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Abstract

Automated Theorem Proving can be interpreted as the solution of
search problems which comprise huge search spaces. Parallelization of the
proof task as well as cooperation between the involved provers offer the
possibility to develop more efficient search procedures. In this paper we
want to investigate concepts for the development of cooperative paral-
lel theorem provers. We deal with architectural questions as well as with
possibilities of how to realize cooperation. Particularly, we discuss require-
ments on an efficient load distribution mechanism for cooperative parallel
theorem provers. As a result of this discussion we develop the model of the
new prover CPTHEQ. This prover allows for a dynamic load distribution
that fulfills the requirements introduced before. Furthermore, the cooper-
ation possibilities of CPTHEO offer the potential for reaching superlinear
speed-ups.

1 Introduction

Up to now, the sequential Automated Theorem Proving (ATP) has set a very
powerful standard. But when dealing with more difficult problems ATP systems
are still inferior to a skilled human mathematician. Thus, methods to increase
the performance of existing ATP systems are, besides the development of new
proof calculi, a focus of interest in the ATP area. One important technique to



increase performance is to employ parallelism on parallel hardware or networks
of workstations. Possible parallelization concepts vary from the parallel use of
different configurations of the employed provers, to the partitioning of the proof
task into subtasks that are tackled in parallel. Moreover, one can expect further
improvements by interactions between the different parallel provers (cooperation),
e.g. by exchanging intermediate results.

In this article we want to analyze the requirements for automatic load distribu-
tion for parallel theorem proving. The article is a contribution to the discussion
on the possibilities of cooperation of ATP’s, especially concerning questions of
load distribution. A generic approach to cooperative concepts is presented. The
costs needed for implementation and runtime, especially for communication, are
estimated. Furthermore, an existing parallel prover, SPTHEQO, and a new coop-
erative prover based on SPTHEO, CPTHFEQ, are introduced.

Developers of theorem provers are often more logicians than experts on parallel
hardware. Therefore, function libraries are needed for the communication between
two or more processes. Tools to achieve an optimally balanced load distribution
should be as transparent as possible.

We assume the existence of a widely used interface for parallel applications, e.g.
the Parallel Virtual Machine (PVM) [GBD194]. It makes the access to network
or parallel hardware fully transparent to the user. Unfortunately, broadcasting
messages to a group of processes in PVM is simulated only by single sequen-
tial transmissions resulting in a decrease in performance. Another as yet non-
implemented function is the possibility to estimate the expected performance of
the involved processors to spawn new processes to convenient machines. The fol-
lowing sections will consider which aspects have to be dealt within this context
by an automated load distribution tool. Making migration of the processes to
other processors possible can use the potential of the processors better than the
performance snapshots before the spawn. A better load distribution can thus be
achieved. As we shall explain later, there is, in general, an unsolvable difficulty
in estimating which resources are needed for a particular prover in the context of
a parallel proof system.

In the following, a short introduction to parallel theorem proving is given. Section
2 contains a classification of aspects to be considered when constructing cooper-
ative provers. Section 3 describes the SPTHFEQO prover and introduces the model
of a new cooperative prover CPTHEQO which is based on SPTHEQO. We conclude
with some conclusions and an outlook at possible future work.



1.1 What is Automated Theorem Proving (ATP)?
1.1.1 General Remarks.

Theorem proving deals with the search of proofs of certain conjectures from a
given theory. Both conjecture and theory are formulated in some language L.
An frequently used language is e.g. the First Order Predicate Logic (PL1). PL1
can be used to formulate many mathematical problems as well as problems taken
from the real life. Unfortunately, PL1 is undecidable in general (Church, 1936).
One can show that the set of theorems of a given theory is recursive enumerable.
Specifically, there exist proof procedures able to recognize each valid formula of a
given theory after a finite amount of time. Thus, at least semi-decision algorithms
can be constructed although the problem of deciding the validity of a formula is,
in general, undecidable.

In the past, a lot of different logic calculi have been developed and implemented.
Important properties of such calculi are soundness and completeness. Soundness
of a calculus means that it does not give incorrect answers and announce a formula
as valid although it is not. Completeness means that the calculus has the potential
to prove every valid formula.

Basically, proof calculi (or automated theorem proving systems based on such
calculi) can be divided into two different classes. On the one hand there are
synthetic calculi that work in a bottom-up manner, on the other hand one can
employ analytic calculi that work top-down. Analytic calculi attempt to recur-
sively break down and transform a goal into sub-goals that can finally be proven
immediately with the axioms (goal-oriented provers). Synthetic calculi go the
other way by continuously producing logic consequences of the given theory until
a fact describing the goal is deduced (saturating provers). For further information
on these issue we refer to [Bib82].

Note that the problem of proving the validity of a given conjecture by using a cer-
tain calculus can be interpreted as a search problem. A proof calculus is a search
calculus that is represented by a transition system consisting of a set of allowed
states, a set of rules for changing states, and a termination test for identifying fi-
nal states. Basically, search calculi are divided into two classes: Irrevocable search
calculi and tentative search calculi. Using irrevocable calculi, an application of a
search step never needs to be undone in order to reach a final state. Tentative
search calculi require provision for the case that a sequence of search steps does
not reach a final state. Usually backtracking is needed in order to try a solution
with each alternative search step that can be applied within a search state.

Independent from the search calculus to be applied, the general problem of ATP is
that the search spaces one has to deal with when searching for a given conjecture
are tremendous. Thus, the development of more efficient methods to reduce and



examine the search space is one of the aims of the automated theorem proving
community.

1.1.2 Model Elimination.

As a concrete proof procedure we want to mention the Model Elimination calculus
(ME). This calculus can be interpreted as an analytic calculus. Furthermore,
backtracking is usually needed in order to prove a theorem. In this paper we
only want to recall some basic concepts. An introduction to ME can be found
in [Lov78]. Within this paper, tableau style representation of MFE proofs is used.
ME deals with clauses, so we cope with a set of universally quantified clauses as
OR-connected lists of literals.

A clausal tableau is a tree with nodes labeled with literals. To simplify the fol-
lowing, it is assumed that we want to prove the validity of a literal under a given
set, of clauses. Thus, the initial tableau consists of the negation of the literal to
be proved. Of course, more complex formulae can be treated. The tableau can be
expanded by appending instances of the literals of a clause to a leaf of the tableau
tree as new leaves. A branch of the tree is closed if it contains complementary
literals. A substitution on the whole tree may be required to make the literals
complementary.

In ME, after an expansion of the tree, one of the newly created leaves must be
closed against its immediate ancestor. Additional closing of other branches after
an expansion is called reduction. Without loss of generality we can assume that
one of the nodes closing a branch is a leaf. A tableau is a proof if all its branches
are closed.

In order to prove a given literal it is necessary to systematically construct all
possible tableaux. Since a lot of different expansion and reduction steps are usu-
ally applicable to any given tableau one has to search for a proof in a search tree
whose nodes are marked with (different) tableaux. A node in this search tree that
represents an open tableau is also called a proof task.

1.2 Developing Parallel Provers
1.2.1 Fundamentals.

There are powerful sequential automated theorem provers in the theorem prover
community. As examples, we give here the (incomplete) list DISCOUNT [ADF95],
OTTER [McC90] and SETHEO [LSBB92] which belong to the most popular au-
tomated theorem provers. But when dealing with “hard problems” these provers



are inferior to a skilled human mathematician because of the tremendous search
spaces the provers have to deal with.

The performance of sequential provers, however, can often be significantly in-
creased by developing parallel versions of them. The following table classifies
examples of existing parallel provers according to the criteria given below.

non-cooperative cooperative
partitioning PARTHEO [LS90] PARROT [JOK92]
completeness based | METEOR [Ast92] ROO [LMS91]
SPTHEO [Sut95] DARES [CMM90]
partitioning MGTP/G [FHKF92]
soundness based SPTHEO [Sut95]
competitive HDPS [Sut92]
different calculi
competitive RCTHEO [Phi92] DISCOUNT [ADF95]
unique calculus SICOTHEO [Sch95]

Parallel theorem provers can be cooperative or non-cooperative, depending on their
behavior in information exchange. C'ooperative systems exchange information dur-
ing a proof run and not only in the phases of their initialization and termination.
The paper deals especially with the possibilities of designing provers of this kind
(cf. the following sections).

Theorem provers can partition their work, for instance by splitting the whole task
into a set of subtasks, or by partitioning the considered search space. Partitioning
systems can be classified analogously to the usual classification of parallel algo-
rithms into OR and AND parallel algorithms: Completeness based systems create
completely independent subtasks when partitioning the search space, i.e. the so-
lution of one single problem means the solution of the whole problem. Soundness
based systems require the combination of the solutions of the subtasks to a com-
mon solution. These two strategies can be combined, so that sub-provers can deal
with independent and dependent subproblems. Partitioning systems usually use
instances of the same inference machine, because the partitioning of the search
space is difficult for different logic calculi or even for different variants of the same
calculus.

Competitive systems are proof systems where each system works on the whole
proof task but differ in the way how the involved provers are parameterized.
Even the use of different logics in parallel is possible. In constructing competitive
systems, it seems to be useful to encourage different calculi; advantages of some
of them can balance disadvantages of others. This strategy assumes that for each
involved provers there exists a class of tasks which have a higher performance
than all other provers included in the common system.

Developing parallel provers is sensible since the parallelization of a proof system
yields the potential to achieve speedups compared with the original system, re-
gardless of the method of parallelism that is applied. Partitioning the search space



offers the possibility to reduce the amount of time spent exploring unnecessary
parts of the search space. This is because of the chance that at least one of the
involved provers immediately starts exploring an “interesting” part of the search
space (assuming that the search space is completely assigned to the different
provers). Competitive systems can result in super-linear speedups because one
has a higher probability to use a search strategy that is well suited for the given
problem. Since usually a lot of different configurations of a prover are imaginable
and no a priori knowledge is available to decide which configuration is well suited
for a specific problem it is reasonable to use different configurations in parallel.

The highest gains in efficiency, however, can be expected when using coopera-
tive systems due to the expected synergetic effects. Thus, the development of
cooperative systems is a main research area when dealing with parallel theorem
provers.

It is known, that on relatively easy problems, parallel provers require a higher
amount of time than a similar sequential prover due to the enlarged overhead
the parallel system needs to launch the program. Furthermore, communication
overhead occurs that additionally decreases the inference rate of the involved
provers. But these disadvantages will be compensated when dealing with really
hard problems if synergetic effects occur.

So it should be the aim of parallel provers to obtain profits in those domains
where existing sequential or non-cooperative parallel systems do not find any
proof, or where they do find one, only in a comparatively long time. During the
development of the parallel version of SETHEQO which deals with partitioning
of the search space (SPTHEO [Sut95]), a comparison with the results of the
sequential version was performed using a runtime of 1000 seconds. Problems of
this complexity seem to be convenient examples to test the performance of parallel
provers.

1.3 Cooperation — reasons and a definition

Sequential search procedures often employ a large set of heuristics and refine-
ments of the underlying calculus to prevent unnecessary search, e.g. to avoid
redundant search steps. If the search is shared among different processes, it may
be useful to exchange information on such redundancies, as well as on important
intermediate results. Basically, there are two methods to exchange data between
theorem provers: demand driven (as realized in the DARES system) and success
driven (as realized in DISCOUNT). Demand driven cooperation means that a
prover is interested in certain information and asks the other provers for it. Suc-
cess driven cooperation means that a prover communicates information it judges
to be important to the other provers. As we can see in the table below, the un-



limited exchange of information usually is not sensible due to the tremendous
amount of information that is generated during the search.

The table shows two examples from the TPTP [SSY94]. It contains the num-
ber of smaller proof tasks to which the original task can be simplified after level
inferences of a ME based prover. It also shows the number of possibly gener-
ated messages (when asking for solved tasks of another prover). Altogether, one
observes the importance of restricting and filtering information to be exchanged.

example level original sort|uniq (percent) subsumption (percent)
BOO003-1 7 272 83 72
8 1006 61 36
PRV007-1 5 145 84 79
6 826 70 55
7 5677 65 51

In this article we want to employ the following definition of cooperation:

Definition. An automated theorem prover is cooperative, if and only if it offers
on request immediately all its data and results to other provers. Immediately
means that the prover utilizes the available bandwidth of the communication
channels and handles the request with a higher priority than its own proof at-
tempt. o

2 Cooperative Theorem Proving

We discuss a classification of the problems that are to be solved when constructing
a cooperative parallel theorem prover with some remarks on communication and
load distribution needs. The aspects to be considered can be divided into two
parts.

e How can cooperating provers work together, i.e. which topics concerning
the system architecture have to be considered?

e What can they do to work together, i.e. which kinds of cooperation can
occur?

2.1 System Architecture

The problems to be considered in relation to the first question, i.e. the system
architecture, can be classified as follows.



e Are the involved inference machines of the same type? Are different types
of inference machines used, i.e. is the parallel system homogeneous or het-
erogeneous?

e [s the exchange of information planned in such a way that messages must be
confirmed by the receiver or not? Shall the processes wait for some events or
not? These questions lead to the decision on a synchronous or asynchronous
mode of information exchange.

e Which scheme of process control and control on the progress of the proof
shall be selected, i.e. which hierarchical structures of sub-provers occur?

e Proof procedures can be saturating (deduce all valid formulae until the proof
goal occurs) or goal oriented (reduce the proof task until all subtasks can be
solved using known - given - formulae). It is possible to construct a system
with only goal oriented, only saturating, or with hybrid proof processes.

2.1.1 Homogeneous and Heterogeneous Systems.

Parallel provers developed up to now ordinarily use (with minor changes) the
implementation of the inference machine of a sequential prover. These sub-provers
are united by partitioning the search tree in a completeness or soundness based
manner as previously described, or they can use different search strategies in their
different instances.

Due to the use of the same inference machine and an equal coding of formulae and
control parameters, the expected additional costs for the implementation of an
information exchange in such homogeneous systems are relatively low. Moreover,
we can assume that heuristics estimating the needed resources for a proof task
(a process, in terms of load distribution) can be found much easier than in the
heterogeneous case.

Homogeneous systems do not necessarily require the same search procedure for
all involved provers. For example, the connection of SETHEO [LSBB92] with
the DELTA Iterator [Sch94], which are based on the same inference machine,
combines the top-down search with the bottom-up one. The top-down prover can
integrate lemmata of the bottom-up prover in its proof tree. That kind of co-
operation was tested successfully in the sequential case. Homogeneous systems
allow an easy way to partition the search space of the involved systems by con-
trol parameters for the provers and startup configurations containing different
pre-calculated proof segments.

So we can classify homogeneous systems into



e systems using the same inference machine with the same search procedure
and

e systems using the same inference machine with different search procedures.

Because of the necessary syntactical transformations and different semantics het-
erogeneous systems probably need more effort during implementation. In the in-
teractive proof system ILF [DGH"94] the main part of implementation required
for communication is syntactical transformation and adaption of theories. Consid-
ering the runtime information exchange, the context needed for different systems
will significantly increase the amount of information to be exchanged. Different
instances of the same inference system canonically interpret received formulae
in the right way. Different systems obviously need additional information on the
used calculus and the coding of proof structures within the program.

Sometimes a problem can be separated into two relatively independent subprob-
lems which belong to different problem classes. In such cases, it makes sense to
give these subproblems to different provers adapted to the problem considered.
This is not necessarily an argument for heterogeneous structures, but absolutely
an argument for the use of special provers as subsystems.

Heterogeneous systems are justified only if the connection of the systems leads
to a significant increase of the performance of the common system. That can be
done, for instance, by integrating a prover for equational problems such as DIS-
COUNT [ADF95] into a system that is poor on equations. Another possibility is
the integration of provers applying meta-mathematical knowledge as for instance
TreeLat [DGH™94], a special prover and model checker for lattice ordered groups.

A similar approach is the integration of model checking, e.g. using FINDER
[Sla95], as a semantic tool into a common proof system which will reject many
intermediate proof tasks as false. If model checking is not integrated into the
inference machine itself, the model checker has to be invoked such that the com-
munication connection to the prover can reach a high throughput of data.

Heterogeneous systems can be classified as

e systems using different inference machines with the same communication
language,

e systems using different inference machines with different communication
languages,

e systems using not only inference machines but also meta-methods for the
proof.



2.1.2 Synchronous and Asynchronous Exchange of Information.

Cooperation between provers needs exchange of information at runtime, not only
during a short phase of initialization and termination of one or more of the
processes. Communication will take place during the whole time the proof system
works. In principle, the information exchange can be done according to one of
two general models: information can be exchanged

e synchronously or

e asynchronously.

Using the synchronous mode, all partners are informed on the situation of all other
partners. Generally, a message will be confirmed. That means, at least one of the
exchanging partners is waiting until the others are ready to receive or to send
a message. The synchronous mode of information exchange has the advantage
that all involved processes mutually know their standard of information, i.e. if a
message was written, it is read at the same predetermined time in the program
scheme.

When communicating asynchronously, the sender cannot assume that the receiv-
ing prover got the message at the predetermined moment in the program cycle.
But assuming the message passing concept, e.g. PVM [GBDT94], it is guaranteed
that, at least the temporal sequence of messages between each two of the involved
processes will be preserved. Furthermore, it is guaranteed that all messages reach
the receiver, if this process still exists. This method has the advantage that no
time is wasted by waiting for a communication partner. It has the disadvantage
that usually information is not available at the moment it is needed. I. e., im-
portant information (for instance a lemma) may not be available in time. The
following cases are imaginable.

1. The information read is already available in the prover. That means that
this information is redundant (at that moment). Thus, the effort to find
that information is done twice.

2. It may happen that the lemma read is more general than a subgoal proved
internally in the prover. Then, it is possible that later subgoals can be
solved using the lemma but not with the internal subproof. In that case,
the internal subproof should be replaced by an application of the lemma.

3. The lemma may be in contradiction to assumptions of the internal proof.
Then the subproofs which employ such an assumption must be corrected.

10



It would be ideal if the lemma solves an actual subgoal or needs only a few
inferences to solve this goal.

Asynchronous event-oriented control can be implemented using the non-blocking
read routines of the PVM. Another way is to use signals of the UNIX operating
system.

2.1.3 Hierarchical structures of sub-provers.

The structure of the processes belonging to the parallel prover can be selected
according to the following models.

e All sub-provers are on the same hierarchical level. Because the processes do
not need to take their place in a hierarchical order during the initial phase,
the start of the whole proof system is very easy in this model. Thus, no
communication is needed for that purpose. But using this model, it is not
possible exactly to connect two particular processes. Either broadcasting
has to be performed, resulting in high costs or the processes must obtain
knowledge about the way they can communicate, for instance using process
tables.

e The sub-provers can be arranged in a hierarchical structure. If a prover
generates new subtasks, it will create the subordinated provers and transmit
the tasks to them. The information exchange can be done easily in this
model but the controlling of the globally used resources is complex. The
uniform distribution of the generated processes according to the processor
load on the involved machines would have to be realized using PVM or
additional software.

e The combination of different structures following both models is also pos-
sible. Nevertheless, each architecture needs facilities for information ex-
change, i.e. it should be possible to group processes and perform broadcasts
to such groups. Information on the structure of the whole prover, e.g. its
hierarchical organization and the information exchange relations might be
a hint for effective load balancing too, and so it should be accessible to a
load distribution system.

2.1.4 Combination of Goal Oriented and Saturating Provers.

It is the aim of using parallelization of theorem provers to decompose the search
space for finding a proof, and to treat the parts of that search space at the same
time in parallel. Using cooperative concepts it is possible to exchange informa-
tion about solved subgoals to prevent redundancies, specifically solving a subgoal
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more than once. Furthermore, it is possible to partition the search space in a
"horizontal” manner, i.e. to combine bottom-up with top-down proof procedures.

This combination already has been successfully tested in a version of the theo-
rem prover SICOTHEQ [Sch95]. In that system the DELTA iterator [Sch94] and
SETHEO [LSBB92] worked together sequentially in the sub-provers. The depth
of the found proof (i.e. depth of the corresponding closed tableau) usually is much
lower compared to a single run of SETHEO.

In an application of the interactive ILF system [DGH'94], a combination of
DELTA and SETHEQO was used (only one process of each kind, both working
sequentially). In the domain of lattice ordered groups (with a CPU time resource
from 30 to 120 seconds) it was possible to increase the average depth of the proofs
including the (later) expanded lemmata from 5 to 8, compared with the standard
version of SETHEO.

Another existing application which works on equational problems is the combi-
nation of saturating and goal oriented ezperts in DISCOUNT [DF94].

Using a sequential prover, combining top-down and bottom-up means that at
first some bottom-up steps are performed followed by top-down calculations. So
in parallel, a high priority should be assigned to the bottom-up processes in the
beginning, and lowerded during the work.

2.2 Kinds of Cooperation

In the above, the discussion was about aspects of “how” provers can cooperate
and did not consider specific inference machines used in the parallel prover. In
the following, we will look at the sub-provers, and we discuss what the involved
inference machines can do together. A classification of kinds of cooperation is
given as follows:

e the exchange and optimization of configurations and control information,
e the exchange of intermediate results (lemmata), and

e the exchange of failure information.

2.2.1 Different Strategies of Search.

In most cases, the provers involved in a parallel proof system partition the search
space. For example SPTHEO [Sut95] expands the search tree up to a certain
depth, and the resulting tableaux are given to the involved single provers. These
provers “replay” their initial tableau and start their search on that base. The

12



further search of the sub-provers was done using the same strategy for all provers.
This technique yields very good results [Sut95].

Unfortunately, it is possible that the same search strategy produces similar sub-
goals at the same time on similar proof tasks. That means loss of chance that
intermediate results solved by one prover could be interesting for another one: one
prover having already solved that subgoal itself cannot use the external results.

If different search strategies are used by the sub-provers (different kinds of iter-
ative deepening, most possible length and linearity of inference chains, search for
goals of a certain structure, etc.) it is possible that intermediate results generated
by one prover can be re-used by one or more of the others for their further work.
Therefore, it can be accepted that some of these provers work with incomplete
search strategies, if they solve tasks from their specific domain especially fast
and efficiently. But it should be realized that the whole system remains fair and
complete. So sub-provers with specialized strategies can be used, for instance, to
generate lemmata or to deal with subgoals belonging to special problem classes
such as equality problems.

The cooperation of parallel provers can be classified with respect to the used
search strategies as follows:

e provers with the same search strategy,
e provers with different search strategies, each fair and complete,

e provers with different search strategies where only the ensemble is complete,
and,

e provers with different, even in the ensemble incomplete strategies.

2.2.2 Cooperation and Competition.

The relation between cooperation and competition has been discussed in [FK87]
and [Sut91]. Often, competition is the basic concept of existing parallel provers.
The reasons are the low cost of implementation and the small amount of inter-
process communication.

Cooperation and Competition are not necessarily contradictory. If competitive
provers exchange information, they lose time for their own work, but using the
results of their competitors they may solve their tasks faster. An example for
such a synergetic effect is the Teamwork Method [Den95]. This concept includes
the competition of some provers which exchange their intermediate results peri-
odically.

13



Cooperation without competition inheres the risk that sub-provers with bad re-
sults on a special class of tasks can decrease the performance of the whole system,
if their useless results increases the amount of information to be processed. Com-
petitive concepts can eliminate such provers from the actual configuration of the
system.

2.2.3 [Exchange and Optimization of Configurations and Control In-
formation.

Speaking about cooperation in the context of parallel theorem provers, one at first
thinks about exchange of formulae or sets of formulae. But, a further possibility
is the exchange of all information that describes how an inference machine works
such as

control parameters,
e used heuristics,

e search strategies,

e inference rates,

e and so on.

It is useful to terminate the sub-provers that were less successful in the last
time period and to start new provers with the control information from the more
successful ones. It is also imaginable that the existing provers with lower success
get the parameters to change their behavior in the intended sense.

Based on this idea a system could be implemented where a parallel prover opti-
mizes a set, of control parameters. During a certain interval of time some span of
parameters will be tested and only the successful settings will be kept in the next
interval where the span can become smaller or the kind of the parameter can be
changed.

Furthermore it is to remark that in this model information is exchanged only
infrequently. An information transfer only after some cycle of stand alone work
is used less frequently than a continuous transfer during the proof process.

It has to be considered which criteria are suitable in determining the quality of
the control configuration of a prover. A measure for that purpose can be, for
instance, the depth of the proof structure relative to the other sub-provers or the
number and quality of the generated lemmata. Using such criteria it should be
considered that the resulting system must have a fair search strategy to save the
completeness of the whole joined system.

14



Considering existing systems, the results of DISCOUNT [DK94] show that gen-
erating proof procedures improve searching by means of exchange. Analytical
provers will probably cause more problems.

2.2.4 Exchange of Intermediate Results (Lemmata).

In the previous paragraph, we have described the exchange of configurations.
Now, we discuss the concept one thinks about at first, namely the exchange of
proved intermediate results (proved formulae). Considering their structure, the
formulae to be integrated will mostly be [iterals. But it is also possible that more
complex formulae have to be transmitted.

Considering how these lemmata are exchanged it should be possible to integrate
new axioms into the knowledge base during the inference process. It should be
easily done using literals (facts) but the possibility of integrating more complex
formulae, especially clauses, would be desirable.

If that is not possible, the old situation of the inference machine has to be con-
served and must be reconstructed after the integration of the new formulae into
the knowledge base. A possible technology to do so is the description of start con-
figurations distributing the tasks, as it is used in SPTHEO [Sut95]. That method
probably has lower costs of implementation than the variant of integration into
the running prover, but it has other disadvantages, for instance, the transfer of
context can be useless for the generated subgoal or even harmful in the new
context. Altogether we get

e provers integrating lemmata “on the fly” without restart, and

e provers restarting after lemma integration.

We can assume that each inference step can lead to a new lemma. So during
the proof process a large number of lemmata can be generated. This will be
the main conceptual problem on the way towards a cooperative parallel prover.
A transmission of all possible lemmata without filtering, even to a subset of
the involved sub-provers, will cause an overloading of the network. Thus, the
candidate lemmata must be evaluated to decide if they can be exchanged. In
order to get a measure of a lemma one can use information on

e the syntactical structure of the lemmata (e.g. the high generality), and

e information on the derivation of the lemmata, e.g. the number of inferences.

15



If provers can ask for goals that are important for their work, then the existence of
such a question for a formula should be a criterion for a lemma. These questions
should be filtered analogously to the lemmata to avoid network overload. The
concept of proof requests is implemented in DARES [CMM90] where information
is exchanged, if a formula has already been proved by another sub-prover.

2.2.5 [Exchange of Failure Information.

In the sections before, we discussed the exchange of information about successful
events (successful configurations, lemmata). These informations can be considered
to be positive knowledge. Furthermore, negative knowledge can be exchanged, for
instance, the provers can communicate about what they cannot prove. Such mes-
sages should include the conditions under which a proof failed, i.e. the parameter
settings and search bounds.

This concept also demands a strong selection, as it is already explained consider-
ing lemma and request generation. It must be realized that not every backtracking
step generates negative information. It should be possible to use analogous crite-
ria as considered in the case of lemma generation.

3 SPTHEO and CPTHEO - two applications

As a basic approach we consider the sequential Model Elimination [Sti84] style
theorem prover SETHEQO which was developed at the Technische Universitat
Miinchen. It is the basic inference machine involved in the prover systems de-
scribed in this section. Problems in constructing parallel provers with other in-
ference machines should be similar to our consideration, at least with respect to
the generic needs of communication and load distribution.

3.1 The parallel theorem prover SPTHEO

Static Partitioning with Slackness (SPS) [Sut95] is a method for parallelizing
search-based systems. Traditional partitioning approaches for parallel search rely
on a continuous distribution of search alternatives among processors (“dynamic
partitioning”). The SPS-model instead proposes to start with a sequential search
phase, in which tasks for parallel processing are generated. These tasks are then
distributed and executed in parallel. No partitioning occurs during the parallel
execution phase. The potentially arising load imbalance can be controlled by an
excess number of tasks (slackness) as well as appropriate task generation. The
SPS-model has several advantages over dynamic partitioning schemes. The most
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important advantage is that the amount of communication is strictly bounded
and minimal. This results in the smallest possible dependence on communication
latency, and makes efficient execution even on large workstation networks fea-
sible. Furthermore, the availability of all tasks prior to their distribution allows
optimization of the task set which is not possible otherwise.

SPTHEQ is a parallelization of the SETHFEQO system, based on the Static Parti-
tioning with Slackness (SPS) model for parallelization. It consists of three phases.

e In a first phase, an initial area of the search space is explored and tasks are
generated. The number of generated tasks exceeds the number of processors
by a certain factor (slackness).

e In a second phase, the tasks are distributed.

e Finally, in a third phase the tasks are executed at the individual processors.

In this model the search space is initially developed sequentially until a sufficient
number of alternative sub-search spaces (tasks) have been generated. These tasks
are distributed to multiple processors that search the alternatives in parallel until
one finds a proof. The number of tasks generated typically exceeds the number of
processors, and the extent of this is the “slackness” in the system. For reasons of
practical search completeness, each processor executes all its tasks concurrently
(preemptive execution). SPTHEQ is implemented in C and PVM, and runs on
a network of 110 HP workstations. Extensive evaluations showed significant per-
formance improvements over SETHEQ and a previous parallelization of it.

Figure 1 displays the number of problems from the TPTP [SSY94] solved by
SETHFEO within runtime limits ranging from 0 to 1000 seconds (/ 17 minutes)
and results of the prover SPTHEO.

As an example, given a runtime limit of 1000 seconds, SETHEQ solves 858 prob-
lems. It can be expected that increasing the runtime limit only leads to a small
increase in the number of additionally solved problems.

An examination of the proof-finding performance of SPTHEQ for different run-
time limits is also given in figure 1. It shows the number of problems solved by
SPTHEO for 256 processors. The plot is for 256 generated sub-tasks and 1 to 256
processors. Each curve shows the performance for twice as many processors as for
the lower one. The asymptotic upper bound on the number of proved problems
is due to the runtime limit of 20 seconds per task.

3.2 A model of the cooperative prover CPTHEO

In this section the most significant components of the CPTHEQO model are ex-
plained:
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Figure 1: Left: The number of problems solved by SETHEO as a function of the
runtime limit. Right: The performance of SPTHEO for overall runtime limits be-
tween 10 and 120 seconds (20 seconds per task). Each curve denotes a particular
number of processors, starting with one processor for the lowest curve and rep-
resenting twice as many processors with the next higher curve. The horizontal
lines show the SETHEO performance for runtime limits of 10/120 seconds.

e the cascading task generation of the top-down inference machine,
e the unit preferring lemma mechanism,
e the redundancy filtering methods, and

e the relevance measuring mechanism.

To conclude, a scheme of the prover is given.

The cooperative prover CPTHEQO to be developed uses techniques of SPTHEO
for the scheduling of tasks and the success control. In addition to SPTHEOQ, the
partial evaluation of the search space to determine the tasks of the sub-provers
will be done iteratively. After each iteration (and after filtering) the generated
tasks will be labeled with a number. That number measures the expected im-
portance for the further proof process. The label mechanism is a tool to control
the directions of the proof trial, and it can be used for effective load balancing.
Due to the iterative development of the set of proof tasks, an adaption of the
whole proof attempt to the real hardware configuration is possible even during
the proof process. Furthermore, by changing the labels of the proof tasks it is
possible to influence the heuristic of the search at runtime.
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The information exchanged between the involved sub-provers consists in its main
part of unit lemmata and unit proof requests (failed proof attempts of top-
down provers). Units are preferred because of their lower complexity as formulae
and their higher expected re-usability for other sub-provers. Furthermore, the
SETHEQ inference machine is constructed to read at most units at runtime.
Experiments show that the unit preferring heuristic is only a weak restriction,
because it is quite probable that units occur.

The filters of the sub-task generators and the lemma and proof request generators
consider the following:

e identical formulae, subsumed formulae,

tests with models of the considered theory,

variants (very powerful in experiments),

models given by the human operator,

model fragments (if only infinite models exist).

Filters only delete multiply occurring or obsolete formulae. Referees rank the
sub-tasks of a proof as well as lemmata or proof requests by labeling them with
measures. Using these measures the proof process is controlled. The measures
depend on:

e the generality of a literal,

e the derivation cost of a literal (the number of inferences to deduce the
literal),

e the relatively isolated position of a subproof leading to a literal that is
for instance only a few or no reductions to literals outside that subproof
considering SETHEQO proofs,

e the multiple usability of a literal in the considered proof or in the already
existing parts of the proof, and

e the similarity of the generated facts to the task to be proved.

The scheduling has to guarantee the fairness of the whole proof attempt, and so
the completeness of the proof procedure.

Now we describe the components. SETHFEQ provers reduce tasks from the task
pool and generate new ones as well as proof requests. The DFELTA iterators
generate lemmata. The filters delete redundant tasks and lemmata from the task
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pool. The referees rank proof tasks, proof requests and lemmata due to their
expected importance. All these processes are controlled by a central supervisor
that starts and finishes processes and guarantees the liveliness of the whole prover
system. To avoid bottlenecks in the information transmission, the task pool is kept
locally by the involved processors. Only a certain amount of tasks labeled with
high ranking measures is sent to a central task pool. The rest can be sent on
request.

Initial task

/ Referee

Task Pool
Task Supervisor
AN

Lemma SETHEO w Filter

Model

Proof request\ ‘Lemma

Theory”|  DELTA l

4 Conclusions

The increased power of automated theorem provers means that they will solve
more than only toy examples in the near future. Today ATP systems support the
human for example in interactive proof environments as ILF [DGH"94]. Within
ILF provers fill in steps of the proof sketch the human writes down. The more
the performance of the automated provers increases, the larger the gaps between
the given proof steps can be. One possibility of increasing the performance is the
parallelization of provers. Cooperative systems have a need for fast communica-
tion between the involved processes and for a transparent load balancing due to
the unpredictable progress of proof attempts.

It is known that on relatively easy problems parallel provers have a higher amount
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of time than a similar sequential prover due to the enlarged overhead the parallel
system needs to launch the program and initial communications. So it can be
expected that parallel provers, dealing with more communications at run time in
addition, have once more lower rating than the corresponding sequential systems,
if they have to deal with relatively easy problems. But this disadvantage will be
compensated dealing with really hard problems, if synergy takes effect.

So it should be the aim of the development of a new cooperative parallel prover
to obtain profits in those domains where existing sequential or non-cooperative
parallel systems do not find any proof, or in the cases where they do find one,
improving on the amount of time taken to do so.

Up to now, CPTHEO exists as a model as described in this article. Prototypical
implementations of components of the prover showed the potential of the coop-
erative concept. An implementation of the whole system is planned for the near
future.
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