
Critial Systems Design with UMLlightJan J�urjens?Software & Systems Engineering, Dep. of InformatisMunih University of Tehnology, GermanyAbstrat. Despite years of suessful researh into using formal meth-ods for the development of ritial onurrent systems, there are still toomany failures of ritial systems in pratie. Part of the reason is thatuse formal methods is often seen to be to ostly.The Uni�ed Modeling Language o�ers an unpreedented opportunity forhigh-quality ritial systems development that is feasible in an industrialontext, sine many developers are trained in UML and are using italready.Our aim is to aid the diÆult task of developing dependable systems inan approah based on a formal fragment of the Uni�ed Modeling Lan-guage alled UMLlight. We extend the notation to apture dependabilityrequirements and related physial properties. This way we enapsulateknowledge on prudent dependability engineering and make it availableto developers whih may not be speialized in dependability. One analso go further by heking whether the onstraints assoiated with thestereotypes are ful�lled in a given spei�ation, by performing a formalanalysis.1 IntrodutionThere is an inreasing desire to exploit the exibility of software-basedsystems in the ontext of ritial onurrent systems where preditabil-ity is essential. Examples inlude the use of embedded systems in variousappliation domains, suh as y-by-wire in Avionis, drive-by-wire in Au-tomotive et. .Given the high dependability requirements in suh systems, a thor-ough design method is neessary, sine failures may have quite severeonsequenes. Sine there are faults in any operational system, fault-tolerane is used at exeution time \to provide, by redundany, servieomplying with the spei�ation in spite of faults ourred or ourring"[Lap92℄. Forms of redundany ommonly employed inlude spae redun-dany (physial opies of a resoure), time redundany (rerunning fun-tions) and information redundany (error-orreting odes). To resolve? http://www.jurjens.de/jan { juerjens�in.tum.de1

the used redundany one may require omplex protools whose orret-ness an be non-obvious [Rus94℄. Mistakes in the use of redundany andthe design of these protools an thus again lead to problems. Thereforereliability mehanisms annot be \blindly" inserted into a ritial system,but the overall system development must take reliability aspets into a-ount. Furthermore, sometimes dependability mehanisms annot be usedo�-the-shelf, but have to be designed spei�ally to satisfy given require-ments (for example on the hardware). Suh mehanisms are notoriouslyhard to design orretly, even for experts, as many examples of protoolsdesigned by experts that were later found to ontains aws show.Spetaular examples for software failures in pratie inlude problemswith Ariane 5 rokets: An independent inquiry board set up to investigatethe explosive failure in 1997 said the ight ontrol system failed beauseof errors in omputer software design.1 Whether the De. 12 2002 fatalfailure relates to software problems as well is urrently being investigated.Any support to aid dependable systems development is thus dearlyneeded. In partiular, it would be desirable to onsider dependabilityaspets already in the design phase, before a system is atually imple-mented, sine removing aws in the design phase saves ost and time.This has motivated a signi�ant amount of researh into using for-mal methods for dependable systems development. However, part of thediÆulty of ritial systems development is that orretness is often inonit to ost. Where thorough methods of system design pose high ostthrough personnel training and use, they are all too often avoided.The Uni�ed Modeling Language (UML, [RJB99, UML01℄, the de fatoindustry-standard in objet-oriented modeling) o�ers an unpreedentedopportunity for high-quality ritial systems development that is feasiblein an industrial ontext.{ As the de fato standard in industrial modeling, a large number ofdevelopers is trained in UML.{ Compared to previous notations with a user ommunity of omparablesize, UML is relatively preisely de�ned.Here we use a fragment of UML alled UMLlight de�ned by a tex-tual program notation together with a formal semantis, beause this issuÆient to demonstrate our ideas and beause for spae-restritions weannot onsider the omplete UML, whose de�nition in [UML01℄ onsistsof about 800 pages altogether. We emphasize that we view it merely asa onvenient means to transport our ideas onerning ertain aspets of1 See http://news.bb.o.uk/2/hi/siene/nature/2569115.stm .2

UML. A similar approah is taken in [BLP01℄ with the notation SMDL.Note, however, that here our goal is not to generate ode, and not tobe in any way omplete in our desription of UML beyond the aspetsrelevant for the ideas we want to present here. This allows our notationto be more abstrat and ompat (for example, there are no labels). Fora more omprehensive fragment of UML with a formal semantis, see[J�ur02b, J�ur03℄. A prototype analysis tool for UMLlight is being devel-oped in student projets [Sha02, Men03℄ (urrently foused on seurityaspets).To support using UML for dependable systems development, we de-�ne some stereotypes apturing dependability requirements and relatedphysial properties. This way we enapsulate knowledge on prudent de-pendability engineering and thereby make it available to developers whihmay not be speialized in dependability. One an also go further by hek-ing whether the onstraints assoiated with the stereotypes are ful�lledin a given spei�ation, if desired by performing a formal analysis.Some of the ideas reported here were or will be presented in an invitedtalk at FDL'02 [J�ur02a℄ and tutorials on formal development of ritialsystems with UML at Safeomp 2002, Software Engineering 2003, andETAPS 2003 (eah unpublished).After presenting some bakground on dependability and on UML ex-tension mehanisms in the following subsetions, we de�ne the UMLlightnotation used in this paper to formally evaluate UML spei�ations fordependability requirements in Setion 2. We introdue the stereotypessuggested for safe onurrent systems development in Setion 3, togetherwith examples of their use. After pointing to related work, we indiatefuture work and end with a onlusion.Dependability Reliability goals for safety-ritial systems are often ex-pressed quantitatively via the maximum allowed failure rate. For example,ritial servies of the Advaned Automation System (AAS, providing AirTraÆ Control servies) should be unavailable at most 3 seonds a year[CDD90℄. To prevent any single atastrophi failure in any airraft of agiven type during its entire life-time one estimates that the maximumadmissible failure rate for eah failure ondition is about 10�9 per hour[LT82, p.37℄. Sine 109 hours amounts to over 100,000 years, one may notahieve on�dene that a system has suh a degree of dependability justby testing.This motivates the use of formal methods. Faed with feasability as-pets, one often abstrats from probabilities by assuming that failures are3

masked perfetly, in order to keep the model as simple as possible. Thenprobabilisti behaviour is fatored out into fault-tolerane omponents.[J�ur01℄ gives onditions under whih it is justi�ed to abstrat from failureprobabilities.We use the following examples for failure semantis in this paper.{ rash/performane failure semantis means that a omponent mayrash or may deliver the requested data only after the spei�ed timelimit, but it is assumed to be partially orret.{ value failure semantis means that a omponent may deliver inorretvalues (represented by the error message ?).UML extension mehanisms The three main \lightweight" extensionmehanisms are stereotypes, tagged values and onstraints. Stereotypes,in double angle brakets, de�ne new types of modeling elements extendingthe semantis of existing types in the UML metamodel. A tagged value isa name-value pair in urly brakets assoiating data with model elements.Constraints may also be attahed.For the stereotypes suggested here, we give validation rules evaluatinga model against inluded dependability requirements. For this we extenda formal semantis for the used fragment of UML in a modular way witha formal notion of failures.2 UMLlightWe briey sketh the neessary foundations for formally analysing UMLspei�ations in the ontext of onurrent system design. For some ofthe onstraints one needs to hek we need to refer to a preisely de�nedsemantis of behavioral aspets.Here we only need a behavioural semantis for a simpli�ed fragmentof UML stateharts (de�ned here using the UMLlight notation, buildingon the work in [J�ur02b, J�ur03℄).In UML the objets or omponents ommuniate through messagesreeived in their input queues and released to their output queues. Thusfor eah omponent C of a given system, our semantis below de�nes aproess pC whih iteratively reads input from the input queues and addsoutput to the output queues. The behavioral semantis of this proessmodels the run-to-ompletion semantis of UML stateharts. To evaluatethe safety of the system with respet to a given failure semantis, theproesses modelling the system omponents are omposed with failure4

E ::= expression? error valuex variable (x 2 Var)d data value (d 2 Data)E1 :: E2 list onatenationhead(E) head of listtail(E) tail of listFig. 1. Expressions.proesses with the spei�ed failure semantis de�ned from the stereotypesat the ommuniation links in the deployment and lass diagrams, asexplained in Setion 3.Spei�ation language We de�ne the UMLlight notation for simpli�edUML stateharts.Proesses ommuniate by sending messages to other proesses, whihare held in a queue until reeived by the reeipient (thus ommuniationis asynhronous). Proesses are de�ned by programs that desribe theoutput at a given point in time given the reeived input. Loal state anbe maintained through the use of loal variables, and used for iteration(for instane, for oding while loops) whih an be de�ned using CCS-styleguarded reursive equations (de�ned below).We assume sets Op of messsage names (inluding the ompletion mes-sage),Var of variables andData of data values to be used as arguments ofmessages. The values ommuniated over hannels are formal expressionsbuilt from the error value ?, variables, and data values using onatena-tion as de�ned in Figure 1 (with the usual equations for onatenation,head(), and tail()).UMLlight stateharts are de�ned indutively in Figure 2. Here k 2fy; t; xg is the kind of the ation, representing entry, transition-bound,and exit, resp. . exp 2 Exp is an expression, msg = op(exp) a message,var 2 Var a variable, and bexp is a Boolean expressions over (Exp;=).In the op(var) expression, the inoming value is assigned to the variable.2One an speify iteration (orresponding to transition loops in thediagrammati presentation of stateharts) by using guarded reursion ofthe form A def= E(A) where A ours in E only within subexpressions ofthe form a:F as in CCS. Guardedness ensure that suh equations haveunique solutions.2 Note that our usage of \;" is di�erent from that in [BLP01℄.5

at ::= ationsoutk(msg) output of expressionvar :=k exp assignmenttrs ::= transitionsop(var)[bexp℄at1 : : : atnp ::= programstrs:p �ring of transitionp1jjp2 parallel ompositionp1 + p2 nondeterminism0 �nal statep1; p2 submahine ompositionFig. 2. UMLlight stateharts.Here we follow some of the redutions regarding statehart onstrutsproposed in [RACH00, Cav00℄:{ entry and exit ations are fatored into the transitions (whih thusneed to allow more than one ation).{ This way the distintion between internal and external transitionsbeomes impliit.{ Synh states an be modelled using other onstruts.Furthermore we omit the following features beause they are orthog-onal to the ideas we would like to present here.{ history states and deferred events,{ type hierarhies,{ reation and deletion of state mahines,{ transitions rossing state borders.Internal ativities are themselves again modelled by statehart expres-sions.The strutural operational semantis of the programs is given inFigure 3. It is of the form (s; p)op(exp);out(msg)! (s0; p0) where p; p0 are pro-grams, s; s0 are valuations of the variables appearing in p; p0 (alled\states"), op(exp) spei�es that the transition will be �red at reeptionof the message op with argument exp, and msg is a list of messages sendout when the transition is �red. In the �rst rule, op(exp) is the messageexpeted in trs, bexp(s) the ondition in trs evaluated at state s, msgthe list of messages send out by the ations in trs, and var is the list ofvariables assigned the list of values exp by the ations in trs. Note thatthe ordering in the ase of the assignments means that variables may be6

(s; trs:p)op(exp);out(msg)! (s[var 7! exp℄; p) bexp(s) = true(s; p1)op(exp);out(msg1)! (s1; p01); (s; p2)op(exp);out(msg1)! (s2; p02)(s; p1jjp2)op(exp)out(msg1./msg2)! (s1 ./ s2; p01jjp02)(s; p1)op(exp);out(msg1)! (s; p01);:9(s; p2)op(exp);out(msg2)!(s; p1jjp2)op(exp);out(msg1)! (s; p01jjp2) and symmetri(s; p1)trs!(s0; p0)(s; p1 + p2)trs!(s0; p0) and symmetri(s; p2)op2(exp2);out(msg2)! (s02; p0); (s; p1)op1(exp1);out(msg1)! x(s01; p01);:9(s; p1)op2(exp2);out(msg0)!(s; p1; p2)op2(exp2);out(msg2./msg1)! (s02 ./ s01; p0)Fig. 3. Strutural Operational Semantis.
assigned several di�erent values, and the last value then remains to beassigned. In the seond rule,msg1 ./ msg2 is a non-deterministi merge ofthe two listsmsg1 andmsg2 and s1 ./ s2 a non-deterministi merge of thetwo states s1; s2 (whih means that at variables where there is a onitin the assignments, one of the two values is hosen non-deterministially).More preisely, this rule represents a set of rules for eah possibility to re-solve the mentioned non-deteminism. In the third rule, :9(s; p)trs! meansthat there is no transition labelled trs from (s; p) and \symmetri" meansthat there is an analogous rule obtained by swapping the subsripts 1 and2. In the last rule trs!x is de�ned as trs!, but only referring to the exit ationsamong the ations of trs (inluding out ations and variable assignments).Given a sequene i of input messages and a proess p, we write JpK(i)for the set of sequenes o of output messages suh that there are transi-tions (pn; sn)opn(expn);out(msgn)! (pn+1; sn+1) for n = 0; : : : ; k with p0 = p,s0 is the state where all variables are evaluated at ?, and suh thati = (opn(expn))n and o is the onatenation of the sequenes msgn(eah n). This is the set of possible sequenes of output messages of pgiven the sequene of input messages i.7

3 Stereotypes for safety analysisIn Figure 4 we give the suggested stereotypes, together with their tags andonstraints. The onstraints, whih in the table are only named briey, areformulated and explained in the remainder of the setion. Figure 5 givesthe orresponding tags. Note that some of the stereotypes on subsystemsrefer to stereotypes on model elements ontained in the subsystems. Forexample, the onstraint of the hh ontainment ii stereotype refers to on-tained objets stereotyped hh ritial ii (whih in turn have tags flevelg).The relations between the elements of the tables are explained below indetail.Stereotype Base Class Tags Constraints Desriptionrisk link, node failure risksrash/performane link, node rash/performanefailure semantisvalue link, node valuefailure semantisguarantee link, node goal guaranteesredundany dependeny, model redundany modelomponentsafe links subsystem dependeny safety enfores safemathed by links ommuniation linksserey dependeny assumes sereysafe subsystem hh all ii, hh send ii respet strutural interationdependeny data safety data safetyritial objet seret ritial objetontainment subsystem prevents down-ow information owFig. 4. StereotypesTag Stereotype Type Multipl. Desriptionfailure risk P(fdelay, orruption, lossg) * spei�es risksgoal guarantee P(fimmediate, orret, eventualg) * spei�es guaranteesmodel redundany fnone, majority, fastestg * redundany modelFig. 5. TagsWell-formedness rules We explain the stereotypes and tags given inFigures 4 and 5 and give examples. By their nature, some of the on-straints an be enfored at the level of abstrat syntax (suh as hh safe links ii),8

Risk Failuresnone()Crash/performane floss,delaygValue forruptiongFig. 6. Failure semantiswhile others refer to the formal de�nitions in Setion 2 (suh ashh ontainment ii). Note that even heking the latter an be mehanizedgiven appropriate tool-support.Redundany This stereotype of dependenies and omponents and itsassoiated tag fmodelg an be used to desribe the redundany model thatshould be implemented for the ommuniation along the dependeny orthe values omputed by the omponent. Here we onsider the redundanymodels none, majority, fastest meaning that there is no redundany, thereis repliation with majority vote, or repliation where the fastest resultis taken (but of ourse there are others, whih an easily be inorporatedin our approah).Risk, rash/performane, value With the stereotype hh physial risk ii onlinks and nodes in deployment diagrams one an desribe the risks arisingwhen using these links or nodes, using the assoiated tag ffailureg, whihmay have any subset of fdelay; orruption; lossg as its value. In the ase ofnodes, these onern the respetive ommuniation links onneted withthe node. Alternatively, one may use the stereotypes hh rash=performane iior hh value ii, whih desribe spei� failure semantis (by giving the rele-vant subset of fdelay; orruption; lossg): For eah redundany model R,we have a funtion FailuresR(s) from a given stereotypes 2 fhh rash=performane ii; hh value iig to a set of strings FailuresR(s)�fdelay; orruption; lossg.If there are several suh stereotypes relevant to a given link (possiblyarising from a node onneted to it), the union of the relevant failure setsis onsidered.This way we an evaluate UML spei�ations. We make use of thisfor the onstraints of the remaining stereotypes.As an example for a failures funtion, Figure 5 gives the one for theabsene of any redundany mehanism (R = none).guarantee hh all ii or hh send ii dependenies in objet or omponent dia-grams stereotyped hh guarantee ii are supposed to provide the goals de-sribed in the assoiated tag fgoalg for the data that is sent along them9

as arguments or return values of operations or signals. The goals may beany subset of fimmediate; orret; eventualg. This stereotype is used inthe onstraint for the stereotype hh safe links ii.safe links This stereotype, whih may label subsystems, is used to ensurethat safety requirements on the ommuniation are met by the physiallayer. More preisely, the onstraint enfores that for eah dependenyd with redundany model R stereotyped hh guarantee ii between subsys-tems or objets on di�erent nodes n;m, we have a ommuniation link lbetween n and m with stereotype s suh that{ if fgoalg has immediate as one of its values then delay =2 FailuresR(s),{ if fgoalg has orret as one of its values then orruption =2 FailuresR(s),and{ if fgoalg has eventual as one of its values then loss =2 FailuresR(s).Example In Figure 7, given the redundany model R = none, theonstraint for the stereotype hh safe links ii is violated: The model does notprovide the goal immediate given R = none, beause the Internet ommu-niation link between web-server and lient does not provide the neededsafety guarantee aording to the Failuresnone(rash=performane) se-nario.
client machine

client apps server apps

server machine

«call»

{goal={immediate}}
«guarantee»

«crash/performance»

«safe links»client/server

Fig. 7. Example safe links usageritial We assume that we are given an ordered set Levels of safetylevels. Then this stereotype labels objets whose instanes are ritialin some way, as spei�ed by the assoiated tags flevelg (for eah levellevel 2 Levels), the values of whih are data values or attributes of10

the urrent objet with the required to be proteted by the given safetylevel. This protetion is enfored by the onstraints of the stereotypeshh safe dependeny ii and hh ontainment ii whih label subsystems that on-tain hh ritial ii objets.safe dependeny This stereotype, used to label subsystems ontaining ob-jet diagrams or stati struture diagrams, ensures that the hh all ii andhh send ii dependenies between objets or subsystems respet the safetyrequirements on the data that may be ommuniated along them. Moreexatly, we assume that eah level 2 Levels has an assoiated set ofgoals goals(level)�fimmediate; orret; eventualg. Then the onstraintenfored by this stereotype is that if there is a hh all ii or hh send ii depen-deny from an objet (or subsystem) C to an objet (or subsystem) Dthen the following onditions are ful�lled.{ For any message name n o�ered by D, the safety level of n is the samein C as in D.{ If a message name o�ered by D has safety level level and goal 2goals(level), then goal is one of the goals provided by the dependeny.Example Figure 8 shows a sensor/ontroller subsystem stereotyped withthe requirement hh safe dependeny ii. We assume that immediate 2goals(realtime). The given spei�ation violates the onstraint for thisstereotype, sine Sensor and the hh all ii dependeny do not provide therealtime goal immediate for measure() required by Controller.
«critical»Controller

{realtime={measure()}}

switch(): Bool

Sensor

mesure(): Value

«call»

switch(): Bool

Sensor/controller
«safe dependency»

Fig. 8. Example safe dependeny usage11

Containment This stereotype of subsystems enfores safe ontainmentfollowing an approah proposed in [DS99℄ by making use of the assoiatedsafety levels. For this we de�ne an ordering on the set Levels as follows:For l; l0 2 Levels we have l � l0 if goals(l)�goals(l0).Then the hh ontainment ii onstraint is that in the stereotyped sub-system, the value of any data element of level l may only be inuenedby data of the same or a higher safety level: Write H(l) for the set ofmessages of level l or higher. Given a sequene m of messages, we writem�H(l) for the sequene of messages derived from those in m by deletingall events the message names of whih are not in H(l). For a set M ofsequenes of messages, we de�ne M�H def= fm�H :m 2Mg.De�nition 1. Given a UMLlight statehart p and a safety level l, we saythat p provides ontainment with respet to l if for any two sequenes �; �of input messages, ��H(l) = ��H(l) implies JpKi�H(l) = JpKj�H(l).Intuitively, providing ontainment means that an output should in noway depend on inputs of a lower level.Example The example in Figure 9 shows the diagrammati repre-sentation of a Fuel Controller that omputes the amount of used fuel ofan airplane from the distane travelled so far. This is done (quite simplis-tially for the purpose of the example) by multiplying the distane witha onstant (supposed to give the amount of fuel onsumed per lengthunit). Beause of di�erent air resistane, this onstant depends on thefat whether the wheels of the plane were pulled in-board or (mistakenly)left outside. This is modelled by having two states orresponding to thestate of the wheels, and having di�erent onstants 6= d. Now the re-sult of the message fuel is supposed to be of the level safe. However, themessage wheelsin giving the state of the wheels is not assigned any safetylevel. Therefore this example violates hh ontainment ii, beause a safe valuedepends on a value not at least of level safe. This an be heked usingthe textual representation of the UMLlight proess p de�ned by:p = fuel(x)[true℄out(return(d:x)):p+wheelsin(y)[y = false℄:p+wheelsin(y)[y = true℄:p0p0 = fuel(x)[true℄out(return(:x)):p+wheelsin(y)[y = false℄:p+wheelsin(y)[y = true℄:p0Then onsidering the sequenes � = (wheelsin(true); fuel(1)) and� = (wheelsin(false); fuel(1)), and the safety level l = safe, we have12

��H(l) = ��H(l), but JpKi�H(l) = freturn()g 6= freturn(d)g = JpKj�H(l)sine 6= d by assumption on ; d.
«containment»

WheelsOutWheelsIn

fuel(x:Data):Data

wheelsin(true)

wheelsin(false)

wheelsin(x:Bool)

{safe={fuel}}Fuel controller

Fuel control

fuel(x:Data):Data
wheelsin(x:Bool)

fuel(x)/return(d.x)fuel(x)/return(c.x)

wheelsin(true) wheelsin(false)Fig. 9. Example ontainment usageRelated Work To our knowledge, this is the �rst work proposing touse UML for the formal development of safety-ritial systems. Some ofthe ideas reported here were or will be presented in an invited talk atFDL'02 [J�ur02a℄ and tutorials on formal development of ritial systemswith UML at Safeomp 2002, Software Engineering 2003, and ETAPS2003 (eah unpublished). [J�ur02, J�ur03℄ proposes to use UML for devel-oping seurity-ritial systems. See also [JCF+02℄ for approahes relatingto other ritiality requirements or for approahes to safety-ritial devel-opment without a formal basis.Also relevant is the work towards a formal semantis of UML inluding[LP99, KER99, RACH00, AM00, BLMF00, GI01℄, and notably [BLP01℄whih is the approah most similar to the one here (but loser to theonrete UML syntax for example by inluding state labels).Researh on the analysis of UML model for non-funtional propertiesinludes [LL99, DMY02℄.4 Conlusion and Future WorkWe proposed to use a formal fragment of UML stateharts, alled UMLlight,to aid development of safety-ritial systems. Given the urrent state ofdependable systems in pratie, with many failures reported ontinually,13

this seems to be a useful line of researh, sine it enables developerswithout a bakground in dependability to make use of dependability en-gineering knowledge enapsulated in a widely used design notation. Sinethe behavioral parts of UMLsafe are onsidered with a formal seman-tis, this allows a formal evaluation (parts of whih may be mehanized).Thus even dependability experts undertaking a formal evaluation for er-ti�ation purposes may pro�t from the possibility of using a spei�ationlanguage that may be pereived to be more easily employed than sometraditional formal methods. Sine UML spei�ations may already ex-ist independently from the formal evaluation, this should redue ost oferti�ation.Note that one may use our approah without having to refer to aformal semantis for UML. In that ase, the onstraints for the safetyrequirements would have to be heked by a CASE tool and explained tothe user informally. It is however bene�ial to have a formal referene thattool providers an refer to if neessary; this is why we provide a formalsemantis for the used fragment of UML; a larger fragment is given in[J�ur02b℄.For this line of researh to be of pratial value it is important todevelop tool support, for example by analysing the diagram data exportedfrom UML tools in XMI (a UML-spei� XML dialet). This is urrentlybeing done for the appliation domain of seurity [Sha02, Men03℄, anextension to safety is planned.In our presentation here we remained in the non-probabilisti situationto keep it easily aessible. Sometimes, in safety-ritial systems, one isonerned with probabilities of system failures, although in many asesone an abstrat from onrete numbers, as shown in [J�ur01℄. These ideasan be inorporated in our ontext here, as initial attempts have shown[J�ur02a℄, whih would be interesting to see worked out in detail.Referenes[AM00℄ J. Ara�ujo and A. Moreira. Speifying the behaviour of UML ollaborationsusing Objet-Z. In Amerias Conferene on Information Systems (AMCIS).Assoiation for Information Systems, 2000.[BLMF00℄ J.-Mihel Bruel, J. Lilius, A. Moreira, and R.B. Frane. De�ning PreiseSemantis for UML. In ECOOP'2000 Workshop Reader, volume 1964 ofLNCS. Springer, 2000.[BLP01℄ D. Bj�orklund, J. Lilius, and I. Porres. Towards eÆient ode synthesis fromstateharts. In Workshop of the pUML-Group [GI01℄.[Cav00℄ A. Cavarra. Applying Abstrat State Mahines to Formalize and Integrate theUML Lightweight Method. PhD thesis, DMI, Universit�a di Catania, 2000.14

[CDD90℄ F. Cristian, R. Daney, and J. Dehn. High availability in the advanedautomation system. In Digest of Papers, The 20th International Symposiumon FaultTolerant Computing, Newastle-UK, June 1990. IEEE.[DMY02℄ A. David, O. M�oller, and Wang Yi. Formal veri�ation of UML statehartswith real time extensions. In FASE 2002, volume 2306 of lns, pages 218{232,2002.[DS99℄ Bruno Dutertre and Vitoria Stavridou. A model of noninterferene for in-tegrating mixed-ritiality software omponents. In DCCA-7, Seventh IFIPInternational Working Conferene on Dependable Computing for Critial Ap-pliations, San Jose, CA, January 1999.[FR99℄ R. Frane and B. Rumpe, editors. Seond International Conferene on theUni�ed Modeling Language - UML'99, volume 1723 of LNCS. Springer, 1999.[GI01℄ GI. Workshop of the pUML-Group, Leture Notes in Informatis, 2001.[JCF+02℄ J. J�urjens, V. Cengarle, E. Fernandez, B. Rumpe, and R. Sandner, editors.Critial Systems Development with UML, number TUM-I0208 in TUM teh-nial report, 2002. UML'02 satellite workshop proeedings.[J�ur01℄ J. J�urjens. Abstrating from failure probabilities. In Seond InternationalConferene on Appliation of Conurreny to System Design (ACSD 2001),pages 53{64. IEEE Computer Soiety, 2001.[J�ur02a℄ J. J�urjens. Critial Systems Development with UML. In Forum on DesignLanguages, Marseille, Sept. 24{27 2002. European Eletroni Chips & Sys-tems design Initiative (ECSI). Invited talk.[J�ur02b℄ J. J�urjens. Priniples for Seure Systems Design. PhD thesis, Oxford Uni-versity Computing Laboratory, Trinity Term 2002. Submitted.[J�ur02℄ J. J�urjens. UMLse: Extending UML for seure systems development. InJ.-M. J�ez�equel, H. Hussmann, and S. Cook, editors, UML 2002 { The Uni�edModeling Language, volume 2460 of LNCS, pages 412{425, Dresden, Sept. 30{ Ot. 4 2002. Springer. 5th International Conferene.[J�ur03℄ J. J�urjens. Seure Systems Development with UML. Springer, 2003. To bepublished.[KER99℄ S. Kent, A. Evans, and B. Rumpe. UML Semantis FAQ. In ECOOP'99Workshop Reader, volume 1743 of LNCS. Springer, 1999.[Lap92℄ J.C. Laprie. Dependability: basi onepts and terminology. DependableComputing and Fault-Tolerant Systems, 5, 1992.[LL99℄ Xuandong Li and J. Lilius. Timing analysis of UML sequene diagrams. InFrane and Rumpe [FR99℄, pages 661{674.[LP99℄ J. Lilius and I. Porres. Formalising UML state mahines for model heking.In Frane and Rumpe [FR99℄, pages 430{445.[LT82℄ E. Lloyd and W. Tye. Systemati safety: Safety assessment of airraft sys-tems, 1982. Reprinted 1992.[Men03℄ S. Meng. Seure database design with uml. Master's thesis, Munih Universityof Tehnology, 2003. In preparation.[RACH00℄ G. Reggio, E. Astesiano, C. Choppy, and H. Hu�mann. Analysing UMLative lasses and assoiated state mahines { A lightweight formal approah.In T. Maibaum, editor, Fundamental Approahes to Software Engineering(FASE2000), volume 1783 of LNCS, pages 127{146. Springer, 2000.[RJB99℄ J. Rumbaugh, I. Jaobson, and G. Booh. The Uni�ed Modeling LanguageReferene Manual. Addison-Wesley, 1999.[Rus94℄ J. Rushby. Critial system properties: Survey and taxonomy. ReliabilityEngineering and System Safety, 43(2):189{219, 1994.[Sha02℄ P. Shabalin. Design and possibilities for automated proessing of UMLsemodels, 2002. Study projet.[UML01℄ UML Revision Task Fore. OMG UML Spei�ation v. 1.4. OMG Doumentad/01-09-67. Available at http : ==www:omg:org=uml, 2001.15

