem of the standard�-calculus over TFin. Moreover, it is guaranteed that TFin is not bigger than theglobal state space of the distributed net system { and often much smaller.An algorithm to compute TFin . By now we know that TFin exists, the ques-tion remains, how we can compute it. We propose an algorithm that takes Fin asinput and moreover uses the structural information, which the algorithm com-puting Fin has built up:{ a function corr mapping any event e in Fin to a unique non-cut-o� e0, suchthat #e =M #e0 implies corr(e) = corr(e0) = e0. The codomain of corr iscalled ERep � EFin , the set of representative events. Note that f#e j e 2ERepg forms the state space of TFin .{ a function shift�, which maps any con�guration C = C1 of Unf contain-ing some cut-o� to a con�guration shift�(C) = C0 = Cn not containing acut-o�, hence being present in Fin. This function works by repeatedly ap-plying Ci+1 := shift(ei;corr(ei))(Ci) with ei being a cut-o� in Fin containedin Ci. shift� terminates, because the sequence C1; C2; :: decreases in the un-derlying (well-founded) order (e.g. contains less and less events in the caseof the McMillan order). Obviously this function implies the existence of anisomorphism I between �(C) and �(shift�(C)), which is the compositionof the isomorphisms Ieicorr(ei) induced by the chosen cut-o� events. More-over, shift�(#e) is strictly smaller than #e (in the underlying order) for anye 2 �(C), and hence for any e, for which C J! #e.The most important part of the algorithm is the recursive procedure successorswhich, when called from the top level with a triple (#e; J; a), returns the aJ -successors for #e in TFin . More generally, successors performs depth�rst searchthrough triples (C; J; a), where C is an arbitrary, not necessarily local con�gu-ration not containing a cut-o�, J is a non-empty subset of locations, and a is anaction. It determines the subset of events in ERep that represent the a-labelledJ-successors of C. Formally, e 2 successors (C; J; a) i� there exists #e0 in Unf,which is M-equivalent to #e, l(e0) = a and C J! #e0.12

type Vertex = f C: Con�guration; J : LocationSet; a: ActionLabel;pathmark: bool ; (* for depth �rst search *) gpre�x successors(C; J; a) = f#corr(e) j e 2 EFin ^ l(e) = a ^ C J! #eginheritable extension(C; e; J; a) = (8i 2 J: (#e n C) \Ei = ;)(* predicate ensuring, that joining #e to C adds no i-events for i 2 J *)compatible cuto�s(C) = fe j e is cut-o� and #e [C is a con�guration in Fingproc successors(C; J; a): Con�gurationSet;f var result: Con�gurationSet; (* result accumulator for the current vertex *)Vertex v := �ndvertex(C,J ,a); (* lookup in hash table, if not found then *)(* create new vertex with pathmark = false *)if v.pathmark then return ;; � (* we have closed a cycle *)result := pre�x successors(C; J; a); (* directly accessible successors *)v.pathmark:=true; (* put vertex on path *)for ec 2 compatible cuto�s(C) do(* �nd successors outside the pre�x behind ec *)if inheritable extension(C; ec; J; a) thenresult := result [successors(shift�(C [#ec); J; a);�od ;v.pathmark:=false; (* take vertex from path *)return result;gproc ComputeTFin ;f InitializeTransitionSystem(ts,Fin) (* extract state space from Fin *)for e 2 ERep; a 2 Act;; 6= J � I dofor #e0 2 successors(#e,J ,a) doadd transition #e aJ! #e0ododgFig. 4. The conceptual algorithm to compute TFinThe procedure works as follows. Assume there exists at least one e0 anywherein Unf with C J! #e0; then there are two possibilities:{ One of these e0 lies in the pre�x. This is easy to determine. The correspondingevent corr(e0) 2 ERep is given back by pre�x successors(C; J; a).{ There exist such events e0, but none of them lies in the pre�x. The reasonfor e0 =2 EFin is the existence of a cut-o� ec 2 EFin , such that ec � e0. So wecan do a case analysis over the compatible cut-o�s. A cut-o� ec is compatiblewith C if it is not in conict with C, i.e., #ec [C is a con�guration in Fin.13

If there is a compatible ec, such that (#ec nC)\Ei = ; for all i 2 J then forat least one of them, we have (C [#ec) J! #e0. In this case we inherit thetransition C J! #e0.In the second case, we loop over all compatible cut-o�s ec looking at the con-�guration Cc := C [#ec. If the J-successors of Cc are J-successors of C (whichis determined by inheritable extension(C; ec; J; a)) we want to search for thesuccessors (Cc; J; a). But if any e0 with l(e0) = a and Cc J! #e0 exists, then therealso exists a bisimilar e00 for C� := shift�(Cc) (by the isomorphism), where more-over #e00 is smaller than #e0. So successors is recursively called with (C�; J; a).Note that C� contains no cut-o�.Hence we apply depth�rst search with respect to triples (C; J; a). Cycles mayoccur (if we hit a triple (C; J; a) with pathmark= true), at which we break o�to ensure termination. Note that the search space is limited by the fact that Cis represented in Fin and does not contain cut-o�s.It remains to show that the termination is correct: Assume an e0 with l(e0) = aand (C J! #e0) exists. Then we choose from all these suitable J-successors aminimal one named emin. Whenever a con�guration (C[#ec) is shifted with shift�to obtain a con�guration C 0 for the next call of successors, also emin is shifted to astricly smaller e0min. Thus in case we hit a con�guration C twice, when searchingfor a-labelled J-successors, emin is mapped by the various shift�s to a strictlysmaller event e�min which contradicts the minimality of emin. Thus whenever acon�guration is investigated a second time for a-labelled J-successors, we knowthat there cannot be one.The main procedure ComputeTFin thus only has to loop about all possibletriples (#e; J; a) with e 2 ERep to check for transitions #e aJ! #e0 in TFin and toinsert the results of successors. Concluding the above discussion, we obtain:Theorem5. The algorithm ComputeTFin computes TFin .Note that at top level, successors is only called with local con�gurationsC, but the extension of C with cut-o�s requires that we can also handle someglobal con�gurations. Further note that we present the algorithm in �gure 4with emphasis on understandability, not e�ciency: many vertices (C; J; a) willbe explored very often, leading to an unsatisfying runtime. However it is veryeasy to modify the algorithm so that every vertex (C; J; a) is explored at mostonce, essentially by storing intermediate results with the vertices in the hash-table. Then the runtime of the algorithm is proportional to the size of the searchspace. Since we have to deal with some global con�gurations, in principle thesearch space can grow to the size of the global transition system, but no larger.However it can very well be, that the number of visited global states re-mains small compared to the number of all global states existing. Only practicalexperiments can give an answer here.Heuristic improvements. Apart of the improvements mentioned above, thealgorithm also allows for several heuristic improvements to save unnecessary14

computation. For instance, it is impossible that a state #e has any aJ -successorif the J-places in M(#e) are not contained in �t for any a-labelled transition tof the original net, and thus successors(#e; J; a) need not to be called.Moreover, the algorithm can be combined with on-the-y algorithms (some-times called local model checking), by only calling successors, when the modelchecker needs to �nd the aJ -successors of some state.5 ConclusionWe introduced a distributed version of the �-calculus and showed its use indescribing branching time properties of distributed algorithms based on localstates. We reduced the model checking problem for this new logic to the well-investigated model-checking problem of sequential logics over transition systems.How expensive is all this? The computation of TFin can be as costly as gen-erating the global state space (although we believe that often it will be muchcheaper), the resulting system TFin is typically much smaller than the globaltransition system. The transformation of the formulae is for free. So the cost ofcomputing TFin does not a�ect the runtime of the standard model checker inthe next phase.The scenario we presented is not limited to our logic. In fact, it can be usedfor any logic, which is based on local states, as they are present in TFin . Forinstance [Pel93, Thi95] have proposed linear time logics, where the formulaeare boolean combinations of linear time formulae that refer to a single location.The subclass of formulae, that are conjunctions of purely local formulae, canbe checked with a standard linear time model checker on TFin . There are manyexamples known, where Fin is much smaller than the interleaving based reducedstate spaces used e.g. in [Pel93].We plan to implement a prototype of our proposed model checking systemwithin the PEP environment [Be94].Acknowledgment. We thank P.S. Thiagarajan for discussions on location basedlogics. Burkhard Graves has helped our understanding of the subtleties of Fin.Special thanks to Javier Esparza, whose contribution to this work in its initialphase was very important.References[Be94] E. Best and H. Fleischhack (eds.). PEP: Programming environment basedon nets. Technical report, University of Hildesheim, 1994.[CES86] E.M. Clarke, E.A. Emerson, and A.P. Sistla. Automatic veri�cation of �nite-state concurrent systems using temporal logic speci�cations. ACM Transac-tions on Programming Languages and Systems, 8(2):244{263, April 1986.[CS93] R. Cleaveland and B. Ste�en. A linear time model-checking algorithm forthe alternation-free modal mu-calculus. Formal Methods in System Design,2:121{ 147, 1993. 15

[Eng91] J. Engelfriet. Branching processes of Petri nets. Acta Informatica, 28:575{591, 1991.[ERV96] J. Esparza, S. R�omer, and W. Vogler. An Improvement of McMillan's Un-folding Algorithm. In T. Margaria and B. Ste�en, editors, Tools and Algo-rithms for the Construction and Analysis of Systems TACAS '96, volume1055 of LNCS, pages 87{106, Passau, Germany, 1996. Springer.[Esp94] J. Esparza. Model checking using net unfoldings. Science of Computer Pro-gramming, 23:151{195, 1994.[GW91] P. Godefroid and P. Wolper. A Partial Approach to Model Checking. InProceedings of the 6th IEEE Symposium on Logic in Computer Science, pages406{415, Amsterdam, July 1991.[Koz83] D. Kozen. Results on the propositional �-calculus. Theoretical ComputerScience, 27:333{354, 1983.[LRT92] K. Lodaya, R. Ramanujam, and P.S. Thiagarajan. Temporal logics for com-municating sequential agents: I. Int. Journal of Foundations of ComputerScience, 3(2):117{159, 1992.[LT87] K. Lodaya and P.S. Thiagarajan. A modal logic for a subclass of event struc-tures. In T. Ottmann, editor, Automata, Languages and Programming, vol-ume 267 of LNCS, pages 290{303. Springer, 1987.[McM92] K.L. McMillan. Using unfoldings to avoid the state explosion problem in theveri�cation of asynchronous circuits. In Proceedings of the 4th Workshop onComputer Aided Veri�cation, pages 164{174, Montreal, 1992.[Mil89] R. Milner. Communication and Concurrency. Prentice Hall, 1989.[Nie95] P. Niebert. A �-calculus with local views for systems of sequential agents.In MFCS, volume 969 of LNCS, 1995.[NPW80] M. Nielsen, G. Plotkin, and G. Winskel. Petri nets, event structures anddomains. Theoretical Computer Science, 13(1):85{108, 1980.[Pel93] D. Peled. All from one, one for all: on model checking using representatives.In International Conference on Computer Aided Veri�cation (CAV), volume697 of LNCS, pages 409{423, Elounda, Greece, 1993.[Rei85] W. Reisig. Petri Nets, volume 4 of EATCS Monographs on Theoretical Com-puter Science. Springer, 1985.[Sti92] C. Stirling. Modal and temporal logics. In S. Abramsky, D. Gabbay, andT. Maibaum, editors, Handbook of Logic in Computer Science. Oxford Uni-versity Press, 1992.[Thi94] P.S. Thiagarajan. A Trace Based Extension of PTL. In Proceedings of the9th IEEE Symposium on Logic in Computer Science, 1994.[Thi95] P.S. Thiagarajan. A Trace Consistent Subset of PTL. In I. Lee and S.A.Smolka, editors, Proceedings of CONCUR '95, volume 962 of LNCS, pages438{452, Philadelphia, P.A., USA, 1995. Springer.[Val91] A. Valmari. Stubborn Sets for Reduced State Space Generation. InG.Rozenberg, editor, Advances in Petri Nets 1990, volume 483 of LNCS,pages 491{515. Springer, 1991.[Wal95] R. Walter. Petrinetzmodelle verteilter Algorithmen { Beweistechnik und In-tuition. PhD thesis, Humboldt-Universit�at zu Berlin, Institut f�ur Informatik,1995. edition VERSAL, W. Reisig (Hrsg.), Dieter Bertz Verlag.16

