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A Framework for InteractionDescription with Roles �
Barbara PaechInstitut f�ur Informatik, Technische Universit�at M�unchenD-80333 M�unchen, Germanyemail: paech@informatik.tu-muenchen.deAbstractWe propose a framework for interaction description based on the paradigm ofroles to be used in software development. It includes processes to formulate globalinteraction requirements abstracting from con�guration and interaction details andevent traces to analyze global interaction properties like deadlock-freedom. Themain constituent of the framework are role descriptions which are structured intostate space, services, con�guration and interaction. They capture the componentbehaviour in a particular context. This allows for the description of a wide rangeof software architectures and designs. Our approach ties together work in the areaof object-oriented programming languages and software architecture.Keywords:Software Architecture, Object-Orientation, Software Development Methodology, Interac-tion Description, Roles, Processes, Event Traces�This paper originated in the SysLab project, which is supported by the DFG under the Leibnizpreisand by Siemens-Nixdorf. Its �nal version was completed while the author was supported by the BayerischeForschungsstiftung within the ForSoft project. 1
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1 IntroductionThe engineering of complex software systems has made apparent the need for interactiondescriptions on di�erent levels of abstraction. In the realm of object-oriented program-ming languages several proposals have been made for specifying the collective behaviourof object systems (e.g. [HHG90, KM96]). Interaction speci�cation is also an importanttopic in the emergent �eld of software architecture (e.g. [PW92, AG94, MDEK95, SG96]).In addition to speci�cation, the latter is also concerned with analysis of interaction de-scriptions.The aim of this paper is to tie together these e�orts within a framework of interaction de-scription ranging from the speci�cation of interaction requirements through architecturesand designs with explicit interaction speci�cation to the analysis of global interactionproperties. While our approach is not yet complete, we want to outline here the majordescription techniques and the problems which can be tackled within the framework.In the �rst part of the paper we describe the ROLE language for specifying architecturesand designs. The distinction between architecture and design is taken from [PW92]: archi-tectures are concerned with the selection of components, their interactions and constraintson the interactions, while designs are concerned with the details of the components. Weuse the same description technique for both levels, but allow for di�erent levels of ab-straction covering this distinction.We use roles for specifying components in a particular context. Complete componentbehaviour is obtained through composition of its roles. To support a clear separationbetween architectural concerns and computational concerns and the localization of inter-action information (required for interaction descriptions in [SG96]) a role description isstructured into state space, functionality, con�guration and interaction. Each elementcan be speci�ed on di�erent levels of abstraction.In the second part of the paper we discuss the analysis of global interaction properties andthe relationship of ROLE speci�cations to global interaction requirements. The distinc-tion between property and requirement is made apparent through di�erent descriptiontechniques: we use event traces (as used in [Jac92, BRJ96, IT96, BHKS97]) to describeglobal interaction sequences of a given architecture/design and we use processes (as usedfor business process and work
ow speci�cation, e.g. [Sch92]) to describe interaction de-pendencies of roles. The main di�erence is that the processes abstract from con�gurationdetails and interaction control which is explicit in the event traces.The ROLE language was developed within the SYSLAB project which aims at giving aformal foundation to description techniques and tools used in the software developmentprocess [Pae95, Bro95]. The formal semantics is given in terms of a mathematical systemmodel. It can be used for analysis and re�nement techniques. In the following, we willnot go into details of the formal semantics of the description techniques. However, it hasbeen an important concern in the development of the proposed framework.Altogether, the paper is structured as follows: In the next section we introduce thebasic concepts of ROLE. Then we give examples for the more advanced features likedynamic con�guration and role re�nement. In the fourth section, we show how to analyze3



global properties of ROLE architectures and designs and we discuss the transition frominteraction requirements to ROLE architectures. Related work is discussed along the way,in particular in the last section, where also future work is sketched.2 The concept of ROLEIn this section we explain the basic features of the ROLE language for specifying softwarearchitectures and designs.We view a software system as a set of concurrently interacting actors (components).Interaction consists of asynchronous message exchange. Each actor o�ers a set of ser-vices. Service calls are a particular type of messages. Actors can constrain the servicecall acceptance. Services operate exclusively on the data encapsulated by the actor. Amathematical system model along these lines is given in [KRB96].The architecture/design of a system is described by roles and actors. Roles are used todecompose the data and services of actors into meaningful units to be used in a particularcontext. The roles of one actor are activated concurrently.As a �rst example consider the ubiquitous Pipe component. In �gure 1 its role descriptionis given. The attributes describe the state space of the role. The pipe encapsulates asequence of some data type data (for data type speci�cation the algebraic speci�cationlanguage MiniSpectrum [Het96] is used). The communication partners determine thecon�guration structure on a logical level. The pipe communicates with one reader andone writer. The partners are �xed for all interactions of the pipe (in the next section wedescribe how to handle dynamic con�gurations). They are named for use in the servicedescription and can be restricted to a particular role. In the case of a pipe any role isallowed as reader and writer.The services capture the functionality of the role. For each service �rst the inputand output messages are listed. The general syntax is input message : message typefrom sender for input and output message : message type to receiver for output.Sender and receiver must be names of communication partners. Each service may use anarbitrary number of messages for communication. The service call message is labelledwith trigger. If there is no important call parameter, it may be omitted. The servicemay also have a distinguished final output message. With this message the result ofservice execution is delivered to the callee. Service calls to other roles are of type signal.For the pipe the write service and the close services do not deliver output. The readservice receives the read request and delivers the data.The behaviour of a service can be described on di�erent levels of abstraction. No furtherinformation need be speci�ed, if only the con�guration structure is important. The be-haviour can be described by pre- and postconditions de�ning the involved data changes, ifonly the e�ects on the state space and the triggering input and �nal output are relevant.If the full (interaction) behaviour of a service is relevant, it is described by an enhancedform of nondeterminstic input/output automata de�ned in [GKRB96]. In the examplesuch an automaton is given for the read service.4



role pipe = fattributes Data : sequence of datapartner reader, writer : anyservice write = ftrigger input d : data from writerpost Data' = Data � d gservice write close = ftrigger from writerpost Data' = Data � Eof gservice read = ftrigger from readerfinal output d : data [ Empty to readerinteraction
start_read stop_read

( ¬

(Isempty(Data)) reader?[] / reader![Empty]

Isempty(Data)) reader?[] / reader![First(Data)] (Data’ = Rest(Data))gservice read close = ftrigger from reader ginteraction
start write only

read_only stop

close_only

writer?[write()]/

reader?[read_close()]/

writer?[write_close()]/

(Data <> Eof) reader?[read()]/reader![]

reader?[read()]/reader![],

reader?[read_close()]/

reader?[read_close()]/

writer?[write_close()]/

(Data = Eof) reader?[read()]/reader![]

writer?[write_close()]/

g Figure 1: ROLE description of a pipe5



Automata states are labelled with names to distinguish di�erent control states (capturingthe sequence of message exchanged so far) 1. Start states are marked with an incom-ing arrow. The transitions are labelled with a tupel (precondition) sender?[inputpattern] / receiver![output pattern] (postcondition). Either part of the tupelcan be omitted. The input pattern speci�es a set of input messages, the output patterna set of output message sequences. The preconditions may reference the input messageas well as the attributes, the postcondition may reference the input and output messagestogether with the attributes (similar to TLA [Lam94], we use the bar notation to namethe attribute values of the successor state).In the example, the read service distinguishes two cases: if the data sequence is empty,the Empty message is returned, otherwise the �rst data element.The service automata are used to de�ne the full service behaviour at the design level.For architecture description in many cases pre- and postconditions will su�ce. Thereis always one automata included in the role de�nition (called interaction automaton)specifying the major interaction of the role. This part describes the behaviour whichis activated together with role initialization. Here the dependencies of service acceptanceon the control states of the role are de�ned, as well as the message exchange which doesnot belong to some service. Note, however, that the state space may only be changedby the services. In the pipe example the interaction automaton is only used to restrictservice acceptance depending on the close messages received. For notational convenienceinput and output patterns may be omitted in the interaction automaton. Service calls aredistinguished from normal messages by appending "()" and possibly some input argument,if relevant for the transition.The information about service call and returned result is duplicated in the interactionautomaton and the service automata. While in the interaction automaton it is capturedwithin one transition, the service automaton might specify a complex sequence of inter-actions in between service acceptance and service completion. Because of exclusive dataaccess of the services no further service calls may be accepted during service execution.This distinguishes services from methods in object-oriented approaches. The completerole behaviour is captured by substituting the service transitions in the interaction au-tomaton with the corresponding service automaton.The interaction part localizes the information about enabledness of services. It is similarto synchronization constraints in concurrent object-oriented programming languages (e.g.[Nie93]). In contrast to these approaches the interaction automaton may be given ondi�erent levels of abstraction. In our framework, nondeterminism corresponds to under-speci�cation. Pre- and postconditions or input and output patterns can be used to re�nethe behaviour of the automaton.The easy expression of underspeci�cation is one reason for choosing automata insteadof process calculi like CSP [Hoa85]. Also, automata can make the lifecycle of role dataexplicit. The major advantage of automata is their widespread use and ease of under-standing. The latter is especially important for the architectural description which needs1In [GKRB96] this is extended to predicates characterizing data states6



to be communicated between software designers and users.
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Figure 2: Con�guration Structure of CAPITALIZEA system is speci�ed in terms of roles and actors. Figure 2 gives a graphical descriptionof the con�guration structure of the CAPITALIZE system discussed in [SG96]. Boxescorrespond to actors and their roles, arrows to partner references. Boxes show the nameof the actor in the lower part and the instantiated roles in the upper part. In additionto the pipe role there are four roles corresponding to the �lters split, upper, lower andmerge, which split an input stream into two streams for the alternate characters, changeall characters to upper or lower case and merge the input streams, respectively. The latterroles are instantiated with one actor each, while there are six pipe actors responsible fordata transmission between the �lter actors.Figure 3 shows the description for the split role. It requests input from inpipe anddistributes it to outpipe1 and outpipe2, alternately until it receives the closing signal.The communication partners are required to be pipes. For reuse it might be desirableto allow more general communication partners, since the �lters only use a subset of thefunctionality of each pipe. This could be captured by role re�nement which is discussed inthe next section. The �lter roles do not o�er any service to be called by the environment.Their whole functionality is captured by the interaction part which reads from the inputpipes and writes to the output pipes by calling the appropriate services.The con�guration structure can also be given purely on the logical level where only rolesare involved. A set of interacting roles is called a context2. In general each actor willinstantiate roles of di�erent contexts (this is similar to the use of roles in organizationalmodelling, e.g. [Yu93]. It does not show up in the simple examples used in the paper.).Figure 4 gives the textual de�nitions for actor instantiation. For reasons of space we onlygive the instantiation for one pipe and one �lter actor. It de�nes for each role of eachactor the actors for the communication partners.At �rst sight our description of the CAPITALIZE system looks similar to the WRIGHTdescription given in [SG96]. We, too, have language features for description of componentsand connectors (namely, roles), and for instantiation and con�guration (namely, actors).The interaction is speci�ed in WRIGHT using the glue for connectors, while we use theinteraction automata. However, there are important di�erences.2In the following we use italics to distinguish this meaning of the word context.7



role split = fpartner inpipe, outpipe1, outpipe2 : pipeinput d : data from inpipeoutput d : data to outpipe1, d : data to outpipe2,read(), read close() : signal to inpipe,write close() : signal to outpipe1, write close() : signal to outpipe2interaction
wait2

stop

start

wait1/inpipe![read()]

inpipe?[Eof] / inpipe![read_close()],

(d <> Eof) inpipe?[d] / outpipe2![d], inpipe![read()]

(d <> Eof) inpipe?[d] / outpipe1![d], inpipe![read()]

inpipe?[Eof] / inpipe![read_close()],
outpipe1![write_close()],

outpipe2![write_close()]
outpipe1![write_close()],
outpipe2![write_close()]

g Figure 3: ROLE description of a split �lter
actor p1 = froles pipepartner reader = splitactorg...actor splitactor = froles splitpartner inpipe = p1, outpipe1 = p2, outpipe3 = p3g.... Figure 4: System CAPITALIZE
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� First, we do not distinguish between components and connectors. With connec-tors the interaction description of a set of roles is composed of the role descriptionsand the glue. In some cases (e.g. client/server) the glue does not contribute anyadditional constraint on the role descriptions. It therefore is omitted in our fram-work. In other cases (e.g. pipe), the glue describes additional control on the roleinteractions. This is modelled in our framework as an additional role responsiblefor facilitating the interaction between partner roles. Often a connector has an im-portant data part (e.g. shared data), which makes it similar to components. Forlocalization of interaction information the distinction of state, functionality, con�g-uration and interaction description within roles seems to be su�cient. Note that,although we dispense with connectors, we introduce the notion of context to namea set of interacting roles.� The interface of roles may be structured through services. This is necessary for roleswhich encapsulate data. One could argue that for architectural descriptions only themessage 
ow is relevant. In our view, data is very often important to understandthe purpose of the role. Here we agree with [PW92] which also argue for the closeinterdependence of functionality and data.3 Using ROLEIn this section we want to demonstrate the 
exibility of ROLE. In particular we dis-cuss packaging, dynamic con�guration, role re�nement and representation of architecturalstyles.3.1 PackagingOne of the main decision of software architecture is to assign responsibilities for inter-action to the components. This is called packaging in [Sha95]. The component takingresponsibility is the active part, issuing calls to the environment, while the partners react.These responsibilities are clearly visible in the interaction automata of the roles. In thefollowing, we will discuss several examples demonstrating the di�erent ways of packagingin ROLE.client/server We start with a simple client/server system. The client is the active part,the server reacts. We just assume one client. The description for several clients isgiven in the next subsection. In �gure 5 the ROLE description of this system isgiven.The server interaction automaton shows only reaction to service calls and no out-going calls. This style is typical for sequential object-oriented systems where everyinteraction is located in the services.data transmission with active reader Now we look at a simple data transmission be-tween a writer and a reader. We assign the responsibility to the reader, who requests9



role static client = fpartner p : static serverinput d : data from poutput request() : signal to pinteraction
start wait

/p![request()]

p?[d] / g

role static server = fpartner p : static clientservice request = ftrigger from pfinal output result : data to p ginteraction
start p?[request()] / p![result]ggFigure 5: Client/Server Roles with static con�gurationdata transmission from the writer by calling the read service. Only the reader canshut down the connection. Therefore the writer has a service to receive the closingsignal. Figure 6 shows the corresponding ROLE description. The interaction partsof the roles are almost symmetric, since the messages issued on one side are mirroredas accepted messages on the other side. The reader additionally needs a transitionto receive the answer to the write call.The case of an active writer who calls a write service of the reader reverses theresponsibility.shared responsibility Finally, we look at data transmission where the responsibilityfor interaction is shared between reader and writer. This means that both rolesissue transmission service calls, react to incoming transmission service calls and canshutdown the connection. Figure 7 shows the corresponding ROLE description.3.2 Dynamic Con�gurationSo far, only static con�gurations have been considered. In ROLE this corresponds topartner declaration �xed for all services (as discussed for the CAPITALIZE system).Dynamic con�guration is expressed by placing the partner declaration within the servicede�nition. This makes the partner to parameters of the service call.Figure 8 shows a client/server system with two server-actors and two client-actors. Client1instantiates two client roles, one for each server. Client2 is only client of server1 andtherefore only instantiates one client role.In our framework roles are instantiated concurrently. Thus the client-actor can issue callsto di�erent servers concurrently. If the interactions with di�erent servers depend on each10



role active reader = fpartner p : passive writerinput d : data from poutput read(), read close : signal to pinteraction
start

wait

stop

p?[d] / 

/ p![read()]

/p![read_close()]g

role passive writer = fpartner p : active readerservice read = f...gservice read close = f...ginteraction
stopstart

p?[read()] / p![]
p?[read_close()] /g

Figure 6: Data transmission with active readerother, the client-actor has to instantiate an additional role coordinating the client-roles(not modelled here).The server-actors only instantiate one server-role. The server roles fo not �x any commu-nication partner, since the partner of the request service is declared within the service.Therefore the partner binding is done di�erently for each service call. The transitions ofthe interaction automaton are labelled with � instead of the partner name.3.3 Role Re�nementEven more 
exibility of ROLE architectures and designs is possible with role re�nement.It allows for substitution of partner roles with re�ned roles exhibiting more complexbehaviour. In the realm of object-oriented systems a number of re�nement (inheritance)notions have been de�ned. We adopt our de�nition given in [PR94]. In that paper wehave de�ned re�nement of behaviour automata. These automata are a simpler form ofthe automata used here, where transitions are only labelled with inputs. In that contextre�nement allows for addition of new attributes and new services. Also the enablednessof services may be extended, if no additional nondeterminism is introduced, and it maybe restricted, if the state space is reduced because of reducing nondeterminism. It isstraightforward to adopt this work to outputs, such that also additional calls to newservices are allowed.The main requirement for substitution is that within a context the behaviour guaran-11



role reader = fpartner p : writerinput d : data from poutput read(), read close : signal to pservice write = f...gservice write close = f...ginteraction
start

wait

stop

p?[d] /

p?[write()] /

 / p![read()]

/p![read_close()],
p?[write_close()]/g

role writer = fpartner p : readeroutput write(), write close : signal to pservice read = f...gservice read close = f...ginteraction
stopstart

/p![write_close()],
p?[read_close()] /

/p![write()]
p?[read()] / p![d],

g
Figure 7: Data transmission with shared control
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role client = fpartner p : serverinput d : data from poutput request() : signal to pinteraction
start wait

/p![request()]

p?[d] / g

role server = fservice request = fpartner p : clienttrigger from pfinal output result : data to pginteraction
start *?[request()] / *![result]g

client1

client

client
server1

server

server2

server

client2

client

Figure 8: Server with dynamic clients
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teed to the environment is preserved. The de�nition of [PR94] ensures preservation ofservice enabledness. This does not guarantee that all possible interaction sequences in agiven context are preserved, in particular deadlocks may be introduced. Translating theresults of [AG94], one can show that deadlock-freeness is preserved, if there is one rolecoordinating all interactions (the glue) and this role is not re�ned. It would, of coursebe desirable to come up with re�nement notions preserving at least some class of globalinteraction properties. As discussed in the next section we are experimenting with eventtraces to formulate and analyze global properties. We do not go into detail here, but onlyillustrate the use of role re�nement to allow for reuse of roles. As an example consider thesubstitution of the passive writer partner (�gure 6) by a pipe (�gure 1). The start stateof the passive writer is re�ned to the pipe start state and and all other pipe states re�nethe stop state of the passive writer. With this correspondence one can easily see that alltransitions of the passive writer role are preserved.3.4 Representing Architectural StylesDi�erent styles are captured by constraints on the use of the ROLE language. As men-tioned before, object-oriented architectures are easily captured by restricting the interac-tion automata such that each transition is labelled with an incoming service call (andpossible some output). In this style all interactions and functionality are located withinthe services. Con�guration is static or dynamic. Partner declarations global to all servicescapture the references between classes.For data 
ow architectures services and attributes are not used. In this style all interac-tions and functionality are localized in the interaction part. Con�guration is static.Message-passing architectures use components with an explicit state space, which commu-nicate through messages. This corresponds to roles with one distinguished service whereall the functionality and interaction is located. The interaction part of such a role is triv-ial; it consists of an automaton with one transition for acceptance of the event triggeringthis distinguished service. Con�guration may again be static or dynamic.While the above styles are represented by constraining the basic features of ROLE, eventsystems and shared data systems are captured by introducing special roles. Event systemsuse implicit invocation, where events are broadcast to all components that have regis-tered for that event. Up to now broadcast is not included in ROLE. Therefore, implicitinvocation must be modelled by a separate role handling the event broadcast and theregistration. It seems straightforward to enhance ROLE with a more 
exibel partnerdeclaration allowing sets of partners that are managed by the roles or services using somebinding mechanism. However, we have not worked out the details yet, in particular onehas to incoporate this new feature into the global interaction description discussed below.Shared data may only be represented by a separate role encapsulating the data and o�eringservices as transactions for data access. There is no way in ROLE to express more �negrained data sharing.
14



4 Global Interaction DescriptionGlobal interaction descriptions are important in the context of a software developmentmethodology, where architectures serve as an intermediate between the requirements andthe design. In our framework we start with an interface speci�cation of the future system.In a �rst step di�erent contexts, namely set of roles, of the system behaviour are identi-�ed. Then the global interaction requirements for each context are speci�ed as processes.They determine the interactions between the roles in terms of message 
ow. At this level,con�guration details and interaction control is not tackled. Only the information depen-dencies of the di�erent roles are made explicit. In a next step the roles are detailed withstate space, services, con�guration and interaction such that the global interaction re-quirements are satis�ed. Then the actors constituting the system are determined and theset of of roles each actors instantiates. The behaviour of this system is analyzed in orderto verify global interaction properties as consistency of con�guration, deadlock-freedomor performance constraints.Note that that the transition from processes to roles can be applied at di�erent stages ofthe software development: during requirements engineering it can be used for enterprisemodelling [LK95] and dialog speci�cation, where the former determines the roles of theemployees in an organization and the latter determines the role of the software system.The role description of the software system can be used as the starting point for thesoftware design outlined above. In each stage the step can be applied recursively, suchthat roles are re�ned into sets of roles.In the following we introduce two di�erent description techniques for global interactionproperties and requirements. First we discuss the use of event traces for analysis ofdynamic properties. Then we show how to use processes to de�ne global interactionrequirements and how to derive a ROLE architecure satisfying these requirements.4.1 Global Interaction PropertiesThere are two kinds of global interaction properties. Static properties can be analyzedwithout regard to the runtime behaviour of the system. In ROLE con�guration consis-tency can be checked statically: service calls must meet the partner bindings of the service(or role) and bindings of actors must satify the role restrictions. For dynamic properties,it su�ces to look at the interaction of one role, if this role takes the responsibility for theinteraction (like the glue in WRIGHT). In general, however, the global picture must begenerated from the local interaction description. For this purpose we employ event traces(also called interaction diagram or message sequence chart) as used in OOSE [Jac92], UML[BRJ96] or Telecommunication applications [IT96, BHS96]. [BHKS97] shows how to useevent traces for interaction description between arbitrary components. This techniquecan easily be adapted to actors used here.As an example, consider three roles o�ering one service such that the service of each rolemust be completed once before one role may accept a new service call. Figure 9 showsthe roles of a centralized architecture where the responsibility for the correct sequencing15



is assigned to a fourth role. In this case the global interaction can be read of the localinteraction part of the controlling role.role A = fpartner d : controllerservice SA = f...ginteraction
start d?[SA()]/g

role B = fpartner d : controllerservice SB = f...ginteraction
start d?[SB()]/g

role C = fpartner d : controllerservice SC = f...ginteraction
start d?[SC()]/g

role controller = fpartner a : A, b : B, c : Coutput request : signal to a ,request : signal to b,request : signal to cinteraction
start first second

/c![SC()]

/b![SB()]/a![SA()]

gFigure 9: Centralized controlFigure 10 shows the roles of an architecture, where the responsibility is distributed amongthe components. To verify the required property the set of all possible interaction se-quences must be derived from the architecture. Figure 11 shows the corresponding eventtrace for a system where each role is instantiated with one actor. For each actor a timelineis shown. An arrow starting at a timeline indicates messages sent. An arrow ending ata timeline indicates message acceptance. These diagrams are mostly used to illustratetypical interaction sequences. In the context of the tool AUTOFOCUS [HSSS96] we areinvestigating the possiblities of verifying automata against properties expressed with eventtraces [EHS97]. 16



role A = fpartner b : B, c : Coutput SB() : signal to bservice SA = f...ginteraction
start c?[SA()]/b![SB()]g

role B = fpartner a : A, c : Coutput SC() : signal to cservice SB = f...ginteraction
start a?[SB()]/c![SC()]grole C = fpartner a : A, b : Boutput SA() : signal to aservice SC = f...ginteraction

start wait

/ a![SA()]

b?[SC()]/g Figure 10: Shared control
Cactor Aactor Bactor

SA
SB

SCFigure 11: Global Interaction View with event traces
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4.2 Global Interaction RequirementsIn this section we show how to relate ROLE speci�cations to global interaction require-ments given as processes. Processes show the message 
ow between di�erent roles inreaction to a triggering input. At this level the behaviour of roles is not structured intoservices, but into activities. An activity captures the internal behaviour between an inputand the subsequent output.
Request Process

Request
Reserve

Check
Offer
None Valid

Accept
Denial

Acknowledge
Offer

Process
Acknowledge-
ment
Yes No

Release

User Reservation Database

Figure 12: Reservation ProcessAs an example consider �gure 12 showing the process of reservation in a car rental com-pany. This process describes the reaction to a customer request for reservation. Inthis context the reservation system consistst of two roles: the reservation role and thedatabase role. To accomplish the reservation, the system (in its reservation role) commu-nicates with the user (who in turn must communicate with the customer. This communi-cation is not shown here.). It tries to reserve a car in the database. If this is not possible,it denies the reservation requests. Otherwise it checks with the user whether the o�er isacceptable and accordingly releases the reservation In the picture the involved roles areshown as column headers. Activities are depicted as boxes. Arrows indicate message 
ow.The process description technique is similar to business process reengineering or work-
ow descriptions (e.g. [Sch92]). For a more detailed account of the process descriptiontechnique see [Thu96].Processes describe global interaction on a high level of abstraction. In particular, theyabstract from the realization of the interaction (static vs. dynamic con�guration, inter-action control) and from the way di�erent processses synchronize on the role data. In18



the transition to architecture one changes from this global speci�cation to component-oriented speci�cations. Taking into account all processes a role is involved in, activitiesare grouped into services and the interaction part. Activities with write access to therole data must be grouped into services so that data consistency is preserved. As manynon-write activities as possible should be grouped together to ensure that the 
ow ofactivities determined through the process is re
ected as closely as possible in the services.In the example, the reserve and release activity of the database role must be separateservices because of the write access to the data. The reservation role does not o�er ser-vices. Instead, it controls the 
ow of interaction as speci�ed in the process. Thus, allreservation role activities are grouped together into the interaction part. Figure 13 showsthe resulting con�guration.
release

reserve

databasereservation

Figure 13: Con�gurationFigure 14 shows the corresponding role de�nitions.As exempli�ed above, in our framework global interaction speci�cation is separated fromthe architecture speci�cation. Processes make explicit the functional requirements on theroles. Architectural decisions like con�guration and interaction control are captured withthe roles.5 Conclusions, Related and Future WorkWe hope to have shown that roles are a useful paradigm in the realm of interaction de-scription. They make apparent the di�erent contexts of actor interaction. We structurethe roles description into state space, services, con�guration and interaction to supportdi�erent levels of abstractions and analysis techniques concentrating on di�erent aspects.We have put the role paradigm into a framework for global interaction description. Eventtraces are used for analysis of dynamic properties, processes are used for global interactionrequirements. We have sketched a methodology relating the di�erent interaction descrip-tions. Our approach is inspired from work found in the area of object-oriented systemsand software architecture. We have discussed the relationship to software architectureresearch along the way. Related work in object-orientation is discussed below. Also, ourapproach is not complete. Future enhancements of ROLE descriptions close the paper.19



role reservation = fpartner dat : database, u : userinput request : Reservation Request from u, o�er : O�er from dat,in : Bool from uoutput o�er : O�er to u, reserve(), release() : signal to dat,interaction
start wait for

reservation

stop

wait for
acknowledgement

dat?[no(request)] /
u![no(request)]

dat?[offer] /
u![offer]

u?[yes] /

u?[no] /

u?[request] / dat![reserve(request)]

dat![release(offer)]grole database = fattributes free : Time ! Set Carservice reserve = fpartner res : reservationtrigger input request : Reservation Request from resfinal output of : O�er to respost (of = o�er(car,time(req)) ^ car 2 free(time(req)) ^ car 62 free'(time(req))) _(of = no(time(req)) ^ free(time(req)) = ;)gservice release = fpartner res : reservationtrigger input o�er(car,time) : O�er from respre car 62 free(time)post car 2 free'(time) gg Figure 14: Reservation Roles
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Related WorkIn the realm of object-oriented systems contracts were one of the �rst interaction descrip-tions proposed. Contracts are similar to contexts, in that they specify a set of involvedcommunication participants and their responsibilities within the contract. However, be-haviour description of the participants is divided between local descriptions specifying thereaction to service calls and an invariant describing the overall behaviour. Also contractsare used in addition to class speci�cation, such that conformance between classes andparticipant declaration must be shown. Participants do not have a separate interactionpart allowing for synchronization behaviour. Finally, no concurrency is allowed.Our approach is more closely related to the work of Kristensen [Kri95, KM96] on activitiesand roles. There, activities are used to make interaction explicit, while roles are onlyused to partition the state space and services of objects. Thus, roles are componentspeci�cations, while activities are connector speci�cations, which is not distinguishedin our framework. Activities may also have synchronization behaviour. However, thisbehaviour is interleaved with service behaviour, while we only use it to control the serviceacceptance. The main purpose of activities in Kristensens work is to give an abstractmodel of the interaction. Therefore also a graphical description of the relationships andcontrol 
ow of an activity is given. We use processes to give this abstract model, wherewe additionally abstract from the service structure.The concept of roles has also been explored in the area of object-oriented database systems[GSR96]. This research is mainly concerned with the classi�cation aspect of roles and doesnot cover concurrency or synchronization behaviour.With OORASS [RAB+92] we share the motivation of putting interaction description intoa methodological framework. In that work also the problem is separated into several con-texts (depicted as role diagrams). The role diagrams only show the reference structure,while we use processes to show the interaction dependencies. The next step in OORASSis to synthesize the di�erent role models for object description using distinguished compo-sition operators. In our framwork roles are independent. For coordination of the di�erentroles of one actor a separate role must be instantiated. To our knowledge no formalde�nition of OORASS description techniques has been given.Future WorkWe are planning to enhance the 
exibility of ROLE in several ways: To describe truelydynamic systems, we want to incorporate dynamic acquisition and abandonment of roles.This, of course, complicates analysis of con�guration structure. We also want to incor-porate actor classes to allow more succinct system descriptions. We have not yet decidedwhether to incorporate inheritance between actor classes. It seems that many uses of in-heritance can be captured by role instantiation. However, inheritance would be useful onthe level of roles (making the concept of role re�nement explicit in the ROLE language).Yet another, area of research will be role hierachies where one role is substituted by awhole set of roles. 21
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