
TECHNISCHEUNIVERSIT�ATM �UNCHEN
INSTITUT F�UR INFORMATIKSonderforschungsbereich 342:Methoden und Werkzeuge f�ur die Nutzungparalleler Rechnerarchitekturen

Cooperative Parallel AutomatedTheorem ProvingAndreas Wolf Marc Fuchs

TUM-I9732SFB-Bericht Nr. 342/21/97 AJuni 97



TUM{INFO{06-I9732-200/1.{FIAlle Rechte vorbehaltenNachdruck auch auszugsweise verbotenc1997 SFB 342 Methoden und Werkzeuge f�urdie Nutzung paralleler ArchitekturenAnforderungen an: Prof. Dr. A. BodeSprecher SFB 342Institut f�ur InformatikTechnische Universit�at M�unchenD-80290 M�unchen, GermanyDruck: Fakult�at f�ur Informatik derTechnischen Universit�at M�unchen



Cooperative Parallel Automated TheoremProvingAndreas Wolf, Marc FuchsComputer Science DepartmentMunich University of TechnologyD-80290 MunichGermanye-mail: fwolfa,fuchsmg@informatik.tu-muenchen.deJune 20, 1997AbstractAutomated Theorem Proving can be interpreted as the solution ofsearch problems which comprise huge search spaces. Parallelization of theproof task as well as cooperation between the involved provers o�er thepossibility to develop more e�cient search procedures. In this paper wewant to investigate concepts for the development of cooperative paral-lel theorem provers. We deal with architectural questions as well as withpossibilities of how to realize cooperation. Particularly, we discuss require-ments on an e�cient load distribution mechanism for cooperative paralleltheorem provers. As a result of this discussion we develop the model of thenew prover CPTHEO. This prover allows for a dynamic load distributionthat ful�lls the requirements introduced before. Furthermore, the cooper-ation possibilities of CPTHEO o�er the potential for reaching superlinearspeed-ups.1 IntroductionUp to now, the sequential Automated Theorem Proving (ATP) has set a verypowerful standard. But when dealing with more di�cult problems ATP systemsare still inferior to a skilled human mathematician. Thus, methods to increasethe performance of existing ATP systems are, besides the development of newproof calculi, a focus of interest in the ATP area. One important technique to1



increase performance is to employ parallelism on parallel hardware or networksof workstations. Possible parallelization concepts vary from the parallel use ofdi�erent con�gurations of the employed provers, to the partitioning of the prooftask into subtasks that are tackled in parallel. Moreover, one can expect furtherimprovements by interactions between the di�erent parallel provers (cooperation),e.g. by exchanging intermediate results.In this article we want to analyze the requirements for automatic load distribu-tion for parallel theorem proving. The article is a contribution to the discussionon the possibilities of cooperation of ATP's, especially concerning questions ofload distribution. A generic approach to cooperative concepts is presented. Thecosts needed for implementation and runtime, especially for communication, areestimated. Furthermore, an existing parallel prover, SPTHEO, and a new coop-erative prover based on SPTHEO, CPTHEO, are introduced.Developers of theorem provers are often more logicians than experts on parallelhardware. Therefore, function libraries are needed for the communication betweentwo or more processes. Tools to achieve an optimally balanced load distributionshould be as transparent as possible.We assume the existence of a widely used interface for parallel applications, e.g.the Parallel Virtual Machine (PVM) [GBD+94]. It makes the access to networkor parallel hardware fully transparent to the user. Unfortunately, broadcastingmessages to a group of processes in PVM is simulated only by single sequen-tial transmissions resulting in a decrease in performance. Another as yet non-implemented function is the possibility to estimate the expected performance ofthe involved processors to spawn new processes to convenient machines. The fol-lowing sections will consider which aspects have to be dealt within this contextby an automated load distribution tool. Making migration of the processes toother processors possible can use the potential of the processors better than theperformance snapshots before the spawn. A better load distribution can thus beachieved. As we shall explain later, there is, in general, an unsolvable di�cultyin estimating which resources are needed for a particular prover in the context ofa parallel proof system.In the following, a short introduction to parallel theorem proving is given. Section2 contains a classi�cation of aspects to be considered when constructing cooper-ative provers. Section 3 describes the SPTHEO prover and introduces the modelof a new cooperative prover CPTHEO which is based on SPTHEO. We concludewith some conclusions and an outlook at possible future work.
2



1.1 What is Automated Theorem Proving (ATP)?1.1.1 General Remarks.Theorem proving deals with the search of proofs of certain conjectures from agiven theory. Both conjecture and theory are formulated in some language L.An frequently used language is e.g. the First Order Predicate Logic (PL1). PL1can be used to formulate many mathematical problems as well as problems takenfrom the real life. Unfortunately, PL1 is undecidable in general (Church, 1936).One can show that the set of theorems of a given theory is recursive enumerable.Speci�cally, there exist proof procedures able to recognize each valid formula of agiven theory after a �nite amount of time. Thus, at least semi-decision algorithmscan be constructed although the problem of deciding the validity of a formula is,in general, undecidable.In the past, a lot of di�erent logic calculi have been developed and implemented.Important properties of such calculi are soundness and completeness. Soundnessof a calculus means that it does not give incorrect answers and announce a formulaas valid although it is not. Completeness means that the calculus has the potentialto prove every valid formula.Basically, proof calculi (or automated theorem proving systems based on suchcalculi) can be divided into two di�erent classes. On the one hand there aresynthetic calculi that work in a bottom-up manner, on the other hand one canemploy analytic calculi that work top-down. Analytic calculi attempt to recur-sively break down and transform a goal into sub-goals that can �nally be provenimmediately with the axioms (goal-oriented provers). Synthetic calculi go theother way by continuously producing logic consequences of the given theory untila fact describing the goal is deduced (saturating provers). For further informationon these issue we refer to [Bib82].Note that the problem of proving the validity of a given conjecture by using a cer-tain calculus can be interpreted as a search problem. A proof calculus is a searchcalculus that is represented by a transition system consisting of a set of allowedstates, a set of rules for changing states, and a termination test for identifying �-nal states. Basically, search calculi are divided into two classes: Irrevocable searchcalculi and tentative search calculi. Using irrevocable calculi, an application of asearch step never needs to be undone in order to reach a �nal state. Tentativesearch calculi require provision for the case that a sequence of search steps doesnot reach a �nal state. Usually backtracking is needed in order to try a solutionwith each alternative search step that can be applied within a search state.Independent from the search calculus to be applied, the general problem of ATP isthat the search spaces one has to deal with when searching for a given conjectureare tremendous. Thus, the development of more e�cient methods to reduce and3



examine the search space is one of the aims of the automated theorem provingcommunity.1.1.2 Model Elimination.As a concrete proof procedure we want to mention theModel Elimination calculus(ME). This calculus can be interpreted as an analytic calculus. Furthermore,backtracking is usually needed in order to prove a theorem. In this paper weonly want to recall some basic concepts. An introduction to ME can be foundin [Lov78]. Within this paper, tableau style representation of ME proofs is used.ME deals with clauses, so we cope with a set of universally quanti�ed clauses asOR-connected lists of literals.A clausal tableau is a tree with nodes labeled with literals. To simplify the fol-lowing, it is assumed that we want to prove the validity of a literal under a givenset of clauses. Thus, the initial tableau consists of the negation of the literal tobe proved. Of course, more complex formulae can be treated. The tableau can beexpanded by appending instances of the literals of a clause to a leaf of the tableautree as new leaves. A branch of the tree is closed if it contains complementaryliterals. A substitution on the whole tree may be required to make the literalscomplementary.In ME, after an expansion of the tree, one of the newly created leaves must beclosed against its immediate ancestor. Additional closing of other branches afteran expansion is called reduction. Without loss of generality we can assume thatone of the nodes closing a branch is a leaf. A tableau is a proof if all its branchesare closed.In order to prove a given literal it is necessary to systematically construct allpossible tableaux. Since a lot of di�erent expansion and reduction steps are usu-ally applicable to any given tableau one has to search for a proof in a search treewhose nodes are marked with (di�erent) tableaux. A node in this search tree thatrepresents an open tableau is also called a proof task.1.2 Developing Parallel Provers1.2.1 Fundamentals.There are powerful sequential automated theorem provers in the theorem provercommunity. As examples, we give here the (incomplete) listDISCOUNT [ADF95],OTTER [McC90] and SETHEO [LSBB92] which belong to the most popular au-tomated theorem provers. But when dealing with \hard problems" these provers4



are inferior to a skilled human mathematician because of the tremendous searchspaces the provers have to deal with.The performance of sequential provers, however, can often be signi�cantly in-creased by developing parallel versions of them. The following table classi�esexamples of existing parallel provers according to the criteria given below.non-cooperative cooperativepartitioning PARTHEO [LS90] PARROT [JOK92]completeness based METEOR [Ast92] ROO [LMS91]SPTHEO [Sut95] DARES [CMM90]partitioning MGTP/G [FHKF92]soundness based SPTHEO [Sut95]competitive HDPS [Sut92]di�erent calculicompetitive RCTHEO [Phi92] DISCOUNT [ADF95]unique calculus SICOTHEO [Sch95]Parallel theorem provers can be cooperative or non-cooperative, depending on theirbehavior in information exchange. Cooperative systems exchange information dur-ing a proof run and not only in the phases of their initialization and termination.The paper deals especially with the possibilities of designing provers of this kind(cf. the following sections).Theorem provers can partition their work, for instance by splitting the whole taskinto a set of subtasks, or by partitioning the considered search space. Partitioningsystems can be classi�ed analogously to the usual classi�cation of parallel algo-rithms into OR and AND parallel algorithms: Completeness based systems createcompletely independent subtasks when partitioning the search space, i.e. the so-lution of one single problem means the solution of the whole problem. Soundnessbased systems require the combination of the solutions of the subtasks to a com-mon solution. These two strategies can be combined, so that sub-provers can dealwith independent and dependent subproblems. Partitioning systems usually useinstances of the same inference machine, because the partitioning of the searchspace is di�cult for di�erent logic calculi or even for di�erent variants of the samecalculus.Competitive systems are proof systems where each system works on the wholeproof task but di�er in the way how the involved provers are parameterized.Even the use of di�erent logics in parallel is possible. In constructing competitivesystems, it seems to be useful to encourage di�erent calculi; advantages of someof them can balance disadvantages of others. This strategy assumes that for eachinvolved provers there exists a class of tasks which have a higher performancethan all other provers included in the common system.Developing parallel provers is sensible since the parallelization of a proof systemyields the potential to achieve speedups compared with the original system, re-gardless of the method of parallelism that is applied. Partitioning the search space5



o�ers the possibility to reduce the amount of time spent exploring unnecessaryparts of the search space. This is because of the chance that at least one of theinvolved provers immediately starts exploring an \interesting" part of the searchspace (assuming that the search space is completely assigned to the di�erentprovers). Competitive systems can result in super-linear speedups because onehas a higher probability to use a search strategy that is well suited for the givenproblem. Since usually a lot of di�erent con�gurations of a prover are imaginableand no a priori knowledge is available to decide which con�guration is well suitedfor a speci�c problem it is reasonable to use di�erent con�gurations in parallel.The highest gains in e�ciency, however, can be expected when using coopera-tive systems due to the expected synergetic e�ects. Thus, the development ofcooperative systems is a main research area when dealing with parallel theoremprovers.It is known, that on relatively easy problems, parallel provers require a higheramount of time than a similar sequential prover due to the enlarged overheadthe parallel system needs to launch the program. Furthermore, communicationoverhead occurs that additionally decreases the inference rate of the involvedprovers. But these disadvantages will be compensated when dealing with reallyhard problems if synergetic e�ects occur.So it should be the aim of parallel provers to obtain pro�ts in those domainswhere existing sequential or non-cooperative parallel systems do not �nd anyproof, or where they do �nd one, only in a comparatively long time. During thedevelopment of the parallel version of SETHEO which deals with partitioningof the search space (SPTHEO [Sut95]), a comparison with the results of thesequential version was performed using a runtime of 1000 seconds. Problems ofthis complexity seem to be convenient examples to test the performance of parallelprovers.1.3 Cooperation { reasons and a de�nitionSequential search procedures often employ a large set of heuristics and re�ne-ments of the underlying calculus to prevent unnecessary search, e.g. to avoidredundant search steps. If the search is shared among di�erent processes, it maybe useful to exchange information on such redundancies, as well as on importantintermediate results. Basically, there are two methods to exchange data betweentheorem provers: demand driven (as realized in the DARES system) and successdriven (as realized in DISCOUNT). Demand driven cooperation means that aprover is interested in certain information and asks the other provers for it. Suc-cess driven cooperation means that a prover communicates information it judgesto be important to the other provers. As we can see in the table below, the un-6



limited exchange of information usually is not sensible due to the tremendousamount of information that is generated during the search.The table shows two examples from the TPTP [SSY94]. It contains the num-ber of smaller proof tasks to which the original task can be simpli�ed after levelinferences of a ME based prover. It also shows the number of possibly gener-ated messages (when asking for solved tasks of another prover). Altogether, oneobserves the importance of restricting and �ltering information to be exchanged.example level original sortjuniq (percent) subsumption (percent)BOO003-1 7 272 83 728 1006 61 36PRV007-1 5 145 84 796 826 70 557 5677 65 51In this article we want to employ the following de�nition of cooperation:De�nition. An automated theorem prover is cooperative, if and only if it o�erson request immediately all its data and results to other provers. Immediatelymeans that the prover utilizes the available bandwidth of the communicationchannels and handles the request with a higher priority than its own proof at-tempt. �2 Cooperative Theorem ProvingWe discuss a classi�cation of the problems that are to be solved when constructinga cooperative parallel theorem prover with some remarks on communication andload distribution needs. The aspects to be considered can be divided into twoparts.� How can cooperating provers work together, i.e. which topics concerningthe system architecture have to be considered?� What can they do to work together, i.e. which kinds of cooperation canoccur?2.1 System ArchitectureThe problems to be considered in relation to the �rst question, i.e. the systemarchitecture, can be classi�ed as follows.7



� Are the involved inference machines of the same type? Are di�erent typesof inference machines used, i.e. is the parallel system homogeneous or het-erogeneous?� Is the exchange of information planned in such a way that messages must becon�rmed by the receiver or not? Shall the processes wait for some events ornot? These questions lead to the decision on a synchronous or asynchronousmode of information exchange.� Which scheme of process control and control on the progress of the proofshall be selected, i.e. which hierarchical structures of sub-provers occur?� Proof procedures can be saturating (deduce all valid formulae until the proofgoal occurs) or goal oriented (reduce the proof task until all subtasks can besolved using known - given - formulae). It is possible to construct a systemwith only goal oriented, only saturating, or with hybrid proof processes.2.1.1 Homogeneous and Heterogeneous Systems.Parallel provers developed up to now ordinarily use (with minor changes) theimplementation of the inference machine of a sequential prover. These sub-proversare united by partitioning the search tree in a completeness or soundness basedmanner as previously described, or they can use di�erent search strategies in theirdi�erent instances.Due to the use of the same inference machine and an equal coding of formulae andcontrol parameters, the expected additional costs for the implementation of aninformation exchange in such homogeneous systems are relatively low. Moreover,we can assume that heuristics estimating the needed resources for a proof task(a process, in terms of load distribution) can be found much easier than in theheterogeneous case.Homogeneous systems do not necessarily require the same search procedure forall involved provers. For example, the connection of SETHEO [LSBB92] withthe DELTA Iterator [Sch94], which are based on the same inference machine,combines the top-down search with the bottom-up one. The top-down prover canintegrate lemmata of the bottom-up prover in its proof tree. That kind of co-operation was tested successfully in the sequential case. Homogeneous systemsallow an easy way to partition the search space of the involved systems by con-trol parameters for the provers and startup con�gurations containing di�erentpre-calculated proof segments.So we can classify homogeneous systems into8



� systems using the same inference machine with the same search procedureand� systems using the same inference machine with di�erent search procedures.Because of the necessary syntactical transformations and di�erent semantics het-erogeneous systems probably need more e�ort during implementation. In the in-teractive proof system ILF [DGH+94] the main part of implementation requiredfor communication is syntactical transformation and adaption of theories. Consid-ering the runtime information exchange, the context needed for di�erent systemswill signi�cantly increase the amount of information to be exchanged. Di�erentinstances of the same inference system canonically interpret received formulaein the right way. Di�erent systems obviously need additional information on theused calculus and the coding of proof structures within the program.Sometimes a problem can be separated into two relatively independent subprob-lems which belong to di�erent problem classes. In such cases, it makes sense togive these subproblems to di�erent provers adapted to the problem considered.This is not necessarily an argument for heterogeneous structures, but absolutelyan argument for the use of special provers as subsystems.Heterogeneous systems are justi�ed only if the connection of the systems leadsto a signi�cant increase of the performance of the common system. That can bedone, for instance, by integrating a prover for equational problems such as DIS-COUNT [ADF95] into a system that is poor on equations. Another possibility isthe integration of provers applying meta-mathematical knowledge as for instanceTreeLat [DGH+94], a special prover and model checker for lattice ordered groups.A similar approach is the integration of model checking, e.g. using FINDER[Sla95], as a semantic tool into a common proof system which will reject manyintermediate proof tasks as false. If model checking is not integrated into theinference machine itself, the model checker has to be invoked such that the com-munication connection to the prover can reach a high throughput of data.Heterogeneous systems can be classi�ed as� systems using di�erent inference machines with the same communicationlanguage,� systems using di�erent inference machines with di�erent communicationlanguages,� systems using not only inference machines but also meta-methods for theproof. 9



2.1.2 Synchronous and Asynchronous Exchange of Information.Cooperation between provers needs exchange of information at runtime, not onlyduring a short phase of initialization and termination of one or more of theprocesses. Communication will take place during the whole time the proof systemworks. In principle, the information exchange can be done according to one oftwo general models: information can be exchanged� synchronously or� asynchronously.Using the synchronousmode, all partners are informed on the situation of all otherpartners. Generally, a message will be con�rmed. That means, at least one of theexchanging partners is waiting until the others are ready to receive or to senda message. The synchronous mode of information exchange has the advantagethat all involved processes mutually know their standard of information, i.e. if amessage was written, it is read at the same predetermined time in the programscheme.When communicating asynchronously, the sender cannot assume that the receiv-ing prover got the message at the predetermined moment in the program cycle.But assuming the message passing concept, e.g. PVM [GBD+94], it is guaranteedthat, at least the temporal sequence of messages between each two of the involvedprocesses will be preserved. Furthermore, it is guaranteed that all messages reachthe receiver, if this process still exists. This method has the advantage that notime is wasted by waiting for a communication partner. It has the disadvantagethat usually information is not available at the moment it is needed. I. e., im-portant information (for instance a lemma) may not be available in time. Thefollowing cases are imaginable.1. The information read is already available in the prover. That means thatthis information is redundant (at that moment). Thus, the e�ort to �ndthat information is done twice.2. It may happen that the lemma read is more general than a subgoal provedinternally in the prover. Then, it is possible that later subgoals can besolved using the lemma but not with the internal subproof. In that case,the internal subproof should be replaced by an application of the lemma.3. The lemma may be in contradiction to assumptions of the internal proof.Then the subproofs which employ such an assumption must be corrected.10



It would be ideal if the lemma solves an actual subgoal or needs only a fewinferences to solve this goal.Asynchronous event-oriented control can be implemented using the non-blockingread routines of the PVM. Another way is to use signals of the UNIX operatingsystem.2.1.3 Hierarchical structures of sub-provers.The structure of the processes belonging to the parallel prover can be selectedaccording to the following models.� All sub-provers are on the same hierarchical level. Because the processes donot need to take their place in a hierarchical order during the initial phase,the start of the whole proof system is very easy in this model. Thus, nocommunication is needed for that purpose. But using this model, it is notpossible exactly to connect two particular processes. Either broadcastinghas to be performed, resulting in high costs or the processes must obtainknowledge about the way they can communicate, for instance using processtables.� The sub-provers can be arranged in a hierarchical structure. If a provergenerates new subtasks, it will create the subordinated provers and transmitthe tasks to them. The information exchange can be done easily in thismodel but the controlling of the globally used resources is complex. Theuniform distribution of the generated processes according to the processorload on the involved machines would have to be realized using PVM oradditional software.� The combination of di�erent structures following both models is also pos-sible. Nevertheless, each architecture needs facilities for information ex-change, i.e. it should be possible to group processes and perform broadcaststo such groups. Information on the structure of the whole prover, e.g. itshierarchical organization and the information exchange relations might bea hint for e�ective load balancing too, and so it should be accessible to aload distribution system.2.1.4 Combination of Goal Oriented and Saturating Provers.It is the aim of using parallelization of theorem provers to decompose the searchspace for �nding a proof, and to treat the parts of that search space at the sametime in parallel. Using cooperative concepts it is possible to exchange informa-tion about solved subgoals to prevent redundancies, speci�cally solving a subgoal11



more than once. Furthermore, it is possible to partition the search space in a"horizontal" manner, i.e. to combine bottom-up with top-down proof procedures.This combination already has been successfully tested in a version of the theo-rem prover SICOTHEO [Sch95]. In that system the DELTA iterator [Sch94] andSETHEO [LSBB92] worked together sequentially in the sub-provers. The depthof the found proof (i.e. depth of the corresponding closed tableau) usually is muchlower compared to a single run of SETHEO.In an application of the interactive ILF system [DGH+94], a combination ofDELTA and SETHEO was used (only one process of each kind, both workingsequentially). In the domain of lattice ordered groups (with a CPU time resourcefrom 30 to 120 seconds) it was possible to increase the average depth of the proofsincluding the (later) expanded lemmata from 5 to 8, compared with the standardversion of SETHEO.Another existing application which works on equational problems is the combi-nation of saturating and goal oriented experts in DISCOUNT [DF94].Using a sequential prover, combining top-down and bottom-up means that at�rst some bottom-up steps are performed followed by top-down calculations. Soin parallel, a high priority should be assigned to the bottom-up processes in thebeginning, and lowerded during the work.2.2 Kinds of CooperationIn the above, the discussion was about aspects of \how" provers can cooperateand did not consider speci�c inference machines used in the parallel prover. Inthe following, we will look at the sub-provers, and we discuss what the involvedinference machines can do together. A classi�cation of kinds of cooperation isgiven as follows:� the exchange and optimization of con�gurations and control information,� the exchange of intermediate results (lemmata), and� the exchange of failure information.2.2.1 Di�erent Strategies of Search.In most cases, the provers involved in a parallel proof system partition the searchspace. For example SPTHEO [Sut95] expands the search tree up to a certaindepth, and the resulting tableaux are given to the involved single provers. Theseprovers \replay" their initial tableau and start their search on that base. The12



further search of the sub-provers was done using the same strategy for all provers.This technique yields very good results [Sut95].Unfortunately, it is possible that the same search strategy produces similar sub-goals at the same time on similar proof tasks. That means loss of chance thatintermediate results solved by one prover could be interesting for another one: oneprover having already solved that subgoal itself cannot use the external results.If di�erent search strategies are used by the sub-provers (di�erent kinds of iter-ative deepening, most possible length and linearity of inference chains, search forgoals of a certain structure, etc.) it is possible that intermediate results generatedby one prover can be re-used by one or more of the others for their further work.Therefore, it can be accepted that some of these provers work with incompletesearch strategies, if they solve tasks from their speci�c domain especially fastand e�ciently. But it should be realized that the whole system remains fair andcomplete. So sub-provers with specialized strategies can be used, for instance, togenerate lemmata or to deal with subgoals belonging to special problem classessuch as equality problems.The cooperation of parallel provers can be classi�ed with respect to the usedsearch strategies as follows:� provers with the same search strategy,� provers with di�erent search strategies, each fair and complete,� provers with di�erent search strategies where only the ensemble is complete,and,� provers with di�erent, even in the ensemble incomplete strategies.2.2.2 Cooperation and Competition.The relation between cooperation and competition has been discussed in [FK87]and [Sut91]. Often, competition is the basic concept of existing parallel provers.The reasons are the low cost of implementation and the small amount of inter-process communication.Cooperation and Competition are not necessarily contradictory. If competitiveprovers exchange information, they lose time for their own work, but using theresults of their competitors they may solve their tasks faster. An example forsuch a synergetic e�ect is the Teamwork Method [Den95]. This concept includesthe competition of some provers which exchange their intermediate results peri-odically. 13



Cooperation without competition inheres the risk that sub-provers with bad re-sults on a special class of tasks can decrease the performance of the whole system,if their useless results increases the amount of information to be processed. Com-petitive concepts can eliminate such provers from the actual con�guration of thesystem.2.2.3 Exchange and Optimization of Con�gurations and Control In-formation.Speaking about cooperation in the context of parallel theorem provers, one at �rstthinks about exchange of formulae or sets of formulae. But, a further possibilityis the exchange of all information that describes how an inference machine workssuch as� control parameters,� used heuristics,� search strategies,� inference rates,� and so on.It is useful to terminate the sub-provers that were less successful in the lasttime period and to start new provers with the control information from the moresuccessful ones. It is also imaginable that the existing provers with lower successget the parameters to change their behavior in the intended sense.Based on this idea a system could be implemented where a parallel prover opti-mizes a set of control parameters. During a certain interval of time some span ofparameters will be tested and only the successful settings will be kept in the nextinterval where the span can become smaller or the kind of the parameter can bechanged.Furthermore it is to remark that in this model information is exchanged onlyinfrequently. An information transfer only after some cycle of stand alone workis used less frequently than a continuous transfer during the proof process.It has to be considered which criteria are suitable in determining the quality ofthe control con�guration of a prover. A measure for that purpose can be, forinstance, the depth of the proof structure relative to the other sub-provers or thenumber and quality of the generated lemmata. Using such criteria it should beconsidered that the resulting system must have a fair search strategy to save thecompleteness of the whole joined system.14



Considering existing systems, the results of DISCOUNT [DK94] show that gen-erating proof procedures improve searching by means of exchange. Analyticalprovers will probably cause more problems.2.2.4 Exchange of Intermediate Results (Lemmata).In the previous paragraph, we have described the exchange of con�gurations.Now, we discuss the concept one thinks about at �rst, namely the exchange ofproved intermediate results (proved formulae). Considering their structure, theformulae to be integrated will mostly be literals. But it is also possible that morecomplex formulae have to be transmitted.Considering how these lemmata are exchanged it should be possible to integratenew axioms into the knowledge base during the inference process. It should beeasily done using literals (facts) but the possibility of integrating more complexformulae, especially clauses, would be desirable.If that is not possible, the old situation of the inference machine has to be con-served and must be reconstructed after the integration of the new formulae intothe knowledge base. A possible technology to do so is the description of start con-�gurations distributing the tasks, as it is used in SPTHEO [Sut95]. That methodprobably has lower costs of implementation than the variant of integration intothe running prover, but it has other disadvantages, for instance, the transfer ofcontext can be useless for the generated subgoal or even harmful in the newcontext. Altogether we get� provers integrating lemmata \on the y" without restart, and� provers restarting after lemma integration.We can assume that each inference step can lead to a new lemma. So duringthe proof process a large number of lemmata can be generated. This will bethe main conceptual problem on the way towards a cooperative parallel prover.A transmission of all possible lemmata without �ltering, even to a subset ofthe involved sub-provers, will cause an overloading of the network. Thus, thecandidate lemmata must be evaluated to decide if they can be exchanged. Inorder to get a measure of a lemma one can use information on� the syntactical structure of the lemmata (e.g. the high generality), and� information on the derivation of the lemmata, e.g. the number of inferences.
15



If provers can ask for goals that are important for their work, then the existence ofsuch a question for a formula should be a criterion for a lemma. These questionsshould be �ltered analogously to the lemmata to avoid network overload. Theconcept of proof requests is implemented in DARES [CMM90] where informationis exchanged, if a formula has already been proved by another sub-prover.2.2.5 Exchange of Failure Information.In the sections before, we discussed the exchange of information about successfulevents (successful con�gurations, lemmata). These informations can be consideredto be positive knowledge. Furthermore, negative knowledge can be exchanged, forinstance, the provers can communicate about what they cannot prove. Such mes-sages should include the conditions under which a proof failed, i.e. the parametersettings and search bounds.This concept also demands a strong selection, as it is already explained consider-ing lemma and request generation. It must be realized that not every backtrackingstep generates negative information. It should be possible to use analogous crite-ria as considered in the case of lemma generation.3 SPTHEO and CPTHEO - two applicationsAs a basic approach we consider the sequential Model Elimination [Sti84] styletheorem prover SETHEO which was developed at the Technische Universit�atM�unchen. It is the basic inference machine involved in the prover systems de-scribed in this section. Problems in constructing parallel provers with other in-ference machines should be similar to our consideration, at least with respect tothe generic needs of communication and load distribution.3.1 The parallel theorem prover SPTHEOStatic Partitioning with Slackness (SPS) [Sut95] is a method for parallelizingsearch-based systems. Traditional partitioning approaches for parallel search relyon a continuous distribution of search alternatives among processors (\dynamicpartitioning"). The SPS-model instead proposes to start with a sequential searchphase, in which tasks for parallel processing are generated. These tasks are thendistributed and executed in parallel. No partitioning occurs during the parallelexecution phase. The potentially arising load imbalance can be controlled by anexcess number of tasks (slackness) as well as appropriate task generation. TheSPS-model has several advantages over dynamic partitioning schemes. The most16



important advantage is that the amount of communication is strictly boundedand minimal. This results in the smallest possible dependence on communicationlatency, and makes e�cient execution even on large workstation networks fea-sible. Furthermore, the availability of all tasks prior to their distribution allowsoptimization of the task set which is not possible otherwise.SPTHEO is a parallelization of the SETHEO system, based on the Static Parti-tioning with Slackness (SPS) model for parallelization. It consists of three phases.� In a �rst phase, an initial area of the search space is explored and tasks aregenerated. The number of generated tasks exceeds the number of processorsby a certain factor (slackness).� In a second phase, the tasks are distributed.� Finally, in a third phase the tasks are executed at the individual processors.In this model the search space is initially developed sequentially until a su�cientnumber of alternative sub-search spaces (tasks) have been generated. These tasksare distributed to multiple processors that search the alternatives in parallel untilone �nds a proof. The number of tasks generated typically exceeds the number ofprocessors, and the extent of this is the \slackness" in the system. For reasons ofpractical search completeness, each processor executes all its tasks concurrently(preemptive execution). SPTHEO is implemented in C and PVM, and runs ona network of 110 HP workstations. Extensive evaluations showed signi�cant per-formance improvements over SETHEO and a previous parallelization of it.Figure 1 displays the number of problems from the TPTP [SSY94] solved bySETHEO within runtime limits ranging from 0 to 1000 seconds (� 17 minutes)and results of the prover SPTHEO.As an example, given a runtime limit of 1000 seconds, SETHEO solves 858 prob-lems. It can be expected that increasing the runtime limit only leads to a smallincrease in the number of additionally solved problems.An examination of the proof-�nding performance of SPTHEO for di�erent run-time limits is also given in �gure 1. It shows the number of problems solved bySPTHEO for 256 processors. The plot is for 256 generated sub-tasks and 1 to 256processors. Each curve shows the performance for twice as many processors as forthe lower one. The asymptotic upper bound on the number of proved problemsis due to the runtime limit of 20 seconds per task.3.2 A model of the cooperative prover CPTHEOIn this section the most signi�cant components of the CPTHEO model are ex-plained: 17



0

100

200

300

400

500

600

700

800

900

0 100 200 300 400 500 600 700 800 900 1000

N
u
m

b
e
r 

o
f 
p
ro

b
le

m
s 

so
lv

e
d

Runtime limit in seconds

Linear runtime scale

400

500

600

700

800

900

1000

1100

20 40 60 80 100 120

N
u
m

b
e
r 

o
f 
p
ro

b
le

m
s 

so
lv

e
d

Runtime limit in seconds (including I/O)

m_desired = 256, n = 1, 2, 4, ... , 256

Figure 1: Left: The number of problems solved by SETHEO as a function of theruntime limit. Right: The performance of SPTHEO for overall runtime limits be-tween 10 and 120 seconds (20 seconds per task). Each curve denotes a particularnumber of processors, starting with one processor for the lowest curve and rep-resenting twice as many processors with the next higher curve. The horizontallines show the SETHEO performance for runtime limits of 10/120 seconds.� the cascading task generation of the top-down inference machine,� the unit preferring lemma mechanism,� the redundancy �ltering methods, and� the relevance measuring mechanism.To conclude, a scheme of the prover is given.The cooperative prover CPTHEO to be developed uses techniques of SPTHEOfor the scheduling of tasks and the success control. In addition to SPTHEO, thepartial evaluation of the search space to determine the tasks of the sub-proverswill be done iteratively. After each iteration (and after �ltering) the generatedtasks will be labeled with a number. That number measures the expected im-portance for the further proof process. The label mechanism is a tool to controlthe directions of the proof trial, and it can be used for e�ective load balancing.Due to the iterative development of the set of proof tasks, an adaption of thewhole proof attempt to the real hardware con�guration is possible even duringthe proof process. Furthermore, by changing the labels of the proof tasks it ispossible to inuence the heuristic of the search at runtime.18



The information exchanged between the involved sub-provers consists in its mainpart of unit lemmata and unit proof requests (failed proof attempts of top-down provers). Units are preferred because of their lower complexity as formulaeand their higher expected re-usability for other sub-provers. Furthermore, theSETHEO inference machine is constructed to read at most units at runtime.Experiments show that the unit preferring heuristic is only a weak restriction,because it is quite probable that units occur.The �lters of the sub-task generators and the lemma and proof request generatorsconsider the following:� identical formulae, subsumed formulae,� tests with models of the considered theory,� variants (very powerful in experiments),� models given by the human operator,� model fragments (if only in�nite models exist).Filters only delete multiply occurring or obsolete formulae. Referees rank thesub-tasks of a proof as well as lemmata or proof requests by labeling them withmeasures. Using these measures the proof process is controlled. The measuresdepend on:� the generality of a literal,� the derivation cost of a literal (the number of inferences to deduce theliteral),� the relatively isolated position of a subproof leading to a literal that isfor instance only a few or no reductions to literals outside that subproofconsidering SETHEO proofs,� the multiple usability of a literal in the considered proof or in the alreadyexisting parts of the proof, and� the similarity of the generated facts to the task to be proved.The scheduling has to guarantee the fairness of the whole proof attempt, and sothe completeness of the proof procedure.Now we describe the components. SETHEO provers reduce tasks from the taskpool and generate new ones as well as proof requests. The DELTA iteratorsgenerate lemmata. The �lters delete redundant tasks and lemmata from the task19



pool. The referees rank proof tasks, proof requests and lemmata due to theirexpected importance. All these processes are controlled by a central supervisorthat starts and �nishes processes and guarantees the liveliness of the whole proversystem. To avoid bottlenecks in the information transmission, the task pool is keptlocally by the involved processors. Only a certain amount of tasks labeled withhigh ranking measures is sent to a central task pool. The rest can be sent onrequest.
? HHHHHj������	 ? @@R @@@I

- ? 6
BBBBBBBN -- SSSSSSS

SSSSo
SSSSSSS

SSSSo�������
�Supervisor

RefereeTask Pool
Filter

DELTA
SETHEO����

Initial task
TaskLemma

TheoryProof request Lemma Model
4 ConclusionsThe increased power of automated theorem provers means that they will solvemore than only toy examples in the near future. Today ATP systems support thehuman for example in interactive proof environments as ILF [DGH+94]. WithinILF provers �ll in steps of the proof sketch the human writes down. The morethe performance of the automated provers increases, the larger the gaps betweenthe given proof steps can be. One possibility of increasing the performance is theparallelization of provers. Cooperative systems have a need for fast communica-tion between the involved processes and for a transparent load balancing due tothe unpredictable progress of proof attempts.It is known that on relatively easy problems parallel provers have a higher amount20



of time than a similar sequential prover due to the enlarged overhead the parallelsystem needs to launch the program and initial communications. So it can beexpected that parallel provers, dealing with more communications at run time inaddition, have once more lower rating than the corresponding sequential systems,if they have to deal with relatively easy problems. But this disadvantage will becompensated dealing with really hard problems, if synergy takes e�ect.So it should be the aim of the development of a new cooperative parallel proverto obtain pro�ts in those domains where existing sequential or non-cooperativeparallel systems do not �nd any proof, or in the cases where they do �nd one,improving on the amount of time taken to do so.Up to now, CPTHEO exists as a model as described in this article. Prototypicalimplementations of components of the prover showed the potential of the coop-erative concept. An implementation of the whole system is planned for the nearfuture.References[ADF95] J. Avenhaus, J. Denzinger, and Matth. Fuchs. Discount: A system fordistributed equational deduction. In Proceedings of 6. RTA. Springer,1995.[Ast92] O. L. Astrachan. Investigations in Model Elimination based TheoremProving. PhD thesis. Duke University, USA, 1992.[Bib82] W. Bibel. Automated Theorem Proving. Vieweg, 1982.[CMM90] S. E. Conry, D. J. MacIntosh, and R. A. Meyer. Dares: A distributedautomated reasoning system. In Proceedings of AAAI-90, 1990.[Den95] J. Denzinger. Knowledge-based distributed search using teamwork.In Proceedings ICMAS-95, pages 81{88. AAAI-Press, 1995.[DF94] J. Denzinger and Matth. Fuchs. Goal oriented equational theoremproving. In Proceedings of KI-94. Springer, 1994.[DGH+94] B. I. Dahn, J. Gehne, Th. Honigmann, L. Walther, and A. Wolf. In-tegrating Logical Functions with ILF. Preprint, Humboldt UniversityBerlin, Department of Mathematics, 1994.[DK94] J. Denzinger and M. Kronenburg. Planning for Distributed TheoremProving: The Team Work Approach. SEKI-Report SR-94-09, Univer-sity of Kaiserslautern, 1994.21



[FHKF92] M. Fujita, R. Hasegawa, M. Koshimura, and H. Fujita. Model genera-tion theorem provers on a parallel inference machine. In Proceedings ofthe International Conference on Fifth Generation Computer Systems,1992.[FK87] B. Fronh�ofer and F. Kurfess. Cooperative Competition: A Modest Pro-posal Concerning the Use of Multi-Processor Systems for AutomatedReasoning. Technical Report, Department of Computer Science, Mu-nich University of Technology, 1987.[GBD+94] A. Geist, A. Beguelin, J. Dongarra, W. Jiang, R. Manchek, andV. Sunderam. PVM: Parallel Virtual Machine. A Users' Guide andTutorial for Networked Parallel Computing. MIT Press, 1994.[JOK92] A. Jindal, R. Overbeek, and W. C. Kabat. Exploitation of paral-lel processing for implementing high-performance deduction system.Journal of Automated Reasoning, (8), 1992.[LMS91] E. L. Lusk, W. McCune, and J. K. Slaney. ROO - A Parallel TheoremProver. Technical Report ANL/MCS-TM-149, Argonne Nat. Lab.,1991.[Lov78] D. W. Loveland. Automated Theorem Proving: a Logical Basis. North-Holland, 1978.[LS90] R. Letz and J. Schumann. Partheo: A High-Performance parallelTheorem Prover. In Proceedings of CADE-10. Springer, 1990.[LSBB92] R. Letz, J. Schumann, S. Bayerl, and W. Bibel. SETHEO: A HighPerformance Theorem Prover. Journal of Automated Reasoning, (8),1992.[McC90] W. McCune. Otter 2.0. In Proceedings of CADE-10. Springer, 1990.[Phi92] J. Philipps. RCTHEO II, ein paralleler Theorembeweiser. Techni-cal Report, Department of Computer Science, Munich University ofTechnology, 1992.[Sch94] J. Schumann. Delta - a bottom-up preprocessor for top-down theoremprovers. system abstract. In Proceedings of CADE-12. Springer, 1994.[Sch95] J. Schumann. SiCoTHEO - Simple Competitive parallel TheoremProvers based on SETHEO. Technical Report, Department of Com-puter Science, Munich University of Technology, 1995.[Sla95] J. Slaney. FINDER Finite Domain Enumerator Version 3.0 Notesand Guide. Technical Report, Australian National University, 1995.22



[SSY94] C. B. Suttner, G. Sutcli�e, and T. Yemenis. The tptp problem library.In Proceedings of CADE-12. Springer, 1994.[Sti84] M. E. Stickel. A prolog technology theorem prover. New generationcomputing, (2), 1984.[Sut91] C. B. Suttner. Competition versus Cooperation. Technical Report,Department of Computer Science, Munich University of Technology,1991.[Sut92] G. Sutcli�e. A Heterogeneous Parallel Deduction System. TechnicalReport, ICOT TM-1184, 1992.[Sut95] C. B. Suttner. Static Partitioning with Slackness. PhD thesis, Depart-ment of Computer Science, Munich University of Technology. 1995.

23


