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Abstract

We propose a framework for interaction description based on the paradigm of
roles to be used in software development. It includes processes to formulate global
interaction requirements abstracting from configuration and interaction details and
event traces to analyze global interaction properties like deadlock-freedom. The
main constituent of the framework are role descriptions which are structured into
state space, services, configuration and interaction. They capture the component
behaviour in a particular context. This allows for the description of a wide range
of software architectures and designs. Our approach ties together work in the area
of object-oriented programming languages and software architecture.
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1 Introduction

The engineering of complex software systems has made apparent the need for interaction
descriptions on different levels of abstraction. In the realm of object-oriented program-
ming languages several proposals have been made for specifying the collective behaviour
of object systems (e.g. [HHG90, KM96]). Interaction specification is also an important
topic in the emergent field of software architecture (e.g. [PW92, AG94, MDEK95, SG96)).
In addition to specification, the latter is also concerned with analysis of interaction de-
scriptions.

The aim of this paper is to tie together these efforts within a framework of interaction de-
scription ranging from the specification of interaction requirements through architectures
and designs with explicit interaction specification to the analysis of global interaction
properties. While our approach is not yet complete, we want to outline here the major
description techniques and the problems which can be tackled within the framework.

In the first part of the paper we describe the ROLE language for specifying architectures
and designs. The distinction between architecture and design is taken from [PW92]: archi-
tectures are concerned with the selection of components, their interactions and constraints
on the interactions, while designs are concerned with the details of the components. We
use the same description technique for both levels, but allow for different levels of ab-
straction covering this distinction.

We use roles for specifying components in a particular contert. Complete component
behaviour is obtained through composition of its roles. To support a clear separation
between architectural concerns and computational concerns and the localization of inter-
action information (required for interaction descriptions in [SG96]) a role description is
structured into state space, functionality, configuration and interaction. FEach element
can be specified on different levels of abstraction.

In the second part of the paper we discuss the analysis of global interaction properties and
the relationship of ROLE specifications to global interaction requirements. The distinc-
tion between property and requirement is made apparent through different description
techniques: we use event traces (as used in [Jac92, BRJ96, IT96, BHKS97]) to describe
global interaction sequences of a given architecture/design and we use processes (as used
for business process and workflow specification, e.g. [Sch92]) to describe interaction de-
pendencies of roles. The main difference is that the processes abstract from configuration
details and interaction control which is explicit in the event traces.

The ROLE language was developed within the SYSLAB project which aims at giving a
formal foundation to description techniques and tools used in the software development
process [Pae95, Bro95]. The formal semantics is given in terms of a mathematical system
model. It can be used for analysis and refinement techniques. In the following, we will
not go into details of the formal semantics of the description techniques. However, it has
been an important concern in the development of the proposed framework.

Altogether, the paper is structured as follows: In the next section we introduce the
basic concepts of ROLE. Then we give examples for the more advanced features like
dynamic configuration and role refinement. In the fourth section, we show how to analyze



global properties of ROLE architectures and designs and we discuss the transition from
interaction requirements to ROLE architectures. Related work is discussed along the way,
in particular in the last section, where also future work is sketched.

2 The concept of ROLE

In this section we explain the basic features of the ROLE language for specifying software
architectures and designs.

We view a software system as a set of concurrently interacting actors (components).
Interaction comnsists of asynchronous message exchange. Each actor offers a set of ser-
vices. Service calls are a particular type of messages. Actors can constrain the service
call acceptance. Services operate exclusively on the data encapsulated by the actor. A
mathematical system model along these lines is given in [KRB96].

The architecture/design of a system is described by roles and actors. Roles are used to
decompose the data and services of actors into meaningful units to be used in a particular
context. The roles of one actor are activated concurrently.

As a first example consider the ubiquitous Pipe component. In figure 1 its role description
is given. The attributes describe the state space of the role. The pipe encapsulates a
sequence of some data type data (for data type specification the algebraic specification
language MINISPECTRUM [Het96] is used). The communication partners determine the
configuration structure on a logical level. The pipe communicates with one reader and
one writer. The partners are fixed for all interactions of the pipe (in the next section we
describe how to handle dynamic configurations). They are named for use in the service
description and can be restricted to a particular role. In the case of a pipe any role is
allowed as reader and writer.

The services capture the functionality of the role. For each service first the input
and output messages are listed. The general syntax is input message : message type
from sender for input and output message : message type to receiver for output.
Sender and receiver must be names of communication partners. Each service may use an
arbitrary number of messages for communication. The service call message is labelled
with trigger. If there is no important call parameter, it may be omitted. The service
may also have a distinguished final output message. With this message the result of
service execution is delivered to the callee. Service calls to other roles are of type signal.
For the pipe the write service and the close services do not deliver output. The read
service receives the read request and delivers the data.

The behaviour of a service can be described on different levels of abstraction. No further
information need be specified, if only the configuration structure is important. The be-
haviour can be described by pre- and postconditions defining the involved data changes, if
only the effects on the state space and the triggering input and final output are relevant.
If the full (interaction) behaviour of a service is relevant, it is described by an enhanced
form of nondeterminstic input/output automata defined in [GKRB96]. In the example
such an automaton is given for the read service.



role pipe = {
attributes Data : sequence of data
partner reader, writer : any
service write = {
trigger input d : data from writer
post Data’ = Data o d }

service write_close = {
trigger from writer
post Data’ = Data o Eof }

service read = {
trigger from reader
final output d : data U Empty to reader
interaction

(Isempty(Data)) reader?[] / reader![Empty]

(= Isempty(Data)) reader?[] / reader![First(Data)] (Data’ = Rest(Data))
¥

service read_close = {
trigger from reader }

interaction

reader?[read())/readerf],  reader?[read_close())/

write only) ) writer?[write_close())/

writer?[write_close()]/ writer?[write_close()]/

reader?[read_close()]/

close_only

Figure 1: ROLE description of a pipe



Automata states are labelled with names to distinguish different control states (capturing
the sequence of message exchanged so far) !. Start states are marked with an incom-
ing arrow. The transitions are labelled with a tupel (precondition) sender?[input
pattern] / receiver![output pattern] (postcondition). Either part of the tupel
can be omitted. The input pattern specifies a set of input messages, the output pattern
a set of output message sequences. The preconditions may reference the input message
as well as the attributes, the postcondition may reference the input and output messages
together with the attributes (similar to TLA [Lam94], we use the bar notation to name
the attribute values of the successor state).

In the example, the read service distinguishes two cases: if the data sequence is empty,
the Empty message is returned, otherwise the first data element.

The service automata are used to define the full service behaviour at the design level.
For architecture description in many cases pre- and postconditions will suffice. There
is always one automata included in the role definition (called interaction automaton)
specifying the major interaction of the role. This part describes the behaviour which
is activated together with role initialization. Here the dependencies of service acceptance
on the control states of the role are defined, as well as the message exchange which does
not belong to some service. Note, however, that the state space may only be changed
by the services. In the pipe example the interaction automaton is only used to restrict
service acceptance depending on the close messages received. For notational convenience
input and output patterns may be omitted in the interaction automaton. Service calls are
distinguished from normal messages by appending ”()” and possibly some input argument,
if relevant for the transition.

The information about service call and returned result is duplicated in the interaction
automaton and the service automata. While in the interaction automaton it is captured
within one transition, the service automaton might specify a complex sequence of inter-
actions in between service acceptance and service completion. Because of exclusive data
access of the services no further service calls may be accepted during service execution.
This distinguishes services from methods in object-oriented approaches. The complete
role behaviour is captured by substituting the service transitions in the interaction au-
tomaton with the corresponding service automaton.

The interaction part localizes the information about enabledness of services. It is similar
to synchronization constraints in concurrent object-oriented programming languages (e.g.
[Nie93]). In contrast to these approaches the interaction automaton may be given on
different levels of abstraction. In our framework, nondeterminism corresponds to under-
specification. Pre- and postconditions or input and output patterns can be used to refine
the behaviour of the automaton.

The easy expression of underspecification is one reason for choosing automata instead
of process calculi like CSP [Hoa85]. Also, automata can make the lifecycle of role data
explicit. The major advantage of automata is their widespread use and ease of under-
standing. The latter is especially important for the architectural description which needs

'In [GKRBY6] this is extended to predicates characterizing data states



to be communicated between software designers and users.

pipe upper pipe
p2 upperacto p4
pipe split merge pipe
pl splitactor| mergeacto p6
\ pipe lower pipe/
p3 loweracto p5

Figure 2: Configuration Structure of CAPITALIZE

A system is specified in terms of roles and actors. Figure 2 gives a graphical description
of the configuration structure of the CAPITALIZE system discussed in [SG96]. Boxes
correspond to actors and their roles, arrows to partner references. Boxes show the name
of the actor in the lower part and the instantiated roles in the upper part. In addition
to the pipe role there are four roles corresponding to the filters split, upper, lower and
merge, which split an input stream into two streams for the alternate characters, change
all characters to upper or lower case and merge the input streams, respectively. The latter
roles are instantiated with one actor each, while there are six pipe actors responsible for
data transmission between the filter actors.

Figure 3 shows the description for the split role. It requests input from inpipe and
distributes it to outpipel and outpipe2, alternately until it receives the closing signal.
The communication partners are required to be pipes. For reuse it might be desirable
to allow more general communication partners, since the filters only use a subset of the
functionality of each pipe. This could be captured by role refinement which is discussed in
the next section. The filter roles do not offer any service to be called by the environment.
Their whole functionality is captured by the interaction part which reads from the input
pipes and writes to the output pipes by calling the appropriate services.

The configuration structure can also be given purely on the logical level where only roles
are involved. A set of interacting roles is called a contert?. In general each actor will
instantiate roles of different contexts (this is similar to the use of roles in organizational
modelling, e.g. [Yu93]. It does not show up in the simple examples used in the paper.).
Figure 4 gives the textual definitions for actor instantiation. For reasons of space we only
give the instantiation for one pipe and one filter actor. It defines for each role of each
actor the actors for the communication partners.

At first sight our description of the CAPITALIZE system looks similar to the WRIGHT
description given in [SG96]. We, too, have language features for description of components
and connectors (namely, roles), and for instantiation and configuration (namely, actors).
The interaction is specified in WRIGHT using the glue for connectors, while we use the
interaction automata. However, there are important differences.

2In the following we use italics to distinguish this meaning of the word context.
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role split = {
partner inpipe, outpipel, outpipe2 : pipe
input d : data from inpipe
output d : data to outpipel, d : data to outpipe2,
read(), read close() : signal to inpipe,
write_close() : signal to outpipel, write_close() : signal to outpipe2

interaction

inpipe?[Eof] / inpipe![read_close()],
outpipel![write_close()],
outpipe2![write_close()]

inpipe?[Eof] / inpipe![read_close()],
outpipel![write_close(
outpipe2![write_close

finpipe![read()] (d <> Eof) inpipe?[d] / outpipel![d], inpipe![read()]

(d <> Eof) inpipe?[d] / outpipe2![d], inpipe![read()]

Figure 3: ROLE description of a split filter

actor pl = {
roles pipe

partner reader = splitactor
}

actor splitactor = {
roles split

partner inpipe = pl, outpipel = p2, outpipe3 = p3
}

Figure 4: System CAPITALIZE



e First, we do not distinguish between components and connectors. With connec-
tors the interaction description of a set of roles is composed of the role descriptions
and the glue. In some cases (e.g. client/server) the glue does not contribute any
additional constraint on the role descriptions. It therefore is omitted in our fram-
work. In other cases (e.g. pipe), the glue describes additional control on the role
interactions. This is modelled in our framework as an additional role responsible
for facilitating the interaction between partner roles. Often a connector has an im-
portant data part (e.g. shared data), which makes it similar to components. For
localization of interaction information the distinction of state, functionality, config-
uration and interaction description within roles seems to be sufficient. Note that,
although we dispense with connectors, we introduce the notion of context to name
a set of interacting roles.

e The interface of roles may be structured through services. This is necessary for roles
which encapsulate data. One could argue that for architectural descriptions only the
message flow is relevant. In our view, data is very often important to understand
the purpose of the role. Here we agree with [PW92] which also argue for the close
interdependence of functionality and data.

3 Using ROLE

In this section we want to demonstrate the flexibility of ROLE. In particular we dis-
cuss packaging, dynamic configuration, role refinement and representation of architectural
styles.

3.1 Packaging

One of the main decision of software architecture is to assign responsibilities for inter-
action to the components. This is called packaging in [Sha95]. The component taking
responsibility is the active part, issuing calls to the environment, while the partners react.
These responsibilities are clearly visible in the interaction automata of the roles. In the

following, we will discuss several examples demonstrating the different ways of packaging
in ROLE.

client /server We start with a simple client/server system. The client is the active part,
the server reacts. We just assume one client. The description for several clients is
given in the next subsection. In figure 5 the ROLE description of this system is
given.

The server interaction automaton shows only reaction to service calls and no out-
going calls. This style is typical for sequential object-oriented systems where every
interaction is located in the services.

data transmission with active reader Now we look at a simple data transmission be-
tween a writer and a reader. We assign the responsibility to the reader, who requests



role static_client = { role static_server = {

partner p : static_server partner p : static_client

input d : data from p service request = {

output request() : signal to p trigger from p

interaction final output result : data to p }
interaction

/p![request()]

N
Ve ) el s

p?[d] /

Figure 5: Client/Server Roles with static configuration

data transmission from the writer by calling the read service. Only the reader can
shut down the connection. Therefore the writer has a service to receive the closing
signal. Figure 6 shows the corresponding ROLE description. The interaction parts
of the roles are almost symmetric, since the messages issued on one side are mirrored
as accepted messages on the other side. The reader additionally needs a transition
to receive the answer to the write call.

The case of an active writer who calls a write service of the reader reverses the
responsibility.

shared responsibility Finally, we look at data transmission where the responsibility
for interaction is shared between reader and writer. This means that both roles
issue transmission service calls, react to incoming transmission service calls and can
shutdown the connection. Figure 7 shows the corresponding ROLE description.

3.2 Dynamic Configuration

So far, only static configurations have been considered. In ROLE this corresponds to
partner declaration fixed for all services (as discussed for the CAPITALIZE system).
Dynamic configuration is expressed by placing the partner declaration within the service
definition. This makes the partner to parameters of the service call.

Figure 8 shows a client /server system with two server-actors and two client-actors. Client1
instantiates two client roles, one for each server. Client2 is only client of serverl and
therefore only instantiates one client role.

In our framework roles are instantiated concurrently. Thus the client-actor can issue calls
to different servers concurrently. If the interactions with different servers depend on each

10



role active_reader = {
partner p : passive_writer

input d : data from p role passive_writer = {

output read(), read _close : signal to p partner p : active_reader
service read = {...}

interaction service read_close = {...}
interaction

p?[d] /

N / p![read()] pelread(]/ pil p?[read_close()] /

Ip![read_close()] }

Figure 6: Data transmission with active reader

other, the client-actor has to instantiate an additional role coordinating the client-roles
(not modelled here).

The server-actors only instantiate one server-role. The server roles fo not fix any commu-
nication partner, since the partner of the request service is declared within the service.
Therefore the partner binding is done differently for each service call. The transitions of
the interaction automaton are labelled with x instead of the partner name.

3.3 Role Refinement

Even more flexibility of ROLE architectures and designs is possible with role refinement.
It allows for substitution of partner roles with refined roles exhibiting more complex
behaviour. In the realm of object-oriented systems a number of refinement (inheritance)
notions have been defined. We adopt our definition given in [PR94]. In that paper we
have defined refinement of behaviour automata. These automata are a simpler form of
the automata used here, where transitions are only labelled with inputs. In that context
refinement allows for addition of new attributes and new services. Also the enabledness
of services may be extended, if no additional nondeterminism is introduced, and it may
be restricted, if the state space is reduced because of reducing nondeterminism. It is
straightforward to adopt this work to outputs, such that also additional calls to new
services are allowed.

The main requirement for substitution is that within a context the behaviour guaran-
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role reader = {
partner p : writer
input d : data from p

output read(), read_close : signal to p role writer = {

service write = {...} partner p : reader' .
service write_close = {...} output write(), write_ close : signal to p
service read = {...}
interaction service read close = {...}
interaction
p?[d]/

P o0l /plwrite_close(),

p?[read_close()] /
/ pllread()]

/p![read_close()], }
p?[write_close()]/

p?[write()] /

Figure 7: Data transmission with shared control
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role server = {

role client = { service request = {
partner p : server partner p : client
input d : data from p trigger from p
output request() : signal to p final output result : data to p
interaction }
interaction

\ /p![request()]

-start -Wai i
\ *?[request()] / *I[result]

p?[d] /
} }
server
client | — 7
********* serverl
client client
clientl client2
server
server2

Figure 8: Server with dynamic clients
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teed to the environment is preserved. The definition of [PR94| ensures preservation of
service enabledness. This does not guarantee that all possible interaction sequences in a
given context are preserved, in particular deadlocks may be introduced. Translating the
results of [AG94], one can show that deadlock-freeness is preserved, if there is one role
coordinating all interactions (the glue) and this role is not refined. It would, of course
be desirable to come up with refinement notions preserving at least some class of global
interaction properties. As discussed in the next section we are experimenting with event
traces to formulate and analyze global properties. We do not go into detail here, but only
illustrate the use of role refinement to allow for reuse of roles. As an example consider the
substitution of the passive_writer partner (figure 6) by a pipe (figure 1). The start state
of the passive_writer is refined to the pipe start state and and all other pipe states refine
the stop state of the passive_writer. With this correspondence one can easily see that all
transitions of the passive_writer role are preserved.

3.4 Representing Architectural Styles

Different styles are captured by constraints on the use of the ROLE language. As men-
tioned before, object-oriented architectures are easily captured by restricting the interac-
tion automata such that each transition is labelled with an incoming service call (and
possible some output). In this style all interactions and functionality are located within
the services. Configuration is static or dynamic. Partner declarations global to all services
capture the references between classes.

For data flow architectures services and attributes are not used. In this style all interac-
tions and functionality are localized in the interaction part. Configuration is static.
Message-passing architectures use components with an explicit state space, which commu-
nicate through messages. This corresponds to roles with one distinguished service where
all the functionality and interaction is located. The interaction part of such a role is triv-
ial; it consists of an automaton with one transition for acceptance of the event triggering
this distinguished service. Configuration may again be static or dynamic.

While the above styles are represented by constraining the basic features of ROLE, event
systems and shared data systems are captured by introducing special roles. Event systems
use implicit invocation, where events are broadcast to all components that have regis-
tered for that event. Up to now broadcast is not included in ROLE. Therefore, implicit
invocation must be modelled by a separate role handling the event broadcast and the
registration. It seems straightforward to enhance ROLE with a more flexibel partner
declaration allowing sets of partners that are managed by the roles or services using some
binding mechanism. However, we have not worked out the details yet, in particular one
has to incoporate this new feature into the global interaction description discussed below.
Shared data may only be represented by a separate role encapsulating the data and offering
services as transactions for data access. There is no way in ROLE to express more fine
grained data sharing.

14



4 Global Interaction Description

Global interaction descriptions are important in the context of a software development
methodology, where architectures serve as an intermediate between the requirements and
the design. In our framework we start with an interface specification of the future system.
In a first step different contexts, namely set of roles, of the system behaviour are identi-
fied. Then the global interaction requirements for each context are specified as processes.
They determine the interactions between the roles in terms of message flow. At this level,
configuration details and interaction control is not tackled. Only the information depen-
dencies of the different roles are made explicit. In a next step the roles are detailed with
state space, services, configuration and interaction such that the global interaction re-
quirements are satisfied. Then the actors constituting the system are determined and the
set of of roles each actors instantiates. The behaviour of this system is analyzed in order
to verify global interaction properties as consistency of configuration, deadlock-freedom
or performance constraints.

Note that that the transition from processes to roles can be applied at different stages of
the software development: during requirements engineering it can be used for enterprise
modelling [LK95] and dialog specification, where the former determines the roles of the
employees in an organization and the latter determines the role of the software system.
The role description of the software system can be used as the starting point for the
software design outlined above. In each stage the step can be applied recursively, such
that roles are refined into sets of roles.

In the following we introduce two different description techniques for global interaction
properties and requirements. First we discuss the use of event traces for analysis of
dynamic properties. Then we show how to use processes to define global interaction
requirements and how to derive a ROLE architecure satisfying these requirements.

4.1 Global Interaction Properties

There are two kinds of global interaction properties. Static properties can be analyzed
without regard to the runtime behaviour of the system. In ROLE configuration consis-
tency can be checked statically: service calls must meet the partner bindings of the service
(or role) and bindings of actors must satify the role restrictions. For dynamic properties,
it suffices to look at the interaction of one role, if this role takes the responsibility for the
interaction (like the glue in WRIGHT). In general, however, the global picture must be
generated from the local interaction description. For this purpose we employ event traces
(also called interaction diagram or message sequence chart) as used in OOSE [Jac92], UML
[BRJ96] or Telecommunication applications [IT96, BHS96]. [BHKS97] shows how to use
event traces for interaction description between arbitrary components. This technique
can easily be adapted to actors used here.

As an example, consider three roles offering one service such that the service of each role
must be completed once before one role may accept a new service call. Figure 9 shows
the roles of a centralized architecture where the responsibility for the correct sequencing

15



is assigned to a fourth role. In this case the global interaction can be read of the local

interaction part of the controlling role.

role A ={
partner d : controller
service SA = {...}

interaction

d?[SAQ)/

role C={
partner d : controller
service SC = {...}

interaction

d?[SCO)

role B={

partner d : controller
service SB = {...}
interaction

d?[SBO)/

role controller = {
partner a: A,b: B,c: C
output request : signal to a ,

request : signal to b,
request : signal to ¢

interaction

/al[SA()] /b![SB()]

-

ICN[SC)]

Figure 9: Centralized control

Figure 10 shows the roles of an architecture, where the responsibility is distributed among
the components. To verify the required property the set of all possible interaction se-
quences must, be derived from the architecture. Figure 11 shows the corresponding event
trace for a system where each role is instantiated with one actor. For each actor a timeline
is shown. An arrow starting at a timeline indicates messages sent. An arrow ending at
a timeline indicates message acceptance. These diagrams are mostly used to illustrate
typical interaction sequences. In the context of the tool AUTOFOCUS [HSSS96] we are
investigating the possiblities of verifying automata against properties expressed with event

traces [EHS97).



role A ={

partner b: B, c: C
output SB() : signal to b
service SA = {...}

interaction

c?[SAQI/DISB()]

role C={

partner a: A,b: B
output SA() : signal to a
service SC = {...}

interaction
/ al[SA()]
b?[SCO)/
}

role B ={

partner a: A, c: C
output SC() : signal to ¢
service SB = {...}
interaction

a?[SB()]/c![SCO)]

Figure 10: Shared control

Cactor
SA

Aactor Bactor

SB

SC

Figure 11: Global Interaction View with event traces



4.2 Global Interaction Requirements

In this section we show how to relate ROLE specifications to global interaction require-
ments given as processes. Processes show the message flow between different roles in
reaction to a triggering input. At this level the behaviour of roles is not structured into
services, but into activities. An activity captures the internal behaviour between an input
and the subsequent output.

User Reservation Database

Process— Reserve
Request
Check
Offer
None\ Valid
Accep
Denial
Acknowledge Process
Offer Acknowledge-
ment
Yes | No

Figure 12: Reservation Process

As an example consider figure 12 showing the process of reservation in a car rental com-
pany. This process describes the reaction to a customer request for reservation. In
this context the reservation system consistst of two roles: the reservation_role and the
database_role. To accomplish the reservation, the system (in its reservation_role) commu-
nicates with the user (who in turn must communicate with the customer. This communi-
cation is not shown here.). It tries to reserve a car in the database. If this is not possible,
it denies the reservation requests. Otherwise it checks with the user whether the offer is
acceptable and accordingly releases the reservation In the picture the involved roles are
shown as column headers. Activities are depicted as boxes. Arrows indicate message flow.
The process description technique is similar to business process reengineering or work-
flow descriptions (e.g. [Sch92]). For a more detailed account of the process description
technique see [Thu96].

Processes describe global interaction on a high level of abstraction. In particular, they
abstract from the realization of the interaction (static vs. dynamic configuration, inter-
action control) and from the way different processses synchronize on the role data. In

18



the transition to architecture one changes from this global specification to component-
oriented specifications. Taking into account all processes a role is involved in, activities
are grouped into services and the interaction part. Activities with write access to the
role data must be grouped into services so that data consistency is preserved. As many
non-write activities as possible should be grouped together to ensure that the flow of
activities determined through the process is reflected as closely as possible in the services.
In the example, the reserve and release activity of the database_role must be separate
services because of the write access to the data. The reservation_role does not offer ser-
vices. Instead, it controls the flow of interaction as specified in the process. Thus, all
reservation_role activities are grouped together into the interaction part. Figure 13 shows
the resulting configuration.

reservation database

reserve

release

Figure 13: Configuration

Figure 14 shows the corresponding role definitions.

As exemplified above, in our framework global interaction specification is separated from
the architecture specification. Processes make explicit the functional requirements on the
roles. Architectural decisions like configuration and interaction control are captured with
the roles.

5 Conclusions, Related and Future Work

We hope to have shown that roles are a useful paradigm in the realm of interaction de-
scription. They make apparent the different contexts of actor interaction. We structure
the roles description into state space, services, configuration and interaction to support
different levels of abstractions and analysis techniques concentrating on different aspects.
We have put the role paradigm into a framework for global interaction description. Event
traces are used for analysis of dynamic properties, processes are used for global interaction
requirements. We have sketched a methodology relating the different interaction descrip-
tions. Our approach is inspired from work found in the area of object-oriented systems
and software architecture. We have discussed the relationship to software architecture
research along the way. Related work in object-orientation is discussed below. Also, our
approach is not complete. Future enhancements of ROLE descriptions close the paper.
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role reservation = {

partner dat : database, u : user

input request : Reservation_Request from u, offer : Offer from dat,
in : Bool from u

output offer : Offer to u, reserve(), release() : signal to dat,

interaction

u?[request] / dat![reserve(reques
start wait for

reservatio

dat?[no(request)] /

u![no(request)]
dat?[offer] /
I[offer
ul ] u?[yes]/
u?[no]/
dat![release(offer)]
wait for
acknowledgeme

role database = {
attributes free : Time — Set Car
service reserve = {
partner res : reservation
trigger input request : Reservation_Request from res
final output of : Offer to res
post (of = offer(car,time(req)) A car € free(time(req)) A car ¢ free’(time(req))) V
(of = no(time(req)) A free(time(req)) = 0)}

service release = {
partner res : reservation
trigger input offer(car,time) : Offer from res
pre car ¢ free(time)
post car € free’(time) }

Figure 14: Reservation Roles
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Related Work

In the realm of object-oriented systems contracts were one of the first interaction descrip-
tions proposed. Contracts are similar to contexts, in that they specify a set of involved
communication participants and their responsibilities within the contract. However, be-
haviour description of the participants is divided between local descriptions specifying the
reaction to service calls and an invariant describing the overall behaviour. Also contracts
are used in addition to class specification, such that conformance between classes and
participant declaration must be shown. Participants do not have a separate interaction
part allowing for synchronization behaviour. Finally, no concurrency is allowed.

Our approach is more closely related to the work of Kristensen [Kri95, KM96] on activities
and roles. There, activities are used to make interaction explicit, while roles are only
used to partition the state space and services of objects. Thus, roles are component
specifications, while activities are connector specifications, which is not distinguished
in our framework. Activities may also have synchronization behaviour. However, this
behaviour is interleaved with service behaviour, while we only use it to control the service
acceptance. The main purpose of activities in Kristensens work is to give an abstract
model of the interaction. Therefore also a graphical description of the relationships and
control flow of an activity is given. We use processes to give this abstract model, where
we additionally abstract from the service structure.

The concept of roles has also been explored in the area of object-oriented database systems
[GSR96]. This research is mainly concerned with the classification aspect of roles and does
not cover concurrency or synchronization behaviour.

With OORASS [RAB'92] we share the motivation of putting interaction description into
a methodological framework. In that work also the problem is separated into several con-
texts (depicted as role diagrams). The role diagrams only show the reference structure,
while we use processes to show the interaction dependencies. The next step in OORASS
is to synthesize the different role models for object description using distinguished compo-
sition operators. In our framwork roles are independent. For coordination of the different
roles of one actor a separate role must be instantiated. To our knowledge no formal
definition of OORASS description techniques has been given.

Future Work

We are planning to enhance the flexibility of ROLE in several ways: To describe truely
dynamic systems, we want to incorporate dynamic acquisition and abandonment of roles.
This, of course, complicates analysis of configuration structure. We also want to incor-
porate actor classes to allow more succinct system descriptions. We have not yet decided
whether to incorporate inheritance between actor classes. It seems that many uses of in-
heritance can be captured by role instantiation. However, inheritance would be useful on
the level of roles (making the concept of role refinement explicit in the ROLE language).
Yet another, area of research will be role hierachies where one role is substituted by a
whole set of roles.
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Besides extension of the description techniques it would be interesting to explore the use
of the ROLE framwork for different kinds of interaction description. A prominent example
along these lines is the description of design patterns.
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