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1 Introduction 1
Chapter 1Introduction
1.1 BackgroundReasoning under incomplete knowledge is one of the most expanding research topics inthe last few years. In general, there are three major problems that have to be solved:� First, we have to �nd an appropriate language to represent and handle our knowl-edge. This representation should allow us to express all we need and should be easyto read or change.� Second, we have to use a well-founded theory of decisions under incomplete knowl-edge which avoids to introduce any personal bias when completing the knowledge.� Third, we have to derive the answers to our questions from the completed knowledgeand make it readable for the user.We are convinced that probability theory, supported by well-known additional principleslike indi�erence, independence and the method of Maximum Entropy will defend its strongposition within those tasks. Its justi�cation (and many examples for modelling commonsense reasoning) is described in [Greiner & Schramm, 1994]. We therefore present atool for preparing reasoning under incomplete probabilistic knowledge.We call this tool 'tabl' which stands for 'tabular compiler'. It is used within our systemPIT1 (Probability Induction Tool) but can as well be used for other purposes, wheneveran e�cient representation of probabilistic knowledge is useful.Basically we transform a knowledge-database that contains probabilistic constraints intoa (underdeterminated) system of linear equations with additional constraints for the so-lution. Any solution of this system ful�ls the demands of the original database. The taskof tabl is to produce a minimal, easy to solve system of equations by using indi�erenceprinciples.In the following subsection we shortly recall the necessary technical concepts.1see [Ertel et al., 1996, Schramm & Schulz, 1996].



2 tabl { A Tool for probabilistic Constraint Compilation1.2 Technical TermsIn this section we will give a short introduction to the concepts of probabil-ity models on propositional interpretations. For a more formal description we referto [Greiner & Schramm, 1994, Greiner & Tinhofer, 1996] or any introductionto reasoning with probabilities.Let R = fa1 : : : arg be a �nite set of propositional variables (atoms, attributes) andlet Form(R) be the set of propositional formulas in these variables (using e.g. theoperators f:;^;_;!g for not, and, or and the material implication). A literal is ei-ther an atom or a negated atom. An interpretation of the variables is a mappingI : R ! ftrue, falseg, so there are 2r interpretations. An interpretation can be extendedto a function I : Form(R) ! ftrue, falseg by the usual rules for the application of theoperators. We also call an interpretation a possible world and denote it by the uniquefull conjunction2 of literals that evaluates this interpretation to true. A propositional spec-i�cation S is a set of formulas. An interpretation that evaluates all formulas from S totrue is called a propositional model of S.Now let 
 = f!1; : : : ; !mg be a �nite set of disjoint elementary events (i.e. only oneof the !i can occur at any one time or situation). A probability measure on 
 is afunction P : 2
 ! [0; 1] withX!2
P (!) = 1 and P (A) := X!2AP (!) for A 2 2
 .A linear3 probabilistic constraint (or simply constraint from here on) is a state-ment of the form P (A) 2 J (unconditional constraint) or P (AjB) 2 J (conditionalconstraint), where A;B � 
 and J is a subinterval of [0; 1]z. A probability model (P-Model) for a set of constraints DB is a probability measure which ful�ls the constraintsfrom DB.We now choose the interpretations for a set of propositional variables as the elemen-tary events of a probability measure. We can then identify a propositional formula withthe set of its (propositional) models. Thus, probabilistic constraints can be written as(conditional) probabilities on propositional formulas. Probabilistic constraints with theprobability 0 or 1 still act like purely propositional statements. We call them logicalconstraints.If we have a unique P-Model for a set of constraints, we can easily compute the probabilityof a proposition by summing the probabilities of its models. We can also calculate aconditional probability P (ajb) by comparing the total probability of the models of a ^ bto the probability of models of b (a; b 2 Form(R)). Unfortunately, in most cases theconstraints of a speci�cation do not, without further principles, determine a unique P-Model, but rather a (in�nite) set of P-Models. In the PIT-environment we select a single,representative model from this set by applying the principle of maximum entropy(MaxEnt).2A full conjunction is a conjunction of literals where each atom from R appears either in atomicform or in negated form.3see Section 2.1.zWe write P (: : :) = p for the special case of J = [p; p].



1 Introduction 31.3 NotationThe theory and notation used further on is based on the two already published reports[Greiner & Schramm, 1994] and [Greiner & Schramm, 1995]. All important the-orems and proofs can be found there. To simplify the reading of this report we repeat thenecessary theory where it is needed without giving a detailed description or proof.To distinguish between normal and special text we use di�erent fonts:� The input source-text and the output of the compiler is written in typewriterfont. Following symbols are declared (a; b 2 Form(R)):' - ' : p(-a) meaning p(:a).' * ' : p(a*b) meaning p(a ^ b).' + ' : p(a+b) meaning p(a _ b).' -> ' : p(a->b) meaning p(:a _ b), respectively p(a! b).' | ' : p(a|b) meaning p(a j b).' -|> ' : p(a -|> b) meaning p(b j a).' # ' : lines beginning with # are ignored (comments).' p(e),p(f) ' : the default events e and f are used in all error messages.� Text with a special meaning like commands or semantic information is written inemphasised font.Within the next sections the following variables are used:a; b; c; d formulas, whereas formulas are all expressions 'e' or 'e j d' or 'e -|> d'with e; d 2 Form(R).x; y interval borders.r number of attributes (respectively variables) in the database.l number of constraints in the database.n number of unknown variables of the system of equations (n � 2r,i.e. size of vector p).�i �i 2 [x; y]. Variable for the interval-constraint of row i.A unmodi�ed matrix.�̂ variable � after applying the 'weak' indi�erence principle.~� variable � after applying the 'strong' indi�erence principle.1.4 A �rst ExampleIn order to illustrate the general proceeding we start with a small example.



4 tabl { A Tool for probabilistic Constraint Compilation1.4.1 DatabaseDefault-Knowledge:� normally animals do not y.� birds are animals.� normally birds y.Desired conclusion:Animals, which are no birds, normally do not y.1.4.2 Probabilistic ModellingRegarding the events (over the reference space of all beings)� an = 'beings that are animals'� bi = 'beings that are birds'� fl = 'beings that can y'we can model this information in a probabilistic way in a format that is accepted by tablas follows:%verbose # ADD COMMENTS IN THE OUTPUT FILE%noindif # STRONG INDIFFERENCE OFF (EXPLANATION LATER)# EVENTS: BEINGS THAT ARE ANIMALS OR BIRDS OR CAN FLYvar an,bi,fl;# CONSTRAINTS:# normally animals do not flyP( an -|> -fl ) = (0.5,1.0];# birds are animalsP( bi -|> an ) = 1.0;# normally birds flyP( bi -|> fl ) = (0.5,1.0];# QUERY: DO MOST ANIMALS, WHICH ARE NOT BIRDS, FLY ?Q( an * -bi -|> fl )=(0.5,1];.We say that in a given P-Model a query is true, if its probability lies within the giveninterval (in this case between 0.5 and 1.0).With the de�nitions given in Section 1.2 we are able to perform the transformation of the�rst example.



1 Introduction 51.4.3 TransformationIn the �rst example holds R := fan; bi; flg and therefore 
 consists of eight elements:
 := f(an; bi; fl) = !1; (an; bi;:fl) = !2; : : : ; (:an;:bi;:fl) = !8gPlease note, that this enumeration de�nes also an implicit ordering of the full conjunc-tions.The �rst database entry (db-constraint) 'P(an -|> -fl)=(0.5,1.0]' (meaning'P (:fl j an) = �1' and '�1 2 (0:5; 1:0]') can be seen as a linear equality depending onthe elementary probabilities P (!1); : : : ; P (!8):P (:fl j an) = �1 , P (:fl \ an) = �1P (fl) ,, (1� �1) X!i2an\:flP (!i) � �1 X!j2an\flP (!j) = 0 (1.1)together with the I(nterval)-condition �1 2 (0:5; 0:1].With this transformation and the commitment 'P (a) = P (a j
)' for all a 2 Form(R)the database (consisting of l = 3 db-constraints) can be written as a linear (generallyunderdeterminated) system of equations:A � p = z ; A 2 R2r � l and z = (0; : : : ; 0); p = (P (!1); : : : ; P (!8)) (1.2)Adding the normalisation constraint 'P2ri=1 P (!i) = 1:0' any solution of (1.2) that ful�lsthe I-conditions is a possible P-Model.1.4.4 Outputtabl basically performs the transformation of the database. So the expected output of the�rst example would be:!i: (This section does not appear in the output of tabl !)!1: !2: !3: !4: !5: !6: !7: !8:an an an an :an :an :an :anbi bi :bi :bi bi bi :bi :bifl :fl fl :fl fl :fl fl :flP (!1) P (!2) P (!3) P (!4) P (!5) P (!6) P (!7) P (!8) = I-conditionA: z:1 1 1 1 1 1 1 1 1��1 1� �1 ��1 1� �1 0 0 0 0 0 �1 2 (0:5; 1]1� �2 1� �2 0 0 ��2 ��2 0 0 0 �2 = 1:01� �3 ��3 0 0 1� �3 ��3 0 0 0 �3 2 (0:5; 1]Query:0 0 1� �q ��q 0 0 0 0 0 �q 2 (0:5; 1]



6 tabl { A Tool for probabilistic Constraint CompilationThe �rst line of A represents the normalisation constraint, the following three lines arethe linear equations of the db-constraints. The query itself is also represented as a linearequation.We want to emphasise that the result of this representation includes all information of theoriginal database. Any solution (P-Model) of the underdeterminated system of equations(1.2) ful�lling the I-conditions implies an (correct) answer to the query. The query is truein a chosen P-Model if its probability lies within the given I-constraint of �q. (This stillleaves the problem to select one of the possible P-Models).The possibilities of the unmodi�ed transformation are limited. A major problem of thisrepresentation is caused by the exponential growth of the Matrix A to the number ofattributes (O(2r) � O(l))z. Therefore the calculation of databases consisting of 25 ormore attributes exceed the capabilities of the current (and possibly future) computers byfar.An improvement of this situation is to distinguish only between these sets of possibleworlds4 that are structural di�erent. This idea is strongly motivated by the widelyknown principle of indi�erence, that we quote in an informal description from[Jaynes, 1978]: "as far as the available evidence gives us no reason to consider theproposition a either more or less likely than b, then the honest way to describe that stateof knowledge is: P (a) = P (b)".If we demand this principle in our representation, we can see immediately that !7 and!8 ful�l a su�cient condition for indi�erence, because their corresponding columns inA are equal (further on the equality of columns within A will be denoted as 'weak'indi�erence)We can reduce the system of equations (1.2) by one column by setting the indi�erentprobabilities P (!7) and P (!8) equal. In our representation the equality can be expressedby adding the column of P (!8) to the column of P (!7) and deleting the column of P (!8).This merging is also possible for three or more equal columns.The most simple way to express the summation of (equal) columns within A (indi�erentfrom the query-lines, that always have to be added) is to note the multiplication factorin a separate vector called multiplicator-line5.A further diminishing of A is possible by analysing logical constraints. Regarding thethird row of A as its linear equation�P (!5)� P (!6) = 0 (1.3)leads to the conclusion that 'P (!5) = P (!6) = 0'. In other words, the 5th and 6th columnof the system of equations can be deleted and the resulting row of the logical constraint(consisting only of zero entries) holds no further information and can also be removedfrom A.zO denotes the Landau-symbol.4see Section 1.2.5Another reason for the multiplicator-line lies in the use of BDDs (see Section 3.1).



1 Introduction 7The unmodi�ed transformation combined with the two possible simpli�cations (mergingcolumns by indi�erence and deleting rows and columns by logical constraints) generatesthe �nal matrix Â6 together with the corresponding query-line:P (!7) P (!3) P (!1) P (!4) P (!2) = I-conditionP (!8)multiplicator-line:2 1 1 1 1Â: ẑ:1 1 1 1 1 10 ��1 ��1 1� �1 1� �1 0 �1 2 (0:5; 1]0 0 1� �3 0 ��3 0 �3 2 (0:5; 1]Query:0 1� �q 0 �q 0 0 �q 2 (0:5; 1]Please note, that the order of columns does not inuence the result, as long as the eachmatrix column stays consistent with the corresponding column of the queries.Now we regard the real output of tabl:# CREATED 10.12 AT 14:35 (MET)# NUMBER OF: COLUMNS ROWS KOMPLEX GRID SQP-POINT SQP-INT QUERIES5 3 0 0 1 2 1# EPS: 0.00000000# ORDER:DB-CONSTRAINT ':' SUM,RANK,LOWER-BOUND,UPPER-BOUND,TYPE{NUMBER}# MATRIX-ELEMENTS : (n,m) = n*1 + m*delta_i# L_CONSTRAINTS FROM INPUT-LINE-NUMBERS : 11# MULTIPLICATOR-LINE:2 1 1 1 1# NORMALISATION CONSTRAINT:(1,0) (1,0) (1,0) (1,0) (1,0) : 1 0 -1.00000000 -1.00000000 S# RESULT FROM INPUT-LINE-NUMBER 9 :(0,0) (0,-1) (0,-1) (1,-1) (1,-1) : 0 1 0.50000000 1.00000000 S# RESULT FROM INPUT-LINE-NUMBER 13 :(0,0) (0,0) (1,-1) (0,0) (0,-1) : 0 2 0.50000000 1.00000000 S# QUERY FROM INPUT-LINE-NUMBER 16 :(0,0) (1,-1) (0,0) (0,-1) (0,0) : 0 -1 0.00000000 1.00000000 Q6respectively the �nal system of equations Â � p̂ = ẑ.



8 tabl { A Tool for probabilistic Constraint CompilationIgnoring the �rst few lines that contain only informations about sizes (e.g. the matrixsize for later applications) and comments the result of the transformation starts with themultiplicator-line after the comment '# MULTIPLICATOR-LINE:'. The next lines representthe actual matrix Â. Each line is constructed the following way (here for the second row):(0,0) (0,-1) (0,-1) (1,-1) (1,-1)| {z }matrix row : 0|{z}ẑ2 1|{z}rank 0.50000000 1.00000000| {z }�22[0:5;1] S|{z}type (1.4)tabl encodes the expression 'n � 1 + m � �i' as '(n,m)'. ẑ2 denotes the second elementof the vector ẑ. Ignoring the entries 'rank' and 'type' the output equals the expectedtransformation.1.5 ResultsThe unmodi�ed 8 � 4 Matrix has been reduced to a 5 � 3 Matrix. This e�ect increasesfor larger databases, especially if another, 'strong' indi�erence demand is used.The idea behind tabl is to perform the transformation very e�ciently. In the �rst examplewe calculated the matrix Â by subsequently reducing A as far as possible. Further onwe make an entirely di�erent approach. We create Â directly by 'unfolding' only thiscolumns of A that are not 'weak' indi�erent. This is e�ciently possible by using BinaryDecision Diagrams (BDDs) for the internal representation of di�erent worlds. Thereforethe growth of A is inuenced only by the content of information in the database. In adatabase consisting of propositional logic constraints tabl acts as a theorem prover.The second task of tabl consists of checking the input for (eventually hidden) contradictoryconstraints in the database. Additionally tabl produces a diversity of useful warnings thathelp to understand the results of the database-transformation.As a �nal result it can be said, that the complexity (size and time) of the output producedby tabl depends only on the 'complexity' of the input and not on the number of attributesor number of constraints used. Our tests for real problems show that up to 25 attributesand 100 (non-logical) constraints (logical constraints are 'good-natured' in most of thecases) are solvable within reasonable time.The output of tabl contains all important information of the original database and allinformation that is needed for further processing.Our processing of Â within PIT selects the (unique) P-Model P � that has maximumentropy. P � can also be seen as the unique solution that adds only minimal additionalinformation to the database. The output of tabl allows to �nd P � even in huge examples(80 to 100 constraints) within a few seconds.tabl is designed as a tool that provides the information contained in a (probabilistic)database in a very e�cient way by using the principle of indi�erence. Other applicationsthat need a way to process a probabilistic database can use this output as a database-representation as well.



2 The Input 9
Chapter 2The Input
2.1 General StructureThe tabl input-format is similar to a procedural programming language (like Pascal). Theprecise EBNF input-format description for syntactical correct databases can be found inAppendix A.1.A tabl input-�le consists of 5 separate successive parts:1. optionsRight now the following options are available:%verbose : given this option the output will contain comments for each output-line.%noindif : this option switches o� the strong indi�erence check.%eps=precision : declares the precision of open intervals12.%�lename : �lename speci�es the output-�lename3.2. variable-declarationAll used variables (complies the 'attributes' of Section 1.4.2) of the database haveto be declared here. Up to 69 di�erent variables can be used.Example:var smoker,miner,die_early;declares the variables: 'smoker', 'miner' and 'die early'.3. databaseThe database-part contains the actual probabilistic information (i.e. constraints).The general way to express a constraint is:P(formula) = interval ;Any well formed formula4 containing variables, '-', '*', '+', '->, '( )','|' and '-|>'(respecting the natural operator precedence) can be used. The symbols '|' and '-|>'1see Section 2.3.2default value: 0.0 .3default: stdout.4see Section 1.3.



10 tabl { A Tool for probabilistic Constraint Compilationcan only be used once per formula.For interval any rational number or any (open, half-closed or closed) sub-interval(in this case '=' denotes '2') between 0.0 and 1.0 is possible.Examples:P( smoker ) = 0.7 ;P( die_early | smoker ) = (0.7,1.0] ;P( die_early | -smoker * -miner) = (0.1,0.3) ;4. 'conclusion' and 'queries'The (only) 'conclusion' and the 'queries' are formalised the same way as probabilisticconstraints5. The conclusion is noted as: 'C(formula) = interval ;'6 and the queriesare noted as 'Q(formula) = interval ;'7.For example we may ask, if most of the people that die early are smokers:Q( smoker | die_early ) = (0.5,1.0] ;5. end of databaseThe token '.' indicates the end of the database.Now we can regard the complete input-�le 'example.tabl'8:1 # NON MONOTONIC REASONING ON THE HEALTH OF SMOKERS AND MINERS2 # THE TRANSFORMATION FROM LANGUAGE TO INTERVALS IS JUST FOR DEMONSTRATION.345 %verbose # COMMENTS ON6 %noindif # STRONG INDIFFERENCE OFF78 var smoker,miner,die_early;910 # 70% OF THE PEOPLE ARE SMOKERS11 P( smoker ) = 0.7 ;12 # SMOKERS (GENERALLY) DIE EARLY13 P( die_early | smoker ) = (0.7,1.0] ;14 # HEALTHY PEOPLE (GENERALLY) DO NOT DIE NOT EARLY15 P( die_early | -smoker * -miner) = (0.1,0.3) ;1617 # ARE MOST PEOPLE THAT DIE EARLY SMOKERS ?18 Q( smoker | die_early ) = (0.5,1.0] ;19 # ARE MOST PEOPLE THAT DIE EARLY MINERS ?20 Q( miner | die_early ) = (0.5,1.0] ;21 .5The di�erences between conclusion and query are described in Section 2.5.6'C(formula);' if no interval is needed.7'Q(formula);' if no interval is needed.8The leading line-numbers of all following examples are just for documentation-purposes.



2 The Input 11With this general introduction it should be possible to formalise most of the needed infor-mation. Additionally tabl o�ers some more sophisticated constructions that are describedthe following sections.2.2 Rank ConceptIn some situations it may be necessary to determine that two di�erent formulas ( a andb ) have exactly the same probability 'P (a) = �a, P (b) = �b, �a = �b'. We can express thisinformation in tabl as follows:# P(a) AND P(b) ARE EQUAL AND BETWEEN (0.5,1]P(a)= P(b)= (0.5,1];tabl assigns every matrix-row a special (primary di�erent) number called rank9. The factthat two probabilities are equal is expressed in the output by equal rank-numbers of thecorresponding matrix rows.The rank concept leads to a few additional consequences for the consistency of databasesthat are described in Section 4.1.2. Using the rank concept we recommend to switch o� thestrong indi�erence algorithm10, because we have it not yet adapted to the rank-concept.2.3 Interval BordersIn the database-input any combination of open or closed (probability) intervals is allowed.An open interval (x; y) is treated as a closed interval [x+ �; y� �] (analogous for half-openintervals). By default � is 0.0 (so there is no di�erence between open and closed intervals)but in some applications it may be necessary not to reach the open interval-border. There-fore the option '%eps=number' changes open interval-borders by adding (subtracting) theamount number from the given border-value.Example: The input%eps=0.001var a;p(a)=(0.3,0.7);.produces the following result:2 2 0 0 1 1 01 1(1,0) (1,0) : 1 0 -1.00000000 -1.00000000 S(0,-1) (1,-1) : 0 1 0.30100000 0.69900000 S9see (1.4).10using the '%noindif'-option.



12 tabl { A Tool for probabilistic Constraint Compilation2.4 CompilationThe general installation guidance of tabl is provided in Appendix C. To compile the input-�le of Section 2.1, 'example.tabl', (which does not include an output-�lename-option) intoa �le 'example.dat' we would type:> tabl example.tabl example.datWELCOME TO THIS VERSION V2.17 04.12.96INTERNAL31WORKING...TASK COMPLETEDC Utabl creates a �le example.dat with this content:# CREATED 10.12 AT 14:40 (MET)# NUMBER OF: COLUMNS ROWS KOMPLEX GRID SQP-POINT SQP-INT QUERIES5 4 0 0 2 2 2# EPS: 0.00000000# ORDER:DB-CONSTRAINT':'SUM,RANK,LOWER-BOUND,UPPER-BOUND,TYPE{NUMBER}# MATRIX-ELEMENTS : (n,m) = n*1 + m*delta_i# MULTIPLICATOR LINE:2 1 1 2 2# NORMALISATION CONSTRAINT:(1,0) (1,0) (1,0) (1,0) (1,0) : 1 0 -1.00000000 -1.00000000 S# RESULT FROM INPUT-LINE-NUMBER 11 :(0,-1) (0,-1) (0,-1) (1,-1) (1,-1) : 0 1 0.70000000 0.70000000 S# RESULT FROM INPUT-LINE-NUMBER 13 :(0,0) (0,0) (0,0) (0,-1) (1,-1) : 0 2 0.70000000 1.00000000 S# RESULT FROM INPUT-LINE-NUMBER 14 :(0,0) (0,-1) (1,-1) (0,0) (0,0) : 0 3 0.10000000 0.30000000 S# QUERY FROM INPUT-LINE-NUMBER: 18(0,-1) (0,0) (0,-1) (0,0) (2,-2) : 0 -1 0.50000000 1.00000000 Q# QUERY FROM INPUT-LINE-NUMBER: 20(1,-1) (0,0) (0,-1) (0,0) (1,-2) : 0 -1 0.50000000 1.00000000 Q



2 The Input 132.5 PIT - InstructionsIn this section we shortly describe some input-instructions that are used within the PIT-environment.The PIT-environment allows a worst case analysis of a (unique) sentence (called con-clusion) on a set of MaxEnt Models (obtained by choosing points in the intervals of theconstraints11). While the queries (the questions of the user) have the format 'Q(formula)',the conclusion has the format 'C(formula)'. It is demanded that if a conclusion exists ithas to stand before the �rst question in the input-�le.The worst case analysis runs on two di�erent optimisation algorithms; each algorithm usesits own constraints. These two di�erent types of constraints are distinguished by markingthe equality sign with an additional 'K' if the constraint is used for the worst case analysis.The di�erence between conclusion and query (respectively between normal- and kom-plex-constraint) in the output of tabl consists only in the di�erent types12 'C' and 'Q'(respectively 'S' and 'K') at the end of the row.Example:var a,b,c;p(a) =K (0.5,1.0];p(a+b) = (0.5,1.0];c(b -|> -a) =(0.5,1.0];q(b -|> -a) =(0.5,1.0];q(a*c -|> b)=(0.5,1.0];.produces:3 3 1 0 1 1 22 2 4(0,-1) (0,-1) (1,-1) : 0 1 0.50000000 1.00000000 K(1,0) (1,0) (1,0) : 1 0 -1.00000000 -1.00000000 S(0,-1) (1,-1) (1,-1) : 0 2 0.50000000 1.00000000 S(0,0) (2,-2) (0,-2) : 0 -1 0.50000000 1.00000000 C(0,0) (2,-2) (0,-2) : 0 -1 0.50000000 1.00000000 Q(0,0) (0,0) (1,-2) : 0 -1 0.50000000 1.00000000 QPlease note, that the output lists at �rst the komplex-constraints and then all otherconstraints followed by the conclusion and the queries.11described in [Schramm & Schulz, 1996].12see (1.4)
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Chapter 3Generating the Output Matrix
3.1 The 'weak' Indi�erence PrincipleAs described in Section 1.4 the transformation (1.2) of the original matrixA by demandingthe principle of indi�erence leads to a new matrix Â that consists only of di�erent columns.The mathematical representation of a constraintP (b j a) = � , [1� �] � P (a \ b) + [��] � P (a \ :b) + [0] � P (:a) = 0 (3.1)splits the space 
 into three disjoint sets of elementary events, which di�er by their factors(i.e. matrix-entries) in the representation of the system of equations (3.1):!i 2 a \ b ) matrix-entry [1� �]!i 2 a \ :b ) matrix-entry [��]!i 2 :a ) matrix-entry [0]tabl creates the matrix Â by building up a tree T starting with the root 
 (see Figure3.1). Each constraint increases the height of T by splitting every leaf t in a maximumof three di�erent sets (t \ ab,t \ a:b,t \ :a) representing the di�erent matrix-entries([1� �],[��],[0]). Empty sets can be deleted, because they represent the impossible event.The internal representation of sets is e�ciently possible by using BDDsz 1. Therefore thelist of matrix-entries along the path from the root to a leaf represents one column of Â.(In fact we need to store only the leafs of T together with their list of matrix-entries).A further simpli�cation is possible by regarding logical constraints. We know that a logicalconstraint does not add a row to A, but only leads to deleting columns.case 1: P (b j a) = 0 , P (a \ b) = 0case 2: P (b j a) = 1 , P (a \ :b) = 0 (3.2)As a consequence of this we need to cut all leaves of T with :(a\b) (respectively :(a\:b)).The fact that a logical constraint does not increase the number of leaves in T , an uncondi-tional constraint increases the number of leafs by at most two and a conditional constraintzsee [Bryant, 1986].1The BDD-software-package used is written by David E. Long (see Appendix C).
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[0][0][-�1][1-�3][0][0][1-�2][-�4]

	n \ (c \ d) 	n \ (c \ :d) 	n \ :c;
logical constraints

(un)conditional constraints	n+1;1

 \ :(a \ b)

P (djc) = (0:5; 1]
P (bja) = 0Tree T :

[0]	n+1;3[1-�]


	1
	n

�m�1 �2 : : :[0][1-�3][0][1-�2]Result: leafs with list of matrix-entries
Figure 3.1: Creation of the tree Tincreases the number of leafs by at most three, suggests a sorting of constraints. To min-imize the number of necessary cuts between the sets we keep the growth of T as smallas possible by �rst applying the logical constraints on T , followed by the unconditionalconstraints and at last the conditional constraints. The multiplicator-line entry Mi foreach column i equals the number of elementary events2 j�ijz.The factor Fi of the column i of a query 'Q(d|c)=: : :' can be calculated by counting thenumber of elementary events for each of the factors [1� �q] and [��q] :Fi = j�i \ (c \ d)j � [1� �q] + j�i \ (c \ :d)j � [��q] (3.3)The worst case complexity of the growth of leafs in T is therefore O(3l) (which alwayshas to be smaller then 2r). Our results show that in 'realistic' databases the growth factoris smaller then O(1:5l).2i.e. full conjunctions.zThe precision is limited due to the internal representation as the C-type oat.



16 tabl { A Tool for probabilistic Constraint Compilation3.2 The 'strong' Indi�erence PrincipleThe equality of columns is a su�cient condition for indi�erence (Â therefore contains onlydi�erent columns). But the demand of the principle of indi�erence is more far-reachingthen this simple equality.We use an algorithm that is able to detect another type of indi�erence in the system ofequations. We call this type of indi�erence 'strong' indi�erence. A detailed descriptionand proof can be found in Appendix D.In short terms, we look for a set of rows �r > 1 and a set of columns �c > 1 within Â forthat we can show, that there always exists an indi�erent3 solution in which the rows of�r are equal4. Analogous to the weak indi�erence, the 'strong' indi�erent columns can bemerged (considering the multiplicator-line).Another requirement for the indi�erence of the rows5 i and j consists in the equality ofthe intervals for �i and �j. If the strong indi�erence between two rows fails due to unequalintervals a warning is displayed. Before applying the strong indi�erence algorithm it isnecessary to 'normalise'6 the matrix Â by changing some of the db-constraints into thedb-constraints of their reverse event, which however does not inuence the content ofinformation in the database.The result of the strong indi�erence algorithm is the �nal output-matrix ~A.If the application of the 'strong' indi�erence is not wished, it can be switched o� by the%noindif-option in the input-�le.3.3 ResultsThe combined two indi�erence principles can lead to an extreme simpli�cation of thesystem of equations. For demonstration we present a result from the PIT-environment:To evaluate the performance of tabl we used the tool in a medical expert-system forperceiving poisons7. The database consisted of 20 variables and 123 constraints. Theoutput-matrix had the size 2125� 40 (reduced from a worst case 1048576� 123 matrixand a weak indi�erent 8353� 70 matrix).The compilation was done in about half a minute (using a Linux Pentium-133 PC).
3meaning indi�erent in the set of columns (respectively the events corresponding to the columns) �c.4so we can reduce �r to one representing constraint in ~A.5respectively constraints.6see footnote in Section 4.2.7see Appendix E.
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Chapter 4Checks, Errors & Warnings
4.1 Consistency ChecksOne task of tabl is to detect inconsistencies in the database. In the following sections, weshortly describe the checks that are performed by tabl. The error- and warning-messagesthat are displayed should help the user to �nd the reason(s) of the detected inconsistencies.For easier understanding we use simple examples that show the idea behind each check.The interesting parts of the input-�les (with line-numbers) and compiler-messages areprinted for each example.4.1.1 Reverse EventsIf the database includes information about an event a, it automatically includes infor-mation about the event :a. For example 'p(a) 2 [0:8; 1:0]' implies 'p(:a) 2 [0:0; 0:2]'. Ifthe database contains the additional information 'p(:a) 2 [0:0; 0:1]' it would change theformer probability-interval of a to 'p(a) = [0:9; 1:0]'. tabl searches for reverse events in thedatabase and adapts their intervals. Afterwards one of the two events is deleted. An erroroccurs if the intersection between the intervals is empty.Example:5 p(a) =(0.8,1.0];6 p(-a)=(0.3,1.0];produces:[WARNING] LINE 5 AND 6 ARE REVERSE EVENTS (NOW EQUAL)[ERROR 1] SEMERROR : CONTRADICTORY CONSTRAINTS,LINE 5 AND 6 ARE EQUAL EVENTS, BUT HAVE DIFFERENT PROBABILITIES4.1.2 Rank ConsequencesThe rank concept makes it possible to assign two or more events exactly the same proba-bility. As a further consequence it may be necessary to merge primary di�erent ranks toa new one.



18 tabl { A Tool for probabilistic Constraint CompilationExample 1:5 p(a) =6 p(b) = (0.5,1];78 p(-a)=9 p(c) = (0.3,1];produces:[WARNING] LINE 5 AND 8 ARE REVERSE EVENTS (NOW EQUAL)[WARNING] LINE 5 AND 8 ARE EQUAL EVENTSSo this output equals the output of the following database:5 p(a)=6 p(b)=7 p(c)=(0.5,0.7];Another aspect is the equality of reverse events, e.g. 'p(a) = p(:a)' leads to 'p(a) =p(:a) := 0:5'.Example 2:5 p(a) =6 p(-a) = [0.5,1.0];78 p(b)=9 p(-b) = 0.3;produces1:[WARNING] LINE 5 AND 6 ARE REVERSE EVENTS WITH p(e)=0.5[WARNING] LINE 5 AND 6 ARE EQUAL EVENTS[ERROR 1] p(e)==p(-e) => p(e)==0.5 IS NOT IN INTERVALLINE 8 AND 9 ARE REVERSE EVENTS WITH p(e)=0.51The error- and warning-messages always use the default event 'e' and 'f' indi�erent from the realvariable-name.



4 Checks, Errors & Warnings 194.1.3 Logical ConstraintsLogical constraints can inuence the probability of other constraints as well. tabl detectsthose inuences that change other constraints into logical constraints.Example 1:5 p(a) = 1.0;6 p(b) = 1.0;7 p(c -|> -a) =[0,0.5);8 p(c -|> a*b)=[0,0.5);produces:[WARNING] LINE 7 HAS PROBABILITY 0[ERROR 1] SEMERROR : p(e) WITH PROBABILITY 1 FOUND, WHERE 1 IS NOT ININTERVALERROR IN LINE : 84.1.4 Unde�ned ConstraintsWe de�ne a conditional constraint as unde�ned if the condition has the probability 0.tabl detects unde�ned constraints in the database and stops with an error. If a conclusionor query is unde�ned, tabl displays a warning. An unde�ned conclusion or query consistsonly of '(0,0)' matrix-entries in the output-�le.Example 1:5 p(a)=1.0;6 p(b | -a)=(0,0.5];produces:[ERROR 1] SEMERROR : p(e-|>f) FOUND, WHERE p(e)=0ERROR IN LINE : 6Example 2:5 p(a)=1.0;67 q(b | -a)=(0,0.5];produces:[WARNING] SEMERROR : p(e-|>f) FOUND, WHERE p(e)=0UNDEFINED QUERY IN LINE 7



20 tabl { A Tool for probabilistic Constraint Compilation4.1.5 Contradictory Constraintstabl also checks for some more sophisticated integrity conditions:Example 1:5 p( a* b) =0;6 p( a*-b) =0;7 p(-a* b) =0;8 p(-a*-b) =0;produces:[MATRIX ERROR] CONTRADICTORY CONSTRAINT NEAR LINE 8Example 2:5 p( a* b) =0;6 p( a*-b) =0;7 p(-a* b) =0;8 p(-a*-b) =[0,0.5];produces:[ERROR 1] SEMERROR : p(e) WITH PROBABILITY 1 FOUND, WHERE 1 IS NOT ININTERVALERROR IN LINE : 8This ability is limited to logical constraints. For example tabl does not detect the followingcontradiction:5 p( a * b)=[0,0.1];6 p( a *-b)=[0,0.1];7 p(-a * b)=[0,0.1];8 p(-a *-b)=[0,0.1];However the PIT-environment is able to detect this contradiction immediately.4.2 Strong Indi�erence WarningsThe strong indi�erence searches for indi�erent columns due to a number of rows givenin the database. An additional precondition for merging two rows i and j by strongindi�erence consists in the equality of the intervals of �i and �j.



4 Checks, Errors & Warnings 21If the strong indi�erence fails due to the inequality2 of the two intervals, tabl displays awarning.Example:5 p( a * b)=(0.3,1.0];6 p( a *-b)=(0.4,1.0];produces this message:LINES 5 AND 6 COULD POSSIBLY BE EQUAL !and this output:2 1 1(1,0) (1,0) (1,0) : 1 0 -1.00000000 -1.00000000 S(0,-1) (0,-1) (1,-1) : 0 1 0.30000000 1.00000000 S(0,-1) (1,-1) (0,-1) : 0 2 0.40000000 1.00000000 SNow we modify the example by adapting the two intervals:5 p( a * b)=(0.3,1.0];6 p( a *-b)=(0.3,1.0];and are getting this output:2 1(1,0) (2,0) : 1 0 -1.00000000 -1.00000000 S(0,-1) (1,-2) : 0 1 0.30000000 1.00000000 SThis adaption allows tabl to merge the two constraints due to strong indi�erence. In manycases such a modi�cation leads to a signi�cant reduction of the system of equations.4.3 Operation Ordertabl performs a number of consistency-checks during the creation of the output-�le. Theorder of these checks is very important for the e�ciency of the compilation. The followingoperations are performed:2The intervals are normalised before comparison. This is necessary because p(a) and p(:a) describethe same event. Therefore the normalisation selects the (unique) representation (either p(a) or p(:a)) foreach db-constraint 'p(a) = �i' in which the upper interval-border of �i has the bigger value.
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check for logical constraints

check for undefined constraints

check for consistency

Yes

No

new logical constraints ?

check conclusion and questions

apply the strong indifference

~A

Â

Figure 4.1: Operation order� check for logical constraintsSearches for rows i that imply logical constraints3. If a logical constraint is found andits probability 0 (respectively 1) lies in the probability-interval of �i the necessarycolumns and the row i are removed from the system of equations4.Worst case complexity of this check: O(n̂ � l̂)x.� check for unde�ned constraintsSearches for unde�ned constraints (p(b j a) with p(a) = 0) in the current system ofequations and in the removed (logical) constraints. For logical constraints we checkif there exists at least one event (i.e. full conjunction) within the condition a thatdoes not have probability 0z. For all rows of the matrix we just have to verify thatthere exists at least one column that does not have a '(0,0)' entry.Worst case complexity: O(n̂ � l̂).3i.e. all rows i whose columns j contain either only 'ki;j�(0,1)' entries (probability 0) or only'ki;j�(1,-1)' entries (probability 1), ki;j 2 N+0 .4Naturally this also happens to rows that have equal rank.xThe dimension of the matrix Â is: width n̂ � 2r and height l̂ � l.zThis operation uses the internal BDD-representation.



4 Checks, Errors & Warnings 23� check for consistencyChecks for equal5 (respectively reverse6) events in the matrix. If such an equality isfound, tabl adapts the probability-intervals and ranks. All but one of the equal rowsare removed from the system of equations.Worst case complexity: O(n̂ � l̂2).� apply the strong indi�erence7Worst case complexity: O(n̂2 � l̂2).The most expensive operation is the calculation of the strong indi�erence matrix. To makethe input for this algorithm as small as possible, all other operations (which can reducethe system of equations) are performed before.The consistency check as well as the strong indi�erence algorithm produces a matrix~A0 that could contain new logical constraints. These logical constraints again cause areduction of columns and rows within ~A0 which eventually leads to new strong indi�erentcolumns.Therefore it is necessary to repeat this cycle of operations until ~A0 contains no more logicalconstraints.Example: ('b4.tabl'8)1 %verbose2 %b4.dat34 var qu,re,pa,po,ha;56 p(pa -|> -ha) = 1;7 p(qu -|> pa ) = (0.5,1];8 p(re -|> ha ) = (0.5,1];9 p(pa -|> po ) = (0.5,1];10 p(ha -|> po ) = (0.5,1];1112 q(qu*-re -|> pa) = (0.5,1];13 .5The two rows of the matrix simply have to be identical.6The representation of the reverse event of a row can easily be calculated and then compared with allother rows of the matrix.7see Appendix D.8taken from [Greiner & Schramm, 1994].



24 tabl { A Tool for probabilistic Constraint CompilationWhen compiled with the verbose9 option 'tabl -v b4.tabl', these messages are displayed:
WELCOME TO THIS VERSION V2.17 05.12.96INTERNAL31WORKING...CALCULATED TREE HEIGHT: 4CALCULATING BDD-TREEWORKING ON LINE : 6 TREE-WIDTH: 1WORKING ON LINE : 7 TREE-WIDTH: 1WORKING ON LINE : 8 TREE-WIDTH: 3WORKING ON LINE : 9 TREE-WIDTH: 8WORKING ON LINE : 10 TREE-WIDTH: 14EXIT TREE-WIDTH: 20WORKING ON INTEGER-MATRIXWORKING ON QUESTIONSWORKING ON INDIFFERENCECHECKING MATRIXNORMALISATIONCHECKING INTERVALSCHECKING RECURSIVECOLUMNS REDUCED FROM 20 TO 11CHECKING CONCLUSION AND QUESTIONSWORKING ON OUTPUTTASK COMPLETED AND WROTE INTO b4.datC U
9'tabl -v' prints the current status during compilation.



4 Checks, Errors & Warnings 25And the �le 'b4.dat' with this content is created:
# CREATED 5.12 AT 18:28 (MET)# NUMBER OF: COLUMNS ROWS KOMPLEX GRID SQP-POINT SQP-INT QUERIES11 3 0 0 1 2 1# EPS: 0.00000000# ORDER: DB-CONSTRAINT ':' SUM,RANK,LOWER-BOUND,UPPER-BOUND,TYPE {NUMBER}# MATRIX-ELEMENTS : (n,m) = n*1 + m*delta_i# L_CONSTRAINTS FROM INPUT-LINE-NUMBERS : 6# MULTIPLICATOR LINE:2 1 1 1 1 1 1 1 2 1 1# NORMALISATION CONSTRAINT:(1,0) (2,0) (2,0) (4,0) (2,0) (2,0) (2,0) (2,0) (1,0) (2,0) (2,0): 1 0 -1.00000000 -1.00000000 S# RESULT FROM INPUT-LINE-NUMBER 7 :(0,0) (0,0) (0,0) (0,-2) (0,-1) (0,-1) (1,-1) (1,-1) (0,-1) (1,-2) (1,-2): 0 1 0.50000000 1.00000000 S# RESULT FROM INPUT-LINE-NUMBER 9 :(0,0) (0,-1) (1,-1) (0,0) (0,-1) (1,-1) (0,-1) (1,-1) (0,0) (0,-1) (1,-1): 0 2 0.50000000 1.00000000 S# QUERY FROM INPUT-LINE-NUMBER: 12(0,0) (0,0) (0,0) (0,-2) (0,-1) (0,-1) (1,-1) (1,-1) (0,0) (0,0) (0,0): 0 -1 0.50000000 1.00000000 Q
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Appendix AInput & Output Format
The syntax is described in EBNF-like notation:[ ]� means 'as many as you want'.[ ]+ means 'at least once'.[ ]i means 'repeat i times'.[ ] means 'optional'.f g is used for grouping.'c' means 'character(s) c is(are) expected'.comment means 'verbal (not formalised) comment'.A.1 Input FormatThe well formed tabl input is de�ned as :TABL INPUT ::= [ OPTION ]�VAR DEF[ CONSTRAINT ]+[ CONCLUSION ] [ QUERY ]� '.'OPTION ::= '%verbose' j '%noindif' j'%eps' '=' P NUMBER j '%output-�lename'VAR DEF ::= 'var' VARNAME [ ',' VARNAME ]� ';'VARNAME ::= letter [ letter j digit ]�CONSTRAINT ::= [ P EXPR ]+ [ I TYPE ] RESULT ';'P EXPR ::= f 'P' j 'p' g '(' FORMULA ')' '='FORMULA ::= any well formed 'formula' containing:variables () - + * -> | -|>I TYPE ::= f 'K' j 'k' g j f 'G' j 'g' g '(' N NUMBER ')'N NUMBER ::= [ '0'j'1'j'2'j'3'j'4'j'5'j'6'j'7'j'8'j'9'j'8'j'9' ]+RESULT ::= INTERVAL j P NUMBERINTERVAL ::= f '[' j '(' g P NUMBER ',' P NUMBER f ')' j ']' gP NUMBER ::= f '0' j '1' g j [ '0.' [ '0'j'1'j. . . j'9' ]+ ]



28 tabl { A Tool for probabilistic Constraint CompilationCONCLUSION ::= f 'C' j 'c' g '(' FORMULA ')' ['=' RESULT] ';'QUERY ::= f 'Q' j 'q' g '(' FORMULA ')' ['=' RESULT] ';'COMMENTS ::= '#' comment-text proceeds until '\n'Additionally the following semantics have to be kept in mind:FORMULA respects the natural order of '- * + -> | -|>'. '|' or '-|>' can only be usedonce per FORMULA. The output-�lename can be any Unix-�lename that contains nospecial characters (like %$?&) and no spaces. Each option is allowed only once. A maximumof 69 variables is allowed. The name of a variable can have up to 32 characters and cannotcontain any special characters. Comments are allowed everywhere in the input.A.2 Output FormatThe general output syntax of tabl without the '%verbose'-option is:TABL OUTPUT ::= ':E' jINFOMULT LINE[ MATRIX LINE ]N ROWS[ CONCLUSION ][ QUERY ]N QUERIESINFO ::= N COLUMNS N ROWS N KOM N GRIDN SQP P N SQP N QUERIESN COLUMNS ::= column size of ÂN ROWS ::= row size of ÂN KOM ::= number of komplex-constraintsN GRID ::= number of grid-constraints (not yet needed)N SQP P ::= number of sqp-point-constraintsN SQP I ::= number of sqp-interval-constraintsN QUERIES ::= number of queriesMULT LINE ::= [ N NUMBER ]N COLUMNSMATRIX LINE ::= LINE N INTERVAL RANK f 'S' j 'K' j f 'I' N NUMBER g gCONCLUSION ::= LINE T INTERVAL 'C'QUERY ::= LINE T INTERVAL 'Q'LINE ::= [ '(' N NUMBER ',' ['+'j'�'] N NUMBER ')' ]N COLUMNS':' z iz i ::= '1' for the normalisation constraint, else '0'N INTERVAL ::= P NUMBER P NUMBERT INTERVAL ::= N INTERVAL j f '-1.0'['0']� '-1.0'['0']� g



A Input & Output Format 29RANK ::= N NUMBERN NUMBER ::= [ '0'j'1'j'2'j'3'j'4'j'5'j'6'j'7'j'8'j'9'j'8'j'9' ]+P NUMBER ::= f'0'j'1'g j f '0.' [ '0'j'1'j. . . j'9' ]+ gCOMMENTS ::= '#' comment-text proceeds until '\n'The only output ':E' indicates that 'an error has occurred'. The INFO-line speci�es thesize of the following output-text. In LINE the expression '(n,m)' represents the matrixelement 'n � 1 + m � �i'. The matrix ~A is ordered by �rst komplex-constraints followed byall sqp-point-constraints and at last all sqp-interval-constraints1. The interval-borders ofthe normalisation constraint are set to '-1.0'. The interval of all queries or the conclusionthat have no RESULT are set to the interval [0:0; 1:0]. If the %verbose-option is speci�edin the input-�le every output line has a comment. Therefore further programs can ignoreall lines beginning with '#' or consisting of '\n'.

1see Section 2.5.
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Appendix BErrors & WarningsWhenever an error occurs the compilation of the input �le cannot be completed. Warningsare used to inform the user about any irregularities or compiler-caused changes in thedatabase.If possible the line number at which the error or warning has (probably) occurred isprinted.B.1 ErrorsB.1.1 Syntax Errors� general syntax-errorIf no well-formed1 input �le is given the compiler stops with:PARSER-ERROR LINE line parse errorHint: The absence of the '.' token at the end of the input-�le also causes this error.� output-�lenameIf the output-�lename is declared twice in the input �le the compiler stops with:OUTPUT-FILE ALREADY DECLARED : filename� variable-declarationIf used variables are declared twice or not declared at all or miss-spelled, the compilerstops with:VARIABLE ALREADY DECLARED : variableVARIABLE NOT DECLARED : variable� interval-bordersIf a given probability is no valid subinterval of [0; 1] the compiler stops with:INTERVAL : LOWER BOUND > UPPER BOUNDINTERVAL : LOWER BOUND < 0INTERVAL : UPPER BOUND > 1PROBABILITY OUT OF LIMITS1see Appendix A.1.



B Errors & Warnings 31Please remember the inuence of the %eps-option which changes open interval bor-ders.B.1.2 Semantic ErrorsSemantic errors are mostly caused by contradictory information in the database. A de-tailed description of some semantic errors can be found in Section 4.1. If a semantic erroroccurs, the output-�le consists only of the token ':E'.� contradictory constraintsCONTRADICTORY CONSTRAINTSCONTRADICTORY CONSTRAINTS NEAR LINE line 1CONTRADICTORY CONSTRAINTS, LINE line 1 AND line 2 ARE EQUAL EVENTSBUT HAVE DIFFERENT PROBABILITIES� rank consequences2p(e)==p(-e) -|> p(e)==0.5 IS NOT IN INTERVAL, LINE line 1 AND line 2 AREREVERSE EVENTS WITH p(e)=0.5p(e) WITH PROBABILITY 0/1 FOUND, WHERE 0/1 IS NOT IN INTERVAL� unde�ned probabilitiesp(e-|>f) FOUND, WHERE p(e)=0B.2 Warnings� new logical constraintsLINE line HAS PROBABILITY 0/1� rank consequencesLINE line 1 AND line 2 ARE EQUAL EVENTSLINE line 1 AND line 2 ARE REVERSE EVENTS WITH p(e)=0.5LINE line 1 AND line 2 ARE REVERSE EVENTS (NOW EQUAL)� conclusion and queriesCONCLUSION HAS PROBABILITY 0/1UNDEFINED CONCLUSIONQUERY IN LINE line HAS PROBABILITY 0/1UNDEFINED QUERY IN LINE line� 'strong' indi�erence3LINES line 1 AND line 2 COULD POSSIBLY BE EQUAL !2The error- and warning-messages always use the default event 'e' and 'f' indi�erent from the realvariable-name.3see Appendix D.



32 tabl { A Tool for probabilistic Constraint Compilation
Appendix CSoftware-Installation
C.1 Generaltabl should run on all Unix systems that support the GNU C/C++ compiler version 2.6.3or higher. In fact the program should run with every C/C++ compiler that supportstemplates (precon�gured however is the GNU-Compiler).Already tested platforms are:� Linux 1.2.13, gcc 2.6.3� Linux 2.0.11, gcc 2.7.2� SUN Solaris 5.4 & 5.5, gcc 2.7.2C.2 Additional Software Neededtabl relies on this additional software-packages:� LEDA-R-3.3.c (not included)is a software package (free for academic research and teaching) consisting of usefuldatatypes and algorithms.Available under: ftp.mpi-sb.mpg.de /pub/LEDA� BDD library (included)is a software package for Binary Decision Diagrams written by David E. Long, email:long@research.att.com .� lex and yacc (not included)This two programs (or compatible software) should be available on every Unix sys-tem.



C Software-Installation 33C.3 Getting Started1. Check if LEDA is installed on your system.2. Go to the tabl main directory.3. Check the user de�ned entries in the �le work/Make�le.4. Type make.C.4 Installationtabl consists mainly of four di�erent programs:tabl bdd an Unix-�lter (for up to 31 variables)tabl bdd int an Unix-�lter (for up to 69 variables)tabl a shell script for using the �lters.tabl count counts variables in a input-�le.The easiest way is to copy or link this four programs in your local or system bin-directory(f.e. ln -s tabl ~/bin).The second possibility is to set the TABL PATH environment variable to the tabl-sourcedirectory (f.e. 'export TABL PATH=~/src/tabl' for the korn-shell).C.5 Commands� tabl [ -v | -h ] input-�le [output-�le]compiles the input-�le and writes the result in a �le named output-�le (if no'%file-name' option is given in the input-�le). Options: '-v' switches on the ver-bose mode and '-h' prints a small help-�le.� tabl bdd [ -v | -h ] < input-�le > output-�lecan be used as a �lter that reads its input from stdin and writes the output tostdout. It uses a fast integer type and can handle up to 31 variables.� tabl bdd int [ -v | -h ] < input-�le > output-�leanalogous to tabl bdd, but can handle up to 69 variables.� tabl count input-�lereturns the number of variables in the input-�le.
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Appendix DThe 'strong' Indi�erence Algorithm
D.1 ProofWe will now1. introduce a special partition on the columns and rows of the matrix Â. With thehelp of this partition we de�ne the principle of strong indi�erence. The applicationof this principle leads us a new system of equations (D.1).~A � ~p = ~z (D.1)2. show the consistency of the system (D.1) by explicitly constructing a solution ~p fromany solution p̂ of the old system of equations.

P1;1
P3;1

P1;2
P3;3
P1;3

P3;2P2;1 P2;2 P2;3�y (x11;1; x21;1) (x11;2; x21;2) (x11;3; x21;3)(y11;1; y21;1) (y11;2; y21;2) (y11;3; y21;3)(x12;1; x22;1) (x12;2; x22;2) (x12;3; x22;3)(y12;1; y22;1) (y12;2; y22;2) (y12;3; y22;3)(x13;1; x23;1) (x13;2; x23;2) (x13;3; x23;3)(y13;1; y23;1) (y13;2; y23;2) (y13;3; y23;3)
�1y�2y�3y

�1x �3x�2x�x

Figure D.1: Example for a 3� 3 partition of Â (sorted by partitions into sub-matrices Pi;j).ad 1:Starting with the system of equations Â � p̂ = ẑ (D.2)(leaving out the normalisation constraint and remembering the multiplicator-line) we lookfor a partition �x into sets of columns and a partition �y into sets of of rows having thefollowing properties (see Figure D.1):



D The 'strong' Indi�erence Algorithm 35� For each set of columns �x 2 �x and each set of rows �y 2 �y holds:(x1�x;�y ; x2�x;�y) := Xj2�y Â(j; i) is identical for all i 2 �x (D.3)(y1�x;�y ; y2�x;�y) := Xi2�x Â(j; i) is identical for all j 2 �y (D.4)� The number of sets in the partitions �x and �y is minimal, respectively the numberof columns in each set of a partition �x 2 �x and the number of rows in each set ofa partition �y 2 �y is maximal.Now we consider the system of equations Â � p̂0 = ẑ which originates if we set the probabil-ities of the events !i within each set �x 2 �x equal (meaning p̂0(!̂i) := p�x for all i 2 �xz).We get a new (equivalent) system of equations (D.5) from this system by merging1 equalcolumns (i.e. the columns within each set �x 2 �x). The resulting rows within each set ofrows �y 2 �y have to be identical, so we can con�ne us to one representation per partition�y.The system of equations of the example in Figure D.1 is therefore:~A � ~p = 0B@ x11;1 � x21;1�1 x11;2 � x21;2�1 x11;3 � x21;3�1x12;1 � x22;1�2 x12;2 � x22;2�2 x12;3 � x22;3�2x13;1 � x23;1�3 x13;2 � x23;2�3 x13;3 � x23;3�3 1CA0B@ p�1p�2p�3 1CA = 0B@ 000 1CA (D.5)We can see immediately that each solution of (D.5) ful�ls (D.2).ad 2:By the demand of the principle of indi�erence indi�erent events have the same probability.Therefore we construct for each solution p̂0 of (D.2) a new solution p̂00 of (D.2) in which thecolumns i (respectively the corresponding events !i) of each set �x 2 �x are consideredindi�erent: p̂00(!̂i) := j�xj�1 Xk2�x p̂0(!̂k)for all i 2 �xx (D.6)Now we have to show that for each p̂00 (and for each ~p0 which represents the solution p̂00in (D.5)2 ) holds:� ~A � ~p0 = ~z (The strong indi�erent (merged) P-Model ~p0 is a solution of the strongindi�erent equation-system ~A � ~p = ~z).� Â � p̂00 = ẑ (The strong indi�erent P-Model p̂00 is a solution of the weak indi�erentequation-system Â � p̂ = ẑ). This has to be true due to ad 1.zp̂0(!̂i) denotes the i-th element of p̂i.1Analogous to the 'merging' of Section 1.4.4, we have to add the corresponding columns.xThis assignment also equals the MaxEnt-distribution within �x.2see Figure D.2.
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’weak’ indifferent P-Models

’strong’ indifferent P-Models

p̂0 p̂00 �= ~p0
Figure D.2: Construction ~p0 from p̂0.To simplify the proof, we regard only the �rst set of the example in Figure D.1 (consistingof the sub-matrices P1;1, P1;2 and P1;3).If we add all rows of the partition �1y we get a new constraint that is valid for all P-Modelsp̂: Pk2�1x(y11;1; y21;1) � p̂(!k) + : : :+Pk2�3x(y11;3; y21;3) � p̂(!k) = 0, (y11;1; y21;1) � j�1xj � 1j�1xj Pk2�1x p̂(!k) + : : :+ (y11;3; y21;3) � j�3xj � 1j�3xj Pk2�3x p̂(!k) = 0, (y11;1; y21;1) � j�1xj � p̂0(!̂�1x) + : : :+ (y11;3; y21;3) � j�3xj � p̂0(!̂�3x) = 0, (x11;1; x21;1) � j�1yj � p̂0(!̂�1x) + : : :+ (x11;3; x21;3) � j�1yj � p̂0(!̂�3x) = 0, (x11;1; x21;1) � p̂0(!̂�1x) + : : :+ (x11;3; x21;3) � p̂0(!̂�3x) = 0So we have proofed that the strong indi�erent solution p̂00 (respectively ~p0) ful�ls (D.5)and likewise (D.2).From now on we can con�ne us to the strong indi�erent P-Models represented by thesolutions of (D.5) because we know that for each P-Model p̂0 of (D.2) we can constructanother P-Model p̂00 that ful�ls the demand of the principle of indi�erence better and isa P-Model of (D.5).q.e.d.



D The 'strong' Indi�erence Algorithm 37D.2 Remarks
’weak’ indifferent P-Models

’permutation’ indifferent P-Models

MaxEnt P-Model

’strong’ indifferent P-Models

all P-Models, that fulfill the db-constraints

Figure D.3: Hierarchy of possible P-ModelsThe strong indi�erence algorithm includes the weaker condition that any permutation ofrows followed by a permutation of columns that leaves the matrix unchanged is su�cientfor indi�erence ('permutation'3 indi�erence) of the set of permutated rows and columns(without proof).Figure D.3 shows the hierarchy of the possible P-Models along the diminishing of thesystem of equations.

3see [Greiner & Schramm, 1995].
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Appendix EA Medical Expert-System Database(excerpt)
The physician determinated the probability of about 100 rules by using 7 qualitativesteps (from 'almost never' up to 'almost always'). From this statements, the following �lewas generated. The questions are e.g. whether a patient with a number of symptoms isintoxicated with the poison 'adt' or with 'carbamate'. Symptoms with 3 possible valuesare mapped onto the combinations of two two-valued variables, where the 4th value isknown to be zero.% database.datvar FC1, FC2, PAS1, PAS2, QRSIsnormal, QTIsnormal, ROTIsbrisk,adt, alc, bar, ben, car, patientIscalm, pupils1, pupils2,regardIsnormal, temp1, temp2, tonusIshypertonia, urineIsyes, phe;#adjusting 3 valued variablesp( -temp1 * -temp2 ) = 0;: : : (more rules follow here)# specific RulesP(tonusIshypertonia * -ROTIsbrisk * PAS1 * PAS2 -|> adt) = [0.65, 1];: : : (more rules follow here)# Rules under the condition of only adtp( adt*-alc*-bar*-ben*-car*-phe -|> tonusIshypertonia ) = [0.75, 1.0];p( adt*-alc*-bar*-ben*-car*-phe -|> urineIsyes ) = [0.75, 1.0];: : : (more rules follow here)# Rules under the condition of only carbamatep( -adt*-alc*-bar*-ben*car*-phe -|> patientIscalm ) = [0.95, 1.0];p( -adt*-alc*-bar*-ben*car*-phe -|> -ROTIsbrisk) = [0.75, 1.0];: : : (more rules follow here)



E A Medical Expert-System Database (excerpt) 39# Queries# Is the patient with the given symptoms intoxicated with adt ?q( temp1 * temp2 * patientIscalm * pupils1 * pupils2 * -tonusIshypertonia *-ROTIsbrisk * PAS1 * -PAS2 * FC1 * -FC2 * QRSIsnormal * -QTIsnormal *urineIsyes -|> adt) ;# Is the patient with the given symptoms intoxicated with carbamate ?q( temp1 * temp2 * patientIscalm * pupils1 * -pupils2 * -tonusIshypertonia *ROTIsbrisk * -PAS1 * PAS2 * FC1 * -FC2 * QRSIsnormal * QTIsnormal *urineIsyes -|> car) ;.


