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Abstract. Mechanical ventilation can cause severe lung damage by in-
adequate adjustment of the ventilator. We introduce a Machine Learning
approach to predict the pressure-dependent, non-linear lung compliance,
a crucial parameter to estimate lung protective ventilation settings. Fea-
tures were extracted by fitting a generally accepted lumped parameter
model to time series data obtained from ARDS (adult respiratory dis-
tress syndrome) patients. Numerical prediction was performed by use of
Gaussian processes, a probabilistic, non-parametric modeling approach
for non-linear functions.

1 Medical Background and Clinical Purpose

Under the condition of mechanical ventilation a high volume distensibility — or
compliance C — of the lung is assumed to reduce the mechanical stress to the
lung tissue and hence irreversible damage to the respiratory system. A common
technique to determine the maximal compliance C, 4, inflates the lung with al-
most zero flow (so-called ’static’ conditions) over a large PV range (inspiratory
capacity). The inspiratory limb of the corresponding PV curve typically shows a
sigmoid shape. As C'is determined by the change of respiratory volume V divided
by the change of applied respiratory pressure P, i.e. C = AV/AP, C,q is found
at the curve interval with the steepest slope. This is supposed to be the optimal
PV range for lung protective ventilation [1] (see Fig. 1). Within Super-syringe
maneuvers [1] rapid flow interruptions are iteratively performed after consecu-
tive, equally sized volume inflations. These flow interruptions reveal character-
istic stress relaxation curves, exponentially approximating the plateau pressure
level P4 (see Fig. 2, insert). The spring-and-dashpot model [2] is assumed
to represent the viscoelastic behavior of the lung tissue. Fitting this model to
flow interruption data provides the four parameters C, respiratory resistance R,
viscoelastic compliance C,e and resistance R,. which are non-linearly related
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Fig. 1. Schematized PV loops measured under static (dotted large loop: inspiratory
flow ~ 0 ml/sec) and dynamic (straight small loop: inspiratory flow > 0 ml/sec) condi-
tions. The static loop covers the range of the inspiratory capacity. Within the inspira-
tory limb the maximum compliance is detected at the interval with the steepest slope.
For the dynamic loop, the PEEP (positive end-expiratory pressure) is adjusted to opti-
mize, i.e. maximize compliance. The pressure gap between the static and the dynamic
curve is effected by the flow induced pressure fraction under dynamic conditions.

to Ppiat. In its entirety these parameters numerically reflect the mechanical sta-
tus of the respiratory system. The purpose of this study is to model statistically
the pressure-dependent non-linear behavior of the compliance. The individual-
ized prediction of this mechanical lung parameter could assist the physician when
individually adjusting the applied pressure level in order to reduce the risk of
ventilator induced lung injury.

2 Gaussian Processes and Modeling Task

Non-linear regression problems are generally modeled by parametrizing a func-
tion f(x) with parameters w to f(x;w). Gaussian Processes (GPs) [3-5] in-
troduce a probabilistic approach to this field: the parametrized function can
be rewritten as a linear combination of non-linear basis functions ¢y (x), i.e.
flz;w) = Zle wpon(x). Under the assumption that the distribution of w is
Gaussian with zero mean, the linear combination of the parametrized basis func-
tions produces a result which is distributed Gaussian as well. Assuming that the
target values differ by additive Gaussian noise from the function values, the
prior probability of the target values is also Gaussian. The linear combination
of parametrized basis functions can be replaced by the covariance matrix of the
function values and inference from a new feature observation is done by evalua-
tion of this matrix. The precision of these predictions essentially depends on the
covariance- or kernel-function, which evaluates the degree of covariance between
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Fig. 2. Sample pressure time series for Super-syringe maneuver. For all occlusion steps
the attribute values C, R, Cy. and R, were estimated by a model fit. Based on the
estimated values of 4 consecutive occlusion steps i to i 4+ 3 the compliance C' was pre-
dicted for the plateau pressure at step k. Insert: Pressure raw data and simulation for
one sample volume step with following airway occlusion. At the end of the occlusion
the plateau pressure was approximated. Simulation was performed by inserting the
estimated parameters into the lumped parameter model and application of the cor-
responding flow time series. The oscillations in the raw data curve are of cardiogenic
origin and are not represented in the model.

the target values. A prior assumption on our modeling task is that the hypothesis
space consists of the derivatives of sigmoid-like shaped functions (C' = AV/AP)
(see Fig. 1). As all measured patient data sets imply general as well as indi-
vidual characteristics of the ARDS lung, the shape of these functions ought to
be distributed according to a prior probability. Therefore, we hypothesized that
our modeling task would benefit from the probabilistic modeling of (possibly)
non-linear functions as provided by GP modeling. In the present study infer-
ences were made from the status of the respiratory system at a distinct plateau
pressure range to the compliance value at a different pressure level:

(i) Prediction of the compliance-pressure curve covering the range of the in-
spiratory capacity.
(ii) Prediction of the maximum compliance value Cy,q, and its corresponding
plateau pressure value Ppjot(Craz)-
(iii) Prediction, if the pressure level should be increased, decreased or retained
in order to achieve Ch,q, (Which we refer to as trend in the following).
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3 Materials and Methods

3.1 Raw Data

The data for this retrospective study were obtained from a multicenter study
including patients mechanically ventilated due to severe ARDS [6,7]. Autom-
atized Super-syringe maneuvers [8] were performed completely for 20 patients.
During a single maneuver, the ventilatory system repetitively applied volume
steps of 100 ml with constant inspiratory airflow rates (558493 mL/sec) up to a
maximum plateau pressure of 45 mbar. At the end of each volume step, airflow
was interrupted for 3 seconds (see Fig. 2). The maneuvers consisted of 5 to 39
occlusions, depending on the status of the individual lung. Flow and pressure
data were measured proximally to the endotracheal tube at a sample rate of of
125 Hz. The pressure drop at the endotracheal tube APgrppr was calculated by
the Rohrer equation APgrr = K1 X V + K5 x V2 and subtracted from the mea-
sured airway pressure, with Rohrer-coefficients K; and K, according to [9]. As
for two patients the tube-types were not recorded and thus the tracheal pressure
could not be calculated, 18 patients were included.

3.2 Feature Extraction and Preprocessing

For each flow interruption step k, the attributes C*, R*¥, Ck and RF, were
estimated by fitting the electrical analog of a spring-and-dashpot model [10] to
the data (see Fig. 3). Pplaf was approximated by the mean pressure of the last
0.5 sec of flow interruption (see Fig. 2 insert). The pressure data of each step
was corrected by the Pp,q¢-offset of the preceding step. The initial system status
was represented by the fitted parameter and measured plateau pressure values
of 4 consecutive steps i to ¢ + 3. For all possible states that can be determined
by such quadripartite steps the compliance was predicted as target value C* for

all plateau pressure levels P, plaf Therefore the feature samples consisted of the
22-tupel (PL-F3 Qo3 Ri-it3 i 43 piid3 - pk ke CF) (see Fig. 2).
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Fig. 3. Electrical analog of a spring-and-dashpot model. R and C' denote the Newtonian
component, R,. and Cy. the viscoelastic component of the model. The input signal
was determined by the measured respiratory flow, the output signal by the measured
respiratory pressure data.



Gaussian Process Modeling of Lung Mechanics 5

3.3 Data Modeling and Experimental Setting

For Gaussian Process Modeling a Pearson VII function-based universal ker-
nel [11] with ¢ = 1, w = 1 and a noise-level of 1 was applied. As reference
method for prediction task (i) the M5P [12] algorithm was evaluated. M5P gen-
erates a combination of conventional decision trees with linear regression func-
tions as model trees. For task (ii) and (iii) the measured and the predicted Chay
values were calculated by fitting a degree 3 polynom to the raw data and to
the modeled compliance-pressure curve respectively. Then the extreme values
of the polynom were calculated. If no local maximum was located within the
pressure-range [min(Pyy,, - - - Potoy), max(Pl,,, ..., Pl,,)] covered by the indi-
vidual Super-syringe maneuver, Ci,q, was set to the C' value at the minimum
or maximum pressure value, depending on the slope of the curve. For task (iii)
it was determined, if each the measured and the predicted Ppiqt(Chias) Was esti-
mated within the initial pressure range [P;l ats P;l'tj], or if it was higher or lower.
Accordingly the trends for measured and modeled data were evaluated and com-
pared. All algorithms for parameter prediction were applied as implemented in
the data mining software WEKA [13]. Two experimental settings were evaluated:

1. Separately for each single patient data set (i.e. Super-syringe measuring)
the three prediction tasks were performed. This experimental setting should
confirm the suitability of GP models for the given data.

2. To investigate the practical applicability of the approach, training and test
set were repetitively built for each patient data set. For each run, the training
set consisted of all patient-data sets except one, which was used as test set.

3.4 Performance Measures

For prediction task (i), the performance was measured by the correlation co-
efficient (CC) of the model prediction. Other performance measures like error
estimations were supposed to be inadequate as the raw data showed high vari-
ability. For task (ii) the percentage difference between the maximum compliance
(respectively its corresponding P4t ) determined from the raw data and the pre-
dicted maximum compliance (respectively Ppq¢) was calculated. Task (iii) was
evaluated by the percentage of correct predictions of the trend. Results are given
as mean =+ sd.

4 Results and Discussion

4.1 Experimental Setting (1)

(i) Prediction of the compliance curve by GP modeling reached an averaged CC
of 0.78 £ 0.16, the reference Method (M5P) an averaged CC of 0.92 + 0.23.
(ii) While the predicted maximum compliance Ci,q, averagely differed with
9.7 £ 6.5% from Cl,qe estimated from the raw data, Ppiqt(Cias) differed with
an average of 5.4 £+ 10.6%. (iii) The prediction, if the pressure level should be
increased, decreased or retained was correctly answered in 93.2 + 11.1% (see
Table 2).
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Fig. 4. Sample results for one patient in experimental setting (2). Predictions of C
(pred. C) are based on the respiratory status at low (a), intermediate (b), (c¢) and
high (d) levels of Ppiat (initial (Ppiaty Cmax) ). The variability of the measured (i.e.,
fitted) C values (meas. C) is clearly exhibited. Measured and predicted Cpqee and
the corresponding Ppia: (meas. (Ppiat; Cmaz), pred. (Ppiat;, Cmaz)) are determined
by polynomial fits (meas. C polyfit, pred. C polyfit). Referring to the sigmoid-like
shape of an inspiratory pressure-volume curve, the modeled curves approximate the
1st derivative of a sigmoid function.

4.2 Experimental Setting (2)

(i) The CC of the learned model had an average of 0.34 4+ 0.24 for GP modeling
and 0.18 + 0.22 for the M5P algorthm. (ii) Predicted Cj,q, differed with an
average of 34.3 £ 34.3% and predicted Ppiq¢(Cras) with 40.7 £ 70.1% from the
maximum compliance and corresponding pressure values derived from the raw
data. (iii) Prediction of the trend for the pressure correction was in 2/3 of the
cases (66.3 £+ 30.3%) correct (see Table 3).

Performance within experimental setting (1) confirmed that GP modeling is
basically suitable for the present task and problem representation. As hypoth-
esized, the compliance-pressure curves were adequately modeled, having slopes
of the first derivative of a sigmoid-like function (see Fig. 4). Differentiated char-
acteristics for the individual patient datasets were expressed in differing curve
slopes. Comparing the results of GP modeling and M5P for prediction task (i)
within settings (1) and (2) leads to the assumption, that the M5P tends more
to overfitting than GP modeling. This was perhaps down to the fact that for
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the present problem the modeling of functions might provide a higher degree of
abstraction and reduce the impact of noise. Nevertheless, individual compliance
curves for new observations according to setting (2) showed rather poor results.
While the prediction of Cr,ep and Ppiat(Crmas) (task ii) as well as the prediction
of the correct trend for the pressure correction (task iii) showed failure rates
below 10% in setting (1), which might be sufficiently precise for an indication in
medical practice, the results again were impaired within setting (2). Predictions
with divergences of more than 30% for Chuaz and Ppiat(Cmas) and failure rates
in a similar range for trend prediction provide at most a rough estimates. This
implies that learning an individualized model might require an individualized
feature selection.

5 Conclusions

To the best of our knowledge, this is the first time that mechanical lung pa-
rameters have been predicted by a statistical modeling approach. The results
indicate that the combination of classical model fitting and statistical modeling
is generally capable of solving this task. Nevertheless an individualized feature
selection as pre-processing step should be brought into focus in future efforts.
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Tables

Table 1. Data: For setting (1) the pure test-sets, i.e. the extracted feature samples (22-
tuples) of each single patient measurement (Super-syringe maneuver) were evaluated.
For each run within setting (2) a training and test data set was built by excluding the
data of a single patient which was used for testing. Besides the number of samples for
training and testing for each patient, the maximum compliance values Crnoe with the
corresponding plateau pressures Ppiot(Cmaz) are given. The size of the data sets for
each patient depended on the number of occlusions performed during the Super-syringe
maneuver and thus by the number of extracted feature values.

Patient # Training #Testing  Cmaz  Ppiat(Cmax)

mL/mbar mbar
1 4568 12 78.2 44.3
2 3500 1080 121.4 30.9
3 4322 270 74.2 30.3
4 4132 460 141.3 36.8
5 5034 18 28.0 36.7
6 4289 108 37.8 20.9
7 4498 572 96.8 31.1
8 5554 88 82.1 36.1
9 5180 550 81.4 23.9
10 5426 304 51.2 23.7
11 5460 270 153.1 29.9
12 5642 88 80.5 33.9
13 5352 378 62.2 20.1
14 5676 54 82.1 21.3
15 5726 4 40.3 11.0
16 5622 108 115.8 33.6
17 5622 108 120.0 32.6
18 5730 54 29.5 9.1

#Training, #Testing: number of samples for training and test-
ing; Cmaee: Maximum compliance estimated from raw data;
Pplat(Cmaz): Plateau pressure at which maximum compliance
was estimated.
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Table 2. Results for experminental setting (1): Prediction performed for each single
patient (test) data set.

Patient Cmaa: Pplat (Omaa:) trend Acmaz APplat(Cmaz) OCGP CCJW5P

ml/mbar mbar % % %
meanzsd meanztsd
1 62.8 0.0 44.04 0.00 100 19.6 0.0 0.99 0.98
2 141.6 £1.8 44.8 +£0.53 67 16.6 45.1 0.59 0.99
3 72.44+0.5 29.2+0.04 100 2.4 3.7 0.83 0.98
4 131.0+ 1.5 34.0£0.35 100 7.3 7.5 0.85 0.98
5 2594+ 0.0 36.7+0.00 100 7.6 0.0 0.91 0.94
6 34.34+0.0 19.7+0.01 100 9.3 5.9 0.89 0.96
7 102.1 £ 0.5 31.5+0.14 91 3.5 1.3 0.49 0.98
8 66.6 + 0.3 36.1+0.00 100 18.9 0.0 0.93 0.99
9 80.2+ 0.2 24.8+0.04 100 1.5 3.8 0.71 0.99
10 499+ 0.1 20.44+0.33 75 2.5 14.1 0.57 0.97
11 139.3 +£ 0.3 28.3+0.04 73 9.0 0.0 0.57 0.97
12 66.9 £ 0.3 33.9 4+ 0.00 100 16.9 0.0 0.93 0.98
13 60.2+0.4 19.040.20 89 3.2 5.8 0.81 0.98
14 76.3+0.2 22.7+0.03 83 7.0 6.0 0.86 0.93
15 36.8+ 0.0 11.4+0.00 100 8.8 3.9 0.88 0.00
16 101.2 +£0.8 33.6 £0.00 100 12.7 0.0 0.94 0.99
17 94.44+ 0.8 32.6 £0.00 100 21.4 0.0 0.83 0.96
18 27.5+ 0.0 9.1 £ 0.00 100 6.9 0.0 0.55 0.96
mean=tsd 93.2+11.1 9.7+6.5 5.44+10.6 0.78+0.16 0.92+0.23

Chrae: Estimated maximum compliance; Ppiqt(Cmae): Plateau pressure at which maximum com-
pliance was estimated; trend: Percentage of correctly predicted position of Ppiat(Cmac); ACmax,
APpiat (Crmaz): Percentage difference of predicted and originally measured value; CCap, CCumsp:
Correlation coefficient of model generated by GP, M5P respectively.

Table 3. Results for experimental setting (2): Training data sets were built by alter-
nately leaving out one patient data set. The left out data set was used for testing.

Patient Craz Ppiat(Cmaz) trend  ACrmaz APpiat(Cmaz) CCap CCusp

ml/mbar mbar % % %
mean=sd mean4sd
1 489 + 5.0 315+ 0.2 0 37.5 28.6 0.02 0.50
2 92.8 £ 5.0 34.7+ 238 90 23.6 22.2 0.47 0.41
3 73.0 £17.1 298 + 2.9 80 1.7 1.8 0.23 0.19
4 98.7 £ 17.8 271+ 1.7 60 30.2 26.4 0.25 0.24
5 40.8 + 2.8 9.7 + 11.6 67 46.2 18.8 0.32 -0.29
6 46.2 £ 2.8 26.7 + 2.9 44 22.4 27.8 0.55 -0.12
7 105.6 £ 11.2 33.9 + 2.2 91 0.1 6.9 0.34 0.16
8 59.3 £ 5.8 31.2+ 1.3 63 27.9 13.7 0.52 0.32
9 99.5 £ 9.5 28+ 14 55 22.2 37.7 0.40 0.29
10 66.7 = 5.1 33.3+ 6.8 56 30.3 40.5 -0.04 -0.14
11 83.5+ 54 322+ 1.9 67 45.4 19.7 0.28 0.33
12 60.8 = 5.3 33.7+ 0.6 100 24.4 0.6 0.63 0.22
13 60.5 = 7.3 8.1+ 23 56 2.7 39.8 0.04 -0.07
14 99.8 +£ 20.1 383 + 4.5 67 21.7 78.8 0.52 0.06
15 70.5 £ 0.0 17.7 & 0.0 100 74.8 61.0 0.35 0.35
16 92.7 + 8.6 34+ 04 100 20.0 0.4 0.60 0.43
17 79.5 £ 3.0 326+ 0.0 100 33.8 0.0 0.78 0.36
18 74.5 £ 12.0 37.1 + 3.4 0 152.1 308.4 -0.09 0.07
mean=sd 66.3+£30.3 34.3+34.3 40.7470.1 0.34£0.24 0.184+0.22

Craz: Estimated maximum compliance; Pplat(Cmam): Plateau pressure at which maximum com-
pliance was estimated; trend: Percentage of correctly predicted position of Pplat(Cmam); ACmaz,
APpiat (Crmaz): Percentage difference of predicted and originally measured value; CCap, CCumsp:
Correlation coefficient of model generated by GP, M5P respectively.



