
T U M
I N S T I T U T F Ü R I N F O R M A T I K

A Formal Framework for Integrating Functional
and Architectural Views of Reactive Systems

Jewgenij Botaschanjan and Alexander Harhurin

ABCDEFGHIJKLMNO
TUM-I0904
Januar 09

T E C H N I S C H E U N I V E R S I TÄ T M Ü N C H E N



TUM-INFO-01-I0904-0/0.-FI
Alle Rechte vorbehalten
Nachdruck auch auszugsweise verboten

c©2009

Druck: Institut f ür Informatik der
Technischen Universit ät M ünchen



Abstract. An integrated model-based development approach has to capture the

relationship between requirements, design, and implementation models. In the

requirements engineering phase, the most important view is the functional one,

which specifies functionalities offered by the system and relationships between

them. In the design phase, the component-based view describes the system as a

network of interacting components. Via their interaction, they have to realize the

black-box behavior specified in the functional view. To ensure the consistency

between both views, a formal integration of them is necessary.

The presented formal framework captures both function- and component-based

models. In particular, we provide a correct-by-construction procedure, which

transforms a functional specification into a component-based architecture. Ap-

plicability of the method is evaluated on an industrial case study in a CASE tool.

1 Introduction

Rapid increase in the amount and importance of different software-based functions as

well as their extensive interaction are just some of the challenges that are faced dur-

ing the development of embedded reactive systems. As a consequence, the focus of

concerns in software engineering shifts from individual software components to the

cross-cutting functions these components offer.

The service-oriented approach is an efficient way to manage the complexity in large-

scale model-based development involving many distributed teams. Thereby, functions

(services), rather than structural entities (components), are emphasized as the basic

building blocks for system composition [10]. In contrast to components, services are

partial models which describe only fragmented aspects of the overall system behav-

ior. Following the separation-of-concerns principle, a stakeholder can describe a single

purpose as a service independent of other services.

A significant factor behind the difficulty of model-based developing complex soft-

ware is the wide conceptual gap between the problem (function/service) and the im-

plementation (component) domains of discourse [16]. Currently, the step from service-

oriented specifications to component-based architectures requires a manual transforma-

tion. Testing is the main method for consistency checking between both models.

In light of this observation, we introduce a mathematical framework to model multi-

functional reactive systems during the early phases of a model-based development pro-

cess. Thereby, we focus on the formal definitions of services provided by a system,

and show how our service-oriented specification can be transformed into a component-

based architecture. The term “service” is used in a variety of meanings, and on various

levels of abstraction in the software engineering community. Our notion of service cap-

tures functional requirements on a system.

Our approach provides two interrelated views of a software system. Service-Based

Specification (SBS) specifies the system functionality as a set of partial black-box mod-

els of the overall behavior. In other words, the overall behavior is specified from dif-

ferent viewpoints [15] by a set of scenarios – causal relations between input and output

messages from/to actors in the system environment. We call such scenarios services

and formalize them by means of I/O automata. Scenarios/services are in certain rela-

tionships with each other. The combination of these services according to their rela-



tionships yields the overall specification of the system. A further view of the system is

the component-based Logical Architecture. It decomposes the system behavior into a

network of communicating components. Via their interaction, they have to realize the

black-box behavior specified by the SBS [9].

The presented framework forms the basis for the comprehensive development pro-

cess. On the one hand, both views establish a clean separation between the services

provided by the system and the software architecture implementing the services. On the

other hand, based on the formal foundation, various correct-by-construction methods

for the transition between both models can be defined. The fact that our service- and

component-based models are based on the same notation and implemented in the same

CASE tool facilitates this process. In particular, we present a property preserving proce-

dure, which transforms an SBS into a network of components automatically. Thereby,

several services together with their functional dependencies (relationships) are mapped

to a component in a schematic manner. Subsequently, the resulting components can be

regrouped arbitrarily and distributed according to quality requirements [4]. However,

this is out of the scope of this paper.

Contributions Our contributions in this paper are twofold. First, in the presented op-

erational framework both function- and component-based views of the system can be

modeled in an integrated manner. On the one hand, the total behavior of a component

can be specified from different viewpoints by a set of partial services. On the other

hand, a (hierarchical) service can be realized by a component network. The consistency

between both models can formally be proved. Furthermore, due to a clear link between

services and components, it is possible to identify the components which are affected

by the changes in the service-based specification.

Second, the presented approach bridges the conceptual gap in our model-based de-

velopment framework. The development process introduced in [17] consists of three

phases: requirements analysis yielding a consistent service-based specification [8, 19],

transformation from specifications to component-based architectures, and deployment

of components onto a network of communicating electronic control units [7]. The tran-

sition procedure proposed in this paper guarantees a seamless integration of our models

at the top of a model chain closing the gap between requirements and design.

Running Example The concepts introduced in the remainder of the paper will be il-

lustrated on a fragment of a specification originally written and implemented for “Ad-

vanced Technologies and Standards” of Siemens, Sector Industry. The considered bot-

tling plant system comprises several distributed subsystems: to transport empty bottles

from a storehouse to the bottling plant, fill bottles with items, seal them, and transport

them back to the storehouse. All these systems are operated by a central control unit

(CU) which provides a user interface to receive commands and display the system sta-

tus as well as a device interface to send/receive control signals to/from the subsystems.

Although there are over 70 scenarios of system behavior, in this paper we consider only

a small subset concerning the interplay between the CU and the conveyor belt. Among

other things, the user can start and stop the conveyor. There is also an emergency brake

available. When the emergency brake is activated, the CU immediately switches the



conveyor off. In this case, the CU is not allowed to switch the system on and the emer-

gency lamp flashes red until an abolition of the emergency command is received.

Outline The remainder of this paper is organized as follows. In Section 2, we compare

our work to related approaches. Section 3 introduces the notion of a component and

that of a service and explains the methodological difference between the service-based

specification and component-based architecture. In Section 4, a formal framework for

modeling specifications and software architectures is presented. Section 5 introduces

the notion of system modes. In Section 6, we show how a service-based specification

can be transformed into a component-based architecture. Finally, we show how our

formal approach is implemented in a CASE tool in Section 7 before we conclude the

paper in Section 8.

2 Related Work

The presented work is based on a theoretical framework introduced by Broy et al. [10]

where the notion of service behavior, decomposition, and refinement are formally de-

fined. This framework proposes to model services as partial stream processing func-

tions. However, it does not cover several relevant issues such as an operational se-

mantics, behavior extension by new aspects, or automatic combination of services into

components. In [22], Krüger et al. introduced a methodological approach to defining

services and mapping them to component configurations. From use cases, roles and

services as interaction patterns among roles are derived. Subsequently, the roles are

refined into a component configuration, onto which services are mapped to yield an

architectural configuration. Due to the applied algorithm for the synthesis of state ma-

chines from MSCs [21], this approach assumes the services to be complete descrip-

tions of the system behavior. This completeness assumption is limiting, considering

that interaction-based specifications are inherently partial [30]. Our approach, in con-

trast, supports a combination of partial aspects of the same system behavior.

Several approaches study the model merging in specific domains including require-

ments [28] and software architecture [2]. Also, a wide range of techniques for support-

ing synthesis of component models from declarative requirements [13] or scenarios [18]

exist. In the last years, SCESM community has studied a number of further synthesis ap-

proaches that turn scenario descriptions into state machines [24]. The closest approach

to our work is the framework introduced by Uchitel and Chechik [30], who defined the

combination of partial descriptions of the same system. In contrast to this work, where

different automata are merged into a global one, we aim at a network of components,

which can be grouped and distributed according to given quality requirements. Due to

a clear link between services and components, it is possible to identify the components

which are affected by the changes in the service-based specification.

The relationship between requirements and architectures has received increased at-

tention recently [5]. The goal-oriented approach, as proposed by van Lamsweerde [31],

aims at refining high-level goals to requirements and modeling architectures based on

underlying system goals. This process relies on a set of predefined refinement patterns,

and is not automated. Use Case Maps, introduced by Buhr [11], combine behavior and



structure into one view by allocating use cases (responsibilities) to architectural com-

ponents. This approach requires human intervention for the allocation of use cases.

The combination of services has traditionally been studied in the telecommunica-

tion domain [12]. In this field, services (known as features) are considered as increments

of the basic functionality. Approaches to this problem (e.g., by Jackson and Zave [20])

propose analytical techniques to detect and to eliminate feature interactions in the im-

plementation domain. Here, in contrast, we propose a correct-by-construction approach

to bridging the gap between requirements and architecture models.

Current approaches in the domain of aspect-oriented modeling [29] are concerned

with specifying features in modeling views and analyzing interactions across the views

at high levels of abstractions (e.g., [27, 3]). However, in contrast to our work, these

approaches do not take the semantical combination of aspects into consideration, and

do not support overlapping aspects based on shared messages.

3 Functional and Architectural Views of the System Behavior

In this section, we introduce the notion of a service and that of a component and explain

the methodological difference between the service-based specification and component-

based architecture.

A central question in software engineering is how to adequately structure the func-

tionalities of the system at different levels of abstraction. A specification consists of

a set of requirements, which usually deal with only fragmented aspects of the sys-

tem behavior. Different scenarios and system modes (e.g., initialization, shutdown, or

normal-case behavior) are usually described by separate requirements. Each further re-

quirement adds a new aspect of the specified behavior. Specifications relate functional-

ities to each other, e.g., a scenario should always precede another one, or it has a higher

priority than the other one. These relationships exclusively determine the structure of

the functional specification. On the other hand, the functionality has to be realized by

a software architecture, which is typically structured into components. There may be

many possible component-based architectures that implement the given functionality.

Such architectures may be based on various architectural styles such as layered archi-

tecture or client-server. The pure functional structure has usually to be redistributed

according to quality requirements and other criteria.

In light of this observation, we propose two orthogonal concepts for structuring and

decomposing functionality of the system under consideration (cf. Figure 1).

Service-Based Specification The Service-Based Specification defines the function view

of the system and structures the user functionality into services without any architec-

tural details. The specification consists of a set of services and relationships between

them. A service specifies a partial and non-deterministic relation between certain in-

puts and outputs of the system, which interacts with its environment within a number

of scenarios. In other words, a service is a fragmented aspect of the system behavior.

The specification does not define the internal data flow within a system – every service

obtains inputs from and sends outputs directly to the environment. Usually, services de-

scribe system reactions for only a certain subset of the inputs. This partial description



S1
S2 S3

S4 S5 S6 S7

C1

C2
C3

C5

C4
C6

(a) Service-Based Specification

S1
S2 S3

S4 S5 S6 S7

C1

C2
C3

C5

C4
C6

(b) Logical Architecture

Fig. 1. Different Views of the System Behavior

allows the distribution of the system functionality over different services and/or leaving

the reaction to certain inputs unspecified. In general, adding a service to a specification

results in extending the system behavior.

Logical Architecture This model defines the architectural view of the system and de-

composes the functionality into a network of communicating components. Typically,

the collaboration between the components realizes the black-box behavior specified

at the functional level. The component composition reduces the number of possible

behaviors of individual components w.r.t. the open-world assumption. The Logical Ar-

chitecture forms the basis for grouping and distribution of the system functionality over

components according to quality constraints rather than functional relationships.

Specification vs. Architecture There are two main differences between both views.

Methodologically, it is the difference between the black-box and white-box views of

the system. While the SBS provides a hierarchy of functions observable at the outer

boundaries of the system, the Logical Architecture focuses on the inside component-

based structure of the system. The formal difference between both views lies in the

relationships between their building-blocks. In general, inter-service relationships are

non-associative, which makes regrouping of services very limited. However, an archi-

tecture aims at clustering functionalities into components according to quality require-

ments, which play no role in the service-based specification. In Section 6 we realize the

inter-service relationships by the commutative and associative inter-component com-

munication, that allows us arbitrary restructuring of the component-based architecture.

4 Service-Oriented Development

This section introduces a formal framework for modeling specifications and software

architectures of a system. Thereby, the basic building block of both models is a service –

a formal representation of a system functionality. Mathematically, a total input-enabled

component is a special case of a partial input-disabled service. In the following, we

show how services can be combined to service-based specifications and composed to

component-based architectures.



4.1 Service

A service has a syntactic interface consisting of the sets of typed input and output ports,

which represent the system’s I/O devices (sensors and actuators) according to Parnas et

al. [26]. Figure 2(a) depicts the syntactic interface of a service from our running exam-

ple. There, input and output ports are depicted by empty and filled cycles, respectively.

The semantics of a service is described by an I/O automaton. This is a tuple S =
(V, I, T ) consisting of variables V , initial states I, and a transition relation T . V con-

sists of mutually disjoint sets of typed variables I , O, L. The type of a variable v ∈ V
is denoted by the function ty(v), which maps v to the set of all possible valuations. The

variables from I and O are the input and output ports of the service interface, respec-

tively. L is a set of local variables. A state of S is a valuation α that maps every variable

from V to a value of its type. Λ(V ) is the set of all type-correct valuations for a set of
variables V , i.e., for all α ∈ Λ(V ) and all v ∈ V holds α(v) ∈ ty(v).

We define following relations on variable valuations: for α, β ∈ Λ(V ) and Z ⊆ V ,

α
Z
= β denotes the equality of variable valuations from Z, i.e., ∀v ∈ Z : α(v) = β(v).

For an assertion Φ with free variables from V and α ∈ Λ(V ), we say that α satisfies

Φ, written as α ⊢ Φ, iff Φ yields true after replacing its free variables with values

from α. Finally, the priming operation on a variable name v yields a new variable v′

(the same applies for variable sets). Priming of valuation functions yields a mapping

of equally valued primed variables, i.e., for given α ∈ Λ(V ), α′ is defined by ∀v ∈
V : α(v) = α′(v′). Priming is used to argue about the current and next state within the

same logical assertion. For Φ with free variables from V ∪V ′ and α, β ∈ Λ(V ) we also
write α, β′ ⊢ Φ to denote that Φ yields true after replacing free unprimed variables by

values from α and primed ones by values from β.
I is an assertion over V characterizing the initial states of the system. It is allowed

to constrain output and local variables only, i.e., the set of possible initial inputs is not

constrained by I.
T is a set of transition assertions over V ∪ V ′. In a transition t ∈ T the satisfy-

ing valuations of unprimed variables describe the current state while the valuations of

the primed ones constrain the possible successor states. By enabling several satisfying

successor state valuations for one current state, we can model non-determinism. A tran-

sition is not allowed to constrain primed input and unprimed output variables. By this,

we disallow a service to constrain its own future inputs, and enforce the clear separation

between the local state (read/write) and the outputs (write only).

We instantiated the above service model for an extended version of I/O automata

used in our CASE tool. As in the classical I/O automata [25], a transition leads from

one control state to another and might consist of four logical parts: precondition, input

pattern, post-condition and output pattern. In our concrete syntax i?v denotes an input

pattern, which evaluates to true if the variable i ∈ I has the value v and o!v an output

pattern, which is satisfied by an assignment of value v to the output variable o′ ∈ O′.

Figure 2 shows the specification of service Switch from our running example, which

formalizes the following scenario of the CU. The user can switch the conveyor on/off,

by putting one of the two commands (on or off) in. Additionally, the CU receives

the state of the conveyor through the port state. If the conveyor is in state off and

the user switches it on, in the next step the CU sends command on through its port



comm to the conveyor, as well as message on through port status to the user display

(cf. Transition 2). Note, Transition 5 does only reference two of the four existing ports.

This means that the remaining ports are allowed to have arbitrary values within their

respective type domains when the automaton executes this transition.

Switch
switch comm

statusstate

(a) Syntactical Interface

off on 

2: switch?on state?off/

status!on comm!on

1: switch?!on state?off/

status!off comm!"

3: switch?!off state?on/

status!on comm!"

4: switch?off state?on/

status!off comm!off

5: state?off/status!off

(b) I/O Automaton

Fig. 2. Service Switch

In order to be able to reason about transition steps, we define the successor state

of some valuation α as Succ(α)
def

= {β | ∃t ∈ T : α, β′ ⊢ t}. The complementary

predicate En yields true if a service can make a step: En(α)
def

⇔ Succ(α) 6= ∅. If En(α)
holds, we say that the service is enabled in state α.

The language of a service automation consists of valuation sequences α0α1 . . . ,
called runs, such that α0 ⊢ I holds and for all i ∈ N either αi+1 ∈ Succ(αi) or

¬En(αi) and αi is the last element in the sequence. By this, the semantics of our service

is input-disabled.

4.2 Service Combination

Single services can be combined to a composite service. This directly reflects the idea

that each further requirement/scenario adds a new aspect of the specified behavior. The

combination of these fragmented aspects yields the overall system behavior.

Unlike the classical notion of composition (e.g., [25, 14]), which reduces the num-

ber of possible behaviors of individual automata, we are interested in obtaining a mech-

anism for the extension of the system behavior. The service combination accepts all

inputs, which the single services can deal with as long as the outputs produced by these

services are unifiable (not contradictory). The reaction of the combination accords with

the reactions specified by the single services.

The combination of two services is defined only if input ports of one service and

the output ports of the other do not coincide: (I1 ∪ L1) ∩ (O2 ∪ L2) = (O1 ∪ L1) ∩
(I2 ∪L2) = ∅ and their common variables V1 ∩V2 have the same type. Then, we speak

about combinable services.

For two combinable services S1 and S2, their combination C
def

= S1 ‖ S2 is defined

by C
def

= (VC , IC , TC), where IC
def

= I1 ∪ I2, OC
def

= O1 ∪ O2, LC
def

= L1 ∪ L2, VC
def

=

IC ∪ LC ∪ OC , IC
def

= I1 ∧ I2. TC is described by the successor function below. The



EBrake
commstate

emergeBrake

(a) Syntactical Interface

eOff eOn

2: state?em/

comm!off emerg!on

1: state?!em eBrake?!em

/emerg!off

4: eBrake?!ab/

comm!" em
� �

g!on

5: eBrake?ab/emerg!off

3: eBrake?em/

comm!off emerg!on

(b) I/O Automaton

Fig. 3. Service EBrake

combined automaton makes a step if either the current input can be accepted by both

single services, and their reactions are not contradictory, or the input can be accepted

by one of both services only. In the latter case, the local variables of the not enabled

service (i.e., the service with ¬En(α)) are not modified, and its output variables (not

common with the first service) are unrestricted. Formally, the set of successors of the

combination is defined for all i, j ∈ {1, 2}, i 6= j as follows:

Succ(α)
def

= {β | ∃t1 ∈ T1, t2 ∈ T2 : α, β′ ⊢ t1 ∧ t2}

∪ {β | ∃ti ∈ Ti : α, β′ ⊢ ti ∧ ¬Enj(α) ∧ α
Lj

= β},

where Eni(α) is true iff Si is enabled in state α.
To illustrate the concept of combination, we consider a further scenario concerning

the emergency brake from our example. The CU switches the system off if the user puts

the emergency brake on (message em on port eBrake) or a critical state message is

received from the conveyor (message em on port state). The CU is not allowed to

switch the system on and the emergency lamp flashes until an abolition of the emer-

gency (ab) is received on eBrake. The service from Figure 3 formalizes this scenario.

The combination of services Switch and EBrake results in the automaton from

Figure 4(a) (without transitions marked by dashed ovals). There, the labels of transitions

are of the form ts∧ te, where ts and te are the transition numbers from Figures 2(b) and

3(b), respectively. A label of the form T∧te identifies situations where service Switch
is not enabled. A transition with a label l1 ∨ l2 is an abbreviation of two transitions with
labels l1 and l2, respectively.

4.3 Prioritized Combination

Usually, some events or scenarios explicitly have a higher priority in specifications than

others. For example, the system reaction in the case of emergency has higher priority

than the normal-case behavior. In order to be able to reflect this in our service model,

we introduce the notion of a prioritized combination. It allows an individual service to

take control over other services depending on specific input histories. Thereby, we can

express different relationships between services without any modifications on them.



off/eOff on/eOff

off/eOn on/eOn

1 1

1 4 ! T 4

1 5

2 1

2 5

3 1

3 4 ! T 4

3 5

4 1 ! 5 1

4 3

4 5 ! 5 3 ! 5 5

5 4

T 2 

!T 3

T 2

! T 3

(a) Service Combination

1: state?em[2]

2: eBrake?x ![2]

(b) Priority

Fig. 4. Behavior Specifications

The prioritized combination temporally allows a service to take priority over an-

other service. Thereby, the prioritized combination is controlled by a special service

SP with the interface consisting of all input ports of both services and no output ports.

Transitions of SP might prioritize one of both services. If the current input enables a

transition of SP and this transition prioritizes service S2, only S2 is executing – the

local state of S1 remains unmodified, the output variables exclusively controlled by S1

are not subject to any restrictions. If the current input does not enable any transition

of SP or the enabled transition prioritizes no service, the combination behaves like the

un-prioritized one. Thus, the priority determines certain inputs for which the system

behavior should coincide with the behavior of one of both services only.

The prioritized combination PC
def

= S1 ‖SP S2 is defined for a pair of combinable

services S1, S2 and a special priority service SP
def

= (IP ⊎ LP , IP , TP , p) by PC
def

=

(VPC , IPC , TPC ), where IP
def

= IPC
def

= I1∪I2,OPC
def

= O1∪O2, LPC
def

= L1∪L2∪LP ,

VPC
def

= IPC ∪ LPC ∪ OPC , IPC
def

= IP ∧ I1 ∧ I2. The function p : TP → {0, 1, 2}
defines whether S1, S2 or no service is prioritized by a certain transition from TP . TPC

is described by the successor function below. It is defined over the transition set TC of

the unprioritized combination of S1 and S2 for all i, j ∈ {1, 2}, i 6= j:

Succ(α)
def

= {β | ∃t ∈ TC : ∀tP ∈ TP : (α, β′ ⊢ t ∧ ¬tP ) ∧ α
LP= β}

∪ {β | ∃t ∈ TC , tP ∈ TP : (α, β′ ⊢ t ∧ tP ) ∧ p(tP ) = 0}

∪ {β | ∃ti ∈ Ti, tP ∈ TP : (α, β′ ⊢ ti ∧ tP ) ∧ p(tP ) = i ∧ α
Lj

= β}.

The first subset describes the case when no transition of SP is enabled, the second one

– when the enabled transition of SP prioritizes none of both services. In both cases, the

behavior of S1 ‖
SP S2 coincides with the behavior of S1 ‖ S2. The last subset contains

the common behaviors of prioritized service Si and SP , i.e., the behavior of service S1

or S2 which is temporally prioritized by a currently enabled transition of SP .

In our running example, it makes sense to prioritize the emergency break signals

eBrake?em and state?em. We require that the combined system must behave like

service EBrake if one of these signals arrives. The priority service which priori-



tizes emergency signals is depicted in Figure 4(b) (both transitions prioritize service

EBrake). The prioritized combination of Switch and EBrake with regard to the

priority service results in the automaton from Figure 4(a) (including formulas enclosed

in dashed ovals). Whenever an emergency signal has arrived, this combination behaves

like service EBrake (transitions marked by dashed ovals), otherwise the behavior is

identical to the unprioritized combination from the last section.

The un-prioritized combination from the previous section is a special case of the

prioritized one. The prioritized combination is in general non-associative, however, it is

commutative1 and distributive. These properties are shown in [8].

4.4 Composition

A component – the architectural building block – can be seen as a (sub)system, which

provides a number of services. A component can be specified by a set of services

combined according to their interrelationships as described above. In the architectural

view, a system is usually described by a network of communicating components. The

inter-component communication is not supported by the combination operators. Con-

sequently, we define a composition operator on services and, thus, integrate the archi-

tectural view into our framework. As a reminder, mathematically, the total component

is a special case of the partial service.

The composition operator permits two services to communicate directly via homony-

mous input/output port pairs. Two services are composable if L1 ∩ V2 = L2 ∩ V1 =
I1 ∩ I2 = O1 ∩ O2 = ∅ and their shared variables V1 ∩ V2 have the same type.

For two composable services S1 and S2, the composition C
def

= S1 ⊕ S2 is defined

by C
def

= (VC , IC , TC), where IC
def

= (I1∪ I2)\ (O1∪O2), OC
def

= (O1∪O2)\ (I1∪ I2),

LC
def

= L1 ∪ L2 ∪ (V1 ∩ V2), VC
def

= IC ∪ LC ∪ OC , IC
def

= I1 ∧ I2. TC is described by

the successor function below. The composite automaton makes a step if both services

accept their current inputs:

Succ(α)
def

={β | ∃t1 ∈ T1, t2 ∈ T2 ∧ α, β′ ⊢ t1 ∧ t2}.

The composite service C is enabled if both services in the composition are enabled, i.e.,

En(α)
def

= En1(α)∧En2(α). The service composition is very similar to those introduced

in [14] and, therefore, sketched very briefly. The composition is synchronous, strong

causal as well as associative and commutative as shown in [6].

5 System Modes

The prioritized and un-prioritized combination operators with their properties enable a

modular and distributed development of service models and allow us to build up service

hierarchies. Furthermore, the priority operator is a natural approach to structuring a

specification into system modes. System modes are a useful and popular structuring

principle for requirements. Complex scenarios might be divided into several modes, or

1 Provided that priority function p uniquely identifies every transition with combined services.



the overall system behavior might be divided into modes in which different scenarios

are specified. Thus, for building intuitive and comprehensive models it is important to

support the notion of system modes explicitly. Moreover, the notion of system modes

contributes to the efficiency of consistency checks, especially with large requirements

specifications.

The system modes are defined over transitions of priority services and specify a set

of efficacious services for a given valuation state α. A priority service SP in S1 ‖
SP S2

subdivides the system behavior into three priority modes, in which S1, S2, or both of

them are efficacious. The logical predicate isAct i (with i ∈ [1..2]) determines whether

service Si is currently efficacious, isAct0 – whether both services are efficacious:

isAct0(SP , α)
def

⇔ ¬EnP (α) ∨ ∃t ∈ TP , β ∈ SuccP (α) : α, β′ ⊢ t ∧ p(t) = 0,

isAct i(SP , α)
def

⇔ ∃t ∈ TP , β ∈ SuccP (α) : α, β′ ⊢ t ∧ p(t) = i.

Now, we describe the set of efficacious sub-services of a system Sys in a state α: these
are the services which execute a transition during the next system step. This set denoted

by Act(Sys, α) is inductively defined over the service notation:

S ∈ Act(S, α) ⇔ EnS(α),

S ∈ Act(S1 ⊕ S2, α) ⇔ S ∈ Act(S1, α) ∨ S ∈ Act(S2, α),

S ∈ Act(S1 ⊕
SP S2, α) ⇔

{

S ∈ Act(Si, α) if i ∈ {1, 2} ∧ isAct i(SP , α),

S ∈ Act(S1 ⊕ S2, α) if isAct0(SP , α).

A system mode of a system Sys in a state α corresponds to a subset of its efficacious

sub-services. Formally, a system mode is defined by a predicate mode(α) which de-

scribes a subset of Act(Sys, α). In our example, the emergency mode is defined by

modee(α)
def

= (EBrake ∈ Act(CU , α)). We use system modes in the next section to

specify properties which need not hold globally but in particular system modes only.

To simplify matters, we assume that all priority services are deterministic. This is

a reasonable assumption since different modes of operation in real-life systems bundle

mutually exclusive behaviors, e.g., error-recovery vs. normal-case behavior. However,

our definition of modes can be generalized to capture the non-deterministic case also

by redefining isAct0 , isActi , and Act over two consecutive valuation states.

6 From Specification to Logical Architecture

In this section we show how a service-based specification can be transformed into a

component-based architecture. Therefore we propose a property preserving transition

procedure. This means, the presented procedure transforms a given service specification

S = S1 ‖
SP S2 into its realizing network of components CS , which provably preserves

the behavior of S up to stuttering [23].

6.1 Transition Procedure

Figure 5 depicts a synthesized network of components whose overall behavior coin-

cides with the behavior specified by the prioritized combination of services Switch



EBrake 
state

eBrake

Switch 
switch
state

Demux Priority
switchstateeBrake

switch

state
eBrake

Mux

comm
status

comm
emerg

comm

status
emerg

P-Coord
ppS

pp
ppE

Fig. 5. Logical Architecture

and EBrake from Section 4. Component Demux splits up the values on the input ports

and forwards them to components Switch⊥, EBrake⊥ and Priority. Components

Priority and P-Coord temporally disable Switch⊥ according to the semantics of

the prioritized service combination from Section 4.3. Finally, the outputs of Switch⊥

and EBrake⊥ are merged to common values by component Mux. According to our

strong causal semantics [6], the processing of messages in a component causes a unit

delay. Thus, in order to keep inputs and outputs in-sync, each of them are processed by

a (de-)mux. The main advantage of the presented solution is that Priority immedi-

ately disables/enables Switch⊥, i.e., without a delay between current inputs and the

prioritization effect (see below). Therefore, we take use of our input-disabled semantics

to enforce the correct behavior of (un-)prioritized components.

The transition procedure consists of the following steps: (1) Partial services are

totalized to components. (2) To ensure a correct composition of components, their

homonymous variables are renamed in a schematic manner. (3) To preserve the behavior

of the service combination, new coordinating components are synthesized. (4) Renamed

components and synthesized coordinators are composed to a network. In the following

the transition steps are explained in detail.

Totalization Given a partial service S = (V, I, T ). To totalize it to a component S⊥ =
(V, I, T⊥) by a special value⊥, all variable types from V are extended by⊥ and T⊥ is

defined by SuccS⊥(α)
def

= SuccS(α) ∪ {β | ¬EnS(α) ∧ α
L
= β ∧ ∀o ∈ O : β(o) = ⊥}.

The behavior of S⊥ coincides with the behavior of S for all defined inputs, otherwise

S⊥ makes a “stuttering step”: issues ⊥ and preserves the local variables valuations.

Renaming In contrast to the combination, in the composition, components are not al-

lowed to share a common input or output port (this ensures the associativity of the

composition). In order to establish the required composability between components,

their ports are renamed in a uniform manner. The renamed component S[w/v] =

(Vw, Iw, Tw) is defined by Vw
def

= (V \ {v})∪ {w}, Iw
def

= I[w/v], and Tw
def

= {t[w/v] |
t ∈ T}, where v ∈ V and w /∈ V is a pair of equal-typed variables. Φ[w/v] denotes the
replacement of all occurrences of v by w and v′ by w′ in a given assertion Φ. Obviously,
the behaviors of S and S[w/v] are equal up to renaming. We lift the renaming operator



for variable sets by S[vi/v]v∈U for some subset U ⊆ V , and define it as a successive

renaming of all variables in U by new ones.

I/O Coordination The renaming of a common port p shared by a pair of services

(S1, S2) yields two ports p1 and p2 contained in the interfaces of S1[p1/p] and S2[p2/p],
respectively. To synchronize the values on these ports, a mux/demux is synthesized for

each input/output port (in Figure 5 three single demuxes are composed to Demux and

three muxes are composed to Mux).

For a pair (S1, S2) and their common input port ip, the interface of the demux

dem(S1, S2, ip,⊥)
def

= (Vd, Id, Td) contains one input port Id
def

= {ip} and two output

ports Od
def

= {ip1, ip2}, where ip1, ip2 /∈ (V1 ∪ V2) and ty(ip) = ty(ip1) = ty(ip2).

Thus, Vd
def

= Id ⊎ Od. The semantics of a demux is very simple. It copies each value on

the input port to both output ports: Td
def

= {ip′
1 = ip′

2 = ip} and Id
def

= ip1 = ip2 = ⊥.

For a pair (S1, S2) and their common output port op, the interface of the mux

mux (S1, S2, op,⊥)
def

= (Vm, Im, Tm) is defined by Vm
def

= Im ⊎Om, Im
def

= {op1, op2},

and Om
def

= {op}. Thereby, op1, op2 /∈ (V1 ∪ V2), ty(op) = ty(op1) = ty(op2). The
mux forwards the input values to the output port only if both values are equal or one of

them is ⊥. Formally, Tm
def

= {(op′ = op1 = op2) ∨ (op′ = op1 ∧ op2 = ⊥) ∨ (op′ =
op2 ∧ op1 = ⊥)}. For Im we demand that the valuation of op in the mux and in the

service combination must be equal: α ⊢ Im
def

⇔ ∃β ⊢ I1 ∧ I2 : β(op) = α(op). Since
the reaction to unequal inputs is not specified, the behavior of a mux is not total.

The above synthesis procedures are easily generalized for an arbitrary number of

services sharing common I/O ports or for non-common ports contained in the interface

of only one service. In the latter case the coordinators become simple unit-delay identity

functions.

Synthesis In the following the synthesis procedure is explained in detail. The service

combination S = S1 ‖ S2 is transformed into the following component composition:

CS
def

= DE ⊕ S⊥
1 [v1/v]v∈V1

⊕ S⊥
2 [v2/v]v∈V2

⊕ MU ,

where S⊥
i [v1/v]v∈Vi

is the totalization of Si with variables indexed by i ∈ {1, 2};

DE
def

=
⊕

ip∈I1∪I2

dem(S1, S2, ip,⊥) and MU
def

=
⊕

op∈O1∪O2

mux (S1, S2, op,⊥)

are the compositions of (de-)muxes for all I/O ports, respectively. Obviously, all com-

ponents in CS are mutually composable.

Regarding the prioritized combination, it is important to ensure that the priority

component immediately disables/enables one of both affected components, i.e., without

a unit delay between current inputs and the prioritization effect. Otherwise, the prior-

itization is based on outdated inputs and the composition behavior does not coincide

with the combination behavior. For example, if components Switch⊥, EBrake⊥ and

Priority are connected directly, the prioritization signal generated by Priority

arrives at the components one unit later than the inputs this signal is based on. There-

fore, two components are connected with their priority via an additional coordinator



(cf. P-Coord in Figure 5). Due to the input-disabled semantics of our components,

Switch⊥ and EBrake⊥ can execute a transition only if their outputs can be con-

sumed by P-Coord. It consumes the outputs from a component only if it receives the

prioritization signal for this component from Priority. Thus, we realize the imme-

diate prioritization of components without any delays.

Formally, for a combined service S = S1 ‖SP S2 with priority SP = (IP ⊎

LP , IP , TP , p) we construct a component Sext
P

def

= (I ⊎ L ⊎ {pp}, IP , TP ) with a new

output port pp /∈ (I ∪ L) and ty(pp) = {0, 1, 2,⊥}. Sext
P behaves like the origi-

nal service SP and, additionally, sends its current prioritization decision through the

new port pp. According to the semantics from Section 4.3, this decision is defined

by the function p(t). If the component Sext
P executes a transition and this transition

prioritizes one of both components (p(t) ∈ {1, 2}), value p(t) is sent through pp.

If no component is prioritized (p(t) = 0), a ⊥ is sent through the port. Formally,

TP
def

=
{

t∧pp′ = p(t) | t ∈ TP ∧p(t) ∈ {1, 2}
}

∪
{

t∧pp′ = ⊥ | t ∈ TP ∧p(t) = 0
}

.
Note, after totalization Sext

P also sends a ⊥ if SP is not enabled.

Corresponding output ports are added to the interfaces of S1 and S2. For Si =

(Vi, Ii, Ti) with i ∈ {1, 2} we obtain Sext
i

def

= (Vi ⊎ {pp}, Ii, T i). Each transition of

Sext
i can non-deterministically send the index i or the value 0 through the port pp:

T i
def

= {t ∧ (pp′ = i ∨ pp′ = 0) | t ∈ T}. These output ports are used to connect

components with their priority via a priority coordinator.

The priority coordinator is a mux mux (S1, SP , S2, pp,⊥) with three input ports

pp, pp1, and pp2. As a reminder, a mux can execute a transition only if all inputs

except for ⊥ are equal. Thus, the coordinator executes a transition in the following

cases. (a) The mux receives value 1 through ports pp and pp1 and a ⊥ through pp2.

This means, component S1 is prioritized and executes a transition. The unprioritized

component S2 is not able to execute a transition because values 2 or 0 on its port pp2

can not be consumed by the mux. Thus, it sends a ⊥ and does not modify its local

variables. (b) The same goes for pp = 2, pp1 = ⊥ and pp2 = 2. Here, component

S2 is prioritized. (c) The mux receives a ⊥ through pp, and 0 through both pp1 and

pp2. This means, no component is prioritized. S1 and S2 execute their transitions and

send 0 through pp1 and pp2, respectively. In all other cases, the priority coordinator

can not execute a transition. Thus, due to the input-disabled semantics, the coordinator

prevents other components from executing transitions which are not in accordance with

the service combination semantics.

The component composition with priority is defined as

CS
def

= DE ⊕
⊕

i∈{1,2,P}

(Sext
i )⊥[vi/v]v∈Vi

⊕ mux (S1, SP , S2, pp,⊥) ⊕ MU .

The behavior of the synthesized component network simulates the behavior of the

service-based specification. Furthermore, due to the commutativity and associativity

of the composition operator, the components can subsequently be regrouped and dis-

tributed according to further quality requirements.



6.2 Property Preservation

Now we show the behavior preservation of the corresponding service- and component-

based models. For this purpose, we define the following simulation relation.

Definition 1 (Simulation between services and components). Given a component

C = (VC , IC , TC) and a service S = (VS , IS , TS), such that VC = I ⊎ LC ⊎ O
and VS = I ⊎ LS ⊎ O and LS ⊆ LC . An infinite component run ρC = β0β1 . . .

simulates an infinite service run ρS = α0α1 . . . , denoted by sim(ρC , ρS), iff α0

VS= β0,

αi
I
= βi, αi+1

LS= βi+2, and αi+1

O
= βi+3 hold for all i ∈ N.

C simulates S up to stuttering, denoted by sim(C, S), iff for any run ρC = β1β2 . . .
with βi(v) 6= ⊥ for all i ∈ N and v ∈ VS a run ρS of S exists such that sim(ρC , ρS).

⊓⊔

The definition of sim(C, S) is based on the well-known stutter reduction [23],

which builds equivalence classes of system runs, consisting of the same sequences of

transition steps augmented by arbitrary, but finite sequences of ⊥-transitions. The rep-

resentative element of such a class is the run without any ⊥-transitions.

Theorem 1. Given a service S = S1 ‖ S2. Then the corresponding component

C
def

= DE ⊕ S⊥
1 [v1/v]v∈V1

⊕ S⊥
2 [v2/v]v∈V2

⊕ MU

simulates S, i.e., sim(C, S) holds.

Proof. We prove that every stutter-free trace of C is contained in the language of S.

Given some run ρC = α0α1 . . . such that

α0 ⊢ IC and ∀i ∈ N : (αi+1 ∈ SuccC(αi) ∧ ∀v ∈ VS : αi(v) 6= ⊥)

we show that there exists a run S, ρS , such that sim(ρS , ρC) by induction over the

valuation index i.
The initial valuations of input variables are unconstrained in both S and C. The

consequence is that the initial predicates of C’s subservices do not interfere — every

initial valuation can be calculated independently. The local variables of S are initially

constrained by the same predicate I1∧I2 in both cases. Finally, the initial valuation of

every output variable in C is constrained by the initial predicate of the corresponding

coordinator, which permits exactly the valuations described by I1 ∧I2. Thus, α0 ⊢ IS .

Induction Step Assuming that there is some valuation β ∈ Λ(VS) reachable in S, such

that β
I
= αi, β

LS= αi+1 and β
O
= αi+2 for some i ≥ 0. In other words, the finite run

from an initial state to β is the prefix of ρS . We need to consider two cases:

¬En(β): When β is the last valuation in a finite run, then the input of αi (and of β) will

serve as the input of S⊥
1 [v1/v]v∈V1

and S⊥
2 [v2/v]v∈V2

in the step i+1. In this step,

according to the assumption, the valuations of local variables from LS in C will

coincide with the corresponding valuations of S in state β. By the totalization of the

both services they will either issue ⊥-values on all their output ports, or produce



non-unifiable (contradictory) non-⊥ outputs in the step i + 2. In the former case,

the mux-services will also issue ⊥ as the output of C in the step i + 3. In other

words, we obtain a stutter step, which contradicts to the assumption about ρC . In

the latter case, αi+2 is the last valuation of ρC , which also cannot be true.

En(β): We must show that there exists γ ∈ SuccS(β) with γ
I
= αi+1, γ

LS= αi+2, and

γ
O
= αi+3.

The first equation follows directly from the fact that the inputs are subject to no

restriction in both, S and C. The input valuations of αi (and, equally, of β) become

input valuations of S⊥
1 [v1/v]v∈V1

and S⊥
2 [v2/v]v∈V2

in the step i + 1. In the same

step the local sates of variables from LS coincide for C and S. Thus, for every

successor, γ, of Si in the state β there exists an equal (up to renaming) successor of

S⊥
i [vi/v]v∈Vi

in the state αi+1 for i ∈ {1, 2}. At most one successor state (either

Succ1(β) or Succ2(β)) may be empty. Then, the corresponding successor set of

S⊥
1 [v1/v]v∈V1

or S⊥
2 [v2/v]v∈V2

will contain ⊥-valuations only. Otherwise, the ⊥-

valuation is not in the successor state. Since S is enabled in β, there exist either

at least one pair of unifiable successors of S1 and S2 in this state, or, if one of the

services is not enabled, the corresponding C’s subservice produces a ⊥-valuation.

Only unifiable outputs are accepted by the mux-services. Thus, outputs of C in step

i + 3 coincide with the outputs of the combination of S1 and S2, since the behavior

of the mux-coordinators reproduces the semantics of the unprioritized combination-

operator. ⊓⊔

Theorem 2. Given a service S = S1 ‖
SP S2. Then the corresponding component

C
def

= DE ⊕
⊕

i∈{1,2,P}

(Sext
i )⊥[vi/v]v∈Vi

⊕ mux (S1, SP , S2, pp,⊥) ⊕ MU

simulates S, i.e., sim(C, S) holds.

Proof. We prove that every stutter-free trace of C is contained in the language of S.

Given some run ρC = α0α1 . . . such that

α0 ⊢ IC and ∀i ∈ N : (αi+1 ∈ SuccC(αi) ∧ ∀v ∈ VS : αi(v) 6= ⊥)

we show that there exists a run S, ρS , such that sim(ρS , ρC) by induction over the

valuation index i.
The initial valuations of input variables are unconstrained in both S and C. The

consequence is that the initial predicates of C’s subservices do not interfere — every

initial valuation can be calculated independently. The local variables of S are initially

constrained by the same predicate IP ∧ I1 ∧ I2 in both, S and C. Finally, the initial

valuation of every output variable in C is constrained by the initial predicate of the

corresponding coordinator, which permits exactly the valuations described by I1 ∧ I2

(SP cannot influence the initial output valuations). Thus, α0 ⊢ IS .

Induction Step Assuming that there is some valuation β ∈ Λ(VS) reachable in S, such

that β
I
= αi, β

LS= αi+1 and β
O
= αi+2 for some i ≥ 0. In other words, the finite run

from an initial state to β is the prefix of ρS . We need to consider two cases:



¬En(β): When β is the last valuation in a finite run, then the input of αi (and of β) will

serve as the input of (Sext
1 )⊥[v1/v]v∈V1

, (Sext
2 )⊥[v2/v]v∈V2

, and (Sext
P )⊥[vP /v]v∈VP

in the step i + 1. In this step, according to the assumption, the valuations of local

variables from LS in C will coincide with the corresponding valuations of S in

state β. By the totalization of (Sext
1 )⊥[v1/v]v∈V1

and (Sext
2 )⊥[v2/v]v∈V2

they will

either (1) issue ⊥-values on all their output ports, or (2) produce non-unifiable

(contradictory) outputs in the step i + 2. In the same step, (Sext
P )⊥[vP /v]v∈VP

will

either (a) issue a ⊥ on pp-port, or (b) prioritize of the subservices. In cases (1a)

and (1b), the mux-services will also issue ⊥ as the output of C in the step i + 3.

In other words, we obtain a stutter step, which contradicts to the assumption about

ρC . In cases (2a) and (2b), αi+2 is the last valuation of ρC , which also cannot be

true.

En(β): We must show that there exists γ ∈ SuccS(β) with γ
I
= αi+1, γ

LS= αi+2, and

γ
O
= αi+3.

The first equation follows directly from the fact that the inputs are subject to no re-

striction in both, S and C. The input valuations of αi (and, equally, of β) become in-

put valuations of (Sext
1 )⊥[v1/v]v∈V1

, (Sext
2 )⊥[v2/v]v∈V2

, and (Sext
P )⊥[vP /v]v∈VP

in step i + 1. In the same step the local sates of variables from LS coincide for C
and S. Thus, for every successor, γ, of Si in the state β there exists an equal (up to

renaming) the successor of (Sext
i )⊥[vi/v]v∈Vi

in the state αi+1 for i ∈ {1, 2, P}.

The prioritization for the transition from β to γ in S corresponds to the output on

the pp-port of (Sext
P )⊥[vP /v]v∈VP

in step i + 1. At most one successor state ei-

ther Succ1(β) or Succ2(β) may be empty. Then, the corresponding successor set

of (Sext
1 )⊥[v1/v]v∈V1

or (Sext
2 )⊥[v2/v]v∈V2

will contain ⊥-valuations only. Other-

wise, the ⊥-valuation is not in the successor state. Also, at least two of the outputs

on the pp-, pp1-, and pp2-ports will coincide.

αi+2(pp) = ⊥: Since S is enabled in β, there exist either at least one pair of

unifiable successors of S1 and S2 in this state and αi+2(pp1) = αi+2(pp2) =
0, or, if one of the services (w.l.o.g. S1) is not enabled, the corresponding C’s

subservice produces a ⊥-valuation. In the latter case αi+2(pp2) = 2.

W.l.o.g. αi+2(pp) = 1: According to the combination semantics, there must ex-

ist a transition tP ∈ TP with p(tP ) = 1. Then, there exists a successor

of S1 in state β and a simulating successor of (Sext
1 )⊥[v1/v]v∈V1

in state

αi+1 with αi+2(pp1) = 1. Further on, there is no unifiable successor of

(Sext
2 )⊥[v2/v]v∈V2

, since it cannot issue a 1 on its port pp2. Thus, (Sext
2 )⊥[v2/v]v∈V2

can only make a stutter step.

Only unifiable outputs are accepted by the mux-services. Thus, outputs of C in step

i + 3 coincide with the outputs of the combination of S1 and S2, since the behavior

of the mux-coordinators together with mux (S1, SP , S2, pp,⊥) reproduces the se-

mantics of the prioritized combination-operator. ⊓⊔

7 Tool Support

Both service- and component-based perspectives are integrated in a CASE tool. Auto-

FOCUS [1] is a tool for the model-based development of reactive systems. It supports



graphical description of the developed system in both functional and architectural per-

spectives. Each perspective consists of three views (cf. Figure 6). In the Project Explorer

Fig. 6. Different AutoFOCUS Views for SBS Approach

view services/components are structured hierarchically. In the Structure Diagrams view

syntactical interfaces are defined. State Transition Diagrams describe the behavior of

services/components using our I/O automata. The simulation environment allows us to

validate service-based as well as component-based models. We are currently working

on an automatic transformation of service-based specifications into logical architectures

using the transition procedure from Section 6.

8 Conclusion and Outlook

We have presented an automata-based framework for modeling multi-functional reac-

tive systems during the early phases of a model-based development process. Two or-

thogonal perspectives (functional and architectural) on the system behavior are formally

defined. The proposed Service-Based Specification combines single (fragmented and

incomplete) scenarios, formalized as services, to an overall system behavior. Thereby,

we focus on a combination of partial behaviors concerning the same (sub-)system but

specified from different viewpoints. The Logical Architecture defines the architectural

view and decomposes the functionality into collaborating components. Via their inter-

action, the components realize the black-box behavior specified at the functional level.

The formal integration of service- and component-based models in a mathematical

framework is the main contribution of our approach. The proposed property-preserving

step from service-based specifications to logical architectures forms the basis for the

comprehensive development process that can be supported by a tool in the sense of

model transformation techniques. Thus, our models integrate seamlessly at the top of a

model chain closing the formal gap between requirements and design.



We see the application area of the proposed approach in the model-based develop-

ment of reactive systems. With a scenario-based specification as an input, this specifi-

cation is checked for consistency by verification and simulation [8, 19]. Subsequently,

the specification is transformed into a component-based architecture. Finally, the com-

ponents are deployed onto a network of electronic control units [7]. We are currently

working on automating the second step. The fact that both specification and architecture

models have the same mathematical foundation facilitates this process.

References

1. AutoFOCUS 3. http://af3.in.tum.de/.

2. M. Abi-Antoun, J. Aldrich, N. Nahas, B. Schmerl, and D. Garlan. Differencing and merging

of architectural views. In Proceedings of ASE’06. IEEE Computer Society, 2006.

3. E. Baniassad and S. Clarke. Theme: an approach for aspect-oriented analysis and design. In

Proceedings of ICSE’04, 2004.

4. L. Bass, P. Clements, and R. Kazman. Software Architecture in Practice. Addison Wesley,

1998.

5. D. M. Berry, R. Kazman, and R. Wieringa. Second international workshop on from software

requirements to architectures (STRAW’03). SIGSOFT Softw. Eng. Notes, 29(3), 2004.

6. J. Botaschanjan. Techniques for Property Preservation in the Development of Real-Time

Systems. PhD thesis, TU München, 2008.

7. J. Botaschanjan, A. Gruler, A. Harhurin, L. Kof, M. Spichkova, and D. Trachtenherz. To-

wards Modularized Verification of Distributed Time-Triggered Systems. In Proceedings of

FM’06: Formal Methods. Springer, 2006.

8. J. Botaschanjan, A. Harhurin, and L. Kof. Service-based Specification of Reactive Systems.

Technical Report TUM-I0815, Technische Universität München, 2008.

9. M. Broy, I. Krüger, A. Pretschner, and C. Salzmann. Engineering automotive software.

Proceedings of the IEEE, 95(2), 2007.

10. M. Broy, I. H. Krüger, and M. Meisinger. A formal model of services. ACM Trans. Softw.

Eng. Methodol., 16(1), 2007.

11. R. J. A. Buhr. Use case maps as architectural entities for complex systems. IEEE Trans.

Softw. Eng., 24(12), 1998.

12. M. Calder, M. Kolberg, E. H. Magill, and S. Reiff-Marganiec. Feature interaction: a critical

review and considered forecast. Comput. Networks, 41(1), 2003.

13. C. Damas, B. Lambeau, and A. van Lamsweerde. Scenarios, goals, and state machines: a

win-win partnership for model synthesis. In Proceedings of FSE’14. ACM, 2006.

14. L. de Alfaro and T. A. Henzinger. Interface automata. SIGSOFT Softw. Eng. Notes, 26(5),

2001.

15. A. Finkelstein, J. Kramer, B. Nuseibeh, L. Finkelstein, and M. Goedicke. Viewpoints: A

framework for integrating multiple perspectives in system development. International Jour-

nal of Software Engineering and Knowledge Engineering, 2(1), 1992.

16. R. France and B. Rumpe. Model-driven development of complex software: A research

roadmap. In Proceedings of FOSE’07. IEEE Computer Society, 2007.

17. A. Gruler, A. Harhurin, and J. Hartmann. Development and configuration of service-based

product lines. In Proceedings of SPLC’07. IEEE Computer Society, 2007.

18. D. Harel and H. Kugler. Synthesizing state-based object systems from LSC specifications.

In Proceedings of CIAA’00. Springer, 2001.

19. A. Harhurin and J. Hartmann. Towards consistent specifications of product families. In

Proceedings of FM’08: Formal Methods, volume 5014 of LNCS. Springer, 2008.



20. M. Jackson and P. Zave. Distributed feature composition: A virtual architecture for telecom-

munications services. IEEE Trans. Softw. Eng., 24(10), 1998.

21. I. Krüger, R. Grosu, P. Scholz, and M. Broy. From MSCs to statecharts. In Proceedings of

the Distributed and Parallel Embedded Systems. Kluwer Academic Publishers, 1999.

22. I. H. Krüger and R. Mathew. Systematic development and exploration of service-oriented

software architectures. In Proceedings of WICSA’04, 2004.

23. L. Lamport. What good is temporal logic. In R. E. A. Mason, editor, Proceedings of the IFIP

9th World Congress, 1983.

24. H. Liang, J. Dingel, and Z. Diskin. A comparative survey of scenario-based to state-based

model synthesis approaches. In Proceedings of SCESM’06. ACM, 2006.

25. N. A. Lynch and M. R. Tuttle. An introduction to input/output automata. CWI-Quarterly,

2(3), 1989.

26. D. L. Parnas and J. Madey. Functional documents for computer systems. Science of Com-

puter Programming, 25(1), 1995.

27. A. Rashid, A. Moreira, and J. Araújo. Modularisation and composition of aspectual require-

ments. In Proceedings of AOSD’03: Aspect-oriented Software Development. ACM, 2003.

28. M. Sabetzadeh and S. Easterbrook. View merging in the presence of incompleteness and

inconsistency. Requir. Eng., 11(3), 2006.

29. A. Solberg, D. M. Simmonds, R. Reddy, S. Ghosh, and R. B. France. Using aspect oriented

techniques to support separation of concerns in model driven development. In Proceedings

of COMPSAC’05. IEEE Computer Society, 2005.

30. S. Uchitel and M. Chechik. Merging partial behavioural models. SIGSOFT Softw. Eng.

Notes, 29(6), 2004.

31. A. van Lamsweerde. From system goals to software architecture. Formal Methods for

Software Architectures, 2804/2003, 2003.


